Hyonsu Choe


Enhancing Quality of Corpus Annotation: Construction of the Multi-Layer Corpus Annotation and Simplified Validation of the Corpus Annotation
Youngbin Noh | Kuntae Kim | Minho Lee | Cheolhun Heo | Yongbin Jeong | Yoosung Jeong | Younggyun Hahm | Taehwan Oh | Hyonsu Choe | Seokwon Park | Jin-Dong Kim | Key-Sun Choi
Proceedings of the 34th Pacific Asia Conference on Language, Information and Computation

Building Korean Abstract Meaning Representation Corpus
Hyonsu Choe | Jiyoon Han | Hyejin Park | Tae Hwan Oh | Hansaem Kim
Proceedings of the Second International Workshop on Designing Meaning Representations

To explore the potential sembanking in Korean and ways to represent the meaning of Korean sentences, this paper reports on the process of applying Abstract Meaning Representation to Korean, a semantic representation framework that has been studied in wide range of languages, and its output: the Korean AMR corpus. The corpus which is constructed so far is a size of 1,253 sentences and its raw texts are from ExoBrain Corpus, a state-led R&D project on language AI. This paper also analyzes the result in both qualitative and quantitative manners, proposing discussions for further development.

Crowdsourcing in the Development of a Multilingual FrameNet: A Case Study of Korean FrameNet
Younggyun Hahm | Youngbin Noh | Ji Yoon Han | Tae Hwan Oh | Hyonsu Choe | Hansaem Kim | Key-Sun Choi
Proceedings of the Twelfth Language Resources and Evaluation Conference

Using current methods, the construction of multilingual resources in FrameNet is an expensive and complex task. While crowdsourcing is a viable alternative, it is difficult to include non-native English speakers in such efforts as they often have difficulty with English-based FrameNet tools. In this work, we investigated cross-lingual issues in crowdsourcing approaches for multilingual FrameNets, specifically in the context of the newly constructed Korean FrameNet. To accomplish this, we evaluated the effectiveness of various crowdsourcing settings whereby certain types of information are provided to workers, such as English definitions in FrameNet or translated definitions. We then evaluated whether the crowdsourced results accurately captured the meaning of frames both cross-culturally and cross-linguistically, and found that by allowing the crowd workers to make intuitive choices, they achieved a quality comparable to that of trained FrameNet experts (F1 > 0.75). The outcomes of this work are now publicly available as a new release of Korean FrameNet 1.1.

Analysis of the Penn Korean Universal Dependency Treebank (PKT-UD): Manual Revision to Build Robust Parsing Model in Korean
Tae Hwan Oh | Ji Yoon Han | Hyonsu Choe | Seokwon Park | Han He | Jinho D. Choi | Na-Rae Han | Jena D. Hwang | Hansaem Kim
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies

In this paper, we first open on important issues regarding the Penn Korean Universal Treebank (PKT-UD) and address these issues by revising the entire corpus manually with the aim of producing cleaner UD annotations that are more faithful to Korean grammar. For compatibility to the rest of UD corpora, we follow the UDv2 guidelines, and extensively revise the part-of-speech tags and the dependency relations to reflect morphological features and flexible word- order aspects in Korean. The original and the revised versions of PKT-UD are experimented with transformer-based parsing models using biaffine attention. The parsing model trained on the revised corpus shows a significant improvement of 3.0% in labeled attachment score over the model trained on the previous corpus. Our error analysis demonstrates that this revision allows the parsing model to learn relations more robustly, reducing several critical errors that used to be made by the previous model.


Copula and Case-Stacking Annotations for Korean AMR
Hyonsu Choe | Jiyoon Han | Hyejin Park | Hansaem Kim
Proceedings of the First International Workshop on Designing Meaning Representations

This paper concerns the application of Abstract Meaning Representation (AMR) to Korean. In this regard, it focuses on the copula construction and its negation and the case-stacking phenomenon thereof. To illustrate this clearly, we reviewed the :domain annotation scheme from various perspectives. In this process, the existing annotation guidelines were improved to devise annotation schemes for each issue under the principle of pursuing consistency and efficiency of annotation without distorting the characteristics of Korean.