Abdul Rafae Khan


Measuring Robustness for NLP
Yu Yu | Abdul Rafae Khan | Jia Xu
Proceedings of the 29th International Conference on Computational Linguistics

The quality of Natural Language Processing (NLP) models is typically measured by the accuracy or error rate of a predefined test set. Because the evaluation and optimization of these measures are narrowed down to a specific domain like news and cannot be generalized to other domains like Twitter, we often observe that a system reported with human parity results generates surprising errors in real-life use scenarios. We address this weakness with a new approach that uses an NLP quality measure based on robustness. Unlike previous work that has defined robustness using Minimax to bound worst cases, we measure robustness based on the consistency of cross-domain accuracy and introduce the coefficient of variation and (epsilon, gamma)-Robustness. Our measures demonstrate higher agreements with human evaluation than accuracy scores like BLEU on ranking Machine Translation (MT) systems. Our experiments of sentiment analysis and MT tasks show that incorporating our robustness measures into learning objectives significantly enhances the final NLP prediction accuracy over various domains, such as biomedical and social media.


Grouping Words with Semantic Diversity
Karine Chubarian | Abdul Rafae Khan | Anastasios Sidiropoulos | Jia Xu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Deep Learning-based NLP systems can be sensitive to unseen tokens and hard to learn with high-dimensional inputs, which critically hinder learning generalization. We introduce an approach by grouping input words based on their semantic diversity to simplify input language representation with low ambiguity. Since the semantically diverse words reside in different contexts, we are able to substitute words with their groups and still distinguish word meanings relying on their contexts. We design several algorithms that compute diverse groupings based on random sampling, geometric distances, and entropy maximization, and we prove formal guarantees for the entropy-based algorithms. Experimental results show that our methods generalize NLP models and demonstrate enhanced accuracy on POS tagging and LM tasks and significant improvements on medium-scale machine translation tasks, up to +6.5 BLEU points. Our source code is available at https://github.com/abdulrafae/dg.


Coding Textual Inputs Boosts the Accuracy of Neural Networks
Abdul Rafae Khan | Jia Xu | Weiwei Sun
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Natural Language Processing (NLP) tasks are usually performed word by word on textual inputs. We can use arbitrary symbols to represent the linguistic meaning of a word and use these symbols as inputs. As “alternatives” to a text representation, we introduce Soundex, MetaPhone, NYSIIS, logogram to NLP, and develop fixed-output-length coding and its extension using Huffman coding. Each of those codings combines different character/digital sequences and constructs a new vocabulary based on codewords. We find that the integration of those codewords with text provides more reliable inputs to Neural-Network-based NLP systems through redundancy than text-alone inputs. Experiments demonstrate that our approach outperforms the state-of-the-art models on the application of machine translation, language modeling, and part-of-speech tagging. The source code is available at https://github.com/abdulrafae/coding_nmt.


CUNY-PKU Parser at SemEval-2019 Task 1: Cross-Lingual Semantic Parsing with UCCA
Weimin Lyu | Sheng Huang | Abdul Rafae Khan | Shengqiang Zhang | Weiwei Sun | Jia Xu
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes the systems of the CUNY-PKU team in SemEval 2019 Task 1: Cross-lingual Semantic Parsing with UCCA. We introduce a novel model by applying a cascaded MLP and BiLSTM model. Then, we ensemble multiple system-outputs by reparsing. In particular, we introduce a new decoding algorithm for building the UCCA representation. Our system won the first place in one track (French-20K-Open), second places in four tracks (English-Wiki-Open, English-20K-Open, German-20K-Open, and German-20K-Closed), and third place in one track (English-20K-Closed), among all seven tracks.