Chaomei Chen


pdf bib
Video Highlights Detection and Summarization with Lag-Calibration based on Concept-Emotion Mapping of Crowdsourced Time-Sync Comments
Qing Ping | Chaomei Chen
Proceedings of the Workshop on New Frontiers in Summarization

With the prevalence of video sharing, there are increasing demands for automatic video digestion such as highlight detection. Recently, platforms with crowdsourced time-sync video comments have emerged worldwide, providing a good opportunity for highlight detection. However, this task is non-trivial: (1) time-sync comments often lag behind their corresponding shot; (2) time-sync comments are semantically sparse and noisy; (3) to determine which shots are highlights is highly subjective. The present paper aims to tackle these challenges by proposing a framework that (1) uses concept-mapped lexical-chains for lag-calibration; (2) models video highlights based on comment intensity and combination of emotion and concept concentration of each shot; (3) summarize each detected highlight using improved SumBasic with emotion and concept mapping. Experiments on large real-world datasets show that our highlight detection method and summarization method both outperform other benchmarks with considerable margins.


Identifying Strategic Information from Scientific Articles through Sentence Classification
Fidelia Ibekwe-SanJuan | Chaomei Chen | Roberto Pinho
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

We address here the need to assist users in rapidly accessing the most important or strategic information in the text corpus by identifying sentences carrying specific information. More precisely, we want to identify contribution of authors of scientific papers through a categorization of sentences using rhetorical and lexical cues. We built local grammars to annotate sentences in the corpus according to their rhetorical status: objective, new things, results, findings, hypotheses, conclusion, related_word, future work. The annotation is automatically projected automatically onto two other corpora to test their portability across several domains. The local grammars are implemented in the Unitex system. After sentence categorization, the annotated sentences are clustered and users can navigate the result by accessing specific information types. The results can be used for advanced information retrieval purposes.