Bharath Chintagunta


Medically Aware GPT-3 as a Data Generator for Medical Dialogue Summarization
Bharath Chintagunta | Namit Katariya | Xavier Amatriain | Anitha Kannan
Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations

In medical dialogue summarization, summaries must be coherent and must capture all the medically relevant information in the dialogue. However, learning effective models for summarization require large amounts of labeled data which is especially hard to obtain. We present an algorithm to create synthetic training data with an explicit focus on capturing medically relevant information. We utilize GPT-3 as the backbone of our algorithm and scale 210 human labeled examples to yield results comparable to using 6400 human labeled examples (~30x) leveraging low-shot learning and an ensemble method. In detailed experiments, we show that this approach produces high quality training data that can further be combined with human labeled data to get summaries that are strongly preferable to those produced by models trained on human data alone both in terms of medical accuracy and coherency.


Build it Break it Fix it for Dialogue Safety: Robustness from Adversarial Human Attack
Emily Dinan | Samuel Humeau | Bharath Chintagunta | Jason Weston
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The detection of offensive language in the context of a dialogue has become an increasingly important application of natural language processing. The detection of trolls in public forums (Galán-García et al., 2016), and the deployment of chatbots in the public domain (Wolf et al., 2017) are two examples that show the necessity of guarding against adversarially offensive behavior on the part of humans. In this work, we develop a training scheme for a model to become robust to such human attacks by an iterative build it, break it, fix it scheme with humans and models in the loop. In detailed experiments we show this approach is considerably more robust than previous systems. Further, we show that offensive language used within a conversation critically depends on the dialogue context, and cannot be viewed as a single sentence offensive detection task as in most previous work. Our newly collected tasks and methods are all made open source and publicly available.