Gözde Şahin


MetaQA: Combining Expert Agents for Multi-Skill Question Answering
Haritz Puerto | Gözde Şahin | Iryna Gurevych
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

The recent explosion of question-answering (QA) datasets and models has increased the interest in the generalization of models across multiple domains and formats by either training on multiple datasets or combining multiple models. Despite the promising results of multi-dataset models, some domains or QA formats may require specific architectures, and thus the adaptability of these models might be limited. In addition, current approaches for combining models disregard cues such as question-answer compatibility. In this work, we propose to combine expert agents with a novel, flexible, and training-efficient architecture that considers questions, answer predictions, and answer-prediction confidence scores to select the best answer among a list of answer predictions. Through quantitative and qualitative experiments, we show that our model i) creates a collaboration between agents that outperforms previous multi-agent and multi-dataset approaches, ii) is highly data-efficient to train, and iii) can be adapted to any QA format. We release our code and a dataset of answer predictions from expert agents for 16 QA datasets to foster future research of multi-agent systems.

Lessons Learned from a Citizen Science Project for Natural Language Processing
Jan-christoph Klie | Ji-ung Lee | Kevin Stowe | Gözde Şahin | Nafise Sadat Moosavi | Luke Bates | Dominic Petrak | Richard Eckart De Castilho | Iryna Gurevych
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Many Natural Language Processing (NLP) systems use annotated corpora for training and evaluation. However, labeled data is often costly to obtain and scaling annotation projects is difficult, which is why annotation tasks are often outsourced to paid crowdworkers. Citizen Science is an alternative to crowdsourcing that is relatively unexplored in the context of NLP. To investigate whether and how well Citizen Science can be applied in this setting, we conduct an exploratory study into engaging different groups of volunteers in Citizen Science for NLP by re-annotating parts of a pre-existing crowdsourced dataset. Our results show that this can yield high-quality annotations and at- tract motivated volunteers, but also requires considering factors such as scalability, participation over time, and legal and ethical issues. We summarize lessons learned in the form of guidelines and provide our code and data to aid future work on Citizen Science.


Transformers on Multilingual Clause-Level Morphology
Emre Can Acikgoz | Tilek Chubakov | Muge Kural | Gözde Şahin | Deniz Yuret
Proceedings of the The 2nd Workshop on Multi-lingual Representation Learning (MRL)

This paper describes the KUIS-AI NLP team’s submission for the 1st Shared Task on Multilingual Clause-level Morphology (MRL2022). We present our work on all three parts of the shared task: inflection, reinflection, and analysis. We mainly explore two approaches: Trans- former models in combination with data augmentation, and exploiting the state-of-the-art language modeling techniques for morphological analysis. Data augmentation leads to a remarkable performance improvement for most of the languages in the inflection task. Prefix-tuning on pretrained mGPT model helps us to adapt reinflection and analysis tasks in a low-data setting. Additionally, we used pipeline architectures using publicly available open-source lemmatization tools and monolingual BERT- based morphological feature classifiers for rein- flection and analysis tasks, respectively. While Transformer architectures with data augmentation and pipeline architectures achieved the best results for inflection and reinflection tasks, pipelines and prefix-tuning on mGPT received the highest results for the analysis task. Our methods achieved first place in each of the three tasks and outperforms mT5-baseline with 89% for inflection, 80% for reflection, and 12% for analysis. Our code 1 is publicly available.

pdf bib
UKP-SQUARE: An Online Platform for Question Answering Research
Tim Baumgärtner | Kexin Wang | Rachneet Sachdeva | Gregor Geigle | Max Eichler | Clifton Poth | Hannah Sterz | Haritz Puerto | Leonardo F. R. Ribeiro | Jonas Pfeiffer | Nils Reimers | Gözde Şahin | Iryna Gurevych
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Recent advances in NLP and information retrieval have given rise to a diverse set of question answering tasks that are of different formats (e.g., extractive, abstractive), require different model architectures (e.g., generative, discriminative), and setups (e.g., with or without retrieval). Despite having a large number of powerful, specialized QA pipelines (which we refer to as Skills) that consider a single domain, model or setup, there exists no framework where users can easily explore and compare such pipelines and can extend them according to their needs. To address this issue, we present UKP-SQuARE, an extensible online QA platform for researchers which allows users to query and analyze a large collection of modern Skills via a user-friendly web interface and integrated behavioural tests. In addition, QA researchers can develop, manage, and share their custom Skills using our microservices that support a wide range of models (Transformers, Adapters, ONNX), datastores and retrieval techniques (e.g., sparse and dense). UKP-SQuARE is available on https://square.ukp-lab.de