Changbing Yang


Generalizing Morphological Inflection Systems to Unseen Lemmas
Changbing Yang | Ruixin (Ray) Yang | Garrett Nicolai | Miikka Silfverberg
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents experiments on morphological inflection using data from the SIGMORPHON-UniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection. We present a transformer inflection system, which enriches the standard transformer architecture with reverse positional encoding and type embeddings. We further apply data hallucination and lemma copying to augment training data. We train models using a two-stage procedure: (1) We first train on the augmented training data using standard backpropagation and teacher forcing. (2) We then continue training with a variant of the scheduled sampling algorithm dubbed student forcing. Our system delivers competitive performance under the small and large data conditions on the shared task datasets.

An Inflectional Database for Gitksan
Bruce Oliver | Clarissa Forbes | Changbing Yang | Farhan Samir | Edith Coates | Garrett Nicolai | Miikka Silfverberg
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper presents a new inflectional resource for Gitksan, a low-resource Indigenous language of Canada. We use Gitksan data in interlinear glossed format, stemming from language documentation efforts, to build a database of partial inflection tables. We then enrich this morphological resource by filling in blank slots in the partial inflection tables using neural transformer reinflection models. We extend the training data for our transformer reinflection models using two data augmentation techniques: data hallucination and back-translation. Experimental results demonstrate substantial improvements from data augmentation, with data hallucination delivering particularly impressive gains. We also release reinflection models for Gitksan.

Morphological Processing of Low-Resource Languages: Where We Are and What’s Next
Adam Wiemerslage | Miikka Silfverberg | Changbing Yang | Arya McCarthy | Garrett Nicolai | Eliana Colunga | Katharina Kann
Findings of the Association for Computational Linguistics: ACL 2022

Automatic morphological processing can aid downstream natural language processing applications, especially for low-resource languages, and assist language documentation efforts for endangered languages. Having long been multilingual, the field of computational morphology is increasingly moving towards approaches suitable for languages with minimal or no annotated resources. First, we survey recent developments in computational morphology with a focus on low-resource languages. Second, we argue that the field is ready to tackle the logical next challenge: understanding a language’s morphology from raw text alone. We perform an empirical study on a truly unsupervised version of the paradigm completion task and show that, while existing state-of-the-art models bridged by two newly proposed models we devise perform reasonably, there is still much room for improvement. The stakes are high: solving this task will increase the language coverage of morphological resources by a number of magnitudes.

Dim Wihl Gat Tun: The Case for Linguistic Expertise in NLP for Under-Documented Languages
Clarissa Forbes | Farhan Samir | Bruce Oliver | Changbing Yang | Edith Coates | Garrett Nicolai | Miikka Silfverberg
Findings of the Association for Computational Linguistics: ACL 2022

Recent progress in NLP is driven by pretrained models leveraging massive datasets and has predominantly benefited the world’s political and economic superpowers. Technologically underserved languages are left behind because they lack such resources. Hundreds of underserved languages, nevertheless, have available data sources in the form of interlinear glossed text (IGT) from language documentation efforts. IGT remains underutilized in NLP work, perhaps because its annotations are only semi-structured and often language-specific. With this paper, we make the case that IGT data can be leveraged successfully provided that target language expertise is available. We specifically advocate for collaboration with documentary linguists. Our paper provides a roadmap for successful projects utilizing IGT data: (1) It is essential to define which NLP tasks can be accomplished with the given IGT data and how these will benefit the speech community. (2) Great care and target language expertise is required when converting the data into structured formats commonly employed in NLP. (3) Task-specific and user-specific evaluation can help to ascertain that the tools which are created benefit the target language speech community. We illustrate each step through a case study on developing a morphological reinflection system for the Tsimchianic language Gitksan.

Penalizing Divergence: Multi-Parallel Translation for Low-Resource Languages of North America
Garrett Nicolai | Changbing Yang | Miikka Silfverberg
Proceedings of the 29th International Conference on Computational Linguistics

This paper explores a special case in multilingual machine translation: so called multi-parallel translation, where the target data for all language pairs are identical. While multi-parallelism offers benefits which are not available in a standard translation setting, translation models can easily overfit when training data are limited. We introduce a regularizer, the divergence penalty, which penalizes the translation model when it represents source sentences with identical target translations in divergent ways. Experiments on very low-resourced Indigenous North American languages show that an initially deficient multilingual translator can improve by 4.9 BLEU through mBART pre-training, and 5.5 BLEU points with the strategic addition of monolingual data, and that a divergence penalty leads to further increases of 0.4 BLEU. Further experiments on Germanic languages demonstrate a improvement of 0.5 BLEU when applying the divergence penalty. An investigation of the neural encoder representations learned by our translation models shows that the divergence penalty encourages models to learn a unified neural interlingua.


CLiMP: A Benchmark for Chinese Language Model Evaluation
Beilei Xiang | Changbing Yang | Yu Li | Alex Warstadt | Katharina Kann
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Linguistically informed analyses of language models (LMs) contribute to the understanding and improvement of such models. Here, we introduce the corpus of Chinese linguistic minimal pairs (CLiMP) to investigate what knowledge Chinese LMs acquire. CLiMP consists of sets of 1000 minimal pairs (MPs) for 16 syntactic contrasts in Chinese, covering 9 major Chinese linguistic phenomena. The MPs are semi-automatically generated, and human agreement with the labels in CLiMP is 95.8%. We evaluate 11 different LMs on CLiMP, covering n-grams, LSTMs, and Chinese BERT. We find that classifier–noun agreement and verb complement selection are the phenomena that models generally perform best at. However, models struggle the most with the ba construction, binding, and filler-gap dependencies. Overall, Chinese BERT achieves an 81.8% average accuracy, while the performances of LSTMs and 5-grams are only moderately above chance level.

Unsupervised Paradigm Clustering Using Transformation Rules
Changbing Yang | Garrett Nicolai | Miikka Silfverberg
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper describes the submission of the CU-UBC team for the SIGMORPHON 2021 Shared Task 2: Unsupervised morphological paradigm clustering. Our system generates paradigms using morphological transformation rules which are discovered from raw data. We experiment with two methods for discovering rules. Our first approach generates prefix and suffix transformations between similar strings. Secondly, we experiment with more general rules which can apply transformations inside the input strings in addition to prefix and suffix transformations. We find that the best overall performance is delivered by prefix and suffix rules but more general transformation rules perform better for languages with templatic morphology and very high morpheme-to-word ratios.


Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars
Sarah Beemer | Zak Boston | April Bukoski | Daniel Chen | Princess Dickens | Andrew Gerlach | Torin Hopkins | Parth Anand Jawale | Chris Koski | Akanksha Malhotra | Piyush Mishra | Saliha Muradoglu | Lan Sang | Tyler Short | Sagarika Shreevastava | Elizabeth Spaulding | Testumichi Umada | Beilei Xiang | Changbing Yang | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

Sequence-to-sequence models have proven to be highly successful in learning morphological inflection from examples as the series of SIGMORPHON/CoNLL shared tasks have shown. It is usually assumed, however, that a linguist working with inflectional examples could in principle develop a gold standard-level morphological analyzer and generator that would surpass a trained neural network model in accuracy of predictions, but that it may require significant amounts of human labor. In this paper, we discuss an experiment where a group of people with some linguistic training develop 25+ grammars as part of the shared task and weigh the cost/benefit ratio of developing grammars by hand. We also present tools that can help linguists triage difficult complex morphophonological phenomena within a language and hypothesize inflectional class membership. We conclude that a significant development effort by trained linguists to analyze and model morphophonological patterns are required in order to surpass the accuracy of neural models.

IGT2P: From Interlinear Glossed Texts to Paradigms
Sarah Moeller | Ling Liu | Changbing Yang | Katharina Kann | Mans Hulden
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

An intermediate step in the linguistic analysis of an under-documented language is to find and organize inflected forms that are attested in natural speech. From this data, linguists generate unseen inflected word forms in order to test hypotheses about the language’s inflectional patterns and to complete inflectional paradigm tables. To get the data linguists spend many hours manually creating interlinear glossed texts (IGTs). We introduce a new task that speeds this process and automatically generates new morphological resources for natural language processing systems: IGT-to-paradigms (IGT2P). IGT2P generates entire morphological paradigms from IGT input. We show that existing morphological reinflection models can solve the task with 21% to 64% accuracy, depending on the language. We further find that (i) having a language expert spend only a few hours cleaning the noisy IGT data improves performance by as much as 21 percentage points, and (ii) POS tags, which are generally considered a necessary part of NLP morphological reinflection input, have no effect on the accuracy of the models considered here.