Online misogyny meme detection is an image/text multimodal classification task, the complicated relation of image and text challenges the intelligent system’s modality fusion learning capability. In this paper, we investigate the single-stream UNITER and dual-stream CLIP multimodal pretrained models on their capability to handle strong and weakly correlated image/text pairs. The XGBoost classifier with image features extracted by the CLIP model has the highest performance and being robust on domain shift. Based on this, we propose the PBR system, an ensemble system of Pretraining models, Boosting method and Rule-based adjustment, text information is fused into the system using our late sequential fusion scheme. Our system ranks 1st place on both sub-task A and sub-task B of the SemEval-2022 Task 5 Multimedia Automatic Misogyny Identification, with 0.834/0.731 macro F1 scores for sub-task A/B correspondingly.
Self-attention mechanism has been shown to be an effective approach for capturing global context dependencies in sequence modeling, but it suffers from quadratic complexity in time and memory usage. Due to the sparsity of the attention matrix, much computation is redundant. Therefore, in this paper, we design an efficient Transformer architecture, named Fourier Sparse Attention for Transformer (FSAT), for fast long-range sequence modeling. We provide a brand-new perspective for constructing sparse attention matrix, i.e. making the sparse attention matrix predictable. Two core sub-modules are: (1) A fast Fourier transform based hidden state cross module, which captures and pools L2 semantic combinations in 𝒪(Llog L) time complexity. (2) A sparse attention matrix estimation module, which predicts dominant elements of an attention matrix based on the output of the previous hidden state cross module. By reparameterization and gradient truncation, FSAT successfully learned the index of dominant elements. The overall complexity about the sequence length is reduced from 𝒪(L2) to 𝒪(Llog L). Extensive experiments (natural language, vision, and math) show that FSAT remarkably outperforms the standard multi-head attention and its variants in various long-sequence tasks with low computational costs, and achieves new state-of-the-art results on the Long Range Arena benchmark.
Recent works on knowledge base question answering (KBQA) retrieve subgraphs for easier reasoning. The desired subgraph is crucial as a small one may exclude the answer but a large one might introduce more noises. However, the existing retrieval is either heuristic or interwoven with the reasoning, causing reasoning on the partial subgraphs, which increases the reasoning bias when the intermediate supervision is missing. This paper proposes a trainable subgraph retriever (SR) decoupled from the subsequent reasoning process, which enables a plug-and-play framework to enhance any subgraph-oriented KBQA model. Extensive experiments demonstrate SR achieves significantly better retrieval and QA performance than existing retrieval methods. Via weakly supervised pre-training as well as the end-to-end fine-tuning, SR achieves new state-of-the-art performance when combined with NSM (He et al., 2021), a subgraph-oriented reasoner, for embedding-based KBQA methods. Codes and datasets are available online (https://github.com/RUCKBReasoning/SubgraphRetrievalKBQA)
We investigate the usage of entity linking (EL)in downstream tasks and present the first modularized EL toolkit for easy task adaptation. Different from the existing EL methods that dealwith all the features simultaneously, we modularize the whole model into separate parts witheach feature. This decoupled design enablesflexibly adding new features without retraining the whole model as well as flow visualization with better interpretability of the ELresult. We release the corresponding toolkit,HOSMEL, for Chinese, with three flexible usage modes, a live demo, and a demonstrationvideo. Experiments on two benchmarks forthe question answering task demonstrate thatHOSMEL achieves much less time and spaceconsumption as well as significantly better accuracy performance compared with existingSOTA EL methods. We hope the release ofHOSMEL will call for more attention to studyEL for downstream tasks in non-English languages.
The recent rise of conversational applications such as online customer service systems and intelligent personal assistants has promoted the development of conversational knowledge base question answering (ConvKBQA). Different from the traditional single-turn KBQA, ConvKBQA usually explores multi-turn questions around a topic, where ellipsis and coreference pose great challenges to the single-turn KBQA systems which require self-contained questions. In this paper, we propose a rewrite-and-reason framework to first produce a full-fledged rewritten question based on the conversation history and then reason the answer by existing single-turn KBQA models. To overcome the absence of the rewritten supervision signals, we introduce a knowledge-augmented self-training mechanism to transfer the question rewriter from another dataset to adapt to the current knowledge base. Our question rewriter is decoupled from the subsequent QA process, which makes it easy to be united with either retrieval-based or semantic parsing-based KBQA models. Experiment results demonstrate the effectiveness of our method and a new state-of-the-art result is achieved. The code and dataset are available online now.
Existing methods on knowledge base question generation (KBQG) learn a one-size-fits-all model by training together all subgraphs without distinguishing the diverse semantics of subgraphs. In this work, we show that making use of the past experience on semantically similar subgraphs can reduce the learning difficulty and promote the performance of KBQG models. To achieve this, we propose a novel approach to model diverse subgraphs with meta-learner (DSM). Specifically, we devise a graph contrastive learning-based retriever to identify semantically similar subgraphs, so that we can construct the semantics-aware learning tasks for the meta-learner to learn semantics-specific and semantics-agnostic knowledge on and across these tasks. Extensive experiments on two widely-adopted benchmarks for KBQG show that DSM derives new state-of-the-art performance and benefits the question answering tasks as a means of data augmentation.
Few-shot knowledge graph completion is to infer the unknown facts (i.e., query head-tail entity pairs) of a given relation with only a few observed reference entity pairs. Its general process is to first encode the implicit relation of an entity pair and then match the relation of a query entity pair with the relations of the reference entity pairs. Most existing methods have thus far encoded an entity pair and matched entity pairs by using the direct neighbors of concerned entities. In this paper, we propose the P-INT model for effective few-shot knowledge graph completion. First, P-INT infers and leverages the paths that can expressively encode the relation of two entities. Second, to capture the fine grained matches, P-INT calculates the interactions of paths instead of mix- ing them for each entity pair. Extensive experimental results demonstrate that P-INT out- performs the state-of-the-art baselines by 11.2– 14.2% in terms of Hits@1. Our codes and datasets are online now.
Knowledge Base Question Answering (KBQA) is to answer natural language questions posed over knowledge bases (KBs). This paper targets at empowering the IR-based KBQA models with the ability of numerical reasoning for answering ordinal constrained questions. A major challenge is the lack of explicit annotations about numerical properties. To address this challenge, we propose a pretraining numerical reasoning model consisting of NumGNN and NumTransformer, guided by explicit self-supervision signals. The two modules are pretrained to encode the magnitude and ordinal properties of numbers respectively and can serve as model-agnostic plugins for any IR-based KBQA model to enhance its numerical reasoning ability. Extensive experiments on two KBQA benchmarks verify the effectiveness of our method to enhance the numerical reasoning ability for IR-based KBQA models.
This paper describes our system used in the SemEval-2021 Task4 Reading Comprehension of Abstract Meaning, achieving 1st for subtask 1 and 2nd for subtask 2 on the leaderboard. We propose an ensemble of ELECTRA-based models with task-adaptive pretraining and a multi-head attention multiple-choice classifier on top of the pre-trained model. The main contributions of our system are 1) revealing the performance discrepancy of different transformer-based pretraining models on the downstream task, 2) presentation of an efficient method to generate large task-adaptive corpora for pretraining. We also investigated several pretraining strategies and contrastive learning objectives. Our system achieves a test accuracy of 95.11 and 94.89 on subtask 1 and subtask 2 respectively.