Márton Makrai


One format to rule them all – The emtsv pipeline for Hungarian
Balázs Indig | Bálint Sass | Eszter Simon | Iván Mittelholcz | Noémi Vadász | Márton Makrai
Proceedings of the 13th Linguistic Annotation Workshop

We present a more efficient version of the e-magyar NLP pipeline for Hungarian called emtsv. It integrates Hungarian NLP tools in a framework whose individual modules can be developed or replaced independently and allows new ones to be added. The design also allows convenient investigation and manual correction of the data flow from one module to another. The improvements we publish include effective communication between the modules and support of the use of individual modules both in the chain and standing alone. Our goals are accomplished using extended tsv (tab separated values) files, a simple, uniform, generic and self-documenting input/output format. Our vision is maintaining the system for a long time and making it easier for external developers to fit their own modules into the system, thus sharing existing competencies in the field of processing Hungarian, a mid-resourced language. The source code is available under LGPL 3.0 license at https://github.com/dlt-rilmta/emtsv .

Investigating Sub-Word Embedding Strategies for the Morphologically Rich and Free Phrase-Order Hungarian
Bálint Döbrössy | Márton Makrai | Balázs Tarján | György Szaszák
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

For morphologically rich languages, word embeddings provide less consistent semantic representations due to higher variance in word forms. Moreover, these languages often allow for less constrained word order, which further increases variance. For the highly agglutinative Hungarian, semantic accuracy of word embeddings measured on word analogy tasks drops by 50-75% compared to English. We observed that embeddings learn morphosyntax quite well instead. Therefore, we explore and evaluate several sub-word unit based embedding strategies – character n-grams, lemmatization provided by an NLP-pipeline, and segments obtained in unsupervised learning (morfessor) – to boost semantic consistency in Hungarian word vectors. The effect of changing embedding dimension and context window size have also been considered. Morphological analysis based lemmatization was found to be the best strategy to improve embeddings’ semantic accuracy, whereas adding character n-grams was found consistently counterproductive in this regard.


300-sparsans at SemEval-2018 Task 9: Hypernymy as interaction of sparse attributes
Gábor Berend | Márton Makrai | Péter Földiák
Proceedings of the 12th International Workshop on Semantic Evaluation

This paper describes 300-sparsians’s participation in SemEval-2018 Task 9: Hypernym Discovery, with a system based on sparse coding and a formal concept hierarchy obtained from word embeddings. Our system took first place in subtasks (1B) Italian (all and entities), (1C) Spanish entities, and (2B) music entities.


Evaluating multi-sense embeddings for semantic resolution monolingually and in word translation
Gábor Borbély | Márton Makrai | Dávid Márk Nemeskey | András Kornai
Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for NLP

Filtering Wiktionary Triangles by Linear Mbetween Distributed Word Models
Márton Makrai
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

Word translations arise in dictionary-like organization as well as via machine learning from corpora. The former is exemplified by Wiktionary, a crowd-sourced dictionary with editions in many languages. Ács et al. (2013) obtain word translations from Wiktionary with the pivot-based method, also called triangulation, that infers word translations in a pair of languages based on translations to other, typically better resourced ones called pivots. Triangulation may introduce noise if words in the pivot are polysemous. The reliability of each triangulated translation is basically estimated by the number of pivot languages (Tanaka et al 1994). Mikolov et al (2013) introduce a method for generating or scoring word translations. Translation is formalized as a linear mapping between distributed vector space models (VSM) of the two languages. VSMs are trained on monolingual data, while the mapping is learned in a supervised fashion, using a seed dictionary of some thousand word pairs. The mapping can be used to associate existing translations with a real-valued similarity score. This paper exploits human labor in Wiktionary combined with distributional information in VSMs. We train VSMs on gigaword corpora, and the linear translation mapping on direct (non-triangulated) Wiktionary pairs. This mapping is used to filter triangulated translations based on scores. The motivation is that scores by the mapping may be a smoother measure of merit than considering only the number of pivot for the triangle. We evaluate the scores against dictionaries extracted from parallel corpora (Tiedemann 2012). We show that linear translation really provides a more reliable method for triangle scoring than pivot count. The methods we use are language-independent, and the training data is easy to obtain for many languages. We chose the German-Hungarian pair for evaluation, in which the filtered triangles resulting from our experiments are the greatest freely available list of word translations we are aware of.


Competence in lexical semantics
András Kornai | Judit Ács | Márton Makrai | Dávid Márk Nemeskey | Katalin Pajkossy | Gábor Recski
Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics


Applicative structure in vector space models
Márton Makrai | David Mark Nemeskey | András Kornai
Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality