Hossein Rouhizadeh


DS4DH at SemEval-2022 Task 11: Multilingual Named Entity Recognition Using an Ensemble of Transformer-based Language Models
Hossein Rouhizadeh | Douglas Teodoro
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

In this paper, we describe our proposed method for the SemEval 2022 Task 11: Multilingual Complex Named Entity Recognition (MultiCoNER). The goal of this task is to locate and classify named entities in unstructured short complex texts in 11 different languages.After training a variety of contextual language models on the NER dataset, we used an ensemble strategy based on a majority vote to finalize our model. We evaluated our proposed approach on the multilingual NER dataset at SemEval-2022. The ensemble model provided consistent improvements against the individual models on the multilingual track, achieving a macro F1 performance of 65.2%. However, our results were significantly outperformed by the top ranking systems, achieving thus a baseline performance.

Efficient Joint Learning for Clinical Named Entity Recognition and Relation Extraction Using Fourier Networks:A Use Case in Adverse Drug Events
Anthony Yazdani | Dimitrios Proios | Hossein Rouhizadeh | Douglas Teodoro
Proceedings of the 19th International Conference on Natural Language Processing (ICON)

Current approaches for clinical information extraction are inefficient in terms of computational costs and memory consumption, hindering their application to process large-scale electronic health records (EHRs). We propose an efficient end-to-end model, the Joint-NER-RE-Fourier (JNRF), to jointly learn the tasks of named entity recognition and relation extraction for documents of variable length. The architecture uses positional encoding and unitary batch sizes to process variable length documents and uses a weight-shared Fourier network layer for low-complexity token mixing. Finally, we reach the theoretical computational complexity lower bound for relation extraction using a selective pooling strategy and distance-aware attention weights with trainable polynomial distance functions. We evaluated the JNRF architecture using the 2018 N2C2 ADE benchmark to jointly extract medication-related entities and relations in variable-length EHR summaries. JNRF outperforms rolling window BERT with selective pooling by 0.42%, while being twice as fast to train. Compared to state-of-the-art BiLSTM-CRF architectures on the N2C2 ADE benchmark, results show that the proposed approach trains 22 times faster and reduces GPU memory consumption by 1.75 folds, with a reasonable performance tradeoff of 90%, without the use of external tools, hand-crafted rules or post-processing. Given the significant carbon footprint of deep learning models and the current energy crises, these methods could support efficient and cleaner information extraction in EHRs and other types of large-scale document databases.


Persian SemCor: A Bag of Word Sense Annotated Corpus for the Persian Language
Hossein Rouhizadeh | Mehrnoush Shamsfard | Mahdi Dehghan | Masoud Rouhizadeh
Proceedings of the 11th Global Wordnet Conference

Supervised approaches usually achieve the best performance in the Word Sense Disambiguation problem. However, the unavailability of large sense annotated corpora for many low-resource languages make these approaches inapplicable for them in practice. In this paper, we mitigate this issue for the Persian language by proposing a fully automatic approach for obtaining Persian SemCor (PerSemCor), as a Persian Bag-of-Word (BoW) sense-annotated corpus. We evaluated PerSemCor both intrinsically and extrinsically and showed that it can be effectively used as training sets for Persian supervised WSD systems. To encourage future research on Persian Word Sense Disambiguation, we release the PerSemCor in http://nlp.sbu.ac.ir.


Knowledge-Based Word Sense Disambiguation with Distributional Semantic Expansion
Hossein Rouhizadeh | Mehrnoush Shamsfard | Masoud Rouhizadeh
Proceedings of the 2019 Workshop on Widening NLP

In this paper, we presented a WSD system that uses LDA topics for semantic expansion of document words. Our system also uses sense frequency information from SemCor to give higher priority to the senses which are more probable to happen.