Marcos Treviso


DeepSPIN: Deep Structured Prediction for Natural Language Processing
André F. T. Martins | Ben Peters | Chrysoula Zerva | Chunchuan Lyu | Gonçalo Correia | Marcos Treviso | Pedro Martins | Tsvetomila Mihaylova
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

DeepSPIN is a research project funded by the European Research Council (ERC) whose goal is to develop new neural structured prediction methods, models, and algorithms for improving the quality, interpretability, and data-efficiency of natural language processing (NLP) systems, with special emphasis on machine translation and quality estimation. We describe in this paper the latest findings from this project.

Predicting Attention Sparsity in Transformers
Marcos Treviso | António Góis | Patrick Fernandes | Erick Fonseca | Andre Martins
Proceedings of the Sixth Workshop on Structured Prediction for NLP

Transformers’ quadratic complexity with respect to the input sequence length has motivated a body of work on efficient sparse approximations to softmax. An alternative path, used by entmax transformers, consists of having built-in exact sparse attention; however this approach still requires quadratic computation. In this paper, we propose Sparsefinder, a simple model trained to identify the sparsity pattern of entmax attention before computing it. We experiment with three variants of our method, based on distances, quantization, and clustering, on two tasks: machine translation (attention in the decoder) and masked language modeling (encoder-only). Our work provides a new angle to study model efficiency by doing extensive analysis of the tradeoff between the sparsity and recall of the predicted attention graph. This allows for detailed comparison between different models along their Pareto curves, important to guide future benchmarks for sparse attention models.

CometKiwi: IST-Unbabel 2022 Submission for the Quality Estimation Shared Task
Ricardo Rei | Marcos Treviso | Nuno M. Guerreiro | Chrysoula Zerva | Ana C Farinha | Christine Maroti | José G. C. de Souza | Taisiya Glushkova | Duarte Alves | Luisa Coheur | Alon Lavie | André F. T. Martins
Proceedings of the Seventh Conference on Machine Translation (WMT)

We present the joint contribution of IST and Unbabel to the WMT 2022 Shared Task on Quality Estimation (QE). Our team participated in all three subtasks: (i) Sentence and Word-level Quality Prediction; (ii) Explainable QE; and (iii) Critical Error Detection. For all tasks we build on top of the COMET framework, connecting it with the predictor-estimator architecture of OpenKiwi, and equipping it with a word-level sequence tagger and an explanation extractor. Our results suggest that incorporating references during pretraining improves performance across several language pairs on downstream tasks, and that jointly training with sentence and word-level objectives yields a further boost. Furthermore, combining attention and gradient information proved to be the top strategy for extracting good explanations of sentence-level QE models. Overall, our submissions achieved the best results for all three tasks for almost all language pairs by a considerable margin.


IST-Unbabel 2021 Submission for the Explainable Quality Estimation Shared Task
Marcos Treviso | Nuno M. Guerreiro | Ricardo Rei | André F. T. Martins
Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems

We present the joint contribution of Instituto Superior Técnico (IST) and Unbabel to the Explainable Quality Estimation (QE) shared task, where systems were submitted to two tracks: constrained (without word-level supervision) and unconstrained (with word-level supervision). For the constrained track, we experimented with several explainability methods to extract the relevance of input tokens from sentence-level QE models built on top of multilingual pre-trained transformers. Among the different tested methods, composing explanations in the form of attention weights scaled by the norm of value vectors yielded the best results. When word-level labels are used during training, our best results were obtained by using word-level predicted probabilities. We further improve the performance of our methods on the two tracks by ensembling explanation scores extracted from models trained with different pre-trained transformers, achieving strong results for in-domain and zero-shot language pairs.


The Explanation Game: Towards Prediction Explainability through Sparse Communication
Marcos Treviso | André F. T. Martins
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Explainability is a topic of growing importance in NLP. In this work, we provide a unified perspective of explainability as a communication problem between an explainer and a layperson about a classifier’s decision. We use this framework to compare several explainers, including gradient methods, erasure, and attention mechanisms, in terms of their communication success. In addition, we reinterpret these methods in the light of classical feature selection, and use this as inspiration for new embedded explainers, through the use of selective, sparse attention. Experiments in text classification and natural language inference, using different configurations of explainers and laypeople (including both machines and humans), reveal an advantage of attention-based explainers over gradient and erasure methods, and show that selective attention is a simpler alternative to stochastic rationalizers. Human experiments show strong results on text classification with post-hoc explainers trained to optimize communication success.

Evaluating Sentence Segmentation in Different Datasets of Neuropsychological Language Tests in Brazilian Portuguese
Edresson Casanova | Marcos Treviso | Lilian Hübner | Sandra Aluísio
Proceedings of the Twelfth Language Resources and Evaluation Conference

Automatic analysis of connected speech by natural language processing techniques is a promising direction for diagnosing cognitive impairments. However, some difficulties still remain: the time required for manual narrative transcription and the decision on how transcripts should be divided into sentences for successful application of parsers used in metrics, such as Idea Density, to analyze the transcripts. The main goal of this paper was to develop a generic segmentation system for narratives of neuropsychological language tests. We explored the performance of our previous single-dataset-trained sentence segmentation architecture in a richer scenario involving three new datasets used to diagnose cognitive impairments, comprising different stories and two types of stimulus presentation for eliciting narratives — visual and oral — via illustrated story-book and sequence of scenes, and by retelling. Also, we proposed and evaluated three modifications to our previous RCNN architecture: (i) the inclusion of a Linear Chain CRF; (ii) the inclusion of a self-attention mechanism; and (iii) the replacement of the LSTM recurrent layer by a Quasi-Recurrent Neural Network layer. Our study allowed us to develop two new models for segmenting impaired speech transcriptions, along with an ideal combination of datasets and specific groups of narratives to be used as the training set.


OpenKiwi: An Open Source Framework for Quality Estimation
Fabio Kepler | Jonay Trénous | Marcos Treviso | Miguel Vera | André F. T. Martins
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We introduce OpenKiwi, a Pytorch-based open source framework for translation quality estimation. OpenKiwi supports training and testing of word-level and sentence-level quality estimation systems, implementing the winning systems of the WMT 2015–18 quality estimation campaigns. We benchmark OpenKiwi on two datasets from WMT 2018 (English-German SMT and NMT), yielding state-of-the-art performance on the word-level tasks and near state-of-the-art in the sentence-level tasks.

Unbabel’s Participation in the WMT19 Translation Quality Estimation Shared Task
Fabio Kepler | Jonay Trénous | Marcos Treviso | Miguel Vera | António Góis | M. Amin Farajian | António V. Lopes | André F. T. Martins
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)

We present the contribution of the Unbabel team to the WMT 2019 Shared Task on Quality Estimation. We participated on the word, sentence, and document-level tracks, encompassing 3 language pairs: English-German, English-Russian, and English-French. Our submissions build upon the recent OpenKiwi framework: We combine linear, neural, and predictor-estimator systems with new transfer learning approaches using BERT and XLM pre-trained models. We compare systems individually and propose new ensemble techniques for word and sentence-level predictions. We also propose a simple technique for converting word labels into document-level predictions. Overall, our submitted systems achieve the best results on all tracks and language pairs by a considerable margin.


Portuguese Word Embeddings: Evaluating on Word Analogies and Natural Language Tasks
Nathan Hartmann | Erick Fonseca | Christopher Shulby | Marcos Treviso | Jéssica Silva | Sandra Aluísio
Proceedings of the 11th Brazilian Symposium in Information and Human Language Technology

Evaluating Word Embeddings for Sentence Boundary Detection in Speech Transcripts
Marcos Treviso | Christopher Shulby | Sandra Aluísio
Proceedings of the 11th Brazilian Symposium in Information and Human Language Technology

Sentence Segmentation in Narrative Transcripts from Neuropsychological Tests using Recurrent Convolutional Neural Networks
Marcos Treviso | Christopher Shulby | Sandra Aluísio
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Automated discourse analysis tools based on Natural Language Processing (NLP) aiming at the diagnosis of language-impairing dementias generally extract several textual metrics of narrative transcripts. However, the absence of sentence boundary segmentation in the transcripts prevents the direct application of NLP methods which rely on these marks in order to function properly, such as taggers and parsers. We present the first steps taken towards automatic neuropsychological evaluation based on narrative discourse analysis, presenting a new automatic sentence segmentation method for impaired speech. Our model uses recurrent convolutional neural networks with prosodic, Part of Speech (PoS) features, and word embeddings. It was evaluated intrinsically on impaired, spontaneous speech as well as normal, prepared speech and presents better results for healthy elderly (CTL) (F1 = 0.74) and Mild Cognitive Impairment (MCI) patients (F1 = 0.70) than the Conditional Random Fields method (F1 = 0.55 and 0.53, respectively) used in the same context of our study. The results suggest that our model is robust for impaired speech and can be used in automated discourse analysis tools to differentiate narratives produced by MCI and CTL.