Jan Kors

Also published as: Jan Korst


A fast rule-based approach for biomedical event extraction
Quoc-Chinh Bui | David Campos | Erik van Mulligen | Jan Kors
Proceedings of the BioNLP Shared Task 2013 Workshop


CALBC: Releasing the Final Corpora
Şenay Kafkas | Ian Lewin | David Milward | Erik van Mulligen | Jan Kors | Udo Hahn | Dietrich Rebholz-Schuhmann
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

A number of gold standard corpora for named entity recognition are available to the public. However, the existing gold standard corpora are limited in size and semantic entity types. These usually lead to implementation of trained solutions (1) for a limited number of semantic entity types and (2) lacking in generalization capability. In order to overcome these problems, the CALBC project has aimed to automatically generate large scale corpora annotated with multiple semantic entity types in a community-wide manner based on the consensus of different named entity solutions. The generated corpus is called the silver standard corpus since the corpus generation process does not involve any manual curation. In this publication, we announce the release of the final CALBC corpora which include the silver standard corpus in different versions and several gold standard corpora for the further usage of the biomedical text mining community. The gold standard corpora are utilised to benchmark the methods used in the silver standard corpora generation process and released in a shared format. All the corpora are released in a shared format and accessible at www.calbc.eu.


The CALBC Silver Standard Corpus for Biomedical Named Entities — A Study in Harmonizing the Contributions from Four Independent Named Entity Taggers
Dietrich Rebholz-Schuhmann | Antonio José Jimeno Yepes | Erik M. van Mulligen | Ning Kang | Jan Kors | David Milward | Peter Corbett | Ekaterina Buyko | Katrin Tomanek | Elena Beisswanger | Udo Hahn
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

The production of gold standard corpora is time-consuming and costly. We propose an alternative: the ‚silver standard corpus‘ (SSC), a corpus that has been generated by the harmonisation of the annotations that have been delivered from a selection of annotation systems. The systems have to share the type system for the annotations and the harmonisation solution has use a suitable similarity measure for the pair-wise comparison of the annotations. The annotation systems have been evaluated against the harmonised set (630.324 sentences, 15,956,841 tokens). We can demonstrate that the annotation of proteins and genes shows higher diversity across all used annotation solutions leading to a lower agreement against the harmonised set in comparison to the annotations of diseases and species. An analysis of the most frequent annotations from all systems shows that a high agreement amongst systems leads to the selection of terms that are suitable to be kept in the harmonised set. This is the first large-scale approach to generate an annotated corpus from automated annotation systems. Further research is required to understand, how the annotations from different systems have to be combined to produce the best annotation result for a harmonised corpus.


Determining causal and non-causal relationships in biomedical text by classifying verbs using a Naive Bayesian Classifier
Pieter van der Horn | Bart Bakker | Gijs Geleijnse | Jan Korst | Sergei Kurkin
Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing


pdf bib
Learning Effective Surface Text Patterns for Information Extraction
Gijs Geleijnse | Jan Korst
Proceedings of the Workshop on Adaptive Text Extraction and Mining (ATEM 2006)