Lin Ma


Contrastive Video-Language Learning with Fine-grained Frame Sampling
Zixu Wang | Yujie Zhong | Yishu Miao | Lin Ma | Lucia Specia
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Despite recent progress in video and language representation learning, the weak or sparse correspondence between the two modalities remains a bottleneck in the area. Most video-language models are trained via pair-level loss to predict whether a pair of video and text is aligned. However, even in paired video-text segments, only a subset of the frames are semantically relevant to the corresponding text, with the remainder representing noise; where the ratio of noisy frames is higher for longer videos. We propose FineCo (Fine-grained Contrastive Loss for Frame Sampling), an approach to better learn video and language representations with a fine-grained contrastive objective operating on video frames. It helps distil a video by selecting the frames that are semantically equivalent to the text, improving cross-modal correspondence. Building on the well established VideoCLIP model as a starting point, FineCo achieves state-of-the-art performance on YouCookII, a text-video retrieval benchmark with long videos. FineCo also achieves competitive results on text-video retrieval (MSR-VTT), and video question answering datasets (MSR-VTT QA and MSR-VTT MC) with shorter videos.


Weakly-Supervised Spatio-Temporally Grounding Natural Sentence in Video
Zhenfang Chen | Lin Ma | Wenhan Luo | Kwan-Yee Kenneth Wong
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we address a novel task, namely weakly-supervised spatio-temporally grounding natural sentence in video. Specifically, given a natural sentence and a video, we localize a spatio-temporal tube in the video that semantically corresponds to the given sentence, with no reliance on any spatio-temporal annotations during training. First, a set of spatio-temporal tubes, referred to as instances, are extracted from the video. We then encode these instances and the sentence using our newly proposed attentive interactor which can exploit their fine-grained relationships to characterize their matching behaviors. Besides a ranking loss, a novel diversity loss is introduced to train our attentive interactor to strengthen the matching behaviors of reliable instance-sentence pairs and penalize the unreliable ones. We also contribute a dataset, called VID-sentence, based on the ImageNet video object detection dataset, to serve as a benchmark for our task. Results from extensive experiments demonstrate the superiority of our model over the baseline approaches.


Temporally Grounding Natural Sentence in Video
Jingyuan Chen | Xinpeng Chen | Lin Ma | Zequn Jie | Tat-Seng Chua
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We introduce an effective and efficient method that grounds (i.e., localizes) natural sentences in long, untrimmed video sequences. Specifically, a novel Temporal GroundNet (TGN) is proposed to temporally capture the evolving fine-grained frame-by-word interactions between video and sentence. TGN sequentially scores a set of temporal candidates ended at each frame based on the exploited frame-by-word interactions, and finally grounds the segment corresponding to the sentence. Unlike traditional methods treating the overlapping segments separately in a sliding window fashion, TGN aggregates the historical information and generates the final grounding result in one single pass. We extensively evaluate our proposed TGN on three public datasets with significant improvements over the state-of-the-arts. We further show the consistent effectiveness and efficiency of TGN through an ablation study and a runtime test.