Elizabeth Nielsen


Spelling convention sensitivity in neural language models
Elizabeth Nielsen | Christo Kirov | Brian Roark
Findings of the Association for Computational Linguistics: EACL 2023

We examine whether large neural language models, trained on very large collections of varied English text, learn the potentially long-distance dependency of British versus American spelling conventions, i.e., whether spelling is consistently one or the other within model-generated strings. In contrast to long-distance dependencies in non-surface underlying structure (e.g., syntax), spelling consistency is easier to measure both in LMs and the text corpora used to train them, which can provide additional insight into certain observed model behaviors. Using a set of probe words unique to either British or American English, we first establish that training corpora exhibit substantial (though not total) consistency. A large T5 language model does appear to internalize this consistency, though only with respect to observed lexical items (not nonce words with British/American spelling patterns). We further experiment with correcting for biases in the training data by fine-tuning T5 on synthetic data that has been debiased, and find that finetuned T5 remains only somewhat sensitive to spelling consistency. Further experiments show GPT2 to be similarly limited.


Zero-shot Cross-Linguistic Learning of Event Semantics
Malihe Alikhani | Thomas Kober | Bashar Alhafni | Yue Chen | Mert Inan | Elizabeth Nielsen | Shahab Raji | Mark Steedman | Matthew Stone
Proceedings of the 15th International Conference on Natural Language Generation


The role of context in neural pitch accent detection in English
Elizabeth Nielsen | Mark Steedman | Sharon Goldwater
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Prosody is a rich information source in natural language, serving as a marker for phenomena such as contrast. In order to make this information available to downstream tasks, we need a way to detect prosodic events in speech. We propose a new model for pitch accent detection, inspired by the work of Stehwien et al. (2018), who presented a CNN-based model for this task. Our model makes greater use of context by using full utterances as input and adding an LSTM layer. We find that these innovations lead to an improvement from 87.5% to 88.7% accuracy on pitch accent detection on American English speech in the Boston University Radio News Corpus, a state-of-the-art result. We also find that a simple baseline that just predicts a pitch accent on every content word yields 82.2% accuracy, and we suggest that this is the appropriate baseline for this task. Finally, we conduct ablation tests that show pitch is the most important acoustic feature for this task and this corpus.