Emma Flint


A Text Normalisation System for Non-Standard English Words
Emma Flint | Elliot Ford | Olivia Thomas | Andrew Caines | Paula Buttery
Proceedings of the 3rd Workshop on Noisy User-generated Text

This paper investigates the problem of text normalisation; specifically, the normalisation of non-standard words (NSWs) in English. Non-standard words can be defined as those word tokens which do not have a dictionary entry, and cannot be pronounced using the usual letter-to-phoneme conversion rules; e.g. lbs, 99.3%, #EMNLP2017. NSWs pose a challenge to the proper functioning of text-to-speech technology, and the solution is to spell them out in such a way that they can be pronounced appropriately. We describe our four-stage normalisation system made up of components for detection, classification, division and expansion of NSWs. Performance is favourabe compared to previous work in the field (Sproat et al. 2001, Normalization of non-standard words), as well as state-of-the-art text-to-speech software. Further, we update Sproat et al.’s NSW taxonomy, and create a more customisable system where users are able to input their own abbreviations and specify into which variety of English (currently available: British or American) they wish to normalise.

Collecting fluency corrections for spoken learner English
Andrew Caines | Emma Flint | Paula Buttery
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications

We present crowdsourced collection of error annotations for transcriptions of spoken learner English. Our emphasis in data collection is on fluency corrections, a more complete correction than has traditionally been aimed for in grammatical error correction research (GEC). Fluency corrections require improvements to the text, taking discourse and utterance level semantics into account: the result is a more naturalistic, holistic version of the original. We propose that this shifted emphasis be reflected in a new name for the task: ‘holistic error correction’ (HEC). We analyse crowdworker behaviour in HEC and conclude that the method is useful with certain amendments for future work.