May Jiang


pdf bib
Interdependencies of Gender and Race in Contextualized Word Embeddings
May Jiang | Christiane Fellbaum
Proceedings of the Second Workshop on Gender Bias in Natural Language Processing

Recent years have seen a surge in research on the biases in word embeddings with respect to gender and, to a lesser extent, race. Few of these studies, however, have given attention to the critical intersection of race and gender. In this case study, we analyze the dimensions of gender and race in contextualized word embeddings of given names, taken from BERT, and investigate the nature and nuance of their interaction. We find that these demographic axes, though typically treated as physically and conceptually separate, are in fact interdependent and thus inadvisable to consider in isolation. Further, we show that demographic dimensions predicated on default settings in language, such as in pronouns, may risk rendering groups with multiple marginalized identities invisible. We conclude by discussing the importance and implications of intersectionality for future studies on bias and debiasing in NLP.