Existing research on Tabular Natural Language Inference (TNLI) exclusively examines the task in a monolingual setting where the tabular premise and hypothesis are in the same language. However, due to the uneven distribution of text resources on the web across languages, it is common to have the tabular premise in a high resource language and the hypothesis in a low resource language. As a result, we present the challenging task of bilingual Tabular Natural Language Inference (bTNLI), in which the tabular premise and a hypothesis over it are in two separate languages. We construct EI-InfoTabS: an English-Indic bTNLI dataset by translating the textual hypotheses of the English TNLI dataset InfoTabS into eleven major Indian languages. We thoroughly investigate how pre-trained multilingual models learn and perform on EI-InfoTabS. Our study shows that the performance on bTNLI can be close to its monolingual counterpart, with translate-train, translate-test and unified-train being strongly competitive baselines.
We present Samanantar, the largest publicly available parallel corpora collection for Indic languages. The collection contains a total of 49.7 million sentence pairs between English and 11 Indic languages (from two language families). Specifically, we compile 12.4 million sentence pairs from existing, publicly available parallel corpora, and additionally mine 37.4 million sentence pairs from the Web, resulting in a 4× increase. We mine the parallel sentences from the Web by combining many corpora, tools, and methods: (a) Web-crawled monolingual corpora, (b) document OCR for extracting sentences from scanned documents, (c) multilingual representation models for aligning sentences, and (d) approximate nearest neighbor search for searching in a large collection of sentences. Human evaluation of samples from the newly mined corpora validate the high quality of the parallel sentences across 11 languages. Further, we extract 83.4 million sentence pairs between all 55 Indic language pairs from the English-centric parallel corpus using English as the pivot language. We trained multilingual NMT models spanning all these languages on Samanantar which outperform existing models and baselines on publicly available benchmarks, such as FLORES, establishing the utility of Samanantar. Our data and models are available publicly at Samanantar and we hope they will help advance research in NMT and multilingual NLP for Indic languages.
This paper presents the results of the shared tasks from the 9th workshop on Asian translation (WAT2022). For the WAT2022, 8 teams submitted their translation results for the human evaluation. We also accepted 4 research papers. About 300 translation results were submitted to the automatic evaluation server, and selected submissions were manually evaluated.
In this paper, we study pre-trained sequence-to-sequence models for a group of related languages, with a focus on Indic languages. We present IndicBART, a multilingual, sequence-to-sequence pre-trained model focusing on 11 Indic languages and English. IndicBART utilizes the orthographic similarity between Indic scripts to improve transfer learning between similar Indic languages. We evaluate IndicBART on two NLG tasks: Neural Machine Translation (NMT) and extreme summarization. Our experiments on NMT and extreme summarization show that a model specific to related languages like IndicBART is competitive with large pre-trained models like mBART50 despite being significantly smaller. It also performs well on very low-resource translation scenarios where languages are not included in pre-training or fine-tuning. Script sharing, multilingual training, and better utilization of limited model capacity contribute to the good performance of the compact IndicBART model.
Natural Language Generation (NLG) for non-English languages is hampered by the scarcity of datasets in these languages. We present the IndicNLG Benchmark, a collection of datasets for benchmarking NLG for 11 Indic languages. We focus on five diverse tasks, namely, biography generation using Wikipedia infoboxes, news headline generation, sentence summarization, paraphrase generation and, question generation. We describe the created datasets and use them to benchmark the performance of several monolingual and multilingual baselines that leverage pre-trained sequence-to-sequence models. Our results exhibit the strong performance of multilingual language-specific pre-trained models, and the utility of models trained on our dataset for other related NLG tasks. Our dataset creation methods can be easily applied to modest-resource languages as they involve simple steps such as scraping news articles and Wikipedia infoboxes, light cleaning, and pivoting through machine translation data. To the best of our knowledge, the IndicNLG Benchmark is the first NLG benchmark for Indic languages and the most diverse multilingual NLG dataset, with approximately 8M examples across 5 tasks and 11 languages. The datasets and models will be publicly available.
While Indic NLP has made rapid advances recently in terms of the availability of corpora and pre-trained models, benchmark datasets on standard NLU tasks are limited. To this end, we introduce INDICXNLI, an NLI dataset for 11 Indic languages. It has been created by high-quality machine translation of the original English XNLI dataset and our analysis attests to the quality of INDICXNLI. By finetuning different pre-trained LMs on this INDICXNLI, we analyze various cross-lingual transfer techniques with respect to the impact of the choice of language models, languages, multi-linguality, mix-language input, etc. These experiments provide us with useful insights into the behaviour of pre-trained models for a diverse set of languages.
We take up the task of large-scale evaluation of neural machine transliteration between English and Indic languages, with a focus on multilingual transliteration to utilize orthographic similarity between Indian languages. We create a corpus of 600K word pairs mined from parallel translation corpora and monolingual corpora, which is the largest transliteration corpora for Indian languages mined from public sources. We perform a detailed analysis of multilingual transliteration and propose an improved multilingual training recipe for Indic languages. We analyze various factors affecting transliteration quality like language family, transliteration direction and word origin.
This paper presents the results of the shared tasks from the 8th workshop on Asian translation (WAT2021). For the WAT2021, 28 teams participated in the shared tasks and 24 teams submitted their translation results for the human evaluation. We also accepted 5 research papers. About 2,100 translation results were submitted to the automatic evaluation server, and selected submissions were manually evaluated.
This work introduces Itihasa, a large-scale translation dataset containing 93,000 pairs of Sanskrit shlokas and their English translations. The shlokas are extracted from two Indian epics viz., The Ramayana and The Mahabharata. We first describe the motivation behind the curation of such a dataset and follow up with empirical analysis to bring out its nuances. We then benchmark the performance of standard translation models on this corpus and show that even state-of-the-art transformer architectures perform poorly, emphasizing the complexity of the dataset.
The advent of neural machine translation (NMT) has opened up exciting research in building multilingual translation systems i.e. translation models that can handle more than one language pair. Many advances have been made which have enabled (1) improving translation for low-resource languages via transfer learning from high resource languages; and (2) building compact translation models spanning multiple languages. In this tutorial, we will cover the latest advances in NMT approaches that leverage multilingualism, especially to enhance low-resource translation. In particular, we will focus on the following topics: modeling parameter sharing for multi-way models, massively multilingual models, training protocols, language divergence, transfer learning, zero-shot/zero-resource learning, pivoting, multilingual pre-training and multi-source translation.
We describe our submission for the English→Tamil and Tamil→English news translation shared task. In this submission, we focus on exploring if a low-resource language (Tamil) can benefit from a high-resource language (Hindi) with which it shares contact relatedness. We show utilizing contact relatedness via multilingual NMT can significantly improve translation quality for English-Tamil translation.
We propose a geometric framework for learning meta-embeddings of words from different embedding sources. Our framework transforms the embeddings into a common latent space, where, for example, simple averaging or concatenation of different embeddings (of a given word) is more amenable. The proposed latent space arises from two particular geometric transformations - source embedding specific orthogonal rotations and a common Mahalanobis metric scaling. Empirical results on several word similarity and word analogy benchmarks illustrate the efficacy of the proposed framework.
This paper presents the results of the shared tasks from the 7th workshop on Asian translation (WAT2020). For the WAT2020, 20 teams participated in the shared tasks and 14 teams submitted their translation results for the human evaluation. We also received 12 research paper submissions out of which 7 were accepted. About 500 translation results were submitted to the automatic evaluation server, and selected submissions were manually evaluated.
In this paper, we introduce NLP resources for 11 major Indian languages from two major language families. These resources include: (a) large-scale sentence-level monolingual corpora, (b) pre-trained word embeddings, (c) pre-trained language models, and (d) multiple NLU evaluation datasets (IndicGLUE benchmark). The monolingual corpora contains a total of 8.8 billion tokens across all 11 languages and Indian English, primarily sourced from news crawls. The word embeddings are based on FastText, hence suitable for handling morphological complexity of Indian languages. The pre-trained language models are based on the compact ALBERT model. Lastly, we compile the (IndicGLUE benchmark for Indian language NLU. To this end, we create datasets for the following tasks: Article Genre Classification, Headline Prediction, Wikipedia Section-Title Prediction, Cloze-style Multiple choice QA, Winograd NLI and COPA. We also include publicly available datasets for some Indic languages for tasks like Named Entity Recognition, Cross-lingual Sentence Retrieval, Paraphrase detection, etc. Our embeddings are competitive or better than existing pre-trained embeddings on multiple tasks. We hope that the availability of the dataset will accelerate Indic NLP research which has the potential to impact more than a billion people. It can also help the community in evaluating advances in NLP over a more diverse pool of languages. The data and models are available at https://indicnlp.ai4bharat.org.
This paper presents the results of the shared tasks from the 6th workshop on Asian translation (WAT2019) including Ja↔En, Ja↔Zh scientific paper translation subtasks, Ja↔En, Ja↔Ko, Ja↔En patent translation subtasks, Hi↔En, My↔En, Km↔En, Ta↔En mixed domain subtasks and Ru↔Ja news commentary translation task. For the WAT2019, 25 teams participated in the shared tasks. We also received 10 research paper submissions out of which 61 were accepted. About 400 translation results were submitted to the automatic evaluation server, and selected submis- sions were manually evaluated.
We propose a novel geometric approach for learning bilingual mappings given monolingual embeddings and a bilingual dictionary. Our approach decouples the source-to-target language transformation into (a) language-specific rotations on the original embeddings to align them in a common, latent space, and (b) a language-independent similarity metric in this common space to better model the similarity between the embeddings. Overall, we pose the bilingual mapping problem as a classification problem on smooth Riemannian manifolds. Empirically, our approach outperforms previous approaches on the bilingual lexicon induction and cross-lingual word similarity tasks. We next generalize our framework to represent multiple languages in a common latent space. Language-specific rotations for all the languages and a common similarity metric in the latent space are learned jointly from bilingual dictionaries for multiple language pairs. We illustrate the effectiveness of joint learning for multiple languages in an indirect word translation setting.
Transfer learning approaches for Neural Machine Translation (NMT) train a NMT model on an assisting language-target language pair (parent model) which is later fine-tuned for the source language-target language pair of interest (child model), with the target language being the same. In many cases, the assisting language has a different word order from the source language. We show that divergent word order adversely limits the benefits from transfer learning when little to no parallel corpus between the source and target language is available. To bridge this divergence, we propose to pre-order the assisting language sentences to match the word order of the source language and train the parent model. Our experiments on many language pairs show that bridging the word order gap leads to significant improvement in the translation quality in extremely low-resource scenarios.
Multilingual learning for Neural Named Entity Recognition (NNER) involves jointly training a neural network for multiple languages. Typically, the goal is improving the NER performance of one of the languages (the primary language) using the other assisting languages. We show that the divergence in the tag distributions of the common named entities between the primary and assisting languages can reduce the effectiveness of multilingual learning. To alleviate this problem, we propose a metric based on symmetric KL divergence to filter out the highly divergent training instances in the assisting language. We empirically show that our data selection strategy improves NER performance in many languages, including those with very limited training data.
We address the task of joint training of transliteration models for multiple language pairs (multilingual transliteration). This is an instance of multitask learning, where individual tasks (language pairs) benefit from sharing knowledge with related tasks. We focus on transliteration involving related tasks i.e., languages sharing writing systems and phonetic properties (orthographically similar languages). We propose a modified neural encoder-decoder model that maximizes parameter sharing across language pairs in order to effectively leverage orthographic similarity. We show that multilingual transliteration significantly outperforms bilingual transliteration in different scenarios (average increase of 58% across a variety of languages we experimented with). We also show that multilingual transliteration models can generalize well to languages/language pairs not encountered during training and hence perform well on the zeroshot transliteration task. We show that further improvements can be achieved by using phonetic feature input.
We investigate pivot-based translation between related languages in a low resource, phrase-based SMT setting. We show that a subword-level pivot-based SMT model using a related pivot language is substantially better than word and morpheme-level pivot models. It is also highly competitive with the best direct translation model, which is encouraging as no direct source-target training corpus is used. We also show that combining multiple related language pivot models can rival a direct translation model. Thus, the use of subwords as translation units coupled with multiple related pivot languages can compensate for the lack of a direct parallel corpus.
We explore the use of segments learnt using Byte Pair Encoding (referred to as BPE units) as basic units for statistical machine translation between related languages and compare it with orthographic syllables, which are currently the best performing basic units for this translation task. BPE identifies the most frequent character sequences as basic units, while orthographic syllables are linguistically motivated pseudo-syllables. We show that BPE units modestly outperform orthographic syllables as units of translation, showing up to 11% increase in BLEU score. While orthographic syllables can be used only for languages whose writing systems use vowel representations, BPE is writing system independent and we show that BPE outperforms other units for non-vowel writing systems too. Our results are supported by extensive experimentation spanning multiple language families and writing systems.
In this paper, we empirically compare the two encoder-decoder neural machine translation architectures: convolutional sequence to sequence model (ConvS2S) and recurrent sequence to sequence model (RNNS2S) for English-Hindi language pair as part of IIT Bombay’s submission to WAT2017 shared task. We report the results for both English-Hindi and Hindi-English direction of language pair.
This paper describes the IIT Bombay’s submission as a part of the shared task in WAT 2016 for English–Indonesian language pair. The results reported here are for both the direction of the language pair. Among the various approaches experimented, Operation Sequence Model (OSM) and Neural Language Model have been submitted for WAT. The OSM approach integrates translation and reordering process resulting in relatively improved translation. Similarly the neural experiment integrates Neural Language Model with Statistical Machine Translation (SMT) as a feature for translation. The Neural Probabilistic Language Model (NPLM) gave relatively high BLEU points for Indonesian to English translation system while the Neural Network Joint Model (NNJM) performed better for English to Indonesian direction of translation system. The results indicate improvement over the baseline Phrase-based SMT by 0.61 BLEU points for English-Indonesian system and 0.55 BLEU points for Indonesian-English translation system.
A common and effective way to train translation systems between related languages is to consider sub-word level basic units. However, this increases the length of the sentences resulting in increased decoding time. The increase in length is also impacted by the specific choice of data format for representing the sentences as subwords. In a phrase-based SMT framework, we investigate different choices of decoder parameters as well as data format and their impact on decoding time and translation accuracy. We suggest best options for these settings that significantly improve decoding time with little impact on the translation accuracy.
We present a compendium of 110 Statistical Machine Translation systems built from parallel corpora of 11 Indian languages belonging to both Indo-Aryan and Dravidian families. We analyze the relationship between translation accuracy and the language families involved. We feel that insights obtained from this analysis will provide guidelines for creating machine translation systems of specific Indian language pairs. We build phrase based systems and some extensions. Across multiple languages, we show improvements on the baseline phrase based systems using these extensions: (1) source side reordering for English-Indian language translation, and (2) transliteration of untranslated words for Indian language-Indian language translation. These enhancements harness shared characteristics of Indian languages. To stimulate similar innovation widely in the NLP community, we have made the trained models for these language pairs publicly available.
Sufficient parallel transliteration pairs are needed for training state of the art transliteration engines. Given the cost involved, it is often infeasible to collect such data using experts. Crowdsourcing could be a cheaper alternative, provided that a good quality control (QC) mechanism can be devised for this task. Most QC mechanisms employed in crowdsourcing are aggressive (unfair to workers) and expensive (unfair to requesters). In contrast, we propose a low-cost QC mechanism which is fair to both workers and requesters. At the heart of our approach, lies a rule based Transliteration Equivalence approach which takes as input a list of vowels in the two languages and a mapping of the consonants in the two languages. We empirically show that our approach outperforms other popular QC mechanisms (\textit{viz.}, consensus and sampling) on two vital parameters : (i) fairness to requesters (lower cost per correct transliteration) and (ii) fairness to workers (lower rate of rejecting correct answers). Further, as an extrinsic evaluation we use the standard NEWS 2010 test set and show that such quality controlled crowdsourced data compares well to expert data when used for training a transliteration engine.
The logistics of collecting resources for Machine Translation (MT) has always been a cause of concern for some of the resource deprived languages of the world. The recent advent of crowdsourcing platforms provides an opportunity to explore the large scale generation of resources for MT. However, before venturing into this mode of resource collection, it is important to understand the various factors such as, task design, crowd motivation, quality control, etc. which can influence the success of such a crowd sourcing venture. In this paper, we present our experiences based on a series of experiments performed. This is an attempt to provide a holistic view of the different facets of translation crowd sourcing and identifying key challenges which need to be addressed for building a practical crowdsourcing solution for MT.