Matan Eyal


Large Scale Substitution-based Word Sense Induction
Matan Eyal | Shoval Sadde | Hillel Taub-Tabib | Yoav Goldberg
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a word-sense induction method based on pre-trained masked language models (MLMs), which can cheaply scale to large vocabularies and large corpora. The result is a corpus which is sense-tagged according to a corpus-derived sense inventory and where each sense is associated with indicative words. Evaluation on English Wikipedia that was sense-tagged using our method shows that both the induced senses, and the per-instance sense assignment, are of high quality even compared to WSD methods, such as Babelfy. Furthermore, by training a static word embeddings algorithm on the sense-tagged corpus, we obtain high-quality static senseful embeddings. These outperform existing senseful embeddings methods on the WiC dataset and on a new outlier detection dataset we developed. The data driven nature of the algorithm allows to induce corpora-specific senses, which may not appear in standard sense inventories, as we demonstrate using a case study on the scientific domain.


Bootstrapping Relation Extractors using Syntactic Search by Examples
Matan Eyal | Asaf Amrami | Hillel Taub-Tabib | Yoav Goldberg
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

The advent of neural-networks in NLP brought with it substantial improvements in supervised relation extraction. However, obtaining a sufficient quantity of training data remains a key challenge. In this work we propose a process for bootstrapping training datasets which can be performed quickly by non-NLP-experts. We take advantage of search engines over syntactic-graphs (Such as Shlain et al. (2020)) which expose a friendly by-example syntax. We use these to obtain positive examples by searching for sentences that are syntactically similar to user input examples. We apply this technique to relations from TACRED and DocRED and show that the resulting models are competitive with models trained on manually annotated data and on data obtained from distant supervision. The models also outperform models trained using NLG data augmentation techniques. Extending the search-based approach with the NLG method further improves the results.


Interactive Extractive Search over Biomedical Corpora
Hillel Taub Tabib | Micah Shlain | Shoval Sadde | Dan Lahav | Matan Eyal | Yaara Cohen | Yoav Goldberg
Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing

We present a system that allows life-science researchers to search a linguistically annotated corpus of scientific texts using patterns over dependency graphs, as well as using patterns over token sequences and a powerful variant of boolean keyword queries. In contrast to previous attempts to dependency-based search, we introduce a light-weight query language that does not require the user to know the details of the underlying linguistic representations, and instead to query the corpus by providing an example sentence coupled with simple markup. Search is performed at an interactive speed due to efficient linguistic graph-indexing and retrieval engine. This allows for rapid exploration, development and refinement of user queries. We demonstrate the system using example workflows over two corpora: the PubMed corpus including 14,446,243 PubMed abstracts and the CORD-19 dataset, a collection of over 45,000 research papers focused on COVID-19 research. The system is publicly available at


Question Answering as an Automatic Evaluation Metric for News Article Summarization
Matan Eyal | Tal Baumel | Michael Elhadad
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Recent work in the field of automatic summarization and headline generation focuses on maximizing ROUGE scores for various news datasets. We present an alternative, extrinsic, evaluation metric for this task, Answering Performance for Evaluation of Summaries. APES utilizes recent progress in the field of reading-comprehension to quantify the ability of a summary to answer a set of manually created questions regarding central entities in the source article. We first analyze the strength of this metric by comparing it to known manual evaluation metrics. We then present an end-to-end neural abstractive model that maximizes APES, while increasing ROUGE scores to competitive results.