Holy Lovenia


Which One Are You Referring To? Multimodal Object Identification in Situated Dialogue
Holy Lovenia | Samuel Cahyawijaya | Pascale Fung
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop

The demand for multimodal dialogue systems has been rising in various domains, emphasizing the importance of interpreting multimodal inputs from conversational and situational contexts. One main challenge in multimodal dialogue understanding is multimodal object identification, which constitutes the ability to identify objects relevant to a multimodal user-system conversation. We explore three methods to tackle this problem and evaluate them on the largest situated dialogue dataset, SIMMC 2.1. Our best method, scene-dialogue alignment, improves the performance by ~20% F1-score compared to the SIMMC 2.1 baselines. We provide analysis and discussion regarding the limitation of our methods and the potential directions for future works.


Every picture tells a story: Image-grounded controllable stylistic story generation
Holy Lovenia | Bryan Wilie | Romain Barraud | Samuel Cahyawijaya | Willy Chung | Pascale Fung
Proceedings of the 6th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

Generating a short story out of an image is arduous. Unlike image captioning, story generation from an image poses multiple challenges: preserving the story coherence, appropriately assessing the quality of the story, steering the generated story into a certain style, and addressing the scarcity of image-story pair reference datasets limiting supervision during training. In this work, we introduce Plug-and-Play Story Teller (PPST) and improve image-to-story generation by: 1) alleviating the data scarcity problem by incorporating large pre-trained models, namely CLIP and GPT-2, to facilitate a fluent image-to-text generation with minimal supervision, and 2) enabling a more style-relevant generation by incorporating stylistic adapters to control the story generation. We conduct image-to-story generation experiments with non-styled, romance-styled, and action-styled PPST approaches and compare our generated stories with those of previous work over three aspects, i.e., story coherence, image-story relevance, and style fitness, using both automatic and human evaluation. The results show that PPST improves story coherence and has better image-story relevance, but has yet to be adequately stylistic.

Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset
Tiezheng Yu | Rita Frieske | Peng Xu | Samuel Cahyawijaya | Cheuk Tung Yiu | Holy Lovenia | Wenliang Dai | Elham J. Barezi | Qifeng Chen | Xiaojuan Ma | Bertram Shi | Pascale Fung
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Automatic speech recognition (ASR) on low resource languages improves the access of linguistic minorities to technological advantages provided by artificial intelligence (AI). In this paper, we address the problem of data scarcity for the Hong Kong Cantonese language by creating a new Cantonese dataset. Our dataset, Multi-Domain Cantonese Corpus (MDCC), consists of 73.6 hours of clean read speech paired with transcripts, collected from Cantonese audiobooks from Hong Kong. It comprises philosophy, politics, education, culture, lifestyle and family domains, covering a wide range of topics. We also review all existing Cantonese datasets and analyze them according to their speech type, data source, total size and availability. We further conduct experiments with Fairseq S2T Transformer, a state-of-the-art ASR model, on the biggest existing dataset, Common Voice zh-HK, and our proposed MDCC, and the results show the effectiveness of our dataset. In addition, we create a powerful and robust Cantonese ASR model by applying multi-dataset learning on MDCC and Common Voice zh-HK.

CI-AVSR: A Cantonese Audio-Visual Speech Datasetfor In-car Command Recognition
Wenliang Dai | Samuel Cahyawijaya | Tiezheng Yu | Elham J. Barezi | Peng Xu | Cheuk Tung Yiu | Rita Frieske | Holy Lovenia | Genta Winata | Qifeng Chen | Xiaojuan Ma | Bertram Shi | Pascale Fung
Proceedings of the Thirteenth Language Resources and Evaluation Conference

With the rise of deep learning and intelligent vehicles, the smart assistant has become an essential in-car component to facilitate driving and provide extra functionalities. In-car smart assistants should be able to process general as well as car-related commands and perform corresponding actions, which eases driving and improves safety. However, there is a data scarcity issue for low resource languages, hindering the development of research and applications. In this paper, we introduce a new dataset, Cantonese In-car Audio-Visual Speech Recognition (CI-AVSR), for in-car command recognition in the Cantonese language with both video and audio data. It consists of 4,984 samples (8.3 hours) of 200 in-car commands recorded by 30 native Cantonese speakers. Furthermore, we augment our dataset using common in-car background noises to simulate real environments, producing a dataset 10 times larger than the collected one. We provide detailed statistics of both the clean and the augmented versions of our dataset. Moreover, we implement two multimodal baselines to demonstrate the validity of CI-AVSR. Experiment results show that leveraging the visual signal improves the overall performance of the model. Although our best model can achieve a considerable quality on the clean test set, the speech recognition quality on the noisy data is still inferior and remains an extremely challenging task for real in-car speech recognition systems. The dataset and code will be released at https://github.com/HLTCHKUST/CI-AVSR.

ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation
Holy Lovenia | Samuel Cahyawijaya | Genta Winata | Peng Xu | Yan Xu | Zihan Liu | Rita Frieske | Tiezheng Yu | Wenliang Dai | Elham J. Barezi | Qifeng Chen | Xiaojuan Ma | Bertram Shi | Pascale Fung
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Code-switching is a speech phenomenon occurring when a speaker switches language during a conversation. Despite the spontaneous nature of code-switching in conversational spoken language, most existing works collect code-switching data from read speech instead of spontaneous speech. ASCEND (A Spontaneous Chinese-English Dataset) is a high-quality Mandarin Chinese-English code-switching corpus built on spontaneous multi-turn conversational dialogue sources collected in Hong Kong. We report ASCEND’s design and procedure for collecting the speech data, including annotations. ASCEND consists of 10.62 hours of clean speech, collected from 23 bilingual speakers of Chinese and English. Furthermore, we conduct baseline experiments using pre-trained wav2vec 2.0 models, achieving a best performance of 22.69% character error rate and 27.05% mixed error rate.

How Long Is Enough? Exploring the Optimal Intervals of Long-Range Clinical Note Language Modeling
Samuel Cahyawijaya | Bryan Wilie | Holy Lovenia | Huan Zhong | MingQian Zhong | Yuk-Yu Nancy Ip | Pascale Fung
Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)

Large pre-trained language models (LMs) have been widely adopted in biomedical and clinical domains, introducing many powerful LMs such as bio-lm and BioELECTRA. However, the applicability of these methods to real clinical use cases is hindered, due to the limitation of pre-trained LMs in processing long textual data with thousands of words, which is a common length for a clinical note. In this work, we explore long-range adaptation from such LMs with Longformer, allowing the LMs to capture longer clinical notes context. We conduct experiments on three n2c2 challenges datasets and a longitudinal clinical dataset from Hong Kong Hospital Authority electronic health record (EHR) system to show the effectiveness and generalizability of this concept, achieving ~10% F1-score improvement. Based on our experiments, we conclude that capturing a longer clinical note interval is beneficial to the model performance, but there are different cut-off intervals to achieve the optimal performance for different target variables.

Clozer”:" Adaptable Data Augmentation for Cloze-style Reading Comprehension
Holy Lovenia | Bryan Wilie | Willy Chung | Zeng Min | Samuel Cahyawijaya | Dan Su | Pascale Fung
Proceedings of the 7th Workshop on Representation Learning for NLP

Task-adaptive pre-training (TAPT) alleviates the lack of labelled data and provides performance lift by adapting unlabelled data to downstream task. Unfortunately, existing adaptations mainly involve deterministic rules that cannot generalize well. Here, we propose Clozer, a sequence-tagging based cloze answer extraction method used in TAPT that is extendable for adaptation on any cloze-style machine reading comprehension (MRC) downstream tasks. We experiment on multiple-choice cloze-style MRC tasks, and show that Clozer performs significantly better compared to the oracle and state-of-the-art in escalating TAPT effectiveness in lifting model performance, and prove that Clozer is able to recognize the gold answers independently of any heuristics.