Marinela Parović

Also published as: Marinela Parovic


BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer
Marinela Parović | Goran Glavaš | Ivan Vulić | Anna Korhonen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Adapter modules enable modular and efficient zero-shot cross-lingual transfer, where current state-of-the-art adapter-based approaches learn specialized language adapters (LAs) for individual languages. In this work, we show that it is more effective to learn bilingual language pair adapters (BAs) when the goal is to optimize performance for a particular source-target transfer direction. Our novel BAD-X adapter framework trades off some modularity of dedicated LAs for improved transfer performance: we demonstrate consistent gains in three standard downstream tasks, and for the majority of evaluated low-resource languages.


Parameter Space Factorization for Zero-Shot Learning across Tasks and Languages
Edoardo M. Ponti | Ivan Vulić | Ryan Cotterell | Marinela Parovic | Roi Reichart | Anna Korhonen
Transactions of the Association for Computational Linguistics, Volume 9

Abstract Most combinations of NLP tasks and language varieties lack in-domain examples for supervised training because of the paucity of annotated data. How can neural models make sample-efficient generalizations from task–language combinations with available data to low-resource ones? In this work, we propose a Bayesian generative model for the space of neural parameters. We assume that this space can be factorized into latent variables for each language and each task. We infer the posteriors over such latent variables based on data from seen task–language combinations through variational inference. This enables zero-shot classification on unseen combinations at prediction time. For instance, given training data for named entity recognition (NER) in Vietnamese and for part-of-speech (POS) tagging in Wolof, our model can perform accurate predictions for NER in Wolof. In particular, we experiment with a typologically diverse sample of 33 languages from 4 continents and 11 families, and show that our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods. Our code is available at