Alon Albalak


pdf bib
Addressing Issues of Cross-Linguality in Open-Retrieval Question Answering Systems For Emergent Domains
Alon Albalak | Sharon Levy | William Yang Wang
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

Open-retrieval question answering systems are generally trained and tested on large datasets in well-established domains. However, low-resource settings such as new and emerging domains would especially benefit from reliable question answering systems. Furthermore, multilingual and cross-lingual resources in emergent domains are scarce, leading to few or no such systems.In this paper, we demonstrate a cross-lingual open-retrieval question answering system for the emergent domain of COVID-19.Our system adopts a corpus of scientific articles to ensure that retrieved documents are reliable. To address the scarcity of cross-lingual training data in emergent domains, we present a method utilizing automatic translation, alignment, and filtering to produce English-to-all datasets.We show that a deep semantic retriever greatly benefits from training on our English-to-all data and significantly outperforms a BM25 baseline in the cross-lingual setting.We illustrate the capabilities of our system with examples and release all code necessary to train and deploy such a system.


D-REX: Dialogue Relation Extraction with Explanations
Alon Albalak | Varun Embar | Yi-Lin Tuan | Lise Getoor | William Yang Wang
Proceedings of the 4th Workshop on NLP for Conversational AI

Existing research studies on cross-sentence relation extraction in long-form multi-party conversations aim to improve relation extraction without considering the explainability of such methods. This work addresses that gap by focusing on extracting explanations that indicate that a relation exists while using only partially labeled explanations. We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that optimizes for explanation quality and relation extraction simultaneously. We frame relation extraction as a re-ranking task and include relation- and entity-specific explanations as an intermediate step of the inference process. We find that human annotators are 4.2 times more likely to prefer D-REX’s explanations over a joint relation extraction and explanation model. Finally, our evaluations show that D-REX is simple yet effective and improves relation extraction performance of strong baseline models by 1.2-4.7%.

FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue
Alon Albalak | Yi-Lin Tuan | Pegah Jandaghi | Connor Pryor | Luke Yoffe | Deepak Ramachandran | Lise Getoor | Jay Pujara | William Yang Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Task transfer, transferring knowledge contained in related tasks, holds the promise of reducing the quantity of labeled data required to fine-tune language models. Dialogue understanding encompasses many diverse tasks, yet task transfer has not been thoroughly studied in conversational AI. This work explores conversational task transfer by introducing FETA: a benchmark for FEw-sample TAsk transfer in open-domain dialogue.FETA contains two underlying sets of conversations upon which there are 10 and 7 tasks annotated, enabling the study of intra-dataset task transfer; task transfer without domain adaptation. We utilize three popular language models and three learning algorithms to analyze the transferability between 132 source-target task pairs and create a baseline for future work.We run experiments in the single- and multi-source settings and report valuable findings, e.g., most performance trends are model-specific, and span extraction and multiple-choice tasks benefit the most from task transfer.In addition to task transfer, FETA can be a valuable resource for future research into the efficiency and generalizability of pre-training datasets and model architectures, as well as for learning settings such as continual and multitask learning.


Modeling Disclosive Transparency in NLP Application Descriptions
Michael Saxon | Sharon Levy | Xinyi Wang | Alon Albalak | William Yang Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Broader disclosive transparency—truth and clarity in communication regarding the function of AI systems—is widely considered desirable. Unfortunately, it is a nebulous concept, difficult to both define and quantify. This is problematic, as previous work has demonstrated possible trade-offs and negative consequences to disclosive transparency, such as a confusion effect, where “too much information” clouds a reader’s understanding of what a system description means. Disclosive transparency’s subjective nature has rendered deep study into these problems and their remedies difficult. To improve this state of affairs, We introduce neural language model-based probabilistic metrics to directly model disclosive transparency, and demonstrate that they correlate with user and expert opinions of system transparency, making them a valid objective proxy. Finally, we demonstrate the use of these metrics in a pilot study quantifying the relationships between transparency, confusion, and user perceptions in a corpus of real NLP system descriptions.