Haoran Shi


Keyword Augmentation via Generative Methods
Haoran Shi | Zhibiao Rao | Yongning Wu | Zuohua Zhang | Chu Wang
Proceedings of the 4th Workshop on e-Commerce and NLP

Keyword augmentation is a fundamental problem for sponsored search modeling and business. Machine generated keywords can be recommended to advertisers for better campaign discoverability as well as used as features for sourcing and ranking models. Generating high-quality keywords is difficult, especially for cold campaigns with limited or even no historical logs; and the industry trend of including multiple products in a single ad campaign is making the problem more challenging. In this paper, we propose a keyword augmentation method based on generative seq2seq model and trie-based search mechanism, which is able to generate high-quality keywords for any products or product lists. We conduct human annotations, offline analysis, and online experiments to evaluate the performance of our method against benchmarks in terms of augmented keyword quality as well as lifted ad exposure. The experiment results demonstrate that our method is able to generate more valid keywords which can serve as an efficient addition to advertiser selected keywords.


A Data-Centric Framework for Composable NLP Workflows
Zhengzhong Liu | Guanxiong Ding | Avinash Bukkittu | Mansi Gupta | Pengzhi Gao | Atif Ahmed | Shikun Zhang | Xin Gao | Swapnil Singhavi | Linwei Li | Wei Wei | Zecong Hu | Haoran Shi | Xiaodan Liang | Teruko Mitamura | Eric Xing | Zhiting Hu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Empirical natural language processing (NLP) systems in application domains (e.g., healthcare, finance, education) involve interoperation among multiple components, ranging from data ingestion, human annotation, to text retrieval, analysis, generation, and visualization. We establish a unified open-source framework to support fast development of such sophisticated NLP workflows in a composable manner. The framework introduces a uniform data representation to encode heterogeneous results by a wide range of NLP tasks. It offers a large repository of processors for NLP tasks, visualization, and annotation, which can be easily assembled with full interoperability under the unified representation. The highly extensible framework allows plugging in custom processors from external off-the-shelf NLP and deep learning libraries. The whole framework is delivered through two modularized yet integratable open-source projects, namely Forte (for workflow infrastructure and NLP function processors) and Stave (for user interaction, visualization, and annotation).


Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation
Zhiting Hu | Haoran Shi | Bowen Tan | Wentao Wang | Zichao Yang | Tiancheng Zhao | Junxian He | Lianhui Qin | Di Wang | Xuezhe Ma | Zhengzhong Liu | Xiaodan Liang | Wanrong Zhu | Devendra Sachan | Eric Xing
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We introduce Texar, an open-source toolkit aiming to support the broad set of text generation tasks that transform any inputs into natural language, such as machine translation, summarization, dialog, content manipulation, and so forth. With the design goals of modularity, versatility, and extensibility in mind, Texar extracts common patterns underlying the diverse tasks and methodologies, creates a library of highly reusable modules and functionalities, and allows arbitrary model architectures and algorithmic paradigms. In Texar, model architecture, inference, and learning processes are properly decomposed. Modules at a high concept level can be freely assembled or plugged in/swapped out. Texar is thus particularly suitable for researchers and practitioners to do fast prototyping and experimentation. The versatile toolkit also fosters technique sharing across different text generation tasks. Texar supports both TensorFlow and PyTorch, and is released under Apache License 2.0 at https://www.texar.io.


Texar: A Modularized, Versatile, and Extensible Toolbox for Text Generation
Zhiting Hu | Zichao Yang | Tiancheng Zhao | Haoran Shi | Junxian He | Di Wang | Xuezhe Ma | Zhengzhong Liu | Xiaodan Liang | Lianhui Qin | Devendra Singh Chaplot | Bowen Tan | Xingjiang Yu | Eric Xing
Proceedings of Workshop for NLP Open Source Software (NLP-OSS)

We introduce Texar, an open-source toolkit aiming to support the broad set of text generation tasks. Different from many existing toolkits that are specialized for specific applications (e.g., neural machine translation), Texar is designed to be highly flexible and versatile. This is achieved by abstracting the common patterns underlying the diverse tasks and methodologies, creating a library of highly reusable modules and functionalities, and enabling arbitrary model architectures and various algorithmic paradigms. The features make Texar particularly suitable for technique sharing and generalization across different text generation applications. The toolkit emphasizes heavily on extensibility and modularized system design, so that components can be freely plugged in or swapped out. We conduct extensive experiments and case studies to demonstrate the use and advantage of the toolkit.