Kathleen C. Fraser

Also published as: Kathleen Fraser


Extracting Age-Related Stereotypes from Social Media Texts
Kathleen C. Fraser | Svetlana Kiritchenko | Isar Nejadgholi
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Age-related stereotypes are pervasive in our society, and yet have been under-studied in the NLP community. Here, we present a method for extracting age-related stereotypes from Twitter data, generating a corpus of 300,000 over-generalizations about four contemporary generations (baby boomers, generation X, millennials, and generation Z), as well as “old” and “young” people more generally. By employing word-association metrics, semi-supervised topic modelling, and density-based clustering, we uncover many common stereotypes as reported in the media and in the psychological literature, as well as some more novel findings. We also observe trends consistent with the existing literature, namely that definitions of “young” and “old” age appear to be context-dependent, stereotypes for different generations vary across different topics (e.g., work versus family life), and some age-based stereotypes are distinct from generational stereotypes. The method easily extends to other social group labels, and therefore can be used in future work to study stereotypes of different social categories. By better understanding how stereotypes are formed and spread, and by tracking emerging stereotypes, we hope to eventually develop mitigating measures against such biased statements.

Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information
Isar Nejadgholi | Esma Balkir | Kathleen Fraser | Svetlana Kiritchenko
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Previous works on the fairness of toxic language classifiers compare the output of models with different identity terms as input features but do not consider the impact of other important concepts present in the context. Here, besides identity terms, we take into account high-level latent features learned by the classifier and investigate the interaction between these features and identity terms. For a multi-class toxic language classifier, we leverage a concept-based explanation framework to calculate the sensitivity of the model to the concept of sentiment, which has been used before as a salient feature for toxic language detection. Our results show that although for some classes, the classifier has learned the sentiment information as expected, this information is outweighed by the influence of identity terms as input features. This work is a step towards evaluating procedural fairness, where unfair processes lead to unfair outcomes. The produced knowledge can guide debiasing techniques to ensure that important concepts besides identity terms are well-represented in training datasets.

Necessity and Sufficiency for Explaining Text Classifiers: A Case Study in Hate Speech Detection
Esma Balkir | Isar Nejadgholi | Kathleen Fraser | Svetlana Kiritchenko
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present a novel feature attribution method for explaining text classifiers, and analyze it in the context of hate speech detection. Although feature attribution models usually provide a single importance score for each token, we instead provide two complementary and theoretically-grounded scores – necessity and sufficiency – resulting in more informative explanations. We propose a transparent method that calculates these values by generating explicit perturbations of the input text, allowing the importance scores themselves to be explainable. We employ our method to explain the predictions of different hate speech detection models on the same set of curated examples from a test suite, and show that different values of necessity and sufficiency for identity terms correspond to different kinds of false positive errors, exposing sources of classifier bias against marginalized groups.

Improving Generalizability in Implicitly Abusive Language Detection with Concept Activation Vectors
Isar Nejadgholi | Kathleen Fraser | Svetlana Kiritchenko
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Robustness of machine learning models on ever-changing real-world data is critical, especially for applications affecting human well-being such as content moderation. New kinds of abusive language continually emerge in online discussions in response to current events (e.g., COVID-19), and the deployed abuse detection systems should be updated regularly to remain accurate. In this paper, we show that general abusive language classifiers tend to be fairly reliable in detecting out-of-domain explicitly abusive utterances but fail to detect new types of more subtle, implicit abuse. Next, we propose an interpretability technique, based on the Testing Concept Activation Vector (TCAV) method from computer vision, to quantify the sensitivity of a trained model to the human-defined concepts of explicit and implicit abusive language, and use that to explain the generalizability of the model on new data, in this case, COVID-related anti-Asian hate speech. Extending this technique, we introduce a novel metric, Degree of Explicitness, for a single instance and show that the new metric is beneficial in suggesting out-of-domain unlabeled examples to effectively enrich the training data with informative, implicitly abusive texts.

Does Moral Code have a Moral Code? Probing Delphi’s Moral Philosophy
Kathleen C. Fraser | Svetlana Kiritchenko | Esma Balkir
Proceedings of the 2nd Workshop on Trustworthy Natural Language Processing (TrustNLP 2022)

In an effort to guarantee that machine learning model outputs conform with human moral values, recent work has begun exploring the possibility of explicitly training models to learn the difference between right and wrong. This is typically done in a bottom-up fashion, by exposing the model to different scenarios, annotated with human moral judgements. One question, however, is whether the trained models actually learn any consistent, higher-level ethical principles from these datasets – and if so, what? Here, we probe the Allen AI Delphi model with a set of standardized morality questionnaires, and find that, despite some inconsistencies, Delphi tends to mirror the moral principles associated with the demographic groups involved in the annotation process. We question whether this is desirable and discuss how we might move forward with this knowledge.

Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models
Esma Balkir | Svetlana Kiritchenko | Isar Nejadgholi | Kathleen Fraser
Proceedings of the 2nd Workshop on Trustworthy Natural Language Processing (TrustNLP 2022)

Motivations for methods in explainable artificial intelligence (XAI) often include detecting, quantifying and mitigating bias, and contributing to making machine learning models fairer. However, exactly how an XAI method can help in combating biases is often left unspecified. In this paper, we briefly review trends in explainability and fairness in NLP research, identify the current practices in which explainability methods are applied to detect and mitigate bias, and investigate the barriers preventing XAI methods from being used more widely in tackling fairness issues.

pdf bib
Proceedings of the RaPID Workshop - Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental impairments - within the 13th Language Resources and Evaluation Conference
Dimitrios Kokkinakis | Charalambos K. Themistocleous | Kristina Lundholm Fors | Athanasios Tsanas | Kathleen C. Fraser
Proceedings of the RaPID Workshop - Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental impairments - within the 13th Language Resources and Evaluation Conference


Understanding and Countering Stereotypes: A Computational Approach to the Stereotype Content Model
Kathleen C. Fraser | Isar Nejadgholi | Svetlana Kiritchenko
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Stereotypical language expresses widely-held beliefs about different social categories. Many stereotypes are overtly negative, while others may appear positive on the surface, but still lead to negative consequences. In this work, we present a computational approach to interpreting stereotypes in text through the Stereotype Content Model (SCM), a comprehensive causal theory from social psychology. The SCM proposes that stereotypes can be understood along two primary dimensions: warmth and competence. We present a method for defining warmth and competence axes in semantic embedding space, and show that the four quadrants defined by this subspace accurately represent the warmth and competence concepts, according to annotated lexicons. We then apply our computational SCM model to textual stereotype data and show that it compares favourably with survey-based studies in the psychological literature. Furthermore, we explore various strategies to counter stereotypical beliefs with anti-stereotypes. It is known that countering stereotypes with anti-stereotypical examples is one of the most effective ways to reduce biased thinking, yet the problem of generating anti-stereotypes has not been previously studied. Thus, a better understanding of how to generate realistic and effective anti-stereotypes can contribute to addressing pressing societal concerns of stereotyping, prejudice, and discrimination.


Extensive Error Analysis and a Learning-Based Evaluation of Medical Entity Recognition Systems to Approximate User Experience
Isar Nejadgholi | Kathleen C. Fraser | Berry de Bruijn
Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing

When comparing entities extracted by a medical entity recognition system with gold standard annotations over a test set, two types of mismatches might occur, label mismatch or span mismatch. Here we focus on span mismatch and show that its severity can vary from a serious error to a fully acceptable entity extraction due to the subjectivity of span annotations. For a domain-specific BERT-based NER system, we showed that 25% of the errors have the same labels and overlapping span with gold standard entities. We collected expert judgement which shows more than 90% of these mismatches are accepted or partially accepted by the user. Using the training set of the NER system, we built a fast and lightweight entity classifier to approximate the user experience of such mismatches through accepting or rejecting them. The decisions made by this classifier are used to calculate a learning-based F-score which is shown to be a better approximation of a forgiving user’s experience than the relaxed F-score. We demonstrated the results of applying the proposed evaluation metric for a variety of deep learning medical entity recognition models trained with two datasets.


Recognizing UMLS Semantic Types with Deep Learning
Isar Nejadgholi | Kathleen C. Fraser | Berry De Bruijn | Muqun Li | Astha LaPlante | Khaldoun Zine El Abidine
Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)

Entity recognition is a critical first step to a number of clinical NLP applications, such as entity linking and relation extraction. We present the first attempt to apply state-of-the-art entity recognition approaches on a newly released dataset, MedMentions. This dataset contains over 4000 biomedical abstracts, annotated for UMLS semantic types. In comparison to existing datasets, MedMentions contains a far greater number of entity types, and thus represents a more challenging but realistic scenario in a real-world setting. We explore a number of relevant dimensions, including the use of contextual versus non-contextual word embeddings, general versus domain-specific unsupervised pre-training, and different deep learning architectures. We contrast our results against the well-known i2b2 2010 entity recognition dataset, and propose a new method to combine general and domain-specific information. While producing a state-of-the-art result for the i2b2 2010 task (F1 = 0.90), our results on MedMentions are significantly lower (F1 = 0.63), suggesting there is still plenty of opportunity for improvement on this new data.

How do we feel when a robot dies? Emotions expressed on Twitter before and after hitchBOT’s destruction
Kathleen C. Fraser | Frauke Zeller | David Harris Smith | Saif Mohammad | Frank Rudzicz
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In 2014, a chatty but immobile robot called hitchBOT set out to hitchhike across Canada. It similarly made its way across Germany and the Netherlands, and had begun a trip across the USA when it was destroyed by vandals. In this work, we analyze the emotions and sentiments associated with words in tweets posted before and after hitchBOT’s destruction to answer two questions: Were there any differences in the emotions expressed across the different countries visited by hitchBOT? And how did the public react to the demise of hitchBOT? Our analyses indicate that while there were few cross-cultural differences in sentiment towards hitchBOT, there was a significant negative emotional reaction to its destruction, suggesting that people had formed an emotional connection with hitchBOT and perceived its destruction as morally wrong. We discuss potential implications of anthropomorphism and emotional attachment to robots from the perspective of robot ethics.

The importance of sharing patient-generated clinical speech and language data
Kathleen C. Fraser | Nicklas Linz | Hali Lindsay | Alexandra König
Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology

Increased access to large datasets has driven progress in NLP. However, most computational studies of clinically-validated, patient-generated speech and language involve very few datapoints, as such data are difficult (and expensive) to collect. In this position paper, we argue that we must find ways to promote data sharing across research groups, in order to build datasets of a more appropriate size for NLP and machine learning analysis. We review the benefits and challenges of sharing clinical language data, and suggest several concrete actions by both clinical and NLP researchers to encourage multi-site and multi-disciplinary data sharing. We also propose the creation of a collaborative data sharing platform, to allow NLP researchers to take a more active responsibility for data transcription, annotation, and curation.

Multilingual prediction of Alzheimer’s disease through domain adaptation and concept-based language modelling
Kathleen C. Fraser | Nicklas Linz | Bai Li | Kristina Lundholm Fors | Frank Rudzicz | Alexandra König | Jan Alexandersson | Philippe Robert | Dimitrios Kokkinakis
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

There is growing evidence that changes in speech and language may be early markers of dementia, but much of the previous NLP work in this area has been limited by the size of the available datasets. Here, we compare several methods of domain adaptation to augment a small French dataset of picture descriptions (n = 57) with a much larger English dataset (n = 550), for the task of automatically distinguishing participants with dementia from controls. The first challenge is to identify a set of features that transfer across languages; in addition to previously used features based on information units, we introduce a new set of features to model the order in which information units are produced by dementia patients and controls. These concept-based language model features improve classification performance in both English and French separately, and the best result (AUC = 0.89) is achieved using the multilingual training set with a combination of information and language model features.


A Swedish Cookie-Theft Corpus
Dimitrios Kokkinakis | Kristina Lundholm Fors | Kathleen Fraser | Arto Nordlund
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)


An analysis of eye-movements during reading for the detection of mild cognitive impairment
Kathleen C. Fraser | Kristina Lundholm Fors | Dimitrios Kokkinakis | Arto Nordlund
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We present a machine learning analysis of eye-tracking data for the detection of mild cognitive impairment, a decline in cognitive abilities that is associated with an increased risk of developing dementia. We compare two experimental configurations (reading aloud versus reading silently), as well as two methods of combining information from the two trials (concatenation and merging). Additionally, we annotate the words being read with information about their frequency and syntactic category, and use these annotations to generate new features. Ultimately, we are able to distinguish between participants with and without cognitive impairment with up to 86% accuracy.


pdf bib
Detecting late-life depression in Alzheimer’s disease through analysis of speech and language
Kathleen C. Fraser | Frank Rudzicz | Graeme Hirst
Proceedings of the Third Workshop on Computational Linguistics and Clinical Psychology


Using linguistic features longitudinally to predict clinical scores for Alzheimer’s disease and related dementias
Maria Yancheva | Kathleen Fraser | Frank Rudzicz
Proceedings of SLPAT 2015: 6th Workshop on Speech and Language Processing for Assistive Technologies

Sentence segmentation of aphasic speech
Kathleen C. Fraser | Naama Ben-David | Graeme Hirst | Naida Graham | Elizabeth Rochon
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies


Comparison of different feature sets for identification of variants in progressive aphasia
Kathleen C. Fraser | Graeme Hirst | Naida L. Graham | Jed A. Meltzer | Sandra E. Black | Elizabeth Rochon
Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality

Using statistical parsing to detect agrammatic aphasia
Kathleen C. Fraser | Graeme Hirst | Jed A. Meltzer | Jennifer E. Mack | Cynthia K. Thompson
Proceedings of BioNLP 2014


Automatic speech recognition in the diagnosis of primary progressive aphasia
Kathleen Fraser | Frank Rudzicz | Naida Graham | Elizabeth Rochon
Proceedings of the Fourth Workshop on Speech and Language Processing for Assistive Technologies