Alexander Chernyavskiy


Correcting Texts Generated by Transformers using Discourse Features and Web Mining
Alexander Chernyavskiy | Dmitry Ilvovsky | Boris Galitsky
Proceedings of the Student Research Workshop Associated with RANLP 2021

Recent transformer-based approaches to NLG like GPT-2 can generate syntactically coherent original texts. However, these generated texts have serious flaws: global discourse incoherence and meaninglessness of sentences in terms of entity values. We address both of these flaws: they are independent but can be combined to generate original texts that will be both consistent and truthful. This paper presents an approach to estimate the quality of discourse structure. Empirical results confirm that the discourse structure of currently generated texts is inaccurate. We propose the research directions to correct it using discourse features during the fine-tuning procedure. The suggested approach is universal and can be applied to different languages. Apart from that, we suggest a method to correct wrong entity values based on Web Mining and text alignment.


DSNDM: Deep Siamese Neural Discourse Model with Attention for Text Pairs Categorization and Ranking
Alexander Chernyavskiy | Dmitry Ilvovsky
Proceedings of the First Workshop on Computational Approaches to Discourse

In this paper, the utility and advantages of the discourse analysis for text pairs categorization and ranking are investigated. We consider two tasks in which discourse structure seems useful and important: automatic verification of political statements, and ranking in question answering systems. We propose a neural network based approach to learn the match between pairs of discourse tree structures. To this end, the neural TreeLSTM model is modified to effectively encode discourse trees and DSNDM model based on it is suggested to analyze pairs of texts. In addition, the integration of the attention mechanism in the model is proposed. Moreover, different ranking approaches are investigated for the second task. In the paper, the comparison with state-of-the-art methods is given. Experiments illustrate that combination of neural networks and discourse structure in DSNDM is effective since it reaches top results in the assigned tasks. The evaluation also demonstrates that discourse analysis improves quality for the processing of longer texts.