Jiahua Liu


XQA: A Cross-lingual Open-domain Question Answering Dataset
Jiahua Liu | Yankai Lin | Zhiyuan Liu | Maosong Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Open-domain question answering (OpenQA) aims to answer questions through text retrieval and reading comprehension. Recently, lots of neural network-based models have been proposed and achieved promising results in OpenQA. However, the success of these models relies on a massive volume of training data (usually in English), which is not available in many other languages, especially for those low-resource languages. Therefore, it is essential to investigate cross-lingual OpenQA. In this paper, we construct a novel dataset XQA for cross-lingual OpenQA research. It consists of a training set in English as well as development and test sets in eight other languages. Besides, we provide several baseline systems for cross-lingual OpenQA, including two machine translation-based methods and one zero-shot cross-lingual method (multilingual BERT). Experimental results show that the multilingual BERT model achieves the best results in almost all target languages, while the performance of cross-lingual OpenQA is still much lower than that of English. Our analysis indicates that the performance of cross-lingual OpenQA is related to not only how similar the target language and English are, but also how difficult the question set of the target language is. The XQA dataset is publicly available at http://github.com/thunlp/XQA.


A Multi-answer Multi-task Framework for Real-world Machine Reading Comprehension
Jiahua Liu | Wan Wei | Maosong Sun | Hao Chen | Yantao Du | Dekang Lin
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

The task of machine reading comprehension (MRC) has evolved from answering simple questions from well-edited text to answering real questions from users out of web data. In the real-world setting, full-body text from multiple relevant documents in the top search results are provided as context for questions from user queries, including not only questions with a single, short, and factual answer, but also questions about reasons, procedures, and opinions. In this case, multiple answers could be equally valid for a single question and each answer may occur multiple times in the context, which should be taken into consideration when we build MRC system. We propose a multi-answer multi-task framework, in which different loss functions are used for multiple reference answers. Minimum Risk Training is applied to solve the multi-occurrence problem of a single answer. Combined with a simple heuristic passage extraction strategy for overlong documents, our model increases the ROUGE-L score on the DuReader dataset from 44.18, the previous state-of-the-art, to 51.09.