Michael Rutherford


An Analysis of WordNet’s Coverage of Gender Identity Using Twitter and The National Transgender Discrimination Survey
Amanda Hicks | Michael Rutherford | Christiane Fellbaum | Jiang Bian
Proceedings of the 8th Global WordNet Conference (GWC)

While gender identities in the Western world are typically regarded as binary, our previous work (Hicks et al., 2015) shows that there is more lexical variety of gender identity and the way people identify their gender. There is also a growing need to lexically represent this variety of gender identities. In our previous work, we developed a set of tools and approaches for analyzing Twitter data as a basis for generating hypotheses on language used to identify gender and discuss gender-related issues across geographic regions and population groups in the U.S.A. In this paper we analyze the coverage and relative frequency of the word forms in our Twitter analysis with respect to the National Transgender Discrimination Survey data set, one of the most comprehensive data sets on transgender, gender non-conforming, and gender variant people in the U.S.A. We then analyze the coverage of WordNet, a widely used lexical database, with respect to these identities and discuss some key considerations and next steps for adding gender identity words and their meanings to WordNet.