Ee-Peng Lim


Guided Attention Multimodal Multitask Financial Forecasting with Inter-Company Relationships and Global and Local News
Gary Ang | Ee-Peng Lim
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most works on financial forecasting use information directly associated with individual companies (e.g., stock prices, news on the company) to predict stock returns for trading. We refer to such company-specific information as local information. Stock returns may also be influenced by global information (e.g., news on the economy in general), and inter-company relationships. Capturing such diverse information is challenging due to the low signal-to-noise ratios, different time-scales, sparsity and distributions of global and local information from different modalities. In this paper, we propose a model that captures both global and local multimodal information for investment and risk management-related forecasting tasks. Our proposed Guided Attention Multimodal Multitask Network (GAME) model addresses these challenges by using novel attention modules to guide learning with global and local information from different modalities and dynamic inter-company relationship networks. Our extensive experiments show that GAME outperforms other state-of-the-art models in several forecasting tasks and important real-world application case studies.


Enconter: Entity Constrained Progressive Sequence Generation via Insertion-based Transformer
Lee Hsun Hsieh | Yang-Yin Lee | Ee-Peng Lim
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Pretrained using large amount of data, autoregressive language models are able to generate high quality sequences. However, these models do not perform well under hard lexical constraints as they lack fine control of content generation process. Progressive insertion based transformers can overcome the above limitation and efficiently generate a sequence in parallel given some input tokens as constraint. These transformers however may fail to support hard lexical constraints as their generation process is more likely to terminate prematurely. The paper analyses such early termination problems and proposes the ENtity CONstrained insertion TransformER(ENCONTER), a new insertion transformer that addresses the above pitfall without compromising much generation efficiency. We introduce a new training strategy that considers predefined hard lexical constraints (e.g., entities to be included in the generated sequence). Our experiments show that ENCONTER outperforms other baseline models in several performance metrics rendering it more suitable in practical applications.

NOAHQA: Numerical Reasoning with Interpretable Graph Question Answering Dataset
Qiyuan Zhang | Lei Wang | Sicheng Yu | Shuohang Wang | Yang Wang | Jing Jiang | Ee-Peng Lim
Findings of the Association for Computational Linguistics: EMNLP 2021

While diverse question answering (QA) datasets have been proposed and contributed significantly to the development of deep learning models for QA tasks, the existing datasets fall short in two aspects. First, we lack QA datasets covering complex questions that involve answers as well as the reasoning processes to get them. As a result, the state-of-the-art QA research on numerical reasoning still focuses on simple calculations and does not provide the mathematical expressions or evidence justifying the answers. Second, the QA community has contributed a lot of effort to improve the interpretability of QA models. However, they fail to explicitly show the reasoning process, such as the evidence order for reasoning and the interactions between different pieces of evidence. To address the above shortcoming, we introduce NOAHQA, a conversational and bilingual QA dataset with questions requiring numerical reasoning with compound mathematical expressions. With NOAHQA, we develop an interpretable reasoning graph as well as the appropriate evaluation metric to measure the answer quality. We evaluate the state-of-the-art QA models trained using existing QA datasets on NOAHQA and show that the best among them can only achieve 55.5 exact match scores, while the human performance is 89.7. We also present a new QA model for generating a reasoning graph where the reasoning graph metric still has a large gap compared with that of humans, eg, 28 scores.


Graph-to-Tree Learning for Solving Math Word Problems
Jipeng Zhang | Lei Wang | Roy Ka-Wei Lee | Yi Bin | Yan Wang | Jie Shao | Ee-Peng Lim
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While the recent tree-based neural models have demonstrated promising results in generating solution expression for the math word problem (MWP), most of these models do not capture the relationships and order information among the quantities well. This results in poor quantity representations and incorrect solution expressions. In this paper, we propose Graph2Tree, a novel deep learning architecture that combines the merits of the graph-based encoder and tree-based decoder to generate better solution expressions. Included in our Graph2Tree framework are two graphs, namely the Quantity Cell Graph and Quantity Comparison Graph, which are designed to address limitations of existing methods by effectively representing the relationships and order information among the quantities in MWPs. We conduct extensive experiments on two available datasets. Our experiment results show that Graph2Tree outperforms the state-of-the-art baselines on two benchmark datasets significantly. We also discuss case studies and empirically examine Graph2Tree’s effectiveness in translating the MWP text into solution expressions.


Finding Bursty Topics from Microblogs
Qiming Diao | Jing Jiang | Feida Zhu | Ee-Peng Lim
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)


Topical Keyphrase Extraction from Twitter
Xin Zhao | Jing Jiang | Jing He | Yang Song | Palakorn Achanauparp | Ee-Peng Lim | Xiaoming Li
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies