Hanwen Zha


HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data
Wenhu Chen | Hanwen Zha | Zhiyu Chen | Wenhan Xiong | Hong Wang | William Yang Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

Existing question answering datasets focus on dealing with homogeneous information, based either only on text or KB/Table information alone. However, as human knowledge is distributed over heterogeneous forms, using homogeneous information alone might lead to severe coverage problems. To fill in the gap, we present HybridQA, a new large-scale question-answering dataset that requires reasoning on heterogeneous information. Each question is aligned with a Wikipedia table and multiple free-form corpora linked with the entities in the table. The questions are designed to aggregate both tabular information and text information, i.e., lack of either form would render the question unanswerable. We test with three different models: 1) a table-only model. 2) text-only model. 3) a hybrid model that combines heterogeneous information to find the answer. The experimental results show that the EM scores obtained by two baselines are below 20%, while the hybrid model can achieve an EM over 40%. This gap suggests the necessity to aggregate heterogeneous information in HybridQA. However, the hybrid model’s score is still far behind human performance. Hence, HybridQA can serve as a challenging benchmark to study question answering with heterogeneous information.

Logic2Text: High-Fidelity Natural Language Generation from Logical Forms
Zhiyu Chen | Wenhu Chen | Hanwen Zha | Xiyou Zhou | Yunkai Zhang | Sairam Sundaresan | William Yang Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

Previous studies on Natural Language Generation (NLG) from structured data have primarily focused on surface-level descriptions of record sequences. However, for complex structured data, e.g., multi-row tables, it is often desirable for an NLG system to describe interesting facts from logical inferences across records. If only provided with the table, it is hard for existing models to produce controllable and high-fidelity logical generations. In this work, we formulate high-fidelity NLG as generation from logical forms in order to obtain controllable and faithful generations. We present a new large-scale dataset, Logic2Text, with 10,753 descriptions involving common logic types paired with the underlying logical forms. The logical forms show diversified graph structure of free schema, which pose great challenges on the model’s ability to understand the semantics. We experiment on (1) Fully-supervised training with the full datasets, and (2) Few-shot setting, provided with hundreds of paired examples; We compare several popular generation models and analyze their performances. We hope our dataset can encourage research towards building an advanced NLG system capable of natural, faithful, and human-like generation. The dataset and code is available at https://github.com/czyssrs/Logic2Text.


Global Textual Relation Embedding for Relational Understanding
Zhiyu Chen | Hanwen Zha | Honglei Liu | Wenhu Chen | Xifeng Yan | Yu Su
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Pre-trained embeddings such as word embeddings and sentence embeddings are fundamental tools facilitating a wide range of downstream NLP tasks. In this work, we investigate how to learn a general-purpose embedding of textual relations, defined as the shortest dependency path between entities. Textual relation embedding provides a level of knowledge between word/phrase level and sentence level, and we show that it can facilitate downstream tasks requiring relational understanding of the text. To learn such an embedding, we create the largest distant supervision dataset by linking the entire English ClueWeb09 corpus to Freebase. We use global co-occurrence statistics between textual and knowledge base relations as the supervision signal to train the embedding. Evaluation on two relational understanding tasks demonstrates the usefulness of the learned textual relation embedding. The data and code can be found at https://github.com/czyssrs/GloREPlus