Keshav Singh


LPAttack: A Feasible Annotation Scheme for Capturing Logic Pattern of Attacks in Arguments
Farjana Sultana Mim | Naoya Inoue | Shoichi Naito | Keshav Singh | Kentaro Inui
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In argumentative discourse, persuasion is often achieved by refuting or attacking others’ arguments. Attacking an argument is not always straightforward and often consists of complex rhetorical moves in which arguers may agree with a logic of an argument while attacking another logic. Furthermore, an arguer may neither deny nor agree with any logics of an argument, instead ignore them and attack the main stance of the argument by providing new logics and presupposing that the new logics have more value or importance than the logics presented in the attacked argument. However, there are no studies in computational argumentation that capture such complex rhetorical moves in attacks or the presuppositions or value judgments in them. To address this gap, we introduce LPAttack, a novel annotation scheme that captures the common modes and complex rhetorical moves in attacks along with the implicit presuppositions and value judgments. Our annotation study shows moderate inter-annotator agreement, indicating that human annotation for the proposed scheme is feasible. We publicly release our annotated corpus and the annotation guidelines.

IRAC: A Domain-Specific Annotated Corpus of Implicit Reasoning in Arguments
Keshav Singh | Naoya Inoue | Farjana Sultana Mim | Shoichi Naito | Kentaro Inui
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The task of implicit reasoning generation aims to help machines understand arguments by inferring plausible reasonings (usually implicit) between argumentative texts. While this task is easy for humans, machines still struggle to make such inferences and deduce the underlying reasoning. To solve this problem, we hypothesize that as human reasoning is guided by innate collection of domain-specific knowledge, it might be beneficial to create such a domain-specific corpus for machines. As a starting point, we create the first domain-specific resource of implicit reasonings annotated for a wide range of arguments, which can be leveraged to empower machines with better implicit reasoning generation ability. We carefully design an annotation framework to collect them on a large scale through crowdsourcing and show the feasibility of creating a such a corpus at a reasonable cost and high-quality. Our experiments indicate that models trained with domain-specific implicit reasonings significantly outperform domain-general models in both automatic and human evaluations. To facilitate further research towards implicit reasoning generation in arguments, we present an in-depth analysis of our corpus and crowdsourcing methodology, and release our materials (i.e., crowdsourcing guidelines and domain-specific resource of implicit reasonings).

TYPIC: A Corpus of Template-Based Diagnostic Comments on Argumentation
Shoichi Naito | Shintaro Sawada | Chihiro Nakagawa | Naoya Inoue | Kenshi Yamaguchi | Iori Shimizu | Farjana Sultana Mim | Keshav Singh | Kentaro Inui
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Providing feedback on the argumentation of the learner is essential for developing critical thinking skills, however, it requires a lot of time and effort. To mitigate the overload on teachers, we aim to automate a process of providing feedback, especially giving diagnostic comments which point out the weaknesses inherent in the argumentation. It is recommended to give specific diagnostic comments so that learners can recognize the diagnosis without misinterpretation. However, it is not obvious how the task of providing specific diagnostic comments should be formulated. We present a formulation of the task as template selection and slot filling to make an automatic evaluation easier and the behavior of the model more tractable. The key to the formulation is the possibility of creating a template set that is sufficient for practical use. In this paper, we define three criteria that a template set should satisfy: expressiveness, informativeness, and uniqueness, and verify the feasibility of creating a template set that satisfies these criteria as a first trial. We will show that it is feasible through an annotation study that converts diagnostic comments given in a text to a template format. The corpus used in the annotation study is publicly available.


Exploring Methodologies for Collecting High-Quality Implicit Reasoning in Arguments
Keshav Singh | Farjana Sultana Mim | Naoya Inoue | Shoichi Naito | Kentaro Inui
Proceedings of the 8th Workshop on Argument Mining

Annotation of implicit reasoning (i.e., warrant) in arguments is a critical resource to train models in gaining deeper understanding and correct interpretation of arguments. However, warrants are usually annotated in unstructured form, having no restriction on their lexical structure which sometimes makes it difficult to interpret how warrants relate to any of the information given in claim and premise. Moreover, assessing and determining better warrants from the large variety of reasoning patterns of unstructured warrants becomes a formidable task. Therefore, in order to annotate warrants in a more interpretative and restrictive way, we propose two methodologies to annotate warrants in a semi-structured form. To the best of our knowledge, we are the first to show how such semi-structured warrants can be annotated on a large scale via crowdsourcing. We demonstrate through extensive quality evaluation that our methodologies enable collecting better quality warrants in comparison to unstructured annotations. To further facilitate research towards the task of explicating warrants in arguments, we release our materials publicly (i.e., crowdsourcing guidelines and collected warrants).


When Choosing Plausible Alternatives, Clever Hans can be Clever
Pride Kavumba | Naoya Inoue | Benjamin Heinzerling | Keshav Singh | Paul Reisert | Kentaro Inui
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing

Pretrained language models, such as BERT and RoBERTa, have shown large improvements in the commonsense reasoning benchmark COPA. However, recent work found that many improvements in benchmarks of natural language understanding are not due to models learning the task, but due to their increasing ability to exploit superficial cues, such as tokens that occur more often in the correct answer than the wrong one. Are BERT’s and RoBERTa’s good performance on COPA also caused by this? We find superficial cues in COPA, as well as evidence that BERT exploits these cues.To remedy this problem, we introduce Balanced COPA, an extension of COPA that does not suffer from easy-to-exploit single token cues. We analyze BERT’s and RoBERTa’s performance on original and Balanced COPA, finding that BERT relies on superficial cues when they are present, but still achieves comparable performance once they are made ineffective, suggesting that BERT learns the task to a certain degree when forced to. In contrast, RoBERTa does not appear to rely on superficial cues.

Improving Evidence Detection by Leveraging Warrants
Keshav Singh | Paul Reisert | Naoya Inoue | Pride Kavumba | Kentaro Inui
Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)

Recognizing the implicit link between a claim and a piece of evidence (i.e. warrant) is the key to improving the performance of evidence detection. In this work, we explore the effectiveness of automatically extracted warrants for evidence detection. Given a claim and candidate evidence, our proposed method extracts multiple warrants via similarity search from an existing, structured corpus of arguments. We then attentively aggregate the extracted warrants, considering the consistency between the given argument and the acquired warrants. Although a qualitative analysis on the warrants shows that the extraction method needs to be improved, our results indicate that our method can still improve the performance of evidence detection.