Daniel M. Low


Higher-order Comparisons of Sentence Encoder Representations
Mostafa Abdou | Artur Kulmizev | Felix Hill | Daniel M. Low | Anders Søgaard
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Representational Similarity Analysis (RSA) is a technique developed by neuroscientists for comparing activity patterns of different measurement modalities (e.g., fMRI, electrophysiology, behavior). As a framework, RSA has several advantages over existing approaches to interpretation of language encoders based on probing or diagnostic classification: namely, it does not require large training samples, is not prone to overfitting, and it enables a more transparent comparison between the representational geometries of different models and modalities. We demonstrate the utility of RSA by establishing a previously unknown correspondence between widely-employed pretrained language encoders and human processing difficulty via eye-tracking data, showcasing its potential in the interpretability toolbox for neural models.