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Introduction to *SEM 2012

In the summer of 2011, the idea of having a joint conference covering two ACL Special Interest Groups,
namely SIGLEX and SIGSEM, was born. Traditionally, the SIGLEX has been concerned with issues
of the lexicon and computational lexical semantics, while SIGSEM has been engaged with issues of
computational modeling of semantics. The need for an umbrella conference on semantics was growing
not only because of the many recent exciting developments in the field of computational linguistics,
but also because of the growing number of shared tasks and workshops, of which many show points of
contact with semantics in its various forms.

We name just three of these exciting and promising developments. First, Recognizing Textual
Entailment, which started as a shared task, has established itself as an active area of research in
semantics. Second, following syntactic parsing, robust, broad-coverage systems for shallow (and
reasonably deep) semantics have been developed over the last years and are still being improved as
observed in the SemEval competitions. And third, statistical semantics has emerged as a hot topic,
in particular distributional approaches. All of these research directions touch upon both lexical and
modeling aspects. Progress in either of these fields needs input from both.

At the same time, we clearly recognized that the current venues for publishing research and meeting
fellow semanticists wasn’t satisfactory. SIGSEM organizes a successful biennial workshop (recently
rechristened as a conference) on computational semantics, IWCS, which however sees a small number
of lexically-oriented researchers attending, and moreover has been geographically restricted since it
started in 1994. SIGLEX, on the other hand, has organized the widely attended SemEval evaluation
exercises organized by active communities of researchers, but has not been very successful in attracting
computational modeling semanticists from the SIGSEM community. Hence, we came to the conclusion
that the time is ripe for a more synergistic effort where we combine our events.

An explosion of emails followed between SIGLEX & SIGSEM board members and not long after
∗SEM came to the world. The organizational tasks were carefully split between members of SIGLEX
and SIGSEM to ensure optimal collaboration and exchange of ideas. The conference is coordinated by
one person — the general chair — with the idea to let this position alternate by a SIGLEX and SIGSEM
representative in future editions of ∗SEM. For the first edition of ∗SEM, NAACL in Montreal seemed a
natural choice. As a satellite event of a larger event ∗SEM could benefit from the organizational know-
how of ACL experts and we could leverage the NAACL community presence as a way of popularizing
our ideas.

∗SEM received 79 long and 29 short papers. Three long papers were withdrawn leaving 76 long papers.
We accepted 21 long and 13 short papers. These numbers translate in acceptance rates of 27.6% (long)
and 44.8% (short papers).

∗SEM is also hosting a shared task on Resolving the Scope and Focus of Negation, organized by Roser
Morante and Eduardo Blanco. 10 teams participated, together submitting 14 runs. The task and system
descriptions papers for this event are included in these proceedings.

In addition, ∗SEM is hosting the last edition of SemEval, whose proceedings are published in an
accompanying volume. The proceedings include 8 task description papers and 56 system description
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papers.

∗SEM took a tremendous effort to conceive. It would not have been possible without the vision of the
CL community at large but the NAACL executive board chaired by Rebecca Hwa (through December
2011), the ACL business manager Priscilla Rasmussen, and the NAACL 2012 General Chair Jennifer
Chu-Carrol as well as the ACL executive board as chaired by Kevin Knight, all allowed for it to come
to reality so quickly. We are deeply grateful for the vote of confidence and support from the various
semantics workshop organizers from previous years like RTE, MWE, DISCO and GEMS for rallying
their subcommunities to support our initiative.

There are many individuals to thank for their contributions to the conference program. First and
foremost, we would like to thank the authors who submitted their work to ∗SEM. We are deeply
indebted to the area chairs and the reviewers for their hard work. The area chairs (Timothy Baldwin,
Marco Baroni, Johan Bos, Philipp Cimiano, Ido Dagan, Christiane Fellbaum, Carlos Ramisch) and
reviewers did a fantastic job. They enabled us to select an exciting program and to provide valuable
feedback to the authors.

We are very grateful to Sara Barcena, who designed the ∗SEM logo. We would like to thank Roberto
Basili in his role as sponsorship chair. We also would like to thank Priscilla Rasmussen who provided a
reliable and fast human interface with the local organization. Suresh Manandhar and Deniz Yuret (chairs
of the task committee) ensured a smooth integration with the shared task and SemEval activities. Roser
Morante and Eduardo Blanco organized the shared task. Finally, Yuval Marton, the publication chair,
did an amazing job in putting the proceedings together. No hanging word or dangling footnote escaped
his attention.

Finally, last but not least, we would like to acknowledge sponsors from both the academic and industrial
worlds. The logo design for ∗SEM is sponsored by the Groningen Meaning Bank Project of the
University of Groningen. ∗SEM is supported by the European project INSEARCH (FP7 262491) and,
in particular, by its contributing partners of the Department of Enterprise Engineering of the University
of Rome, Tor Vergata (Italy) and CiaoTech s.r.l.

We hope this will be the first of an exciting series of conferences.

Eneko Agirre (General Chair)
Johan Bos (PC chair)
Mona Diab (PC chair)
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Introduction to SemEval

The Semantic Evaluation (SemEval) series of workshops focus on the evaluation of semantic analysis
systems with the aim of comparing systems that can analyse diverse semantic phenomena in text.
SemEval provides an exciting forum for researchers to propose challenging research problems in
semantics and to build systems/techniques to address such research problems. This volume contains
papers accepted for presentation at the SemEval-2012 International Workshop on Semantic Evaluation
Exercises. SemEval-2012 is co-organized with the *Sem The First Joint Conference on Lexical and
Computational Semantics. SemEval-2012 immediately follows the North American Chapter of the
Association for Computational Linguistics - Human Language Technologies (NAACL HLT) 2012
conference.

SemEval-2012 included the following 8 tasks for evaluation:

• English Lexical Simplification

• Measuring Degrees of Relational Similarity

• Spatial Role Labeling

• Evaluating Chinese Word Similarity

• Chinese Semantic Dependency Parsing

• Semantic Textual Similarity

• COPA: Choice Of Plausible Alternatives An evaluation of commonsense causal reasoning

• Cross-lingual Textual Entailment for Content Synchronization

This volume contains both Task Description papers that describe each of the above tasks and System
Description papers that describe the systems that participated in the above tasks. A total of 8 task
description papers and 56 system description papers are included in this volume. Task 6 on “Semantic
Textual Similarity” was the most successful task attracting over half of the total submissions.

We are indebted to all program committee members for their high quality, elaborate and thoughtful
reviews. The papers in this proceedings have surely benefited from this feedback.

We are grateful to *SEM 2012 and NAACL-HLT 2012 conference organizers for local organization
and the forum. We most gratefully acknowledge the support of our sponsors, the ACL Special Interest
Group on the Lexicon (SIGLEX) and the ACL Special Interest Group on Computational Semantics
(SIGSEM).

Welcome to SemEval-2012!

Suresh Manandhar and Deniz Yuret
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09:40–10:05 Extracting a Semantic Lexicon of French Adjectives from a Large Lexicographic Dictio-
nary
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Peng Jin and Yunfang Wu

12:10 SemEval-2012 Task 5: Chinese Semantic Dependency Parsing
Wanxiang Che, Meishan Zhang, Yanqiu Shao and Ting Liu

12:25 SemEval-2012 Task 6: A Pilot on Semantic Textual Similarity
Eneko Agirre, Daniel Cer, Mona Diab and Aitor Gonzalez-Agirre

(12:40–2:00) Lunch
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Day 1: Thursday June 7th 2012 (SemEval View) (continued)

Session SE2: (2:00–3:30) SemEval Session 2

2:00 SemEval-2012 Task 7: Choice of Plausible Alternatives: An Evaluation of Commonsense
Causal Reasoning
Andrew Gordon, Zornitsa Kozareva and Melissa Roemmele

2:15 Semeval-2012 Task 8: Cross-lingual Textual Entailment for Content Synchronization
Matteo Negri, Alessandro Marchetti, Yashar Mehdad, Luisa Bentivogli and Danilo Gi-
ampiccolo

2:30 EMNLP@CPH: Is frequency all there is to simplicity?
Anders Johannsen, Héctor Martı́nez, Sigrid Klerke and Anders Søgaard

2:45 UTD: Determining Relational Similarity Using Lexical Patterns
Bryan Rink and Sanda Harabagiu

3:00 UTD-SpRL: A Joint Approach to Spatial Role Labeling
Kirk Roberts and Sanda Harabagiu

3:15 MIXCD: System Description for Evaluating Chinese Word Similarity at SemEval-2012
Yingjie Zhang, Bin Li, Xinyu Dai and Jiajun Chen

(3:30–4:00) Coffee Break

Session SE3: (4:00–6:00) SemEval Session 3

4:00 Zhijun Wu: Chinese Semantic Dependency Parsing with Third-Order Features
Zhijun Wu, Xuan Wang and Xinxin Li

4:15 UKP: Computing Semantic Textual Similarity by Combining Multiple Content Similarity
Measures
Daniel Bär, Chris Biemann, Iryna Gurevych and Torsten Zesch

4:30 TakeLab: Systems for Measuring Semantic Text Similarity
Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder and Bojana Dalbelo Bašić

4:45 Soft Cardinality: A Parameterized Similarity Function for Text Comparison
Sergio Jimenez, Claudia Becerra and Alexander Gelbukh
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Day 1: Thursday June 7th 2012 (SemEval View) (continued)

5:00 UNED: Improving Text Similarity Measures without Human Assessments
Enrique Amigó, Jesus Gimenez, Julio Gonzalo and Felisa Verdejo

5:15 UTDHLT: COPACETIC System for Choosing Plausible Alternatives
Travis Goodwin, Bryan Rink, Kirk Roberts and Sanda Harabagiu

5:30 HDU: Cross-lingual Textual Entailment with SMT Features
Katharina Wäschle and Sascha Fendrich

5:45 UAlacant: Using Online Machine Translation for Cross-Lingual Textual Entailment
Miquel Esplà-Gomis, Felipe Sánchez-Martı́nez and Mikel L. Forcada

Day 2: Friday June 8th 2012 (SemEval View)

Session PLN2: (08:15–09:15) Best Paper Awards and Shared Task (Plenary)

08:15–08:20 Announcement of Best Papers

08:20–08:30 Best Short Paper Speech

08:30–08:45 Best Long Paper Speech

08:45–09:10 Shared Task: Resolving the Scope and Focus of Negation

– No SemEval-specific morning sessions –

(See *SEM Main Conference and Shared Task Views for details)

(12:15–2:00) Lunch
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Day 2: Friday June 8th 2012 (SemEval View) (continued)

Session SE4: (2:00–3:30) SemEval Poster Session 1

UOW-SHEF: SimpLex – Lexical Simplicity Ranking based on Contextual and Psycholin-
guistic Features
Sujay Kumar Jauhar and Lucia Specia

SB: mmSystem - Using Decompositional Semantics for Lexical Simplification
Marilisa Amoia and Massimo Romanelli

ANNLOR: A Naı̈ve Notation-system for Lexical Outputs Ranking
Anne-Laure Ligozat, Cyril Grouin, Anne Garcia-Fernandez and Delphine Bernhard

UNT-SimpRank: Systems for Lexical Simplification Ranking
Ravi Sinha

Duluth : Measuring Degrees of Relational Similarity with the Gloss Vector Measure of
Semantic Relatedness
Ted Pedersen

BUAP: A First Approximation to Relational Similarity Measuring
Mireya Tovar, J. Alejandro Reyes, Azucena Montes, Darnes Vilariño, David Pinto and
Saul León

Zhou qiaoli: A divide-and-conquer strategy for semantic dependency parsing
zhou qiaoli, zhang ling, liu fei, cai dongfeng and zhang guiping

ICT:A System Combination for Chinese Semantic Dependency Parsing
Hao Xiong and Qun Liu

NJU-Parser: Achievements on Semantic Dependency Parsing
Guangchao Tang, Bin Li, Shuaishuai Xu, Xinyu Dai and Jiajun Chen

PolyUCOMP: Combining Semantic Vectors with Skip bigrams for Semantic Textual Simi-
larity
Jian Xu, Qin Lu and Zhengzhong Liu

ETS: Discriminative Edit Models for Paraphrase Scoring
Michael Heilman and Nitin Madnani

Sbdlrhmn: A Rule-based Human Interpretation System for Semantic Textual Similarity
Task
Samir AbdelRahman and Catherine Blake
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LIMSI: Learning Semantic Similarity by Selecting Random Word Subsets
Artem Sokolov

ATA-Sem: Chunk-based Determination of Semantic Text Similarity
Demetrios Glinos

IRIT: Textual Similarity Combining Conceptual Similarity with an N-Gram Comparison
Method
Davide Buscaldi, Ronan Tournier, Nathalie Aussenac-Gilles and Josiane Mothe

DSS: Text Similarity Using Lexical Alignments of Form, Distributional Semantics and
Grammatical Relations
Diana McCarthy, Spandana Gella and Siva Reddy

DeepPurple: Estimating Sentence Semantic Similarity using N-gram Regression Models
and Web Snippets
NIkos Malandrakis, Elias Iosif and Alexandros Potamianos

JU CSE NLP: Multi-grade Classification of Semantic Similarity between Text Pairs
Snehasis Neogi, Partha Pakray, Sivaji Bandyopadhyay and Alexander Gelbukh

Tiantianzhu7:System Description of Semantic Textual Similarity (STS) in the SemEval-
2012 (Task 6)
Zhu Tiantian and Lan Man

sranjans : Semantic Textual Similarity using Maximal Weighted Bipartite Graph Matching
Sumit Bhagwani, Shrutiranjan Satapathy and Harish Karnick

Weiwei: A Simple Unsupervised Latent Semantics based Approach for Sentence Similarity
Weiwei Guo and Mona Diab

UNIBA: Distributional Semantics for Textual Similarity
Annalina Caputo, Pierpaolo Basile and Giovanni Semeraro

UNITOR: Combining Semantic Text Similarity functions through SV Regression
Danilo Croce, Paolo Annesi, Valerio Storch and Roberto Basili

Saarland: Vector-based models of semantic textual similarity
Georgiana Dinu and Stefan Thater

(3:30–4:00) Coffee Break
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Session SE5: (4:00–5:15) SemEval Poster Session 2

UMCC DLSI: Multidimensional Lexical-Semantic Textual Similarity
Antonio Fernández, Yoan Gutiérrez, Héctor Dávila, Alexander Chávez, Andy González,
Rainel Estrada, Yenier Castañeda, Sonia Vázquez, Andrés Montoyo and Rafael Muñoz

SRIUBC: Simple Similarity Features for Semantic Textual Similarity
Eric Yeh and Eneko Agirre

FBK: Machine Translation Evaluation and Word Similarity metrics for Semantic Textual
Similarity
José Guilherme Camargo de Souza, Matteo Negri and Yashar Mehdad

FCC: Three Approaches for Semantic Textual Similarity
Maya Carrillo, Darnes Vilariño, David Pinto, Mireya Tovar, Saul León and Esteban
Castillo

UNT: A Supervised Synergistic Approach to Semantic Text Similarity
Carmen Banea, Samer Hassan, Michael Mohler and Rada Mihalcea

DERI&UPM: Pushing Corpus Based Relatedness to Similarity: Shared Task System De-
scription
Nitish Aggarwal, Kartik Asooja and Paul Buitelaar

Stanford: Probabilistic Edit Distance Metrics for STS
Mengqiu Wang and Daniel Cer

University Of Sheffield: Two Approaches to Semantic Text Similarity
Sam Biggins, Shaabi Mohammed, Sam Oakley, Luke Stringer, Mark Stevenson and Judita
Preiss

janardhan: Semantic Textual Similarity using Universal Networking Language graph
matching
Janardhan Singh, Arindam Bhattacharya and Pushpak Bhattacharyya

SAGAN: An approach to Semantic Textual Similarity based on Textual Entailment
Julio Castillo and Paula Estrella

UOW: Semantically Informed Text Similarity
Miguel Rios, Wilker Aziz and Lucia Specia

Penn: Using Word Similarities to better Estimate Sentence Similarity
Sneha Jha, Hansen A. Schwartz and Lyle Ungar
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Soft Cardinality + ML: Learning Adaptive Similarity Functions for Cross-lingual Textual
Entailment
Sergio Jimenez, Claudia Becerra and Alexander Gelbukh

JU CSE NLP: Language Independent Cross-lingual Textual Entailment System
Snehasis Neogi, Partha Pakray, Sivaji Bandyopadhyay and Alexander Gelbukh

CELI: An Experiment with Cross Language Textual Entailment
Milen Kouylekov, Luca Dini, Alessio Bosca and Marco Trevisan

FBK: Cross-Lingual Textual Entailment Without Translation
Yashar Mehdad, Matteo Negri and Jose Guilherme C. de Souza

BUAP: Lexical and Semantic Similarity for Cross-lingual Textual Entailment
Darnes Vilariño, David Pinto, Mireya Tovar, Saul León and Esteban Castillo

DirRelCond3: Detecting Textual Entailment Across Languages With Conditions On Di-
rectional Text Relatedness Scores
Alpar Perini

ICT: A Translation based Method for Cross-lingual Textual Entailment
Fandong Meng, Hao Xiong and Qun Liu

SAGAN: A Machine Translation Approach for Cross-Lingual Textual Entailment
Julio Castillo and Marina Cardenas

Session PLN3: (5:15–6:00) Plenary Panel and Closing: *SEM and the Future

—- End of SemEval View —-
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Abstract

Linking implicit semantic roles is a challeng-
ing problem in discourse processing. Unlike
prior work inspired by SRL, we cast this prob-
lem as an anaphora resolution task and embed
it in an entity-based coreference resolution
(CR) architecture. Our experiments clearly
show that CR-oriented features yield strongest
performance exceeding a strong baseline. We
address the problem of data sparsity by apply-
ing heuristic labeling techniques, guided by
the anaphoric nature of the phenomenon. We
achieve performance beyond state-of-the art.

1 Introduction

A widespread phenomenon that is still poorly stud-
ied in NLP is the meaning contribution of unfilled
semantic roles of predicates in discourse interpreta-
tion. Such roles, while linguistically unexpressed,
can often be anaphorically bound to antecedent ref-
erents in the discourse context. Capturing such im-
plicit semantic roles and linking them to their an-
tecedents is a challenging problem. But it bears im-
mense potential for establishing discourse coherence
and for getting closer to the aim of true NLU.

Linking of implicit semantic roles in discourse
has recently been introduced as a shared task in
the SemEval 2010 competition Linking Events and
Their Participants in Discourse (Ruppenhofer et al.,
2009, 2010). The task consists in detecting un-
filled semantic roles of events and determining an-
tecedents in the discourse context that these roles

∗ The work reported in this paper is based on a Master’s
Thesis conducted at Heidelberg University (Silberer, 2011).

can be understood to refer to. In (1), e.g., the pred-
icate jealousy introduces two implicit roles, one for
the experiencer, the other for the object of jealousy
involved. These roles can be bound to Watson and
the speaker (I) in the non-local preceding context.

(1) Watson won’t allow that I know anything of art but
that is mere jealousy because our views upon the
subject differ.

(2) IReader was sitting reading in the chairPlace.

In contrast to implicit roles that can be discourse-
bound to an antecedent as in (1), roles can be inter-
preted existentially, as in (2), with an unfilled TEXT

role of the READING frame that cannot be anchored
in prior discourse. The FrameNet paradigm (Fill-
more et al., 2003) that was used for annotation in
the SemEval task classifies these interpretation dif-
ferences as definite (DNI) vs. indefinite (INI) null
instantiations (NI) of roles, respectively.

2 Implicit Role Reference: A Short History

Early studies. The phenomenon of implicit role re-
ference is not new. It has been studied in a number
of early approaches. Palmer et al. (1986) treated un-
filled semantic roles as special cases of anaphora and
coreference resolution (CR). Resolution was guided
by domain knowledge encoded in a knowledge-
based system. Similarly, Whittemore et al. (1991)
analyzed the resolution of unexpressed event roles
as a special case of CR. A formalization in DRT was
fully worked out, but automation was not addressed.

Later studies emphasize the role of implicit role
reference in a frame-semantic discourse analysis.
Fillmore and Baker (2001) provide an analysis of
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a newspaper text that indicates the importance of
frames and roles in establishing discourse coher-
ence. Burchardt et al. (2005) offer a formalization
of the involved factors: the interplay of frames and
frame relations with factors of contextual contigu-
ity. The work includes no automation, but suggests a
corpus-based approach using antecedent-role coref-
erence patterns collected from corpora.

Tetreault (2002), finally, offers an automated anal-
ysis for resolving implicit role reference. The small-
scale study is embedded in a rule-based CR setup.

SemEval 2010 Task 10: Linking Roles. Trig-
gered by the SemEval 2010 competition (Ruppen-
hofer et al., 2010), research on resolving implicit
role reference has gained momentum again, in a field
where both semantic role labeling (SRL) and coref-
erence resolution have seen tremendous progress.
However, the systems that participated in the NI-
only task on implicit role resolution achieved mod-
erate success in the initial subtasks: (i) recog-
nition of implicit roles and (ii) classification as
discourse-bound vs. existential interpretation (DNI
vs. INI). Yet, (iii) identification of role antecedents
was bluntly unsuccessful, with around 1% F-score.

Ruppenhofer et al. clearly relate the task to
coreference resolution. The participating systems,
though, framed the task as a special case of SRL.

Chen et al. (2010) participated with their SRL sys-
tem SEMAFOR (Das et al., 2010). They cast the task
as one of extended SRL, by admitting constituents
from a larger context. To overcome the lack and
sparsity of syntactic path features, they include lex-
ical association and similarity scores for semantic
roles and role fillers; classical SRL order and dis-
tance features are adapted to larger distances.

VENSES++ by Tonelli and Delmonte (2010) is
a semantic processing system that includes lexico-
semantic processing, anaphora resolution and deep
semantic resolution components. Anaphora resolu-
tion is performed in a rule-based manner; pronom-
inals are replaced with their antecedents’ lexical
information. For role linking, the system applies
diverse heuristics including search for predicate-
argument structures with compatible arguments, as
well as semantic relatedness scores between poten-
tial fillers of (overt and implicit) semantic roles.

More recently Tonelli and Delmonte (2011) recur

to a leaner approach for role binding, estimating a
relevance score for potential antecedents from role
fillers observed in training. They report an F-score
of 8 points for role binding on SemEval data. How-
ever, being strongly lexicalized, their trained model
seems heavily dependent on the training data.

Ruppenhofer et al. (2011) use semantic types for
identifying DNI role antecedents, reporting an error
reduction of 14% on Chen et al. (2010)’s results.

The poor performance results in the SemEval task
clearly indicate the difficulty of resolving implicit
role reference. A major factor seems to relate to data
sparsity: the training set covers only 245 DNI anno-
tations linked to an antecedent.

Linking implicit arguments of nominals. Ger-
ber and Chai (2010) (G&C henceforth) investigate a
closely related task of argument binding, tied to the
linking of implicit arguments for nominal predicates
using the PropBank role labeling scheme. In con-
trast to the SemEval task, which focuses on a verbs
and nouns, their system is only applied to nouns and
is restricted to 10 predicates with substantial training
set sizes (avg: 125, median: 103).

G&C propose a discriminative model that selects
an antecedent for an implicit role from an extended
context window. The approach incorporates some
aspects relating to CR that go beyond the SRL-
oriented SemEval systems: A candidate represen-
tation includes information about all the candidates’
coreferent mentions (determined by automatic CR),
in particular their semantic roles (provided by gold
annotations) and WordNet synsets. Patterns of se-
mantic associations between filler candidates and
implicit roles are learned for all mentions contained
in the candidate’s entity chain. They achieve an F-
score of 42.3, against a baseline of 26.5.

Gerber (2011) presents an extended model that in-
corporates strategies suggested in Burchardt et al.
(2005): using frame relations as well as coreference
patterns acquired from large corpora. This model
achieves an F-score of 50.3 (baseline: 28.9).

3 Casting Implicit Role Linking as an
Anaphora Resolution Task

3.1 Implicit role = anaphora resolution
Recent models for role binding mainly draw on tech-
niques from SRL, enriched with concepts from CR.
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In this paper, we explicitly formulate implicit role
linking as an anaphora resolution task. This is in
line with the predominant conception in early work,
and also highlights the close relationship with zero
anaphora (Kameyama, 1985). Computational treat-
ments of zero anaphora (e.g., Imamura et al. (2009))
are in fact employing techniques well-known from
SRL. Recent work by Iida and Poesio (2011), by
contrast, offers an analysis of zero anaphora in a
CR architecture. Further support comes from psy-
cholinguistic studies in Garrod and Terras (2000),
who establish commonalities between implicit role
reference and other types of anaphora resolution.

The contributions of our work are as follows:

i. We cast implicit role binding as a CR task, us-
ing an entity-mention model and discriminative
classification for antecedent selection.

ii. We examine the effectiveness of model features
for classical SRL vs. CR features to clarify the
nature of this special phenomenon.

iii. We automatically acquire heuristically labeled
data to address the sparse data problem.

i. An entity-mention model for anaphoric role
resolution. In our model implicit roles that are
discourse-bound (i.e. classified as DNI) are treated
as anaphoric, similar to zero anaphora: the implicit
role will be bound to a discourse antecedent.

In line with recent research in CR, we adopt an
entity-mention model, where an entity is represented
by all mentions pertaining to a coreference chain
(see i.a. Rahman and Ng (2011), Cai and Strube
(2010)). Our model is based on binary classifier de-
cisions that take as input the anaphoric role and an
entity candidate from the preceding discourse. The
final classification of a role linking to an entity is ob-
tained by discriminative ranking of the binary clas-
sifiers’ probability estimates. Details on the system
architecture are given in Section 3.2.

ii. SRL vs. CR: Analysis of feature sets. The
linking of implicit semantic roles represents an inter-
esting mixture of SRL and CR that displays excep-
tional characteristics of both types of phenomena.

In contrast to classical SRL, the relation between
a predicate’s semantic role and a candidate role filler

– being realized outside the local syntactic context –
cannot be characterized by syntactic path features.
But similar to SRL we can compute a semantic class
type expected by the role and determine which can-
didate is most appropriate to fill the semantic role.

Anaphoric binding of unfilled roles also diverges
from classical CR in that the anaphoric element is
not overtly expressed. This excludes typical CR fea-
tures that refer to overt realization, such as agree-
ment or string overlap. Again, we can make use of a
semantic characterization of role fillers to determine
the role’s most appropriate antecedent entity in the
discourse. This closely relates to semantic class fea-
tures employed in CR (e.g., Rahman and Ng (2011)).

Thus, semantic association features are important
modeling aspects, but they do not contribute to clari-
fying the nature of the phenomenon. We will include
additional properties that are considered characteris-
tic for CR, such as the semantics of an entity (as op-
posed to individual mentions), or salience properties
of antecedents (cf. Section 4.3). Thus, the model we
propose substantially differs from prior work.

We classify the features of our models as SRL vs.
CR features, plus a mixture class that relates to both
phenomena. We examine which type of features is
most effective for resolving implicit role reference.

iii. Heuristic data acquisition. In response to the
sparse data problem encountered with the SemEval
data set and the general lack of annotated resources
for implicit role binding, we experiment with tech-
niques for heuristic data acquisition. The strategy
we apply builds on our working hypothesis that im-
plicit role reference is best understood as a special
case of (zero) anaphora resolution.

We process manually annotated coreference data
sets that are jointly labeled with semantic roles.
From these we extract entity chains that contain
anaphoric pronouns that fill a predicate’s semantic
role. We artificially delete the pronoun’s role label
and transfer it to its closest antecedent in its chain.
In this way, we convert the example to an instance
that is structurally similar to one involving a locally
unfilled semantic role that is bound to an overt an-
tecedent. An example is given below: in (3.a) we
identify a pronoun that fills the SPEAKER role of the
frame STATEMENT. We transfer this role label to its
closest antecedent (3.b).
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(3) a. Riadyk spoke in hisk 21-story office building
on the outskirts of Jakarta. [...] The timing of
hisk,Speaker statementStatement is important.
b. Riadyk spoke in hisk,Speaker 21-story office
building on the outskirts of Jakarta. [...] The tim-
ing of ∅ statementStatement is important.

Clearly such artificially created annotation instances
are only approximations of naturally occurring cases
of implicit role binding. But we expect to acquire
numerous data points for relevant features: semantic
class information for the antecedent entity, the pred-
icate’s frame and roles and coherence properties.

3.2 System Architecture
Our approach is embedded in an architecture for su-
pervised CR using an entity-mention model. The
main processing steps of the system include: (1) en-
tity detection, (2) instance creation with feature ex-
traction and (3) classification. As we are focusing
on the resolution of implicit DNI roles, we assume
that the text is already augmented with standard CR
information (we make use of gold data and automati-
cally assigned coreference chains). Accordingly, the
description of modules focuses exclusively on the
resolution of DNIs.

(1) Entity Detection. We first collect the entire
entity set E mentioned in the discourse. This set
forms the overall set of candidates to consider for
DNI linking. For each DNI dk to be linked, a subset
of candidates Ek ⊂ E is chosen as candidate search
space for resolving dk. We experiment with differ-
ent strategies for constructing Ek (cf. Section 4).

(2) Instance Creation. The next step consists in
the creation of (training) instances for classification
including the extraction of features for all instances.

An instance instej ,dk
consists of the active DNI

dk, its frame and a candidate entity ej ∈ Ek. In-
stance creation follows an entity-based adaption of
the standard procedure of Soon et al. (2001), which
has been applied by Yang et al. (2004, 2008). Pro-
cessing the discourse from left to right, for each DNI
dk, instances Ik are created by processing Ek from
right to left according to each entity’s most recent
mention, starting with the entity closest to dk. Note
that, as entities instead of mentions are considered,
only one instance is created for an entity which is
mentioned several times in the search space.

In training, the instance creation stops when the
correct antecedent, i.e. a positive instance, as well as
at least one negative instance have been found.1

(3) Classification. From the acquired training in-
stances we learn a binary classifier that predicts for
an instance instej ,dk

whether it is positive, i.e. en-
tity ej is a correct antecedent for DNI dk. Fur-
ther, the classifier provides a probability estimate for
instej ,dk

being positive. We obtain classifications
for all instances in Ik. Among the positive classified
instances, we select the antecedent e with the high-
est estimate. That is, we apply the best-first strategy
(Ng and Cardie, 2002). In case of a tie, we choose
the antecedent which is closer to the target. If no
instance is classified as positive, dk is left unfilled.

4 Data and Experiments

4.1 SEMEVAL 2010 task and data set
We adhere to the SemEval 2010 task by Ruppen-
hofer et al. (2009) as test bed for our experiments.
The main focus of our work is on part (iii), the iden-
tification of antecedents for DNIs. Subtasks (i) and
(ii), the recognition and interpretation of NIs will be
only tackled to enable comparison to the participat-
ing systems of the SemEval NI-only task.

The SemEval task is based on fiction stories by
A. C. Doyle, one story as training data and another
two chapters as test set, enriched with coreference
and FrameNet-style frame annotations. Information
about the training section is found in Table 1. The
test data comprise 710 NIs (349 DNIs, 361 INIs), of
which 259 DNIs are linked.

4.2 Heuristic data acquisition
Since the training data has a critically small amount
of linked DNIs, we heuristically labeled training
data on the basis of data sets with manually anno-
tated coreference information: OntoNotes 3.0 (Hovy
et al., 2006), as well as ACE-2 (Mitchell et al., 2003)
and MUC-6 (Chinchor and Sundheim, 2003).

OntoNotes 3.0 was merged with gold SRL an-
notations from the CoNLL-2005 shared task. By
means of SemLink-1.1 (Loper et al., 2007) and a
mapping included in the SemEval data, these Prop-
Bank (PB, Palmer et al. (2005)) annotations were

1We additionally impose several restrictions, e.g., a valid
candidate must not already fill another role of the active frame.
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#ent avg avg #frames #frame#DNI #DNI
#ent/doc size types types

SemEval 141 141 9 1,370 317 245 155
ONotes 7899 23 3 12,770 258 2,220 270
ACE-2 3564 11 4 58,204 757 4,265 578
MUC-6 1841 15 3 20,140 654 997 310

corpus coref semantic roles
ONotes manual manual PB CoNLL05, ported to FN
ACE-2 manual automatic FN (Semafor)
MUC-6 manual automatic FN (Semafor)

Table 1: SemEval vs. heuristically acquired data

mapped to their FrameNet (FN) counterparts, if ex-
istent. For the ACE-2 and MUC-6 corpora, we used
Semafor (Das and Smith, 2011) for automatic anno-
tation with FN semantic roles. From these data sets
we acquired heuristically annotated instances of role
linking using the strategy explained in 3.1.

Table 1 summarizes the resulting training data.
The heuristically labeled data extends the manually
labeled DNI instances by an order of magnitude.

4.3 Model parameters

Entity sets Edni. For definition of the set of can-
didate entities to consider for DNI linking, Edni,
we determined different parameter settings with re-
strictions on the types, distances and prominence of
candidate antecedents. For instance, unlike in noun
phrase CR, antecedents for a DNI can be realized by
a wide range of constituents other than NPs, such as
prepositional (PP), adverbial (ADVP), verb phrases
(VP) and even sentences (S) referring to proposi-
tions.

These settings, stated in Table 2, were inferred by
experiments on the training data and by examining
its statistics: AllChains is motivated by the fact that
72% of the DNIs are linked to referents with non-
singleton chains. On the other hand, the majority of
DNI antecedents – not only non-singletons, but also
phrases of a certain type or terminals that overtly
fill other roles – are located in the current and the
two preceding sentences (69.6%), which motivates
SentWin. However, antecedents are also located far
beyond this window span which is probably due to
the nature of the SemEval texts, with prominent en-
tities being accessible over longer stretches of dis-
course. Chains+Win is designed by taking into ac-

AllChains This set contains all the entities repre-
sented by non-singleton coreference chains that
were introduced in the discourse up to the cur-
rent DNI position, assuming that this way only
more salient entities are considered.

SentWin Comprises constituents with a certain
phrase type2 or terminals that overtly fill a role,
occurring within the current or the preceding
two sentences.

Chain+Win This set comprises SentWin plus all
entities mentioned at least five times up to the
current DNI position (i.e. salient entities).

Table 2: Entity set settings Edni

count all previous observations.

Training data sets. We made use of different mix-
tures of training data: SemEval plus different exten-
sions using the heuristically acquired data summa-
rized in Table 1.

4.4 Feature sets: SRL, mixed and CR-oriented
Table 3 lists the most important features used for
training our models. Features 1-13 were used in the
best model and are ordered by their strength based
on feature ablation experiments (cf. Section 5). All
features are marked for their general type; the last
column marks features employed by G&C.3

Below we give some details for selected features.

Feat. 1: Prominence. We first compute average
prominence of an entity e (Eq. 2) by summing over
the size (= nb. of mentions) of all entities e in a win-
dow w4 of preceding sentences and dividing by the
nb. of entities E in w. Prominence of e (Eq. 1) is
set to the difference between its size in w and the
average prominence score.5 The final feature value
records the relative rank of e’s prominence score
compared to the scores of the other candidates.

prom(e, w) = #mentions(e, w)− avg prom(w) (1)

avg prom(w) =

∑
e∈E #mentions(e, w)

|E|
(2)

2The phrase type must be NPB, S, VP, SBAR, or SG.
3∼ marks features that are similar to G&C features. Note

that their only CR features are distance features.
4We set w = 2 based on experiments on the training data.
5This prominence score was proposed by Dolata (2010)

within an entity grid approach to role linking.
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nr feature type G&C
1 prominence prominence score of the entity in the current discourse position CR -
2 pos.dist mention PoS or phrase type of the most recent explicit mention (CR) -

concatenated with sentence distance to the target
3 dist mentions minimum distance between DNI and entity in mentions CR -
4 dist sentences minimum distance between DNI and entity in sentences CR +
5 vnroles dni.entity the counterparts of the DNI in VerbNet (VN, Kipper et al. (2000)) mixed +

concatenated with the VN roles the entity already instantiates
6 roles dni.entity concatenation of the DNI with the FN roles the entity already instantiates mixed ∼
7 semType dni.entity semantic type of the DNI concatenated with mixed -

the semantic types of the roles the entity already instantiates
8 avgDist sentences average sentence distance between the entity and the DNI CR +
9 sp supersense agreement of the selectional preferences for the DNI mixed -

and the most frequent supersense of the entity
10 function (target) grammatical function of the target SRL -
11 wnss ent.st dni pointwise mutual information between the entity’s WN supersense ss and mixed -

the DNI’s FN semantic type st: pmi(ss, st) = log2P (ss|st)/P (ss)
12 nbRoles dni.entity like feature 5, but with NomBank arguments 0 and 1 mixed ∼
13 frame.dni frame name concatenated with the DNI SRL -

Table 3: Best features used for training. Feat. 11 was computed on the FN dataset and the SemEval training data.

Feat. 9: SelPrefs. We compute selectional prefer-
ences following the information-theoretic approach
of Resnik (1993, 1996). Similar to Erk (2007), we
used an adapted version which we computed for se-
mantic roles by means of the FN database rather than
for verb argument positions. The WordNet classes
over which the preferences are defined are WordNet
lexicographer’s files (supersenses).

The selectional association values Λ(dni, ss) of
the DNI’s selectional preferences are retrieved for
the supersense ss of each candidate antecedent’s
head. As for Feat. 1, we define a candidate’s fea-
ture value by its rank in the ordered list of these Λs.

4.5 Experiments
Evaluation measures. We adopt the precision (P),
recall (R) and F1 measures in Ruppenhofer et al.
(2010). A true positive is a DNI which has been
linked to the correct entity as given by the gold data.

Classifiers and feature selection. For DNI link-
ing, we use BayesNet (Cooper and Herskovits,
1992) as classifier, implemented in Weka (Witten
and Frank, 2000).6 For each parameter combination,
we perform feature selection by means of leave-one-
out 10-fold cross-validation on the SemEval train-
ing data with successively removing/determining the

6We experimented with different learners and selected the
algorithm that performed best for the different subtasks.

best features. The resulting models Mi are then eval-
uated on the SemEval test data in different setups:

Exp1: Linking DNIs. Exp1 evaluates our models
on the DNI linking task proper (NI-only step (iii)).
This setting uses the gold coreference, SRL and DNI
information in the test data.

Exp2: Full NI-only. For benchmarking on the
SemEval task, we perform the complete NI-only
task. Here, the test data is only enriched w/ SRL la-
beling. Each frame f in the test corpus is processed,
involving the following steps:

(i) Recognition of NIs is performed by consulting
the FN database7 and determining the FN core roles
that are unfilled. From this NI set, roles that are
conceptually redundant or competing with f’s overt
roles are rejected as they don’t need to or must not
be linked, respectively.

(ii) For predicting the interpretation of an NI, we
use LibSVM (Chang and Lin, 2001) as classifier
which further assigns each NI a probability estimate
of the NI being definite. We use a small set of fea-
tures: the FN semantic type of the NI and a boolean
feature indicating whether the target is in passive
voice and the agent (object) not realized. Further,
we use a statistical feature which gives the relative

7We used the FrameNetAPI by Reiter (2010).
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model add. entity frame DNI Linking (%)
data set anno. P R F1

M0 - AllChains gold 25.6 25.1 25.3
M1 ON2-10 Chains+Win proj 30.8 25.1 27.7
M1′ ON2-24 AllChains proj 35.6 20.1 25.7
M1′′ ON2-24 SentWin proj 23.3 22.4 22.8
M2 MUC Chains+Win auto 26.1 24.3 25.3
M3 ACE AllChains auto 24.0 21.2 22.5
Prom – Chains+Win – 20.5 20.5 20.5

Table 4: Exp1: Best performing models for different en-
tity and data settings. Test data contain gold CR chains.

frequency of the role’s realization as DNI and INI,
respectively, in the training data.

(iii) DNI linking is performed for each of f’s pre-
dicted DNIs Df in descending order of their prob-
ability estimates. If an antecedent em can be de-
termined for a predicted DNI, the role is labeled
as such and linked to em. As the DNI’s role has
been filled now, competing or redundant DNIs are
removed from Df before moving to the next pre-
dicted DNI. Only DNIs for which an antecedent is
found are labeled as such.

Exp2 is evaluated on both gold coreference an-
notation and automatically assigned coreference
chains, using the CR system of Cai et al. (2011).

5 Evaluation and Results

5.1 Exp1: DNI linking evaluation
Table 4 shows the best performing models for DNI
linking for each parameter setting8. We compare
them to a strong baseline Prom (last row) that links
each DNI to the antecedent candidate with highest
prominence score. Its F1-score is beaten by the other
models, with a gain of 7.2 points for model M1. The
high performance of the baseline can be taken as ev-
idence that salience factors are crucial for this task.

The best performing model M1 (27.7 F1) uses
about a fifth of the ON data with Chains+Win. When
using SentWin as entity set, F1 drops to 18.5 (not
shown). The best performing model using SentWin
(M1′′) performs 4.9 points below M1. Hence, re-
liance on the Chains+Win set seems beneficial. Per-
formance of the AllChains setting varies over the

8We consider the 3 types of entity sets and different train-
ing setups ± additional data (Section 4.3); additional data with
gold, projected or automatic frame annotations. The ON data
was also evaluated with roughly a fifth of ON to evaluate the
effect of different amounts of data of the same type of data.

Features P ( %) R (%) F1 (%)
all 30.8 25.1 27.7
- 1-4,8 (CR) 21.6 8.1 11.8
- 10,13 (SRL) 31.0 25.9 28.2
- 5-7,9,11-12 (mixed) 20.6 20.5 20.5

Table 5: Results of ablation study.

different data sets: the strongest model is M0 with-
out additional data. An explanation could be the dif-
ferent data domains (story vs. news), leading to a
different nature (length and number) of the entities.

In general, the models seem to profit from heuris-
tically labeled training data. We note strong gains
(up to 10 pts) in precision for 3 of these 5 best mod-
els, compared to M0. Finally, we observe higher
performance when using additional data with gold/
projected semantic frame annotations (M1, M1′).

Analysis of the best model. Table 5 states the re-
sults for M1 when leaving out one of the feature
types at a time. The serious drop of F1 from 27.7%
to 11.8% when omitting CR features clearly demon-
strates that this feature type has by far the greatest
impact on the task performance. Rejection of the
mixed features decreases F1 to a score equal to the
prominence baseline, whereas leaving out the SRL-
features even slightly increases F1. The weakness of
Feature 13 could still be attributed to data sparsity.

5.2 Exp2: Full NI-only evaluation

Table 6 lists the results for the full NI-only task ob-
tained with the presented models with different addi-
tional training data sets (lines 2-5). When perform-
ing all three steps, the F1-score of the best model
M1 drops to 10.1% (-17.6 pts, col. 10) under us-
age of automatic coreference annotations in the test
data (i.e. under the real task conditions). When us-
ing gold coreference annotations, the F1-score is
at 18.1% (col. 11), which can be seen as an upper
bound for our current models on this task. The dif-
ference of 9.6 points between only performing DNI
linking (Table 4) and the full NI-only task reflects
the fact that recognizing (step i) and interpreting
(step ii) NIs bear difficulties on their own.9

Comparison of our models with the two SemEval

9When not performing step (iii), NI recognition achieves
77.6% recall and 67% relative precision.
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Null Instantiations (%)
model add. entity frame recogn. interpret. (precision) DNI Linking (%)

data set anno. recall relative absolute P R F1 F1(crf)
M0 - AllChains gold 58 68 40 6.0 8.9 7.1 12.5
M1 ON2-10 Chains+Win proj 56 69 38 9.2 11.2 10.1 18.1
M2 MUC Chains+Win auto 52 70 36 7.0 8.5 7.6 11.0
M3 ACE AllChains auto 56 68 38 5.9 8.1 6.8 11.3
M3′ ACE Chains+Win auto 56 68 38 6.9 9.7 8.0 9.5
SEMAFOR – 63 55 35 1.40
VENSES++ – 8 64 5 1.21
T&D – 54 75 40 13.0 6.0 8

Table 6: Exp2 results obtained for our models (lines 1-5) and comparable systems (lines 6-8). Column 5 gives the
score for correctly recognized NIs. Cols. 6 and 7 report precision for correctly interpreted NIs on the basis of the
correctly recognized (relative) vs. all gold NIs to be recognized (absolute). The scores in the last column (F1(crf))
were obtained with gold CR annotations.

task participants10 (lines 7-8) shows that our models
clearly outperform these systems – with a gain of
+5.7 and +8.89 points in F1-score in DNI linking.11

Compared to Tonelli and Delmonte (2011)
(T&D), M1 has a higher F1-score in linking of
+2.1 points. In contrast to our method, their link-
ing approach is (admittedly) heavily lexicalized and
strongly tailored to the domain of the used data.

6 Conclusion

We cast the problem of linking implicit semantic
roles as a special case of (zero) anaphora resolution,
drawing on insights from earlier work and parallels
observed with zero anaphora. Our results strongly
support this analysis: (i) Feature selection clearly
determines CR-related features as strongest support
for DNI linking. (ii) Our models beat a strong base-
line using a prominence score to determine DNI ref-
erence. (iii) We devise a method for heuristically la-
beling training data that simulates implicit role refer-
ence. Using this data we obtain system performance
beyond state-of-the-art, with high gains in precision.

While these findings clearly corroborate our con-
ceptual approach, overall performance is still mea-
ger. Comparison to G&C’s setting suggests that
training data is a serious issue. We addressed the

10The F1-scores are from http://semeval2.fbk.eu/
semeval2.php?location=Rankings/ranking10.html

11Moreover, note that Ruppenhofer et al. describe a weaker
evaluation, that judges DNI linkings as correct if the span of the
linked referent contains the gold referent. Further, they consider
14 linked INIs in the test data, although linking INIs conflicts
with the definition of INIs.

problem of training set size using heuristic data ac-
quisition. The nature of semantic role annotations
may be another problem, as FrameNet-style roles do
not generalize well. Finally, implicit roles pertaining
to nominalizations tend to be more local than those
pertaining to verbs12 and might be less diverse.

Our model is closer in spirit to G&C than the Se-
mEval systems, but differs by being embedded in
an entity-based CR architecture using discriminative
antecedent selection. Also, we address a more prin-
cipled issue, by exploring the nature of the task using
a qualitative feature analysis. Our system compares
favorably to related work. Benchmarking against
the SemEval participants and T&D shows clear im-
provements. Also, T&D’s model is closely tied to
domain data, while ours is enhanced with out-of-
domain data. Exact comparison to G&C needs to be
conducted on the same data set and labeling scheme.

In sum, within the chosen setting we can show
that implicit role reference is best modeled as a spe-
cial case of anaphora resolution. We observe that
models trained on cleaner data perform better than
on larger, but more noisy data sets. Thus, it is es-
sential to further enhance the quality of heuristically
labeled data. Applying the classifiers for steps (i)
and (ii) as a filter could help to better constrain the
data to the target phenomenon.

Acknowledgements. We would like to thank Mateusz
Dolata for his help with salience and coherence features,
and Michael Roth for his server support.

12This is confirmed by analysis of the SemEval vs. NomBank
corpus of G&C.
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Abstract

We present a novel adaptive clustering model
for coreference resolution in which the expert
rules of a state of the art deterministic sys-
tem are used as features over pairs of clus-
ters. A significant advantage of the new ap-
proach is that the expert rules can be eas-
ily augmented with new semantic features.
We demonstrate this advantage by incorporat-
ing semantic compatibility features for neutral
pronouns computed from web n-gram statis-
tics. Experimental results show that the com-
bination of the new features with the expert
rules in the adaptive clustering approach re-
sults in an overall performance improvement,
and over 5% improvement in F1 measure for
the target pronouns when evaluated on the
ACE 2004 newswire corpus.

1 Introduction

Coreference resolution is the task of clustering a
sequence of textual entity mentions into a set of
maximal non-overlapping clusters, such that men-
tions in a cluster refer to the same discourse entity.
Coreference resolution is an important subtask in
a wide array of natural language processing prob-
lems, among them information extraction, question
answering, and machine translation. The availabil-
ity of corpora annotated with coreference relations
has led to the development of a diverse set of super-
vised learning approaches for coreference. While
learning models enjoy a largely undisputed role in
many NLP applications, deterministic models based
on rich sets of expert rules for coreference have been

shown recently to achieve performance rivaling, if
not exceeding, the performance of state of the art
machine learning approaches (Haghighi and Klein,
2009; Raghunathan et al., 2010). In particular, the
top performing system in the CoNLL 2011 shared
task (Pradhan et al., 2011) is a multi-pass system that
applies tiers of deterministic coreference sieves from
highest to lowest precision (Lee et al., 2011). The
PRECISECONSTRUCTS sieve, for example, creates
coreference links between mentions that are found
to match patterns of apposition, predicate nomina-
tives, acronyms, demonyms, or relative pronouns.
This is a high precision sieve, correspondingly it is
among the first sieves to be applied. The PRONOUN-
MATCH sieve links an anaphoric pronoun with the
first antecedent mention that agrees in number and
gender with the pronoun, based on an ordering of the
antecedents that uses syntactic rules to model dis-
course salience. This is the last sieve to be applied,
due to its lower overall precision, as estimated on
development data. While very successful, this de-
terministic multi-pass sieve approach to coreference
can nevertheless be quite unwieldy when one seeks
to integrate new sources of knowledge in order to
improve the resolution performance. Pronoun reso-
lution, for example, was shown by Yang et al. (2005)
to benefit from semantic compatibility information
extracted from search engine statistics. The seman-
tic compatibility between candidate antecedents and
the pronoun context induces a new ordering between
the antecedents. One possibility for using compat-
ibility scores in the deterministic system is to ig-
nore the salience-based ordering and replace it with
the new compatibility-based ordering. The draw-
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back of this simple approach is that now discourse
salience, an important signal in pronoun resolution,
is completely ignored. Ideally, we would want to
use both discourse salience and semantic compat-
ibility when ranking the candidate antecedents of
the pronoun, something that can be achieved natu-
rally in a discriminative learning approach that uses
the two rankings as different, but overlapping, fea-
tures. Consequently, we propose an adaptive cluster-
ing model for coreference in which the expert rules
are successfully supplemented by semantic compat-
ibility features obtained from limited history web n-
gram statistics.

2 A Coreference Resolution Algorithm

From a machine learning perspective, the determin-
istic system of Lee et al. (2011) represents a trove
of coreference resolution features. Since the de-
terministic sieves use not only information about a
pair of mentions, but also the clusters to which they
have been assigned so far, a learning model that uti-
lized the sieves as features would need to be able
to work with features defined on pairs of clusters.
We therefore chose to model coreference resolu-
tion as the greedy clustering process shown in Algo-
rithm 1. The algorithm starts by initializing the clus-
tering C with a set of singleton clusters. Then, as
long as the clustering contains more than one clus-
ter, it repeatedly finds the highest scoring pair of
clusters 〈Ci, Cj〉. If the score passes the threshold
τ = f(∅, ∅), the clusters Ci, Cj are joined into one
cluster and the process continues with another high-
est scoring pair of clusters.

Algorithm 1 CLUSTER(X ,f )
Input: A set of mentions X = {x1, x2, ..., xn};

A measure f(Ci, Cj) = wT Φ(Ci, Cj).
Output: A greedy agglomerative clustering of X .

1: for i = 1 to n do
2: Ci ← {xi}
3: C ← {Ci}1≤i≤n

4: 〈Ci, Cj〉 ← argmax
p∈P(C)

f(p)

5: while |C| > 1 and f(Ci, Cj) > τ do
6: replace Ci, Cj in C with Ci ∪ Cj

7: 〈Ci, Cj〉 ← argmax
p∈P(C)

f(p)

8: return C

The scoring function f(Ci, Cj) is a linearly
weighted combination of features Φ(Ci, Cj) ex-
tracted from the cluster pair, parametrized by a
weight vector w. The function P takes a cluster-
ing C as argument and returns a set of cluster pairs
〈Ci, Cj〉 as follows:

P(C)={〈Ci, Cj〉 | Ci, Cj∈C, Ci 6=Cj}∪{〈∅, ∅〉}

P(C) contains a special cluster pair 〈∅, ∅〉, where
Φ(∅, ∅) is defined to contain a binary feature
uniquely associated with this empty pair. Its cor-
responding weight is learned together with all other
weights and will effectively function as a clustering
threshold τ = f(∅, ∅).

Algorithm 2 TRAIN(C,T )
Input: A dataset of training clusterings C;

The number of training epochs T .
Output: The averaged parameters w.

1: w← 0
2: for t = 1 to T do
3: for all C ∈ C do
4: w← UPDATE(C,w)
5: return w

Algorithm 3 UPDATE(C,w)
Input: A gold clustering C = {C1, C2, ..., Cm};

The current parameters w.
Output: The updated parameters w.

1: X ← C1 ∪ C2 ∪ ... ∪ Cm = {x1, x2, ..., xn}
2: for i = 1 to n do
3: Ĉi ← {xi}
4: Ĉ ← {Ĉi}1≤i≤n

5: while |Ĉ| > 1 do
6: 〈Ĉi, Ĉj〉 = argmax

p∈P (Ĉ)

wT Φ(p)

7: B ← {〈Ĉk, Ĉl〉 ∈ P(Ĉ) | g(Ĉk, Ĉl|C) >
g(Ĉi, Ĉj |C)}

8: if B 6= ∅ then
9: 〈Ĉk, Ĉl〉 = argmax

p∈B
wT Φ(p)

10: w← w + Φ(Ĉk, Ĉl)− Φ(Ci, Cj)
11: if 〈Ĉi, Ĉj〉 = 〈∅, ∅〉 then
12: return w
13: replace Ĉi, Ĉj in Ĉ with Ĉi ∪ Ĉj

14: return w
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Algorithms 2 and 3 show an incremental learning
model for the weight vector w that is parametrized
with the number of training epochs T and a set of
training clusterings C in which each clustering con-
tains the true coreference clusters from one docu-
ment. Algorithm 2 repeatedly uses all true cluster-
ings to update the current weight vector and instead
of the last computed weights it returns an averaged
weight vector to control for overfitting, as originally
proposed by Freund and Schapire (1999). The core
of the learning model is in the update procedure
shown in Algorithm 3. Like the greedy clustering of
Algorithm 1, it starts with an initial system cluster-
ing Ĉ that contains all singleton clusters. At every
step in the iteration (lines 5–13), it joins the high-
est scoring pair of clusters 〈Ĉi, Ĉj〉, computed ac-
cording to the current parameters. The iteration ends
when either the empty pair obtains the highest score
or everything has been joined into only one cluster.
The weight update logic is implemented in lines 7–
10: if a more accurate pair 〈Ĉk, Ĉl〉 can be found,
the highest scoring such pair is used in the percep-
tron update in line 10. If multiple cluster pairs obtain
the maximum score in lines 6 and 9, the algorithm
selects one of them at random. This is useful es-
pecially in the beginning, when the weight vector is
zero and consequently all cluster pairs have the same
score of 0. We define the goodness g(Ĉk, Ĉl|C) of a
proposed pair 〈Ĉk, Ĉl〉 with respect to the true clus-
teringC as the accuracy of the coreference pairs that
would be created if Ĉk and Ĉl were joined:

g(·) =

∣∣∣{(x, y)∈ Ĉk×Ĉl | ∃Ci∈C : x, y∈Ci}
∣∣∣

|Ĉk| · |Ĉl|
(1)

It can be shown that this definition of the goodness
function selects a cluster pair (lines 7–9) that, when
joined, results in a clustering with a better pairwise
accuracy. Therefore, the algorithm can be seen as
trying to fit the training data by searching for param-
eters that greedily maximize the clustering accuracy,
while overfitting is kept under control by comput-
ing an averaged version of the parameters. We have
chosen to use a perceptron update for simplicity, but
the algorithm can be easily instantiated to accommo-
date other types of incremental updates, e.g. MIRA
(Crammer and Singer, 2003).

3 Expert Rules as Features

With the exception of mention detection which is
run separately, all the remaining 12 sieves men-
tioned in (Lee et al., 2011) are used as Boolean fea-
tures defined on cluster pairs, i.e. if any of the men-
tion pairs in the cluster pair 〈Ĉi, Ĉj〉 were linked
by sieve k, then the corresponding sieve feature
Φk(Ĉi, Ĉj) = 1. We used the implementation from
the Stanford CoreNLP package1 for all sieves, with a
modification for the PRONOUNMATCH sieve which
was split into 3 different sieves as follows:

• ITPRONOUNMATCH: this sieve finds an-
tecedents only for neutral pronouns it.

• ITSPRONOUNMATCH: this sieve finds an-
tecedents only for neutral possessive pronouns
its.

• OTHERPRONOUNMATCH: this is a catch-all
sieve for the remaining pronouns.

This 3-way split was performed in order to enable
the combination of the discourse salience features
captured by the pronoun sieves with the semantic
compatibility features for neutral pronouns that will
be introduced in the next section. The OTHER-
PRONOUNMATCH sieve works exactly as the orig-
inal PRONOUNMATCH: for a given non-neutral pro-
noun, it searches in the current sentence and the pre-
vious 3 sentences for the first mention that agrees in
gender and number with the pronoun. The candi-
date antecedents for the pronoun are ordered based
on a notion of discourse salience that favors syntac-
tic salience and document proximity (Raghunathan
et al., 2010).

4 Discourse Salience Features

The IT/SPRONOUNMATCH sieves use the same im-
plementation for finding the first matching candi-
date antecedent as the original PRONOUNMATCH.
However, unlike OTHERPRONOUNMATCH and the
other sieves that generate Boolean features, the neu-
tral pronoun sieves are used to generate real valued
features. If the neutral pronoun is the leftmost men-
tion in the cluster Ĉj from a cluster pair 〈Ĉi, Ĉj〉,
the corresponding normalized feature is computed
as follows:

1http://nlp.stanford.edu/software/corenlp.shtml
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1. Let Sj = 〈S1
j , S

2
j , ..., S

n
j 〉 be the sequence

of candidate mentions that precede the neutral
pronoun and agree in gender and number with
it, ordered from most salient to least salient.

2. Let Ai ⊆ Ĉi be the set of mentions in the clus-
ter Ĉi that appear before the pronoun and agree
with it.

3. For each mention m ∈ Ai, find its rank in the
sequence Sj :

rank(m,Sj) = k ⇔ m = Sk
j (2)

4. Find the minimum rank across all the mentions
in Ai and compute the feature as follows:

Φit/s(Ĉi, Ĉj) =

(
min
m∈Ai

rank(m,Sj)

)−1

(3)
If Ai is empty, set Φit/s(Ĉi, Ĉj) = 0.

The discourse salience feature described above is by
definition normalized in the interval [0, 1]. It takes
the maximum value of 1 when the most salient men-
tion in the discourse at the current position agrees
with the pronoun and also belongs to the candidate
cluster. The feature is 0 when the candidate cluster
does not contain any mention that agrees in gender
and number with the pronoun.

5 Semantic Compatibility Features

Each of the two types of neutral pronouns is associ-
ated with a new feature that computes the semantic
compatibility between the syntactic head of a candi-
date antecedent and the context of the neutral pro-
noun. If the neutral pronoun is the leftmost mention
in the cluster Ĉj from a cluster pair 〈Ĉi, Ĉj〉 and cj
is the pronoun context, then the new normalized fea-
tures Ψit/s(Ĉi, Ĉj) are computed as follows:

1. Compute the maximum semantic similarity be-
tween the pronoun context and any mention in
Ĉi that precedes the pronoun and is in agree-
ment with it:

Mj = max
m∈Ai

comp(m, cj)

2. Compute the maximum and minimum seman-
tic similarity between the pronoun context and
any mention that precedes the pronoun and is
in agreement with it:

Mall = max
m∈Sj

comp(m, cj)

mall = min
m∈Sj

comp(m, cj)

3. Compute the semantic compatibility feature as
follows:

Ψit/s(Ĉi, Ĉj) =
Mj −mall

Mall −mall
(4)

To avoid numerical instability, if the over-
all maximum and minimum similarities are
very close (Mall − mall < 1e−4) we set
Ψit/s(Ĉi, Ĉj) = 1.

Like the salience feature Φit/s, the semantic com-
patibility feature Ψit/s is normalized in the interval
[0, 1]. Its definition assumes that we can compute
comp(m, cj), the semantic compatibility between a
candidate antecedent mention m and the pronoun
context cj . For the possessive pronoun its, we ex-
tract the syntactic head h of the mention m and re-
place the pronoun with the mention head h in the
possessive context. We use the resulting possessive
pronoun context pcj(h) to define the semantic com-
patibility as the following conditional probability:

comp(m, cj) = logP (pcj(h)|h) (5)

= logP (pcj(h))− logP (h)

To compute the n-gram probabilities P (pcj(h)) and
P (h) in Equation 6, we use the language mod-
els provided by the Microsoft Web N-Gram Cor-
pus (Wang et al., 2010), as described in the next sec-
tion.

Figure 1 shows an example of a possessive neu-
tral pronoun context, together with the set of can-
didate antecedents that agree in number and gender
with the pronoun, from the current and previous 3
sentences. Each candidate antecedent is given an in-
dex that reflects its ranking in the discourse salience
based ordering. We see that discourse salience does
not help here, as the most salient mention is not
the correct antecedent. The figure also shows the
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In 1946, the nine justices dismissed a case[7] involving
the apportionment[8] of congressional districts. That
view[6] would slowly change. In 1962, the court[3]
abandoned its[5] caution[4]. Finding remedies to the
unequal distribution[1] of political power[2] was indeed
within its constitutional authority.

[3] P (court’s constitutional authority | court)
≈ exp(−5.91)

[5] P (court’s constitutional authority | court) (*)
≈ exp(−5.91)

[7] P (case’s constitutional authority | case)

≈ exp(−8.32)

[2] P (power’s constitutional authority | power)
≈ exp(−9.30)

[8] P (app-nt’s constitutional authority | app-nt)
≈ exp(−9.32)

[4] P (caution’s constitutional authority | caution)

≈ exp(−9.39)

[1] P (dist-ion’s constitutional authority | dist-ion)

≈ exp(−9.40)

[6] P (view’s constitutional authority | view)

≈ exp(−9.69)

Figure 1: Possessive neutral pronoun example.

compatibility score computed for each candidate an-
tecedent, using the formula described above. In this
example, when ranking the candidate antecedents
based on their compatibility scores, the top ranked
mention is the correct antecedent, whereas the most
salient mention is down in the list.

When the set of candidate mentions contains pro-
nouns, we require that they are resolved to a nominal
or named mention, and use the head of this mention
to instantiate the possessive context. This is the case
of the pronominal mention [5] in Figure 1, which
we assumed was already resolved to the noun court
(even if the pronoun [5] were resolved to an incor-
rect mention, the noun court would still be ranked
first due to mention [3]). This partial ordering be-
tween coreference decisions is satisfied automati-
cally by setting the semantic compatibility feature
Ψit/s(Ĉi, Ĉj) = 0 whenever the antecedent cluster
Ĉi contains only pronouns.

A similar feature is introduced for all neutral
pronouns it appearing in subject-verb-object triples.

The letter[5] appears to be an attempt[6] to calm the
concerns of the current American administration[7]. “I
confirm my commitment[1] to the points made therein,”
Aristide said in the letter[2], “confident that they will
help strengthen the ties between our two nations where
democracy[3] and peace[4] will flourish.” Since 1994,
when it sent 20,000 troops to restore Aristide to power,
the administration ...

[7] P (administration sent troops | administration)

≈ exp(−6.00)

[2] P (letter sent troops | letter)
≈ exp(−6.57)

[5] P (letter sent troops | letter)
≈ exp(−6.57)

[4] P (peace sent troops | peace)

≈ exp(−7.92)

[6] P (attempt sent troops | attempt)
≈ exp(−8.26)

[3] P (democracy sent troops | democracy)

≈ exp(−8.30)

[1] P (commitment sent troops | commitment)
≈ exp(−8.62)

Figure 2: Neutral pronoun example.

The new pronoun context pcj(h) is obtained by
replacing the pronoun it in the subject-verb-object
context cj with the head h of the candidate an-
tecedent mention. Figure 2 shows a neutral pro-
noun context, together with the set of candidate an-
tecedents that agree in number and gender with the
pronoun, from an abridged version of the original
current and previous 3 sentences. Each candidate
antecedent is given an index that reflects its ranking
in the discourse salience based ordering. Discourse
salience does not help here, as the most salient men-
tion is not the correct antecedent. The figure shows
the compatibility score computed for each candidate
antecedent, using Equation 6. In this example, the
top ranked mention in the compatibility based order-
ing is the correct antecedent, whereas the most most
salient mention is at the bottom of the list.

To summarize, in the last two sections we de-
scribed two special features for neutral pronouns:
the discourse salience feature Φit/s and the seman-
tic compatibility feature Ψit/s. The two real-valued
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Candidate mentions Original context N-gram context
capital, store, GE, side, offer with its corporate tentacles reaching GE’s corporate tentacles
AOL, Microsoft, Yahoo, product its substantial customer base AOL’s customer base
regime, Serbia, state, EU, embargo meets its international obligations Serbia’s international obligations
company, secret, internet, FBI it was investigating the incident FBI was investigating the incident
goal, team, realm, NHL, victory something it has not experienced since NHL has experienced
Onvia, line, Nasdaq, rating said Tuesday it will cut jobs Onvia will cut jobs
coalition, government, Italy but it has had more direct exposure Italy has had direct exposure
Pinochet, arrest, Chile, court while it studied a judge ’s explanation court studied the explanation

Table 1: N-gram generation examples.

features are computed at the level of cluster pairs as
described in Equations 3 and 4. Their computation
relies on the mention level rank (Equation 2) and se-
mantic compatibility (Equation 6) respectively.

6 Web-based Language Models

We used the Microsoft Web N-Gram Corpus2 to
compute the pronoun context probability P (pcj(h))
and the candidate head probability P (h). This
corpus provides smoothed back-off language mod-
els that are computed dynamically from N-gram
statistics using the CALM algorithm (Wang and Li,
2009). The N-grams are collected from the tok-
enized versions of the billions of web pages indexed
by the Bing search engine. Separate models have
been created for the document body, the document
title and the anchor text. In our experiments, we
used the April 2010 version of the document body
language models. The number of words in the pro-
noun context and the antecedent head determine the
order of the language models used for estimating the
conditional probabilities. For example, to estimate
P (administration sent troops | administration), we
used a trigram model for the context probability
P (administration sent troops) and a unigram model
for the head probability P (administration). Since
the maximum order of the N-grams available in the
Microsoft corpus is 5, we designed the context and
head extraction rules to return N-grams with size
at most 5. Table 1 shows a number of examples
of N-grams generated from the original contexts, in
which the pronoun was replaced with the correct an-
tecedent. To get a sense of the utility of each con-
text in matching the right antecedent, the table also

2http://web-ngram.research.microsoft.com

shows a sample of candidate antecedents.
For possessive contexts, the N-gram extraction

rules use the head of the NP context and its clos-
est premodifier whenever available. Using the pre-
modifier was meant to increase the discriminative
power of the context. For the subject-verb-object
N-grams, we used the verb at the same tense as in
the original context, which made it necessary to also
include the auxiliary verbs, as shown in lines 4–7 in
the table. Furthermore, in order to keep the gener-
ated N-grams within the maximum size of 5, we did
not include modifiers for the subject or object nouns,
as illustrated in the last line of the table. Some of
the examples in the table also illustrate the limits of
the context-based semantic compatibility feature. In
the second example, all three company names are
equally good matches for the possessive context. In
these situations, we expect the discourse salience
feature to provide the additional information neces-
sary for extracting the correct antecedent. This com-
bination of discourse salience with semantic com-
patibility features is done in the adaptive clustering
algorithm introduced in Section 2.

7 Experimental Results

We compare our adaptive clustering (AC) approach
with the state of the art deterministic sieves (DT)
system of Lee et al. (2011) on the newswire portion
of the ACE-2004 dataset. The newswire section of
the corpus contains 128 documents annotated with
gold mentions and coreference information, where
coreference is marked only between mentions that
belong to one of seven semantic classes: person, or-
ganization, location, geo-political entity, facility, ve-
hicle, and weapon. This set of documents has been
used before to evaluate coreference resolution sys-
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System Mentions P R F1

DT Gold, all 88.1 73.3 80.0
AC Gold, all 88.7 73.5 80.4
DT Gold, neutral 82.5 51.5 63.4
AC Gold, neutral 83.0 52.1 64.0
DT Auto, neutral 84.4 34.9 49.3
AC Auto, neutral 86.1 40.0 54.6

Table 2: B3 comparative results on ACE 2004.

tems in (Poon and Domingos, 2008; Haghighi and
Klein, 2009; Raghunathan et al., 2010), with the best
results so far obtained by the deterministic sieve sys-
tem of Lee at al. (2011). There are 11,398 annotated
gold mentions, out of which 135 are possessive neu-
tral pronouns its and 88 are neutral pronouns it in
a subject-verb-object triple. Given the very small
number of neutral pronouns, in order to obtain re-
liable estimates for the model parameters we tested
the adaptive clustering algorithm in a 16 fold cross-
validation scenario. Thus, the set of 128 documents
was split into 16 folds, where each fold contains 120
documents for training and 8 documents for testing.
The final results were pooled together from the 16
disjoint test sets. During training, the AC’s update
procedure was run for 10 epochs. Since the AC al-
gorithm does not need to tune any hyper parameters,
there was no need for development data.

Table 2 shows the results obtained by the two sys-
tems on the newswire corpus under three evaluation
scenarios. We use the B3 version of the precision
(P), recall (R), and F1 measure, computed either on
all mention pairs (all) or only on links that contain at
least one neutral pronoun (neutral) marked as a men-
tion in ACE. Furthermore, we report results on gold
mentions (Gold) as well as on mentions extracted
automatically (Auto). Since the number of neutral
pronouns marked as gold mentions is small com-
pared to the total number of mentions, the impact
on the overall performance shown in the first two
rows is small. However, when looking at corefer-
ence links that contain at least one neutral pronoun,
the improvement becomes substantial. AC increases
F1 with 5.3% when the mentions are extracted auto-
matically during testing, a setting that reflects a more
realistic use of the system. We have also evaluated
the AC approach in the Gold setting using only the

original DT sieves as features, obtaining an F1 of
80.3% for all mentions and 63.4% – same as DT –
for neutral pronouns.

By matching the performance of the DT system in
the first two rows of the table, the AC system proves
that it can successfully learn the relative importance
of the deterministic sieves, which in (Raghunathan
et al., 2010) and (Lee et al., 2011) have been manu-
ally ordered using a separate development dataset.
Furthermore, in the DT system the sieves are ap-
plied on mentions in their textual order, whereas the
adaptive clustering algorithm AC does not assume
a predefined ordering among coreference resolution
decisions. Thus, the algorithm has the capability to
make the first clustering decisions in any section of
the document in which the coreference decisions are
potentially easier to make. We have run experiments
in which the AC system was augmented with a fea-
ture that computed the normalized distance between
a cluster and the beginning of the document, but this
did not lead to an improvement in the results, lend-
ing further credence to the hypothesis that a strictly
left to right ordering of the coreference decisions is
not necessary, at least with the current features.

The same behavior, albeit with smaller increases
in performance, was observed when the DT and AC
approaches were compared on the newswire section
of the development dataset used in the CoNLL 2011
shared task (Pradhan et al., 2011). For these exper-
iments, the AC system was trained on all 128 docu-
ments from the newswire portion of ACE 2004. On
gold mentions, the DT and AC systems obtained a
very similar performance. When evaluated only on
links that contain at least one neutral pronoun, in a
setting where the mentions were automatically de-
tected, the AC approach improved the F1 measure
over the DT system from 58.6% to 59.1%. One rea-
son for the smaller increase in performance in the
CoNLL experiments could be given by the different
annotation schemes used in the two datasets. Com-
pared to ACE, the CoNLL dataset does not include
coreference links for appositives, predicate nomi-
nals or relative pronouns. The different annotation
schemes may have led to mismatches in the training
and test data for the AC system, which was trained
on ACE and tested on CoNLL. While we tried to
control for these conditions during the evaluation
of the AC system, it is conceivable that the differ-
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System Mentions P R F1

DT Auto, its 86.0 46.9 60.7
AC Auto, its 91.7 47.5 62.6

Table 3: B3 comparative results on CoNLL 2011.

ences in annotation still had some effect on the per-
formance of the AC approach. Another cause for
the smaller increase in performance was that the
pronominal contexts were less discriminative in the
CoNLL data, especially for the neutral pronoun it.
When evaluated only on links that contained at least
one possessive neutral pronoun its, the improvement
in F1 increased at 1.9%, as shown in Table 3.

8 Related Work

Closest to our clustering approach from Section 2
is the error-driven first-order probabilistic model of
Culotta et al. (2007). Among significant differences
we mention that our model is non-probabilistic, sim-
pler and easier to understand and implement. Fur-
thermore, the update step does not stop after the
first clustering error, instead the algorithm learns and
uses a clustering threshold τ to determine when to
stop during training and testing. This required the
design of a method to order cluster pairs in which the
clusters may not be consistent with the true coref-
erence chains, which led to the introduction of the
goodness function in Equation 1 as a new scoring
measure for cluster pairs. The strategy of contin-
uing the clustering during training as long as a an
adaptive threshold is met better matches the training
with the testing, and was observed to lead to better
performance. The cluster ranking model of Rahman
and Ng (2009) proceeds in a left-to-right fashion and
adds the current discourse old mention to the highest
scoring preceding cluster. Compared to it, our adap-
tive clustering approach is less constrained: it uses
only a weak, partial ordering between coreference
decisions, and does not require a singleton cluster at
every clustering step. This allows clustering to start
in any section of the document where coreference
decisions are easier to make, and thus create accu-
rate clusters earlier in the process.

The use of semantic knowledge for coreference
resolution has been studied before in a number of
works, among them (Ponzetto and Strube, 2006),

(Bengtson and Roth, 2008), (Lee et al., 2011), and
(Rahman and Ng, 2011). The focus in these studies
has been on the semantic similarity between a men-
tion and a candidate antecedent, or the parallelism
between the semantic role structures in which the
two appear. One of the earliest methods for using
predicate-argument frequencies in pronoun resolu-
tion is that of Dagan and Itai (1990). Closer to our
use of semantic compatibility features for pronouns
are the approaches of Kehler et al. (2004) and Yang
et al. (2005). The last work showed that pronoun
resolution can be improved by incorporating seman-
tic compatibility features derived from search engine
statistics in the twin-candidate model. In our ap-
proach, we use web-based language models to com-
pute semantic compatibility features for neutral pro-
nouns and show that they can improve performance
over a state-of-the-art coreference resolution system.
The use of language models instead of search engine
statistics is more practical, as they eliminate the la-
tency involved in using search engine queries. Web-
based language models can be built on readily avail-
able web N-gram corpora, such as Google’s Web 1T
5-gram Corpus (Brants and Franz, 2006).

9 Conclusion

We described a novel adaptive clustering method
for coreference resolution and showed that it can
not only learn the relative importance of the origi-
nal expert rules of Lee et al. (2011), but also ex-
tend them effectively with new semantic compati-
bility features. Experimental results show that the
new method improves the performance of the state
of the art deterministic system and obtains a sub-
stantial improvement for neutral pronouns when the
mentions are extracted automatically.
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Abstract

This paper explores the hypothesis that se-
mantic relatedness may be more reliably in-
ferred by using a multilingual space, as com-
pared to the typical monolingual representa-
tion. Through evaluations using several state-
of-the-art semantic relatedness systems, ap-
plied on standard datasets, we show that a
multilingual approach is better suited for this
task, and leads to improvements of up to 47%
with respect to the monolingual baseline.

1 Introduction

Semantic relatedness is the task of quantifying the
strength of the semantic connection between tex-
tual units, be they words, sentences, or documents.
For instance, one may want to determine how se-
mantically related are two words such ascar and
automobile, or two pieces of text such asI love an-
imals and I own a pet. It is one of the main tasks
explored in the field of natural language processing,
as it lies at the core of a large number of applica-
tions such as information retrieval (Ponte and Croft,
1998), query reformulation (Metzler et al., 2007;
Yih and Meek, 2007; Sahami and Heilman, 2006;
Broder et al., 2008), image retrieval (Leong and Mi-
halcea, 2009; Goodrum, 2000), plagiarism detection
(Hoad and Zobel, 2003; Shivakumar and Garcia-
Molina, 1995; Broder et al., 1997; Heintze, 1996;
Brin et al., 1995; Manber, 1994), information flow
(Metzler et al., 2005), sponsored search (Broder et
al., 2008), short answer grading (Mohler and Mihal-
cea, 2009a; Pulman and Sukkarieh, 2005; Mitchell
et al., 2002), and textual entailment (Dagan et al.,
2005).

The typical approach to semantic relatedness is to
either measure the distance between the constituent

words by using a knowledge base such as Word-
Net or Roget (e.g., (Leacock and Chodorow, 1998;
Lesk, 1986; Jarmasz and Szpakowicz, 2003; Peder-
sen et al., 2004)), or to calculate the similarity be-
tween the word distributions in very large corpora
(e.g., (Landauer et al., 1991; Lin, 1998; Gabrilovich
and Markovitch, 2007)). With almost no exception,
these methods have been applied on one language at
a time – English, most of the time, although mea-
sures of relatedness have also been explored on lan-
guages such as German (Zesch et al., 2007), Chinese
(Li et al., 2005), Japanese (Kazama et al., 2010), and
others.

In this paper, we take a step further and ex-
plore a joint multilingual semantic relatedness met-
ric, which aggregates semantic relatedness scores
measured on several different languages. Specifi-
cally, in our method, in order to measure the re-
latedness of two textual units, we first determine
their relatedness in multiple languages, and conse-
quently infer a final relatedness score by averaging
the scores calculated in the individual languages.

Our hypothesis is that a multilingual representa-
tion can enrich the relatedness space and address
relevant issues such aspolysemy(i.e., find that two
occurrences of the same word in language L1 rep-
resent two different meanings because of different
translations in language L2) andsynonymy(i.e., find
that two words in language L1 are related because
they have the same translation in language L2). We
show that by measuring relatedness in a multilingual
space, we are able to improve over a traditional re-
latedness measure that relies exclusively on a mono-
lingual representation.

Through experiments using several state-of-the-
art measures of relatedness, applied on a multilin-
gual space including English, Arabic, Spanish, and
Romanian, we aim to answer the following research
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questions: (1) Does the task of semantic relatedness
benefit from a multilingual representation, as com-
pared to a monolingual one? (2) Does the translation
quality affect the results? and (3) Do the findings
hold for different relatedness datasets?

The paper is organized as follows. First, we
overview related work on word and text related-
ness, and on multilingual natural language process-
ing. We then briefly describe three corpus-based
measures of relatedness, and present several word
and text datasets that have been used in the past to
evaluate relatedness. We then present evaluations
and experiments addressing each of the three re-
search questions, and discuss our findings.

2 Related Work

Semantic relatedness.The approaches for seman-
tic relatedness that have been considered to date
can be grouped into knowledge-based and corpus-
based. Knowledge-based methods derive a measure
of relatedness by utilizing lexical resources and on-
tologies such as WordNet (Miller, 1995) to mea-
sure definitional overlap (Lesk, 1986), term dis-
tance within a graphical taxonomy (Leacock and
Chodorow, 1998), term depth in the taxonomy as a
measure of specificity (Wu and Palmer, 1994), and
others. The application of such measures to a lan-
guage other than English requires the availability of
the lexical resource in that language; furthermore,
even though taxonomies such as WordNet (Miller,
1995) are available in a number of languages1, their
coverage is still limited, and often times they are not
publicly available. For these reasons, in multilingual
settings, these measures often become untractable.

On the other side, corpus-based measures
such as Latent Semantic Analysis (LSA) (Lan-
dauer et al., 1991), Explicit Semantic Analy-
sis (ESA) (Gabrilovich and Markovitch, 2007),
Salient Semantic Analysis (SSA) (Hassan and Mi-
halcea, 2011), Pointwise Mutual Information (PMI)
(Church and Hanks, 1990), PMI-IR (Turney, 2001),
Second Order PMI (Islam and Inkpen, 2006), Hy-
perspace Analogues to Language (HAL) (Burgess
et al., 1998) and distributional similarity (Lin, 1998)
employ probabilistic approaches to decode the se-
mantics of words. They consist of unsupervised
methods that utilize the contextual information and
patterns observed in raw text to build semantic pro-
files of words, and thus they can be easily transferred

1http://www.illc.uva.nl/EuroWordNet/

to a new language provided that a large corpus in that
language is available.

Multilingual natural language processing. Also
relevant is the work done on multilingual text pro-
cessing, which attempts to improve the performance
of different natural language processing tasks by
integrating information drawn from multiple lan-
guages. For instance, (Cohn and Lapata, 2007) ex-
plore the use of triangulation for machine transla-
tion, where multiple translation models are learned
using multilingual parallel corpora. The model was
found especially beneficial for languages where the
training dataset was small, thus suggesting that this
method may be particularly useful for languages
with scarce resources. (Davidov and Rappoport,
2009) experiment with the use of multiple languages
to enhance an existing lexicon. In their experiments,
using three source languages and 45 intermediate
languages, they find that the multilingual resources
can lead to significant improvements in concept ex-
pansion. (Banea et al., 2010) explore the use of
parallel multilingual corpora to improve subjectivity
classification in a target language, finding that the
use of multilingual representations for subjectivity
analysis improves over the monolingual classifiers.
Similarly, (Banea and Mihalcea, 2011) investigate
the use of multilingual contexts for word sense dis-
ambiguation. By leveraging on the translations of
the annotated contexts in multiple languages, a mul-
tilingual thematic space emerges that better disam-
biguates target words.

Finally, there are two lines of work that explore
semantic distances in a multilingual space. First,
(Besançon and Rajman, 2002) examine the notion
that the distances between document vectors within
a language correlate with the distances between their
corresponding vectors in a parallel corpus. These
findings provide clues about the possibility of reli-
able semantic knowledge transfer across language
boundaries. Second, (Hassan and Mihalcea, 2009)
propose a framework to compute semantic relat-
edness between two words in different languages,
by considering Wikipedia articles in multiple lan-
guages. The method differs from the one proposed
here, as we aggregate relatedness over monolingual
spaces rather than measuring cross-lingual related-
ness, and we do not specifically use the inter-wiki
links between Wikipedia pages.
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3 Measures of Text Relatedness

In this work, we focus on corpus-based metrics
because of their unsupervised nature, their flexi-
bility, scalability, and portability to different lan-
guages. Specifically, we utilize three popular mod-
els, LSA (Landauer et al., 1991), ESA (Gabrilovich
and Markovitch, 2007), and SSA (Hassan and Mi-
halcea, 2011). In these models, the semantic profile
of a word is expressed in terms of the explicit (ESA),
implicit (LSA), or salient (SSA) concepts. All three
models are trained on the Wikipedia 2010 corpora
corresponding to the four languages of interest (En-
glish, Arabic, Spanish, Romanian).

Explicit Semantic Analysis. ESA (Gabrilovich
and Markovitch, 2007) uses encyclopedic knowl-
edge in an information retrieval framework to gen-
erate a semantic interpretation of words. Since en-
cyclopedic knowledge is typically organized into
concepts (or topics), each concept is described us-
ing definitions and examples.ESA relies on the
distribution of words inside the encyclopedic de-
scriptions. It builds semantic representations for
a given word using a word-document association,
where each document represents a Wikipedia article.
In this vector representation, the semantic interpre-
tation of a text can be modeled as an aggregation of
the semantic vectors of its individual words.

Latent Semantic Analysis. In LSA (Landauer et
al., 1991), term-context associations are captured by
means of a dimensionality reduction operated by a
singular value decomposition (SVD) on the term-by-
context matrixT, where the matrix is induced from
a large corpus. This reduction entails the abstraction
of meaning by collapsing similar contexts and dis-
counting noisy and irrelevant ones, hence transform-
ing the real world term-context space into a word-
latent-concept space which achieves a much deeper
and concrete semantic representation of words.

Salient Semantic Analysis. SSA (Hassan and
Mihalcea, 2011) incorporates a similar semantic
abstraction and interpretation of words, by using
salient concepts gathered from encyclopedic knowl-
edge, where a concept is defined as an unambigu-
ous word or phrase with a concrete meaning, which
can afford an encyclopedic definition. The links
available between Wikipedia articles, obtained ei-
ther through manual annotation by the Wikipedia
users or using an automatic annotation process, are
regarded as clues or salient features within the text
that help define and disambiguate its context. This

method seeks to determine the semantic relatedness
of words by measuring the distance between their
concept-based profiles, where a profile consists of
co-occurring salient concepts found within a given
window size in a very large corpus.

4 Datasets

To evaluate the representation strength of a multilin-
gual semantic relatedness model we employ several
standard word-to-word and text-to-text datasets. For
each of these datasets, we make use of their repre-
sentation in the four languages of interest.

4.1 Word Relatedness

We construct our multilingual word-to-word
datasets building upon three word relatedness
datasets that have been widely used in the past.
Rubenstein and Goodenough(Rubenstein and
Goodenough, 1965) (RG65) consists of 65 word
pairs ranging from synonymy pairs (e.g.,car -
automobile) to completely unrelated words (e.g.,
noon - string). The participating terms in all the
pairs are non-technical nouns annotated by 51 hu-
man judges on a scale from 0 (unrelated) to 4 (syn-
onyms).
Miller-Charles (Miller and Charles, 1991) (MC30)
is a subset ofRG65, consisting of 30 word pairs an-
notated for relatedness by 38 human subjects, using
the same 0 to 4 scale.
WordSimilarity-353 (Finkelstein et al., 2001)
(WS353), also known as Finkelstein-353, consists
of 353 word pairs annotated by 13 human experts,
on a scale from 0 (unrelated) to 10 (synonyms).
While containing theMC30 set, it poses an addi-
tional degree of difficulty by also including phrases
(e.g.,“Wednesday news”), proper names and tech-
nical terms.

To enable a multilingual representation, we use
the multilingual datasets introduced by (Hassan and
Mihalcea, 2009), which are based uponMC30 and
WS353. These multilingual datasets are built us-
ing manual translations, following the same guide-
lines adopted for the generation and the annotation
of their original English counterparts. These manu-
ally translated collections, available in Arabic, Span-
ish, and Romanian, allow us to infer an upper bound
for the multilingual semantic relatedness model.

Moreover, in order to provide a more realistic
scenario, where manual translations are not avail-
able, we also create multilingual datasets by auto-
matically translating the three English datasets into
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Arabic, Spanish and Romanian.2 Similar to how the
manually translated datasets were created by provid-
ing the bilingual speakers with one word pair at a
time, for the automatic translation each word pair is
processed as a single query to the translation engine.
Thus, the co-occurrence metrics derived from large
corpora are able to play a role in providing a dis-
ambiguated translation instead of defaulting to the
most frequently used sense if the words were to be
processed individually. This allows for the embed-
ded word pair relatedness to be transferred to other
languages as well.

4.2 Text Relatedness

We use three standard text-to-text datasets.
Lee50 (Lee and Welsh, 2005) is a compilation of
50 documents collected from the Australian Broad-
casting Corporation’s news mail service. Each doc-
ument is scored by ten annotators on a scale from 1
(unrelated) to 5 (alike) based on its semantic related-
ness to all the other documents. The users’ annota-
tion is then averaged per document pair, resulting in
2,500 document pairs annotated with their similarity
scores. Since it was found that there was no signif-
icant difference between annotations given a differ-
ent order of the documents in a pair (Lee and Welsh,
2005), the evaluations are carried out on only 1225
document pairs after ignoring duplicates.
Li30 (Li et al., 2006) is a sentence pair similar-
ity dataset obtained by replacing each of theRG65
word-pairs with their respective definitions extracted
from the Collins Cobuild dictionary (Sinclair, 2001).
Each sentence pair was scored between 0 (unrelated)
to 4 (alike) by 32 native English speakers, and their
annotations were averaged. Due to the skew in the
scores toward low similarity sentence-pairs, they se-
lected a subset of 30 sentences from the 65 sentence
pairs to maintain an even relatedness distribution.
AG400 (Mohler and Mihalcea, 2009b) is a domain
specific dataset from the field of computer science,
used to evaluate the application of semantic relat-
edness measures to real world applications such as
short answer grading. We employ the version pro-
posed by (Hassan and Mihalcea, 2011) which con-
sists of 400 student answers along with the corre-
sponding questions and correct instructor answers.
Each student answer was graded by two judges on
a scale from 0 (completely wrong) to 5 (perfect an-
swer). The correlation between human judges was

2For all the automatic translations we used the Google
Translate service.

measured at0.64.
First, we construct a multilingual, manually trans-

lated text-to-text relatedness dataset based on the
standardLi30 corpus.3 Native speakers of Spanish,
Romanian and Arabic, who were also highly profi-
cient in English, were asked to translate the entries
drawn from the English collection. They were pre-
sented with one sentence at a time, and asked to pro-
vide the appropriate translation into their native lan-
guage. Since we had five Spanish, two Arabic, and
two Romanian translators, an arbitrator (native to the
language) was charged with merging the candidate
translations by proposing one sentence per language.

Furthermore, to test the abstraction of semantics
from the choice of underlying language, we asked
three different Spanish human experts to re-score the
Spanish text-pair translations on the same scale used
in the construction of the English collection. The
correlation between the relatedness scores assigned
during this experiment and the scores assigned to the
original English experiment was0.77 − 0.86, indi-
cating that the translations provided by the bilingual
judges were correct and preserved the semantics of
the original English text-pairs. As was the case
for the manually constructed word-to-word datasets
previously described, the metrics obtained on the
manually translatedLi30 dataset will also act as an
upper bound for the text-to-text evaluations.

Finally, for a more sensible scenario where the
text fragments do not require manual translations
in order to compute their semantic relatedness, we
create a multilingual version of the three English
datasets by employing statistical machine translation
to translate the texts into the other three languages.
Each text pair was processed through two separate
queries to the translation engine, since the two text
fragments contain sufficient information to prompt
an in-context translation on their own.

5 Framework

We generateSSA, LSA andESA vectorial models
for English, Romanian, Arabic, and Spanish, using
the same Wikipedia 2010 versions for all the sys-
tems (e.g., theSSA, LSA and ESA relatedness
measures for Spanish are all trained on the same
Spanish Wikipedia version).

We construct a multilingual model by considering
a word- or text-pair from a source language along

3Dataset is available for download atlit.csci.unt.
edu/index.php?P=research/downloads
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with its translations in the other languages. To eval-
uate this multilingual model in a way that reduces
the bias that may arise from choosing one language
over the other, we do the following: we start from a
source language and generate all the possible combi-
nations of this language with the available language
set{ar, en, es, ro}. Within each combination, we
average the monolingual model scores for the lan-
guages in this combination with respect to the target
word- or text-pair into a final relatedness score.

For example, let us consider Spanish as the source
language, then the possible combinations of the lan-
guages that include the source language will be
{{es}, {es, ar}, {es, ro}, {es, en}, {es, ar, en},
{es, ar, ro}, {es, en, ro}, and {es, ar, en, ro}}.
For each possible combination, we aggregate the
scores of the languages in that combination. In this
setting, a combination of size (cardinality) one will
always be the source language and will serve as the
baseline. For every combination (e.g.{es, ar}),
we average the individual monolingual relatedness
scores for a given word- or text-pair in this set.

Finally, to calculate the overall correlation of
these generated multilingual models (one system per
combination size) with the human scores, we av-
erage the correlation scores achieved over all the
datasets in a given combination (e.g.,{es, ar}) with
all correlation scores achieved under other combina-
tions of the same size (e.g.,{es, ro}, {es, en}). This
in effect allows us to observe the cumulative perfor-
mance irrespective of language choice, as we extend
the multilingual model to include more languages.

Formally, letN be the number of languages,Cn

be the set of all language combinations of sizen, and
ci be one of the possible combinations of sizen,

Cn = {ci | |ci| = n, 0 < i <

(

N

n

)

} (1)

then the relatedness of a word- or text-pairp from
the datasetP under this combination can be repre-
sented as:

Simci(p) =
1

|ci|

∑

l∈ci

Siml(p) (2)

whereSiml(p) is the relatedness score of the word-
or text-pairp in the monolingual model of language
l. To evaluate the performance of the multilingual
model, letDi be the generated relatedness distribu-
tion for the datasetP using the combinationci:

Di = {〈p, Simci(p)〉 | p ∈ P}. (3)

Then, the correlation between the gold standard
distributionG and the generated scores can be cal-
culated as follows:

CorrelCn
(D,G) =

1

|Cn|

∑

ci∈Cn

Correlci(Di, G),

(4)
whereCorrel can stand for Pearson (r), Spearman
(ρ), or their harmonic mean (µ), as also reported in
(Hassan and Mihalcea, 2011).

6 Evaluations

In this section we revisit the questions formulated in
the introduction, and based on different experiment
setups following the framework introduced in Sec-
tion 5, we provide an answer to each one of them.

Does the task of semantic relatedness benefit
from a multilingual representation? We evalu-
ate the three semantic relatedness models, namely
LSA, ESA andSSA on our manually constructed
multilingual word relatedness (MC30, WS353)
and text relatedness datasets (LI30), as described in
Section 4.

Figure 1 plots the correlation scores achieved
across all the languages against the gold stan-
dard and then averaged across all the multilingual
datasets. The figure shows a clear and steady im-
provement (25% - 28% with respect to the mono-
lingual baseline) achieved when more languages are
incorporated into the relatedness model. It is worth
noting that both the Pearson and Spearman correla-
tions exhibit the same improvement pattern, which
confirms our hypothesis that adding more languages
has a positive impact on the relatedness scores. The
fact that this trend is visible across all the systems
supports the idea that a multilingual representation
constitutes a better model for determining semantic
relatedness. Furthermore, we notice thatSSA is the
best performing system under these settings, with a
correlation improvement of approximately 15%.

To further analyze the role of the multilingual
model and to explore whether some languages ben-
efit from using this abstraction more than others,
we plot the correlation scores achieved by the indi-
vidual languages averaged over all the systems and
the datasets in Figure 2. We notice a sharp rise in
performance associated with the addition of more
languages to the Arabic (42%) and the Romanian
(47%) models, and a slower rise for Spanish (23%).
The performance of English is also affected, but on
a smaller scale (4%) when compared to the other
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Figure 1: Manual translation - average correlation (µ,
r, ρ) obtained from incorporating scores from models in
other languages

languages. Not surprisingly, this correlates with the
size of each corpus, where Arabic and Romanian are
the smallest, while English is the largest.

The results support the notion that resource poor
languages can benefit from languages with richer
and larger resources, such as English or Spanish.
Furthermore, incorporating additional languages to
English also leads to small improvements, which in-
dicates that the benefit, while disproportionate, is
mutual.

Does the quality of translations affect the results?
As a natural next step, we investigate the role played
by the manual translations in the performance of the
multilingual model. Since the previous evaluations
require the availability of the word- or text-pairs
in multiple languages, we attempt to see if we can
eliminate this restriction by automating the trans-
lation process using statistical machine translation
(MT). Therefore, for a multilingual model employ-
ing automated settings, the manual models proposed
previously constitute an upper bound.

We use the Google MT engine4 to translate our
multilingual datasets into the target languages (en,
es, ar, andro). We then repeat all the evaluations
using the newly constructed datasets.

Figure 3 shows the correlation scores achieved
across all the languages and averaged across all the
multilingual datasets constructed using automatic
translation. We again see a clear and steady im-

4This API is now offered as a paid service; Microsoft or
Babelfish automatic translation services are publicly available.
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Figure 2: Manual translation - average correlation (µ,
r, ρ) obtained by supplementing a source language with
scores from other languages

provement (12% - 35% with respect to the mono-
lingual baseline) similar to the observed pattern in
the corresponding manual evaluations (Figure 1).
While the overall achieved performance forSSA
has dropped (fromµ = 0.793 to µ = 0.71) when
compared to the manual settings, we are still able
to improve over the baseline (µ = 0.635). LSA
seems to experience the highest relative improve-
ment (35%), which might be due to its ability to
handle noise in these automatic settings. Over-
all Pearson and Spearman correlations exhibit the
same improvement pattern, which supports the no-
tion that even with the possibility of introducing
noise through miss-translations, the models overall
benefit from the additional clues provided by the
multilingual representation.

To explore the effect of automatic translation on
the individual languages, we plot the correlation
scores achieved vis-à-vis a reference language, and
average over all the systems and the automatically
translated datasets in Figure 4, in a similar fashion
to Figure 2.

We notice the similar rise in performance asso-
ciated with the addition of more languages to the
Arabic (20%) and the Romanian (37%) models, and
a slower rise for Spanish (16%) and English (8%).
The effect of the automatic translation quality is ev-
ident for the Arabic language where the automatic
translation seems to slow down the improvement
when compared to the manual translations (Figure
2). A similar behavior is also observed in Spanish
and Romanian but on a lower scale.
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Figure 3: Automatic translation - average correlation (µ,
r, ρ) obtained from incorporating scores from models in
other languages

A very interesting consideration is that English
experiences a stronger improvement when using au-
tomatic translations (8%) compared to manual trans-
lations (4%). This can be attributed to the trans-
lation engine quality in transferring English text to
other languages and to the fact that the statistical
translation (when accurate) can lead to a transla-
tion that makes use of more frequently used words,
which contribute to more robust relatedness mea-
sures. When presented with a word pair, human
judges may provide a translation influenced by the
form/root of the word in the source language, which
may not be as commonly used as the output of a
MT system. For example, when presented with the
pair “coast - shore,” a Romanian translator may be
tempted to provide “coastă” as a translation candi-
date for the first word in the pair, as it resembles the
English word in form. However, the Romanian word
is highly ambiguous, and in an authoritative Roma-
nian dictionary5 its primary sense is that of rib, fol-
lowed by side, slope, and ultimately coast. Thus, a
MT system using a statistical inference may provide
a stronger translation such as “ţărm” that is far less
ambiguous, and whose primary meaning is the one
intended by the original pair.

Overall, the trend is positive and follows the
pattern previously observed on the manually con-
structed datasets. This suggests that an automatic
translation, even if more noisy, is beneficial and pro-
vides a way to reinforce semantic relatedness in a

5http://dexonline.ro/definitie/coasta
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Figure 4: Automatic translation - average correlation (µ,
r, ρ) obtained by supplementing a source language with
scores from other languages

given language with information coming from mul-
tiple languages with no manual effort.

Do our findings hold for different relatedness
datasets?At last, encouraged by the small perfor-
mance difference between the use of manual ver-
sus automatic translations, we seek to explore how
this multilingual model behaves under the different
paradigms dictated by word relatedness versus text
relatedness scenarios. Since our previous experi-
ments were constrained to collections for which we
also had a manual translation, we perform a larger
scale evaluation by including automatically trans-
lated word relatedness (RG65) and text relatedness
(LEE50 andAG400) datasets into all the languages
in our language set, and repeat all the word-to-word
and text-to-text evaluations.

Table 1 shows the correlation scores achieved us-
ing automatic translations on the word relatedness
datasets. Most models on most datasets benefit from
the multilingual representation (as shown by the fig-
ures in bold). Specifically, theSSA model has an
improvement inµ of 26% for WS353 and 15% for
MC30. This improvement is most evident in the
case of the largest datasetWS353, where all the
multilingual models exhibit a consistent and strong
performance.

Table 2 reports the results obtained for the text
relatedness datasets using automatic translation.
While theESA performance suffers in the multi-
lingual model, it is overshadowed by the improve-
ment experienced byLSA andSSA. The multilin-
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r ρ µ

Models MC30 RG65 WS353 MC30 RG65 WS353 MC30 RG65 WS353
ESAen 0.645 0.644 0.487 0.742 0.768 0.525 0.690 0.701 0.506
ESAml 0.723 0.741 0.515 0.766 0.759 0.519 0.744 0.75 0.517
LSAen 0.509 0.450 0.435 0.525 0.499 0.436 0.517 0.473 0.436
LSAml 0.538 0.566 0.487 0.484 0.569 0.517 0.510 0.567 0.502
SSAen 0.771 0.824 0.543 0.688 0.772 0.553 0.727 0.797 0.548
SSAml 0.873 0.807 0.674 0.803 0.795 0.713 0.836 0.801 0.693

Table 1: Automatic translation -r, ρ, µ correlations on the word relatedness datasets using multilingual models.

r ρ µ

Models LI30 LEE50 AG400 LI30 LEE50 AG400 LI30 LEE50 AG400
ESAen 0.792 0.756 0.434 0.797 0.48 0.392 0.795 0.587 0.412
ESAml 0.776 0.648 0.382 0.742 0.339 0.358 0.759 0.445 0.369
LSAen 0.829 0.776 0.400 0.824 0.523 0.359 0.826 0.625 0.379
LSAml 0.856 0.765 0.46 0.855 0.502 0.404 0.856 0.606 0.43
SSAen 0.840 0.744 0.520 0.843 0.371 0.501 0.841 0.495 0.510
SSAml 0.829 0.743 0.539 0.87 0.41 0.521 0.849 0.528 0.53

Table 2: Automatic translation -r, ρ, µ correlations on the text relatedness datasets using multilingual models.

gual model reports some of the best scores in the
literature, such as a correlations ofr = 0.856 and
ρ = 0.87 for LI30 achieved byLSA andSSA, re-
spectively. Not surprisingly,SSA is still a top con-
tender, achieving the highest scores forAG400 and
LI30. In AG400, SSA reports aµ of 0.53 which
represents a4% improvement over the EnglishSSA
model (µ = 0.51) and a16% improvement over the
best knowledge-based systemJ&C (µ = 0.457).

It is important to note that the evaluation in Ta-
bles 1 and 2 are restricted to data translated from En-
glish into a target language. English, as a resource-
rich language, has an extensive and robust monolin-
gual model, yet it can still be enhanced with addi-
tional clues originating from other languages. Ac-
cordingly, we only expected small improvements in
these two experiments, unlike the cases where we
start from resource-poor languages such as Roma-
nian or Arabic (see Figures 2 and 4).

7 Conclusion

In this paper, we showed how a semantic relatedness
measure computed in a multilingual space is able
to acquire and leverage additional information from
the multilingual representation, and thus be strength-
ened as more languages are taken into considera-
tion. Our experiments seem to suggest that combi-
nations of multiple languages supply additional in-
formation to derive a semantic relatedness between
texts in an automatic framework. Since establishing

semantic relatedness requires us to employ cogni-
tive processes that are in large part independent of
the language that we speak, it comes at no surprise
that using relatedness clues originating from more
than one language allows for a better identification
of relationships between texts. While efficiency may
be a concern, it is worth noting that the method is
highly parallelizable, as the individual relatedness
measures obtained before the aggregation step can
be calculated in parallel.

Notably, all the relatedness measures that we ex-
perimented with exhibited the same improvement
trend. While this framework allows languages with
scarce electronic resources, such as Romanian and
Arabic, to obtain very large improvements in seman-
tic relatedness as compared to the monolingual mea-
sures, improvements are also noticed for languages
with richer resources such as English.
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Abstract

Wikipedia is a Web based, freely available
multilingual encyclopedia, constructed in a
collaborative effort by thousands of contribu-
tors. Wikipedia articles on the same topic in
different languages are connected via interlin-
gual (or translational) links. These links serve
as an excellent resource for obtaining lexical
translations, or building multilingual dictio-
naries and semantic networks. As these links
are manually built, many links are missing
or simply wrong. This paper describes a su-
pervised learning method for generating new
links and detecting existing incorrect links.
Since there is no dataset available to evaluate
the resulting interlingual links, we create our
own gold standard by sampling translational
links from four language pairs using distance
heuristics. We manually annotate the sampled
translation links and used them to evaluate the
output of our method for automatic link detec-
tion and correction.

1 Introduction

In recent years, Wikipedia has been used as a re-
source of world knowledge in many natural lan-
guage processing applications. A diverse set of
tasks such as text categorization, information ex-
traction, information retrieval, question answering,
word sense disambiguation, semantic relatedness,
and named entity recognition have been shown to
benefit from the semi-structured text of Wikipedia.
Most approaches that use the world knowledge en-
coded in Wikipedia are statistical in nature and
therefore their performance depends significantly

on the size of Wikipedia. Currently, the English
Wikipedia alone has four million articles. However,
the combined Wikipedias for all other languages
greatly exceed the English Wikipedia in size, yield-
ing a combined total of more than 10 million arti-
cles in more than 280 languages.1 The rich hyper-
link structure of these Wikipedia corpora in different
languages can be very useful in identifying various
relationships between concepts.

Wikipedia articles on the same topic in different
languages are often connected through interlingual
links. These links are the small navigation links
that show up in the “Languages” sidebar in most
Wikipedia articles, and they connect an article with
related articles in other languages. For instance,
the interlingual links for the Wikipedia article about
”Football” connect it to 20 articles in 20 different
languages. In the ideal case, a set of articles con-
nected directly or indirectly via such links would all
describe the same entity or concept. However, these
links are produced either by polyglot editors or by
automatic bots. Editors commonly make mistakes
by linking articles that have conceptual drift, or by
linking to a concept at a different level of granularity.
For instance, if a corresponding article in one of the
languages does not exist, a similar article or a more
general article about the concept is sometimes linked
instead. Various bots also add new interlingual links
or attempt to correct existing ones. The downside of
a bot is that an error in a translational link created
by editors in Wikipedia for one language propagates
to Wikipedias in other languages. Thus, if a bot in-
troduces a wrong link, one may have to search for

1http://en.wikipedia.org/wiki/Wikipedia:Sizeof Wikipedia
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Language Code Articles Redirects Users
English en 4,674,066 4,805,557 16,503,562
French fr 3,298,615 789,408 1,250,266
German de 3,034,238 678,288 1,398,424
Italian it 2,874,747 319,179 731,750
Polish pl 2,598,797 158,956 481,079
Spanish es 2,587,613 504,062 2,162,925
Dutch nl 2,530,250 226,201 446,458
Russian ru 2,300,769 682,402 819,812
Japanese jp 1,737,565 372,909 607,152
Chinese cn 1,199,912 333,436 1,171,148

Table 1: Number of articles, redirects, and users for the topnine Wikipedia editions plus Chinese. The total number
of articles also includes the disambiguation pages.

the underlying error in a different language version
of Wikipedia.

The contributions of the research described in this
paper are two-fold. First, we describe the construc-
tion of a dataset of interlingual links that are auto-
matically sampled from Wikipedia based on a set of
distance heuristics. This dataset is manually anno-
tated in order to enable the evaluation of methods
for translational link detection. Second, we describe
an automatic model for correcting existing links and
creating new links, with the aim of obtaining a more
stable set of interlingual links. The model’s param-
eters are estimated on the manually labeled dataset
using a supervised machine learning approach.

The remaining of this paper is organized as fol-
lows: Section 2 briefly describes Wikipedia and
the relevant terminology. Section 3 introduces our
method of identifying a candidate set of translational
links based on distance heuristics, while Section 4
introduces the methodology for building a manually
annotated dataset. Section 5 describes the machine
learning experiments for detecting or correcting in-
terlingual links. Finally, we present related work in
Section 6, and concluding remarks in Section 7.

2 Wikipedia

Wikipedia is a free online encyclopedia, represent-
ing the outcome of a continuous collaborative effort
of a large number of volunteer contributors. Virtu-
ally any Internet user can create or edit a Wikipedia
webpage, and this “freedom of contribution” has a
positive impact on both the quantity (fast-growing

number of articles) and the quality (potential errors
are quickly corrected within the collaborative envi-
ronment) of this online resource.

The basic entry in Wikipedia is anarticle (or
page), which defines and describes an entity or an
event, and consists of a hypertext document with hy-
perlinks to other pages within or outside Wikipedia.
The role of the hyperlinks is to guide the reader to
pages that provide additional information about the
entities or events mentioned in an article. Articles
are organized intocategories, which in turn are or-
ganized into category hierarchies. For instance, the
article automobileis included in the categoryvehi-
cle, which in turn has a parent category namedma-
chine, and so forth.

Each article in Wikipedia is uniquely referenced
by an identifier, consisting of one or more words
separated by spaces or underscores and occasionally
a parenthetical explanation. For example, the article
for bar with the meaning of“counter for drinks” has
the unique identifierbar (counter).

Wikipedia editions are available for more than
280 languages, with a number of entries vary-
ing from a few pages to three millions articles or
more per language. Table 1 shows the nine largest
Wikipedias (as of March 2012) and the Chinese
Wikipedia, along with the number of articles and ap-
proximate number of contributors.2

The ten languages mentioned above are also the
languages used in our experiments. Note that Chi-

2http://meta.wikimedia.org/wiki/Listof Wikipedias
#GrandTotal
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Relation Exists Via
SYMMETRY

en=Ball de=Ball Yes -
en=Hentriacontane it=Entriacontano No -

TRANSITIVITY

en=Deletion (phonology) fr=Amüıssement Yes nl=Deletie (taalkunde)
en=Electroplating fr=Galvanoplastie No -

REDIRECTIONS

en=Gun Dog de=Schiesshund Yes de=Jagdhund
en=Ball de=Ball No -

Table 2: Symmetry, transitivity, and redirections in Wikipedia

nese is the twelfth largest Wikipedia, but we decided
to include it at the cost of not covering the tenth
largest Wikipedia (Portuguese), which has close
similarities with other languages already covered
(e.g., French, Italian, Spanish).

Relevant for the work described in this paper are
the interlingual links, which explicitly connect arti-
cles in different languages. For instance, the English
article forbar (unit) is connected, among others, to
the Italian articlebar (unitá di misura)and the Pol-
ish articlebar (jednostka). On average, about half of
the articles in a Wikipedia version include interlin-
gual links to articles in other languages. The number
of interlingual links per article varies from an aver-
age of five in the English Wikipedia, to ten in the
Spanish Wikipedia, and as many as 23 in the Arabic
Wikipedia.

3 Identifying Interlingual Links in
Wikipedia

The interlingual links connecting Wikipedias in dif-
ferent languages should ideally be symmetric and
transitive. The symmetry property indicates that if
there is an interlingual linkAα → Aβ between two
articles, one in languageα and one in languageβ,
then the reverse linkAα ← Aβ should also exist
in Wikipedia. According to the transitivity property,
the presence of two linksAα → Aβ andAβ → Aγ

indicates that the linkAα → Aγ should also exist
in Wikipedia, whereα, β andγ are three different
languages. While these properties are intuitive, they
are not always satisfied due to Wikipedia’s editorial
policy that accredits editors with the responsibility
of maintaining the articles. Table 2 shows actual

Link Total number Newly added
type of links links
DL 26,836,572 -
RL 26,836,572 1,277,760
DP2/RP2 25,763,689 853,658
DP3/RP3 23,383,535 693,262
DP4/RP4 21,560,711 548,354

Table 3: Number of links identified in Wikipedia, as di-
rect, symmetric, or transitional links. The number of
newly added links, not known in the previous set of links,
is also indicated (e.g.,DP3/RP3 adds 693,262 new links
not found by direct or symmetric links, or by direct or
reverse paths of length two).

cases in Wikipedia where these properties fail due
to missing interlingual links. The table also shows
examples where the editors link an article from one
language to a redirect page in another language.

In order to generate a normalized set of inter-
lingual links between Wikipedias, we replace all the
redirect pages with the corresponding original arti-
cles, so that each concept in a language is repre-
sented by one unique article. We then identify the
following four types of simple interlingual paths be-
tween articles in different languages:

DL: Direct linksAα → Aβ between two articles.

RL: Reverse linksAα ← Aβ between two articles.

DPk: Direct, simple paths of lengthk between two
articles.

RPk: Reverse, simple paths of lengthk between
two articles.
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Relation Number of paths
DL

en=Ball de=Ball 1
en=Ball it=Palla (sport) 1
en=Ball fr=Boule (solide) 0
de=Ball fr=Ballon (sport) 0

RL

en=Ball de=Ball 1
en=Ball it=Palla(sport) 1
en=Ball fr=Boule (solide) 0
de=Ball fr=Ballon (sport) 0

DP2

en=Ball de=Ball 1
en=Ball it=Palla (sport) 2
en=Ball fr=Boule (solide) 1
de=Ball fr=Ballon (sport) 2

DP3

en=Ball de=Ball 1
en=Ball it=Palla (sport) 0
en=Ball fr=Boule (solide) 1
de=Ball fr=Ballon (sport) 1

DP4

en=Ball de=Ball 0
en=Ball it=Palla (sport) 0
en=Ball fr=Boule (solide) 1
de=Ball fr=Ballon (sport) 0

RP2

en=Ball de=Ball 1
en=Ball it=Palla (sport) 2
en=Ball fr=Boule (solide) 0
de=Ball fr=Ballon (sport) 2

RP3

en=Ball de=Ball 1
en=Ball it=Palla (sport) 0
en=Ball fr=Boule (solide) 0
de=Ball fr=Ballon (sport) 1

RP4

en=Ball de=Ball 0
en=Ball it=Palla (sport) 0
en=Ball fr=Boule (solide) 0
de=Ball fr=Ballon (sport) 0

Table 4: A subset of the direct links, reverse links, and
inferred direct and reverse paths for the graph in Figure 1

en=Ball

de=Ball

it=Palla(sport) fr=Boule(solide)

fr=Ballon(sport)

Figure 1: A small portion of the multilingual Wikipedia
graph.

Figure 1 shows a small portion of the Wikipedia
graph, connecting Wikipedias in four languages:
English, German, Italian, and French. Correspond-
ingly, Table 4 shows a subset of the direct linksDL,
reverse linksRL, direct translation pathsDPk and
reverse translation pathsRPk of lengthsk = 2, 3, 4
for the graph in the figure.

Using these distance heuristics, we are able to
extract or infer a very large number of interlingual
links. Table 3 shows the number of direct links ex-
tracted from the ten Wikipedias we currently work
with, as well as the number of paths that we add by
enforcing the symmetry and transitivity properties.

4 Manual Evaluation of the Interlingual
Links

The translation links in Wikipedia, whether added
by the Wikipedia editors (direct links), or inferred by
the heuristics described in the previous section, are
not guaranteed for quality. In fact, previous work (de
Melo and Weikum, 2010b) has shown that a large
number of the links created by the Wikipedia users
are incorrect, connecting articles that are not transla-
tions of each other, subsections of articles, or disam-
biguation pages. We have therefore decided to run
a manual annotation study in order to determine the
quality of the interlingual links. The resulting anno-
tation can serve both as a gold standard for evaluat-
ing the quality of predicted links, and as supervision
for a machine learning model that would automati-
cally detect translation links.
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Language pair 0 1 2 3 4
(English, German) 46 8 29 2 110
(English, Spanish) 22 19 19 13 123
(Italian, French) 30 7 19 7 132
(Spanish, Italian) 21 8 17 13 136

Table 6: Number of annotations on a scale of 0-4 for each
pair of languages

From the large pool of links directly available in
Wikipedia or inferred automatically through sym-
metry and transitivity, we sampled and then man-
ually annotated 195 pairs of articles for each of
four language pairs: (English, German), (English,
Spanish), (Italian, French), and (Spanish, Italian).
The four language pairs were determined based on
the native or near-native knowledge available in the
group of annotators in our research group. The sam-
pling of the article pairs was done such that it cov-
ers all the potentially interesting cases obtained by
combining the heuristics used to identify interlin-
gual links. The left side of Table 5 shows the com-
bination of heuristics used to select the article pairs.
For each such combination, and for each language
pair, we randomly selected 15 articles. Furthermore,
we added 15 randomly selected pairs for the highest
quality combination (Case 1).

For each language pair, the sampled links were
annotated by one human judge, with the exception of
the (English, Spanish) dataset, which was annotated
by two judges so that we could measure the inter-
annotator agreement. The annotators were asked to
check the articles in each link and annotate the link
on a scale from 0 to 4, as follows:

4: Identical concepts that are perfect translations
of each other.

3: Concepts very close in meaning, which are
good translations of each other, but a better
translation for one of the concepts in the pair
also exists. The annotators are not required to
identify a better translation in Wikipedia, they
only have to use their own knowledge of the
language, e.g. “building” (English) may be a
good translation for “tore” (Spanish), yet a bet-
ter translation is known to exist.

2: Concepts that are closely related but that are not

translations of each other.

1: Concepts that are remotely related and are not
translations of each other.

0: Completely unrelated concepts or links be-
tween an article and a portion of another arti-
cle.

To determine the quality of the annotations,
we ran an inter-annotator study for the (English-
Spanish) language pair. The two annotators had a
Pearson correlation of 70%, which indicates good
agreement. We also calculated their agreement
when grouping the ratings from 0 to 4 in only two
categories: 0, 1, and 2 were mapped tono transla-
tion, whereas 3 and 4 were mapped totranslation.
On this coarse scale, the annotators agreed 84% of
the time, with a kappa value of 0.61, which once
again indicate good agreement.

The annotations are summarized in the right side
of Table 5. For each quality rating, the table shows
the number of links annotated with that rating. Note
that this is a summary over the annotations of five
annotators, corresponding to the four language pairs,
as well as an additional annotation for (English,
Spanish).

Not surprisingly, the links that are “supported” by
all the heuristics considered (Case 1) are the links
with the highest quality. These are interlingual links
that are present in Wikipedia and that can also be
inferred through transitive path heuristics. Interest-
ingly, links that are only guaranteed to have a direct
link (DL) and no reverse link (RL) (Case 2) have a
rather low quality, with only 68% of the links being
considered to represent a perfect or a good transla-
tion (score of 3 or 4).

Table 6 summarizes the annotations per language
pair. There appear to be some differences in the
quality of interlingual links extracted or inferred for
different languages, with (Spanish, Italian) being the
pair with the highest quality of links (76% of the
links are either perfect or good translations), while
English to German seems to have the lowest quality
(only 57% of the links are perfect or good). For the
(English, Spanish) pair, we used the average of the
two annotators’ ratings, rounded up to the nearest
integer.
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Combinations of heuristics to extract or infer interlingual links Link quality on a 0-4 scale
Cases DL RL DP2 RP2 DP3 RP3 DP4 RP4 Samples 0 1 2 3 4
Case 1 y y y y y y y y 30 6 3 6 6 129
Case 2 y n - - - - - - 15 15 3 6 3 48
Case 3 n y - - - - - - 15 13 3 8 4 47
Case 4 n n y y - - - - 15 6 3 16 4 46
Case 5 n n - - y y - - 15 13 9 12 4 28
Case 6 n n - - - - y y 15 15 8 3 8 37
Case 7 n n n n - - - - 15 19 8 11 5 31
Case 8 n n - - n n - - 15 13 8 11 5 32
Case 9 n n - - - - n n 15 25 4 11 2 33
Case 10 y y n n - - - - 15 6 3 4 3 59
Case 11 y y - - n n - - 15 6 2 3 0 64
Case 12 y y - - - - n n 15 3 6 2 4 60

Table 5: Left side of the table: distance heuristics and number of samples based on each distance heuristic. ‘y’ indicates
that the corresponding path should exist, ‘n’ indicates that the corresponding path should not exist, ‘-’ indicates that
we don’t care whether the corresponding path exists or not. Right side of the table: manual annotations of the quality
of links, on a scale of 0 to 4, with 4 meaning perfect translations.

5 Machine Learning Experiments

The manual annotations described above are good
indicators of the quality of the interlingual links that
can be extracted and inferred in Wikipedia. But such
manual annotations, because of the human effort in-
volved, do not scale up, and therefore we cannot ap-
ply them on the entire interlingual Wikipedia graph
to determine the links that should be preserved or the
ones that should be removed.

Instead, we experiment with training machine
learning models that would automatically determine
the quality of an interlingual link. As features, we
use the presence or absence of direct or symmet-
ric links, along with the number of inferred paths of
lengthk = 2, 3, 4, as defined in Section 3. Table 7
shows the feature vectors for the same four pairs of
articles that were used in Table 4. The feature val-
ues are computed based on the sample network of
interlingual links from Figure 1. Each feature vector
is assigned a numerical class, corresponding to the
manual annotation provided by the human judges.

We conduct two experiments, at a fine-grained
and a coarse-grained level. In both experiments, we
use all the annotations for all four language pairs to-
gether (i.e., a total of 780 examples), and perform
evaluations in a ten-fold cross validation scenario.

For the fine-grained experiments, we use all five

numerical classes in a linear regression model.3 We
determine the correctness of the predictions on the
test data by calculating the Pearson correlation with
respect to the gold standard. The resulting corre-
lation was measured at 0.461. For comparison, we
also run an experiment where we only keep the pres-
ence or absence of the direct links as a feature (DL).
In this case, the correlation was measured at 0.418,
which is substantially below the correlation obtained
when using all the features. This indicates that the
interlingual links inferred through our heuristics are
indeed useful.

In the coarse-grained experiments, the quality rat-
ings 0, 1, and 2 are mapped to theno translation
label, while ratings 3 and 4 are mapped to thetrans-
lation label. We used the Ada Boost classifier with
decision stumps as the binary classification algo-
rithm. When using the entire feature vectors, the
accuracy is measured at 73.97%, whereas the use
of only the direct links results in an accuracy of
69.35%. Similar to the fine-grained linear regres-
sion experiments, these coarse-grained experiments
further validate the utility of the interlingual links
inferred through the transitive path heuristics.

3We use the Weka machine learning toolkit.
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Concept pair DL RL DP2 DP3 DP4 RP2 RP3 RP4 Class
en=Ball de=Ball 1 1 1 1 0 1 1 0 4
en=Ball it=Palla (sport) 1 1 2 0 0 2 0 0 4
en=Ball fr=Boule (solide) 0 0 1 1 1 0 0 0 1
de=Ball fr=Ballon (sport) 0 0 2 1 0 2 1 0 4

Table 7: Examples of feature vectors generated for four interlingual links, corresponding to the concept pairs listed in
Table 4

6 Related Work

The multilingual nature of Wikipedia has been al-
ready exploited to solve several number of language
processing tasks. A number of projects have used
Wikipedia to build a multilingual semantic knowl-
edge base by using the existing multilingual nature
of Wikipedia. For instance, (Ponzetto and Strube,
2007) derived a large scale taxonomy from the ex-
isting Wikipedia. In related work, (de Melo and
Weikum, 2010a) worked on a similar problem in
which they combined all the existing multilingual
Wikipedias to build a stable, large multilingual tax-
onomy.

The interlingual links have also been used for
cross-lingual information retrieval (Nguyen et al.,
2009) or to generate bilingual parallel corpora (Mo-
hammadi and QasemAghaee, 2010). (Ni et al.,
2011) used multilingual editions of Wikipedia to
mine topics for the task of cross lingual text clas-
sification, while (Hassan and Mihalcea, 2009) used
Wikipedias in different languages to measure cross-
lingual semantic relatedness between concepts and
texts in different languages. (Bharadwaj et al., 2010)
explored the use of the multilingual links to mine
dictionaries for under-resourced languages. They
developed an iterative approach to construct a par-
allel corpus, using the interlingual links, info boxes,
category pages, and abstracts, which they then be
used to extract a bilingual dictionary. (Navigli and
Ponzetto, 2010) explored the connections that can
be drawn between Wikipedia and WordNet. While
no attempts were made to complete the existing link
structure of Wikipedia, the authors made use of ma-
chine translation to enrich the resource.

The two previous works most closely related to
ours are the systems introduced in (Sorg and Cimi-
ano, 2008) and (de Melo and Weikum, 2010a; de
Melo and Weikum, 2010b). (Sorg and Cimiano,

2008) designed a system that predicts new interlin-
gual links by using a classification based approach.
They extract certain types of links from bilingual
Wikipedias, which are then used to create a set of
features for the machine learning system. In follow-
up work, (Erdmann et al., 2008; Erdmann et al.,
2009) used an expanded set of features, which also
accounted for direct links, redirects, and links be-
tween articles in Wikipedia, to identify entries for a
bilingual dictionary. In this line of work, the focus is
mainly on article content analysis, as a way to detect
new potential translations, rather than link analysis
as done in our work.

Finally, (de Melo and Weikum, 2010b) designed
a system that detects errors in the existing interlin-
gual links in Wikipedia. They show that there are a
large number of links that are imprecise or wrong,
and propose the use of a weighted graph to produce
a more consistent set of consistent interlingual links.
Their work is focusing primarily on correcting ex-
isting links in Wikipedia, rather than inferring new
links as we do.

7 Conclusions

In this paper, we explored the identification of trans-
lational links in Wikipedia. By using a set of heuris-
tics that extract and infer links between Wikipedias
in different languages, along with a machine learn-
ing algorithm that builds upon these heuristics to
determine the quality of the interlingual links, we
showed that we can both correct existing transla-
tional links in Wikipedia as well as discover new
interlingual links. Additionally, we have also con-
structed a manually annotated dataset of interlingual
links, covering different types of links in four pairs
of languages, which can serve as a gold standard for
evaluating the quality of predicted links, and as su-
pervision for the machine learning model.
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In future work, we plan to experiment with ad-
ditional features to enhance the performance of the
classifier. In particular, we would like to also include
content-based features, such as content overlap and
interlinking.

The collection of interlingual links for the ten
Wikipedias considered in this work, as well as the
manually annotated dataset are publicly available at
http://lit.csci.unt.edu.
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Abstract

This paper presents a novel sentence cluster-
ing scheme based on projecting sentences over
term clusters. The scheme incorporates exter-
nal knowledge to overcome lexical variability
and small corpus size, and outperforms com-
mon sentence clustering methods on two real-
life industrial datasets.

1 Introduction

Clustering is a popular technique for unsupervised
text analysis, often used in industrial settings to ex-
plore the content of large amounts of sentences. Yet,
as may be seen from the results of our research,
widespread clustering techniques, which cluster sen-
tences directly, result in rather moderate perfor-
mance when applied to short sentences, which are
common in informal media.

In this paper we present and evaluate a novel
sentence clustering scheme based on projecting
sentences over term clusters. Section 2 briefly
overviews common sentence clustering approaches.
Our suggested clustering scheme is presented in
Section 3. Section 4 describes an implementation of
the scheme for a particular industrial task, followed
by evaluation results in Section 5. Section 6 lists
directions for future research.

2 Background

Sentence clustering aims at grouping sentences with
similar meanings into clusters. Commonly, vector
similarity measures, such as cosine, are used to de-
fine the level of similarity over bag-of-words encod-

ing of the sentences. Then, standard clustering algo-
rithms can be applied to group sentences into clus-
ters (see Steinbach et al. (2000) for an overview).

The most common practice is representing the
sentences as vectors in term space and applying the
K-means clustering algorithm (Shen et al. (2011);
Pasquier (2010); Wang et al. (2009); Nomoto and
Matsumoto (2001); Boros et al. (2001)). An alterna-
tive approach involves partitioning a sentence con-
nectivity graph by means of a graph clustering algo-
rithm (Erkan and Radev (2004); Zha (2002)).

The main challenge for any sentence clustering
approach is language variability, where the same
meaning can be phrased in various ways. The
shorter the sentences are, the less effective becomes
exact matching of their terms. Compare the fol-
lowing newspaper sentence ”The bank is phasing out
the EZ Checking package, with no monthly fee charged
for balances over $1,500, and is instead offering cus-
tomers its Basic Banking account, which carries a fee”
with two tweets regarding the same event: ”Whats
wrong.. charging $$ for checking a/c” and ”Now they
want a monthly fee!”. Though each of the tweets can
be found similar to the long sentence by exact term
matching, they do not share any single term. Yet,
knowing that the words fee and charge are semanti-
cally related would allow discovering the similarity
between the two tweets.

External resources can be utilized to provide such
kind of knowledge, by which sentence representa-
tion can be enriched. Traditionally, WordNet (Fell-
baum, 1998) has been used for this purpose (She-
hata (2009); Chen et al. (2003); Hotho et al. (2003);
Hatzivassiloglou et al. (2001)). Yet, other resources
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of semantically-related terms can be beneficial, such
as WordNet::Similarity (Pedersen et al., 2004), sta-
tistical resources like that of Lin (1998) or DIRECT
(Kotlerman et al., 2010), thesauri, Wikipedia (Hu et
al., 2009), ontologies (Suchanek et al., 2007) etc.

3 Sentence Clustering via Term Clusters

This section presents a generic sentence clustering
scheme, which involves two consecutive steps: (1)
generating relevant term clusters based on lexical se-
mantic relatedness and (2) projecting the sentence
set over these term clusters. Below we describe each
of the two steps.

3.1 Step 1: Obtaining Term Clusters

In order to obtain term clusters, a term connectivity
graph is constructed for the given sentence set and is
clustered as follows:

1. Create initially an undirected graph with
sentence-set terms as nodes and use lexical re-
sources to extract semantically-related terms
for each node.

2. Augment the graph nodes with the extracted
terms and connect semantically-related nodes
with edges. Then, partition the graph into term
clusters through a graph clustering algorithm.

Extracting and filtering related terms. In Sec-
tion 2 we listed a number of lexical resources pro-
viding pairs of semantically-related terms. Within
the suggested scheme, any combination of resources
may be utilized.

Often resources contain terms, which are
semantically-related only in certain contexts. E.g.,
the words visa and passport are semantically-related
when talking about tourism, but cannot be consid-
ered related in the banking domain, where visa usu-
ally occurs in its credit card sense. In order to dis-
card irrelevant terms, filtering procedures can be em-
ployed. E.g., a simple filtering applicable in most
cases of sentence clustering in a specific domain
would discard candidate related terms, which do not
occur sufficiently frequently in a target-domain cor-
pus. In the example above, this procedure would
allow avoiding the insertion of passport as related to
visa, when considering the banking domain.

Clustering the graph nodes. Once the term
graph is constructed, a graph clustering algorithm

is applied resulting in a partition of the graph nodes
(terms) into clusters. The choice of a particular al-
gorithm is a parameter of the scheme. Many clus-
tering algorithms consider the graph’s edge weights.
To address this trait, different edge weights can be
assigned, reflecting the level of confidence that the
two terms are indeed validly related and the reliabil-
ity of the resource, which suggested the correspond-
ing edge (e.g. WordNet synonyms are commonly
considered more reliable than statistical thesauri).

3.2 Step 2: Projecting Sentences to Term
Clusters

To obtain sentence clusters, the given sentence set
has to be projected in some manner over the term
clusters obtained in Step 1. Our projection pro-
cedure resembles unsupervised text categorization
(Gliozzo et al., 2005), with categories represented
by term clusters that are not predefined but rather
emerge from the analyzed data:

1. Represent term clusters and sentences as vec-
tors in term space and calculate the similarity
of each sentence with each of the term clusters.

2. Assign each sentence to the best-scoring term
cluster. (We focus on hard clustering, but the
procedure can be adapted for soft clustering).

Various metrics for feature weighting and vector
comparison may be chosen. The top terms of term-
cluster vectors can be regarded as labels for the cor-
responding sentence clusters.

Thus each sentence cluster corresponds to a sin-
gle coherent cluster of related terms. This is con-
trasted with common clustering methods, where if
sentence A shares a term with B, and B shares an-
other term with C, then A and C might appear in the
same cluster even if they have no related terms in
common. This behavior turns out harmful for short
sentences, where each incidental term is influential.
Our scheme ensures that each cluster contains only
sentences related to the underlying term cluster, re-
sulting in more coherent clusters.

4 Application: Clustering Customer
Interactions

In industry there’s a prominent need to obtain busi-
ness insights from customer interactions in a contact
center or social media. Though the number of key
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sentences to analyze is often relatively small, such
as a couple hundred, manually analyzing just a hand-
ful of clusters is much preferable. This section de-
scribes our implementation of the scheme described
in Section 3 for the task of clustering customer in-
teractions, as well as the data used for evaluation.
Results and analysis are presented in Section 5.

4.1 Data
We apply our clustering approach over two real-life
datasets. The first one consists of 155 sentences
containing reasons of account cancelation, retrieved
from automatic transcripts of contact center interac-
tions of an Internet Service Provider (ISP). The sec-
ond one contains 194 sentences crawled from Twit-
ter, expressing reasons for customer dissatisfaction
with a certain banking company. The sentences in
both datasets were gathered automatically by a rule-
based extraction algorithm. Each dataset is accom-
panied by a small corpus of call transcripts or tweets
from the corresponding domain.1

The goal of clustering these sentences is to iden-
tify the prominent reasons of cancelation and dissat-
isfaction. To obtain the gold-standard (GS) anno-
tation, sentences were manually grouped to clusters
according to the reasons stated in them.

Table 1 presents examples of sentences from the
ISP dataset. The sentences are short, with only one
or two words expressing the actual reason stated in
them. We see that exact term matching is not suffi-
cient to group the related sentences. Moreover, tra-
ditional clustering algorithms are likely to mix re-
lated and unrelated sentences, due to matching non-
essential terms (e.g. husband or summer). We note
that such short and noisy sentences are common
in informal media, which became a most important
channel of information in industry.

4.2 Implementation of the Clustering Scheme
Our proposed sentence clustering scheme presented
in Section 3 includes a number of choices. Below
we describe the choices we made in our current im-
plementation.

Input sentences were tokenized, lemmatized and
cleaned from stopwords in order to extract content-
word terms. Candidate semantically-related terms

1The bank dataset with the output of the tested methods will
be made publicly available.

he hasn’t been using it all summer long
it’s been sitting idle for about it almost a year
I’m getting married my husband has a computer
yeah I bought a new laptop this summer so
when I said faces my husband got laid off from work
well I’m them going through financial difficulties

Table 1: Example sentences expressing 3 reasons for can-
celation: the customer (1) does not use the service, (2)
acquired a computer, (3) cannot afford the service.

were extracted for each of the terms, using Word-
Net synonyms and derivations, as well as DIRECT2,
a directional statistical resource learnt from a news
corpus. Candidate terms that did not appear in the
accompanying domain corpus were filtered out as
described in Section 3.1.

Edges in the term graph were weighted with the
number of resources supporting the corresponding
edge. To cluster the graph we used the Chinese
Whispers clustering tool3 (Biemann, 2006), whose
algorithm does not require to pre-set the desired
number of clusters and is reported to outperform
other algorithms for several NLP tasks.

To generate the projection, sentences were rep-
resented as vectors of terms weighted by their fre-
quency in each sentence. Terms of the term-cluster
vectors were weighted by the number of sentences
in which they occur. Similarity scores were calcu-
lated using the cosine measure. Clusters were la-
beled with the top terms appearing both in the un-
derlying term cluster and in the cluster’s sentences.

5 Results and Analysis

In this section we present the results of evaluating
our projection approach, compared to the common
K-means clustering method4 applied to:
(A) Standard bag-of-words representation of sen-

tences;
2Available for download at www.cs.biu.ac.il/

˜nlp/downloads/DIRECT.html. For each term we
extract from the resource the top-5 related terms.

3Available at http://wortschatz.informatik.
uni-leipzig.de/˜cbiemann/software/CW.html

4We use the Weka (Hall et al., 2009) implementation. Due
to space limitations and for more meaningful comparison we re-
port here one value of K, which is equal to the number of clus-
ters returned by projection (60 for the ISP and 65 for the bank
dataset). For K = 20, 40 and 70 the performance was similar.
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(B) Bag-of-words representation, where sentence’s
words are augmented with semantically-related
terms (following the common scheme of prior
work, see Section 2). We use the same set of
related terms as is used by our method.

(C) Representation of sentences in term-cluster
space, using the term clusters generated by our
method as vector features. A feature is acti-
vated in a sentence vector if it contains a term
from the corresponding term cluster.

Table 2 shows the results in terms of Purity, Recall
(R), Precision (P) and F1 (see ”Evaluation of clus-
tering”, Manning et al. (2008)). Projection signifi-
cantly5 outperforms all baselines for both datasets.

Dataset Algorithm Purity R P F1

ISP

Projection .74 .40 .68 .50
K-means A .65 .18 .22 .20
K-means B .65 .13 .24 .17
K-means C .65 .18 .26 .22

Bank

Projection .79 .26 .53 .35
K-means A .61 .14 .14 .14
K-means B .64 .13 .19 .16
K-means C .67 .17 .21 .19

Table 2: Evaluation results.

For completeness we experimented with applying
Chinese Whispers clustering to sentence connectiv-
ity graphs, but the results were inferior to K-means.

Table 3 presents sample sentences from clusters
produced by projection and K-means for illustration.
Our initial analysis showed that our approach indeed
produces more homogenous clusters than the base-
line methods, as conjectured in Section 3.2. We con-
sider it advantageous, since it’s easier for a human to
merge clusters than to reveal sub-clusters. E.g., a GS
cluster of 20 sentences referring to fees and charges
is covered by three projection clusters labeled fee,
charge and interest rate, with 9, 8 and 2 sentences
correspondingly. On the other hand, K-means C
method places 11 out of the 20 sentences in a messy
cluster of 57 sentences (see Table 3), scattering the
remaining 9 sentences over 7 other clusters.

In our current implementation fee, charge and in-
terest rate were not detected by the lexical resources
we used as semantically similar and thus were not

5p=0.001 according to McNemar test (Dietterich, 1998).

grouped in one term cluster. However, adding more
resources may introduce additional noise. Such de-
pendency on coverage and accuracy of resources is
apparently a limitation of our approach. Yet, as
our experiments indicate, using only two generic re-
sources already yielded valuable results.

a. Projection
credit card, card, mastercard, visa (38 sentences)
XXX has the worst credit cards ever

XXX MasterCard is the worst credit card I’ve ever had

ntuc do not accept XXX visa now I have to redraw $150...

XXX card declined again , $40 dinner in SF...

b. K-means C
fee, charge (57 sentences)
XXX playing games wit my interest

arguing w incompetent pol at XXX damansara perdana

XXX’s upper management are a bunch of rude pricks

XXX are ninjas at catching fraudulent charges.

Table 3: Excerpt from resulting clusterings for the bank
dataset. Bank name is substituted with XXX. Cluster la-
bels are given in italics. Two most frequent terms are
assigned as cluster labels for K-means C.

6 Conclusions and Future Work

We presented a novel sentence clustering scheme
and evaluated its implementation, showing signifi-
cantly superior performance over common sentence
clustering techniques. We plan to further explore
the suggested scheme by utilizing additional lexical
resources and clustering algorithms. We also plan
to compare our approach with co-clustering meth-
ods used in document clustering (Xu et al. (2003),
Dhillon (2001), Slonim and Tishby (2000)).
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Abstract

We present the results of several machine
learning tasks designed to predict rhetori-
cal relations that hold between clauses in
discourse. We demonstrate that organizing
rhetorical relations into different granularity
categories (based on relative degree of detail)
increases average prediction accuracy from
58% to 70%. Accuracy further increases to
80% with the inclusion of clause types. These
results, which are competitive with existing
systems, hold across several modes of written
discourse and suggest that features of informa-
tion structure are an important consideration
in the machine learnability of discourse.

1 Introduction

The rhetorical relations that hold between clauses
in discourse index temporal and event information
and contribute to a discourse’s pragmatic coherence
(Hobbs, 1985). For example, in (1) the NARRATION

relation holds between (1a) and (1b) as (1b) tempo-
rally follows (1a) at event time.

(1) a. Pascale closed the toy chest.
b. She walked to the gate.
c. The gate was locked securely.
d. So she couldn’t get into the kitchen.

The ELABORATION relation, describing the sur-
rounding state of affairs, holds between (1b) and
(1c). (1c) is temporally inclusive (subordinated)
with (1b) and there is no temporal progression at
event time. The RESULT relation holds between (1b-
c) and (1d). (1d) follows (1b) and its subordinated
ELABORATION relation (1c) at event time.

Additional pragmatic information is encoded in
these relations in terms of granularity. Granularity
refers to the relative increases or decreases in the
level of described detail. For example, moving from
(1b) to (1c), we learn more information about the
gate via the ELABORATION relation. Also, moving
from (1b-c) to (1d) there is a consolidation of infor-
mation associated with the RESULT relation.

Through several supervised machine learning
tasks, we investigate the degree to which granularity
(as well as additional elements of discourse struc-
ture (e.g. tense, aspect, event)) serves as a viable
organization and predictor of rhetorical relations in
a range of written discourses. This paper is orga-
nized as follows. Section 2 reviews prior research
on rhetorical relations, discourse structure, granular-
ity and prediction. Section 3 discusses the analyzed
data, the selection and annotation of features, and
the construction of several machine learning tasks.
Section 4 provides the results which are then dis-
cussed in Section 5.

2 Background

Rhetorical relation prediction has received consid-
erable attention and has been shown to be useful
for text summarization (Marcu, 1998). Prediction
tasks rely on a number of features (discourse con-
nectives, part of speech, etc.) (Marcu and Echihabi,
2002; Lapata and Lascarides, 2004). A wide range
of accuracies are also reported - 33.96% (Marcu and
Echihabi, 2002) to 70.70% (Lapata and Lascarides,
2004) for all rhetorical relations and, for individ-
ual relations, CONTRAST (43.64%) and CONTINU-
ATION (83.35%) (Sporleder and Lascarides, 2005).
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We seek to predict the inventory of rhetorical
relations defined in Segmented Discourse Repre-
sentation Theory (“SDRT”) (Asher and Lascarides,
2003). In addition to the relations illustrated in
(1), we consider: BACKGROUND: It was Christ-
mas. Pascale got a new toy.; EXPLANATION: The
aardvark was dirty. It fell into a puddle.; CONSE-
QUENCE: If the aardvark fell in the puddle, then it
got dirty.; ALTERNATION: Pascale got an aardvark
or a stuffed bunny.; and CONTINUATION: Pascale
got an aardvark. Grimsby got a rawhide.

Discourses were selected based on Smith (2003)
who defines five primary discourse modes by: (1)
the situations (events and states) they describe; (2)
the overarching temporality (tense, aspect); and (3)
the type of text progression (temporal - text and
event time progression are similar; atemporal - text
and event time progression are not similar). These
contrastive elements inform the features selected
for the machine learning tasks discussed in Section
3.2. The five modes, narratives, reports (news ar-
ticles), description (recipes), information (scientific
essays), and argument (editorials) were selected to
ensure a balanced range of theoretically supported
discourse types.

2.1 Granularity of Information

Granularity in discourse refers to the relative degree
of detail. The higher the level of detail, the more
informative the discourse is. We assume that there
will be some pragmatic constraints on the informa-
tiveness of a discourse (e.g., consistent with Grice‘s
(1975) Maxim of Quantity). For our purposes, we
rely specifically on granularity as defined in Mulkar-
Mehta et al. (2011) (“MM”) who characterize gran-
ularity in terms of entities and events.

To illustrate, consider (2) where the rhetorical
structure indicates that (2b) is an ELABORATION of
(2a), the NARRATION relation holds between (2b)
and (2c) and (2c) and (2d), and the RESULT relation
between (2d) and (2e).

(2) a. The Pittsburgh Steelers needed to win.
b. Batch took the first snap.
c. Then he threw the ball into the endzone.
d. Ward caught the ball.
e. A touchdown was scored.

Entities and events can stand in part-whole and

causality relationships with entities and events in
subsequent clauses. A positive granularity shift in-
dicates movement from whole to part (more detail)
- e.g., Batch (2b) is a part of the whole Pittsburgh
Steelers (2a). A negative granularity shift indicates
movement from part to whole (less detail), or if
one event causes a subsequent event (if an event is
caused by a subsequent event, this is a positive shift)
- e.g., Ward’s catching of the ball (2d) caused the
scoring of the touchdown (2e). Maintained granular-
ities (not considered by MM) are illustrated in (2b-c)
and (2c-d). Clauses (2b) through (2d) are temporally
linked events, but there is no part-whole shift in, nor
a causal relationship between, the entities or events;
the granularity remains the same.

We maintain that there is a close relationship be-
tween rhetorical relations and granularity. Con-
sequently, rhetorical relations can be organized as
follows: positive: BACKGROUND, ELABORATION,
EXPLANATION; negative: CONSEQUENCE, RE-
SULT; and maintained: ALTERNATION, CONTINU-
ATION, NARRATION. The machine learning tasks
discussed in the remainder of the paper consider this
information in the prediction of rhetorical relations.

3 Data and Methods

Five written discourses of similar sentence length
were selected from each mode for 25 total dis-
courses. The discourses were segmented by inde-
pendent or dependent (subordinate) clauses, if the
clauses contained discourse markers (but, however),
and if the clauses were embedded in the sentence
provided in the orginal written discourse (e.g., John,
who is the director of NASA, gave a speech on Fri-
day). The total number of clauses is 1090, averaging
43.6 clauses per discourse (σ=7.2).

3.1 Feature Annotation

For prediction, we use a feature set distilled from
Smith’s classification of discourses: TENSE and
ASPECT; EVENT (from the TimeML annotation
scheme (Pustejovksy, et al., 2005), Aspectual, Oc-
curence, States, etc.); SEQUENCE information as
the clause position normalized to the unit interval;
and discourse MODE. We also include CLAUSE
type - independent (IC) or dependent clauses (DC)
with the inclusion of a discourse marker (M) or not,
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Table 1: Distribution of Relations by Granularity Type.
Relation Number (Avg.)
Positive 515 (47%)

BACKGROUND 315 (61%)
ELABORATION 161 (31%)
EXPLANATION 39 (7%)

Negative 59 (5%)
CONSEQUENCE 16 (26%)

RESULT 43 (71%)
Maintenance 490 (44%)
ALTERNATION 76 (14%)

CONTINUATION 30 (6%)
NARRATION 384 (78%)

embedded (EM) or not - and GRANULARITY shift
categories which are an organization of the SDRT
rhetorical relations (Asher and Lascarides, 2003),
summarized in Table 1.

All 25 discourses were annotated by one of the au-
thors using only a reference sheet. The other author
independently coded 80% of the data (20 discourses,
four from each mode). Average agreement and Co-
hen’s Kappa (Cohen, 1960) statistics were computed
and are within acceptable ranges: TENSE (99.65
/ .9945), ASPECT (99.30 / .9937), SDRT (77.42 /
.6850), and EVENT (75.88 / .6362).

These results are consistent with previously re-
ported annotations for rhetorical relations (Sporleder
and Lascarides, 2005; Howald and Katz, 2011),
event verbs and durations, tense and aspect (Puscasu
and Mititelu, 2008; Wiebe et al., 1997). Positive,
negative and maintained granularities were not an-
notated, but MM report a Kappa between .8500 and
1. The distribution of these granularities, based on
the organization of the annotated rhetorical relations
is presented in Table 1.

3.2 Machine Learning

Three supervised machine learning tasks were con-
structed to predict SDRT relations. The first task
(Uncollapsed) created a 8-way classifier to predict
the SDRT relations based on the feature set, omit-
ting the GRANULARITY feature. The second task
(Collapsed) created a 3-way classifier to predict
the GRANULARITY categories (the SDRT feature
was omitted). The third task (Combined) included

Table 2: Relation Prediction - Combined Modes.
Feature J48 K* NB MCB

Uncollapsed 58.99 55.41 56.69 35
Collapsed 69.90 70.18 69.81 41
Combined 78.62 71.92 80.00 35 (70)

the GRANULARITY feature back into the Uncol-
lapsed 8-way classifier. We utilized the WEKA
toolkit (Witten and Frank, 2005) and treated each
clause as a vector of information (SDRT, EVENT,
TENSE, ASPECT, SEQUENCE, CLAUSE, MODE,
GRANULARITY), illustrated in (3)1:

(3) a. The Pittsburgh Steelers needed to win.
START, State, Pa., N, .200, IC, NA, start

b. Batch took the first snap.
ELAB., Occ., Pa., N, .400, IC, NA, pos.

c. Then he threw the ball into the endzone.
NAR., Asp., Pa., N, .600, IC-M, NA, main.

d. Ward caught the ball.
NAR., Occ., Pa., N, .800, IC, NA, main.

e. A touchdown was scored.
RESULT, Occ., Pa., Perf., 1.00, IC, NA, neg.

We report results from the Naı̈ve Bayes (NB), J48
(C4.5 decision tree (Quinlan, 1993)) and K* (Cleary
and Trigg, 1995) classifiers, run at 10-fold cross-
validation.

4 Results

Table 2 indicates that the best average accuracy for
the Uncollapsed task is 58.99 (J48). The accu-
racy increases to 70.18 (K*) for the Collapsed task.
The accuracy increases further to 80.00 (NB) for the
Combined task. All accuracies are statistically sig-
nificant over majority class baselines (“MCB”): Un-
collapsed (MCB = 35) - χ2 = 15.11, d.f. = 0, p ≤
.001; Collapsed (MCB = 41) - χ2 = 20.51, d.f. =
0, p ≤ .001; and Combined (treating the best Col-
lapsed accuracy as the new baseline (MCB = 70)) -
χ2 = 1.43, d.f. = 0, p ≤ .001.

As shown in Table 3, based on the NB 8-way
Combined classifier, the prediction accuracies of

1Note that what is being predicted is the rhetorical relation,
or associated granularity, with the second clause in a clause pair.
Tasks were performed where clause information was paired, but
this did not translate into improved accuracies.
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Table 3: Individual Relation Prediction Accuracies (%).
Relation A I D N R T

NAR. 73 55 100 100 94 96
RES. 75 88 85 100 100 93

BACK. 93 92 96 87 94 92
ELAB. 57 41 69 21 48 69

CONSEQ. 20 0 0 0 0 37
ALTER. 50 42 0 0 43 27

CONTIN. 8 0 0 0 0 23
EXPLAN. 0 20 0 9 0 2

Total 68 72 92 74 74 80

the individual modes are no more than 12 percent-
age points off of the average (80.00). Accura-
cies range from 68% A(rgument) (σ=-12) to 92%
D(escription) (σ=+12) with N(arrative), R(eport),
and I(nformation) being closest to average (σ=-6-
8). For individual relation predictions, NARRATION,
RESULT and BACKGROUND have the highest total
accuracies followed by ELABORATION and CON-
TRAST. Performing less well is CONSEQUENCE,
ALTERNATION and CONTINUATION with EXPLA-
NATION performing the worst. All accuracies are
statistically significant above baseline (χ2 = 341.89,
d.f. = 7, p ≤ .001).

5 Discussion and Conclusion

Using the Collapsed performance as a baseline for
the Combined classifier, we discuss the features
contributing to the 10 percentage point increase as
well as the optimal (minimal) set of features for pre-
diction. The best accuracies for the Combined ex-
periment only require CLAUSE and GRANULAR-
ITY information; achieving 79.08% (NB - 44 above
MCB, f-score=.750). Both CLAUSE and GRANU-
LARITY are necessary. Relying only on CLAUSE
achieves a 48.25% accuracy (J48) and relying only
on GRANULARITY achieves 70.36% for all clas-
sifiers, but this higher accuracy is an artifact of the
organization as evidenced by the f-score (.585).

The relationship between CLAUSE and the
rhetorical relations is straightforward. For example,
the CONSEQUENCE relation is often an “intersenten-
tial” relation (if the aardvark fell in the puddle, then
it got dirty), each of the 16 CONSEQUENCE relations
are embedded. Similarly, 93% of all ELABORATION

relations, which are temporally subordinating, are
embedded. Clause types appear to be a viable source
of co-varying information in rhetorical relation pre-
diction in the tasks under discussion.

The aspects of syntactic-semantic form and prag-
matic function in the relationship between granular-
ity and rhetorical relations is of central interest in
this investigation. Asher and Lascarides represent
discourses hierarchically through coordination and
subordination of information which corresponds to
changes in granularity. However, while the notion
of granularity enters into the motivation and formu-
lation of the SDRT inventory, it is not developed fur-
ther. These results potentailly allow us to say some-
thing deeper about the structural organization of dis-
course as it relates to granularity.

In particualr, while there is some probabilistic
leverage in collapsing categories, it is not the case
that arbitrary categorizations will perform similarly.
This observation holds true even for theoretically
informed categorizations. For example, organizing
the SDRT inventory into coordinated and subordi-
nated relations yields lower performance on relation
prediction. Coordinated and subordinated can be
predicted with 80% accuracy, but the prediction of
the individual relations given the category performs
only at 70%. Since the granularity-based organiza-
tion presented here performs better, we suggest that
the pragmatic function of the relation is more sys-
tematic than the syntactic-semantic form of the rela-
tion.

Future research will focus on more data, differ-
ent machine learning techniques (e.g. unsupervised
learning) and automatization. Where clause, tense,
aspect and event are readily automatable, rhetorical
relations and granularity are less so. Automatically
extracting such information from an annotated cor-
pus such as the Penn Discourse Tree Bank is cer-
tainly feasible. However, the distribution of genres
in this corpus is somewhat limited (i.e., predomi-
nately news text (Webber, 2009)) and calls into ques-
tion the generalizeability of results to other modes of
discourse. Overall, we have demonstrated that the
inclusion of a granularity-based organization in the
machine learning prediction of rhetorical relations
increases performance by 37%, which is roughly
14% above previous reported results for a broader
range of discourses and relations.
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Abstract

The correct choice of words has proven chal-
lenging for learners of a second language and
errors of this kind form a separate category
in error typology. This paper focuses on one
known example of two verbs that are often
confused by non-native speakers of Germanic
languages, to make and to do. We conduct ex-
periments using syntactic information and im-
mediate context for Dutch and English. Our
results show that the methods exploiting syn-
tactic information and distributional similarity
yield the best results.

1 Introduction

When learning a second language, non-native speak-
ers make errors at all levels of linguistic analy-
sis, from pronunciation and intonation to language
use. Word choice errors form a substantial part
of all errors made by learners and may also be
observed in writing or speech of native speak-
ers. This category of errors includes homophones.
Some commonly known confusions in English are
accept-except, advice-advise, buy-by-bye, ate-eight,
to name but a few. Other errors can be explained
by a non-native speaker’s inability to distinguish be-
tween words because there exists only one corre-
sponding word in their native language. For ex-
ample, Portuguese and Spanish speakers have diffi-
culties to differentiate between te doen (to do) and
te maken (to make), and Turkish between kunnen
(can), weten (to know) and kennen (to know) in
Dutch (Coenen et al., 1979). Adopting terminol-
ogy from Golding and Roth (1999) and Rozovskaya

and Roth (2010), do/make and kunnen/kennen/weten
form two confusion sets. However, unlike the case
of kunnen/kennen/weten, where the correct choice is
often determined by syntactic context 1, the choice
between to make and to do can be motivated by
semantic factors. It has been argued in the litera-
ture that the correct use of these verbs depends on
what is being expressed: to do is used to refer to
daily routines and activities, while to make is used to
describe constructing or creating something. Since
word choice errors have different nature, we hypoth-
esize that there may exist no uniform approach to
correct them.

State-of-the-art spell-checkers are able to detect
spelling and agreement errors but fail to find words
used incorrectly, e.g. to distinguish to make from to
do. Motivated by the implications that the correct
prediction of two verbs of interest may have for au-
tomatic error correction, we model the problem of
choosing the correct verb in a similar vein to selec-
tional preferences. The latter has been considered
for a variety of applications, e. g. semantic role la-
beling (Zapirain et al., 2009). Words such as be or
do have been often excluded from consideration be-
cause they are highly polysemous and “do not select
strongly for their arguments” (McCarthy and Car-
roll, 2003). In this paper, we study whether semantic
classes of arguments may be used to determine the
correct predicate (e.g., to make or to do) and con-
sider the following research questions:

1. Can information on semantic classes of direct
1Kunnen is a modal verb followed by the main verb, kennen

takes a direct object as in, e.g., to know somebody, and weten is
often followed by a clause (as in I know that).
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objects potentially help to correct verb choice
errors?

2. How do approaches using contextual and syn-
tactic information compare when predicting to
make vs. to do?

The paper is organised as follows. Section 2.1
discusses the methods, followed by Section 2.2 on
data. The experimental findings are presented in
Section 2.3. We conclude in Section 3.

2 Experiments

We re-examine several approaches to selectional
preferences in the context of error correction. Ex-
isting methods fall into one of two categories, either
those relying on information from WordNet (Mc-
Carthy and Carroll, 2003), or data-driven (Erk,
2007; Schulte im Walde, 2010; Pado et al., 2007).
For the purpose of our study, we focus on the latter.

2.1 Methods
For each verb in question, we have a frequency-
based ranking list of nouns co-occurring with it
(verb-object pairs) which we use for the first two
methods.

Latent semantic clustering (LSC) Rooth et
al. (1999) have proposed a soft-clustering method to
determine selectional preferences, which models the
joint distribution of nouns n and verbs v by condi-
tioning them on a hidden class c. The probability of
a pair (v, n) then equals

P (v, n) =
∑
c∈C

P (c)P (v|c)P (n|c) (1)

Similarity-based method The next classifier we
use combines similarity between nouns with rank-
ing information and is a modification of the method
described in (Pado et al., 2007). First, for all words
ni on the ranking list their frequency scores are nor-
malised between 0 and 1, fi. Then, they are weighed
by the similarity score between a new noun nj and a
corresponding word on the ranking list, ni, and the
noun with the highest score (1-nearest neighbour) is
selected:

arg max
ni

fi × sim(nj , ni) (2)

Finally, two highest scores for each verb’s ranking
list are compared and the verb with higher score is
selected as a preferred one.

In addition, if we sum over all seen words instead
of choosing the nearest neighbour, this will lead to
the original approach by Pado et al. (2007). In the
experimental part we consider both approaches (the
original method is referred to as SMP while the
nearest neighbour approach is marked by SMknn)
and study whether there is any difference between
the two when a verb that allows many different ar-
guments is considered (e.g., it may be better to use
the nearest neighbour approach for to do rather than
aggregating over all similarity scores).

Bag-of-words (BoW) approach This widely used
approach to document classification considers con-
textual words and their frequencies to represent doc-
uments (Zellig, 1954). We restrict the length of the
context around two verbs (within a window of ±2
and ±3 around the focus word, make or do) and
build a Naive Bayes classifier.

2.2 Data
Both verbs, to make and to do, license complements
of various kinds, e. g. they can be mono-transitive,
ditransitive, and complex transitive (sentences 1, 2,
and 3, respectively). Furthermore, make can be part
of idiomatic ditransitives (e.g., make use of, make
fun of, make room for) and phrasal mono-transitives
(e.g., make up) .

1. Andrew made [a cake]dobj .

2. Andrew made [his mum]iobj [a cake]dobj .

3. Andrew made [his mum]dobj happy.

For English, we use one of the largest cor-
pora available, the PukWAC (over 2 billion words,
30GB) (Baroni et al., 2009), which has been parsed
by MaltParser (Nivre and Scholz, 2004). We extract
all sentences with to do or to make (based on lem-
mata). The verb to make occurs in 2,13% of sen-
tences, and the verb to do in 3,27% of sentences in
the PukWAC corpus. Next, we exclude from con-
sideration phrasal mono-transitives and select sen-
tences where verb complements are nouns (Table 1).

For experiments in Dutch, we use the “Wikipedia
Dump Of 2010” corpus, which is a part of Lassy
Large corpus (159 million tokens), and is parsed by
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LANG # sent # dobj (to make) # dobj (to do)
EN 181,813,571 1,897,747 881,314
NL 8,639,837 15,510 6,197

Table 1: The number of sentences in English (EN) and Dutch (NL) corpora (the last two columns correspond to the
number of sentences where direct objects are nouns).

the Alpino parser (Bouma et al., 2001). Unlike in
English data, to make occurs here more often than
to do (3,3% vs. 1%). This difference can be ex-
plained by the fact that to do is also an auxiliary verb
in English which leads to more occurrences in to-
tal. Similarly to the English data set, phrasal mono-
transitives are filtered out. Finally, the sentences
that contain either to make or to do from wiki01 up
to wiki07 (19,847 sentences in total) have been se-
lected for training and wiki08 (1,769 sentences in
total) for testing. To be able to compare our results
against the performance on English data, we sample
a subset from PukWAC which is of the same size as
Dutch data set and is referred to as EN (sm).

To measure distributional similarity for the near-
est neighbour method, we use first-order and
second-order similarity based on Lin’s information
theoretic measure (Lin, 1998). For both languages,
similarity scores have been derived given a subset
of Wikipedia (276 million tokens for English and
114 million tokens for Dutch) using the DISCO
API (Kolb, 2009).

2.3 Results

Table 2 and Table 3 summarize our results. When re-
ferring to similarity-based methods, the symbols (f)
and (s) indicate first-order and second-order similar-
ity. For the BoW models, ±2 and ±3 corresponds
to the context length. The performance is measured
by true positive rate (TP) per class, overall accuracy
(Acc) and coverage (Cov). The former indicates in
how many cases the correct class label (make or do)
has been predicted, while the latter shows how many
examples a system was able to classify. Coverage is
especially indicative for LCS and semantic similar-
ity approaches because they may fail to yield pre-
dictions. For these methods, we provide two evalua-
tions. First, in order to be able to compare results
against the BoW approach, we measure accuracy
and coverage on all test examples. In such a case,
if some direct objects occur very often in the test set

and are classified correctly, accuracy scores will be
boosted. Therefore, we also provide the second eval-
uation where we measure accuracy and coverage on
(unique) test examples regardless of how frequent
they are. This evaluation will give us a better in-
sight into how well LCS and similarity-based meth-
ods work. Finally, we tested several settings for the
LSC method and the results presented here are ob-
tained for 20 clusters and 50 iterations. We remove
stop words 2 but do not take any other preprocessing
steps.

For both languages, it is more difficult to predict
to do than to make, although the differences in per-
formance on Dutch data (NL) are much smaller than
on English data (EN (sm)). An interesting obser-
vation is that using second-order similarity slightly
boosts performance for to make but is highly unde-
sirable for predicting to do (decrease in accuracy for
around 15%) in Dutch. This may be explained by the
fact that the objects of to do are already very generic.
Our findings on English data are that the similarity-
based approach is more sensitive to the choice of
aggregating over all words in the training set or se-
lecting the nearest neighbour. In particular, we ob-
tained better performance when choosing the nearest
neighbour for to do but aggregating over all scores
for to make. The results on Dutch and English data
are in general not always comparable. In addition
to the differences in performance of similarity-based
methods, the BoW models work better for predicting
to do in English but to make in Dutch.

As expected, similarity-based approaches yield
higher coverage than LSC, although the latter is su-
perior in terms of accuracy (in all cases but to do
in English). Since LSC turned out to be the most
computationally efficient method, we have also run
it on larger subsets of the PukWAC data set, up to
the entire corpus. We have not noticed any signifi-

2We use stop word lists for English and Dutch from http:
//snowball.tartarus.org/algorithms/.
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LANG Method TP (to make) Cov (to make) TP (to do) Cov (to do) Acc (all) Cov (all)
EN (all) LSC 91.70 98.75 73.40 97.16 85.90 98.24
EN (sm) LSC 89.81 90.00 75.81 86.70 86.91 89.30

SMP (f) 84.89 98.82 69.89 95.14 81.78 98.03
SMP (s) 82.92 98.82 55.65 95.14 77.27 98.03
SMknn (f) 62.61 98.82 91.13 95.14 68.52 98.03
SMknn (s) 4.36 98.82 99.46 95.14 24.07 98.03
BoW ±2 36.41 100 82.21 100 46.01 100
BoW ±3 32.26 100 84.10 100 43.13 100

NL LSC 98.75 91.79 95.74 93.37 98.09 92.13
SMP (f) 95.64 95.82 92.97 98.14 95.06 96.32
SMP (s) 97.52 95.82 76.75 98.14 93.00 96.32
SMknn (f) 94.14 95.82 92.97 98.14 93.89 96.32
SMknn (s) 96.09 95.82 78.64 98.14 92.30 96.32
BoW ±2 89.34 100 61.19 100 83.44 100
BoW ±3 91.06 100 54.18 100 83.32 100

Table 2: True positive rate (TP, %), accuracy (Acc, %) and coverage (Cov, %) for the experiments on English (EN)
and Dutch (NL) data.

LANG Method TP (to make) Cov (to make) TP (to do) Cov (to do) Acc (all) Cov (all)
EN (sm) LSC 80.88 77.12 52.60 74.76 73.73 76.51

SMP (f) 73.17 97.29 45.99 90.78 66.49 95.60
SMP (s) 77.00 97.29 33.69 90.78 66.36 95.60
SMknn (f) 31.18 97.29 82.35 90.78 43.76 95.60
SMknn (s) 4.36 98.82 98.93 90.78 25.76 95.60

NL LSC 94.85 63.40 86.59 76.64 92.39 66.83
SMP (f) 87.55 81.37 77.00 93.45 84.24 84.50
SMP (s) 91.16 81.37 54.00 93.45 80.52 84.50
SMknn (f) 80.72 81.37 76.00 93.45 79.66 84.50
SMknn (s) 85.54 81.37 55.00 93.45 76.79 84.50

Table 3: True positive rate (TP, %), accuracy (Acc, %) and coverage (Cov, %) for the experiments on English (EN)
and Dutch (NL) unique direct objects.

cant changes in performance; the results for the en-
tire data set, EN (all), are given in the first row of
Table 2. Table 3 shows the results for the methods
using direct object information on unique objects,
which gives a more realistic assessment of their per-
formance. At closer inspection, we noticed that
many non-classified cases in Dutch refer to com-
pounds. For instance, bluegrassmuziek (bluegrass
music) cannot be compared against known words in
the training set. In order to cover such cases, existing
methods may benefit from morphological analysis.

3 Conclusions

In order to predict the use of two often confused
verbs, to make and to do, we have compared two
methods to modeling selectional preferences against

the bag-of-words approach. The BoW method is al-
ways outperformed by LCS and similarity-based ap-
proaches, although the differences in performance
are much larger for to do in Dutch and for to make
in English. In this study, we do not use any corpus of
non-native speakers’ errors and explore how well it
is possible to predict one of two verbs provided that
the context words have been chosen correctly. In the
future work, we plan to label all incorrect uses of to
make and to do and to correct them.
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Abstract

Text reuse is common in many scenarios and
documents are often based, at least in part, on
existing documents. This paper reports an ap-
proach to detecting text reuse which identifies
not only documents which have been reused
verbatim but is also designed to identify cases
of reuse when the original has been rewrit-
ten. The approach identifies reuse by compar-
ing word n-grams in documents and modifies
these (by substituting words with synonyms
and deleting words) to identify when text has
been altered. The approach is applied to a cor-
pus of newspaper stories and found to outper-
form a previously reported method.

1 Introduction

Text reuse is the process of creating new docu-
ment(s) using text from existing document(s). Text
reuse is standard practice in some situations, such as
journalism. Applications of automatic detection of
text reuse include the removal of (near-)duplicates
from search results (Hoad and Zobel, 2003; Seo and
Croft, 2008), identification of text reuse in journal-
ism (Clough et al., 2002) and identification of pla-
giarism (Potthast et al., 2011).

Text reuse is more difficult to detect when the
original text has been altered. We propose an ap-
proach to the identification of text reuse which is
intended to identify reuse in such cases. The ap-
proach is based on comparison of word n-grams, a
popular approach to detecting text reuse. However,
we also account for synonym replacement and word
deletion, two common text editing operations (Bell,

1991). The relative importance of n-grams is ac-
counted for using probabilities obtained from a lan-
guage model. We show that making use of modified
n-grams and their probabilities improves identifica-
tion of text reuse in an existing journalism corpus
and outperforms a previously reported approach.

2 Related Work

Approaches for identifying text reuse based on
word-level comparison (such as the SCAM copy de-
tection system (Shivakumar and Molina, 1995)) tend
to identify topical similarity between a pair of doc-
uments, whereas methods based on sentence-level
comparison (e.g. the COPS copy detection sys-
tem (Brin et al., 1995)) are unable to identify when
text has been reused if only a single word has been
changed in a sentence.

Comparison of word and character n-grams has
proven to be an effective method for detecting text
reuse (Clough et al., 2002; Cedeño et al., 2009; Chiu
et al., 2010). For example, Cedeño et al. (2009)
showed that comparison of word bigrams and tri-
grams are an effective method for detecting reuse in
journalistic text. Clough et al. (2002) also applied
n-gram overlap to identify reuse of journalistic text,
combining it with other approaches such as sentence
alignment and string matching algorithms. Chiu et
al. (2010) compared n-grams to identify duplicate
and reused documents on the web. Analysis of word
n-grams has also proved to be an effective method
for detecting plagiarism, another form of text reuse
(Lane et al., 2006).

However, a limitation of n-gram overlap approach
is that it fails to identify reuse when the original
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text has been altered. To overcome this problem we
propose using modified n-grams, which have been
altered by deleting or substituting words in the n-
gram. The modified n-grams are intended to im-
prove matching with the original document.

3 Determining Text Reuse with N-gram
Overlap

3.1 N-grams Overlap (NG)
Following Clough et al. (2002), the asymmetric con-
tainment measure (eqn 1) was used to quantify the
degree of text within a document (A) that is likely to
have been reused in another document (B).

scoren(A, B) =

∑
ngram∈B

count(ngram,A)∑
ngram∈B

count(ngram,B)
(1)

where count(ngram,A) is the number of times
ngram appears in document A. A score of 1 means
that document B is contained in document A and a
score of 0 that none of the n-grams in B occur in A.

3.2 Modified N-grams
N-gram overlap has been shown to be useful for
measuring text reuse as derived texts typically share
longer n-grams (≥ 3 words). However, the approach
breaks down when an original document has been
altered. To counter this problem we applied vari-
ous techniques for modifying n-grams that allow for
word deletions (Deletions) and word substitutions
(WordNet and Paraphrases), two common text edit-
ing operations.

Deletions (Del) Assume that w1, w2, ...wn is an
n-gram. Then a set of modified n-grams can be cre-
ated by removing one of the w2 ... wn−1. The first
and last words in the n-gram are not removed since
they will also be generated as shorter n-grams. An
n-gram will generate n − 2 deleted n-grams and no
deleted n-grams will be generated for unigrams and
bigrams.

Substitutions Further n-grams can be created by
substituting one of the words in an n-gram with one
of its synonyms from WordNet (WN). For words
with multiple senses we use synonyms from all
senses. Modified n-grams are created by substitut-
ing one of the words in the n-gram with one of its
synonyms from WordNet.

Similarly to the WordNet approach, n-grams can
be created by substituting one of the words with an
equivalent term from a paraphrase lexicon, which
we refer to as Paraphrases (Para). A paraphrase
lexicon was generated automatically (Burch, 2008)
and ten lexical equivalents (the default setting) pro-
duced for each word. Modified n-grams were cre-
ated by substituting one of the words in the n-gram
with one of the lexical equivalents.

3.3 Comparing Modified N-grams
The modified n-grams are applied in the text reuse
score by generating modified n-grams for the docu-
ment that is suspected to contain reused text. These
n-grams are then compared with the original docu-
ment to determine the overlap. However, the tech-
niques in Section 3.2 generate a large number of
modified n-grams which means that the number
of n-grams that overlap with document A can be
greater than the total number of n-grams in B, lead-
ing to similarity scores greater than 1. To avoid this
the n-gram overlap counts are constrained in a simi-
lar way that they are clipped in BLEU and ROUGE
(Papineni et al., 2002; Lin, 2004).

For each n-gram in B, a set of modified n-grams,
mod(ngram), is created.1 The count for an in-
dividual n-gram in B, exp count(ngram,B), can
be computed as the number of times any n-gram in
mod(ngram) occurs in A, see equation 2.∑

ngram′ ∈mod(ngram)

count(ngram′, A) (2)

However, the contribution of this count to the text
reuse score has to be bounded to ensure that the com-
bined count of the modified n-grams appearing in
A does not exceed the number of times the origi-
nal n-gram occurs in B. Consequently the text reuse
score, scoren(A, B), is computed using equation 3.∑

ngram
∈B

min(exp count(ngram, A), count(ngram, B))

∑
ngram∈B

count(ngram, B)

(3)

3.4 Weighting N-grams
Probabilities of each n-gram, obtained using a lan-
guage model, are used to increase the importance of

1This is the set of n-grams that could have been created by
modifing an n-gram in B and includes the original n-gram itself.
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rare n-grams and decrease the contribution of com-
mon ones. N-gram probabilities are computed us-
ing the SRILM language modelling toolkit (Stolcke,
2002). The score for each n-gram is computed as
its Information Content (Cover and Thomas, 1991),
ie. −log(P ). When the language model (LM) is
applied the scores associated with each n-gram are
used instead of counts in equations 2 and 3.

4 Experiments

4.1 METER Corpus

The METER corpus (Gaizauskas et al., 2001) con-
tains 771 Press Association (PA) articles, some of
which were used as source(s) for 945 news stories
published by nine British newspapers.

These 945 documents are classified as Wholly De-
rived (WD), Partially Derived (PD) and Non De-
rived (ND). WD means that the newspaper article
is likely derived entirely from the PA source text;
PD reflects the situation where some of the newspa-
per article is derived from the PA source text; news
stories likely to be written independently of the PA
source fall into the category of ND. In our experi-
ments, the 768 stories from court and law reporting
were used (WD=285, PD=300, ND=183) to allow
comparison with Clough et al. (2002). To provide a
collection to investigate binary classification we ag-
gregated the WD and PD cases to form a Derived set.
Each document was pre-processed by converting to
lower case and removing all punctuation marks.

4.2 Determining Reuse

The text reuse task aims to distinguish between lev-
els of text reuse, i.e. WD, PD and ND. Two versions
of a classification task were used: binary classifica-
tion distinguishes between Derived (i.e. WD ∪ PD)
and ND documents, and ternary classification distin-
guishes all three levels of reuse.

A Naive Bayes classifier (Weka version 3.6.1) and
10-fold cross validation were used for the experi-
ments. Containment similarity scores between all
PA source texts and news articles on the same story
were computed for word uni-grams, bi-grams, tri-
grams, four-grams and five-grams. These five simi-
larity scores were used as features. Performance was
measured using precision, recall and F1 measures
with the macro-average reported across all classes.

The language model (Section 3.4) was trained us-
ing 806,791 news articles from the Reuters Corpus
(Rose et al., 2002). A high proportion of the news
stories selected were related to the topics of enter-
tainment and legal reports to reflect the subjects of
the new articles in the METER corpus.

5 Results and Analysis

Tables 1 and 2 show the results of the binary
and ternary classification experiments respectively.
“NG” refers to the comparison of n-grams in each
document (Section 3.1), while “Del”, “WN” and
“Para” refer to the modified n-grams created us-
ing deletions, WordNet and paraphrases respectively
(Section 3.2). The prefix “LM” (e.g. “LM-NG”) in-
dicates that the n-grams are weighted using the lan-
guage model probability scores (Section 3.4).

For the binary classification task (Table 1) it can
be observed that including modified n-grams im-
proves performance. This improvement is observed
when each of the three types of modified n-grams
is applied individually, with a greater increase being
observed for the n-grams created using the WordNet
and paraphrase approaches. Further improvement is
observed when different types of modified n-grams
are combined with the best performance obtained
when all three types are used. All improvements
over the baseline approach (NG) are statistically
significant (Wilcoxon signed-rank test, p < 0.05).
These results demonstrate that the various types of
modified n-grams all contribute to identifying when
text is being reused since they capture different types
of rewrite operations.

In addition, performance consistently improves
when n-grams are weighted using language model
scores. The improvement is significant for all types
of n-grams. This demonstrates that the information
provided by the language model is useful in deter-
mining the relative importance of n-grams.

Several of the results are higher than those re-
ported by Clough et al. (2002) (F1=0.763), despite
the fact their approach supplements n-gram overlap
with additional techniques such as sentence align-
ment and string search algorithms.

Results of the ternary classification task are
shown in Table 2. Results show a similar pattern
to those observed for the binary classification task
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Approach P R F1

NG 0.836 0.706 0.732
LM-NG 0.846 0.722 0.746

Del 0.851 0.745 0.767
LM-Del 0.858 0.765 0.785

WN 0.876 0.801 0.817
LM-WN 0.879 0.810 0.825

Para 0.884 0.821 0.834
LM-Para 0.888 0.831 0.843
Del+WN 0.889 0.835 0.847

LM-Del+WN 0.884 0.848 0.855
Del+Para 0.892 0.841 0.853

LM-Del+Para 0.896 0.849 0.860
WN+Para 0.894 0.848 0.858

LM-WN+Para 0.896 0.865 0.871
Del+WN+Para 0.897 0.856 0.865

LM-Del+WN+Para 0.903 0.876 0.882
(Clough et al., 2002) — — 0.763

Table 1: Results for binary classification

and the best result is also obtained when all three
types of modified n-grams are included and n-grams
are weighted with probability scores. Once again
weighting n-grams with language model scores im-
proves results for all types of n-gram and this im-
provement is significant. Results for several types of
n-gram are also better than those reported by Clough
et al. (2002) (F1=0.664).

Results for all approaches are lower for the
ternary classification. This is because the binary
classification task involves distinguishing between
two classes of documents which are relatively dis-
tinct (derived and non-derived) while the ternary
task divides the derived class into two (WD and PD)
which are more difficult to separate (see Table 3
showing confusion matrix for the approach which
gave best results for ternary classification).

6 Conclusion

This paper describes an approach to the analysis of
text reuse which is based on comparison of n-grams.
This approach is augmented by modifying the n-
grams in various ways and weighting them with
probabilities derived from a language model. Evalu-
ation is carried out on a standard data set containing
examples of reused journalistic texts. Making use of

Approach P R F1

NG 0.596 0.557 0.551
LM-NG 0.615 0.579 0.574

Del 0.612 0.584 0.579
LM-Del 0.633 0.611 0.606

WN 0.644 0.636 0.631
LM-WN 0.649 0.640 0.635

Para 0.662 0.653 0.647
LM-Para 0.669 0.659 0.654
Del+WN 0.655 0.649 0.643

LM-Del+WN 0.668 0.656 0.650
Del+Para 0.665 0.658 0.652

LM-Del+Para 0.661 0.662 0.655
WN+Para 0.668 0.661 0.655

LM-WN+Para 0.680 0.675 0.668
Del+WN+Para 0.669 0.666 0.660

LM-Del+WN+Para 0.688 0.689 0.683
(Clough et al., 2002) — — 0.664

Table 2: Results for ternary classification

Classified as WD PD ND
WD 139 94 14
PD 57 206 54
ND 1 13 191

Table 3: Confusion matrix when “LM-Del+WN+Para”
approach used for ternary classification

modified n-grams with appropriate weights is found
to improve performance when detecting text reuse
and the approach described here outperforms an ex-
isting approach. In future we plan to experiment
with other methods for modifying n-grams and also
to apply this approach to other types of text reuse.
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Abstract 

Corpus-based thesaurus construction for Mor-
phologically Rich Languages (MRL) is a com-
plex task, due to the morphological variability 
of MRL. In this paper we explore alternative 
term representations, complemented by cluster-
ing of morphological variants. We introduce a 
generic algorithmic scheme for thesaurus con-
struction in MRL, and demonstrate the empiri-
cal benefit of our methodology for a Hebrew 
thesaurus. 

1 Introduction 

Corpus-based thesaurus construction has been an 
active research area (Grefenstette, 1994; Curran 
and Moens, 2002; Kilgarriff, 2003; Rychly and 
Kilgarriff, 2007). Typically, two statistical ap-
proaches for identifying semantic relationships 
between words were investigated: first-order, co-
occurrence-based methods which assume that 
words that occur frequently together are topically 
related (Schutze and Pederson, 1997) and second-
order, distributional similarity methods (Hindle, 
1990; Lin, 1998; Gasperin et al, 2001; Weeds and 
Weir, 2003; Kotlerman et al., 2010), which suggest 
that words occurring within similar contexts are 
semantically similar (Harris, 1968).  

While most prior work focused on English, we 
are interested in applying these methods to MRL. 
Such languages, Hebrew in our case, are character-
ized by highly productive morphology which may 
produce as many as thousands of word forms for a 
given root form.    

Thesauri usually provide related terms for each 
entry term (denoted target term). Since both target 

and related terms correspond to word lemmas, sta-
tistics collection from the corpus would be most 
directly applied at the lemma level as well, using a 
morphological analyzer and tagger (Linden and 
Piitulainen, 2004; Peirsman et al., 2008; Rapp, 
2009). However, due to the rich and challenging 
morphology of MRL, such tools often have limited 
performance. In our research, the accuracy of a 
state-of-the-art modern Hebrew tagger on a cross 
genre corpus was only about 60%. 

Considering such limited performance of mor-
phological processing, we propose a schematic 
methodology for generating a co-occurrence based 
thesaurus in MRL. In particular, we propose and 
investigate three options for term representation, 
namely surface form, lemma and multiple lemmas, 
supplemented with clustering of term variants. 
While the default lemma representation is depend-
ent on tagger performance, the two other represen-
tations avoid choosing the right lemma for each 
word occurrence. Instead, the multiple-lemma rep-
resentation assumes that the right analysis will ac-
cumulate enough statistical prominence throughout 
the corpus, while the surface representation solves 
morphological disambiguation "in retrospect", by 
clustering term variants at the end of the extraction 
process. As the methodology provides a generic 
scheme for exploring the alternative representation 
levels, each corpus and language-specific tool set 
might yield a different optimal configuration. 

2 Methodology  

Thesauri usually contain thousands of entries, 
termed here target terms. Each entry holds a list of 
related terms, covering various semantic relations. 
In this paper we assume that the list of target terms 
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is given as input, and focus on the process of ex-
tracting a ranked list of candidate related terms 
(termed candidate terms) for each target term. The 
top ranked candidates may be further examined 
(manually) by a lexicographer, who will select the 
eventual related terms for the thesaurus entry. 

Our methodology was applied for statistical 
measures of first order similarity (word co-
occurrence). These statistics consider the number 
of times each candidate term co-occurs with the 
target term in the same document, relative to their 
total frequencies in the corpus. Common co-
occurrence metrics are Dice coefficient (Smadja et 
al, 1996), Pointwise Mutual Information (PMI) 
(Church and Hanks, 1990) and log-likelihood test 
(Dunning, 1993). 

2.1 Term Representation 

Statistical extraction is affected by term 
representation in the corpus. Usually, related terms 
in a thesaurus are lemmas, which can be identified 
by morphological disambiguation tools. However, 
we present two other approaches for term 
representation (either a target term or a candidate 
related term), which are less dependent on 
morphological processing.  

Typically, a morphological analyzer produces 
all possible analyses for a given token in the cor-
pus. Then, a Part Of Speech (POS) tagger selects 
the most probable analysis and solves morphology 
disambiguation. However, considering the poor 
performance of the POS tagger on our corpus, we 
distinguish between these two analysis levels. 
Consequently, we examined three levels of term 
representation: (i) Surface form (surface) (ii) Best 
lemma, as indentified by a POS tagger (best), and 
(iii) All possible lemmas, produced by a morpho-
logical analyzer (all). 

2.2 Algorithmic Scheme 

We used the following algorithmic scheme for the-
saurus construction. Our input is a target term in 
one of the possible term representations (surface, 
best or all). For each target term we retrieve all the 
documents in the corpus where the target term ap-
pears. Then, we define a set of candidate terms that 
consists of all the terms that appear in all these 
documents (this again for each of the three possible 
term representations). Next, a co-occurrence score 
between the target term and each of the candidates 

is calculated. Then, candidates are sorted, and the 
highest rated candidate terms are clustered into 
lemma-oriented clusters. Finally, we rank the clus-
ters according to their members' co-occurrence 
scores and the highest rated clusters become relat-
ed terms in the thesaurus. 

Figure 1 presents the algorithm’s pseudo code. 
The notion rep(term) is used to describe the possi-
ble term representations and may be either surface, 
best or all. In our experiments, when 
rep(target_term)=best, the correct lemma was 
manually assigned (assuming a lexicographer in-
volvement with each thesaurus entry in our set-
ting). While, when rep(word)=best, the most prob-
able lemma is assigned by the tagger (since there 
are numerous candidates for each target term we 
cannot resort the manual involvement for each of 
them).  The two choices for rep(term) are inde-
pendent, resulting in nine possible configurations 
of the algorithm for representing both the target 
term and the candidate terms. Thus, these 9 con-
figurations cover the space of possibilities for term 
representation. Exploring all of them in a systemat-
ic manner would reveal the best configuration in a 
particular setting.  

Figure 1: Methodology implementation algorithm 

2.3 Clustering 

The algorithm of Figure 1 suggests clustering the 
extracted candidates before considering them for 
the thesaurus. Clustering aims at grouping together 
related terms with the same lemma into clusters, 
using some measure of morphological equivalence. 
Accordingly, an equivalence measure between re-
lated terms needs to be defined, and a clustering 

Input: target term, corpus, a pair of values for 
rep(target_term) and rep(word) 
Output: clusters of related terms 
 
target_term �  rep(target_term) 
docs_list �  search(target_term) 
FOR doc IN docs_list 
    FOR word IN doc 
        add rep(word) to candidates 
    ENDFOR 
ENDFOR 
compute co-occurrence scores for all candidates 
sort(candidates) by score 
clusters � cluster(top(candidates)) 
rank(clusters) 
related terms � top(clusters) 
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algorithm needs to be selected. Each obtained clus-
ter is intended to correspond to the lemma of a sin-
gle candidate term. Obviously, clustering is mostly 
needed for surface-level representation, in order to 
group all different inflections of the same lemma. 
Yet, we note that it was also found necessary for 
the lemma-level representations, because the tag-
ger often identifies slightly different lemmas for 
the same term.  

The equivalence measure is used for building a 
graph representation of the related terms. We rep-
resented each term by a vertex and added an edge 
between each pair of terms that were deemed 
equivalent. We investigated alternative equiva-
lence measures for measuring the morphological 
distance between two vertices in our graph. We 
considered the string edit distance measure and 
suggested two morphological-based equivalence 
measures. The first measure, given two vertices' 
terms, extracts all possible lemmas for each term 
and searches for an overlap of at least one lemma. 
The second measure considers the most probable 
lemma of the vertices' terms and checks whether 
these lemmas are equal. The probability of a lem-
ma was defined as the sum of probabilities for all 
morphological analyses containing the lemma, us-
ing a morpho-lexical context-independent proba-
bilities approximation (Goldberg et al., 2008). The 
clustering was done by finding the connected com-
ponents in our graph of terms using the JUNG1 
implementation (WeakComponentVertexClusterer 
algorithm with default parameters). The connected 
components are expected to correspond to different 
lemmas of terms. Hierarchical clustering methods 
(Jain et al., 1999) were examined as well (Single-
link and Complete-link clustering), but they were 
inferior.  

After applying the clustering algorithm, we re-
ranked the clusters aiming to get the best clusters 
at the top of clusters list. We investigated two scor-
ing approaches for cluster ranking; maximization 
and averaging. The maximization approach assigns 
the maximal score of the cluster members as the 
cluster score. While the averaging approach as-
signs the average of the cluster members' scores as 
the cluster score. The score obtained by either of 
the approaches may be scaled by the cluster length, 
to account for the accumulative impact of all class 

                                                           
1 http://jung.sourceforge.net/  

members (corresponding to morphological variants 
of the candidate term).  

3 Case Study: Cross-genre Hebrew 
Thesaurus 

Our research targets the construction of a cross 
genre thesaurus for the Responsa project2 . The 
corpus includes questions posed to rabbis along 
with their detailed rabbinic answers, consisting of 
various genres and styles. It contains 76,710 arti-
cles and about 100 million word tokens, and was 
used for previous IR and NLP research (Choueka, 
1972; Fraenkel, 1976; Choueka et al., 1987; Kernel 
et al, 2008). 

Unfortunately, due to the different genres in the 
Responsa corpus, available tools for Hebrew pro-
cessing perform poorly on this corpus. In a prelim-
inary experiment, the POS tagger (Adler and 
Elhadad, 2006) accuracy on the Responsa Corpus 
was less than 60%, while the accuracy of the same 
tagger on modern Hebrew corpora is ~90% (Bar-
Haim et al., 2007).  

For this project, we utilized the MILA Hebrew 
Morphological Analyzer3 (Itai and Wintner, 2008; 
Yona and Wintner, 2008) and the (Adler and 
Elhadad 2006) POS tagger for lemma representa-
tion. The latter had two important characteristics: 
The first is flexibility- This tagger allows adapting 
the estimates of the prior (context-independent) 
probability of each morphological analysis in an 
unsupervised manner, from an unlabeled corpus of 
the target domain (Goldberg et al., 2008). The se-
cond advantage is its mechanism for analyzing un-
known tokens (Adler et al., 2008). Since about 
50% of the words in our corpora are unknown 
(with respect to MILA's lexicon), such mechanism 
is essential.  

For statistics extraction, we used Lucene4. We 
took the top 1000 documents retrieved for the tar-
get term and extracted candidate terms from them. 
Dice coefficient was used as our co-occurrence 
measure, most probable lemma was considered for 
clustering equivalence, and clusters were ranked 
based on maximization, where the maximal score 
was multiplied by cluster size. 

 

                                                           
2 Corpus kindly provided - http://www.biu.ac.il/jh/Responsa/ 
3 http://mila.cs.technion.ac.il/mila/eng/tools_analysis.html 
3 http://mila.cs.technion.ac.il/mila/eng/tools_analysis.html 
4 http://lucene.apache.org/ 

3 http://mila.cs.technion.ac.il/mila/eng/tools_analysis.html 
4 http://lucene.apache.org/ 
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4 Evaluation 

4.1 Dataset and Evaluation Measures 

The results reported in this paper were obtained 
from a sample of 108 randomly selected terms 
from a list of 5000 terms, extracted from two pub-
licly available term lists: the University of Haifa’s 
entry list5 and Hebrew Wikipedia entries6. 

In our experiments, we compared the perfor-
mance of the alternative 9 configurations by four 
commonly used IR measures: precision (P), rela-
tive recall (R), F1, and Average Precision (AP). 
The scores were macro-averaged. We assumed that 
our automatically-generated candidate terms will 
be manually filtered, thus, recall becomes more 
important than precision. Since we do not have any 
pre-defined thesaurus, we evaluated the relative-
recall. Our relative-recall considered the number of 
suitable related terms from the output of all meth-
ods as the full set of related terms. As our system 
yielded a ranked sequence of related terms clusters, 
we also considered their ranking order. Therefore, 
we adopted the recall-oriented AP for ranking 
(Voorhees and Harman, 1999). 

4.2  Annotation Scheme 

The output of the statistical extraction is a ranked 
list of clusters of candidate related terms. Since 
manual annotation is expensive and time consum-
ing, we annotated for the gold standard the top 15 
clusters constructed from the top 50 candidate 
terms, for each target term. Then, an annotator 
judged each of the clusters' terms. A cluster was 
considered as relevant if at least one of its terms 
was judged relevant7. 

4.3 Results 

Table 1 compares the performance of all nine term 
representation configurations. Due to data sparse-
ness, the lemma-based representations of the target 
term outperform its surface representation. How-
ever, the best results were obtained from candidate 
representation at the surface level, which was 
complemented by grouping term variants to lem-
mas in the clustering phase. 

                                                           
5
 http://lib.haifa.ac.il/systems/ihp.html 

6
 http://he.wikipedia.org 

7 This was justified by empirical results that found only a few 
clusters with some terms judged positive and others negative  

All best surface Candidate 
  Target 

26.68 29.37 36.59 R 

Surface 
18.71 21.09 24.29 P 
21.99 24.55 29.20 F1 
14.13 15.83 20.87 AP 

36.97 39.88 46.70 R 

Best 
lemma 

20.94 23.08 25.03 P 

26.74 29.24 32.59 F1 

19.32 20.86 26.84 AP 

42.13 42.52 47.13 R 

All 
 lemmas 

21.23 22.47 23.72 P 

28.24 29.40 31.56 F1 

21.14 22.99 27.86 AP 
Table 1: Performances of the nine configuratrions 

 
Furthermore, we note that the target representa-

tion by all possible lemmas (all) yielded the best R 
and AP scores, which we consider as most im-
portant for the thesaurus construction setting. The 
improvement over the common default best lemma 
representation, for both target and candidate, is 
notable (7 points) and is statistically significant 
according to the two-sided Wilcoxon signed-rank 
test (Wilcoxon, 1945) at the 0.01 level for AP and 
0.05 for R.  

5 Conclusions and Future Work 

We presented a methodological scheme for ex-
ploring alternative term representations in statisti-
cal thesaurus construction for MRL, complemented 
by lemma-oriented clustering at the end of the pro-
cess. The scheme was investigated for a Hebrew 
cross-genre corpus, but can be generically applied 
in other settings to find the optimal configuration 
in each case. 

We plan to adopt our methodology to second 
order distributional similarity methods as well. In 
this case there is an additional dimension, namely 
feature representation, whose representation level 
should be explored as well. In addition, we plan to 
extend our methods to deal with Multi Word Ex-
pressions (MWE). 
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Abstract

In this paper, we investigate a full-fledged
supervised machine learning framework for
identifying English phrasal verbs in a given
context. We concentrate on those that we de-
fine asthe most confusingphrasal verbs, in the
sense that they are the most commonly used
ones whose occurrence may correspond either
to a true phrasal verb or an alignment of a sim-
ple verb with a preposition.

We construct a benchmark dataset1 with 1,348
sentences from BNC, annotated via an Inter-
net crowdsourcing platform. This dataset is
further split into two groups, moreidiomatic
group which consists of those that tend to be
used as a true phrasal verb and morecompo-
sitional group which tends to be used either
way. We build a discriminative classifier with
easily available lexical and syntactic features
and test it over the datasets. The classifier
overall achieves 79.4% accuracy, 41.1% er-
ror deduction compared to the corpus major-
ity baseline 65%. However, it is even more
interesting to discover that the classifier learns
more from the morecompositionalexamples
than thoseidiomaticones.

1 Introduction

Phrasal verbs in English, are syntactically defined
as combinations of verbs and prepositions or parti-
cles, but semantically their meanings are generally
not the direct sum of their parts. For example,give
in meanssubmit, yieldin the sentence,Adam’s say-
ing it’s important to stand firm , not give in to ter-
rorists. Adam was notgiving anything and he was

1http://cogcomp.cs.illinois.edu/page/resources/PVCData

not in anywhere either. (Kolln and Funk, 1998) uses
the test of meaningto detect English phrasal verbs,
i.e., each phrasal verb could be replaced by a single
verb with the same general meaning, for example,
usingyield to replacegive in in the aforementioned
sentence. To confuse the issue even further, some
phrasal verbs, for example,give in in the follow-
ing two sentences, are used either as a true phrasal
verb (the first sentence) or not (the second sentence)
though their surface forms look cosmetically similar.

1. How many Englishmengave in to their emo-
tions like that ?

2. It is just this denial of anything beyond what is
directly given in experience that marks Berke-
ley out as an empiricist .

This paper is targeting to build an automatic learner
which can recognize a true phrasal verb from its
orthographically identical construction with a verb
and a prepositional phrase. Similar to other types
of MultiWord Expressions (MWEs) (Sag et al.,
2002), the syntactic complexity and semantic id-
iosyncrasies of phrasal verbs pose many particular
challenges in empirical Natural Language Process-
ing (NLP). Even though a few of previous works
have explored this identification problem empiri-
cally (Li et al., 2003; Kim and Baldwin, 2009) and
theoretically (Jackendoff, 2002), we argue in this pa-
per that this context sensitive identification problem
is not so easy as conceivably shown before, espe-
cially when it is used to handle those morecom-
positionalphrasal verbs which are empirically used
either way in the corpus as a true phrasal verb or
a simplex verb with a preposition combination. In
addition, there is still a lack of adequate resources
or benchmark datasets to identify and treat phrasal
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verbs within a given context. This research is also
an attempt to bridge this gap by constructing a pub-
licly available dataset which focuses on some of the
most commonly used phrasal verbs within their most
confusing contexts.

Our study in this paper focuses on six of the most
frequently used verbs,take, make, have, get, do
andgive and their combination with nineteen com-
mon prepositions or particles, such ason, in, up
etc. We categorize these phrasal verbs according to
their continuum of compositionality, splitting them
into two groups based on the biggest gap within
this scale, and build a discriminative learner which
uses easily available syntactic and lexical features to
analyze them comparatively. This learner achieves
79.4% overall accuracy for the whole dataset and
learns the most from the morecompositionaldata
with 51.2% error reduction over its 46.6% baseline.

2 Related Work

Phrasal verbs in English were observed as one kind
of composition that is used frequently and consti-
tutes the greatest difficulty for language learners
more than two hundred and fifty years ago in Samuel
Johnson’sDictionary of English Language2. They
have also been well-studied in modern linguistics
since early days (Bolinger, 1971; Kolln and Funk,
1998; Jackendoff, 2002). Careful linguistic descrip-
tions and investigations reveal a wide range of En-
glish phrasal verbs that are syntactically uniform,
but diverge largely in semantics, argument struc-
ture and lexical status. The complexity and idiosyn-
crasies of English phrasal verbs also pose a spe-
cial challenge to computational linguistics and at-
tract considerable amount of interest and investi-
gation for their extraction, disambiguation as well
as identification. Recent computational research on
English phrasal verbs have been focused on increas-
ing the coverage and scalability of phrasal verbs by
either extracting unlisted phrasal verbs from large
corpora (Villavicencio, 2003; Villavicencio, 2006),
or constructing productive lexical rules to gener-
ate new cases (Villanvicencio and Copestake, 2003).
Some other researchers follow the semantic regular-
ities of the particles associated with these phrasal
verbs and concentrate on disambiguation of phrasal

2It is written in the Preface of that dictionary.

verb semantics, such as the investigation of the most
common particleupby (Cook and Stevenson, 2006).

Research on token identification of phrasal verbs
is much less compared to the extraction. (Li et
al., 2003) describes a regular expression based sim-
ple system. Regular expression based method re-
quires human constructed regular patterns and can-
not make predictions forOut-Of-Vocabularyphrasal
verbs. Thus, it is hard to be adapted to other NLP
applications directly. (Kim and Baldwin, 2009) pro-
poses a memory-based system with post-processed
linguistic features such as selectional preferences.
Their system assumes the perfect outputs of a parser
and requires laborious human corrections to them.

The research presented in this paper differs from
these previous identification works mainly in two
aspects. First of all, our learning system is fully
automatic in the sense that no human intervention
is needed, no need to construct regular patterns or
to correct parser mistakes. Secondly, we focus our
attention on the comparison of the two groups of
phrasal verbs, the moreidiomatic group and the
more compositionalgroup. We argue that while
moreidiomaticphrasal verbs may be easier to iden-
tify and can have above 90% accuracy, there is still
much room to learn for those morecompostional
phrasal verbs which tend to be used either positively
or negatively depending on the given context.

3 Identification of English Phrasal Verbs

We formulate the context sensitive English phrasal
verb identification task as a supervised binary clas-
sification problem. For each target candidate within
a sentence, the classifier decides if it is a true phrasal
verb or a simplex verb with a preposition. Formally,
given a set ofn labeled examples{xi, yi}

n

i=1
, we

learn a functionf : X → Y whereY ∈ {−1, 1}.
The learning algorithm we use is the soft-margin
SVM with L2-loss. The learning package we use
is LIBLINEAR (Chang and Lin, 2001)3.

Three types of features are used in this discrimi-
native model. (1)Words: given the window size from
the one before to the one after the target phrase,
Words feature consists of every surface string of
all shallow chunks within that window. It can be
an n-word chunk or a single word depending on

3http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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the the chunk’s bracketing. (2)ChunkLabel: the
chunk name with the given window size, such asVP,
PP, etc. (3)ParserBigram: the bi-gram of the non-
terminal label of the parents of both the verb and
the particle. For example, from this partial tree(VP
(VB get)(PP (IN through)(NP (DT the)(NN day))),
the parent label for the verbget is VP and the par-
ent node label for the particlethrough is PP. Thus,
this feature value isVP-PP. Our feature extractor
is implemented in Java through a publicly available
NLP library4 via the tool called Curator (Clarke et
al., 2012). The shallow parser is publicly avail-
able (Punyakanok and Roth, 2001)5 and the parser
we use is from (Charniak and Johnson, 2005).

3.1 Data Preparation and Annotation

All sentences in our dataset are extracted from BNC
(XML Edition), a balanced synchronic corpus con-
taining 100 million words collected from various
sources of British English. We first construct a list of
phrasal verbs for the six verbs that we are interested
in from two resources, WN3.0 (Fellbaum, 1998)
and DIRECT6. Since these targeted verbs are also
commonly used in English Light Verb Constructions
(LVCs), we filter out LVCs in our list using a pub-
licly available LVC corpus (Tu and Roth, 2011). The
result list consists of a total of 245 phrasal verbs.
We then search over BNC and find sentences for all
of them. We choose the frequency threshold to be
25 and generate a list of 122 phrasal verbs. Finally
we manually pick out 23 of these phrasal verbs and
sample randomly 10% extracted sentences for each
of them for annotation.

The annotation is done through a crowdsourcing
platform7. The annotators are asked to identify true
phrasal verbs within a sentence. The reported inner-
annotator agreement is 84.5% and the gold aver-
age accuracy is 88%. These numbers indicate the
good quality of the annotation. The final corpus
consists of 1,348 sentences among which, 65% with
a true phrasal verb and 35% with a simplex verb-
preposition combination.

4http://cogcomp.cs.illinois.edu/software/edison/
5http://cogcomp.cs.illinois.edu/page/softwareview/Chunker
6http://u.cs.biu.ac.il/∼nlp/downloads/DIRECT.html
7crowdflower.com

3.2 Dataset Splitting

Table 1 lists all verbs in the dataset.Total is the to-
tal number of sentences annotated for that phrasal
verb andPositiveindicated the number of examples
which are annotated as containing the true phrasal
verb usage. In this table, the decreasing percent-
age of the true phrasal verb usage within the dataset
indicates the increasing compositionality of these
phrasal verbs. The natural division line with this
scale is the biggest percentage gap (about 10%) be-
tweenmakeout andget at. Hence, two groups are
split over that gap. The moreidiomatic group con-
sists of the first 11 verbs with 554 sentences and 91%
of these sentences include true phrasal verb usage.
This data group is more biased toward the positive
examples. The morecompositionaldata group has
12 verbs with 794 examples and only 46.6% of them
contain true phrasal verb usage. Therefore, this data
group is more balanced with respective to positive
and negative usage of the phrase verbs.

Verb Total Positive Percent(%)

get onto 6 6 1.00
get through 61 60 0.98
get together 28 27 0.96
get on with 70 67 0.96
get down to 17 16 0.94
get by 11 10 0.91
get off 51 45 0.88
get behind 7 6 0.86
takeon 212 181 0.85
get over 34 29 0.85
makeout 57 48 0.84
get at 35 26 0.74
get on 142 103 0.73
takeafter 10 7 0.70
do up 13 8 0.62
get out 206 118 0.57
do good 8 4 0.50
makefor 140 65 0.46
get it on 9 3 0.33
get about 20 6 0.30
makeover 12 3 0.25
give in 118 27 0.23
haveon 81 13 0.16

Total: 23 1348 878 0.65

Table 1: The top group consists of the moreidiomatic
phrasal verbs with 91% of their occurrence within the
dataset to be a true phrasal verb. The second group con-
sists of those morecompositionalones with only 46.6%
of their usage in the dataset to be a true phrasal verb.
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3.3 Experimental Results and Discussion

Our results are computed via 5-cross validation. We
plot the classifier performance with respect to the
overall dataset, the morecompositionalgroup and
the moreidiomatic group in Figure 1. The clas-
sifier only improves 0.6% when evaluated on the
idiomatic group. Phrasal verbs in this dataset are
more biased toward behaving like an idiom regard-
less of their contexts, thus are more likely to be cap-
tured by rules or patterns. We assume this may ex-
plain some high numbers reported in some previ-
ous works. However, our classifier is more effec-
tive over the morecompositionalgroup and reaches
73.9% accuracy, a 51.1% error deduction comparing
to its majority baseline. Phrasal verbs in this set tend
to be used equally likely as a true phrasal verb and
as a simplex verb-preposition combination, depend-
ing on their context. We argue phrasal verbs such as
these pose a real challenge for building an automatic
context sensitive phrasal verb classifier. The overall
accuracy of our preliminary classifier is about 79.4%
when it is evaluated over all examples from these
two groups.
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Figure 1: Classifier Accuracy of each data group, com-
paring with their baseline respectively. Classifier learns
the most from the morecompositionalgroup, indicated
by its biggest histogram gap.

Finally, we conduct an ablation analysis to ex-
plore the contributions of the three types of features
in our model and their accuracies with respect to
each data group are listed in Table 2 with the bold-
faced best performance. Each type of features is
used individually in the classifier. The feature type

Words is the most effective feature with respect to
the idiomaticgroup and the overall dataset. And the
chunkfeature is more effective towards thecompo-
sitional group, which may explain the linguistic in-
tuition that negative phrasal verbs usually do not be-
long to the same syntactic chunk.

Datasets
Overall Compositional Idiom.

Baseline 65.0% 46.6% 91%

Words 78.6% 70.2% 91.4%
Chunk 65.6% 70.7% 89.4%
ParserBi 64.4% 67.2% 89.4%

Table 2: Accuracies achieved by the classifier when
tested on different data groups. Features are used indi-
vidually to evaluate the effectiveness of each type.

4 Conclusion

In this paper, we build a discriminative learner to
identify English phrasal verbs in a given context.
Our contributions in this paper are threefold. We
construct a publicly available context sensitive En-
glish phrasal verb dataset with 1,348 sentences from
BNC. We split the dataset into two groups according
to their tendency toward idiosyncrasy and compo-
sitionality, and build a discriminative learner which
uses easily available syntactic and lexical features to
analyze them comparatively. We demonstrate em-
pirically that high accuracy achieved by models may
be due to the stronger idiomatic tendency of these
phrasal verbs. For many of the moreambiguous
cases, a classifier learns more from thecomposi-
tional examples and these phrasal verbs are shown
to be more challenging.
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Abstract

We investigate the semantic relationship be-
tween a noun and its adjectival modifiers.
We introduce a class of probabilistic mod-
els that enable us to to simultaneously cap-
ture both the semantic similarity of nouns
and modifiers, and adjective-noun selectional
preference. Through a combination of novel
and existing evaluations we test the degree to
which adjective-noun relationships can be cat-
egorised. We analyse the effect of lexical con-
text on these relationships, and the efficacy of
the latent semantic representation for disam-
biguating word meaning.

1 Introduction

Developing models of the meanings of words and
phrases is a key challenge for computational linguis-
tics. Distributed representations are useful in captur-
ing such meaning for individual words (Sato et al.,
2008; Maas and Ng, 2010; Curran, 2005). How-
ever, finding a compelling account of semantic com-
positionality that utilises such representations has
proven more difficult and is an active research topic
(Mitchell and Lapata, 2008; Baroni and Zamparelli,
2010; Grefenstette and Sadrzadeh, 2011). It is in
this area that our paper makes its contribution.

The dominant approaches to distributional se-
mantics have relied on relatively simple frequency
counting techniques. However, such approaches fail
to generalise to the much sparser distributions en-
countered when modeling compositional processes
and provide no account of selectional preference.
We propose a probabilistic model of the semantic
representations for nouns and modifiers. The foun-
dation of this model is a latent variable representa-

tion of noun and adjective semantics together with
their compositional probabilities. We employ this
formulation to give a dual view of noun-modifier
semantics: the induced latent variables provide an
explicit account of selectional preference while the
marginal distributions of the latent variables for each
word implicitly produce a distributed representation.

Most related work on selectional preference uses
class-based probabilities to approximate (sparse)
individual probabilities. Relevant papers include
Ó Séaghdha (2010), who evaluates several topic
models adapted to learning selectional preference
using co-occurence and Baroni and Zamparelli
(2010), who represent nouns as vectors and adjec-
tives as matrices, thus treating them as functions
over noun meaning. Again, inference is achieved
using co-occurrence and dimensionality reduction.

2 Adjective-Noun Model

We hypothesize that semantic classes determine the
semantic characteristics of nouns and adjectives, and
that the distribution of either with respect to other
components of the sentences they occur in is also
mediated by these classes (i.e., not by the words
themselves). We assume that in general nouns select
for adjectives,1 and that this selection is dependent
on both their latent semantic classes. In the next sec-
tion, we describe a model encoding our hypotheses.

2.1 Generative Process
We model a corpus D of tuples of the form
(n,m, c1 . . . ck) consisting of a noun n, an adjective
m (modifier), and k words of context. The context
variables (c1 . . . ck) are treated as a bag of words and

1We evaluate this hypothesis as well as its inverse.
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Figure 1: Plate diagram illustrating our model of noun
and modifier semantic classes (designated N and M , re-
spectively), a modifier-noun pair (m,n), and its context.

include the words to the left and right of the noun,
its siblings and governing verbs. We designate the
vocabulary Vn for nouns, Vm for modifiers and Vc

for context. We use zi to refer to the ith tuple in D

and refer to variables within that tuple by subscript-
ing them with i, e.g., ni and c3,i are the noun and
the third context variable of zi. The latent noun and
adjective class variables are designated Ni and Mi.

The corpus D is generated according to the plate
diagram in figure 1. First, a set of parameters is
drawn. A multinomial ΨN representing the distribu-
tion of noun semantic classes in the corpus is drawn
from a Dirichlet distribution with parameter αN. For
each noun class i we have distributions ΨM

i over
adjective classes, Ψn

i over Vn and Ψc
i over Vc, also

drawn from Dirichlet distributions. Finally, for each
adjective class j, we have distributions Ψm

j over Vm.
Next, the contents of the corpus are generated by

first drawing the length of the corpus (we do not
parametrise this since we never generate from this
model). Then, for each i, we generate noun class
Ni, adjective class Mi, and the tuple zi as follows:

Ni | ΨN ∼ Multi(ΨN)

Mi | ΨM
Ni
∼ Multi(ΨM

Ni
)

ni | Ψn
Ni
∼ Multi(Ψn

Ni
)

mi | Ψm
Mi
∼ Multi(Ψm

Mi
)

∀k: ck,i | Ψc
Ni
∼ Multi(Ψc

Ni
)

2.2 Parameterization and Inference
We use Gibbs sampling to estimate the distributions
ofN andM , integrating out the multinomial param-
eters Ψx (Griffiths and Steyvers, 2004). The Dirich-
let parameters α are drawn independently from a
Γ(1, 1) distribution, and are resampled using slice
sampling at frequent intervals throughout the sam-
pling process (Johnson and Goldwater, 2009). This
“vague” prior encourages sparse draws from the
Dirichlet distribution. The number of noun and ad-
jective classes N and M was set to 50 each; other
sizes (100,150) did not significantly alter results.

3 Experiments

As our model was developed on the basis of several
hypotheses, we design the experiments and evalu-
ation so that these hypotheses can be examined on
their individual merit. We test the first hypothesis,
that nouns and adjectives can be represented by se-
mantic classes, recoverable using co-occurence, us-
ing a sense clustering evaluation by Ciaramita and
Johnson (2003). The second hypothesis, that the dis-
tribution with respect to context and to each other is
governed by these semantic classes is evaluated us-
ing pseudo-disambiguation (Clark and Weir, 2002;
Pereira et al., 1993; Rooth et al., 1999) and bigram
plausibility (Keller and Lapata, 2003) tests.

To test whether noun classes indeed select for ad-
jective classes, we also evaluate an inverse model
(Modi), where the adjective class is drawn first, in
turn generating both context and the noun class. In
addition, we evaluate copies of both models ignoring
context (Modnc and Modinc).

We use the British National Corpus (BNC), train-
ing on 90 percent and testing on 10 percent of the
corpus. Results are reported after 2,000 iterations
including a burn-in period of 200 iterations. Classes
are marginalised over every 10th iteration.

4 Evaluation

4.1 Supersense Tagging
Supersense tagging (Ciaramita and Johnson, 2003;
Curran, 2005) evaluates a model’s ability to clus-
ter words by their semantics. The task of this eval-
uation is to determine the WORDNET supersenses
of a given list of nouns. We report results on the
WN1.6 test set as defined by Ciaramita and John-
son (2003), who used 755 randomly selected nouns
with a unique supersense from the WORDNET 1.6
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corpus. As their test set was random, results weren’t
exactly replicable. For a fair comparison, we select
all suitable nouns from the corpus that also appeared
in the training corpus. We report results on type and
token level (52314 tokens with 1119 types). The
baseline2 chooses the most common supersense.

k Token Type
Baseline .241 .210
Ciaramita & Johnson .523 .534
Curran - .680
Mod 10 .592 .517
Modnc 10 .473 .410

Table 1: Supersense evaluation results. Values are the
percentage of correctly assigned supersenses. k indicates
the number of nearest neighbours considered.

We use cosine-similarity on the marginal noun
class vectors to measure distance between nouns.
Each noun in the test set is then assigned a su-
persense by performing a distance-weighted voting
among its k nearest neighbours. Results of this eval-
uation are shown in Table 1, with Figure 2 showing
scores for model Mod across different values for k.

Figure 2: Scores of Mod on the supersense task. The up-
per line denotes token-, the lower type-level scores. The
y-axis is the percentage of correct assignments, the x-axis
denotes the number of neighbours included in the vote.

The results demonstrate that nouns can semanti-
cally be represented as members of latent classes,
while the superiority of Mod over Modnc supports
our hypothesis that context co-occurence is a key
feature for learning these classes.

4.2 Pseudo-Disambiguation
Pseudo-disambiguation was introduced by Clark
and Weir (2002) to evaluate models of selectional
preference. The task is to select the more probable
of two candidate arguments to associate with a given

2The baseline results are from Ciaramita and Johnson
(2003). Using the majority baseline on the full test set, we only
get .176 and .160 for token and type respectively.

predicate. For us, this is to decide which adjective,
a1 or a2, is more likely to modify a noun n.

We follow the approach by Clark and Weir (2002)
to create the test data. To improve the quality of
the data, we filtered using bigram counts from the
Web1T corpus, setting a lower bound on the proba-
ble bigram (a1, n) and chosing a2 from five candi-
dates, picking the lowest count for bigram (a2, n).

We report results for all variants of our model in
Table 2. As baseline we use unigram counts in our
training data, chosing the more frequent adjective.

L-bound 0 100 500 1000
Size 5714 5253 3741 2789
Baseline .543 .543 .539 .550
Mod .783 .792 .810 .816
Modi .781 .787 .800 .810
Modnc .720 .728 .746 .750
Modinc .722 .730 .747 .752

Table 2: Pseudo-disambiguation: Percentage of correct
choices made. L-bound denotes the Web1T lower bound
on the (a1, n) bigram, size the number of decisions made.

While all models decisively beat the baseline, the
models using context strongly outperform those that
do not. This supports our hypothesis regarding the
importance of context in semantic clustering.

The similarity between the normal and inverse
models implies that the direction of the noun-
adjective relationship has negligible impact for this
evaluation.

4.3 Bigram Plausibility
Bigram plausibility (Keller and Lapata, 2003) is a
second evaluation for selectional preference. Unlike
the frequency-based pseudo-disambiguation task, it
evaluates how well a model matches human judge-
ment of the plausibility of adjective-noun pairs.
Keller and Lapata (2003) demonstrated a correlation
between frequencies and plausibility, but this does
not sufficiently explain human judgement. An ex-
ample taken from their unseen data set illustrates the
dissociation between frequency and plausibility:
• Frequent, implausible: “educational water”
• Infrequent, plausible: “difficult foreigner”3

The plausibility evaluation has two data sets of 90
adjective-noun pairs each. The first set (seen) con-
tains random bigrams from the BNC. The second set
(unseen) are bigrams not contained in the BNC.

3At the time of writing, Google estimates 56,900 hits for
“educational water” and 575 hits for “difficult foreigner”. “Ed-
ucational water” ranks bottom in the gold standard of the unseen
set, “difficult foreigner” ranks in the top ten.
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Recent work (Ó Séaghdha, 2010; Erk et al.,
2010) approximated plausibility with joint probabil-
ity (JP). We believe that for semantic plausibility
(not probability!) mutual information (MI), which
factors out acutal frequencies, is a better metric.4 We
report results using JP, MI and MIˆ2.

Seen Unseen
r ρ r ρ

AltaVista .650 — .480 —
BNC (Rasp) .543 .622 .135 .102
Padó et al. .479 .570 .120 .138
LDA .594 .558 .468 .459
ROOTH-LDA .575 .599 .501 .469
DUAL-LDA .460 .400 .334 .278
Mod (JP) .495 .413 .286 .276
Mod (MI) .394 .425 .471 .457
Mod (MIˆ2) .575 .501 .430 .408
Modnc (JP) .626 .505 .357 .369
Modnc (MI) .628 .574 .427 .385
Modnc (MIˆ2) .701 .623 .423 .394

Table 3: Results (Pearson r and Spearman ρ correlations)
on the Keller and Lapata (2003) plausibility data. Bold
indicates best scores, underlining our best scores. High
values indicate high correlation with the gold standard.

Table 3 shows the performance of our models
compared to results reported in Ó Séaghdha (2010).
As before, results between the normal and the in-
verse model (omitted due to space) are very simi-
lar. Surprisingly, the no-context models consistently
outperform the models using context on the seen
data set. This suggests that the seen data set can
quite precisely be ranked using frequency estimates,
which the no-context models might be better at cap-
turing without the ‘noise’ introduced by context.

Standard Inverse (i)
r ρ r ρ

Mod (JP) .286 .276 .243 .245
Mod (MI) .471 .457 .409 .383
Mod (MIˆ2) .430 .408 .362 .347
Modnc (JP) .357 .369 .181 .161
Modnc (MI) .427 .385 .220 .209
Modnc (MIˆ2) .423 .394 .218 .185

Table 4: Results on the unseen plausibility dataset.

The results on the unseen data set (Table 4)
prove interesting as well. The inverse no-context
model is performing significantly poorer than any
of the other models. To understand this result we
must investigate the differences between the unseen
data set and the seen data set and to the pseudo-
disambiguation evaluation. The key difference to
pseudo-disambiguation is that we measure a human

4See (Evert, 2005) for a discussion of these metrics.

plausibility judgement, which — as we have demon-
strated — only partially correlates with bigram fre-
quencies. Our models were trained on the BNC,
hence they could only learn frequency estimates for
the seen data set, but not for the unseen data.

Based on our hypothesis about the role of con-
text, we expect Mod and Modi to learn semantic
classes based on the distribution of context. Without
the access to that context, we argued thatModnc and
Modinc would instead learn frequency estimates.5

The hypothesis that nouns generally select for ad-
jectives rather than vice versa further suggests that
Mod and Modnc would learn semantic properties
that Modi and Modinc could not learn so well.

In summary, we hence expected Mod to perform
best on the unseen data, learning semantics from
both context and noun-adjective selection. Also, as
supported by the results, we expected Modinc to
performs poorly, as it is the model least capable of
learning semantics according to our hypotheses.

5 Conclusion

We have presented a class of probabilistic mod-
els which successfully learn semantic clusterings of
nouns and a representation of adjective-noun selec-
tional preference. These models encoded our beliefs
about how adjective-noun pairs relate to each other
and to the other words in the sentence. The perfor-
mance of our models on estimating selectional pref-
erence strongly supported these initial hypotheses.

We discussed plausibility judgements from a the-
oretical perspective and argued that frequency esti-
mates and JP are imperfect approximations for plau-
sibility. While models can perform well on some
evaluations by using either frequency estimates or
semantic knowledge, we explained why this does
not apply to the unseen plausibility test. The perfor-
mance on that task demonstrates both the success of
our model and the shortcomings of frequency-based
approaches to human plausibility judgements.

Finally, this paper demonstrated that it is feasi-
ble to learn semantic representations of words while
concurrently learning how they relate to one another.

Future work will explore learning words from
broader classes of semantic relations and the role of
context in greater detail. Also, we will evaluate the
system applied to higher level tasks.

5This could also explain their weaker performance on
pseudo-disambiguation in the previous section, where the neg-
ative examples had zero frequency in the training corpus.
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Abstract

In this paper we apply existing directional
similarity measures to identify hypernyms
with a state-of-the-art distributional semantic
model. We also propose a new directional
measure that achieves the best performance in
hypernym identification.

1 Introduction and related works

Distributional Semantic Models (DSMs) measure
the semantic similarity between words with proxim-
ity in distributional space. However, semantically
similar words in turn differ for the type of relation
holding between them: e.g., dog is strongly similar
to both animal and cat, but with different types of re-
lations. Current DSMs accounts for these facts only
partially. While they may correctly place both ani-
mal and cat among the nearest distributional neigh-
bors of dog, they are not able to characterize the
different semantic properties of these relations, for
instance the fact that hypernymy is an asymmetric
semantic relation, since being a dog entails being an
animal, but not the other way round.

The purpose of this paper is to explore the possi-
bility of identifying hypernyms in DSMs with direc-
tional (or asymmetric) similarity measures (Kotler-
man et al., 2010). These measures all rely on some
variation of the Distributional Inclusion Hypothe-
sis, according to which if u is a semantically nar-
rower term than v, then a significant number of
salient distributional features of u is included in the
feature vector of v as well. Since hypernymy is
an asymmetric relation and hypernyms are seman-
tically broader terms than their hyponyms, then we

can predict that directional similarity measures are
better suited to identify terms related by the hyper-
nymy relation.

Automatic identification of hypernyms in corpora
is a long-standing research line, but most meth-
ods have adopted semi-supervised, pattern-based ap-
proaches (Hearst, 1992; Pantel and Pennacchiotti,
2006). Fully unsupervised hypernym identification
with DSMs is still a largely open field. Various mod-
els to represent hypernyms in vector spaces have
recently been proposed (Weeds and Weir, 2003;
Weeds et al., 2004; Clarke, 2009), usually grounded
on the Distributional Inclusion Hypothesis (for a dif-
ferent approach based on representing word mean-
ing as “regions” in vector space, see Erk (2009a;
2009b)). The same hypothesis has been adopted by
Kotlerman et al. (2010) to identify (substitutable)
lexical entailments” . Within the context of the Tex-
tual Entailment (TE) paradigm, Zhitomirsky-Geffet
and Dagan (2005; 2009) define (substitutable) lex-
ical entailment as a relation holding between two
words, if there are some contexts in which one of
the words can be substituted by the other and the
meaning of the original word can be inferred from
the new one. Its relevance for TE notwithstanding,
this notion of lexical entailment is more general and
looser than hypernymy. In fact, it encompasses sev-
eral standard semantic relations such as synonymy,
hypernymy, metonymy, some cases of meronymy,
etc.

Differently from Kotlerman et al. (2010), here we
focus on applying directional, asymmetric similar-
ity measures to identify hypernyms. We assume the
classical definition of a hypernymy, such that Y is
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an hypernym of X if and only if X is a kind of Y ,
or equivalently every X is a Y .

2 Directional similarity measures

In the experiments reported in section 3 we have ap-
plied the following directional similarity measures
(F

x

is the set of distributional features of a term x,
w

x

(f) is the weight of the feature f for x):

WeedsPrec (M1) - this is a measure that quantifies
the weighted inclusion of the features of a term u

within the features of a term v (Weeds and Weir,
2003; Weeds et al., 2004; Kotlerman et al., 2010):

WeedsPrec(u, v) =

P
f2Fu\Fv

w

u

(f)
P

f2Fu
w

u

(f)
(1)

cosWeeds (M2) - this measure corresponds to the
geometrical average of WeedsPrec and the symmet-
ric similarity between u and v, measured by their
vectors’ cosine:

cosWeeds(u, v) =
q

M1(u, v) ⇤ cos(u, v) (2)

This is actually a variation of the balPrec measure
in Kotlerman et al. (2010), the difference being that
cosine is used as a symmetric similarity measure
instead of the LIN measure (Lin, 1998).

ClarkeDE (M3) - a close variation of M1,
proposed by Clarke (2009):

ClarkeDE(u, v) =

P
f2Fu\Fv

min(w
u

(f), w
v

(f))
P

f2Fu
w

u

(f)
(3)

invCL (M4) - this a new measure that we introduce
and test here for the first time. It takes into account
not only the inclusion of u in v, but also the non-
inclusion of v in u, both measured with ClarkeDE:

invCL(u, v) =
q

M3(u, v) ⇤ (1 � M3(v, u))
(4)

The intuition behind invCL is that, if v is a seman-
tically broader term of u, then the features of u are
included in the features of v, but crucially the fea-
tures of v are also not included in the features of

u. For instance, if animal is a hypernym of lion,
we can expect i.) that a significant number of the
lion-contexts are also animal-contexts, and ii.) that
a significant number of animal-contexts are not lion-
contexts. In fact, being a semantically broader term
of lion, animal should also be found in contexts in
which animals other than lions occur.

3 Experiments

The main purpose of the experiments reported below
is to investigate the ability of the directional similar-
ity measures presented in section 2 to identify the
hypernyms of a given target noun, and to discrim-
inate hypernyms from terms related by symmetric
semantic relations, such as coordinate terms.

We have represented lexical items with distribu-
tional feature vectors extracted from the TypeDM
tensor (Baroni and Lenci, 2010). TypeDM is a par-
ticular instantiation of the Distributional Memory
(DM) framework. In DM, distributional facts are
represented as a weighted tuple structure T , a set
of weighted word-link-word tuples hhw1, l, w2i, �i,
such that w1 and w2 are content words (e.g. nouns,
verbs, etc.), l is a syntagmatic co-occurrence links
between words in a text (e.g. syntactic dependen-
cies, etc.), and � is a weight estimating the statis-
tical salience of that tuple. The TypeDM word set
contains 30,693 lemmas (20,410 nouns, 5,026 verbs
and 5,257 adjectives). The TypeDM link set con-
tains 25,336 direct and inverse links formed by (par-
tially lexicalized) syntactic dependencies and pat-
terns. The weight � is the Local Mutual Informa-
tion (LMI) (Evert, 2005) computed on link type fre-
quency (negative LMI values are raised to 0).

3.1 Test set

We have evaluated the directional similarity mea-
sures on a subset of the BLESS data set (Baroni and
Lenci, 2011), consisting of tuples expressing a re-
lation between a target concept (henceforth referred
to as concept) and a relatum concept (henceforth re-
ferred to as relatum). BLESS includes 200 distinct
English concrete nouns as target concepts, equally
divided between living and non-living entities, and
grouped into 17 broader classes (e.g., BIRD, FRUIT,
FURNITURE, VEHICLE, etc.).

For each concept noun, BLESS includes several
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relatum words, linked to the concept by one of 5 se-
mantic relations. Here, we have used the BLESS
subset formed by 14,547 tuples with the relatum
attested in the TypeDM word set, and containing
one of these relations: COORD: the relatum is a
noun that is a co-hyponym (coordinate) of the con-
cept: halligator, coord, lizardi; HYPER: the rela-
tum is a noun that is a hypernym of the concept:
halligator, hyper, animali; MERO: the relatum is
a noun referring to a part/component/organ/member
of the concept, or something that the concept con-
tains or is made of: halligator, mero, mouthi;
RANDOM-N: the relatum is a random noun hold-
ing no semantic relation with the target concept:
halligator, random � n, messagei.

Kotlerman et al. (2010) evaluate a set of
directional similarity measure on a data set of
valid and invalid (substitutable) lexical entailments
(Zhitomirsky-Geffet and Dagan, 2009). However,
as we said above, lexical entailment is defined as
an asymmetric relation that covers various types of
classic semantic relations, besides hypernymy . The
choice of BLESS is instead motivated by the fact
that here we focus on the ability of directional simi-
larity measure to identify hypernyms.

3.2 Evaluation and results

For each word x in the test set, we represented
x in terms of a set F

x

of distributional features
hl, w2i, such that in the TypeDM tensor there is a
tuple hhw1, l, w2i, �i, w1 = x. The feature weight
w

x

(f) is equal to the weight � of the original DM
tuple. Then, we applied the 4 directional simi-
larity measures in section 2 to BLESS, with the
goal of evaluating their ability to discriminate hy-
pernyms from other semantic relations, in particular
co-hyponymy. In fact, differently from hypernyms,
coordinate terms are not related by inclusion. There-
fore, we want to test whether directional similarity
measures are able to assign higher scores to hyper-
nyms, as predicted by the Distributional Inclusion
Hypothesis. We used the Cosine as our baseline,
since it is a symmetric similarity measure and it is
commonly used in DSMs.

We adopt two different evaluation methods. The
first is based on the methodology described in Ba-
roni and Lenci (2011). Given the similarity scores
for a concept with all its relata across all relations

in our test set, we pick the relatum with the high-
est score (nearest neighbour) for each relation. In
this way, for each of the 200 BLESS concepts, we
obtain 4 similarity scores, one per relation. In or-
der to factor out concept-specific effects that might
add to the overall score variance, we transform the
8 similarity scores of each concept onto standard-
ized z scores (mean: 0; s.d: 1) by subtracting from
each their mean, and dividing by their standard devi-
ation. After this transformation, we produce a box-
plot summarizing the distribution of scores per rela-
tion across the 200 concepts.

Boxplots for each similarity measure are reported
in Figure 1. They display the median of a distribu-
tion as a thick horizontal line within a box extending
from the first to the third quartile, with whiskers cov-
ering 1.5 of the interquartile range in each direction
from the box, and values outside this extended range
– extreme outliers – plotted as circles (these are the
default boxplotting option of the R statistical pack-
age). To identify significant differences between re-
lation types, we also performed pairwise compar-
isons with the Tukey Honestly Significant Differ-
ence test, using the standard ↵ = 0.05 significance
threshold.

In the boxplots we can observe that all measures
(either symmetric or not) are able to discriminate
truly semantically related pairs from unrelated (i.e.
random) ones. Crucially, Cosine shows a strong
tendency to identify coordinates among the near-
est neighbors of target items. This is actually con-
sistent with its being a symmetric similarity mea-
sure. Instead, directional similarity measures signif-
icantly promote hypernyms over coordinates. The
only exception is represented by cosWeeds, which
again places coordinates at the top, though now the
difference with hypernyms is not significant. This
might be due to the cosine component of this mea-
sure, which reduces the effectiveness of the asym-
metric WeedsPrec. The difference between coor-
dinates and hypernyms is slightly bigger in invCL,
and the former appear to be further downgraded than
with the other directional measures. From the box-
plot analysis, we can therefore conclude that simi-
larity measures based on the Distributional Inclusion
Hypothesis do indeed improve hypernym identifica-
tion in context-feature semantic spaces, with respect
to other types of semantic relations, such as COORD.
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Figure 1: Distribution of relata similarity scores across concepts (values on ordinate are similarity scores after concept-
by-concept z-normalization).

The second type of evaluation we have performed
is based on Kotlerman et al. (2010). The similarity
measures have been evaluated with Average Preci-
sion (AP), a method derived from Information Re-
trieval and combining precision, relevance ranking
and overall recall. For each similarity measure, we
computed AP with respect to the 4 BLESS relations.
The best possible score (AP = 1) for a given rela-
tion (e.g., HYPER) corresponds to the ideal case in
which all the relata belonging to that relation have
higher similarity scores than the relata belonging to
the other relations. For every relation, we calculated
the AP for each of the 200 BLESS target concepts.

In Table 1, we report the AP values averaged over
the 200 concepts. On the one hand, these results
confirm the trend illustrated by the boxplots, in par-
ticular the fact that directional similarity measures
clearly outperform Cosine (or cosine-based mea-
sures such as cosWeeds) in identifying hypernyms,
with no significant differences among them. How-
ever, a different picture emerges by comparing the

measure COORD HYPER MERO RANDOM-N
Cosine 0.79 0.23 0.21 0.30

WeedsPrec 0.45 0.40 0.31 0.32
cosWeeds 0.69 0.29 0.23 0.30
ClarkeDE 0.45 0.39 0.28 0.33

invCL 0.38 0.40 0.31 0.34

Table 1: Mean AP values for each semantic relation re-
ported by the different similarity scores.

AP values for HYPER with those for COORD. since
in this case important distinctions among the di-
rectional measures emerge. In fact, even if Weed-
sPrec and ClarkeDE increase the AP for HYPER,
still they assign even higher AP values to COORD.
Conversely, invCL is the only measure that assigns
to HYPER the top AP score, higher than COORD too.

The new directional similarity measure we have
proposed in this paper, invCL, thus reveals a higher
ability to set apart hypernyms from other relations,
coordinates terms included. The latter are expected
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to share a large number of contexts and this is the
reason why they are strongly favored by symmet-
ric similarity measures, such as Cosine. Asymmet-
ric measures like cosWeeds and ClarkeDE also fall
short of distinguishing hypernyms from coordinates
because the condition of feature inclusion they test
is satisfied by coordinate terms as well. If two sets
share a high number of elements, then many ele-
ments of the former are also included in the latter,
and vice versa. Therefore, coordinate terms too are
expected to have high values of feature inclusions.
Conversely, invCL takes into account not only the
inclusion of u into v, but also the amount of v that
is not included in u. Thus, invCL provides a better
distributional correlate to the central property of hy-
pernyms of having a broader semantic content than
their hyponyms.

4 Conclusions and ongoing research

The experiments reported in this paper support the
Distributional Inclusion Hypothesis as a viable ap-
proach to model hypernymy in semantic vector
spaces. We have also proposed a new directional
measure that actually outperforms the state-of-the-
art ones. Focusing on the contexts that broader terms
do not share with their narrower terms thus appear
to be an interesting direction to explore to improve
hypernym identification. Our ongoing research in-
cludes testing invCL to recognize lexical entailments
and comparing it with the balAPinc measured pro-
posed by Kotlerman et al. (2010) for this task, as
well as designing new distributional methods to dis-
criminate between various other types of semantic
relations.
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Abstract

We report ongoing work on the development
of agents that can implicitly coordinate with
their partners in referential tasks, taking as a
case study colour terms. We describe algo-
rithms for generation and resolution of colour
descriptions and report results of experiments
on how humans use colour terms for reference
in production and comprehension.

1 Introduction

Speakers do not always share identical semantic rep-
resentations nor identical lexicons. For instance, a
subject may refer to a shape as a diamond while
another subject may call that same shape a square
(which just happens to be tilted sidewise); or some-
one may refer to a particular colour with ‘light pink’
while a different speaker may refer to it as ‘salmon’.
Regardless of these differences, which seem com-
mon place, speakers in dialogue are able to com-
municate successfully most of the time. Success-
ful communication exploits interlocutors’ abilities to
negotiate referring expressions interactively through
grounding (Clark and Wilkes-Gibbs, 1986; Clark
and Schaefer, 1989), but in many cases interlocutors
can already make a good guess at their partners’ in-
tentions by relaxing the interpretation of their utter-
ances and looking for the referent that best matches
this looser interpretation. We are interested in mod-
elling this second kind of behaviour computation-
ally, to get a better understanding of it and to con-
tribute to the development of dialogue systems that
are able to better coordinate with their human part-
ners.

In this paper we focus on collaborative referen-
tial tasks (akin to the classic matching tasks intro-

duced by Krauss and Weinheimer (1966) and Clark
and Wilkes-Gibbs (1986)) and take as a case study
colour terms. Our focus here is not on the explicit
joint negotiation of effective terms, but rather on the
deployment of flexible semantic representations that
can adapt to the constraints imposed by the context
and to the dialogue partner’s language use.

We start by describing our algorithms for genera-
tion and resolution of colour descriptions in the next
section. In sections 3 and 4, we present results of
experiments that investigate how humans use colour
terms for reference in production and comprehen-
sion. Section 5 compares our model against the ex-
perimental data we have collected so far and dis-
cusses some directions for future work. We end with
a short conclusion in section 6.

2 Reference to Colours: Our Model

Our view of how colour terms are used in referential
tasks follows the basic tenets of Gricean pragmat-
ics (Grice, 1975) and collaborative reference theo-
ries (Clark and Wilkes-Gibbs, 1986), according to
which speakers and addressees tend to maximize the
success of their joint task while minimizing costs.

In the domain of colour terms, we take this to
mean that speakers tend use a basic colour term (e.g.,
‘red’ or ‘blue’) whenever this is enough to iden-
tify the target object and resort to an alternative,
more specific or complex term (e.g., ‘bordeaux’ or
‘navy blue’) in other contexts where the basic term
is deemed insufficient. Non-basic terms can be con-
sidered more costly because they are less frequent
and thus more difficult to retrieve.

Similar ideas are at the core of models for the
generation of referring expressions that build on the
seminal work of Dale and Reiter (1995). These ap-
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proaches, however, rely on a lexicon or database
where the properties of potential target objects are
associated with specific, predefined terms.1 Our aim
is to develop dialogue agents that employ more flex-
ible semantic representations, allowing them to (a)
refer to target colours with different terms in differ-
ent contexts, and (b) resolve the reference of colour
terms produced by the dialogue partner by picking
up targets that are not rigidly linked to the term in
the agent’s lexicon.

2.1 Algorithms

Data. To develop the generation and resolution al-
gorithms of our agent, we used a publicly avail-
able database of RGB codes and colour terms gen-
erated from a colour naming survey created by Ran-
dall Monroe (author of the webcomic xkcd.com)
and taken by around two hundred thousand par-
ticipants.2 This database contains a total of 954
colour terms (corresponding to the colour terms
most frequently used by the participants) paired with
a unique RGB code corresponding to the location in
the RGB colour space which was most frequently
named with the colour term in question.

We use this database as the default lexicon of our
agent. Amongst the colour terms in the lexicon,
we distinguish between basic and non-basic colours.
We selected the following as our basic colours: red,
purple, pink, magenta, brown, orange, yellow, green,
teal, blue, and grey. This selection takes into account
the high frequency of these terms in English and is in
line with the literature on basic colour terms (Berlin
and Kay, 1967; Berlin and Kay, 1991).

Resolution Algorithm. ALIN (ALgorithm for IN-
terpretation) is given as input a scene of coloured
squares and a colour term. Its output is the square it
takes to be the intended target, generated as follows.
Assuming the input term is in the lexicon, ALIN
compares every colour in the scene to the RGB value
of the input (the anchor). ALIN considers a colour
c the intended target if, (a) c is nearest the anchor
within a certain distance threshold, and (b) for any
other colour c′ in the scene within the given distance

1See, however, van Deemter (2006) for an attempt to deal
with vague properties such as size within this framework.

2For further details visit http://blog.xkcd.com/
2010/05/03/color-survey-results/.

Figure 1: Two scenes with the brown square (top left in
both scenes) as the target; no competitors (left scene) and
one potential competitor (right scene).

threshold of the anchor, c′ is far enough away from
both the anchor and c. We say more about distance
thresholds below.

Generation Algorithm. Unless there are competi-
tors (colours relatively close to the target), GENA
(GENeration Algorithm) is disposed to output a ba-
sic colour term if the target is acceptably close to a
basic colour (if not, it selects the default term asso-
ciated with the RGB code in the lexicon). In case
there are competitor colours in the scene, if the tar-
get is a basic colour, GENA will attempt to select a
non-basic colour term closest to the target but still
further away from the competitor(s). If the target is
not a basic colour, GENA simply selects the default
term in the lexicon.

Measuring Colour Distance. We treat colours
in our model as points in a conceptual space
(Gärdenfors, 2000; Jäger, 2009). As a first approx-
imation, we measure colour proximity in terms of
Euclidean distances between RGB values.3 Three
variables were used to set the thresholds required by
ALIN and GENA: i) bc is the maximum range to
search for basic colours; ii) min is the minimum dis-
tance required between two colours to be considered
minimally different; and iii) max is the maximum
range of allowable search for alternative colours. We
conducted two pilot studies to establish reasonable
values for these variables, which we then set as: bc
= 100; min = 25; max = 75.4

3 Experimental Methodology

We conducted two small experiments to collect data
about how speakers and addressees use colour terms
in referential tasks.

3We recognize Euclidean distances between RGB values as-
sumes colour space is uniform, which is not the case in human
vision (Wyszecki and Stiles, 2000). See section 5.

4RGB codes scaled at 0–255.
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Figure 2: Sample of results from ExpA, for a basic and a non-basic colour.

Materials & Setup. We created 12 different
scenes, each consisting of four solid coloured
squares, one of them the target (see Figure 1 for
sample scenes). Scenes were designed to take into
account two parameters: basic and non-basic target
colours, and without or with a competitor – a colour
at a distance threshold from the target.5 The target
basic colours used were ‘brown’ and ‘magenta’ and
the non-basic ones, ‘rose’ and ‘sea blue’.6 Each tar-
get colour appeared at least in one scene where there
were no competitors.

We run a generation experiment (ExpA) and a res-
olution experiment (ExpB). In ExpA, participants
were shown our 12 scenes and were asked to refer
to the target with a colour term that would allow a
potential addressee to identify it in the current con-
text, but without reference to the other colours in
the scene (to avoid comparatives such as ‘the bluer
square’). In ExpB, participants were shown a scene
and a colour term and were asked to pick up the in-
tended referent. The colour terms used in this sec-
ond experiment were selected from those produced
in ExpA – 29 scene-term pairs in total. Each scene
appeared at least twice, once with a term with high
occurrence frequency in ExpA, and once or twice
with one or two terms that had been produced with
low frequency. To minimize chances that subjects
recognize the same scene more than once, we ro-
tated and dispersed them evenly throughout.

5Any colour within a Euclidean distance of 125 from the
target was considered a competitor.

6Compositional phrases may introduce more sophisticated
effects. However, the data on which our lexicon is based ab-
stracted away from such details, treating them as simples.

Participants. A total of 36 native-English partici-
pants took part in the experiments: 19 in ExpA and
17 in ExpB. Subjects for both experiments included
undergraduate students, graduates students, and uni-
versity faculty. Both experiments were run online.

4 Experimental Results

ExpA Generation. ExpA revealed there is high
variability in the terms produced to refer to a sin-
gle colour. As expected, variability of terms gener-
ated for non-basic colours was higher than for ba-
sic colours. For non-basic colours, variability of
terms in scenes with competitors was higher. Fig-
ure 2 shows the different terms produced for a basic
colour (‘brown’) and a non-basic colour (‘rose’) in
scenes without and with competitors, together with
the proportional frequency of each term.

For the brown square target in a scene with-
out competitors, the basic-colour term ‘brown’ was
used with high frequency (72% of the time) while
any other terms were used 1 or 2 times only. In
scenes with competitors, ‘dark brown’ had high-
est frequency with ‘brown’ almost as much (43%
vs. 40%). For the rose square target in a scene with-
out competitors, there was also one term that stood
out as the most frequent, ‘pink’, although its fre-
quency (30%) is substantially lower to that of the
basic-colour ‘brown’. In scenes with competitors
there is an explosion in variation, with ‘pink’ still
standing out but only with a proportional frequency
of 21%.

Overall, ExpA showed that speakers attempt to
adapt their colour descriptions to the context and that
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there is high variability in the terms they choose to
do this.

ExpB: Resolution. ExpB showed that reference
resolution is almost always successful despite the
variation in colour terms observed in ExpA. For the
basic colours in scenes with no competitors, partici-
pants successfully identified the targets in all cases,
while in scenes with competitors they did so 98%
of the time. This was the case for both terms with
proportionally high and low frequency.

For the non-basic colours in scenes with no com-
petitors, the success rate in identifying the target
was again 100% for both high and low frequency
terms. For scenes with competitors, there were dif-
ferences depending on the frequency of the terms
used: for high frequency terms there were once more
no resolution errors, while the resolution success
rate dropped to 78% where we used terms with low
proportional frequency scores. A summary of these
results is shown in Table 1, together with the success
rate of our resolution algorithm ALIN.

Basic Colours Non-basic Colours
high freq. low freq. high freq. low freq.
nc c nc c nc c nc c

ExpB 1 0.98 1 0.98 1 1 1 0.78
ALIN 1 0.71 1 0.71 0.5 1 0.75 0.71

Table 1: Resolution success rate by human participants
and ALIN in scenes without and with competitors (nc/c).

5 Discussion

The data we collected allows us to make informa-
tive comparisons between humans and our model in
collaborative reference tasks. Although we do not
believe the data is sufficient for an evaluation, the
comparison illuminates how the model can be re-
fined and the setup required for a proper evaluation.

Regarding resolution, we note that an algorithm
that rigidly associates colours and terms would have
successfully resolved only 4 of the 29 cases, 3 of
which were basic colours with no distractors – a
7.25% success rate. In our scenarios with four po-
tential targets, a random algorithm would have an
average success rate of 25%. ALIN is closer to our
human data (see Table 1), though anomalies exist.
One problem is the lack of compositional semantics

in our current model. ALIN failed to resolve com-
plex phrases like ‘dull salmon pink’ and ‘deep gray
blue’, which were terms produced by humans for
non-basic colours with competitors, simply because
the terms were not in the agent’s lexicon. Other
anomalies seem to be consequences of taking Eu-
clidean distances over RGB values, which may be
too crude. In the future, our intent is to convert RGB
values to Lab values and then use Delta-E values to
measure distances. First, however, we need a more
sophisticated analysis of the thresholds that we used
for ALIN and GENA.

As for generation, given the amount of variation
observed in the terms produced by our subjects, it is
not clear how human performance ought to be com-
pared to GENA’s. For instance, in scenes with com-
petitors, GENA produced ‘reddish brown’ for the
basic colour ‘brown’ and ‘coral’ for the non-basic
colour ‘rose’. These did not appear in our human-
generated data but still seem to our lights reasonable
descriptions. GENA also produced ‘gray’ to refer to
‘rose’ in a different scene, which seems less appro-
priate and may be due to our current way of calcu-
lating colour distances and setting up the thresholds.

We believe that instead of comparing GENA’s
output to human output, it makes more sense to eval-
uate GENA by testing how well humans can resolve
terms produced by it. We intend to carry out this
evaluation in the future.

6 Conclusions

We have focused on the specific case of colours
where speakers differ in the referring expressions
they generate, but addressees are nevertheless able
to relax the interpretations of the expressions in or-
der to coordinate. We believe this implicit adapt-
ability is part of our semantic representation more
broadly. The case of colour provides us with a start-
ing point for studying and modelling computation-
ally this flexibility we possess.
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Abstract

Given a set of images with related captions,
our goal is to show how visual features can
improve the accuracy of unsupervised word
sense disambiguation when the textual con-
text is very small, as this sort of data is com-
mon in news and social media. We extend
previous work in unsupervised text-only dis-
ambiguation with methods that integrate text
and images. We construct a corpus by using
Amazon Mechanical Turk to caption sense-
tagged images gathered from ImageNet. Us-
ing a Yarowsky-inspired algorithm, we show
that gains can be made over text-only disam-
biguation, as well as multimodal approaches
such as Latent Dirichlet Allocation.

1 Introduction

We examine the problem of performing unsuper-
vised word sense disambiguation (WSD) in situa-
tions with little text, but where additional informa-
tion is available in the form of an image. Such situ-
ations include captioned newswire photos, and pic-
tures in social media where the textual context is of-
ten no larger than a tweet.

Unsupervised WSD has been shown to work very
well when the target word is embedded in a large

We thank NSERC and U. Toronto for financial support. Fi-
dler and Dickinson were sponsored by the Army Research Lab-
oratory and this research was accomplished in part under Co-
operative Agreement Number W911NF-10-2-0060. The views
and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official
policies, either express or implied, of the Army Research Lab-
oratory or the U.S. Government.

Figure 1: “The crane was so massive it blocked the sun.”
Which sense of crane? With images the answer is clear.

quantity of text (Yarowsky, 1995). However, if the
only available text is “The crane was so massive it
blocked the sun” (see Fig. 1), then text-only dis-
ambiguation becomes much more difficult; a human
could do little more than guess. But if an image is
available, the intended sense is much clearer. We
develop an unsupervised WSD algorithm based on
Yarowsky’s that uses words in a short caption along
with “visual words” from the captioned image to
choose the best of two possible senses of an ambigu-
ous keyword describing the content of the image.

Language-vision integration is a quickly develop-
ing field, and a number of researchers have explored
the possibility of combining text and visual features
in various multimodal tasks. Leong and Mihal-
cea (2011) explored semantic relatedness between
words and images to better exploit multimodal con-
tent. Jamieson et al. (2009) and Feng and Lap-
ata (2010) combined text and vision to perform ef-
fective image annotation. Barnard and colleagues
(2003; 2005) showed that supervised WSD by could
be improved with visual features. Here we show that
unsupervised WSD can similarly be improved. Lo-
eff, Alm and Forsyth (2006) and Saenko and Darrell
(2008) combined visual and textual information to
solve a related task, image sense disambiguation, in
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an unsupervised fashion. In Loeff et al.’s work, little
gain was realized when visual features were added
to a great deal of text. We show that these features
have more utility with small textual contexts, and
that, when little text is available, our method is more
suitable than Saenko and Darrell’s.

2 Our Algorithm

We model our algorithm after Yarowsky’s (1995) al-
gorithm for unsupervised WSD: Given a set of doc-
uments that contain a certain ambiguous word, the
goal is to label each instance of that word as some
particular sense. A seed set of collocations that
strongly indicate one of the senses is initially used to
label a subset of the data. Yarowsky then finds new
collocations in the labelled data that are strongly as-
sociated with one of the current labels and applies
these to unlabelled data. This process repeats iter-
atively, building a decision list of collocations that
indicate a particular sense with a certain confidence.

In our algorithm (Algorithm 1), we have a docu-
ment collection D of images relevant to an ambigu-
ous keyword k with senses s1 and s2 (though the al-
gorithm is extensible to more than two senses). Such
a collection might result from an internet image
search using an ambiguous word such as “mouse”.

Each Di is an image–caption pair repsented as a
bag-of-words that includes both lexical words from
the caption, and “visual words” from the image. A
visual word is simply an abstract representation that
describes a small portion of an image, such that sim-
ilar portions in other images are represented by the
same visual word (see Section 3.2 for details). Our
seed sets consist of the words in the definitions of s1
and s2 from WordNet (Fellbaum, 1998). Any docu-
ment whose caption contains more words from one
sense definition than the other is initially labelled
with that sense. We then iterate between two steps
that (i) find additional words associated with s1 or
s2 in currently labelled data, and (ii) relabel all data
using the word sense associations discovered so far.

We let V be the entire vocabulary of words across
all documents. We run experiements both with and
without visual words, but when we use visual words,
they are included in V . In the first step, we com-
pute a confidence Ci for each word Vi. This con-
fidence is a log-ratio of the probability of seeing

Vi in documents labelled as s1 as opposed to doc-
uments labelled as s2. That is, a positive Ci indi-
cates greater association with s1, and vice versa. In
the second step we find, for each document Dj , the
word Vi ∈ Dj with the highest magnitude of Ci. If
the magnitude of Ci is above a labelling threshold
τc, then we label this document as s1 or s2 depend-
ing on the sign of Ci. Note that all old labels are dis-
carded before this step, so labelled documents may
become unlabelled, or even differently labelled, as
the algorithm progresses.

Algorithm 1 Proposed Algorithm
D: set of documents D1 ... Dd

V : set of lexical and visual words V1 ... Vv in D
Ci: log-confidence Vi is sense 1 vs. sense 2
S1 and S2: bag of dictionary words for each sense
L1 and L2: documents labelled as sense 1 or 2

for all Di do . Initial labelling using seed set
if |Di ∩ S1| > |Di ∩ S2| then

L1 ← L1 ∪ {Di}
else if |Di ∩ S1| < |Di ∩ S2| then

L2 ← L2 ∪ {Di}
end if

end for

repeat
for all i ∈ 1..v do . Update word conf.

Ci ← log
(

P (Vi|L1)
P (Vi|L2)

)
end for

L1 ← ∅, L2 ← ∅ . Update document conf.
for all Di do

. Find word with highest confidence
m← arg max

j∈1..v,Vj∈Di

|Cj |

if Cm > τc then
L1 ← L1 ∪ {Di}

else if Cm < −τc then
L2 ← L2 ∪ {Di}

end if
end for

until no change to L1 or L2

3 Creation of the Dataset

We require a collection of images with associated
captions. We also require sense annotations for
the keyword for each image to use for evalua-
tion. Barnard and Johnson (2005) developed the
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“Music is an important
means of expression for
many teens.”

“Keeping your office sup-
plies organized is easy, with
the right tools.”

“The internet has opened up
the world to people of all
nationalities.”

“When there is no cheese I
will take over the world.”

Figure 2: Example image-caption pairs from our dataset,
for “band” (top) and “mouse” (bottom).

ImCor dataset by associating images from the Corel
database with text from the SemCor corpus (Miller
et al., 1993). Loeff et al. (2006) and Saenko and
Darrell (2008) used Yahoo!’s image search to gather
images with their associated web pages. While these
datasets contain images paired with text, the textual
contexts are much larger than typical captions.

3.1 Captioning Images

To develop a large set of sense-annotated image–
caption pairs with a focus on caption-sized text, we
turned to ImageNet (Deng et al., 2009). ImageNet is
a database of images that are each associated with
a synset from WordNet. Hundreds of images are
available for each of a number of senses of a wide
variety of common nouns. To gather captions, we
used Amazon Mechanical Turk to collect five sen-
tences for each image. We chose two word senses
for each of 20 polysemous nouns and for each sense
we collected captions for 50 representative images.
For each image we gathered five captions, for a to-
tal of 10,000 captions. As we have five captions for
each image, we split our data into five sets. Each set
has the same images, but each image is paired with
a different caption in each set.

We specified to the Turkers that the sentences
should be relevant to, but should not talk directly
about, the image, as in “In this picture there is a

blue fish”, as such captions are very unnatural. True
captions generally offer orthogonal information that
is not readily apparent from the image. The key-
word for each image (as specified by ImageNet) was
not presented to the Turkers, so the captions do not
necessarily contain it. Knowledge of the keyword is
presumed to be available to the algorithm in the form
of an image tag, or filename, or the like. We found
that forcing a certain word to be included in the cap-
tion also led to sentences that described the picture
very directly. Sentences were required to be a least
ten words long, and have acceptable grammar and
spelling. We remove stop words from the captions
and lemmatize the remaining words. See Figure 2
for some examples.

3.2 Computing the Visual Words

We compute visual words for each image with Ima-
geNet’s feature extractor. This extractor lays down
a grid of overlapping squares onto the image and
computes a SIFT descriptor (Lowe, 2004) for each
square. Each descriptor is a vector that encodes the
edge orientation information in a given square. The
descriptors are computed at three scales: 1x, 0.5x
and 0.25x the original side lengths. These vectors
are clustered with k-means into 1000 clusters, and
the labels of these clusters (arbitrary integers from 1
to 1000) serve as our visual words.

It is common for each image to have a “vocab-
ulary” of over 300 distinct visual words, many of
which only occur once. To denoise the visual data,
we use only those visual words which account for at
least 1% of the total visual words for that image.

4 Experiments and Results

To show that the addition of visual features improves
the accuracy of sense disambiguation for image–
caption pairs, we run our algorithm both with and
without the visual features. We also compare our re-
sults to three different baseline methods: K-means
(K-M), Latent Dirichlet Allocation (LDA) (Blei et
al., 2003), and an unsupervised WSD algorithm
(PBP) explained below. We use accuracy to measure
performance as it is commonly used by the WSD
community (See Table 1).

For K-means, we set k = 2 as we have two senses,
and represent each document with a V -dimensional
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Table 1: Results (Average accuracy across all five sets of
data). Bold indicates best performance for that word.

Ours Ours K-M K-M LDA LDA PBP
text w/vis text w/vis text w/vis text

band .80 .82 .66 .65 .64 .56 .73
bank .77 .78 .71 .59 .52 .67 .62
bass .94 .94 .90 .88 .61 .62 .49
chip .90 .90 .73 .58 .57 .66 .75
clip .70 .79 .65 .58 .48 .53 .65
club .80 .84 .80 .81 .61 .73 .63
court .79 .79 .61 .53 .62 .82 .57
crane .62 .67 .76 .76 .52 .54 .66
game .78 .78 .60 .66 .60 .66 .70
hood .74 .73 .73 .70 .51 .45 .55
jack .76 .74 .62 .53 .58 .66 .47
key .81 .92 .79 .54 .57 .70 .50

mold .67 .68 .59 .67 .57 .66 .54
mouse .84 .84 .71 .62 .62 .69 .68
plant .54 .54 .56 .53 .52 .50 .72
press .60 .59 .60 .54 .58 .62 .48
seal .70 .80 .61 .67 .55 .53 .62

speaker .70 .69 .57 .53 .55 .62 .63
squash .89 .95 .84 .92 .55 .67 .79
track .78 .85 .71 .66 .51 .54 .69
avg. .76 .78 .69 .65 .56 .63 .62

vector, where the ith element is the proportion of
word Vi in the document. We run K-means both with
and without visual features.

For LDA, we use the dictionary sense model from
Saenko and Darrell (2008). A topic model is learned
where the relatedness of a topic to a sense is based
on the probabilities of that topic generating the seed
words from its dictionary definitions. Analogously
to k-means, we learn a model for text alone, and a
model for text augmented with visual information.

For unsupervised WSD (applied to text only),
we use WordNet::SenseRelate::TargetWord, here-
after PBP (Patwardhan et al., 2007), the highest
scoring unsupervised lexical sample word sense dis-
ambiguation algorithm at SemEval07 (Pradhan et
al., 2007). PBP treats the nearby words around the
target word as a bag, and uses the WordNet hierar-
chy to assign a similarity score between the possible
senses of words in the context, and possible senses
of the target word. As our captions are fairly short,
we use the entire caption as context.

The most important result is the gain in accuracy
after adding visual features. While the average gain

across all words is slight, it is significant at p < 0.02
(using a paired t-test). For 12 of the 20 words, the
visual features improve performance, and in 6 of
those, the improvement is 5–11%.

For some words there is no significant improve-
ment in accuracy, or even a slight decrease. With
words like “bass” or “chip” there is little room to
improve upon the text-only result. For words like
“plant” or “press” it seems the text-only result is not
strong enough to help bootstrap the visual features
in any useful way. In other cases where little im-
provement is seen, the problem may lie with high
intra-class variation, as our visual words are not very
robust features, or with a lack of orthogonality be-
tween the lexical and visual information.

Our algorithm also performs significantly better
than the baseline measurements. K-means performs
surprisingly well compared to the other baselines,
but seems unable to make much sense of the visual
information present. Saenko and Darrell’s (2008)
LDA model makes substansial gains by using vi-
sual features, but does not perform as well on this
task. We suspect that a strict adherence to the seed
words may be to blame: while both this LDA model
and our algorithm use the same seed definitions ini-
tially, our algorithm is free to change its mind about
the usefulness of the words in the definitions as it
progresses, whereas the LDA model has no such
capacity. Indeed, words that are intuitively non-
discriminative, such as “carry”, “lack”, or “late”, are
not uncommon in the definitions we use.

5 Conclusion and Future Work

We present an approach to unsupervised WSD that
works jointly with the visual and textual domains.
We showed that this multimodal approach makes
gains over text-only disambiguation, and outper-
forms previous approaches for WSD (both text-only,
and multimodal), when textual contexts are limited.

This project is still in progress, and there are many
avenues for further study. We do not currently ex-
ploit collocations between lexical and visual infor-
mation. Also, the bag-of-SIFT visual features that
we use, while effective, have little semantic content.
More structured representations over segmented im-
age regions offer greater potential for encoding se-
mantic content (Duygulu et al., 2002).
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Abstract

We present a framework, based on Sejane and
Eger (2012), for inducing lexical semantic ty-
pologies for groups of languages. Our frame-
work rests on lexical semantic association net-
works derived from encoding, via bilingual
corpora, each language in a common reference
language, the tertium comparationis, so that
distances between languages can easily be de-
termined.

1 Introduction

Typologocial classifications have a long tradition in
linguistics. For example, typologies based on syn-
tactic categories have been proposed e.g. by Green-
berg (1961), leading a.o. to ‘word order’ catego-
rizations of natural languages as belonging to SVO,
VSO, etc. types. Relatedly, genealogical classifica-
tion systems based on phonological and morpholog-
ical similarities date back at least to the compara-
tists of the nineteenth centuries, among them Jacob
Grimm (1785-1863), Rasmus Rask (1787-1832),
and Karl Verner (1846-1896). Typological investi-
gations into (lexical) semantic relations across lan-
guages have, in contrast, attracted little attention.
Still, some results have been established such as
classifications based upon treatment of animal con-
cepts and corresponding meat concepts (see the ex-
cellent introduction to lexical typologies by Koch,
2001). As further exceptions, based on computa-
tional principles, may be considered Mehler et al.
(2011), who analyze conceptual networks derived
from the Wikipedia topic classification systems for

different languages; Gaume et al. (2008), who pro-
pose (but do not realize, to the best of our knowl-
edge) to compare distances between selected word
pairs such as meat/animal, child/fruit, door/mouth
across language-specific monolingual dictionaries in
order to categorize the associated languages and,
partly, Cooper (2008), who computes semantic dis-
tances between languages based on the curvature of
translation histograms in bilingual dictionaries.

Recently, Sejane and Eger (2012) have outlined a
novel approach to establishing semantic typologies
based upon the language-specific polysemy relation
of lexical units which entails language-dependent
‘lexical semantic association networks’. To illus-
trate, French bœuf has two meanings, which we may
gloss as ‘cow’ and ‘beef’ in English. Similarly,
French langue and Spanish lingua mean both ‘lan-
guage’ and ‘tongue’, whereas Chinese huà means
both ‘language’ and ‘picture’. Sejane and Eger’s
(2012) key idea is then that this language-specific
polysemy can be made observable via the trans-
lation relation implied e.g. by a bilingual dictio-
nary. For instance, using a Chinese-English dictio-
nary, one might be able to uncover the polysemy
of huà by assessing its two English translations, as
given above. More formally, one might create a link
(in a network) between two English words if they
have a common translation in Chinese (cf. Eger
and Sejane, 2010); doing the same with a Spanish-
English and French-English dictionary, one would
obtain three different lexical semantic association
networks, all encoded in the English language, the
tertium comparationis or reference language in this
case. In the English networks based upon Spanish
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and French — Sejane and Eger (2012) call these net-
works the Spanish and French versions of English,
respectively — ‘language’ and ‘tongue’ would have
a link, whereas in the Chinese version of English,
‘language’ and ‘picture’ would have a link (see also
Figure 1 where we illustrate this idea for English and
Latin versions of German). Then, comparing these
networks across languages may allow establishing a
typology of lexical semantic associations.

In the current paper, we deliberate on Sejane and
Eger’s (2012) idea, suggesting ways to adequately
formalize their approach (Section 2) and propose
data sources suitable for their framework (Section
3). Moreover, in Section 4 we shortly discuss how
network versions of a given reference language can
be formally contrasted and suggest solutions for the
tertium comparationis problem. In Section 5, we
conclude.

2 Formal approach to lexical semantic
association networks

We propose the following mathematical framework
for representing lexical semantic association net-
works. Given n languages L1, . . . , Ln, n ≥
2, plus a selected reference language R distinct
from L1, . . . , Ln, and bilingual translation operators
T1, . . . , Tn, where Ti, i = 1, . . . , n, maps (or, trans-
lates) from language Li to the reference languageR,
create network graphs

Gi = (Vi, Ei)

with

Vi = W [R],

and

Ei = {(u, v) |u, v ∈ Vi, uTix, xTiv

for some x ∈W [Li]},

where by W [L] we denote the words of language L
and by aTib we denote that a translates into b under
Ti; moreover, we assume Ti to be symmetric such
that the Gi’s may be considered undirected graphs.

To generalize this a bit, we may consider weighted
graphs where for network i, i = 1, . . . , n, Vi is as
above, Ei = {(u, v) |u, v ∈ Vi}, and each edge
(u, v) ∈ Ei has weight (being a function of)

di(u, v) = |{x |uTix, xTiv}|. (1)

Then, if u and v have no common translation x,
di(u, v) = 0 and generally di(u, v) counts the num-
ber of common translations x between u and v, en-
tailing a generalization of the setting above, which
may allow for a more fine-grained analysis and may
be of importance for example for outlining seman-
tic many-to-one relationships between a languageLi

and the reference language R.

3 Possible data sources

Sejane and Eger (2012) conduct a preliminary study
of their approach on the open-source bilingual dic-
tionaries dicts.info (http://www.dicts.info/uddl.php).
The disadvantage with using bilingual dictionaries is
of course that they are scarcely available (and much
less freely available); moreover, for the above de-
scribed semantic association networks, it may be of
crucial importance to have comparable data sources;
e.g. using a general-purpose dictionary in one case
and a technical dictionary in the other, or using dic-
tionaries of vastly different sizes may severely affect
the quality of results.1

We more generally propose to use bilingual cor-
pora for the problem of inducing semantic asso-
ciation networks, where we particularly have e.g.
sentence-aligned corpora like the Europarl corpus
(Koehn, 2005) in mind (see also the study of Rama
and Borin (2011) on cognates, with Europarl as the
data basis). Then, translation relations Ti may be
induced from these corpora by applying a statisti-
cal machine translation approach such as the Moses
toolkit (Koehn et al., 2007). The translation relations
may thus be probabilistic instead of binary, which
may either be resolved via thresholding or by modi-
fying Equation (1) as in

di(u, v) =
∑

x∈W [Li]

Pr[uTix] + Pr[xTiv]

2

or

di(u, v) =
∑

x∈W [Li]

Pr[uTix] · Pr[xTiv],

both of which have (1) as special cases.

1As another aspect, Sejane and Eger (2012) concluded that
the sizes and partly the qualities of their bilingual dictionaries
were, throughout, not fully adequate for their intentions.

91



Figure 1: Bilingual dictionaries German-English and German-Latin and induced lexical semantic association net-
works, English and Latin versions of German. Note the similarities and differences; Mann ‘man’ and Mensch ‘human’
have a link in both versions but there is a path between Mann and Frau ‘woman’ only in the English version of Ger-
man, whereas there exists e.g. a path between Mann and Held ‘hero’ only in the Latin version. Reprinted from Sejane
and Eger (2012).

Using the Europarl corpus would both address
the problem of size and comparability raised above;
moreover, corpora may better reflect actual language
use than dictionaries, which oftentimes document
idiosyncractic, normative or assumed language con-
ditions. A problem with the Europarl corpus is that it
covers just a very small (and selected) subset of the
world’s languages, whereas it might be of particu-
lar interest for (semantic) typology to contrast large,
heterogeneous classes of languages.

4 Network distance measures and the
problem of tertium comparationis

In order to be able to induce a semantic typology
from the above described lexical semantic associa-
tion networks, a distance metric δ on network graphs
is required,2 that is, a function δ that maps network
graphs Gi, Gj , 1 ≤ i, j ≤ n, to numbers

δij = δ(Gi, Gj) ∈ R.

Such distance measures may be derived from gen-
eral network statistics such as the number of
edges, the diameters of the networks, network den-
sity, graph entropy via information functionals (cf.
Dehmer, 2008) or clustering coefficients (cf. Watts
and Strogatz, 1998). We believe, however, that such
abstract measures can be useful only for a prelimi-
nary examination of the data. A more in-depth anal-
ysis should be based on comparing individual net-

2In this context, we identify languages with their lexical se-
mantic association networks.

work vertices in two versions of the reference lan-
guage. For example, we could ask about the lexi-
cal semantic difference between French and Chinese
with respect to the lexical unit ‘language’. One way
of realizing such an analysis would be by making
use of shortest distances between network vertices.
To be more precise, let Gi and Gj be two lexical se-
mantic network versions of a reference language R.
Assume thatGi andGj have the same number,N , of
vertices, with the same labels (i.e. names of vertices
such as ‘language’). Let uk, 1 ≤ k ≤ N , be the k-th
vertex in both graphs, with identical label across the
two graphs. Moreover, let si(uk) and sj(uk) be vec-
tors whose l-th component, 1 ≤ l ≤ N , is given as
the shortest distance between vertex uk and vertex
ul in graphs Gi and Gj , respectively,(

si(uk)
)
l

= shortest distance between

uk and ul in Gi,

and analogously for sj(uk). We could then define
the difference between network version Gi and Gj

with respect to vertex uk as e.g. the Euclidean dis-
tance between these two vectors,

‖si(uk)− sj(uk)‖ .

However, as useful as shortest distances may be,
they do not seem to fully capture the topological
structure of a network. For example, they do not
indicate whether there are many or few (short) paths
between two vertices, etc. (see also the discussion
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in Gaume et al., 2008). Therefore, we propose a
Page-rank like (see Brin and Page, 1998; Gaume and
Mathieu, 2012) procedure to compare network ver-
tices of networks Gi and Gj . To this end, let pi(uk),
a vector of dimension N , denote the probability dis-
tribution that if, starting from vertex uk, one may
reach any of the other vertices of network Gi (and
analogously for network Gj), under the following
rules. In each step, starting at vertex uk, with prob-
ability α, a ‘random surfer’ on the network Gi may
pass from its current vertex v to any of v’s neighbors
with equal probability (if there are no neighbors, the
surfer passes to a random vertex), and with probabil-
ity (1 − α) the surfer ‘teleports’ to an arbitrary ver-
tex. The probability distribution pi(uk), for α close
to 1, may then neatly represent topological proper-
ties of network Gi, from the ‘perspective’ of vertex
uk. On this basis, we can, as above, determine the
difference between network versionsGi andGj with
respect to vertex uk as

δuk
(Gi, Gj) = ‖pi(uk)− pj(uk)‖ . (2)

Finally, we define the (global) distance between Gi

andGj as the average over all such (local) distances,

δij =
1

N

N∑
k=1

δuk
(Gi, Gj). (3)

If, as mentioned above, we have weighted graphs,
we slightly modify the random surfer’s behavior. In-
stead of passing with uniform probability from ver-
tex v to a neighbor vertex w of v, the surfer passes
to w with probability proportional to the weight be-
tween v and w; the larger the weight the higher is
the probability that the surfer ends up at w.

Then, once distance metric values δij are given,
an n × n distance matrix D may be defined whose
entry (i, j) is precisely δij ,

Dij = δij .

On D, standard e.g. hierarchical clustering algo-
rithms may be applied in order to deduce a lexical
semantic typology.

Finally, we address the tertium comparationis
problem: Given a set of languages, which one
should be chosen as reference language? It might be
tempting to believe that the choice of the reference

language should not matter much for the resulting
lexical semantic association networks, but the refer-
ence language may certainly have some impact. For
example, if English is the reference language, the
Chinese version of English might not only have a
link between ‘language’ and ‘picture’ but also be-
tween ‘language’ and ‘tongue’, because of the pol-
ysemy of ‘tongue’ in English. If, in contrast, Ger-
man was the reference language, the Chinese version
of German should not have a link between Zunge
‘tongue’ and Sprache ‘language’ because Zunge, in
German, does not mean ‘language’ (any more).

Thus, to avoid misspecifications based on a par-
ticular choice of reference language, we propose the
following. Let L1, . . . , Ln, Ln+1, n ≥ 2, be (n+ 1)
languages for which bilingual translation operators
TA,B exist for any two languages A, B from the
(n + 1) languages. Then let the distance between
languages i and j, 1 ≤ i, j ≤ n+ 1, be defined as

∆ij =
1

n− 1

∑
R∈L\{Li,Lj}

δ(GR
i , G

R
j ),

where by GR
i we denote the Li version of

R, and by L we denote the set of languages
{L1, . . . , Ln, Ln+1}; in other words, we specify the
distance between languages i and j as the aver-
age distance over all possible reference languages,
which excludes languages i and j themselves. As
above, ∆ij induces a distance matrix, with which
clustering can be performed.

5 Conclusion

We have presented a framework for inducing lexical
semantic typologies based on the idea of Sejane and
Eger (2012) to represent lexical semantic spaces of
different languages in a common reference language
in order to be able to contrast them. We have ex-
tended Sejane and Eger’s (2012) approach by giv-
ing it a solid mathematical foundation, by suggest-
ing more suitable data bases on which to implement
their study, and by outlining adequate network dis-
tance metrics on this data. Moreover, we have ad-
dressed the tertium comparationis problem of the
choice of the reference language. In follow-up work,
we intend to bring the idea to the data, from which
we expect very interesting cross-lingual lexical se-
mantic insights.
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Abstract

Semantic role classification accuracy for most

languages other than English is constrained by

the small amount of annotated data. In this pa-

per, we demonstrate how the frame-to-frame

relations described in the FrameNet ontology

can be used to improve the performance of

a FrameNet-based semantic role classifier for

Swedish, a low-resource language. In order

to make use of the FrameNet relations, we

cast the semantic role classification task as

a non-atomic label prediction task. The ex-

periments show that the cross-frame general-

ization methods lead to a 27% reduction in

the number of errors made by the classifier.

For previously unseen frames, the reduction is

even more significant: 50%.

1 Introduction

The FrameNet lexical database and annotated cor-

pora, based on the theory of semantic frames (Fill-

more et al., 2003), have allowed the implementa-

tion of automatic systems to extract semantic roles

(Gildea and Jurafsky, 2002; Johansson and Nugues,

2007; Màrquez et al., 2008; Das et al., 2010).

Since the original FrameNet is developed for the

English language, most research on semantic role

extraction has focused exclusively on English. How-

ever, the English FrameNet has inspired similar ef-

forts for other languages. For instance, the ongo-

ing development of a Swedish FrameNet (Borin et

al., 2010) allows us to investigate the feasibility

of using this resource in constructing an automatic

role-semantic analyzer for Swedish. However, due

to the fact that the Swedish FrameNet annotation

process is in a fairly early stage, not much anno-

tated material is available, and this limits the perfor-

mance attainable by automatic classifiers trained on

these data. In particular, the scarce amount of data

makes it very hard for the machine learning meth-

ods to discern general linguistic facts concerning the

syntactic–semantic linking patterns, such as the rela-

tion between the voice of a verb, the syntactic func-

tions of its arguments, and the semantic roles of the

arguments (Dowty, 1991).

In this paper, we show that the inter-frame rela-

tions described in the FrameNet ontology allow us

to generalize across frames. This allows the clas-

sifier to learn general linguistic facts, and it also

leads to more efficient use of the annotated data.

To allow this kind of generalization, we formulate

the semantic role selection problem as a classifica-

tion task with non-atomic labels. This cross-frame

generalization method reduces the number of errors

made by the classifier by 27%, improving the accu-

racy from 54.4 to 66.5. When evaluating on frames

for which the classifier has not been trained, the ac-

curacy improves from 7.2 (random performance) to

53.4, a 50% error reduction.

2 The Swedish FrameNet

The Swedish FrameNet, SweFN, is a lexical re-

source under development (Friberg Heppin and

Toporowska Gronostaj, 2012), based on the English

version of FrameNet constructed by the Berkeley re-

search group (Baker et al., 1998). It is found on the

SweFN website1, and is available as a free resource.

The SweFN frames and frame names correspond

to the English ones, with some exceptions, as do

the selection of frame elements including defini-

tions and internal relations. The meta-information

about the frames, such as semantic relations be-

tween frames, is also transferred from the Berkley

FrameNet. Compared to the Berkeley FrameNet,

SweFN is expanded with information about the do-

main of the frames, at present: general language, the

medical and the art domain.

1
http://spraakbanken.gu.se/eng/swefn
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At the time of writing this paper, SweFN cov-

ered 519 frames with around 18,000 lexical units.

The lexical units are gathered from SALDO, a free

Swedish electronic association lexicon (Borin and

Forsberg, 2009). A lexical unit from SALDO can-

not populate more than one frame. At present there

are 31 frames in SweFNwhich do not match a frame

in the Berkeley FrameNet. Of these, there are eight

completely new frames while the others have been

modified in some way.

Crucially for the work presented in this paper,

each frame is exemplified with at least one sentence.

The number of sentences is currently 2,974. The

most well-annotated frames are EXPERIENCER OBJ

with 38 sentences, CAUSE MOTION with 21, and

CAUSE HARM with 19. These sentences form the

training material used in the following sections.

3 System Implementation

In this section, we describe the implementation of

our semantic role labeling system. In order to be

useful on its own, such a system needs to solve sev-

eral tasks: (1) identification of predicate words; (2)

assignment of frames to predicate words; (3) iden-

tification of role fillers; (4) assignment of semantic

role labels to role fillers. In this paper, we focus ex-

clusively on the semantic role classification task.

3.1 Baseline: A Classifier for Swedish

Semantic Roles

Following most previous implementations, we used

a syntactic parse tree as the basis of the semantic

role extraction; we assumed that every semantic role

span coincides with the projection of a subtree in

the syntactic tree. The tasks of segmentation and

labeling then reduce to a classification problem on

syntactic tree nodes. Each sentence was parsed by

the LTH dependency parser (Johansson and Nugues,

2008a), which we trained on a Swedish treebank

(Nilsson et al., 2005). Figure 1 shows a sentence an-

notated with a dependency tree and semantic roles.

The semantic role labeling classifier was imple-

mented as a linear multiclass classifier with a flexi-

ble output space depending on the frame of the given

predicate; we trained this classifier using an online

learning algorithm (Crammer et al., 2006). In ad-

dition, we imposed a uniqueness constraint on the

labels output by the classifier, so that every role may

appear only once for a given predicate.

We considered a large number of features for the

classifier (Table 1). Most of these are commonly

used features taken from the standard literature on

semantic role labeling. We then applied a standard

greedy forward feature selection procedure to deter-

mine which of them to use. The features contain-

ing SALDO ID refer to the entry identifiers in the

SALDO lexicon. Note that the POS tags have coarse

and fine variants, such as VERB and VERB-FINITE-

PRESENT-ACTIVE respectively, and we used both of

them.

Semantic role classifiers rely heavily on lexical

features (Johansson and Nugues, 2008b), and this

may lead to brittleness; in order to increase robust-

ness, we added features based on hierarchical clus-

ters constructed using the Brown algorithm (Brown

et al., 1992). The Brown algorithm clusters word

into hierarchies represented as bit strings. Based on

tuning on a development set, we found that it was

best not to use the full bit string, but only a prefix if

the string was longer than 12 bits.

FRAME

DEPENDENCY RELATION PATH

FRAME ELEMENTS

POSITION

VOICE

ARGUMENT HEAD SALDO ID

ARGUMENT HEAD LEMMA

ARGUMENT HEAD POS (FINE)

PREDICATE POS (FINE)

ARGUMENT POS (COARSE)

ARGUMENT RIGHT CHILD POS (COARSE)

ARGUMENT WORD

PREDICATE WORD CLUSTER

ARGUMENT WORD CLUSTER

Table 1: List of classifier features.

3.2 A Classifier Using Non-atomic Semantic

Role Labels

The classifier described above is a quite typical ex-

ample of how semantic role classifiers are normally

implemented: each frame is independent of all other

frames. However, in our case, when the amount of

training data is quite small, the limitations of this

standard approach become apparent:

• Since there are many frames, the amount of

training data for each frame is very limited.
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Vi promenerar söderut från Lindholmen längs Norra Älvstrandens brokiga kontur .

SS

RA

RA PA
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DT DT

AT

PA

IP

SELF MOVER DIRECTION

SOURCE

PATH

SELF MOTION

Figure 1: A sentence with dependency syntax (above) and semantic role structure (below).

• Basic linguistic facts, such as which roles are

likely to appear in subject position, have to be

relearned for each frame.

To remedy these problems, we developed a classi-

fier using non-atomic labels: instead of just a simple

label INGESTION:INGESTOR, the classifier can pre-

dict several labels, using some sort of decomposition

into meaningful parts. In §3.3, we will describe sev-
eral such decompositions.

As described above, our baseline classifier is a

standard linear classifier. Assume that the frame F

defines a set of semantic roles r1, . . . , rn, then the

classifier predicts a semantic role r∗ for a given ar-

gument a using this model:

r∗ = argmax
r∈F

w · Φ(a, r)

Here Φ is a feature function describing features of

the argument a taking the semantic role r, and w is a

weight vector produced by some training algorithm.

This classifier model can easily be generalized to

the non-atomic case. We then assume that each role

r can be decomposed using a decomposition func-

tion D, which returns a set of labels. We now apply

the feature function to each sub-label l instead of the

main label r.

r∗ = argmax
r∈F

∑

l∈D(r)

w · Φ(a, l)

Non-atomic classification has been described in a

number of publications. It is fairly common in text

categorization, where hierarchical classification is

probably the most common type. One of the most

similar to ours is the action classifier by Roth and

Tu (2009), which handled a large label set by de-

composing the labels into meaningful parts.

3.3 Generalization Methods

We investigated several ways of analyzing the labels,

and most of them were based on the properties of

the frames, defined in the FrameNet ontology. The

Swedish FrameNet currently does not define such

properties, but since the frames and frame elements

are for the most part based on their English coun-

terparts, we used the English ontology. In case of

mismatch, we just left the label in its original state.

The first method we tried was based on frame-to-

frame relations. We used the following relations:

INHERITANCE: specific to general, e.g. COMMU-

NICATION NOISE to COMMUNICATION.

SUBFRAME: from component to complex, e.g.

SETTING OUT to TRAVEL.

CAUSATIVE-OF: causative to inchoative,

e.g. CAUSE TEMPERATURE CHANGE to

INCH. CHANGE OF TEMP..

INCHOATIVE-OF: inchoative to stative, e.g.

INCH. CHANGE OF TEMP. to TEMPERATURE.

USING: child to parent, e.g. COMMUNICA-

TION NOISE to MAKE NOISE.

PERSPECTIVE-ON: perspectivized to neutral, e.g.

RIDE VEHICLE to USE VEHICLE.

To analyze a label in terms of frame-to-frame

relations, we applied the transitive closure of

each relation and returned the resulting set. For

instance, when applying the Inheritance rela-

tion to the INGESTION:INGESTOR label, we get

the following set: { INGESTION:INGESTOR,

INGEST SUBSTANCE:INGESTOR, MANIPU-

LATION:AGENT, INTENT. AFFECT:AGENT,

INTENT. ACT:AGENT, TRANS. ACTION:AGENT }.
The second method was based on the semantic

type of the semantic role. For instance, the INGES-

TION:INGESTOR role needs to be filled by an en-

tity of the semantic type SENTIENT. The decom-

position of this role then simply becomes { INGES-

TION:INGESTOR, SENTIENT }.
The third method was based on the simple no-

tion label generalization: if two semantic roles

97



in two different frames have the same name,

then we use the same label. For instance,

we change the INGESTION:INGESTOR and IN-

GEST SUBSTANCE:INGESTOR to INGESTOR. We

normalized the spelling, punctuation, and capitaliza-

tion of the labels before generalizing.

4 Experiments

We evaluated the classifier on the example sentences

in the Swedish FrameNet. The frame and the ar-

gument were given to the classifier, which then had

to predict the semantic role. We evaluated in two

different ways: In-frame evaluation, where a 5-fold

cross-validation was carried out over the set of sen-

tences, and Out-frame evaluation, where the cross-

validation was done over the set of frames. The out-

frame setting simulates the situation where a new

frame has been defined, but no training data have

been annotated. Without any sort of cross-frame

generalization, the classification in the out-frame

setting becomes a random baseline.

Table 2 shows the results of using the frame-to-

frame relations for analyzing the semantic role la-

bels. We see that decomposition based on Inheri-

tance is by far the most effective of these, although

the highest performance is obtained when combin-

ing all types of relation-based decompositions.

Classifier In-frame Out-frame

Baseline 54.4 7.2

Inheritance 58.7 28.1

Using 55.8 20.5

Subframe 54.8 11.5

Causative-of 54.5 9.7

Perspective-on 54.5 8.1

Inchoative-of 54.4 8.0

All except Inheritance 56.0 24.0

All relations 59.6 36.9

Table 2: Classification results with generalization based

on frame-to-frame relations.

The effect of analyzing labels in terms of semantic

type is similar. The in-frame performance is higher

than that of relation-based decomposition, while the

out-frame performance is a bit lower. The two gen-

eralization methods seem to complement each other,

since we get a higher performance by combining

them. Table 3 shows the results.

Classifier In-frame Out-frame

Semantic type 61.7 31.7

Semantic type + relations 63.5 42.6

Table 3: Adding semantic type generalization.

Finally, Table 4 shows the effect of using label

generalization. This is by far the most effective

method. However, we get even higher performance

by combining it with the other two methods.

Classifier In-frame Out-frame

Label generalization 65.9 51.5

LG + ST + relations 66.5 53.4

Table 4: Results with label generalization.

5 Discussion

When developing NLP systems for a low-resource

language, it is crucial to make effective use of the

available data. In the case of FrameNet semantic

role classification, one way to improve the use of the

data is to generalize the roles across the frames. This

also makes sense from a theoretical point of view,

since predicting multiple labels allows the machine

learner to learn general facts as well as specifics.

This work builds on previous work in multi-label

classification. For the task of FrameNet semantic

role classification, the work most closely related to

ours is that by Matsubayashi et al. (2009), which de-

fined a classifier making use of role groups; the ef-

fect of the role groups turns out to be similar to our

non-atomic classification approach.

Our experiments showed very significant error re-

ductions. This was especially notable in the case of

out-frame evaluation, which is to be expected since

the baseline in this case was a random selection. The

best classifier used all three types of label decom-

position, and achieved a 26% in-frame and a 50%

out-frame error reduction.
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Abstract

We study the task of automatically disam-
biguating word combinations such as jump
the gun which are ambiguous between a lit-
eral and MWE interpretation, focusing on the
utility of type-level features from an MWE
lexicon for the disambiguation task. To
this end we combine gold-standard idiomatic-
ity of tokens in the OpenMWE corpus with
MWE-type-level information drawn from the
recently-published JDMWE lexicon. We find
that constituent modifiability in an MWE-type
is more predictive of the idiomaticity of its
tokens than other constituent characteristics
such as semantic class or part of speech.

1 Introduction

A multiword expression (MWE) is a phrase or
sequence of words which exhibits idiosyncratic be-
haviour (Sag et al., 2002; Baldwin and Kim, 2009).
The nature of this idiosyncracy may be purely dis-
tributional — such as hot and cold being more com-
mon than cold and hot — but in this paper we study
MWEs with idiosyncratic semantics. Specifically
we are concerned with expressions such as jump the
gun which are ambiguous between a literal interpre-
tation of “to leap over a firearm”, and an idiomatic
interpretation of “to act prematurely”.

While MWEs are increasingly entering the main-
stream of NLP, the accurate identification of MWEs
remains elusive for current methods, particularly in
the absence of MWE type-specialised training data.
This paper builds on the work of Hashimoto et al.
(2006) and Fothergill and Baldwin (2011) in ex-
ploring whether type-level MWE properties sourced
from an idiom dictionary can boost the accuracy of
crosstype MWE-token classification. That is, we

attempt to determine whether token occurrences of
ambiguous expressions such as Kim jumped the gun
on this issue are idiomatic or literal, based on: (a)
annotated instances for MWEs other than jump the
gun (e.g. we may only have token-level annotations
for kick the bucket and throw in the towel), and (b)
dictionary-based information on the syntactic prop-
erties of the idiom in question.

We find that constituent modifiability judgments
extracted from the idiom dictionary are more predic-
tive of the idiomaticity of tokens than other features
of the idiom’s constituents such as part of speech
or lexeme. However, violations of the dictionary’s
modifiability rules have variable utility for machine
learning classification, being suggestive of the literal
class but not definitive. Finally, we present novel re-
sults illuminating the effectiveness of contextual se-
mantic vectors at MWE-token classification.

2 Related Work

The OpenMWE corpus (Hashimoto and Kawahara,
2009) is a gold-standard corpus of over 100, 000
Japanese MWE-tokens covering 146 types. It is the
largest resource we are aware of which has hand-
annotated instances of MWEs which are ambiguous
between a literal and idiomatic interpretation, and
has been used by Hashimoto and Kawahara (2009)
and Fothergill and Baldwin (2011) for supervised
classification of MWE-tokens using features cap-
turing lexico-syntactic variation and traditional se-
mantic features borrowed from word sense disam-
biguation (WSD) . Similar work in other languages
has been performed by Li and Sporleder (2010) and
Diab and Bhutada (2009). We build on this work in
exploring the use of MWE-type-level features drawn
from an idiom dictionary for MWE identification.
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Hashimoto and Kawahara (2009) developed a va-
riety of features capturing lexico-syntactic variation
but only one — a Boolean feature for “internal mod-
ification”, which fired only when a non-constituent
word appeared between constituent words in an
MWE-token — had an appreciable impact on classi-
fication. However, they found that this effect was far
overshadowed by semantic context features inspired
by WSD. That is, treating each MWE-type as a word
with two senses and performing sense disambigua-
tion was far more successful than any features based
on lexico-syntactic characteristics of idioms. Intu-
itively, we would expect that if we had access to a
rich inventory of expression-specific type-level fea-
tures encoding the ability of the expression to partic-
ipate in different syntactic alternations, we should be
better equipped to disambiguate token occurrences
of that expression. Indeed, the work of Fazly et al.
(2009) would appear to support this hypothesis, in
that the authors used unsupervised methods to learn
type-level preferences for a range of MWE types,
and demonstrated that these could be successfully
applied to a token-level disambiguation task.

Hashimoto and Kawahara (2009) trained indi-
vidual classifiers for each MWE-type in their cor-
pus and tested them only on instances of the type
they were trained on. In contrast to this type-
specialised classification, Fothergill and Baldwin
(2011) trained classifiers on a subset of MWE-types
and tested on instances of the remaining held-out
MWE-types. The motivation for this crosstype
classification was to test the use of data from the
OpenMWE corpus for MWE-token classification of
MWE-types with no gold-standard data available
(which are by far the majority). Fothergill and Bald-
win (2011) introduced features for crosstype classi-
fication which captured features of the MWE-type,
reasoning that similar expressions would have sim-
ilar propensity for idiomaticity. We introduce new
MWE-type features expressing the modifiability of
constituents based on information extracted from an
MWE dictionary with wide coverage.

Fothergill and Baldwin (2011) expected that
WSD features — however successful at type spe-
cialised classification — would lose their advantage
in crosstype classification because of the lack of a
common semantics between MWE-types. However,
this turned out not to be the case, with by far the

most successful results arising again from use of
WSD features. This surprising result raises the pos-
sibility of distributional similarity between the con-
texts of idiomatic MWE-tokens of different MWE-
types, however the result was not explained or ex-
plored further. In this paper we offer new insights
into the distributional similarity hypothesis.

The recently-published JDMWE (Japanese Dic-
tionary of Multiword Expressions) encodes type-
level information on thousands of Japanese MWEs
(Shudo et al., 2011). A subset of the dictionary has
been released, and overlaps to some extent with the
MWE-types in the OpenMWE corpus. JDMWE en-
codes information about lexico-syntactic variations
allowed by each MWE-type it contains. For exam-
ple, the expression hana wo motaseru — literally
“to have [someone] hold flowers” but figuratively
“to let [someone] take the credit” — has the syntac-
tic form entry [N wo] *V30. The asterix indicates
modifiability, telling us that the head [V]erb mo-
taseru “cause to hold” allows modification by non-
constituent dependents – such as adverbs – but the
dependent [N]oun hana “flowers” does not.

3 Features for classification

We introduce features based on the lexico-syntactic
flexibility constraints encoded in JDMWE and com-
pare them with similar features from related work.

3.1 Type-level features
We extracted the modifiability flags from the syntac-
tic field of entries in JDMWE and generated a feature
for each modifiable constituent, identified by its po-
sition in the type’s parse tree. The motivation for
this is to allow machine learning algorithms to cap-
ture any similarities in idiomaticity between MWE-
types with similar modifiability.

Fothergill and Baldwin (2011) also aimed to
exploit crosstype similarity with their type fea-
tures. They extracted lexical features (part-of-
speech, lemma and semantic category) of the type
headword and other constituents. We use these fea-
tures as point of contrast.

3.2 Token features
An internal modifier is a dependent of a constituent
which is not a constituent itself but divides an MWE-
token into two parts, such as the word seven in kick
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seven buckets. Features in related work have flagged
the presence of any internal modifier uncondition-
ally (Hashimoto and Kawahara, 2009; Fothergill and
Baldwin, 2011). We introduce a refined feature
which fires only when a MWE-token has an internal
modifier which violates the constituent modification
constraints encoded in JDMWE.

JDMWE modifiability constraints could also be
construed to proscribe external modifiers. Sentential
subjects and other external arguments of the head
verb are too common to be sensibly proscribed but
we did include a feature flagging proscribed exter-
nal modification of leaf constituents such as wa-
ter in kick the bucket of water. This feature effec-
tively refines the adnominal modification feature of
Hashimoto and Kawahara (2009) which indiscrimi-
nately flags external modifications on a leaf noun.

We include in our analysis a contrast of these fea-
tures to token-based features in related work. The
closest related features are those focussed on the
MWE characteristic of lexico-syntactic fixedness
termed idiom features by Hashimoto and Kawahara
(2009) and Fothergill and Baldwin (2011):

• the flag for internal modification;

• the flag for adnominal modification;

• lexical features such as part-of-speech, lemma
and semantic category extracted from an inter-
nal or adnominal modifier;

• inflections of the head constituent.

Additionally, we include WSD-inspired features
used by Hashimoto and Kawahara (2009) and
Fothergill and Baldwin (2011). These are all lexi-
cal features extracted from context, including part-
of-speech, lemma and semantic category of words
in the paragraph, local and syntactic contexts of the
MWE-token. These features set the high water mark
for classification accuracy in both type-specialised
and crosstype classification scenarios.

3.3 Example JDMWE feature extraction
The following is a short literal token of the example
type from Section 2, with numbered constituents:
kireina hanawo(2) motaseta(1) (“[He] had [me] hold
the pretty flowers”). The JDMWE features emitted
for this token are the type feature modifiable(1) and
the token feature proscribed premodifier(2).

4 Results

We worked with a subset of the OpenMWE cor-
pus comprising those types having: (a) an entry in
the released subset of the JDMWE, and (b) both lit-
eral and idiomatic classes represented by at least 50
MWE-tokens each in the corpus. This leaves only 27
MWE-types and 23, 392 MWE-tokens and means
that our results are not directly comparable to those
of Hashimoto and Kawahara (2009) and Fothergill
and Baldwin (2011). The release of the full JDMWE
should enable more comparable results.

We constructed a crosstype classification task
by ten-fold cross validation of the MWE-types in
the OpenMWE subset, with micro-averaged results.
Training sets were the union of all MWE-tokens of
MWE-types in a partition. The majority class was
the idiomatic sense and provided a baseline accu-
racy of 0.594. Support Vector Machine models with
linear kernels were trained on various feature com-
binations using the libSVM package.

Our JDMWE type-level features performed com-
paratively well at the crosstype task, with an accu-
racy of 0.647, at 5.3 percentage points above the
baseline. This is a marked improvement on the lex-
ical type-level features from related work, which
achieved an accuracy of 4.0 points above baseline.
As has been observed in related work, the accuracy
gained by using type-level features is much smaller
than the token-level WSD features. However, the
relative performance of the JDMWE type features to
the lexical type features is sustained in combination
with other feature types, as shown in Figure 1a.

Our JDMWE token-level features on the other
hand perform quite badly at crosstype classification.
When measured against the baseline or used to aug-
ment other token features, they degraded or only
marginally improved performance. The fact that us-
ing these features resulted in worse-than-baseline
performance suggests that the constituent modifia-
bility features extracted from JDMWE may not be
strict constraints as they are construed.

To better examine the quality of the JDMWE con-
stituent modifiability constraint features, we con-
structed a heuristic classifier. The classifier applies
the idiomatic class by default, but the literal class to
any MWE-token which violates the JDMWE con-
stituent modifiability constraints. This classifier’s
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(a) Accuracy using JDMWE type-level
features and lexical type-level features in
combination with various token-level fea-
tures

(b) Recall for idiomatic instances for var-
ious feature combinations with and with-
out WSD context features, in a type-
specialised classification setting

(c) Recall for literal instances for vari-
ous feature combinations with and with-
out WSD context features, in a type-
specialised classification setting.

Figure 1: Results

precision on the literal class was 0.624, meaning that
fully 0.376 of modifiability constraint violations in
the corpus occured for idiomatic tokens.

However, the classifier was correct in its literal
class labels more than half the time so it achieved a
better accuracy than the majority class classifer, at
0.612. As such, the heuristic classifier comfortably
outperformed the Support Vector Machine classifier
based on the same features. This shows that our poor
results with regards to the JDMWE constraint viola-
tion features are due mainly to failures of the ma-
chine learning model to take advantage of them.

As to the strength of the constraints encoded in
JDMWE, we found that 4.4% of all idiomatic tokens
in the corpus violated constituent modification con-
straints, and 10.8% of literal tokens. Thus the con-
straints seem sound but not as rigid as presented by
the JDMWE developers.

Figure 1a shows that even with our improvements
to type-level features, the finding of Fothergill and
Baldwin (2011) that WSD context features perform
best at crosstype classification still holds. We can-
not fully account for this, but one observation re-
garding the results of our type-specialised evaluation
may have bearing on the crosstype scenario.

For our type-specialised classification task we
performed cross-validation for each MWE-type in
isolation, aggregating final results. Some types had

a literal majority class, so the baseline accuracy was
0.741. Figure 1b shows that type-specialised classi-
fication performance is basically constant when re-
stricting analysis to only the idiomatic test instances.
The huge performance boost produced through the
use of WSD features occurs only on literal instances
(see Figure 1c). That is, our type-specialised clas-
sifiers are capturing distributional similarity of con-
text for the literal instances of a MWE-type but not
for the idiomatic instances. Since the contexts of id-
iomatic instances of the same MWE-type do not ex-
hibit a usable distributional similarity, it is unlikely
that crosstype similarities between idiomatic MWE-
token contexts can explain the efficacy of WSD fea-
tures for crosstype classification.

5 Conclusion

Using a MWE dictionary as input to a supervised
crosstype MWE-token classification task we have
shown that the constituents’ modifiability character-
istics tell more about idiomaticity than their lexical
characteristics. We found that the constituent modi-
fication constraints in JDMWE are not hard-and-fast
rules but do show up statistically in the OpenMWE
corpus. Finally, we found that distributional simi-
larity of the contexts of idiomatic MWE-tokens is
unlikely to be the source of the success of WSD fea-
tures on MWE-token classification accuracy.
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Abstract

Modeling user preferences is crucial in many
real-life problems, ranging from individual
and collective decision-making to strategic in-
teractions between agents and game theory.
Since agents do not come with their prefer-
ences transparently given in advance, we have
only two means to determine what they are if
we wish to exploit them in reasoning: we can
infer them from what an agent says or from
his nonlinguistic actions. In this paper, we an-
alyze how to infer preferences from dialogue
moves in actual conversations that involve bar-
gaining or negotiation. To this end, we pro-
pose a new annotation scheme to study how
preferences are linguistically expressed in two
different corpus genres. This paper describes
the annotation methodology and details the
inter-annotator agreement study on each cor-
pus genre. Our results show that preferences
can be easily annotated by humans.

1 Introduction

Modeling user preferences is crucial in many real-
life problems, ranging from individual and collec-
tive decision-making (Arora and Allenby, 1999)
to strategic interactions between agents (Brainov,
2000) and game theory (Hausman, 2000). A web-
based recommender system can, for example, help
a user to identify (among an optimal ranking) the
product item that best fits his preferences (Burke,
2000). Modeling preferences can also help to find
some compromise or consensus between two or
more agents having different goals during a nego-
tiation (Meyer and Foo, 2004).

Working with preferences involves three subtasks
(Brafman and Domshlak, 2009): preference acquisi-
tion, which extracts preferences from users, prefer-
ence modeling where a model of users’ preferences
is built using a preference representation language
and preference reasoning which aims at computing
the set of optimal outcomes. We focus in this paper
on the first task.

Handling preferences is not easy. First, specifying
an ordering over acceptable outcomes is not trivial
especially when multiple aspects of an outcome mat-
ter. For instance, choosing a new camera to buy may
depend on several criteria (e.g. battery life, weight,
etc.), hence, ordering even two outcomes (cameras)
can be cognitively difficult because of the need to
consider trade-offs and dependencies between the
criteria. Second, users often lack complete infor-
mation about preferences initially. They build a
partial description of agents’ preferences that typi-
cally changes over time. Indeed, users often learn
about the domain, each others’ preferences and even
their own preferences during a decision-making pro-
cess. Since agents don’t come with their preferences
transparently given in advance, we have only two
means to determine what they are if we wish to ex-
ploit them in reasoning: we can infer them from
what an agent says or from his nonlinguistic actions.
In this paper, we analyze how to infer preferences
from dialogue moves in actual conversations that in-
volve bargaining or negotiation.

Within the Artificial Intelligence community,
preference acquisition from nonlinguistic actions
has been performed using a variety of specific
tasks, including preference learning (Fürnkranz and
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Hüllermeier, 2011) and preference elicitation meth-
ods (Chen and Pu, 2004) (such as query learning
(Blum et al., 2004), collaborative filtering (Su and
Khoshgoftaar, 2009) and qualitative graphical rep-
resentation of preferences (Boutilier et al., 1997)).
However, these tasks don’t occur in actual conver-
sations about negotiation. We are interested in how
agents learn about preferences from actual conver-
sational turns in real dialogue (Edwards and Barron,
1994), using NLP techniques.

To this end, we propose a new annotation scheme
to study how preferences are linguistically expressed
in dialogues. The annotation study is performed
on two different corpus genres: the Verbmobil cor-
pus (Wahlster, 2000) and a booking corpus, built
by ourselves. This paper describes the annotation
methodology and details the inter-annotator agree-
ment study on each corpus genre. Our results show
that preferences can be easily annotated by humans.

2 Background

2.1 What are preferences?

A preference is commonly understood as an order-
ing by an agent over outcomes, which are under-
stood as actions that the agent can perform or goal
states that are the direct result of an action of the
agent. For instance, an agent’s preferences may be
defined over actions like buy a new car or by its end
result like have a new car. The outcomes over which
a preference is defined will depend on the domain or
task.

Among these outcomes, some are acceptable for
the agent, i.e. the agent is ready to act in such a
way as to realize them, and some outcomes are not.
Among the acceptable outcomes, the agent will typ-
ically prefer some to others. Our aim is not to de-
termine the most preferred outcome of an agent but
follows rather the evolution of their commitments to
certain preferences as the dialogue proceeds. To give
an example, if an agent proposes to meet on a certain
day X and at a certain time Y, we learn that among
the agent’s acceptable outcomes is a meeting on X
at Y, even if this is not his most preferred outcome.
We are interested in an ordinal definition of prefer-
ences, which consists in imposing a ranking over all
(relevant) possible outcomes and not a cardinal defi-
nition which is based on numerical values that allow

comparisons.
More formally, let Ω be a set of possible

outcomes. A preference relation, written �, is a
reflexive and transitive binary relation over elements
of Ω. The preference orderings are not necessarily
complete, since some candidates may not be com-
parable by a given agent. Given the two outcomes
o1 and o2, o1 � o2 means that outcome o1 is equally
or more preferred to the decision maker than o2.
Strict preference o1 � o2 holds iff o1 � o2 and not
o2 � o1. The associated indifference relation is
o1 ∼ o2 if o1 � o2 and o2 � o1.

2.2 Preferences vs. opinions

It is important to distinguish preferences from opin-
ions. While opinions are defined as a point of view, a
belief, a sentiment or a judgment that an agent may
have about an object or a person, preferences, as
we have defined them, involve an ordering on be-
half of an agent and thus are relational and com-
parative. Hence, opinions concern absolute judg-
ments towards objects or persons (positive, negative
or neutral), while preferences concern relative judg-
ments towards actions (preferring them or not over
others). The following examples illustrate this:

(a) The movie is not bad.

(b) The scenario of the first season is better than the
second one.

(c) I would like to go to the cinema. Let’s go and see
Madagascar 2.

(a) expresses a direct positive opinion towards the
movie but we do not know if this movie is the most
preferred. (b) expresses a comparative opinion be-
tween two movies with respect to their shared fea-
tures (scenarios) (Ganapathibhotla and Liu, 2008).
If actions involving these movies (e.g. seeing them)
are clear in the context, such a comparative opin-
ion will imply a preference, ordering the first season
scenario over the second. Finally, (c) expresses two
preferences, one depending on the other. The first
is that the speaker prefers to go to the cinema over
other alternative actions; the second is, given that
preference, that he wants to see Madagascar 2 over
other possible movies.

Reasoning about preferences is also distinct from
reasoning about opinions. An agent’s preferences
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determine an order over outcomes that predicts how
the agent, if he is rational, will act. This is not true
for opinions. Opinions have at best an indirect link
to action: I may hate what I’m doing, but do it any-
way because I prefer that outcome to any of the al-
ternatives.

3 Data

Our data come from two corpora: one already-
existing, Verbmobil (CV ), and one that we cre-
ated, Booking (CB).

The first corpus is composed of 35 dialogues ran-
domly chosen from the existing corpus Verbmobil
(Wahlster, 2000), where two agents discuss on when
and where to set up a meeting. Here is a typical frag-
ment:
π1 A: Shall we meet sometime in the next week?
π2 A: What days are good for you?
π3 B: I have some free time on almost every day
except Fridays.
π4 B: Fridays are bad.
π5 B: In fact, I’m busy on Thursday too.
π6 A: Next week I am out of town Tuesday, Wednes-
day and Thursday.
π7 A: So perhaps Monday?

The second corpus was built from various En-
glish language learning resources, available on the
Web (e.g., www.bbc.co.uk/worldservice/
learningenglish). It contains 21 randomly se-
lected dialogues, in which one agent (the customer)
calls a service to book a room, a flight, a taxi, etc.
Here is a typical fragment:

π1 A: Northwind Airways, good morning. May I
help you?
π2 B: Yes, do you have any flights to Sydney next
Tuesday?
π3 A: Yes, there’s a flight at 16:45 and one at 18:00.
π4 A: Economy, business class or first class ticket?
π5 B: Economy, please.

Our approach to preference acquisition exploits
discourse structure and aims to study the impact
of discourse for extracting and reasoning on prefer-
ences. Cadilhac et al. (2011) show how to compute
automatically preference representations for a whole
stretch of dialogue from the preference representa-
tions for elementary discourse units. Our annota-
tion here concentrates on the commitments to pref-

erences expressed in elementary discourse units or
EDUs. We analyze how the outcomes and the depen-
dencies between them are linguistically expressed
by performing, on each corpus, a two-level anno-
tation. First, we perform a segmentation of the di-
alogue into EDUs. Second, we annotate preferences
expressed by the EDUs.

The examples above show the effects of segmen-
tation. Each EDU is associated with a label πi.
For Verbmobil, we rely on the already avail-
able discourse annotation of Baldridge and Las-
carides (2005). For Booking, the segmentation
was made by consensus.

We detail, in the next section, our preference an-
notation scheme.

4 Preference annotation scheme

To analyze how preferences are linguistically ex-
pressed in each EDU, we must: (1) identify the set
Ω of outcomes, on which the agent’s preferences
are expressed, and (2) identify the dependencies be-
tween the elements of Ω by using a set of specific
operators, i.e. identifying the agent’s preferences on
the stated outcomes. Consider the segment “Let’s
meet Thursday or Friday”. We have Ω = {meet
Thursday, meet Friday} where outcomes are linked
by a disjunction that means the agent is ready to act
for one of these outcomes, preferring them equally.

Within an EDU, preferences can be expressed in
different ways. They can be atomic preference state-
ments or complex preference statements.

4.1 Atomic preferences

Atomic preference statements are of the form “I pre-
fer X”, “Let’s X”, or “We need X”, where X de-
scribes an outcome. X may be a definite noun phrase
(“Monday”, “next week”, “almost every day”), a
prepositional phrase (“at my office”) or a verb
phrase (“to meet”). They can be expressed within
comparatives and/or superlatives (“a cheaper room”
or “the cheapest flight”).

Preferences can also be expressed in an indirect
way using questions. Although not all questions
entail that their author commits to a preference, in
many cases they do. That is, if A asks “can we meet
next week?” he implicates a preference for meeting.
For negative and wh-interrogatives, the implication
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is even stronger. Expressions of sentiment or polite-
ness can also be used to indirectly introduce prefer-
ences. In Booking, the segment “economy please”
indicates the agent’s preference to be in an economy
class.

EDUs can also express preferences via free-choice
modalities; “I am free on Thursday” or “I can meet
on Thursday” tells us that Thursday is a possible day
to meet, it is an acceptable outcome.

A negative preference expresses an unacceptable
outcome, i.e. what the agent does not prefer. Neg-
ative preference can be expressed explicitly with
negation words (“I don’t want to meet on Friday”)
or inferred from the context (“I am busy on Mon-
day”).

While the logical form of an atomic preference
statement is something of the form Pref(X), we
abbreviate this in the annotation language, using just
the outcome expression X to denote that the agent
prefers X to the alternatives, i.e. X � X . If X is
an unacceptable outcome, we use the non-boolean
operator not to denote that the agent prefers not X to
other alternatives, i.e. X � X . In our Verbmobil
annotation, X is typically an NP denoting a time or
place; X as an outcome is thus shorthand for meet
on X or meet at X . For Booking, X is short for
reserve or book X .

4.2 Complex preferences
Preference statements can also be complex, express-
ing dependencies between outcomes. Borrowing
from the language of conditional preference net-
works or CP-nets (Boutilier et al., 2004), we rec-
ognize that some preferences may depend on an-
other action. For instance, given that I have cho-
sen to eat fish, I will prefer to have white wine
over red wine—something which we express as
eat fish : drink white wine � drink red wine.

Among the possible combinations, we find con-
junctions, disjunctions and conditionals. We exam-
ine these conjunctive, disjunctive and conditional
operations over outcomes and suppose a language
with non-boolean operators &,5 and 7→ taking out-
come expressions as arguments.

With conjunctions of preferences, as in “Could
I have a breakfast and a vegetarian meal?” or in
“Mondays and Fridays are not good?”, the agent ex-
presses two preferences (respectively over the ac-

ceptable outcomes breakfast and vegetarian meal
and the non acceptable outcomes not Mondays and
not Fridays) that he wants to satisfy and he prefers
to have one of them if he can not have both. Hence
o1 & o2 means o1 � o1 and o2 � o2.

The semantics of a disjunctive preference is a free
choice one. For example in “either Monday or Tues-
day is fine for me” or in “I am free Monday and
Tuesday”, the agent states that either Monday or
Tuesday is an acceptable outcome and he is indif-
ferent between the choice of the outcomes. Hence
o1 5 o2 means o2 : o1 ∼ o1, o2 : o1 � o1 and
o1 : o2 ∼ o2, o1 : o2 � o2.

Finally, some EDUs express conditional among
preferences. For example, in the sentence “What
about Monday, in the afternoon?”, there are two
preferences: one for the day Monday, and, given the
Monday preference, one for the time afternoon (of
Monday), at least for one syntactic reading of the
utterance. Hence o1 7→ o2 means o1 � o1 and
o1 : o2 � o2.

For each EDU, annotators identify how outcomes
are expressed and then indicate if the outcomes are
acceptable, or not, using the operator not and how
the preferences on these outcomes are linked using
the operators &,5 and 7→.

4.3 Example
We give below an example of how some EDUs are
annotated. <o> i indicates that o is the outcome
number i in the EDU, the symbol // is used to sepa-
rate the two annotation levels and brackets indicate
how outcomes are attached.

π1 : <Tuesday the sixteenth> 1 I got class<from nine
to twelve> 2? // 1 7→ not 2

π2 : What about <Friday afternoon> 1, <at two
thirty> 2 or <three> 3, // 1 7→ (25 3)

π3 : <The room with balcony> 1 should be equipped
<with a queen size bed> 2, <the other one> 3
<with twin beds> 4, please. // (1 7→ 2) & (3 7→
4)

In π1, the annotation tells us that we have two out-
comes and that the agent prefers outcome 1 over any
other alternatives and given that, he does not pre-
fer outcome 2. In π2, the annotation tells us that
the agent prefers to have one of outcome 2 and out-
come 3 satisfied given that he prefers outcome 1. In
this example, the free choice between outcome 2 and
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outcome 3 is lexicalized by the coordinating con-
junction “or”. On the contrary, π3 is a more complex
example where there is no discursive marker to find
that the preference operator between the couples of
outcomes 1 and 2 on one hand, and 3 and 4 on the
other hand, is the conjunctive operator &.

5 Inter-annotator agreements

Our two corpora (Verbmobil and Booking)
were annotated by two annotators using the pre-
viously described annotation scheme. We per-
formed an intermediate analysis of agreement and
disagreement between the two annotators on two
Verbmobil dialogues. Annotators were thus
trained only for Verbmobil. The aim is to study to
what extent our annotation scheme is genre depen-
dent. The training allowed each annotator to under-
stand the reason of some annotation choices. After
this step, the dialogues of our corpora have been an-
notated separately, discarding those two dialogues.
Table 1 presents some statistics about the annotated
data in the gold standard.

CV CB

No. of dialogues 35 21
No. of outcomes 1081 275
No. of EDUs with outcomes 776 182

% with 1 outcome 71% 70%
% with 2 outcomes 22% 19%
% with 3 or more outcomes 8% 11%

No. of unacceptable outcomes (not) 266 9
No. of conjunctions (&) 56 31
No. of disjunctions (5) 75 29
No. of conditionals (7→) 184 37

Table 1: Statistics for the two corpora.

We compute four inter-annotator agreements: on
outcome identification, on outcome acceptance, on
outcome attachment and finally on operator identifi-
cation. Table 2 summarizes our results.

5.1 Agreements on outcome identification
Two inter-annotator agreements were computed us-
ing Cohen’s Kappa. One based on an exact matching
between two outcome annotations (i.e. their corre-
sponding text spans), and the other based on a le-

CV CB

Outcome identification (Kappa) exact : 0.66
lenient : 0.85

Outcome acceptance (Kappa) 0.90 0.95
Outcome attachment (F-measure) 93% 82%
Operator identification (Kappa) 0.93 0.75

Table 2: Inter-annotator agreements for the two corpora.

nient match between annotations (i.e. there is an
overlap between their text spans as in “2p.m” and
“around 2p.m”). This approach is similar to the one
used by Wiebe, Wilson and Cardie (2005) to com-
pute agreement when annotating opinions in news
corpora. We obtained an exact agreement of 0.66
and a lenient agreement of 0.85 for both corpus gen-
res.

We made the gold standard after discussing cases
of disagreement. We observed four cases. The first
one concerns redundant preferences which we de-
cided not to keep in the gold standard. In such cases,
the second EDU π2 does not introduce a new prefer-
ence, neither does it correct the preferences stated in
π1; rather, the agent just wants to insist by repeat-
ing already stated preferences, as in the following
example:

π1 A: Thursday, Friday, and Saturday I am out.

π2 A: So those days are all out for me,

The second case of disagreement comes from
anaphora which are often used to introduce new, to
make more precise or to accept preferences. Hence,
we decided to annotate them in the gold standard.
Here is an example:

π1 A: One p.m. on the seventeenth?

π2 B: That sounds fantastic.

The third case of disagreement concerns prefer-
ence explanation. We chose not to annotate these
expressions in the gold standard because they are
used to explain already stated preferences. In the
following example, one judge annotated “from nine
to twelve” to be expressions of preferences while the
other did not :

π1 A: Monday is really not good,

π2 A: I have got class from nine to twelve.
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Finally, the last case of disagreement comes from
preferences that are not directly related to the action
of fixing a date to meet but to other actions, such as
having lunch, choosing a place to meet, etc. Even
though those preferences were often missed by an-
notators, we decided to keep them, when relevant.

5.2 Agreements on outcome acceptance
The aim here is to compute the agreement on the not
operator, that is if an outcome is acceptable, as in
“<Mondays> 1 are good // 1”, or unacceptable, as
in “<Mondays> 1 are not good // not 1”. We get a
Cohen’s Kappa of 0.9 for Verbmobil and 0.95 for
Booking. The main case of disagreement concerns
anaphoric negations that are inferred from the con-
text, as in π2 below where annotators sometimes fail
to consider “in the morning” as unacceptable out-
comes:
π1 A: Tuesday is kind of out,
π2 A: Same reason in the morning

Same case of disagreement in this example where
“Monday” is an unacceptable outcome:
π1 well, I am, busy <in the afternoon of the twenty

sixth> 1, // not 1

π2 that is <Monday> 1 // not 1

5.3 Agreements on outcome attachment
Since this task involves structure building, we com-
pute the agreement using the F-score measure. The
agreement was computed on the previously built
gold standard once annotators discussed cases of
outcome identification disagreements. We compare
how each outcome is attached to the others within
the same EDU. This agreement concerns EDUs
that contain at least three outcomes, that is 8% of
EDUs from Verbmobil and 11% of EDUs from
Booking. When comparing annotations for the ex-
ample π1 below, there is three errors, one for out-
come 2, one for 3 and one for 4.

π1 <for the next week> 1 the only days I have
open are <Monday> 2 or <Tuesday> 3 <in the
morning> 4.

• Annotation 1 : 1 7→ (25 (3 7→ 4))
• Annotation 2 : 1 7→ ((25 3) 7→ 4)

We obtain an agreement of 93% for Verbmobil
and 82% for Booking.

5.4 Agreements on outcome dependencies

Finally, we compute the agreements for each couple
of outcomes on which annotators agreed about how
they are attached.

In Verbmobil, the most frequently used binary
operator is 7→. Because the main purpose of the
agents in this corpus is to schedule an appointment,
the preferences expressed by the agents are mainly
focused on concepts of time and there are many con-
ditional preferences since it is common that prefer-
ences on specific concepts depend on more broad
temporal concepts. For example, preferences on
hours are generally conditional on preferences on
days. In Booking, there are almost as many & as
7→ because independent and dependent preferences
are more balanced in this corpus. The agents dis-
cuss preferences about various criteria that are in-
dependent. For example, to book a hotel, the agent
express his preferences towards the size of the bed
(single or double), the quality of the room (smoker
or nonsmoker), the presence of certain conveniences
(TV, bathtub), the possibility to have breakfast in
his room, etc. Within an EDU, such preferences are
often expressed in different sentences (compared to
Verbmobil where segments’ lengths are smaller)
which lead annotators to link those preferences with
the operator &. Conditionals between preferences
hold when decision criteria are dependent. For ex-
ample, the preference for having a vegetarian meal
is conditional on the preference for having lunch.
There also are conditionals between temporal con-
cepts, for example, to choose the time of a flight.

Table 3 shows the Kappa for each operator on
each corpus genre. The Cohen’s Kappa, averaged
over all the operators, is 0.93 for Verbmobil and
0.75 for Booking. We observe two main cases of
disagreement: between 5 and &, and between &
and 7→. These cases are more frequent for Booking
mainly because annotators were not trained on this
corpus. This is why the Kappa was lower than for
Verbmobil. We discuss below the main two cases
of disagreement.
Confusion between 5 and &. The same lin-
guistic realizations do not always lead to the same
operator. For instance, in “<Monday> 1 and
<Wednesday> 2 are good” we have 15 2 whereas
in “<Monday> 1 and <Wednesday> 2 are not
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CV CB

& 0.90 0.66
5 0.97 0.89
7→ 0.92 0.71

Table 3: Agreements on binary operators.

good” or in “I would like a <single room> 1 and
a <taxi> 2” we have respectively not 1 & not 2
and 1 & 2.

The coordinating conjunction “or” is a strong pre-
dictor for recognizing a disjunction of preferences,
at least when the “or” is clearly outside of the scope
of a negation1, as in the examples below (in π1, the
negation is part of the wh-question, and not boolean
over the preference):
π1 Why don’t we <meet, either Thursday the first> 1,

or <Thursday the eighth> 2 // 15 2

π2 Would you like <a single> 1 or <a double> 2? //
15 2

The coordinating conjunction “and” is also a
strong indication, especially when it is used to link
two acceptable outcomes that are both of a single
type (e.g., day of the week, time of day, place,
type of room, etc.) between which an agent wants
to choose a single realization. For example, in
Verbmobil, agents want to fix a single appoint-
ment so if there is a conjunction “and” between two
temporal concepts of the same level, it is a disjunc-
tion of preference (see π3 below). It is also the case
in Booking when an agent wants to book a single
plane flight (see π4).
π3 <Monday> 1 and <Tuesday> 2 are good for me

// 15 2

π4 You could <travel at 10am.> 1, <noon> 2 and
<2pm> 3 // 15 (25 3)

The acceptability modality distributes across
the conjoined NPs to deliver something like
3(meet Monday) ∧ 3(meet Tuesday) in modal
logic (clearly acceptability is an existential
rather than universal modality), and as is
known from studies of free choice modality

1When there is a propositional negation over the disjunction
as in “I don’t want sheep or wheat”, which occurs frequently
in a corpus in preparation, we no longer have a disjunction of
preferences.

(Schulz, 2007), such a conjunction translates to
3(meet Monday ∨ meet Tuesday), which ex-
presses our free choice disjunction of preferences,
o1 5 o2.

On the other hand, when the conjunction “and”
links two outcomes referring to a single concept
that are not acceptable, it gives a conjunction of
preferences, as in π5. Once again thinking in
terms of modality is helpful. The “not accept-
able” modality distributes across the conjunction,
this gives something like 2¬o1 ∧ 2¬o2 (where ¬
is truth conditional negation) which is equivalent to
2(¬o1 ∧ ¬o2), i.e. not o1 & not o2 and not equiv-
alent to 2(¬o1 ∨ ¬o2), i.e. not o1 5 not o2.

The connector “and” also involves a conjunction
of preferences when it links two independent out-
comes that the agent wants to satisfy simultaneously.
For example, in π6, the agent wants to book two ho-
tel rooms, and so the outcomes are independent. In
π7, the agent expresses his preferences on two differ-
ent features he wants for the hotel room he is book-
ing.
π5 <Thursday the thirtieth> 1, and <Wednesday the

twenty ninth> 2 are, booked up // not 1 & not 2
π6 Can I have one room< with balcony> 1 and <one

without balcony> 2? // 1 & 2
π7 <Queen> 1 and <nonsmoking> 2 // 1 & 2

Confusion between & and 7→. In this case, dis-
agreements are mainly due to the difficulty for an-
notators to decide if preferences are dependent, or
not. For example, in “I have a meeting <starting
at three> 1, but I could meet <at one o’clock> 2”,
one annotator put not 1 7→ 2 meaning that the
agent is ready to meet at one o’clock because he
can not meet at three, while the other annotated
not 1 & 2 meaning that the agent is ready to meet
at one o’clock independently of what it will do at
three.

Some connectors introduce contrast between the
preferences expressed in a segment as “but”,
“although” and “unless”. In the annotation, we can
model it thanks to the operator 7→. When it is used
between two conflicting values, it represents a cor-
rection. Thus, the annotation o1 7→ not o1 means we
need to replace in our model of preferences o1 � o1
by o1 � o1. And vice versa for not o1 7→ o1.
π8 I have class <on Monday> 1, but, <any time, after

one or two> 2 I am free. // not 1 7→ (1 7→ 2)
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π9 <Friday> 1 is a little full, although there is some
possibility, <before lunch> 2 // not 1 7→ (1 7→ 2)

π10 we’re full <on the 22nd> 1, unless you want <a
smoking room> 2 // not 1 7→ (1 7→ 2)

However, it is important to note that the coordi-
nating conjunction “but” does not always introduce
contrast, as in the example below, where it intro-
duces a conjunction of preferences.
π11 I am busy <on Monday> 1, but <Tuesday

afternoon> 2, sounds good // not 1 & 2

The subordinating conjunctions “if”, “because”
and “so” are indications for detecting conditional
preferences. The preferences in the main clause de-
pend on the preferences in the subordinate clause
(if-clause, because-clause, so-clause), as in the ex-
amples below.
π12 so if we are going to be able to meet <that, last

week in January> 1, it is going have to be <the,
twenty fifth> 2 // 1 7→ 2

π13 <the twenty eighth> 1 I am free, <all day> 2, if
you want to go for <a Sunday meeting> 3 // 3 7→
(2 7→ 1)

π14 it is going to have to be <Wednesday the third> 1
because, I am busy <Tuesday> 2 // not 2 7→ 1

π15 I have a meeting <from eleven to one> 1, so
we could, meet <in the morning from nine to
eleven> 2, or,<in the afternoon after one> 3 // not
1 7→ (25 3)

Whether or not there are some discursive markers
between two outcomes, to find the appropriate oper-
ator, we need to answer some questions : does the
agent want to satisfy the two outcomes at the same
time ? Are the preferences on the outcomes depen-
dent or independent ?

We have shown in this section that it is difficult to
answer the second question and there is quite some
ambiguity between the operators & et 7→. This am-
biguity can be explained by the fact that both opera-
tors model the same optimal preference. Indeed, we
saw in section 4.2 that for two outcomes o1 and o2
linked by a conjunction of preferences (o1 & o2), we
have o1 � o1 and o2 � o2. For two outcomes o1 and
o2 where o2 is linked to o1 by a conditional prefer-
ence (o1 7→ o2), we have o1 � o1 and o1 : o2 � o2.
In both cases, the best possible world for the agent
is the one where o1 and o2 are both satisfied at the
same time.

6 Conclusion and Future Work

In this paper, we proposed a linguistic approach
to preference aquisition that aims to infer prefer-
ences from dialogue moves in actual conversations
that involve bargaining or negotiation. We stud-
ied how preferences are linguistically expressed in
elementary discourse units on two different cor-
pus genres: one already available, the Verbmobil
corpus and the Booking corpus purposely built
for this project. Annotators were trained only for
Verbmobil. The aim is to study to what extent
our annotation scheme is genre dependent.

Our preference annotation scheme requires two
steps: identify the set of acceptable and non accept-
able outcomes on which the agents preferences are
expressed, and then identify the dependencies be-
tween these outcomes by using a set of specific non-
boolean operators expressing conjunctions, disjunc-
tions and conditionals. The inter-annotator agree-
ment study shows good results on each corpus genre
for outcome identification, outcome acceptance and
outcome attachment. The results for outcome de-
pendencies are also good but they are better for
Verbmobil. The difficulties concern the confu-
sion between disjunctions and conjunctions mainly
because the same linguistic realizations do not al-
ways lead to the same operator. In addition, anno-
tators often fail to decide if the preferences on the
outcomes are dependent or independent.

This work shows that preference acquisition from
linguistic actions is feasible for humans. The next
step is to automate the process of preference extrac-
tion using NLP methods. We plan to do it using an
hybrid approach combining both machine learning
techniques (for outcome extraction and outcome ac-
ceptance) and rule-based approaches (for outcome
attachment and outcome dependencies).
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Abstract

Neurosemantics aims to learn the mapping
between concepts and the neural activity
which they elicit during neuroimaging ex-
periments. Different approaches have been
used to represent individual concepts, but
current state-of-the-art techniques require
extensive manual intervention to scale to
arbitrary words and domains. To over-
come this challenge, we initiate a system-
atic comparison of automatically-derived
corpus representations, based on various
types of textual co-occurrence. We find
that dependency parse-based features are
the most effective, achieving accuracies
similar to the leading semi-manual ap-
proaches and higher than any published
for a corpus-based model. We also find
that simple word features enriched with
directional information provide a close-to-
optimal solution at much lower computa-
tional cost.

1 Introduction

The cognitive plausibility of computational
models of word meaning has typically been
tested using behavioural benchmarks, such as
identification of synonyms among close asso-
ciates (the TOEFL task for language learners,
see e.g. Landauer and Dumais, 1997); emulating
elicited judgments of pairwise similarity (such as
Rubenstein and Goodenough, 1965); judgments
of category membership (e.g. Battig and Mon-
tague, 1969); and word priming effects (Lund
and Burgess, 1996). Mitchell et al. (2008) in-
troduced a new task in neurosemantic decoding

– using models of semantics to learn the map-
ping between concepts and the neural activity
which they elicit during neuroimaging experi-
ments. This was achieved with a linear model
which used training data to find neural basis im-
ages that correspond to the assumed semantic
dimensions (for instance, one such basis image
might be the activity of the brain for words rep-
resenting animate concepts), and subsequently
used these general patterns and known seman-
tic dimensions to infer the fMRI activity that
should be elicited by an unseen stimulus con-
cept. Follow-on work has experimented with
other neuroimaging modalities (Murphy et al.,
2009), and with a range of semantic models in-
cluding elicited property norms (Chang et al.,
2011), corpus derived models (Devereux and
Kelly, 2010; Pereira et al., 2011) and structured
ontologies (Jelodar et al., 2010).

The current state-of-the-art performance on
this task is achieved using models that are hand-
tailored in some respect, whether using manual
annotation tasks (Palatucci et al., 2009), use of
a domain-appropriate curated corpus (Pereira
et al., 2011), or selection of particular collocates
to suit the concepts to be described (Mitchell
et al., 2008). While these approaches are clearly
very successful, it is questionable whether they
are a general solution to describe the vari-
ous parts-of-speech and semantic domains that
make up a speaker’s vocabulary. The Mitchell
et al. (2008) 25-verb model would probably have
to be extended to describe the lexicon at large,
and it is unclear whether such a compact model
could be maintained. While Wikipedia (Pereira
et al., 2011) has very broad and increasing cov-
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erage, it is possible that it will remain inad-
equate for specialist vocabularies, or for less-
studied languages. And while the method used
by Palatucci et al. (2009) distributes the anno-
tation task efficiently by crowd-sourcing, it still
requires that appropriate questions are compiled
by researchers, a task that is both difficult to
perform in a systematic way, and which may not
generalize to more abstract concepts.

In this paper we examine a representative set
of corpus-derived models of meaning, that re-
quire no manual intervention, and are applicable
to any syntactic and semantic domain. We con-
centrate on which types of basic corpus pattern
perform well on the neurosemantic decoding
task: LSA-style word-region co-occurrences,
and various HAL-style word-collocate features
including raw tokens, POS tags, and a full de-
pendency parse. Otherwise a common feature
extraction and preprocessing pipeline is used: a
co-occurrence frequency cutoff, application of a
frequency normalization weighting, and dimen-
sionality reduction with SVD.

The following section describes how the brain
activity data was gathered and processed; the
construction of several corpus-derived models
of meaning; and the regression-based meth-
ods used to predict one from the other, evalu-
ated with a brain-image matching task (Mitchell
et al., 2008). In section 3 we report the re-
sults, and in the Conclusion we discuss both the
practical implications, and what this works sug-
gests for the cognitive plausibility of distribu-
tional models of meaning.

2 Methods

2.1 Brain activity features

The dataset used here is that described in detail
in (Mitchell et al., 2008) and released publicly1

in conjunction with the NAACL 2010 Work-
shop on Computational Neurolinguistics (Mur-
phy et al., 2010). Functional MRI (fMRI) data
was collected from 9 participants while they per-
formed a property generation task. The stimuli
were line-drawings, accompanied by their text

1http://www.cs.cmu.edu/afs/cs/project/theo-
73/www/science2008/data.html

label, of everyday concrete concepts, with 5 ex-
emplars of each of 12 semantic classes (mam-
mals, body parts, buildings, building parts,
clothes, furniture, insects, kitchen utensils, mis-
cellaneous functional artifacts, work tools, veg-
etables, and vehicles). Stimuli remained on
screen for three seconds, and each was each pre-
sented six times, in random order, to give a total
of 360 image presentations in the session.

The fMRI images were recorded with 3.0T
scanner at 1 second intervals, with a spatial reso-
lution of 3x3x6mm. The resulting data was pre-
processed with the SPM package (Friston et al.,
2007); the blood-oxygen-level response was ap-
proximated by taking a boxcar average over a
sequence of brain images in each trial; percent
signal change was calculated relative to rest pe-
riods, and the data from each of the six repeti-
tions of each stimulus were averaged to yield a
single brain image for each concept. Finally, a
grey-matter anatomical mask was used to select
only those voxels (three-dimensional pixels) that
overlap with cortex, yielding approximately 20
thousand features per participant.

2.2 Models of semantics

Our objective is to compare current semantic
representations that get state-of-the-art perfor-
mance on the neuro-semantics task with repre-
sentative distributional models of semantics that
can be derived from arbitrary corpora, using
varying degrees of linguistic preprocessing. A
series of candidate models were selected to rep-
resent the variety of ways in which basic textual
features can be extracted and represented, in-
cluding token co-occurrence in a small local win-
dow, dependency parses of whole sentences, and
document co-occurrence, among others. Other
parameters were kept fixed in a way that the
literature suggests would be neutral to the var-
ious models, and so allow a fair comparison
among them (Sahlgren, 2006; Bullinaria and
Levy, 2007; Turney and Pantel, 2010).

All textual statistics were gathered from a set
of 50m English-language web-page documents
consisting of 16 billion words. Where a fixed
text window was used, we chose an extent of
±4 lower-case tokens either side of the target
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word of interest, which is in the mid-range of
optimal values found by various authors (Lund
and Burgess, 1996; Rapp, 2003; Sahlgren, 2006).
Positive pointwise-mutual-information (1,2) was
used as an association measure to normalize
the observed co-occurrence frequency p(w, f) for
the varying frequency of the target word p(w)
and its features p(f). PPMI up-weights co-
occurrences between rare words, yielding posi-
tive values for collocations that are more com-
mon than would be expected by chance (i.e. if
word distributions were independent), and dis-
cards negative values that represent patterns of
co-occurrences that are rarer than one would ex-
pect by chance. It has been shown to perform
well generally, with both word- and document-
level statistics, in raw and dimensionality re-
duced forms (Bullinaria and Levy, 2007; Turney
and Pantel, 2010).2

PPMIwf =

{
PMIwf if PMIwf > 0

0 otherwise
(1)

PMIwf = log

(
p(w, f)

p(w)p(f)

)
(2)

A frequency threshold is commonly applied
for three reasons: low-frequency co-occurrence
counts are more noisy; PMI is positively bi-
ased towards hapax co-occurrences; and due
to Zipfian distributions a cut-off dramatically
reduces the amount of data to be processed.
Many authors use a threshold of approximately
50-100 occurrences for word-collocate models
(Lund and Burgess, 1996; Lin, 1998; Rapp,
2003). Since Bullinaria and Levy (2007) find
improving performance with models using pro-
gressively lower cutoffs we explored two cut-offs
of 20 and 50 which equate to low co-occurrences
thresholds of 0.00125 or 0.003125 per million re-
spectively; for the word-region model we chose
a threshold of 2 occurrences of a target term in
a document, to keep the input features to a rea-
sonable dimensionality (Bradford, 2008).

After applying these operations to the input
data from each model, the resulting dimension-

2Preliminary analyses confirmed that PPMI per-
formed as well or better than alternatives including log-
likelihood, TF-IDF, and log-entropy.

ality ranged widely, from about 500 thousand,
to tens of millions. A singular value decompo-
sition (SVD) was applied to identify the 1000
dimensions within each model with the great-
est explanatory power, which also has the ef-
fect of combining similar dimensions (such as
synonyms, inflectional variants, topically simi-
lar documents) into common components, and
discarding more noisy dimensions in the data.
Again there is variation in the number of di-
mension that authors use: here we experiment
with 300 and 1000. For decomposition we used
a sparse SVD method, the Implicitly Restarted
Arnoldi Method (Lehoucq et al., 1998; Jones
et al., 2001), which was coherent with the PPMI
normalization used, since a zero value repre-
sented both negative target-feature associations,
and those that were not observed or fell below
the frequency cut-off. We also streamlined the
task by reducing the input data C (of n target
words by m co-occurrence features) to a square
matrix CCT of size n × n, taking advantage of
the equality of their left singular vectors U. For
SVD to generalize well over the many input fea-
tures, it is also important to have more training
cases that the small set of 60 concrete nouns
used in our evaluation task. Consequently we
gathered all statistics over a set of the 40,000
most frequent word-forms found in the Ameri-
can National Corpus (Nancy Ide and Keith Su-
derman, 2006), which should approximate the
scale and composition of the vocabulary of a
university-educated speaker of English (Nation
and Waring, 1997), and over 95% of tokens typ-
ically encountered in English.

2.2.1 Hand-tailored benchmarks

The state-of-the-art models on this brain ac-
tivity prediction task are both hand-tailored.
Mitchell et al. (2008) used a model of seman-
tics based on co-occurrence in the Google 1T 5-
gram corpus of English (Brants and Franz, 2006)
with a small set of 25 Verbs chosen to rep-
resent everyday sensory-motor interaction with
concrete objects, such as see, move, listen. We
recreated this using our current parameters (web
document corpus, co-occurrence frequency cut-
off, PPMI normalization). The second hand-
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tailored dataset we used was a set of Elicited
Properties inspired by the 20 Questions game,
and gathered using Mechanical Turk (Palatucci
et al., 2009; Palatucci, 2011). Multiple infor-
mants were asked to answer one or more of 218
questions “related to size, shape, surface prop-
erties, and typical usage” such as Do you see
it daily?, Is it wild?, Is it man-made? with a
scalar response ranging from 1 to 5. The re-
sulting responses were then averaged over infor-
mants, and then the values of each question were
grouped into 5 bins, giving all dimensions simi-
lar mean and variance.

2.2.2 Word-Region Model

Latent Semantic Analysis (Deerwester et al.,
1990; Landauer and Dumais, 1997), and its
probabilistic cousins (Blei et al., 2003; Grif-
fiths et al., 2007), express the meaning of a
word as a distribution of co-occurrence across
a set of documents, or other text-regions such
as paragraphs. This word-region matrix in-
stantiates the assumption that words that share
a topical domain (such as medicine, entertain-
ment, philosophy) would be expected to appear
in similar sub-sets of text-regions. In such a
model, the nearest neighbors of a target word
are syntagmatically related (i.e. appear along-
side each other), and for judge might include
lawyer, court, crime, or prison.

The Document model used here is loosely
based on LSA, taking the frequency of occur-
rence of each of our 40,000 vocabulary words
in each of 50 million documents as its input
data, and it follows Bullinaria and Levy (2007);
Turney and Pantel (2010) in using PPMI as a
normalization function. We have not investi-
gated variations on the decomposition algorithm
in any detail, such as those using non-negative
matrix factorization, probabilistic LSA or LDA
topic models, as the objective in this paper is
to provide a direct comparison between the dif-
ferent types of basic collocation information en-
coded in corpora, rather than evaluate the best
algorithmic means for discovering latent dimen-
sions in those co-occurrences. Nor have we eval-
uated performance on a more structured corpus
input (Pereira et al., 2011). However prelimi-

nary tests with the Wikipedia corpus, and with
LDA, using the Gensim package (Rehurek and
Sojka, 2010) yielded similar performances.

2.2.3 Word-Collocate Models

Word-collocate models make a complemen-
tary assumption to that of the document model:
that words with closely-related categorical or
taxonomic properties should appear in the same
position of similar sentences. In a basic word-
collocate model, based on a word-word co-
occurrence matrix, the nearest neighbors of
judge might be athlete, singer, or fire-fighter,
reflecting paradigmatic relatedness (i.e. substi-
tutability). Word-collocate models are further
differentiated by the amount of linguistic anno-
tation attached to word features, ranging from
simple word-form features in a fixed-width win-
dow around the concept word, to more elaborate
word sequence patterns and parses including
parts of speech and dependency relation tags.
Among these alternatives, we might expect a
dependency model to be the most powerful. In-
tuitively, the information that John is sentient
is similarly encoded in the text John likes cake
and John seems to really really like cake, and a
suitably effective parser should be able to gen-
eralize over this variation, to extract the same
dependency relationship of John-subject-like. In
contrast a narrow window-based model might
exclude informative features (such as like in the
second example), while including presumably
uninformative ones (such as really). However
parsers have the disadvantage of being computa-
tionally expensive (meaning that they typically
are applied to smaller corpora) and usually in-
troduce some noise through their errors. Conse-
quently, simpler window-based models have of-
ten been found to be as effective.

The most basic model considered is the
Word-Form model, in which all lower-case to-
kens (word forms and punctuation) found within
four positions left and right of the target word
are recorded, yielding simple features such as
{john, likes}. It may also be termed a ‘flat’
model in contrast to those which assign a vari-
able weight to collocates, progressively lower as
one moves further than the target position (e.g.
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Lund et al., 1995). We did not use a stop-list, as
Bullinaria and Levy (2007) found co-occurrence
with very high frequency words also to be infor-
mative for semantic tasks. We also expect that
the subsequent steps of normalizing with PPMI,
reduction with SVD, and use of regularised re-
gression should be able to recognize when such
high-frequency words are not informative and
then discount these, without the need for such
assumptions upfront.

The Stemmed model is a slight variation on
the Word-Form model, where the same statistics
are aggregated after applying Lancaster stem-
ming (Paice, 1990; Loper and Bird, 2002).

The Directional model, inspired by Schütze
and Pedersen (1993), is also derived from the
word-form model, but differentiates between co-
occurrence to the left or to the right of the target
word, with features such as {john L, cake R}.

The Part-of-Speech model (Kanejiya et al.,
2003; Widdows, 2003) replaces each lower-
case word-token with its part-of-speech disam-
biguated form (e.g. likes VBZ, cake NN ). These
annotations were extracted from the full depen-
dency parse described below.

The Sequence model draws on a range of
work that uses word sequence patterns (Lin and
Pantel, 2001; Almuhareb and Poesio, 2004; Ba-
roni et al., 2010), and may also be considered an
approximation of models that use shallow syn-
tactic analysis (Grefenstette, 1994; Curran and
Moens, 2002). All distinct token sequences up
to length 4 either side of the target word were
counted.

Finally the Dependency model uses a full
dependency parse, which might be considered
the most informed representation of the word-
collocate relationships instantiated in corpus
sentences, and this approach has been used by
several authors (Lin, 1998; Padó and Lapata,
2007; Baroni and Lenci, 2010). The features
used are pairs of dependency relation and lex-
eme corresponding to each edge linked to a tar-
get word of interest (e.g. likes subj ). The parser
used here was Malt, which achieves accuracies of
85% when deriving labelled dependencies on En-
glish text (Hall et al., 2007). The features pro-
duced by this module are much more limited,

to those words that have a direct dependency
relation with the word of interest.

2.3 Linear Learning Model

A linear regression model will allow us to eval-
uate how well a given model of word semantics
can be used to predict brain activity. We fol-
low the analysis in Mitchell et al. (2008) and
subsequently adopted by several other research
groups (see Murphy et al., 2010). For each par-
ticipant and selected fMRI feature (i.e. each
voxel, which records the time-course of neural
activity at a fixed location in the brain), we train
a model where the level of activation of the latter
(the blood oxygenation level) in response to dif-
ferent concepts is approximated by a regularised
linear combination of their semantic features:

f = Cβ + λ||β||2 (3)

where f is the vector of activations of a spe-
cific fMRI feature for different concepts, the ma-
trix C contains the values of the semantic fea-
tures for the same concepts, β is the vector of
weights we must learn for each of those (corpus-
derived) features, and λ tunes the degree of reg-
ularisation. We can illustrate this with a toy
example, containing several stimulus concepts
and their attributes on three semantic dimen-
sions: cat (+animate, -big, +moving); phone
(-animate, -big, -moving); elephant (+animate,
+big, +moving); skate-board (-animate, -big,
+moving). After training over all the voxels in
our fMRI data with this simple semantic model,
we can derive whole brain images that are typ-
ical of each of the semantic dimensions. The
power of the model is its ability to predict ac-
tivity for concepts that were not in the training
set – for instance the brain activation elicited by
the word car might be approximated by combin-
ing the images see for -animate, +big, +moving,
even though this combination of properties was
not observed during training.

The linear model was estimated with a
least squared errors method and L2 regularisa-
tion, selecting the lambda parameter from the
range 0.0001 to 5000 using Generalized Cross-
Validation (see Hastie et al., 2011, p.244). The
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activation of each fMRI voxel in response to a
new concept that was not in the training data
was predicted by a β-weighted sum of the val-
ues on each semantic dimension, building a pic-
ture of expected the global neural activity re-
sponse for an arbitrary concept. Again follow-
ing Mitchell et al. (2008) we use a leave-2-out
paradigm in which a linear model for each neu-
ral feature is trained in turn on all concepts mi-
nus 2, having selected the 500 most stable voxels
in the training set using the same correlational
measure across stimulus presentations. For each
of the 2 left-out concepts, we predict the global
neural activation pattern, as just described. We
then try to correctly match the predicted and
observed activations, by measuring the cosine
distance between the model-generated estimate
of fMRI activity and the that observed in the ex-
periment. If the sum of the matched cosine dis-
tances is lower than the sum of the mismatched
distances, we consider the prediction successful
– otherwise as failed. At chance levels, expected
matching accuracy is 50%, and significant per-
formance above chance can be estimated using
the binomial test, once variance had been veri-
fied over independent trials (i.e. where no single
stimulus concept is shared between pairs).

3 Results

Table 1 shows the main results of the leave-
two-out brain-image matching task. They show
the mean classification performance over 1770
word pairs (60 select 2) by 9 participants. All of
these classification accuracies are highly signif-
icant at p � 0.001 over test trials (binomial,
chance 50%, n=1770*9) and p < 0.001 over
words (binomial, chance 50%, n=60). There
were some significant differences between mod-
els when making inferences over trials, but for
the small set of words used here it is not possible
to make firm conclusions about the superiority
of one model over the other, that could be confi-
dently expected to generalize to other stimuli or
experiments. However, we do achieve classifica-
tion accuracies that are as high, or higher than
any previously published (Palatucci et al., 2009;
Pereira et al., 2011), while models based on very

Semantic Models Features Accuracy
25 Verbs 25 78.5
Elicited Properties 218 83.5
Document (f2) 1000 76.2
Word Form 1000 80.0
Stemmed 1000 76.2
Direction 1000 80.2
Part-of-Speech 1000 80.0
Sequence 1000 78.5
Dependency 1000 83.1

Table 1: Brain activity prediction accuracy on leave-
2-out pair-matching task. A frequency cutoff of 20
was used for all 1000 dimensional models.

Semantic Models 300 Feats. 1000 Feats.
Document (f2) 79.9 76.2
Word Form 78.1 80.0
Stemmed 77.9 76.2
Direction 80.0 80.2
Part-of-Speech 77.9 80.0
Sequence 72.9 78.5
Dependency 81.6 83.1

Table 2: Effect of SVD dimensionality in the leave-
2-out pair-matching setting; frequency cutoff of 20.

different basic features (directional word-forms;
dependency relations; document co-occurrence)
yield very similar performance.

3.1 Effect of Number of Dimensions

Here we evaluate what effect the number of SVD
dimensions used has on the final performance
of various semantic models. Experimental re-
sults comparing 300 and 1000 dimensions are
presented in Table 2, all based on a frequency
cutoff of 20. We observe that performance im-
proves in 5 out of 7 semantic models compared,
with the highest performance achieved by the
Dependency model when 1000 SVD dimensions
were used.

3.2 Effect of Frequency Cutoff

In this section, we evaluate what effect frequency
cutoff has on the brain prediction accuracy of
various semantic models. From the results in
Table 3, we observe only marginal changes as
the frequency cutoff varied from 20 to 50. This
suggests that the semantic models of this set of
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Semantic Models Cutoff = 50 Cutoff = 20
Document (f2) 79.9 79.9
Word Form 78.5 78.1
Stemmed 78.2 77.9
Direction 80.8 80.0
Part-of-Speech 77.5 77.9
Sequence 74.4 72.9
Dependency 81.3 81.6

Table 3: Effect of frequency cutoff in the leave-2-out
pair-matching setting; 300 SVD dimensions.

words are not very sensitive to variations in the
frequency cutoff under current experimental set-
tings, and do not benefit clearly from the de-
crease in sparsity and increase in noise that a
lower threshold produces.

3.3 Information Overlap Analysis

To verify that the models are in fact substan-
tially different, we performed a follow-on analy-
sis that measured the informational overlap be-
tween the corpus-derived models. Given two
models A and B, both with dimensionality 40
thousand words by 300 SVD dimensions, we can
evaluate the extent to which A (used as the
predictor semantic representation) contains the
information encoded in B (the explained rep-
resentation). As shown in (4), for each SVD
component c, we take the left singular vector
bc as a dependent variable and fit it with a lin-
ear model, using the matrix A (all left singu-
lar vectors) as independent variables. The ex-
plained variance for this column is weighted by
its squared singular value s2

c in B, and the sum of
these component-wise variances gives the total
variance explained R2

A→B.

R2
A→B =

300∑
c=1

s2c∑
s2c
RA→bc (4)

Figure 1 indicates that the first three models,
which are all derived from token occurrences in a
±4 window, are close to identical. The sequence
and document models are relatively dissimilar,
and the dependency model occupies a middle
ground, with some similarity to all the models.
It is also interesting to note that the among the
first cluster of word-form derived models, the

Figure 1: Informational Overlap between Corpus-
Derived Datasets, in R2

directional one has the highest similarity to the
dependency model.

4 Conclusion

The main result of this study was that we
achieved classification accuracies as high as
any published, and within a fraction of a per-
centage point of the human benchmark 20
Questions data, using completely unsupervised,
data-driven models of semantics based on a large
random sample of web-text. The most linguisti-
cally informed among the models (and so, per-
haps the most psychologically plausible), based
on dependency parses, is the most successful.
Still the performance of sometimes radically dif-
ferent models, from Document-based (syntag-
matic) and Word-Form-based (paradigmatic), is
surprisingly similar. One reason for this may be
that we have reached a ceiling in performance
on the fMRI data, due to its inherent noise – in
this regard it is interesting to note that an at-
tempt to classify individual concepts using this
data directly, without an intervening model of
semantics, also achieves about 80% (though on a
different task, Shinkareva et al., 2008). Another
possible explanation is that both methods reveal
equivalent sets of underlying semantic dimen-
sions, but figure 1 suggests not. Alternatively,
it may be that the small set of 60 words exam-
ined here may be as well-distinguished by means
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of their taxonomic differences, as by their top-
ical differences, a suggestion supported by the
results in Pereira et al. (2011, see Figure 2A).

From the perspective of computational effi-
ciency however, some of the models have clearer
advantages. The Dependency and Part-of-
Speech models are processing-intensive, since
the broad vocabulary considered requires that
the very large quantities of text pass through
a parsing or tagging pipeline (though these
tasks can be parallelized). The Sequence and
Document models conversely require very large
amounts of memory to store all their features
during SVD. In comparison, the Direction model
is impressive, as it achieves close to optimal per-
formance, despite being very cheap to produce
in terms of processor time and memory foot-
print. Its relatively superior performance may
be due to the relatively fixed word-order of En-
glish, making it a good approximation of a De-
pendency model. For instance, given the nar-
row ±4 token windows used here, the Direction
features shaky Left and donate Right (relative
to a target noun) are probably nearly identical
to the Dependency features shaky Adj and do-
nate Subj. The Sequence model might also be
seen as an approximate Dependency model, but
one with the addition of more superficial colloca-
tions such as “fish and chips” or “Judge Judy”,
which are less relevant to our semantic task.

The evidence for the influence of the scal-
ing parameters (number of SVD dimensions,
frequency cutoff) is mixed: cut-off appears to
have little effect either way, and increasing the
number of dimensions can help or hinder (com-
pare the Sequence and Document models). We
can speculate that the Document model is al-
ready “saturated” with 300 dimensions/topics,
but that the other models based on properties
have a higher inherent dimensionality. It may
also be a lower cut-off and higher dimensional-
ity would show clearer benefits over a larger set
of semantic/syntactic domains, including lower-
frequency words (the lowest frequency work in
the set of 60 used here was igloo, which has an
incidence of 0.3 per million words in the ANC).

PPMI appears to be both effective, and par-
simonious with assumptions one might make

about conceptual representations, where it
would be cognitively onerous and unnecessary
to encode all negative features (such as the facts
that dogs do not have wheels, are not commu-
nication events, and do not belong in the avi-
ation domain). But while SVD is certainly ef-
fective in dealing with the pervasive synonymy
and polysemy seen in corpus-feature sets, it is
less clear that it reveals psychologically plausi-
ble dimensions of meaning. Alternatives such as
non-negative matrix factorization (Lee and Se-
ung, 1999) or Latent Dirichlet Allocation (Blei
et al., 2003) might extract more readily inter-
pretable dimensions; or alternative regularisa-
tion methods such as Elastic Nets, Lasso (Hastie
et al., 2011), or Network Regularisation (Sandler
et al., 2009) might even be capable of identifying
meaningful clusters of features when learning di-
rectly on co-occurrence data. Finally, we should
consider whether more derived datasets could be
used as input data in place of the basic corpus
features used here, such as the full facts learned
by the NELL system (Carlson et al., 2010), or
crowd-sourced data which can be easily gathered
for any word (e.g. association norms, Kiss et al.,
1973), though different algorithmic means would
be needed to deal with their extreme degree of
sparsity.

The results also suggest a series of follow-on
analyses. A priority should be to test these
models against a wider range of neuroimaging
data modalities (e.g. MEG, EEG) and stim-
ulus sets, including abstract kinds (see Mur-
phy et al. 2012, for a preliminary study), and
parts-of-speech beyond nouns. It may be that a
putative complementarity between word-region
and word-collocate models is only revealed when
we look at a broader sample of the human
lexicon. And beyond establishing what infor-
mational content is required to make semantic
distinctions, other factorisation methods (e.g.
sparse or non-negative decompositions) could be
applied to yield more interpretable dimensions.
Other classification tasks might also be more
sensitive for detecting differences between mod-
els, such as the test of word identification among
a set by rank accuracy, as used in (Shinkareva
et al., 2008).
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Abstract

This paper complements a series of works on
implicative verbs such as manage to and fail
to. It extends the description of simple im-
plicative verbs to phrasal implicatives as take
the time to and waste the chance to. It shows
that the implicative signatures of over 300
verb-noun collocations depend both on the se-
mantic type of the verb and the semantic type
of the noun in a systematic way.

1 Introduction

There is a substantial body of literature on the se-
mantics of English complement constructions start-
ing with (Kiparsky and Kiparsky, 1970) and (Kart-
tunen, 1971; Karttunen, 1973), including (Rudanko,
1989; Rudanko, 2002; Nairn et al., 2006; Egan,
2008). These studies have developed a semantic
classification of verbs and verb-noun collocations
that take sentential complements. They focus on
constructions that give rise to implied commitments
that the author cannot disavow without being inco-
herent or without contradicting herself. For exam-
ple, (1a) presupposes that Kim had not rescheduled
the meeting, (1b) entails that she didn’t and presup-
poses that she intended to reschedule it.

(1) a. Kim forgot that she had not rescheduled the
meeting.

b. Kim forgot to reschedule the meeting.

FACTIVE constructions like forget that X involve
presuppositions, IMPLICATIVE constructions like

forget to X give rise to entailments and may carry
presuppositions.

Presuppositions persist under negation, in ques-
tions and if-clauses, entailments do not. For ex-
ample, the negation of (1b), Kim did not forget
to reschedule the meeting, entails that Kim did
reschedule the meeting and presupposes, as (1b)
does, that it was her intention to do so.

Implicative constructions involve entailments.
The entailment may be positive or negative depend-
ing on the polarity of the containing clauses. Replac-
ing forget by didn’t forget in (1b) gives an entailment
of the opposite polarity. Questions and if-clauses do
not yield any entailments.

2 Simple implicatives

The constructions forget to X and remember to X are
two-way implicative constructions. They yield an
entailment about the truth or falsity of X both in af-
firmative and in negative sentences. We use the no-
tation + − | − + for the verb forget to to indicate that
forget to X yields a negative entailment for X in a posi-
tive context, +−, and a positive entailment in a negative
context, −+. The first sign stands for the polarity of the
embedding context, the second sign for the polarity of the
entailment. We code the verb remember to as + + | − −
because in a positive context remember to X yields a pos-
itive entailment about X, ++, and the opposite, −−, in a
negative context.

There are two major types of implicative construc-
tions. TWO-WAY IMPLICATIVES like forget to and re-
member to yield an entailment both in positive and neg-
ative contexts, ONE-WAY IMPLICATIVES yield an entail-
ment only under one polarity. Karttunen (1971; 1973)
and Nairn et al. (2006) list verbs of both types. Table 1
gives a few examples of two-way implicatives.
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+ + | − − implicatives +− | −+ implicatives
turn out that
manage to fail to
succeed in neglect to

remember to forget to
deign to refrain from . . . ing

happen to avoid . . . ing

Table 1: Types of two-way implicative verbs

2.1 Two-way implicatives
The type of the complementizer that a verb takes may

change the semantic type of the construction. forget that
X is factive but forget to X is a +−|−+ implicative con-
struction. (1a) presupposes that Kim had not rescheduled
the meeting, (1b) entails that she didn’t.1 If we replace
forgot in (1) by didn’t forget, the presupposition of (1a)
remains intact but the entailment of (1b) reverses polar-
ity: Kim did reschedule the meeting.2 In contrast to for-
get, pretend that X and pretend to X are both counterfac-
tive. The sentences in (2) and their affirmative counter-
parts presuppose that Kim did not have everything figured
out.

(2) a. Kim didn’t pretend that she had everything fig-
ured out.

b. Kim didn’t pretend to have everything figured
out.

The polarity of a clause is determined from top down.
(3) entails that Kim ate breakfast because the two neg-
ative polarities of almost and fail cancel out and fail to
X and remember to X are both two-way implicative con-
structions.

(3) Kim almost failed to remember to eat breakfast.

The chain of inferences is sketched in (4) where [+]
marks the top-level expression as true. The subsequent
[+] and [−] signs indicate the entailed polarity of each
subordinate clause.

(4) [+] almost(fail-to(remember-to(X)))
[−] fail-to(remember-to(X))

1All the two-way implicatives in Table 1 also give rise to
a presupposition. (1b) and its negative counterpart presuppose
that Kim had intended to reschedule the meeting.

2It is possible to interpret the example differently by focus-
ing the negation on the word forget: Kim did not FORGET to
reschedule the meeting. She never intended to do that. See
(Karttunen and Peters, 1979), (Horn, 1985) for further discus-
sion of this type of “metalinguistic negation” that objects to the
use of a particular word or locution but not necessarily to what
the sentence entails.

[+] remember-to(X)
[+] X

In short, almost(X) and fail-to(X) switch the polarity of
the entailment, remember-to(X) preserves it. Omitting al-
most (or fail to) from (3) reverses the entailed polarity of
the eat-clause.

(5) Kim failed to remember to eat breakfast.

(6) [+] fail-to(remember-to(X))
[−] remember-to(X)
[−] X

2.2 One-way implicatives
Constructions such as manage to X and fail to X are per-
fectly symmetrical in that they yield an entailment both
in affirmative and negative contexts. As noted early on,
(Karttunen, 1971; Karttunen, 1973), there are four types
of verbs that yield an entailment about their complement
clause only under one or the other polarity.

++ implicatives +− implicatives
cause NP to refuse to
force NP to prevent NP from
make NP to keep NP from

−− implicatives −+ implicatives
can (= be able to) hesitate to

Table 2: Types of one-way implicative verbs

The ++ and some of the +− implicatives in Table 2
are causatives.3 (7a) entails that Mary left, (7b) entails
that she didn’t. (7c) and (7d) are consistent with Mary
leaving or not leaving.

(7) a. Kim forced Mary to leave. (*but she didn’t)

b. Kim prevented Mary from leaving.

c. Kim did not force Mary to leave.

d. Kim did not prevent Mary from leaving.

The +− implicatives switch the polarity of the en-
tailment from positive to negative. (8) does not tell us
whether Dave left or not because force to does not yield
any entailment under negative polarity about its comple-
ment.

3Rudanko (2002) points out that there is a causative con-
struction that is not associated with any particular verb: She
bullied him into marrying her entails that he married her. It ap-
pears that all constructions of the type TV NP into X are ++
implicatives.
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(8) Kim prevented Mary from forcing Dave to leave.

(9) [+] prevent-to(X, force-to(Y, Z))
[−] force-to(Y, Z)
[ ] Z

The−− implicatives express a necessary condition for
the truth of the complement clause. If the host clause is
under negative polarity, the complement clause is false.
(10) entails that Kim did not finish her sentence.

(10) Kim could not finish her sentence.

It appears that hesitate to is the only −+ implicative
verb in English. (11) entails that Kim spoke her mind.

(11) Kim did not hesitate to speak her mind.

Omitting the negation in (11) makes it non-committal as
to whether Kim spoke her mind or not.4 There are other
verbs such as shy away from and shrink from that yield a
positive entailment under negation but they are two-way
implicatives like avoid to. The verb wait to has one in-
terpretation that has the same implicative signature as not
hesitate to but the construction not wait to is ambiguous.

2.3 Ambiguity of not wait to X
The construction not wait to X can be understood in two
ways. The example in (12a) could be continued either
with (12b) or (12c).

(12) a. Ed did not wait to call for help.

b. . . . Instead he left the scene in a hurry.

c. . . . But it was too late.

The continuation (12b) implies that Ed did not call for
help, (12c) implies that Ed called for help right away. The
word instead in (12b) and the anaphoric it in (12c) are
clues that indicate whether Ed made a call or not.

A Google search finds numerous examples of both
types. The sentences in (13) contain wait to X in the −−
sense, in the the examples in (14) it has the −+ interpre-
tation.

(13) a. Deena did not wait to talk to anyone. Instead,
she ran home.

b. He did not wait to hear Ms. Coulter’s response,
but immediately walked up the balcony stairs
and left.

4Although not hesitate to X seems to deny that there was
any hesitation to X, many examples from the web suggest oth-
erwise: When I got the paper back I almost hesitated to see the
grade, but when I saw the A on the title page, that hesitation
quickly turned into relief. Not hesitate to X is an idiom, it is not
compositional.

c. He was so excited to get his Thomas set that he
didn’t wait to take off his coat.

(14) a. It hurt like hell, but I’m glad she didn’t wait to
tell me.

b. Kalamazoo didn’t wait to strike back. The K-
Wings scored two goals in less than 90 seconds.

c. I didn’t wait to open the gift. Heck, I didn’t
even wait to wear them. They’re the softest most
comfy overalls I’ve ever owned.

The construction not wait to X is not vague about the
truth or falsity of the complement. Either it means that
X was not done at all or it means that X was done right
away without delay. In most contexts it is immediately
clear which interpretation the author has in mind. The
ambiguity mostly goes unnoticed.

The source of the ambiguity can be seen in examples
where wait to has two infinitival complements.

(15) a. “My biggest regret is that I didn’t wait [to get
married] [to have kids]” says Gerald, a father of
three. “If I had it to do over again, I’d wait until
I was married to become a father.”

b. Chances are, you probably didn’t wait [to get
permission from the scientific establishment] [to
start believing in the creative power of thought
and the underlying spirituality of the universe].

c. I raised my hand above my head, as if I were in
school or something, but didn’t wait [for anyone
to give me the “okay”] [to start talking].

The examples in (15) have the form not wait [to X] [to
Y]. They entail that X did not happen but Y is true. In
other words wait to is−− with respect to its first comple-
ment and −+ with respect to the second. In (15a) Gerald
did not get married but had kids. In (15b) the addressee
probably started believing without the permission of the
scientific establishment.

The implicit assumption in these cases is that one
might see X as a precondition for Y but the protagonist
skipped X and proceeded directly to Y. The ambiguity
arises from the fact that syntactically the two comple-
ments of wait to are both optional.

In the case of (15a), Gerald might have said My great-
est regret is that I didn’t wait to get married leaving out
the second complement, or he might have said My great-
est regret is that I didn’t wait to have kids leaving out the
first.

(13c) came with a picture of a boy with his blue coat
still on playing with his new Thomas train set. (14c) came
with a picture of a girl wearing her comfy birthday gift
overalls in advance of her birthday.
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In the case of (12a) that is ambiguous without a con-
text, the reader has to guess whether it should be read
as Ed did not wait [to call for help][. . . ] or Ed did not
wait [. . . ] [to call for help]. The continuation (12b) is
consistent with the first option, (12c) with the second.

The fact that the ambiguity of (12a) is syntactic rather
than semantic explains why it is not possible to translate
this sentence to languages such as Finnish, German and
French in a way that preserves the ambiguity. The trans-
lator has to decide which of the two interpretations is the
right one because they translate differently. In this re-
spect (12a) is similar to well known examples such as
time flies like an arrow and I saw her duck that have no
ambiguity-preserving translations in other languages be-
cause the ambiguity comes from accidental lexical and
syntactic overlaps that are language-specific.

2.4 Invited inferences
Although one-way implicatives yield a definite entail-
ment only under one polarity, in many contexts they are
interpreted as if they were two-way implicatives. For ex-
ample, the complement of prevent from in negative sen-
tences such as (16) is likely to be understood to be true
and the author probably intended the sentence to be inter-
preted in that way.

(16) The language barrier did not prevent us from having
a few laughs together.

If something was not prevented or if someone could do it,
it may have happened. If someone was not forced to do
something or hesitated doing it, maybe she did not do it.
However, an explicit denial is possible as in (17) showing
that the inference about the veridicality of the comple-
ment is pragmatically based, not truth-conditional.

(17) a. Her mother did not prevent her from visiting her
father, but she never did.

b. He showed he could jab, but didn’t. He showed
he could work the body, but didn’t.

c. The school had not forced the students to leave,
but they left on their own.

d. She hesitated to ask, but had to: “Stateside?”

The promotion of can and be able to from a one-way
implicative to a two-way implicative is similar to the phe-
nomenon that (Geis and Zwicky, 1971) discuss under the
label of INVITED INFERENCE. What they observe is the
tendency to read conditionals as biconditionals. For ex-
ample, If you mow my lawn I will give you $5 is usually
interpreted as I will give you $5 if and only if you mow my
lawn. Invited inferences may be explicitly cancelled. as
in (17), and they do not even arise in contexts where they
would conflict with what is known: Firms were allowed
to earn more than they did earn. Obviously, firms did not

earn more than they earned. No invited inference in this
case.

The phenomenon of invited inferences is much more
prevalent than has been recognized and it has not been
systematically studied except for SCALAR IMPLICA-
TURES for which there is a vast literature.5

3 Phrasal implicatives
There is a large class of multiword constructions that are
semantically similar to the single verbs in Tables 1 and 2.
We call them PHRASAL IMPLICATIVES. They are com-
posed of a transitive verb such as have, make, take and
use, and a noun phrase headed by a noun such as attempt,
effort and opportunity that can take sentential comple-
ments. The “implicative signature” of such a phrase de-
pends both on the type of verb and the type of the noun.
We organize the presentation by the nouns.

3.1 attempt, effort, trouble, initiative
In the case of attempt the relation between a single verb
implicative and a phrasal one is obvious. For example,
attempt to X and make an attempt to X are virtually syn-
onymous.6

(18) a. Kim didn’t attempt to hide her feelings.

b. Kim didn’t make any attempt to hide her feel-
ings.

c. Kim made no effort to hide her feelings.

All the examples in (18) entail that Kim did not hide her
feelings. The affirmative versions of these sentences are
non-committal with respect to the complement clause.
Attempts and efforts can fail. Consequently, attempt to X,
make an attempt to X and make an effort to X are all −−
implicatives like allow NP to X in Table 2. The phrasal
version provides more ways to express negation than the
simple verb. It can be expressed by the determiner as in
(18c).

Another way to bring about a negative entailment in
this construction is to indicate by an adjective such as
futile that an attempt was made but it failed.

(19) Convair made a futile attempt to save their bomber
program.

5http://en.wikipedia.org/wiki/Scalar_
implicature

6We assume here that the infinitival clause is syntactically
a complement to the noun. In (18b), (18c) and in all the later
examples in this section there is an alternative syntactic anal-
ysis under which the to-complement expresses a purpose. In
that sense it does not modify the noun but the verb. The pur-
pose clause could be fronted separately, as in To hide her feel-
ings, Kim turned away. Purpose clauses are non-committal as
to whether the intended purpose was achieved.
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Conversely, make a successful attempt to X entails that
X came about. Attempts can be described as bungled,
defeated, foiled, etc. that all yield a negative entailment
for the complement.

Complement taking nouns tend to occur with specific
verbs. Attempt can appear with have, make and take but
make is by far the most common collocate verb for this
noun. Semantically have/make/take an attempt to X are
all −− implicatives.

The choice of the collocate verb makes a difference
for many other nouns. In particular, make an effort to X
is a −− implicative but take an effort to X is a two-way
implicative. It has the signature + + | − − as illustrated
in (20).

(20) a. He took an effort to bring me to the butterfly
garden.

b. She took no effort to dress in style.

In these examples take an effort to X is an equi-
construction. They are in contrast with the take an effort
sentences in (21).

(21) a. Before people had computers, it took an effort
to infringe copyright.

b. It took no effort to unscrew the bolt.

c. Did it take an effort to be so clever?

The examples in (21) do not contain phrasal implicatives,
they have an extraposed complement clause. Extraposi-
tion is a factive construction. The extraposed infinitival
clauses in (21) are presupposed.

The nouns trouble and initiative are like effort in that
they form a + + | − − implicative phrase with take.

(22) a. She took the trouble to iron all the clothes.

b. Napoleon didn’t take the trouble to study the
country he was going to invade.

3.2 opportunity, chance, occasion
The phrase take the/an opportunity to X is a two-way ++
|−− implicative whereas have the/an opportunity to X is
only a −− implicative. (23a) entails that Kim expressed
her feelings, (23b) entails the opposite.

(23) a. Kim took the opportunity to express her feel-
ings.

b. Kim didn’t take the opportunity to express her
feelings.

Replacing took by have as in (24) takes away the pos-
itive entailment. (24a) is non-commital with respect to
the veridicality of the complement, (24b) has the same
negative entailment as (23b).

(24) a. Kim had the opportunity to express her feelings.

b. Kim didn’t have the opportunity to express her
feelings.

In (24) one could substitute get for have as getting some-
thing entails having it and not getting something entails
not having it. The substitution of lack or miss or lose for
have in (24) turns the−− implicative into a +− implica-
tive. In (25) we get a negative entailment in the affirma-
tive and no entailment under negation.

(25) a. The Belarusians lacked the opportunity to create
a distinctive national identity.

b. I didn’t lack the opportunity to engage in a rela-
tionship, I just felt no desire to.

There are several verbs that can substitute for take in (23)
without changing the entailments. They include more de-
scriptive synonyms for take such as seize, grab and snap.
There is also another family of verbs, use, utilize, exploit
and expend, that yield a two-way + + | − − implicative
phrase with the/an opportunity to X.

(26) a. Randy used the opportunity to toot his own
horn.

b. Randy didn’t use the opportunity to toot his own
horn.

Here use could be replaced by make use of, itself a + +
| − − implicative phrase.

Another class of verbs that yield implicative construc-
tions with the/a opportunity to X consists of lose, miss,
squander and waste that entail either not having or not
using an opportunity.

(27) a. Mr. Spitzer wasted the opportunity to drive a
harder bargain.

b. Galileo did not waste the opportunity to aim a
funny mock-syllogism at Grassi’s flying eggs.

Although WordNet classifies the verb waste as a hyponym
of the verb use, the two constructions, use the opportu-
nity to X and waste the opportunity to X, have opposite
entailment signatures. (27a) entails that Spitzer did not
drive a harder bargain. Replacing waste by did not use
in (27a) yields the same entailment as the original: he
didn’t. Similarly, (27b) entails that Galileo aimed a mock
syllogism at this opponent but replacing waste by use in
(27b) entails that he did not do that. In other words, use
the/an opportunity to X is a + + | − − implicative, but
waste the/an opportunity to X is a +− | −+ implicative
construction.

Table 3 below summarizes the observations in this sec-
tion. HAVE stands for have and get; LACK for lack, miss,
give up, throw away and discard; TAKE for take, seize,
grab and snap; USE for use, utilize, exploit and expend;
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WASTE for waste, squander and drop; OPPORTUNITY for
opportunity, chance and occasion. Altogether Table 3
lists the signatures of 54 implicative constructions.

Construction Implicative
signature

HAVE OPPORTUNITY to X −−
LACK OPPORTUNITY to X +−

TAKE/USE OPPORTUNITY to X + + | − −
WASTE OPPORTUNITY to X +− | −+

Table 3: Phrasal implicatives with OPPORTUNITY nouns

3.3 asset, money, time
As the the contrast between examples in (27) and (28)
show, wasting money is different from wasting a chance.

(28) a. I wasted the money to buy a game that I cannot
play.

b. I wasted $10 to buy it.

c. I am thrilled I didn’t waste $10 to see it in the
theater.

d. I’m so glad I didn’t waste money to have some-
one else do it.

(28a) and (28b) entail that I bought the game, (28c) and
(28d) yield a negative entailment.

Constructions waste NP to X where NP is headed by a
noun that describes something of value like asset, money,
time. perks seem all to be + + | − − implicatives.

(29) a. I wasted the time to read through the whole
thing.

b. He didn’t waste time to stop and look for signs
of her trail.

c. I read that it did not work, so didn’t waste perks
to get it.

d. I’m glad I didn’t waste 90 minutes to see this
film.

e. I wasted an hour to play this game.

But waste time to X is a special case. It has an alterna-
tive idiomatic reading in negative sentences as illustrated
in (30).

(30) a. Dunning didn’t waste any time to begin writing
his second film.

b. Madonna didn’t waste time to move on to her
next single.

c. Secularists wasted no time to jump in flawed
study’s bandwagon.

Wasting no time to X in the sense of ‘quickly do X’ is an
idiomatic use of waste. The examples in (30) do not mean
the opposite if the negation is removed. To express the
idea opposite to (30b), for example, you have to resort to
another idiom, Madonna took her time to move on to her
next single, it is not correct to say that she wasted time.
Without the possessive, take the time to X is a straight-
forward ++ |−− implicative construction, have the time
to X is −−.

3.4 ability, power, means, oomph
Having the ability to do something is a precondition for
doing it. Lacking or losing the ability to X precludes do-
ing X. Both examples in (31) yield a negative entailment
for the complement clause.

(31) a. The defendant had no ability to pay a fine.

b. The crickets were there, but they had lost the
ability to sing.

The affirmative cases are less clear. (32a) does not entail
that Google has been tracking you, but an affirmative an-
swer to the on-line survey in (32b) would interpreted by
the author of the survey to mean that the Helpdesk actu-
ally solved your issues.

(32) a. Google has had the ability to track your online
behavior.

b. The Helpdesk had the ability to solve your is-
sues. Yes or No?

We classify have the ability to X as a −− implicative and
lose the ability to X as a +− implicative. But perhaps
ability and power should also be included in the next class
of nouns to accommodate the interpretation of (32b) and
similar cases.

3.5 courage, audacity, guts, gall, impudence,
chutzpah, gumption, good sense, foresight,
wisdom, nerve, stamina, endurance

This set of nouns describes character traits that “mani-
fest themselves” in acts that presuppose them. That is, if
someone had the courage to testify, she must have testi-
fied. If she didn’t testify, then she didn’t have the courage
to do so, or she lacked whatever other quality the act
would have required in her.

(33) a. Julie had the chutzpah to ask the meter maid for
a quarter.

b. I didn’t have the courage to tell her I love her.

have COURAGE to X is a + + | − − implicative con-
struction. It also carries the presupposition that the act
in question requires the character trait described by the
noun. Did you have the foresight to invest in Apple? asks
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whether the addressee invested in Apple and presupposes
that it would have been a good idea. I managed to get the
courage to brave the hot tub has two presuppositions, one
coming from manage to, the other from get the courage
to.

3.6 hesitation, reluctance, qualms, scruples
Like the simple implicative hesitate to X, un-
der negative polarity have/show/display hesita-
tion/reluctance/qualms/scruples to X entail the
complement clause. They are −+ implicative con-
structions.

(34) a. She did not have any hesitation to don the role
of a seductress.

b. Fonseka displayed no reluctance to carry out his
orders.

c. Lauren showed no qualms to confess that she
fell for it.

3.7 obligation, responsibility, duty
Responsibilities and obligations to do something can be
accepted and taken on, or refused and declined. The ex-
amples in (35) are future-oriented statements. They do
not entail the truth or falsity of the complement clause
at the time referred to by the sentence even if there is an
invited inference about what might or might not be the
case.

(35) a. The Government accepted the obligation to see
that fair and reasonable wages were paid to rail-
waymen.

b. The bank who owns the foreclosed property has
refused the responsibility to maintain and clean
it up.

But statements about meeting or doing an obligation, re-
sponsibility or duty are + + | − − implicative construc-
tions.

(36) a. We clearly met the obligation to pass a bal-
anced, on-time budget.

b. Strausser hasn’t met his responsibility to make
improvements.

c. The cyclist met his duty to be seen, and the mo-
torist did not meet his corresponding duties to
keep a proper lookout and to exercise due care.

d. Gosling certainly did his duty to pitch the movie
to the masses.

4 Conclusion and future work

Table 4 summarizes the findings of the previous section
for some of the most common verbs that appear in phrasal
implicative constructions and the semantic types of nouns
they collocate with.

Verb Noun Implicative
family family signature
HAVE ABILITY −−
HAVE COURAGE + + | − −
HAVE OPPORTUNITY −−
LACK ABILITY +−
LACK COURAGE +−
LACK OPPORTUNITY +−
MAKE EFFORT −−
MEET OBLIGATION + + | − −
SHOW HESITATION −+

TAKE EFFORT + + | − −
TAKE ASSET + + | − −
TAKE OPPORTUNITY + + | − −
USE ASSET + + | − −
USE OPPORTUNITY + + | − −

WASTE ASSET + + | − −
WASTE OPPORTUNITY +− | −+

Table 4: Implicative signatures for verb-noun colloca-
tions

This table lists the implicative signatures of over three
hundred phrasal implicative verb-noun collocations. On
the level of surface strings the number of constructions is
of course much larger because of different tenses for the
verb and the many ways of fleshing a noun into a noun
phrase. For example, the verb waste expands to wasted,
has wasted, did not waste, etc. The noun chance expands
to a chanche, the chance, his chance, her last chance, etc.

The verb-noun collocations are publicly available.7 It
is a much larger class than the simple implicatives dis-
cussed in Section 2 but it is not complete. From a lin-
guistic point of view finding all the specimens is not im-
portant if the conceptual classification is done correctly.
For computational applications completeness does mat-
ter. We plan to continue to expand the list in the near
future.

The noun and verb classes discussed in Section 3 con-
tain items that are not together in any WordNet (Fellbaum,
1998) SYNSET class. For example, acquit, fulfill, meet,
and perform are interchangeable in sentences such as

7http://www.stanford.edu/group/csli_lnr/
Lexical_Resources/phrasal-implicatives/
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(37) a. He conscientiously acquitted his duty to inform
and educate the Court.

b. He fulfilled his duty to cremate his dead
brother’s body.

c. The officer met his duty to investigate and had
probable cause to arrest Kim.

As far as WordNet is concerned, the verbs acquit, ful-
fill, meet, and perform are totally unrelated. Neverthe-
less they constitute an equivalence class for this particular
phrasal implicative collocation, the MEET OBLIGATION
to X construction.

The same holds for the noun classes in Section 3. The
class in 3.5 includes chutzpah and foresight. Substituting
foresight for chutzpah in (33a) would retain the entail-
ment, that Julie asked the meter maid for a quarter, but it
would bring in a different presupposition.

Some computational systems already take advantage
of the semantic classification of simple and phrasal im-
plicatives. PARC’s Bridge system (Nairn et al., 2006) im-
plements the simple implicatives discussed in Section 2.
A few of the phrasal implicatives discussed in Section 3
have also been implemented in Bridge (Pichotta, 2008).
The NatLog system (MacCartney, 2009) implements the
same simple implicatives as Bridge but in a different way.

But neither Bridge nor NatLog does anything with pre-
suppositions. NatLog takes (1b), Kim forgot to resched-
ule the meeting, as a paraphrase of what it entails, Kim
did not reschedule the meeting, Bridge doesn’t. But nei-
ther system recognizes the presupposition of intent that
comes with the construction forget to X.

One area that remains to be systematically explored is
the complements of adjectives. It is known that there are
factive adjectives such as strange, as in It is strange that
Federer has never suffered a major injury, and two-way
implicative adjectives such as lucky, as in He was lucky to
break even, and phrasal adjective ++ |−− constructions
such as see (it) fit to X, as in He saw fit to laugh and sneer
at us.

Another unexplored topic is phrasal factives such as
make pretense to X that is counterfactive, a paraphrase of
pretend to X.

We will address these issues in future work with the
Language and Natural Reasoning group at CSLI.8
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Abstract

We propose an unsupervised system that
learns continuous degrees of lexicality for
noun-noun compounds, beating a strong base-
line on several tasks. We demonstrate that the
distributional representations of compounds
and their parts can be used to learn a fine-
grained representation of semantic contribu-
tion. Finally, we argue such a representation
captures compositionality better than the cur-
rent status-quo which treats compositionality
as a binary classification problem.

1 Introduction

A Multiword Expressions (MWE) can be defined as
a sequence of words whose meaning cannot nec-
essarily be derived from the meaning of the words
making up that sequence, for example:

Rat Race — self-defeating or pointless pursuit1

MWEs are considered a “key problem for the de-
velopment of large-scale, linguistically sound nat-
ural language processing technology” (Sag et al.,
2002). The challenge posed by MWEs is three-
fold, consisting of MWE identification, classifica-
tion and interpretation. Following the identification
of a MWE, it needs to be established whether the
expression should be treated as lexical (idiomatic)
or as compositional. The final step, learning the se-
mantics of the MWE, strongly depends on this deci-
sion.

1Definition taken from Wikipedia, and clearly not recover-
able if one only knows the meaning of the words ‘rat’ and ‘race’.

The problem posed by MWEs is considered hard,
but at the same time it is highly relevant and inter-
esting. MWEs occur frequently in language and in-
terpreting them correctly would directly improve re-
sults in a number of tasks in NLP such as translation
and parsing (Korkontzelos and Manandhar, 2010).
By extension this makes deciding the lexicality of
MWEs an important challenge for various fields in-
cluding machine translation, question answering and
information retrieval. In this paper we discuss com-
positionality with respect to noun-noun compounds.

Most Computational Linguistics literature treats
compositionality as a binary problem, classifying
compounds as either lexical or compositional. We
show that this approach is too simplistic and argue
for the real-valued treatment of compositionality.

We propose two unsupervised models that learn
compositionality rankings for compounds, placing
them on a scale between lexical and compositional
extremes. We develop a fine-grained representa-
tion of compositionality using a novel generative ap-
proach that models context as generated by com-
pound constituents. This representation differenti-
ates between the semantic contribution of both com-
pound constituents as well as the compound itself.

Comparing it with existing work in the field, we
demonstrate the competitiveness of our approach.
We evaluate on an existing corpus of noun com-
pounds with ranked compositionality data, as well
as on a large corpus with a binary annotation for lex-
ical and compositional compounds. We analyse the
impact of data sparsity and propose an interpolation
approximation which significantly reduces the effect
of sparsity on model performance.
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2 Related Work

Interpreting MWEs is a difficult task as “compound
nouns can be freely constructed” (Spärck Jones,
1985), and are thus able to proliferate infinitely. At
the same time, semantic composition can take many
different forms, making uniform interpretation of
compounds impossible (Zanzotto et al., 2010).

Most current work on MWEs focuses on inter-
preting compounds and sidesteps the task of deter-
mining whether a compound is compositional in the
first place (Butnariu et al., 2010; Kim and Baldwin,
2008). Such methods, aimed at learning the seman-
tics of compounds, can roughly be divided into two
major strands of research.

One group relies on data intensive methods to ex-
tract semantics vectors from large corpora (Baroni
and Zamparelli, 2010; Zanzotto et al., 2010; Gies-
brecht, 2009). The focus of these approaches is to
develop methods for composing the vectors of un-
igrams into a semantic vector representing a com-
pound. Some of the work in this area touches on the
issue of lexicality, as models learning distributional
representations of MWEs ideally would first estab-
lish whether a given MWE is compositional or not
(Mitchell and Lapata, 2010).

The other group are knowledge intensive ap-
proaches collecting linguistic features (Kim and
Baldwin, 2005; Korkontzelos and Manandhar,
2009). Tratz and Hovy (2010), for instance, train
a classifier for noun compound interpretation on a
large set of WORDNET and Thesaurus features.

Combined approaches include Kim and Baldwin
(2008), who interpret noun compounds by extrapo-
lating their semantics from observations where the
two nouns forming a compound are in an intransi-
tive relationship. For example extracting the phrase
‘the family owns a car’ from the training data would
help learn that the compound ‘family car’ describes
a POSSESSOR-OWNED/POSSESSED relationship.

Some of these supervised classifiers include lexi-
cality as a classification option, considering it jointly
with the actual compound interpretation.

Next to the work on MWE interpretation there has
been some work focused on determining lexicality
in its own right (Reddy et al., 2011; Bu et al., 2010;
Kim and Baldwin, 2007).

One possibility is to exploit special properties of

lexical MWEs such as high statistical association
of their constituents (Pedersen, 2011) or syntactic
rigidity (Fazly et al., 2009; McCarthy et al., 2007).
However, these approaches are limited in their ap-
plicability to compound nouns (Reddy et al., 2011).

Another method is to compare the semantics of
a compound and its constituents to decide com-
positionality. The approaches used to determine
those semantics can again be divided into knowl-
edge intensive and data-driven methods. Depending
on the chosen representation of semantics these ap-
proaches can either be used for supervised classifiers
or together with a distance metric comparing vector
space representations of semantics. In a binary set-
ting, a threshold would then be applied to the result
of that distance function (Korkontzelos and Man-
andhar, 2009). In a real-valued setting the distance
metric itself can be used as a measure for compo-
sitionality (Reddy et al., 2011). Related to the vec-
tor space based models, some research focuses on
improving the distance metrics used to compare in-
duced semantics (Bu et al., 2010).

3 Methodology

English noun-noun compounds are majority left-
branching (Lauer, 1995), with a head (the second
element), modified by an attributive noun (first el-
ement). For example:

Ground Floor — The floor of a building at or near-
est ground level.2

In this paper, we will use the terms attributive noun
(AN) and head noun (HN) to refer to the first and
second noun in a noun compound.

3.1 Real-Valued Representation

Lexicality of MWEs is frequently treated as a bi-
nary property (Tratz and Hovy, 2010; Ó Séaghdha,
2007). We argue that lexicality should instead be
treated as a graded property, as most compound se-
mantics exhibit a mixture of compositional and lexi-
cal influences. For example, ‘cocktail dress’ derives
a large part of its semantics from ‘dress’, but the
compound also contributes an idiosyncratic element
to its meaning.

2Definition from http://www.thefreedictionary.com
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We define lexicality as the degree to which id-
iosyncrasy contributes to a compound’s semantics.
Inversely phrased, the compositionality of a com-
pound can be defined as the degree to which its sense
is related to the senses of its constituents.3

This graded representation follows Spärck Jones
(1985), who argued that “it is not possible to main-
tain a principled distinction between lexicalised and
non-lexicalised compounds”. Some recent work
also supports this view (Reddy et al., 2011; Bu et
al., 2010; Baldwin, 2006). From a practical per-
spective, a real-valued representation of composi-
tionality should help improve interpretation of com-
pounds. This is especially true when factoring in the
respective semantic contributions of its parts.

3.2 Context Generation
According to the distributional hypothesis, the se-
mantics of a lexical item can be expressed by its
context. We apply this hypothesis to the problem of
noun compound compositionality by using a genera-
tive model on compound context. Our model allows
context to be generated by the compound itself or by
either one of its constituents. By learning which el-
ement of the compound generates which part of its
context we effectively determine the semantic con-
tribution of each element. This in turn gives us a
fine-grained, graded representation of a compound’s
lexicality.

4 Corpora for Evaluation

4.1 Ranked Corpus — REDDY
As we want to evaluate our models’ ability to learn
lexicality as a real-valued property, we require an
annotated data set of noun compounds ranked by
lexicality. To the best of our knowledge the only
such data set was developed by Reddy et al. (2011).
This data set contains 90 distinct noun compounds
with real-valued gold standard scores ranking from
0 (lexical) to 5 (compositional). The compounds
are nearly linearly distributed across the [0;5] range,
with inter annotator agreement (Spearman’s ρ) of

3For example, the meaning of ‘gravy train’ has hardly any
relation to either ‘gravy’ or ‘train’. Its semantics are thus highly
dependent on the compound in its own right. On the other end
of the spectrum, ‘climate change’ is significantly related to both
‘climate’ and ‘change’, contributing little inherent semantics to
its overall meaning.

0.522. We refer to this data set and evaluation as
REDDY throughout this paper.

4.2 Binary Corpora — TRATZ

We also apply our models to a second, binary classi-
fication task. Tratz and Hovy (2010) compiled a data
set for noun compound interpretation, which classi-
fies noun compounds based on their internal struc-
ture. We use this corpus to extract lexical and com-
positional noun compounds.

After some pre-processing4 the data set contains
18,858 compositional and 118 lexical noun com-
pounds. We believe this to more accurately represent
the real world distribution of lexical and composi-
tional noun compounds: Tratz and Hovy (2010) ex-
tracted noun compounds from several large corpora
including the Wall Street Journal section of the Penn
Treebank, thus obtaining a reasonable approxima-
tion of real world occurrence. Other collections of
noun compounds (Ó Séaghdha, 2007) feature sim-
ilar proportions of lexical and compositional noun
compounds.

The large bias towards compositional noun com-
pounds does not support the status-quo of treating
compositionality as a binary property. As discussed
earlier, we assume that most compounds have a
compositional as well as a lexical element. While
the compositional aspect may be larger for most
compounds this alone does not suffice as a reason
to disregard the lexical element contained in these
compounds.

In order to evaluate our system on the TRATZ
data, we use receiving operator characteristic (ROC)
curves. ROC analysis enables us to evaluate a rank-
ing model without setting an artificial threshold for
the compositionality/lexicality decision.

5 Baseline Approach

We develop a set of advanced baselines related to
the semi-supervised models presented by Reddy et
al. (2011). We define the context K of a noun com-
pound as all words in all sentences the compound
appears in. From this we calculate distributional
representations of a compound (c = 〈a, h〉) and its
constituent elements a, h. We refer to these repre-
sentations as ~c for the compound and ~a, ~h for the

4We removed trigrams from the data set.
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Name ⊕ r ρ

ADD w.Sac + (1− w).Shc .323 .567
MULT Sac.Shc .379 .551
MIN min(Sac, Shc) .343 .550
MAX max(Sac, Shc) .299 .505
COMB w1.Sac+w2.Shc+w3.Sac.Shc .366 .556

Table 1: Results of COSLEX with different operators on
the REDDY data set, reporting Pearson’s r and Spear-
man’s ρ correlations. Weights for operators ADD (w =
0.3) and COMB (w = 〈0.3, 0.1, 0.6〉) are manually opti-
mised. Values range from -1 (negative correlation) to +1
(perfect correlation) with 0 describing random data.

attributive and head noun, respectively. We can cal-
culate the cosine similarity based lexicality score
(COSLEX) by combining the cosine similarity of the
compound’s distribution with each of its two con-
stituents (Reddy et al., 2011).

Sac = sim(~a,~c)

Shc = sim(~h,~c)
COSLEX(c) = Sac ⊕ Shc

We evaluate a number of alternative operators ⊕ for
combining Sac and Shc. Results for this baseline
on the REDDY corpus are in Table 1,5 with weights
wi on the combination operators manually optimised
for Spearman’s ρ on that data set. In effect this
renders this baseline into a supervised approach, so
we would expect it to perform very well. We use
the best performing operators (ADD with w = 0.3,
MULT) as baselines for this paper.

6 Generative Models

We exploit the distributional hypothesis to model
the semantic contribution of the different elements
of a noun compound. For this, we require a sys-
tem that treats a noun compound as a vector of three
semantics-bearing units: the compound itself, its
head and its attributive noun. This system should
then model the relationship between the context of
the compound and these three units, deciding which
of them is responsible for each context element.

5Reddy et al. (2011) report higher figures on our baseline
models. The differences are attributed to differences in training
data and parametrization.

6.1 3-way Compound Mixture

We model a corpus D of tuples d = {c, k1, ..., kn}.
Each tuple d contains a noun compound c = 〈a, h〉
and its context words K = (k1, ..., kn). We use vo-
cabularies Vc for noun compounds, Va for attributive
nouns, Vh for head nouns and Vk for context.

We condition our generative model on the noun
compounds. Given an observation d of a compound
c, we generate each context word in two steps. First,
we choose one of the compounds three elements6 to
generate the next context word. Second, we gener-
ate a new context word conditioned on that element.
Formally, the context is generated as follows.

We draw three multinomial parameters Ψc, Ψa

and Ψh from Dirichlet distributions with parameters
αc, αa and αh. Ψc represents the distribution over
context words Vk given compound c. Ψa and Ψh

are distributions over Vk given attributive noun a and
head noun h, respectively. These three distributions
form the mixture components of our model.

A fourth multinomial parameter Ψz , drawn from
a Dirichlet distribution with parameter αz , controls
the distribution over the mixture components. Ψz is
specific to each compound c, so multiple observa-
tions of the same compound share this parameter.

For each context word we draw a mixture compo-
nent zc,i ∈ {č, ǎ, ȟ} from the multinomial distribu-
tion with parameter Ψz . zc,i determines which dis-
tribution the context word itself will be drawn from.
Finally, we draw the context word:

∀i: ki | Ψ{zc,i} ∼ Multi(Ψ{zc,i})

Thus, for each observation of a compound noun we
have a vector zc = 〈z1, ..., zn〉 detailing how its
context words were created either by the compound
itself or by one of its constituents. To determine lex-
icality, we are interested in learning the multinomial
parameter Ψz , which describes to what extent the
compound and its constituents contribute to the gen-
eration of the context (i.e. semantics). We can ap-
proximate Ψz from the vector zc.

We define the lexicality score Lex(c) for a com-
pound as the percentage of context words created by

6The compound itself, its attributive noun and its head noun
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Figure 1: Plate diagram illustrating the MULT-CMPD
model with context words ki drawn from a mixture model
with three components controlled by zi.

the compound and not one of its constituents:

Lex(c) = p(z=č|〈a, h〉), (1)

where c = 〈a, h〉

Figure 1 shows a plate diagram of this model, which
we will refer to as MULT-CMPD.

One hypothesis encoded in model MULT-CMPD

is that deciding which part of a compound (the com-
pound itself, the head or the attributive noun) gen-
erates context is a single decision. An alternative
representation could treat this as a two-step process,
which we encode in a second model BIN-CMPD.
The intuition behind the BIN-CMPD model is that
there are two distinct decisions. First, whether a
compound is compositional or not. Second, whether
(in the compositional case) its semantics stem from
its head or attributive noun

Where MULT-CMPD uses a three component mix-
ture to determine which multinomial distribution to
use, BIN-CMPD uses two cascaded binary mixtures
(see Figure 2). The BIN-CMPD model first chooses
whether to treat a compound as compositional or
lexical. If the compound is determined as composi-
tional, a second binary mixture determines whether
to generate a context word using the attributive (Ψa)
or head multinomial (Ψh). For the lexical case, the
model remains unchanged.

Figure 2: Schematic description of compositional-
ity/lexicality decision for models MULT-CMPD and BIN-
CMPD.

Model r ρ

COSLEX (ADD) .323 .567
COSLEX (MULT) .379 .551
MULT-CMPD .141 .435
BIN-CMPD .168 .410

Table 2: Results on the REDDY data set, reporting Pear-
son’s r and Spearman’s ρ correlations. Values range from
-1 (negative correlation) to +1 (perfect correlation).

6.1.1 Inference and Sampling
We use Gibbs sampling to learn the vectors z for

each instance d, integrating out the parameters Ψx.
We train our models on the British National Corpus
(BNC), extracting all noun-noun compounds from a
parsed version of the corpus.

In order to speed up convergence of the sampler,
we use simulated annealing over the first 20 iter-
ations (Kirkpatrick et al., 1983), helping the ran-
domly initialised model reach a mode faster. We re-
port results using marginal distributions after a fur-
ther 130 iterations, excluding the counts of the an-
nealing stage.

6.1.2 Evaluation
We evaluate our two models on the REDDY data

set by comparing its scores for lexicality (Lex(c))
with the annotated gold standard. The aim of this
evaluation is to determine how accurately the mod-
els can capture gradual distinctions in lexicality. The
ROC analysis on the TRATZ data set furthermore in-
forms us how precise the models are at distinguish-
ing lexical from compositional compounds.

Results of the REDDY evaluation are in Table 2.
We use Spearman’s ρ to measure the monotonic cor-
relation of our data to the gold standard. Pearson’s r
additionally captures the linear relationship between
the data, taking into account the relative differences
in Lex(c) scores among noun compounds.
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Figure 3: ROC analysis of models MULT-CMPD and
BIN-CMPD versus the best COSLEX baseline (ADD) on
the TRATZ data set

While both models, BIN-CMPD and MULT-
CMPD, clearly learn a correlation with lexical-
ity rankings, they underperform the strong, semi-
supervised COSLEX baselines described earlier in
this paper. The second evaluation, on the binary
TRATZ data set shows a different picture (see Fig-
ure 3). The best COSLEX baseline (ADD with
w = 0.2) fails to outperform random choice on this
task. Both generative models clearly beat COSLEX

on this task, with MULT-CMPD in particular per-
forming very well for low sensitivity.

There is no clear distinction in performance be-
tween the two generative approaches. Further anal-
ysis might help us to separate the two more clearly,
and we will continue using both models throughout
this paper.

It is important to note the different performance of
the generative models vs. the cosine similarity ap-
proach on two tasks. The REDDY data set has a
nearly linear distribution of compositionality scores,
while the TRATZ data set is overwhelmingly com-
positional, which more closely represents the real
world distribution of compounds. The poor perfor-
mance of the cosine similarity approach (COSLEX)
on the TRATZ evaluation suggests the limitations
of this approach when applied to more realistic data
such as this data set. An additional explanation for
the semi-supervised baseline’s poorer result is that
the effect of parameter tuning decreases on larger
data.

Investigating the errors made by the models
MULT-CMPD and BIN-CMPD gives rise to a number
of possible explanations for their performance. The
most promising lead is related to data sparsity, with
many of the evaluated noun-noun compounds only
appearing once or twice in the corpus. This makes it
harder for our generative approach to learn sensible
context distributions for these instances.

We will next investigate how to reduce the effects
encountered by sparsity.

6.2 Interpolation

Working on problems related to non-unigram data,
sparsity is a frequently encountered problem. As al-
ready explored in the previous section, this is also
the case for our generative models of lexicality.

It would be possible to use an even larger training
corpus, but there are limitations as to what extent
this is possible. The BNC, containing 100 million
words, is already one of the largest corpora regu-
larly used in Computational Linguistics. However,
adding more data in an unsupervised sense is un-
likely to significantly improve results (Brants et al.,
2007).

Alternatively, it would be possible to add spe-
cific training data that included the noun compounds
from the evaluation data sets. This would, how-
ever, compromise the unsupervised nature of our ap-
proach, and it thus not an option either.

In this paper, we will instead focus on extenuat-
ing the effects of data sparsity through other unsu-
pervised means. For this purpose we investigate in-
terpolating on a larger set of noun compounds.

Kim and Baldwin (2007) observed that seman-
tic similarity of verb-particle compounds correlates
with their lexicality. We extend this observation for
noun compounds, hypothesising that the lexicality
of similar words will be similar. We combine this
with the assumption that noun compounds sharing a
constituent are likely to be semantically similar (Ko-
rkontzelos and Manandhar, 2009).

Using this idea, we can approximate the lexical-
ity of a given compound with the lexicality scores of
all compounds sharing either of its constituents. So
far we have calculated the lexicality of a given com-
pound using the formula Lex(c) in Equation 1. The
formula Clex(c) in Equation 2 averages the lexical-
ity scores of a compound with those of its related

137



Function and Model r ρ

COSLEX (ADD) .323 .567
COSLEX (MULT) .379 .551

Lex(c)
MULT-CMPD .141 .435
BIN-CMPD .168 .410

Clex(c)
MULT-CMPD .357 .596
BIN-CMPD .400 .592

Ilex(c)
MULT-CMPD .422 .621
BIN-CMPD .538 .623

Table 3: Results on the REDDY data set, reporting
Pearson’s r and Spearman’s ρ correlations, comparing
Ilex(c) and Clec(c) interpolations with Lex(c).

compounds. As p(z=1|〈a, h〉) directly influences
both p(z=1|〈a, ·〉) and p(z=1|〈·, h〉), we can also
consider dropping it from the approximation such as
in Equation 3. This approach trades some specificity
in favour of reducing sparsity, as we observe more
instances of such related compounds than of a par-
ticular noun compound itself only.

Lex(c) ≈ Clex(c) (2)

Clex(c) =
p(z=1|〈a, ·〉) + p(z=1|〈·, h〉) + p(z=1|〈a, h〉)

3
,

where c = 〈a, h〉
Lex(c) ≈ Ilex(c) (3)

Ilex(c) =
p(z=1|〈a, ·〉) + p(z=1|〈·, h〉)

2
,

where c = 〈a, h〉

Both formulations enable us to better deal with
sparse data as decisions are made based on a wider
range of observations. At the same time, we avoid a
loss of specificity as the models and scores are still
highly dependent on the individual noun compound.

We avoid introducing additional degrees of free-
dom by using uniform weights only. However, it
would be simple to turn this approach into a semi-
supervised model by tuning the weights for the dif-
ferent probabilities involved in calculating Clex(c)
and Lex(c). That approach would be comparable to
the operators used on our COSLEX baselines.

Results on the REDDY data set using Clex(c)
and Ilex(c) are in Table 3. Figure 4 shows the im-
pact of these approximations on the Tratz data for
the BIN-CMPD model. These interpolations suggest
strong improvements in performance. It should es-
pecially be noted that Ilex(c) consistently outper-
forms Clex(c), which indicates the strength of the

Figure 4: ROC analysis of model BIN-CMPD on the
TRATZ data set, comparing Ilex(c) and Clec(c) inter-
polations with Lex(c).

related-compound probabilities over the individual
compound probabilities.

These results confirm our suspicion that sparsity
was a major factor affecting our models’ perfor-
mance. Furthermore, they strengthen our hypothe-
sis about the relatedness of semantic similarity and
lexicality and demonstrate a sensible approach for
exploiting this relationship.

7 Analysis

We use this section for qualitative evaluation, com-
plementing the quantitative evaluation in the previ-
ous sections. The purpose of the qualitative evalu-
ation is to better understand exactly what it is our
models are learning.

Table 5 lists the compounds that model BIN-
CMPD considers the most lexical and the most com-
positional. The list of compounds with the high lex-
icality scores is dominated by proper nouns such as
countries, companies and persons. This is in line
with expectation as compounds of proper nouns are
fully lexical. Removing proper nouns (also in Table
5), we get a slightly more ambiguous list. For exam-
ple, ‘study design’ is not considered a lexical com-
pound, but rather a highly institutionalized, com-
positional MWE (Sag et al., 2002). Using Lex(c)
‘study design’ is ranked as such, so this appears to
be a case where interpolation has a negative impact.

In this paper we argued for a finer grained analysis
of compositionality, taking into account the differ-
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Context of ‘flea market’ generated by
flea market flea market
canal, wall, incline,
campsite

stall, Paris, sale,
Saturday, week,
Sunday, quarter,
damage, change

barter, souvenir,
launderette,
Lamine, Canet,
Kouyate, Plage

Context of ‘night owl’ generated by
night owl night owl
court, fee, guest,
early, day, Baden,
membership, life,
game

waive, player,
Halikarnas, bar,
bird, unbooked,
Vienna

adventurous

Context of ‘memory lane’ generated by
memory lane memory lane
take, story, about,
tell, real, glimpse,
Britain, reminis-
cence

village, protection,
drive, catwalk,
plant

war, justify, bill,
Campbell, rude-
boys

Context of ‘melting pot’ generated by
melting pot melting pot
forest, racial,
caribbean, plan,
programme, real-
ity, arrangement

in, into, put, polit-
ical, community,
prepare

ethnic, greatest,
drawing, liaise,
pan-european,
myth

Table 4: Overview over context words generated by model BIN-CMPD. We list a selection of words predominately
generated by each of the mixture components of the given noun-noun compound.

Most Compositional
labour union, tax authority, health council,
market counterparty, employment policy

Most Lexical
study design, family motto, wood shaving,
avoidance behaviour, smash hit

Most Lexical (including Proper Nouns)
Vo Quy, Bonito Oliva, Mamur Zapt, Evander
Holyfield, Saudi Arabia

Table 5: Top lexical and compositional nouns for the
BIN-CMPD model using Ilex(c)

ent impact of both constituents. We tried to achieve
this by modelling a compound’s context as gener-
ated from its various semantic constituents. Table 4
highlights the impact of this method for a number
of noun compounds, showing which context words
were predominately generated by each constituent.

Due to the nature of the context used, some of
the links are semantically not obvious (e.g. the rela-
tionship between owls and Vienna). In some cases
the semantic contribution of the parts is more clearly
separated, such as the contributions of ‘memory’ and
‘lane’ to the semantics of ‘memory lane’. In sum-
mary, these examples clearly suggest that our mod-
els learn to associate context with compound ele-
ments and that this association is an informed one.

8 Conclusion

We proposed a novel approach for learning lexicality
scores for noun compounds and empirically demon-
strated the feasiblity of this approach. Using a gen-

erative model we were able to beat a strong, semi-
supervised baseline with an unsupervised model.

We discussed the issue of data sparsity in depth
and proposed several approaches for overcoming
this problem. Focusing on unsupervised approaches,
we demonstrated how interpolation can be used to
tackle sparsity. The two interpolation methods that
we implemented helped us to strongly improve over-
all model performance. Our empirical evaluation of
interpolation metricsClex(c) and Ilex(c) also gives
credence to the hypothesis that lexicality is related to
semantic similarity.

On the theoretical side, we offered further support
to the real-valued treatment of lexicality.

Further work will include using larger training
corpora. While the BNC is a popular corpus in Com-
putational Linguistics, it proved to be too small to
learn sensible representations for a number of com-
pounds encountered in the test data. Using larger
corpora will also allow us to further study and re-
duce the sparsity issues encountered.

To study the relationship between constituent and
compound compositionality in greater depth, we
will also investigate alternative approaches for in-
terpolation. Similarity measures that consider the
semantic relevance of individual context elements
should also be considered as a next step.

Another obvious source of future work is to ap-
ply our approach to general collocations beyond the
special case of noun compounds only.
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Abstract
Over the past decade, several underspec-
ification frameworks have been proposed
that efficiently solve a big subset of scope-
underspecified semantic representations
within the realm of the most popular
constraint-based formalisms. However, there
exists a family of coherent natural language
sentences whose underspecified representa-
tion does not belong to this subset. It has
remained an open question whether there ex-
ists a tractable superset of these frameworks,
covering this family. In this paper, we show
that the answer to this question is yes. We
define a superset of the previous frameworks,
which is solvable by similar algorithms with
the same time and space complexity.

1 Introduction

Scope ambiguity is a major source of ambiguity in
semantic representation. For example, the sentence

1. Every politician has a website.
has at least two possible interpretations, one in

which each politician may have a different website
(i.e., Every has wide scope) and one in which there
is a unique website for all the politicians (i.e., Every
has narrow scope). Since finding the most preferred
reading automatically is very hard, the most widely
adopted solution is to use an Underspecified Rep-
resentation (UR), that is to encode the ambiguity in
the semantic representation and leave scoping un-
derspecified.

In an early effort, Woods (1986) developed an un-
scoped logical form where the above sentence is rep-
resented (roughly) as the formula:

2. Has(〈Every x Politician〉, 〈A y Website〉)

To obtain a fully scoped formula, the quantifiers
are pulled out one by one and wrapped around the
formula. If we pull out Every first, we produce the
fully-scoped formula:

3. A(y, Website(y),
Every(x, Politician(x), Has(x, y))

If we had pulled out A first, we would have had
the other reading, with Every having wide scope.

Hobbs and Shieber (1987) extend this formalism
to support operators (such as not) and present an
enumeration algorithm that is more efficient than the
naive wrapping approach.

Since the introduction of Quasi Logical Form (Al-
shawi and Crouch, 1992), there has been a lot of
work on designing constraint-based underspecifica-
tion formalisms where the readings of a UR are not
defined in a constructive fashion as shown above, but
rather by a set of constraints. A fully-scoped struc-
ture is a reading iff it satisfies all the constraints. The
advantage of these frameworks is that as the pro-
cessing goes deeper, new (say pragmatically-driven)
constraints can be added to the representation in or-
der to filter out unwanted readings. Hole Seman-
tics (Bos, 1996; Bos, 2002), Constraint Language
for Lambda Structures (CLLS) (Egg et al., 2001),
and Minimal Recursion Semantics (MRS) (Copes-
take et al., 2001) are among these frameworks.

In an effort to bridge the gap between the above
formalisms, a graph theoretic model of scope under-
specification was defined by Bodirsky et al. (2004),
called Weakly Normal Dominance Graphs. This
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Figure 1: UG for Every child of a politician runs.

framework and its ancestor, Dominance Con-
straints (Althaus et al., 2003), are broad frameworks
for solving constrained tree structures in general.
When it comes to scope underspecification, some of
the terminology becomes counter-intuitive. There-
fore, here we first define (scope) Underspecifica-
tion Graphs (UG), a notational variant of weakly
normal dominance graphs, solely defined to model
scope underspecification.1 Figure 1 shows a UG for
the following sentence.

4. Every child of a politician runs.

The big circles and the dot nodes are usually re-
ferred to as the hole nodes (or simply holes) and the
label nodes (or simply labels) respectively. The left
and the right holes of each quantifier are placehold-
ers for the restriction and the body of the quanti-
fier. A fully scoped structure is built by plugging
labels into holes, as shown in Figure 2(a). The dot-
ted edges represent the constraints. For example,
the constraint from the restriction hole of Every(x)
to the node Politician(x) states that this label node
must be within the scope of the restriction of Ev-
ery(x) in every reading of the sentence. The con-
straint edge from Every(x) to Run(x) forces the bind-
ing constraint for variable x; that is variable x in
Run(x) must be within the scope of its quantifier.
Figure 2(b) represents the other possible reading of
the sentence. Now consider the sentence:

5. Every politician, whom I know a child of, prob-
ably runs.

with its UG shown in Figure 3. This sentence con-
tains a scopal adverbial (a.k.a. fixed-scopal; cf.
Copestake et al. (2005)), the word Probably. Since
in general, quantifiers can move inside or outside a

1The main difference is in the concept of solution in the two
frameworks. See Section 4.3 for details.

Figure 2: Solutions of the UG in Figure 1.

scopal operator, the scope of Probably is left under-
specified, and hence represented by a hole. It is easy
to verify that the corresponding UG has five possible
readings, two of which are shown in Figure 4.

There are at least two major algorithmic problems
that need to be solved for any given UG U : the sat-
isfiability problem; that is whether there exists any
reading satisfying all the constraints in U , and the
enumeration problem; that is enumerating all the
possible readings of a satisfiable U . Unfortunately,
both problems are NP-complete for UG in its gen-
eral form (Althaus et al., 2003). This proves that
Hole Semantics and Minimal Recursion Semantics
are also intractable in their general form (Thater,
2007). In the last decade, there has been a se-
ries of interesting work on finding a tractable subset
of those frameworks, broad enough to cover most
structures occurring in practice. Those efforts re-
sulted in two closely related tractable frameworks:
(dominance) net and weak (dominance) net. Intu-
itively, the net condition requires the following prop-
erty. Given a UG U , for every label node in U with
n holes, if the node together with all its holes is re-
moved from U , the remaining part is composed of at
most n (weakly) connected components. A differ-
ence between net and weak net is that in nets, label-

Figure 3: UG for the sentence in (5).
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Figure 4: Two of the solutions to the UG in Figure 3.

to-label constraints (e.g. the constraint between Ev-
ery(x) and Run(x) in Figure 1) are not allowed.

Using a sample grammar for CLLS, Koller et al.
(2003) conjecture that the syntax/semantics inter-
face of CLLS only generates underspecified repre-
sentations that follow the definition of net and hence
can be solved in polynomial time. They also prove
that the same efficient algorithms can be used to
solve the underspecification structures of Hole Se-
mantics which satisfy the net condition.

Unlike Hole Semantics and CLLS, MRS implic-
itly carries label-to-label constraints; hence the con-
cept of net could not be applied to MRS. In order
to address this, Niehren and Thater (2003) define
the notion of weak net and conjecture that it cov-
ers all semantically complete MRS structures occur-
ring in practice. Fuchss et al. (2004) supported the
claim by investigating MRS structures in the Red-
woods corpus (Oepen et al., 2002). Later coherent
sentences were found in other corpora or suggested
by other researchers (see Section 6.2.2 in Thater
(2007)), whose UR violates the net condition, inval-
idating the conjecture. However, violating the net
condition occurs in a similar way in those examples,
suggesting a family of non-net structures, character-
ized in Section 4.2. Since then, it has been an open
question whether there exists a tractable superset of
weak nets, covering this family of non-net UGs.

In the rest of this paper, we answer this ques-
tion. We modify the definition of weak net to de-
fine a superset of it, which we call super net. Super
net covers the above mentioned family of non-net
structures, yet is solvable by (almost) the same al-
gorithms as those solving weak nets with the same
time and space complexity.

The structure of the paper is as follows. We de-
fine our framework in Section 2 and present the

polynomial-time algorithms for its satisfiability and
enumeration problems in Section 3. In Section 4,
we compare our framework with nets and weak nets.
Section 5 discusses the related work, and Section 6
summarizes this work and discusses future work.

2 Super net

We first give a formal definition of underspecifica-
tion graph (UG). We then define super net as a sub-
set of UG. In the following definitions, we openly
borrow the terminology from Hole Semantics, Dom-
inance Constraints, and MRS, in order to avoid in-
venting new terms to name old concepts.

Definition 1 (Fragments). Consider L a set of la-
bels, H a set of holes, and S a set of directed solid
edges from labels to holes, such thatF = (L]H,S)
is a forest of ordered trees of depth at most 1, whose
root and only the root is a label node. Each of these
trees is called a fragment.

Following this definition, the number of trees in
F (including single-node trees) equals the number
of labels. For example, if we remove all the dotted
edges in Figure 1, we obtain a forest of 5 fragments.

Definition 2 (Underspecification Graph). Let F =
(L ] H,S) be a forest of fragments and C be a set
of directed dotted edges from L]H to L, called the
set of constraints.2 U = (L ] H,S ] C) is called
an underspecification graph or UG.

Figures 1 and 3 each represent a UG.

Definition 3 (Plugging). (Bos, 1996)
Given a UG U = (L ]H,S ] C), a plugging P is

a total one-to-one function from H to L.

In Figure 1, if lA, lE , lP , lC , and lR represent
the nodes labeled by A(y), Every(x), Politician(y),
Child(x,y), and Run(x) respectively and hr

A (hb
A) and

hr
E (hb

E) represent the restriction (body) hole of A
and Every respectively, then P in (6) is a plugging.

6. P = {(hr
A, lP ), (hb

A, lC), (hr
E , lA), (hb

E , lR)}
We use TU,P to refer to the graph, formed from U

by removing all the constraints and plugging P (h)
into h for every hole h. For example if U is the UG
in Figure 1 and P is the plugging in (6), then TU,P

is the graph shown in Figure 2(a).
2We assume that there is no constraint edge between two

nodes of the same fragment.
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Definition 4 (Permissibility/Solution). TU,P satis-
fies the constraint (u,v) in U , iff u dominates3 v in
TU,P .4 A plugging P is permissible, iff TU,P is a for-
est satisfying all the constraints in U . TU,P is called
a solution of U iff P is a permissible plugging. In
informal contexts, solutions are sometimes referred
to as readings.

It is easy to see that the plugging in (6) is a per-
missible plugging for the UG in Figure 1, and hence
Figure 2(a) is a solution of this UG. Similarly, Fig-
ures 4(a,b) represent two solutions of the UG in Fig-
ure 3. The solutions in Figures 2 and 4 are all tree
structures. This is because UGs in Figures 1 and 3
are weakly connected.5 Lemma 2 proves that this
holds in general, that is:

Proposition 1. Every solution of a weakly con-
nected UG is a tree.

Throughout the rest of this paper, unless other-
wise specified, UGs are assumed to be weakly con-
nected, hence solutions are tree structures.6

Lemma 2. (Bodirsky et al., 2004)
Given a UG U and a solution T of U , if the nodes u
and v in U are connected using an undirected path
p, there exists a node w on p such that w dominates
both u and v in T.

This Lemma is proved using induction on the
length of p. As mentioned before, satisfiability and
enumeration are two fundamental problems to be
solved for a UG. A straightforward approach is de-
picted in Figure 5. We pick a label l; remove it from
U ; recursively solve each of the resulting weakly
connected components (WCCs; cf. footnote 2) and

3u dominates v in the directed graph G, iff u reaches v in G
by a directed path.

4Here, we are referring to the nodes in TU,P by calling the
nodes u and v in U . This is a sound strategy, as every node in
U is mapped into a unique node in TU,P . The inverse is not true
though, as every node (except the root) in TU,P corresponds to
one hole and one label in U . Addressing TU,P ’s nodes in this
way is convenient, so we practice that throughout the paper.

5Given a directed graph G and the nodes u and v in G, u is
said to be weakly connected to v (and vice versa), iff u and v are
connected in the underlying undirected graph of G. A weakly
connected graph is a graph in which every two nodes are weakly
connected. Since weak connectedness is an equivalence rela-
tion, it partitions a directed graph into equivalent classes each
of which is called a weakly connected component or WCC.

6Since fragments are ordered trees, solutions are ordered
trees as well.

Figure 5: Recursively solving UGs.

plug the root of the returned trees into the corre-
sponding holes of l. A problem to be addressed
though is whether there exists any solution rooted
at l. This leads us to the following definition.

Definition 5 (Freeness). (Bodirsky et al., 2004)
A label l in U is called a free node, iff there exists

some solution of U rooted at l. The fragment rooted
at l is called a free fragment.

The following proposition states the necessary
conditions for a label (or fragment) to be free.7

Proposition 3. Let l in U be the root of a fragment
F with m holes. l is a free node of U , only if
P3a. l has no incoming (constraint) edge;
P3b. Every distinct hole of F lies in a distinct WCC

in U−l;
P3c. U−F consists of at least m WCCs.

Proof. The first condition is trivial. To see why
the second condition must hold, let T be a solution
rooted at l, and assume to the contrary that h1 and
h2 lie in the same WCC in U− l. From Lemma 2,
all the nodes in this WCC must be in the scope of
both h1 and h2. But this is not possible, because T
is a tree. The third condition is proved similarly. As-
sume to the contrary that U−F has m − 1 WCCs.
From Lemma 2, all the nodes in a WCC must be in
the scope of a single hole of F . But there are m
holes and only m − 1 WCCs. It means that one of
the holes in T is left unplugged. Contradiction!

The motivation behind defining super nets is to
find a subset of UG for which these conditions are
also sufficient. The following concept from Althaus
et al. (2003) plays an important role.

7Necessary conditions of freeness in a UG are not exactly
the same as the ones in a weakly normal dominance graph, as
depicted in Bodirsky et al. (2004), because the definition of so-
lution is different for the two frameworks (c.f. Section 4.3).
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Figure 6: UG for Illustration of hypernormal path.

Definition 6 (Hypernormal Connectedness). Given
a UG U , a hypernormal path is an undirected path8

with no two consecutive constraint edges emanating
from the same node. Node u is hypernormally con-
nected to node v iff there is at least one hypernormal
path between the two. U is called hypernormally
connected iff every pair of nodes in U are hypernor-
mally connected.

For example, in Figure 2, p2 is a hypernormal
path, but p1 is not. In spite of that, the whole graph
is hypernormally connected.9 The following simple
notion will also come handy.

Definition 7 (Openness). (Thater, 2007)
A node u of a fragment F is called an open node iff
it has no outgoing constraint edge.

For example, l in Figure 5(a) is an open label
node. In Figure 2(b), h2 is an open hole. We are
finally ready to define super net.

Definition 8 (Super net). A UG U is called a super
net if for every fragment F rooted at l:

D8a. F has at most one open node.
D8b. If l1 and l2 are two dominance children of a

hole h of F, then l1 and l2 are hypernormally
connected in U−h.

D8c. • Case 1: F has no open hole.
Every dominance child10 of l is hypernor-
mally connected to some hole of F in U−l.
• Case 2: F has an open hole.

All dominance children of l, not hypernor-
mally connected to a hole of F in U−l, are
hypernormally connected together.

8Throughout this paper, by path we always mean a simple
path, that is no node may be visited more than once on a path.

9Note that even though p1 is not a hypernormal path, there
is another hypernormal path connecting the same two nodes

10v is a dominance child of u in a UG U , if (u, v) is a con-
straint edge in U .

Figure 7: Illustration of super net conditions.

Definition 9 (Types of fragment). Following Defini-
tion 8, super net allows for three possible types of
fragment:
D9a. Open-root: Only the root is open (Figure 5a)
D9b. Open-hole: Only a hole is open (Figure 2b)
D9c. Closed: F There is no open node. (Figure 2a)

Definition 8 guarantees the following property.

Lemma 4. For a super net U and a fragment F of
U with m holes, which satisfies the conditions in
Proposition 3, U−F consists of exactly m WCCs,
each of which is a super net.

Proof sketch. The detailed proof of this Lemma is
long. Therefore, we sketch the proof here and leave
the details for a longer paper. First, we show that
U−F consists of exactly m WCCs. Following con-
ditions (D8b) and (D8c), no matter what structure F
has, U−F consists of at most m WCCs. On the other
hand, based on condition (P3c), U−F has at least m
WCCs. Therefore, U−F has exactly m WCCs. To
prove that each WCC in U−F is a super net, all we
need to prove is that if two nodes u and v, which do
not belong to F , are hypernormally connected in U ,
they are also hypernormally connected in U−F . This
is proved by showing that there is no hypernormal
path between u and v in U that visits some node of
F . Suppose that F is an open-hole fragment rooted
at l, as in Figure 2(b) (the two other cases are proved
similarly) and assume to the contrary that there is a
hypernormal path p between u and v that visits some
node of F . One of the following three cases holds.

i. p visits exactly one node of F .
ii. p visits (at least) two holes of F .

iii. p visits l and exactly one hole of F .

All the three cases results in a contradiction: (i)
proves that p is not hypernormal; (ii) proves that F

146



Figure 8: Proof of Proposition 5

is not a free fragment because it violates condition
(P3b); and (iii) proves that U is not a super net be-
cause F violates condition (D8c).
Proposition 5. If U is a satisfiable super net, the
necessary freeness conditions in Proposition 3 are
also sufficient.

Proof sketch. Let F rooted at l be a fragment satis-
fying the three conditions in Proposition 3. Among
all the solutions of U , we pick a solution T in which
the depth d of l is minimal. Using proof by con-
tradiction, we show that d = 0, which proves l is
the root of T . If d > 0, there is some node u that
outscopes l (Figure 8(a)). Lemma 2 and 4 guarantee
that at least one of the trees in Figures 8(b,c) is a so-
lution of U . So U has a solution in which, the depth
of l is smaller than d. Contradiction!

3 SAT and ENUM algorithms

Following Lemma 4 and Proposition 5, Table 1 gives
the algorithms for the satisfiability (SAT), and the
enumeration (ENUM) of super nets.

Theorem 6. ENUM and SAT are correct.

Proof sketch. Using Lemma 4 and induction on the
depth of the recursion, it is easy to see that if ENUM
or SAT returns a tree T , T is a solution of U . This
proves that ENUM and SAT are sound. An induc-
tive proof is used to prove the completeness as well.
Consider a solution T of depth n of U (Figure 5). It
can be shown that T1 and T2 must be the solutions
to U1 and U2. Therefore based on the induction as-
sumption they are generated by Solve(G), hence T
is also generated by Solve(G).

Let U = (L ] H,S ] C). The running time of
the algorithms depends on the depth of the recursion
which is equal to the number of fragments/labels,
|L|. At each depth it takes O(|U |) to find the
set of free fragments (Bodirsky et al., 2004) and
also to compute U −F for some free fragment F .

Solve(U)
1. If U contains a single (label) node, return U .
2. Pick a free fragment F with m holes

rooted at l, otherwise fail.
// For SAT: pick arbitrarily.
// For ENUM: pick non-deterministically.

3. Let U1, U2, · · · , Um be WCCs of U−F .
4. Let Ti = Solve(Ui) for i = 1 · · ·m.
5. Let hi be the hole of F connected to

Ui in U−l, for i = 1 · · ·m.
(If for some k, Uk is not connected to any hole

of F in U−l, let hk be the open hole of F .)
6. Build T by plugging the root of Ti into hi,

for i = 1 · · ·m.
7. Return T .

Table 1: ENUM and SAT algorithms

(|U | =def |V | + |E|, where |V | =def |L| + |H|,
and |E| =def |S| + |C|). Therefore SAT (and each
branch of ENUM) run(s) in O(|L|.|U |) step. There-
fore the worst-case time complexity of SAT and each
branch of ENUM is quadratic in the size of U .

4 Super net versus weak net

Although net is a subset of weak net, to better un-
derstand the three frameworks, we first define net.

4.1 Net

Net was first defined by Koller et al. (2003), in or-
der to find a subset of Hole Semantics that can be
solved in polynomial-time. Nets do not contain any
label-to-label constraints. In fact, out of the three
possible structures that super net allows for a frag-
ment F (Definition 9), net only allows for the first
one, that is open-root.

Definition 10 (Net). (Thater, 2007)
Let U be a UG with no label-to-label constraints. U
is called a net iff for every fragment F :

D10a. F has no open hole.
D10b. If l1, l2 are two dominance children of a hole

h of F , then l1 and l2 are hypernormally
connected in U−h.

The root of F is open, therefore (D8a) subsumes
(D10a). Condition (D10b) is exactly the same as
(D8b). Therefore, super net is a superset of net.
Strictness of the superset relationship is trivial.
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4.2 Weak net

Weak net was first introduced by Niehren and Thater
(2003), in order to find a tractable subset of MRS. In
order to model MRS, weak net allows for label-to-
label constraints, but to stay a tractable framework it
forces the following restrictions.

Definition 11 (Weak net). (Thater, 2007)
A UG U is a weak net iff for every fragment F :

D11a. F has exactly one open node.

D11b. If l1, l2 are two dominance children of a
node u of F , then l1 and l2 are hypernor-
mally connected in U−u.

Weak nets suffer from two limitations with re-
spect to super nets.

First, out of the three possible types of frag-
ment allowed by super net (Definition 9), weak net
only allows for the first two; open-root and open-
hole. In practice this becomes an issue only if
new constraints are to be added to a UG after syn-
tax/semantic interface. Since weak net requires one
node of every fragment to be open, a constraint can-
not be added if it violates this condition.11

Second, open-hole fragments in weak nets are
more restricted than open-hole fragments in super
nets. This is the Achilles’ heel of weak nets (D11b).
To see why, consider the UG in Figure 3 for the sen-
tence Every politician, whom I know a child of, runs
which we presented in Section 1. If F is the frag-
ment for the quantifier Every and l is the root of F ,
the two dominance children of l are not (hypernor-
mally) connected in U − l. Therefore, U is not a
weak net. All the non-net examples we have found
so far behave similarly. That is, there is a quanti-
fier with more than one outgoing dominance edge.
Once you remove the quantifier node, the dominance
children are no longer weakly (and hence hypernor-
mally) connected, violating condition (D11b). In
super net, however, we define case 2 of condition
(D8c) such that it does not force dominance chil-
dren of l to be (hypernormally) connected, allowing
for non-net structures such as the one in Figure 3.12

11As discussed in Section 5, by defining the notion of down-
ward connectedness, Koller and Thater (2007) address this issue
of weak nets, at the expense of cubic time complexity.

12For simplicity, throughout this paper we have used the term
non-net to refer to non-(weak net) UGs.

Proposition 7. Weak net is a strict subset of super
net.

Proof. Consider an arbitrary weak net U , and let F
be an arbitrary fragment of U rooted at l.

(i). F has exactly one open node, so it satisfies con-
dition (D8a).

(ii). For every two holes of F , condition (D11b)
guarantees that condition (D8b) holds.

(iii). • Case 1) F has no open hole:
Based on condition (D11a) the root of F is
open, hence it has no dominance children.
(D8c) trivially holds in this case.
• Case 2) F has an open hole:

Based on condition (D11b) every two dom-
inance children of l are hypernormally con-
nected, so (D8c) holds in this case too.

Therefore, every fragment F satisfies all the con-
ditions in Definition 8, hence U is a super net. This
and the fact that Figure 3 is a super net but not a
weak net complete the proof.

4.3 Underspecification graph vs. weakly
normal dominance graph

Dominance graphs and their ancestor, dominance
constraints, are designed for solving constrained tree
structures in general. Therefore, some of the ter-
minology of dominance graph may seem counter-
intuitive when dealing with scope underspecifica-
tion. For example the notion of solution in that for-
malism is broader than what is known as solution
in scope underspecification formalisms. As defined
there (but translated into our terminology), a solu-
tion may contain unplugged holes, or holes plugged
with more than one label. This broad notion of so-
lution is computationally less expensive such that an
algorithm very similar to the one in Table 1 can be
used to solve every weakly normal dominance graph
(Bodirsky et al., 2004). Solution, as defined in this
paper (Definition 4), corresponds to the notion of
simple leaf-labeled solved forms (a.k.a. configu-
ration) in dominance graphs. Although solutions
of a weakly normal dominance graph can be found
in polynomial time, finding configurations is NP-
complete. Solvability of underspecification graphs
is equivalent to configurability of weakly normal
dominance graphs, and hence NP-complete.
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5 Related work

We already compared our model with nets and weak
nets. Koller and Thater (2007) present another ex-
tension of weak nets, downward connected nets.
They show that if a dominance graph has a subgraph
which is a weak net, it can be solved in polynomial
time. This addresses the first limitation of weak nets,
discussed in Section 4.2, but it does not solve the
second one, because the graph in Figure 3 neither is
a weak net, nor has a weak-net subgraph.

Downward connected dominance graph, in its
general form, goes beyond weakly normal domi-
nance graph (and hence UG), incorporating label-to-
hole constraints. It remains for future work to inves-
tigate whether allowing for label-to-hole constraints
adds any value to the framework within the context
of scope underspecified semantics, or whether it is
possible to model the same effect using hole-to-label
and label-to-label constraints. In any case, the same
extension can be applied to super nets as well, defin-
ing downward connected super nets, a strict super
set of downward connected nets, solvable using sim-
ilar algorithms with the same time/space complexity.

Another tractable framework presented in the past
is our own framework, Canonical Form Under-
specified Representation (CF-UR) (Manshadi et al.,
2009), motivated by Minimal Recursion Semantics.
CF-UR is defined to characterize the set of all MRS
structures generated by the MRS semantic composi-
tion process (Manshadi et al., 2008). CF-UR in its
general form is not tractable. Therefore, we define
a notion of coherence called heart-connectedness
and show that all heart-connected CF-UR struc-
tures can be solved efficiently. We also show that
heart-connected CF-UR covers the family of non-net
structures, so CF-UR is in fact the first framework to
address the non-net structures. In spite of that, CF-
UR is quite restricted and does not allow for adding
new constraints after semantic composition.

In recent work, Koller et al. (2008) suggest us-
ing Regular Tree Grammars for scope underspeci-
fication, a probabilistic version of which could be
used to find the best reading. The framework goes
beyond the formalisms discussed in this paper and
is expressively complete in Ebert (2005)’s sense of
completeness, i.e. it is able to describe any subset
of the readings of a UR. However, this power comes

at the cost of exponential complexity. In practice,
RTG is built on top of weak nets, benefiting from the
compactness of this framework to remain tractable.
Being a super set of weak net, super net provides a
more powerful core for RTG.

Koller and Thater (2010) address the problem of
finding the weakest readings of a UR, which are
those entailed by some reading(s), but not entailing
any other reading of the UR. By only considering
the weakest readings, the space of solutions will be
dramatically reduced. Note that entailment using the
weakest readings is sound but not complete.

6 Summary and Future work

Weakly normal dominance graph brings many cur-
rent constraint-based formalisms under a uniform
framework, but its configurability is intractable in its
general form. In this paper, we present a tractable
subset of this framework. We prove that this sub-
set, called super net, is a strict superset of weak net,
a previously known tractable subset of the frame-
work, and that it covers a family of coherent natural
language sentences whose underspecified represen-
tation are known not to belong to weak nets.

As mentioned in Section 5, another extension of
weak nets, downward connected nets, has been pro-
posed by Koller and Thater (2007), which addresses
some of the limitations of weak nets, yet is unable
to solve the known family of non-net structures. A
thorough comparison between super nets and down-
ward connected nets remains for future work.

Another interesting property of super nets to be
explored is how they compare to heart-connected
graphs. Heart-connectedness has been introduced
as a mathematical criterion for verifying the coher-
ence of an underspecified representation within the
framework of underspecification graph (Manshadi et
al., 2009). Our early investigation shows that super
nets may contain all heart-connected UGs. If this
conjecture is true, super net would be broad enough
to cover every coherent natural language sentence
(under this notion of coherence). We leave a detailed
investigation of this conjecture for the future.
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ICL

University of Heidelberg
pado@cl.uni-heidelberg.de

Jason Utt
IMS

University of Stuttgart
uttjn@ims.uni-stuttgart.de

Abstract

Many types of polysemy are not word specific,
but are instances of general sense alternations
such as ANIMAL-FOOD. Despite their perva-
siveness, regular alternations have been mostly
ignored in empirical computational semantics.
This paper presents (a) a general framework
which grounds sense alternations in corpus
data, generalizes them above individual words,
and allows the prediction of alternations for
new words; and (b) a concrete unsupervised
implementation of the framework, the Cen-
troid Attribute Model. We evaluate this model
against a set of 2,400 ambiguous words and
demonstrate that it outperforms two baselines.

1 Introduction

One of the biggest challenges in computational se-
mantics is the fact that many words are polysemous.
For instance, lamb can refer to an animal (as in The
lamb squeezed through the gap) or to a food item (as
in Sue had lamb for lunch). Polysemy is pervasive
in human language and is a problem in almost all
applications of NLP, ranging from Machine Trans-
lation (as word senses can translate differently) to
Textual Entailment (as most lexical entailments are
sense-specific).

The field has thus devoted a large amount of effort
to the representation and modeling of word senses.
The arguably most prominent effort is Word Sense
Disambiguation, WSD (Navigli, 2009), an in-vitro
task whose goal is to identify which, of a set of pre-
defined senses, is the one used in a given context.

In work on WSD and other tasks related to pol-
ysemy, such as word sense induction, sense alter-
nations are treated as word-specific. As a result, a
model for the meaning of lamb that accounts for the
relation between the animal and food senses cannot
predict that the same relation holds between instances
of chicken or salmon in the same type of contexts.

A large number of studies in linguistics and cog-
nitive science show evidence that there are regulari-
ties in the way words vary in their meaning (Apres-
jan, 1974; Lakoff and Johnson, 1980; Copestake
and Briscoe, 1995; Pustejovsky, 1995; Gentner et
al., 2001; Murphy, 2002), due to general analogical
processes such as regular polysemy, metonymy and
metaphor. Most work in theoretical linguistics has
focused on regular, systematic, or logical polysemy,
which accounts for alternations like ANIMAL-FOOD.
Sense alternations also arise from metaphorical use
of words, as dark in dark glass-dark mood, and also
from metonymy when, for instance, using the name
of a place for a representative (as in Germany signed
the treatise). Disregarding this evidence is empiri-
cally inadequate and leads to the well-known lexical
bottleneck of current word sense models, which have
serious problems in achieving high coverage (Navigli,
2009).

We believe that empirical computational semantics
could profit from a model of polysemy1 which (a) is
applicable across individual words, and thus capable
of capturing general patterns and generalizing to new

1Our work is mostly inspired in research on regular polysemy.
However, given the fuzzy nature of “regularity” in meaning
variation, we extend the focus of our attention to include other
types of analogical sense construction processes.
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words, and (b) is induced in an unsupervised fashion
from corpus data. This is a long-term goal with many
unsolved subproblems.

The current paper presents two contributions to-
wards this goal. First, since we are working on a
relatively unexplored area, we introduce a formal
framework that can encompass different approaches
(Section 2). Second, we implement a concrete instan-
tiation of this framework, the unsupervised Centroid
Attribute Model (Section 3), and evaluate it on a new
task, namely, to detect which of a set of words in-
stantiate a given type of polysemy (Sections 4 and 5).
We finish with some conclusions and future work
(Section 7).

2 Formal framework

In addition to introducing formal definitions for terms
commonly found in the literature, our framework pro-
vides novel terminology to deal with regular poly-
semy in a general fashion (cf. Table 1; capital letters
designate sets and small letters elements of sets).2

For a lemma l like lamb, we want to know
how well a meta alternation (such as ANIMAL-
FOOD) explains a pair of its senses (such as the
animal and food senses of lamb).3 This is for-
malized through the function score, which maps
a meta alternation and two senses onto a score.
As an example, let lambanm denote the ANIMAL

sense of lamb, lambfod the FOOD sense, and
lambhum the PERSON sense. Then, an appropri-
ate model of meta alternations should predict that
score(animal,food, lambanm, lambfod) is greater
than score(animal,food, lambanm, lambhum).

Meta alternations are defined as unordered pairs
of meta senses, or cross-word senses like ANIMAL.
The meta sensesM can be defined a priori or induced
from data. They are equivalence classes of senses to
which they are linked through the function meta. A
sense s instantiates a meta sense m iff meta(s) =
m. Functions inst and sns allow us to define meta
senses and lemma-specific senses in terms of actual
instances, or occurrences of words in context.

2We re-use inst as a function that returns the set of instances
for a sense: SL → ℘(IL) and assume that senses partition
lemmas’ instances: ∀l : inst(l) =

⋃
s∈sns(l) inst(s).

3Consistent with the theoretical literature, this paper focuses
on two-way polysemy. See Section 7 for further discussion.

L set of lemmas
IL set of (lemma-wise) instances
SL set of (lemma-wise) senses
inst : L→ ℘(IL) mapping lemma→ instances
sns : L→ ℘(SL) mapping lemma→ senses

M set of meta senses
meta: SL →M mapping senses→meta senses
A ⊆M ×M set of meta alternations (MAs)
A set of MA representations

score : A× S2
L → R scoring function for MAs

repA : A→ A MA representation function
comp: A×S2

L → R compatibility function

Table 1: Notation and signatures for our framework.

We decompose the score function into two parts:
a representation function repA that maps a meta al-
ternation into some suitable representation for meta
alternations, A, and a compatibility function comp
that compares the relation between the senses of a
word to the meta alternation’s representation. Thus,
comp ◦ repA = score.

3 The Centroid Attribute Model

The Centroid Attribute Model (CAM) is a simple
instantiation of the framework defined in Section 2,
designed with two primary goals in mind. First, it is
a data-driven model. Second, it does not require any
manual sense disambiguation, a notorious bottleneck.

To achieve the first goal, CAM uses a distribu-
tional approach. It represents the relevant entities as
co-occurrence vectors that can be acquired from a
large corpus (Turney and Pantel, 2010). To achieve
the second goal, CAM represents meta senses using
monosemous words only, that is, words whose senses
all correspond to one meta sense. 4 Examples are
cattle and robin for the meta sense ANIMAL. We
define the vector for a meta sense as the centroid (av-
erage vector) of the monosemous words instantiating
it. In turn, meta alternations are represented by the
centroids of their meta senses’ vectors.

This strategy is not applicable to test lemmas,
which instantiate some meta alternation and are by
definition ambiguous. To deal with these without

410.8% of noun types in the corpus we use are monosemous
and 2.3% are disemous, while, on a token level, 23.3% are
monosemous and 20.2% disemous.
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vecI : IL → Rk instance vector computation
C : Rk×m → Rk centroid computation
vecL : L→ Rk lemma (type) vector computation
repM : M → Rk meta sense representation

Table 3: Additional notation and signatures for CAM

explicit sense disambiguation, CAM represents lem-
mas by their type vectors, i.e., the centroid of their
instances, and compares their vectors (attributes) to
those of the meta alternation – hence the name.

CoreLex: A Semantic Inventory. CAM uses
CoreLex (Buitelaar, 1998) as its meta sense inven-
tory. CoreLex is a lexical resource that was designed
specifically for the study of polysemy. It builds on
WordNet (Fellbaum, 1998), whose sense distinctions
are too fine-grained to describe general sense al-
ternations. CoreLex defines a layer of abstraction
above WordNet consisting of 39 basic types, coarse-
grained ontological classes (Table 2). These classes
are linked to one or more Wordnet anchor nodes,
which define a mapping from WordNet synsets onto
basic types: A synset s maps onto a basic type b if b
has an anchor node that dominates s and there is no
other anchor node on the path from b and s.5

We adopt the WordNet synsets as S, the set of
senses, and the CoreLex basic types as our set of
meta senses M . The meta function (mapping word
senses onto meta senses) is given directly by the an-
chor mapping defined in the previous paragraph. This
means that the set of meta alternations is given by the
set of pairs of basic types. Although basic types do
not perfectly model meta senses, they constitute an
approximation that allows us to model many promi-
nent alternations such as ANIMAL-FOOD.

Vectors for Meta Senses and Alternations. All
representations used by CAM are co-occurrence vec-
tors in Rk (i.e., A := Rk). Table 3 lists new concepts
that CAM introduces to manipulate vector represen-
tations. vecI returns a vector for a lemma instance,
vecL a (type) vector for a lemma, and C the centroid
of a set of vectors.

We leave vecI and C unspecified: we will experi-
ment with these functions in Section 4. CAM does fix

5This is necessary because some classes have non-disjoint
anchor nodes: e.g., ANIMALs are a subset of LIVING BEINGs.

the definitions for vecL and repA. First, vecL defines
a lemma’s vector as the centroid of its instances:

vecL(l) = C{vecI(i) | i ∈ inst(l)} (1)

Before defining repA, we specify a function repM

that computes vector representations for meta senses
m. In CAM, this vector is defined as the centroid
of the vectors for all monosemous lemmas whose
WordNet sense maps onto m:

repM(m) = C{vecL(l) | meta(sns(l)) = {m}} (2)

Now, repA can be defined simply as the centroid of
the meta senses instantiating a:

repA(m1,m2) = C{repM(m1), repM(m2)} (3)

Predicting Meta Alternations. The final compo-
nent of CAM is an instantiation of comp (cf. Table 1),
i.e., the degree to which a sense pair (s1, s2) matches
a meta alternation a. Since CAM does not represent
these senses separately, we define comp as

comp(a, s1, s2) = sim(a, vecL(l))

so that {s1, s2} = sns(l)
(4)

The complete model, score, can now be stated as:

score(m,m′, s, s′) = sim(repA(m,m′), vecL(l))

so that {s, s′} = sns(l) (5)

CAM thus assesses how well a meta alternation
a = (m,m′) explains a lemma l by comparing the
centroid of the meta senses m,m′ to l’s centroid.

Discussion. The central feature of CAM is that
it avoids word sense disambiguation, although it
still relies on a predefined sense inventory (Word-
Net, through CoreLex). Our use of monosemous
words to represent meta senses and meta alternations
goes beyond previous work which uses monosemous
words to disambiguate polysemous words in context
(Izquierdo et al., 2009; Navigli and Velardi, 2005).

Because of its focus on avoiding disambiguation,
CAM simplifies the representation of meta alterna-
tions and polysemous words to single centroid vec-
tors. In the future, we plan to induce word senses
(Schütze, 1998; Pantel and Lin, 2002; Reisinger and
Mooney, 2010), which will allow for more flexible
and realistic models.
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abs ABSTRACTION ent ENTITY loc LOCATION prt PART

act ACT evt EVENT log GEO. LOCATION psy PSYCHOL. FEATURE

agt AGENT fod FOOD mea MEASURE qud DEFINITE QUANTITY

anm ANIMAL frm FORM mic MICROORGANISM qui INDEFINITE QUANTITY

art ARTIFACT grb BIOLOG. GROUP nat NATURAL BODY rel RELATION

atr ATTRIBUTE grp GROUPING phm PHENOMENON spc SPACE

cel CELL grs SOCIAL GROUP pho PHYSICAL OBJECT sta STATE

chm CHEMICAL hum HUMAN plt PLANT sub SUBSTANCE

com COMMUNICATION lfr LIVING BEING pos POSSESSION tme TIME

con CONSEQUENCE lme LINEAR MEASURE pro PROCESS pro PROCESS

Table 2: CoreLex’s basic types with their corresponding WordNet anchors. CAM adopts these as meta senses.

4 Evaluation

We test CAM on the task of identifying which lem-
mas of a given set instantiate a specific meta alterna-
tion. We let the model rank the lemmas through the
score function (cf. Table (1) and Eq. (5)) and evaluate
the ranked list using Average Precision. While an
alternative would be to rank meta alternations for a
given polysemous lemma, the method chosen here
has the benefit of providing data on the performance
of individual meta senses and meta alternations.

4.1 Data

All modeling and data extraction was carried out on
the written part of the British National Corpus (BNC;
Burnage and Dunlop (1992)) parsed with the C&C
tools (Clark and Curran, 2007). 6

For the evaluation, we focus on disemous words,
words which instantiate exactly two meta senses
according to WordNet. For each meta alternation
(m,m′), we evaluate CAM on a set of disemous tar-
gets (lemmas that instantiate (m,m′)) and disemous
distractors (lemmas that do not). We define three
types of distractors: (1) distractors sharing m with
the targets (but not m′), (2) distractors sharing m′

with the targets (but not m), and (3) distractors shar-
ing neither. In this way, we ensure that CAM cannot
obtain good results by merely modeling the similarity
of targets to either m or m′, which would rather be a
coarse-grained word sense modeling task.

To ensure that we have enough data, we evaluate
CAM on all meta alternations with at least ten targets
that occur at least 50 times in the corpus, discarding
nouns that have fewer than 3 characters or contain
non-alphabetical characters. The distractors are cho-

6The C&C tools were able to reliably parse about 40M words.

sen so that they match targets in frequency. This
leaves us with 60 meta alternations, shown in Ta-
ble 5. For each meta alternation, we randomly select
40 lemmas as experimental items (10 targets and 10
distractors of each type) so that a total of 2,400 lem-
mas is used in the evaluation.7 Table 4 shows four
targets and their distractors for the meta alternation
ANIMAL-FOOD.8

4.2 Evaluation Measure and Baselines

To measure success on this task, we use Average
Precision (AP), an evaluation measure from IR that
reaches its maximum value of 1 when all correct
items are ranked at the top (Manning et al., 2008).
It interpolates the precision values of the top-n pre-
diction lists for all positions n in the list that con-
tain a target. Let T = 〈q1, . . . , qm〉 be the list of
targets, and let P = 〈p1, . . . , pn〉 be the list of pre-
dictions as ranked by the model. Let I(xi) = 1 if
pi ∈ T , and zero otherwise. Then AP (P, T ) =

1
m

∑m
i=1 I(xi)

∑i
j=1 I(xi)

i . AP measures the quality
of the ranked list for a single meta alternation. The
overall quality of a model is given by Mean Average
Precision (MAP), the mean of the AP values for all
meta alternations.

We consider two baselines: (1) A random baseline
that ranks all lemmas in random order. This baseline
is the same for all meta alternations, since the distri-
bution is identical. We estimate it by sampling. (2)
A meta alternation-specific frequency baseline which
orders the lemmas by their corpus frequencies. This

7Dataset available at http://www.nlpado.de/

˜sebastian/data.shtml.
8Note that this experimental design avoids any overlap be-

tween the words used to construct sense vectors (one meta sense)
and the words used in the evaluation (two meta senses).
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Targets Distractors with meta sense anm Distractors with meta sense fod Random distractors

carp amphibian (anm-art) mousse (art-fod) appropriation (act-mea)
duckling ape (anm-hum) parsley (fod-plt) scissors (act-art)
eel leopard (anm-sub) pickle (fod-sta) showman (agt-hum)
hare lizard (anm-hum) pork (fod-mea) upholstery (act-art)

Table 4: Sample of experimental items for the meta alternation anm-fod. (Abbreviations are listed in Table 2.)

baseline uses the intuition that frequent words will
tend to exhibit more typical alternations.

4.3 Model Parameters
There are four more parameters to set.

Definition of vector space. We instantiate the vecI

function in three ways. All three are based on
dependency-parsed spaces, following our intuition
that topical similarity as provided by window-based
spaces is insufficient for this task. The functions dif-
fer in the definition of the space’s dimensions, incor-
porating different assumptions about distributional
differences among meta alternations.

The first option, gram, uses grammatical paths
of lengths 1 to 3 as dimensions and thus character-
izes lemmas and meta senses in terms of their gram-
matical context (Schulte im Walde, 2006), with a
total of 2,528 paths. The second option, lex, uses
words as dimensions, treating the dependency parse
as a co-occurrence filter (Padó and Lapata, 2007),
and captures topical distinctions. The third option,
gramlex, uses lexicalized dependency paths like
obj–see to mirror more fine-grained semantic proper-
ties (Grefenstette, 1994). Both lex and gramlex
use the 10,000 most frequent items in the corpus.
Vector elements. We use “raw” corpus co-
occurrence frequencies as well as log-likelihood-
transformed counts (Lowe, 2001) as elements of the
co-occurrence vectors.
Definition of centroid computation. There are
three centroid computations in CAM: to combine
instances into lemma (type) vectors (function vecL

in Eq. (1)); to combine lemma vectors into meta
sense vectors (function repM in Eq. (2)); and to com-
bine meta sense vectors into meta alternation vectors
(function repA in Eq. (3)).

For vecL, the obvious definition of the centroid
function is as a micro-average, that is, a simple av-
erage over all instances. For repM and repA, there

is a design choice: The centroid can be computed
by micro-averaging as well, which assigns a larger
weight to more frequent lemmas (repM) or meta
senses (repA). Alternatively, it can be computed
by macro-averaging, that is, by normalizing the in-
dividual vectors before averaging. This gives equal
weight to the each lemma or meta sense, respectively.
Macro-averaging in repA thus assumes that senses
are equally distributed, which is an oversimplifica-
tion, as word senses are known to present skewed
distributions (McCarthy et al., 2004) and vectors for
words with a predominant sense will be similar to the
dominant meta sense vector. Micro-averaging par-
tially models sense skewedness under the assumption
that word frequency correlates with sense frequency.

Similarity measure. As the vector similarity mea-
sure in Eq. (5), we use the standard cosine similar-
ity (Lee, 1999). It ranges between −1 and 1, with 1
denoting maximum similarity. In the current model
where the vectors do not contain negative counts, the
range is [0; 1].

5 Results

Effect of Parameters The four parameters of Sec-
tion 4.3 (three space types, macro-/micro-averaging
for repM and repA, and log-likelihood transforma-
tion) correspond to 24 instantiations of CAM.

Figure 1 shows the influence of the four parame-
ters. The only significant difference is tied to the use
of lexicalized vector spaces (gramlex / lex are
better than gram). The statistical significance of this
difference was verified by a t-test (p < 0.01). This
indicates that meta alternations can be characterized
better through fine-grained semantic distinctions than
by syntactic ones.

The choice of micro- vs. macro-average does not
have a clear effect, and the large variation observed
in Figure 1 suggests that the best setup is dependent
on the specific meta sense or meta alternation being
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Figure 1: Effect of model parameters on performance. A
data point is the mean AP (MAP) across all meta alterna-
tions for a specific setting.

modeled. Focusing on meta alternations, whether the
two intervening meta senses should be balanced or
not can be expected to depend on the frequencies of
the concepts denoted by each meta sense, which vary
for each case. Indeed, for AGENT-HUMAN, the alter-
nation which most benefits from the micro-averaging
setting, the targets are much more similar to the HU-
MAN meta sense (which is approximately 8 times as
frequent as AGENT) than to the AGENT meta sense.
The latter contains anything that can have an effect on
something, e.g. emulsifier, force, valium. The targets
for AGENT-HUMAN, in contrast, contain words such
as engineer, manipulator, operative, which alternate
between an agentive role played by a person and the
person herself.

While lacking in clear improvement, log-
likelihood transformation tends to reduce variance,
consistent with the effect previously found in selec-
tional preference modeling (Erk et al., 2010).

Overall Performance Although the performance
of the CAM models is still far from perfect, all 24
models obtain MAP scores of 0.35 or above, while
the random baseline is at 0.313, and the overall fre-
quency baseline at 0.291. Thus, all models con-
sistently outperform both baselines. A bootstrap
resampling test (Efron and Tibshirani, 1994) con-

firmed that the difference to the frequency baseline
is significant at p < 0.01 for all 24 models. The
difference to the random baseline is significant at
p < 0.01 for 23 models and at p < 0.05 for the
remaining model. This shows that the models cap-
ture the meta alternations to some extent. The best
model uses macro-averaging for repM and repA in
a log-likelihood transformed gramlex space and
achieves a MAP of 0.399.

Table 5 breaks down the performance of the best
CAM model by meta alternation. It shows an en-
couraging picture: CAM outperforms the frequency
baseline for 49 of the 60 meta alternations and both
baselines for 44 (73.3%) of all alternations. The per-
formance shows a high degree of variance, however,
ranging from 0.22 to 0.71.

Analysis by Meta Alternation Coherence Meta
alternations vary greatly in their difficulty. Since
CAM is an attribute similarity-based approach, we
expect it to perform better on the alternations whose
meta senses are ontologically more similar. We next
test this hypothesis.

Let Dmi = {dij} be the set of distractors for
the targets T = {tj} that share the meta sense mi,
and DR = {d3j} the set of random distractors. We
define the coherence κ of an alternation a of meta
senses m1,m2 as the mean (ø) difference between
the similarity of each target vector to a and the simi-
larity of the corresponding distractors to a, or for-
mally κ(a) = ø sim(repA(m1,m2), vecL(tj)) −
sim(repA(m1,m2), vecL(dij)), for 1 ≤ i ≤ 3 and
1 ≤ j ≤ 10. That is, κ measures how much more
similar, on average, the meta alternation vector is to
the target vectors than to the distractor vectors. For a
meta alternation with a higher κ, the targets should
be easier to distinguish from the distractors.

Figure 2 plots AP by κ for all meta alternations.
As we expect from the definition of κ, AP is strongly
correlated with κ. However, there is a marked Y
shape, i.e., a divergence in behavior between high-
κ and mid-AP alternations (upper right corner) and
mid-κ and high-AP alternations (upper left corner).

In the first case, meta alternations perform worse
than expected, and we find that this typically points
to missing senses, that is, problems in the underlying
lexical resource (WordNet, via CoreLex). For in-
stance, the FOOD-PLANT distractor almond is given
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grs-psy 0.709 com-evt 0.501 art-com 0.400 atr-com 0.361 art-frm 0.286
pro-sta 0.678 art-grs 0.498 act-pos 0.396 atr-sta 0.361 act-hum 0.281
fod-plt 0.645 hum-psy 0.486 phm-sta 0.388 act-phm 0.339 art-fod 0.280
psy-sta 0.630 hum-nat 0.456 atr-psy 0.384 anm-art 0.335 grs-hum 0.272
hum-prt 0.602 anm-hum 0.448 fod-hum 0.383 art-atr 0.333 act-art 0.267
grp-psy 0.574 com-psy 0.443 plt-sub 0.383 act-psy 0.333 art-grp 0.258
grs-log 0.573 act-grs 0.441 act-com 0.382 agt-hum 0.319 art-nat 0.248
act-evt 0.539 atr-rel 0.440 grp-grs 0.379 art-evt 0.314 act-atr 0.246
evt-psy 0.526 art-qui 0.433 art-psy 0.373 atr-evt 0.312 art-hum 0.240
act-tme 0.523 act-sta 0.413 art-prt 0.364 art-sta 0.302 art-loc 0.238
art-pho 0.520 art-sub 0.412 evt-sta 0.364 act-grp 0.296 art-pos 0.228
act-pro 0.513 art-log 0.407 anm-fod 0.361 com-hum 0.292 com-sta 0.219

Table 5: Meta alternations and their average precision values for the task. The random baseline performs at 0.313 while
the frequency baseline ranges from 0.255 to 0.369 with a mean of 0.291. Alternations for which the model outperforms
the frequency baseline are in boldface (mean AP: 0.399, standard deviation: 0.119).

grs-psy democracy, faculty, humanism, regime,
pro-sta bondage, dehydration, erosion,urbanization
psy-sta anaemia,delight, pathology, sensibility
hum-prt bum, contractor, peter, subordinate
grp-psy category, collectivism, socialism, underworld

Table 6: Sample targets for meta alternations with high
AP and mid-coherence values.

a PLANT sense by WordNet, but no FOOD sense. In
the case of SOCIAL GROUP-GEOGRAPHICAL LOCA-
TION, distractors laboratory and province are miss-
ing SOCIAL GROUP senses, which they clearly pos-
sess (cf. The whole laboratory celebrated Christmas).
This suggests that our approach can help in Word
Sense Induction and thesaurus construction.

In the second case, meta alternations perform bet-
ter than expected: They have a low κ, but a high
AP. These include grs-psy, pro-sta, psy-sta,
hum-prt and grp-psy. These meta alternations
involve fairly abstract meta senses such as PSYCHO-
LOGICAL FEATURE and STATE.9 Table 6 lists a
sample of targets for the five meta alternations in-
volved. The targets are clearly similar to each other
on the level of their meta senses. However, they can
occur in very different semantic contexts. Thus, here
it is the underlying model (the gramlex space) that
can explain the lower than average coherence. It is
striking that CAM can account for abstract words and
meta alternations between these, given that it uses
first-order co-occurrence information only.

9An exception is hum-prt. It has a low coherence because
many WordNet lemmas with a PART sense are body parts.
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Figure 2: Average Precision and Coherence (κ) for each
meta alternation. Correlation: r = 0.743 (p < 0.001)

6 Related work

As noted in Section 1, there is little work in empiri-
cal computational semantics on explicitly modeling
sense alternations, although the notions that we have
formalized here affect several tasks across NLP sub-
fields.

Most work on regular sense alternations has fo-
cused on regular polysemy. A pioneering study is
Buitelaar (1998), who accounts for regular polysemy
through the CoreLex resource (cf. Section 3). A
similar effort is carried out by Tomuro (2001), but
he represents regular polysemy at the level of senses.
Recently, Utt and Padó (2011) explore the differences
between between idiosyncratic and regular polysemy
patterns building on CoreLex. Lapata (2000) focuses
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on the default meaning arising from word combina-
tions, as opposed to the polysemy of single words as
in this study.

Meta alternations other than regular polysemy,
such as metonymy, play a crucial role in Informa-
tion Extraction. For instance, the meta alternation
SOCIAL GROUP-GEOGRAPHICAL LOCATION cor-
responds to an ambiguity between the LOCATION-
ORGANIZATION Named Entity classes which is
known to be a hard problem in Named Entity Recog-
nition and Classification (Markert and Nissim, 2009).
Metaphorical meta alternations have also received
attention recently (Turney et al., 2011)

On a structural level, the prediction of meta al-
ternations shows a clear correspondence to analogy
prediction as approached in Turney (2006) (carpen-
ter:wood is analogous to mason:stone, but not to
photograph:camera). The framework defined in Sec-
tion 2 conceptualizes our task in a way parallel to that
of analogical reasoning, modeling not “first-order”
semantic similarity, but “second-order” semantic re-
lations. However, the two tasks cannot be approached
with the same methods, as Turney’s model relies on
contexts linking two nouns in corpus sentences (what
does A do to B?). In contrast, we are interested in
relations within words, namely between word senses.
We cannot expect two different senses of the same
noun to co-occur in the same sentence, as this is dis-
couraged for pragmatic reasons (Gale et al., 1992).

A concept analogous to our notion of meta sense
(i.e., senses beyond single words) has been used in
previous work on class-based WSD (Yarowsky, 1992;
Curran, 2005; Izquierdo et al., 2009), and indeed,
the CAM might be used for class-based WSD as
well. However, our emphasis lies rather on modeling
polysemy across words (meta alternations), some-
thing that is absent in WSD, class-based or not. The
only exception, to our knowledge, is Ando (2006),
who pools the labeled examples for all words from a
dataset for learning, implicitly exploiting regularities
in sense alternations.

Meta senses also bear a close resemblance to the
notion of semantic class as used in lexical acqui-
sition (Hindle, 1990; Merlo and Stevenson, 2001;
Schulte im Walde, 2006; Joanis et al., 2008). How-
ever, in most of this research polysemy is ignored.
A few exceptions use soft clustering for multiple as-
signment of verbs to semantic classes (Pereira et al.,

1993; Rooth et al., 1999; Korhonen et al., 2003),
and Boleda et al. (to appear) explicitly model regular
polysemy for adjectives.

7 Conclusions and Future Work

We have argued that modeling regular polysemy and
other analogical processes will help improve current
models of word meaning in empirical computational
semantics. We have presented a formal framework
to represent and operate with regular sense alterna-
tions, as well as a first simple instantiation of the
framework. We have conducted an evaluation of dif-
ferent implementations of this model in the new task
of determining whether words match a given sense
alternation. All models significantly outperform the
baselines when considered as a whole, and the best
implementation outperforms the baselines for 73.3%
of the tested alternations.

We have two next steps in mind. The first is to
become independent of WordNet by unsupervised
induction of (meta) senses and alternations from the
data. This will allow for models that, unlike CAM,
can go beyond “disemous” words. Other improve-
ments on the model and evaluation will be to develop
more informed baselines that capture semantic shifts,
as well as to test alternate weighting schemes for the
co-occurrence vectors (e.g. PMI) and to use larger
corpora than the BNC.

The second step is to go beyond the limited in-vitro
evaluation we have presented here by integrating al-
ternation prediction into larger NLP tasks. Knowl-
edge about alternations can play an important role in
counteracting sparseness in many tasks that involve
semantic compatibility, e.g., testing the applicability
of lexical inference rules (Szpektor et al., 2008).

Acknowledgements

This research is partially funded by the Spanish Min-
istry of Science and Innovation (FFI2010-15006,
TIN2009-14715-C04-04), the AGAUR (2010 BP-
A00070), the German Research Foundation (SFB
732), and the EU (PASCAL2; FP7-ICT-216886). It
is largely inspired on a course by Ann Copestake at
U. Pompeu Fabra (2008). We thank Marco Baroni,
Katrin Erk, and the reviewers of this and four other
conferences for valuable feedback.

158



References
Rie Kubota Ando. 2006. Applying alternating structure

optimization to word sense disambiguation. In Proceed-
ings of the 10th Conference on Computational Natural
Language Learning, pages 77–84, New York City, NY.

Iurii Derenikovich Apresjan. 1974. Regular polysemy.
Linguistics, 142:5–32.

Gemma Boleda, Sabine Schulte im Walde, and Toni Badia.
to appear. Modeling regular polysemy: A study of the
semantic classification of Catalan adjectives. Computa-
tional Linguistics.

Paul Buitelaar. 1998. CoreLex: An ontology of sys-
tematic polysemous classes. In Proceedings of For-
mal Ontologies in Information Systems, pages 221–235,
Amsterdam, The Netherlands.

Gavin Burnage and Dominic Dunlop. 1992. Encoding
the British National Corpus. In Jan Aarts, Pieter de
Haan, and Nelleke Oostdijk, editors, English Language
Corpora: Design, Analysis and Exploitation, Papers
from the Thirteenth International Conference on En-
glish Language Research on Computerized Corpora.
Rodopi, Amsterdam.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with ccg and log-l
inear models. Computational Linguistics, 33(4).

Ann Copestake and Ted Briscoe. 1995. Semi-productive
Polysemy and Sense Extension. Journal of Semantics,
12(1):15–67.

James Curran. 2005. Supersense tagging of unknown
nouns using semantic similarity. In Proceedings of the
43rd Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05), pages 26–33, Ann Arbor,
Michigan.

Bradley Efron and Robert Tibshirani. 1994. An Introduc-
tion to the Bootstrap. Monographs on Statistics and
Applied Probability 57. Chapman & Hall.

Katrin Erk, Sebastian Padó, and Ulrike Padó. 2010. A
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Abstract

We present a rule-based method to automati-
cally create a large-coverage semantic lexicon
of French adjectives by extracting paradig-
matic relations from lexicographic definitions.
Formalized adjectival resources are, indeed,
scarce for French and they mostly focus on
morphological and syntactic information. Our
objective is, therefore, to contribute enriching
the available set of resources by taking advan-
tage of reliable lexicographic data and formal-
izing it with the well-established lexical func-
tions formalism. The resulting semantic lexi-
con of French adjectives can be used in NLP
tasks such as word sense disambiguation or
machine translation. After presenting related
work, we describe the extraction method and
the formalization procedure of the data. Our
method is then quantitatively and qualitatively
evaluated. We discuss the results of the evalu-
ation and conclude on some perspectives.

1 Introduction

Formalized semantic resources are highly valuable
in areas such as NLP, linguistic analysis or lan-
guage acquisition. However, creating such resources
from scratch is time-consuming and generally yields
limited-size lexicons. Existing lexicographic dictio-
naries do have a large coverage and present a reli-
able content. They lack nevertheless the sufficient
formalization. In this paper, we present a rule-based
method to automatically create a large-coverage se-
mantic lexicon of French adjectives by extracting
paradigmatic relations from lexicographic defini-
tions using lexico-syntactic patterns. Formalized ad-

jectival resources are, indeed, scarce for French and
they mostly focus on morphological and syntactic
information. Our goal is, therefore, to contribute en-
riching the available set of resources by taking ad-
vantage of reliable lexicographic data and formal-
izing it with the well-established lexical functions
formalism of the Meaning-Text theory (Mel’čuk,
1996). The resulting semantic lexicon of French
adjectives can be used in NLP tasks such as word
sense disambiguation or machine translation1. In
section 2, we present related work. In section 3, we
expose the method used to build the lexicon, i.e. the
extraction method and the formalization procedure
of the data, and outline the main results. Finally, in
section 4, we present a quantitative evaluation of our
method and a qualitative evaluation of our data, and
discuss their results. We conclude on some perspec-
tives for future work.

2 Related Work

It is well established that there are different types
of adjectives distinguished by properties, such as
gradation and markedness, and by their seman-
tic and syntactic behaviors (antonymy, selectional
preferences) (Fellbaum et al., 1993; Raskin and
Nirenburg, 1996). WordNet, for example, distin-
guishes different types of adjectives according to
their semantic and syntactic behaviors: descriptive,
reference-modifying, color and relational adjectives
(Fellbaum et al., 1993). However, it mainly accounts
for the first and the last types of adjectives. Descrip-

1For other possible NLP applications of lexicons encoded
with the lexical function formalism, see Schwab and Lafour-
cade (2007).
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tive adjectives are organized in adjectival synsets
that are mostly related through antonymy (heavy–
light); synsets of relational adjectives are linked to a
related noun by a pointer (fraternal–brother). Fell-
baum et al. (1993:36) acknowledge the existence of
more diverse relations to nominal synsets, but, to our
knowledge, these are not accounted for in WordNet.
This limitation is also present in the open access
French version of the Princeton WordNet, WOLF
(Sagot and Fišer, 2012). This limitation has led
projects extending WordNet to other languages, like
EuroWordNet, ItalWordNet or WordNet.PT, to add
a few more relations to account for this diversity
(Alonge et al., 2000; Marrafa and Mendes, 2006;
Vossen, 2002). The number of new relations is how-
ever limited. As can be seen, WordNet-type ap-
proaches focus on relating adjectival synsets using
a few semantic relations, mostly antonymy and plain
related to relations.

Our goal is to achieve a finer, and thus richer, se-
mantic characterization of the relations holding be-
tween French adjectives and other words from all
syntactic categories using the formalism of lexical
functions. We assume that the type of the adjective is
reflected in the structure of its lexicographic defini-
tion. Thus, to extract semantically relevant informa-
tion from adjectival definitions, we propose to create
different types of rules accounting for this diversity
of defining structures.

Formalized French lexicons contain rather limited
adjectival data. One can cite the morphological lex-
icon that links French denominal adjectives to the
nouns they are derived from (Strnadovà and Sagot,
2011) or the syntactic characterization of French ad-
jectives based on an automatic extraction of subcat-
egorization frames proposed in Kupść (2008). Our
method is meant to complete this set of resources
with an adjectival lexicon that is not limited to cer-
tain types of adjectives (like descriptive or denom-
inal) nor to morphologically related adjectives, and
which provides semantic information.

3 Method and Results

The method we use to extract formalized semantic
information from unformalized lexicographic defi-
nitions follows two steps : extracting relations be-
tween defined adjectives and elements of their def-

initions using lexico-syntactic rules (section 3.1)
and mapping these relations to regular relations that
can be expressed in terms of lexical functions (sec-
tion 3.2).

3.1 Extracting Paradigmatic Relations from
Lexicographic Definitions

The dictionary used in this project is the Trésor de la
langue française informatisé2 (TLFi). It is the elec-
tronic version of a 100,000 word lexicographic dic-
tionary of 19th and 20th century French, the Trésor
de la langue française (Dendien and Pierrel, 2003).

The TLFi contains a total of 13,513 adjectival
entries, among which 6,425 entries correspond to
mere adjectives and 7,088 to adjectives and other
parts of speech (generally nouns)3. Each of these
entries includes one or more definitions, which add
up to 44,410 definitions, among which 32,475 are
estimated to be adjectival. This approximation is
obtained after filtering out 11,935 non-adjectival
definitions from the mixed entries using a lexico-
syntactic definition parsing program aimed at detect-
ing nominal definitions. The remaining definitions
are mostly adjectival, with exceptions due to more
complex definition structures that are not accounted
for by the filtering method. Table 1 sums up the main
figures.

Adjectival entries 6,425
Not only adjectival entries 7,088
Estimated adjectival definitions 32,475

Table 1: Adjectives in the TLFi

To extract semantically relevant information from
adjectival definitions, we use a lexico-syntactic
adjectival definition parsing program which uses
lexico-syntactic rules that are linearly matched to
syntactically annotated adjectival definitions4. The
extraction method consists of the following steps:

1. First, tagging and lemmatizing the definition so
2TLFi, http://atilf.atilf.fr/tlf.htm.
3It is difficult to determine exactly how many adjectives are

defined in the TLFi since the dictionary often joins together
words that can be both used as a noun or an adjective (for ex-
ample JEUNE-young).

4The definitions are syntactically annotated with the Macaon
tool suite (Nasr et al., 2010) that was adapted to the special
sublanguage of lexicographic definitions.
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that each word is related to a part of speech tag
(POS).

(1) RETENU = Qui fait preuve de modération.
(restrained = Who shows moderation.)
Qui/prorel fait/v preuve/nc de/prep
modération/nc ./poncts

2. Second, running the adjectival definition pars-
ing program to obtain a triplet composed of the
defined adjective (<adj>), a relation (<rel>)
and an argument (<arg>), i.e. a word or group
of words that is linked by the extracted relation
to the defined adjective.

(2) <adj>retenu</adj>

<rel>fait preuve de</rel>

<arg>modération</arg>

A lexico-syntactic rule extracts from a definition
the <rel> and <arg> elements. As can be seen
in figure 1, each lexico-syntactic rule is composed
of a left-hand side (LHS) containing either a lexi-
cal unit (lex), such as qui, or a POS tag (cat) like
v (verb), both of which can be optional (op="y"),
and a right-hand side (RHS) specifying which ele-
ments of the LHS are to be extracted as semanti-
cally relevant: a relation (REL) and/or an argument
(ARG)5.

In figure 1, the denominal rule 2.2 identifies
adjectival definitions corresponding to the lexico-
syntactic pattern stated by the LHS of the rule, such
as that of the adjective RETENU in example 2 above6.
The LHS contains nine elements, where the first two
correspond to lexical items and the remaining ones
to POS tags. Five elements are marked as optional,
since a definition may for example start by the for-
mula Qui est (Which/Who is) followed by some verb,
or it may directly begin with a verb. This verb has to
be followed by a noun (nc) and a preposition (prep),
which may be followed by a determinant and/or an
adjective, but which has to be followed by a noun,
etc. The RHS of the rule states that the relation to
be extracted corresponds to elements 3, 4 and 5 of

5For definitions by synonymy, only the argument is speci-
fied, the default semantic relation being synonymy.

6Note that the adjective RETENU (retained) is, morpholog-
ically speaking, not a denominal. However, the rule extracts
a noun to which this adjective is related in its definition, i.e.
MODÉRATION (moderation). It is, therefore, the rule that is con-
sidered denominal.

<regle num="2.2" rel="denominal">
<lhs>
<elt lex="qui" op="y" />
<elt lex="est" op="y" />
<elt cat="v" />
<elt cat="nc" />
<elt cat="prep" />
<elt cat="det" op="y" />
<elt cat="adj" op="y" />
<elt cat="nc" />
<elt cat="adj" op="y" />

</lhs>
<rhs>
<rel>

<elt num="3" />
<elt num="4" />
<elt num="5" />

</rel>
<arg>

<elt num="7" />
<elt num="8" />
<elt num="9" />

</arg>
</rhs>

</regle>

Figure 1: Example of Lexico-Syntactic Rule

the LHS, and that the argument is composed of ele-
ments 7, 8 and 97.

The relation extraction program reads the dictio-
nary definition from the beginning of the sentence
checking whether it contains the elements specified
in the LHS of the rule. In case the rule matches
the lexico-syntactic elements composing the defini-
tion, it outputs the lexical elements of the defini-
tion corresponding to the lexical or syntactic infor-
mation specified in the RHS of the rule in the form
REL(ARG)=ADJ, where ADJ stands for the adjec-
tive of the dictionary entry. For instance, applying
the rule from figure 1 to the definition of the adjec-
tive RETENU returns the relation fait preuve de and
the argument modération (example 2).

A total of 109 lexico-syntactic rules have been de-
signed. These rules cover 76.1 % of the adjectival
definitions (24,716/32,475 definitions). The rules
can broadly be grouped into four categories corre-
sponding to different adjectival definition structures.
This categorization is done according to the type of
defining information matched by the rules:

7In the RHS, the number assigned as a value to the num
attribute corresponds to the line number of the elt in the LHS.
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1. The adjective is defined by one or more syn-
onyms.
→ REL = synonymy; ARG = adjective

(3) DIAGONAL = Transversal, oblique. (diago-
nal = Transversal, oblique.)
⇒ syn(transversal) = DIAGO-
NAL; syn(oblique) = DIAGONAL
(syn(transversal) = diagonal; syn(oblique)
= diagonal)

2. The adjective is defined by another adjective
modified by an adverb.
→ REL = adverb; ARG = adjective

(4) KILOMÉTRIQUE = Qui est très long, qui
n’en finit pas. (kilometric = Which is very
long, never-ending.)
⇒ très(long) = KILOMÉTRIQUE
(very(long) = kilometric)

3. The adjective is defined by a relation to a prop-
erty of the thing denoted by the modified noun.
The argument of this complex REL consists of
a noun phrase (NP), a verbal phrase (VP) or an
adjective (ADJ).
→ REL = relation + property; ARG =
NP/VP/ADJ

(5) AGRÉGATIF = Qui a la faculté d’agréger.
(aggregative = Which has the power to ag-
gregate.)
⇒ a la faculté de(agréger) = AGRÉGATIF
(has power to(aggregate) = aggregative)
VERSICOLORE = Dont la couleur est
changeante. (versicolor = Which color is
changing.)
⇒ dont la couleur est(changeante) = VER-
SICOLORE (which color is(changing) =
versicolor)

4. The adjective is defined by a relation having as
argument a noun phrase, a verbal phrase or an
adjective.
→ REL = relation; ARG = NP/VP/ADJ

(6) ACADÉMIQUE = Qui manque d’originalité,
de force; conventionnel. (academic =
Which lacks originality, strength; conven-
tional.)
⇒ manque de(originalité) =
ACADÉMIQUE (lacks(originality) =
academic)
INANALYSABLE = Qui ne peut être analysé,
qui ne peut être décomposé en ses éléments

distinctifs. (unanalyzable = Which cannot
be analyzed, which cannot be decompozed
in its distinctive elements.)
⇒ ne peut être(analysé) = IN-
ANALYSABLE (cannot be(analyzed) =
unanalyzable)

The rules extract a total of 5,284 different rela-
tion types in the form (REL, ARG), where REL is
a lexicalized expression and ARG a phrasal type, as
illustrated in example (7).

(7)

(capable de, VPinf) (capable of, VPinf )
(constitué de, NP) (constituted by, NP)
(couvert de, NP) (covered with, NP)
(fondé sur, NP) (founded on, NP)
(peu, ADJ) (not very, ADJ)
(propre à, NP) (particular to, NP)
(propre à, VPinf) (capable of, VPinf )
(relatif à, NP) (relating to, NP)

One can note that the lexicalized relation is some-
times followed by different phrasal types, as can be
seen for propre à in example (7). In those cases,
each (REL, ARG) pair is considered as a distinct re-
lation type.

3.2 Formalizing Paradigmatic Relations with
Lexical Functions

Lexical functions (LF) are a formal tool designed
to describe all types of genuine lexical relations
(paradigmatic and syntactic ones) between lexical
units of any language (Mel’čuk, 1996). Some of the
standard lexical functions that often return adjectival
values are briefly presented below:

• A0 – This paradigmatic lexical function returns the
adjective that semantically corresponds to the argu-
ment. E.g. A0(CHAT) = FÉLIN (A0(cat) = feline);
A0(CRIME) = CRIMINEL (A0(crime) = criminal)

• A1/A2 – These paradigmatic lexical functions re-
turn the adjectives that typically characterize, re-
spectively, the first and second argument of the
predicate given as argument to the functions. This
predicate can be nominal, adjectival or verbal.
For example, given that the nominal predicate
DÉCEPTION (disappointment) has two arguments,
the person that is disappointed and the reason of the
disappointment, function A1 applied to DÉCEPTION
returns the adjective DÉÇU (disappointed), while
function A2 returns DÉCEVANT (disappointing).
E.g. A1(DÉCEPTION) = DÉÇU (A2(disappointment)
= disappointed); A2(DÉCEPTION) = DÉCEVANT
(A2(disappointment) = disappointing)
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• Able1/Able2 – Closely related to A1 and A2, these
functions return the adjective that means that the
first (Able1) or the second (Able2) argument of the
predicate P “might P or is likely to P” (whereas
A1 just means “arg1 that P” and A2 “arg2 that
is P-ed”). E.g. Able1(CRAINDRE) = PEUREUX
(Able1(to fear) = coward); Able2(CRAINDRE) =
EFFRAYANT (Able2(to fear) = frightening)

• Magn – This function returns an intensificator of
the predicate. This intensificator can modify the
argument, as in heavy rain (Magn expresses then
a syntagmatic relation), or can be another adjec-
tive that intensifies the meaning of the argument
(Magn expresses then a paradigmatic relation). E.g.
Magn(MAUVAIS) = AFFREUX (Magn(bad) = awful)

• Anti – This function returns the argument’s
antonym(s). E.g. Anti(ABSENT) = PRÉSENT
(Anti(absent) = present)

• AntiA1 – This complex lexical function returns
the adjective that means that the first argument of
the predicate P “is not P (anymore)”. E.g. An-
tiA1(FAIM) = REPU (AntiA1(hunger) = full)

We use this formalism to describe the paradig-
matic relations between adjectives and the argu-
ments extracted in the previous step. These rela-
tions are formulated in a non-systematic way in the
TLFi’s definitions. Definitions in traditional dictio-
naries are written in natural language and, thus, are
not formal enough to be used as such, for example,
in NLP tasks. In order to formalize the lexicon, a
mapping is done between lexical functions describ-
ing paradigmatic relations and the different ways of
expressing these relations in the TLFi’s definitions
(see relation types in example 7), as illustrated in ta-
ble 2.

This REL-LF mapping covers 67.3 % of the ex-
tracted relations (16,646/24,716 extracted relations).
Table 3 shows the complete list of lexical functions
used in our lexicon and their distribution: the three
lexical functions A0, A1 and QSyn represent around
90 % of the relations.

4 Evaluation

The method and the data have been evaluated in
two ways. The method has first been evaluated by
comparing our data to an external resource, the Dic-
tionnaire de combinatoire8 (DiCo), a French lex-

8The electronic version of the DiCo can be accessed here:
http://olst.ling.umontreal.ca/dicouebe/index.php.

A0 (qui) est relatif à, est propre à + N, se rapporte
à, . . . (who/that is related to, particular to . . . )

A1 (qui) a la forme de, est atteint de, . . .
(who/that has the shape of, suffers from . . . )

A2 (qui) produit, provoque, a reçu, . . .
(who/that causes, has obtained . . . )

Able1 qui peut, est propre à + V, susceptible de, . . .
(who/that can, is likely to . . . )

Able2 que l’on peut, . . .
(who/that can be . . . )

Anti qui n’est pas, qui s’oppose à, . . .
(that is not, that is opposed to . . . )

AntiA1 (qui) n’a pas de, est dépourvu de, manque de, . . .
(who/that has no, is un-sthg, lacks sthg . . . )

Table 2: LFs and Their Glosses in the TLFi Definitions

A0 A1 A2 Able1 Able2
28.8 % 27.71 % 4.38 % 6.65 % 0.37 %
Anti AntiA1 AntiA2 AntiAble1 AntiAble2

1.64 % 3.49 % 0.21 % 1.24 % 1.04 %
QSyn Magn Ver AntiMagn AntiVer

21.73 % 1.60 % 0.62 % 0.35 % 0.20 %

Table 3: LF’s Distribution in the French Adjectival Lexi-
con

icographic dictionary describing words with their
paradigmatic and syntagmatic relations expressed in
the LF formalism. In this first evaluation, we de-
termine the performance of the method by quan-
tifying the number of reference elements from the
DiCo that can be extracted from the TLFi with our
rules (section 4.1). Since relations involving adjec-
tives are scarce in the DiCo, our data has then been
qualitatively evaluated by an expert familiar with the
formalism of lexical functions9 (section 4.2). The
expert evaluates the relevance of the argument and
the adequacy of the proposed lexical function to de-
scribe the relation between the defined adjective and
the argument.

4.1 Comparison With the DiCo Data

The first evaluation procedure is meant to measure
the performance of the extraction program against
an existing resource. The reference is constituted
by selecting 240 triplets in the form LF(ARG)=ADJ
from the DiCo. An automatic evaluation script com-
pares these reference triplets with the hypothesized
triplets extracted from the TLFi. The system catego-

9The expert is not an author of this paper.
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rizes the reference triplets in one of three large cat-
egories explained below: “Impossible”, “Yes” and
“No”, the latter ones indicating whether the method
allows to extract the reference triplets from the TLFi
or not. In the “No” cases, the evaluation system
subcategorizes the reference triplet according to a
possible explanation of the failure of the extraction
method.

1. IMPOSSIBLE (42.9 %, 103/240 triplets)
Cases where the reference triplets cannot be
used as an evaluation reference because either
the adjective of the reference is absent from
the TLFi dictionary (5 %, 12/240 triplets, ex-
ample 8) or the reference argument is absent
from the definition(s) of the corresponding ad-
jective in the TLFi (37.9 %, 91/240 triplets, ex-
ample 9).

(8) DiCo-reference
QSyn(humain) = philanthrope
(QSyn(human) = philanthropic)
TLFi-hypothesis
ø(ø) = ø
The adjective philanthrope (philanthropic)
does not have an entry in the TLFi.

(9) DiCo-reference
A1(richesse) = riche
(A1(wealth) = rich)
TLFi-hypothesis
A1Perf(fortune) = riche
(A1Perf(fortune) = rich)
In this example, the argument richesse
(wealth) does not exist in any of the 15 def-
initions of riche (rich) in the TLFi.

2. YES (20.4 %, 49/240 triplets)

(a) Total matches: these cases correspond to
the intersection of the two resources, i.e.
cases where the triplets are identical on
both sides (16.3 %, 39/240 triplets).

(10) DiCo-reference
A1(faute) = fautif
TLFi-hypothesis
A1(faute) = fautif
(A1(fault) = guilty)

(b) Partial matches: cases where the adjec-
tives and LFs are identical on both sides
and where the reference argument is in-
cluded in the hypothesis argument (4.2 %,
10/240 triplets).

(11) DiCo-reference
A1(défaite) = vaincu
(A1(defeat) = vanquished)
TLFi-hypothesis
A1(défaite militaire) = vaincu
(A1(military defeat) = vanquished)

3. NO (36.7 %, 88/240 triplets) Four types of
cases can be distinguished:

(a) Cases where the reference adjective is in
the TLFi but absent from the set of hy-
pothesis adjectives. These cases can be
explained by the fact that the extraction
rules did not match a definition in the
TLFi or by the fact that no LF has been
mapped to the lexical relation that was ex-
tracted from the TLFi definitions (13.8 %,
33/240 triplets).

(12) DiCo-reference
A0(lait) = lactique
(A0(milk) = lactic)
TLFi-hypothesis
ø(ø) = ø

(b) Cases where the adjective and the argu-
ment of the reference and of the hypoth-
esis are identical or where the arguments
match partially, but the LFs are differ-
ent (11.3 %, 27/240 triplets, example 13).
This divergence might indicate an erro-
neous mapping between the extracted lex-
icalized relation and the LF. It could also
be explained by the possibility of describ-
ing the same pair of ADJ-ARG with two
different LFs.

(13) DiCo-reference
Able1(haine) = haineux
TLFi-hypothesis
A1(haine) = haineux
(A1(hate) = hateful)

(c) Cases where the extraction rule outputs
an ill-formed hypothesis argument result-
ing from some problem in the extraction
rule (example 14), or where the hypoth-
esis triplet is not erroneous as such but
corresponds to a new triplet-variant for a
particular adjective (example 15) (11.7 %,
28/240 triplets).

(14) DiCo-reference A0(sucre) = sucrier
(A0(sugar) = sugar (nominal adjec-
tive))
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TLFi-hypothesis
A0(production) = sucrier
(A0(production) = sugar)
TLFi-definition
SUCRIER = Qui est relatif à la
production, à la fabrication du sucre.
(sugar (adj.) = Related to the produc-
tion, the manufacture of sugar.)

In example 14, the TLFi definition for su-
crier contains the reference argument su-
cre, but the extraction rule did not match
the right string, resulting in an ill-formed
hypothesis argument.

(15) DiCo-reference A1(enthousiasme) =
enthousiaste
(A1(enthusiasm) = enthusiastic)
TLFi-hypothesis
A1(admiration passionnée) = enthou-
siaste
(A1(passionate admiration) = enthu-
siastic)

In example 15, the hypothesis argument
extracted by the rule is well-formed but
does not correspond to the reference argu-
ment. The hypothesis triplet can thus be
considered as a new variant for the adjec-
tive enthousiaste (enthusiastic).

The most significant results of the first evalua-
tion are synthesized in table 4. Note that the ref-
erence does not cover every relation type that has
been taken into account in our lexicon: among the
15 relation types listed in table 3 above, only ten are
present in the DiCo resource and six illustrated in
table 4.

Eval. % A1 A0 QSyn Able2 A2 Able1
Imp. 42.9 33 10 31 7 12 6
Yes 20.4 18 24 0 1 2 2
No 36.7 29 16 10 14 6 8
Total 100 80 50 41 22 20 16

Table 4: Results of the First Evaluation Against the DiCo

If the reference triplets marked “Impossible”
(Imp.) are excluded, this evaluation shows that the
simple rule-based system proposed to extract seman-
tically relevant information from lexicographic def-
initions of adjectives covers 35.8 % of the 137 ref-
erence triplets that can be used for the evaluation.

The analysis of the 88 “No” cases shows that most
of the problems are due to insufficient rule-coverage
and/or REL-LF mapping (37.5 %, 33/88). This fig-
ure could be reduced by further analyzing the def-
initions that are not accounted for by the rules in
order to add more rules, and by mapping more lex-
icalized relations to LFs. The latter solution might,
however, prove difficult due to the high frequency
of reduced- or single-occurrence relations extracted.
30.7 % (27/88) of the “No” cases correspond to a
difference in LFs and 31.8 % (28/88) to either ill-
formed arguments or to new variant-triplets. A man-
ual check of the 53 hypothesis triplets extracted for
the 28 adjectives of the latter types of cases shows
that in only 12 cases the hypothesis arguments are
ill-formed (corresponding to 6/28 reference triplets);
the rest corresponds to, a priori, acceptable argu-
ments, i.e. to new triplet variants (41/53 cases), al-
though a few of them are technically speaking ill-
formed. Therefore, most of the remaining 55.7 %
(49/88) “No” cases should be qualitatively evalu-
ated.

These mitigated quantitative results have to be put
in perspective. The first evaluation was meant to test
the performance of the extraction rules against data
from an existing resource, but, as the figures show,
the vast majority of the reference triplets cannot be
tested. This quantitative evaluation thus highlights
the difficulty of using existing resources for this
kind of task (particularly when such resources are
scarce). Moreover, it proves insufficient to measure
the actual performance of the rules. Two types of
cases are indeed unaccounted for: first, there might
be many correct hypothesis triplets that are not in
the reference, since there is a huge discrepancy in
the number of triplets between the reference and the
hypotheses; second, the hypothesis triplets that don’t
match to the reference might still be correct. There-
fore, other qualitative evaluation methods have to be
used.

4.2 Evaluation by an LF Expert

An expert of the LF formalism has evaluated
the quality of 150 triplets taken from the 16,646
LF(ARG)=ADJ triplets of the lexicon. First, he eval-
uated the argument (0 for a wrong argument, 1 for a
valid argument) and, when he judged that the argu-
ment was correct, he evaluated the LF: 2 for a good
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LF, 1 for a partially satisfying LF and 0 for an in-
valid LF. To sum up, four configurations are possi-
ble:

• Case 1 – ARG:0
E.g. A2(converti-converted) = AGATISÉ-agatized

The expert considers that the argument is invalid.
Indeed, AGATISÉ means converted into an agate but
the program extracted converted as an argument in-
stead of agate.

• Case 2 – ARG:1 LF:0
E.g. Able1(admiration) = ADMIRABLE

The expert considers that the argument is valid but
the LF is not the right one: the adjective AD-
MIRABLE characterizes the second argument of ad-
miration and not the first one. The correct LF
should therefore be Able2.

• Case 3 – ARG:1 LF:1
A1(trouble-confusion) = AHURI-dazed

The expert considers that the argument is valid but
the LF is incomplete: it is true that the adjective
AHURI qualifies the first argument of confusion but,
more precisely, it conveys information on the man-
ifestation of the emotion. So a more precise LF
should be A1-Manif.

• Case 4 – ARG:1 LF:2
Magn(agité-upset) = AFFOLÉ-distraught

The expert considers that the argument and the LF
are valid since AFFOLÉ indeed means very upset.

Table 5 shows the results of the qualitative evalu-
ation of lexical functions. Cases 3 and 4 are consid-
ered to be accurate.

Case 1 Case 2 Case 3 Case 4 Total Accuracy
11 34 32 73 150 70.5 %

Table 5: Evaluation by the Expert

When confronted to cases 2 and 3, the expert was
invited to give the correct LF. This information will
be processed in order to improve the matching be-
tween relations extracted from the TLFi and appro-
priate lexical functions.

5 Conclusion

In this article, we presented a rule-based method
to automatically extract paradigmatic relations from
lexicographic definitions of adjectives using lexico-
syntactic patterns. This method was completed with

a manual mapping of the most frequently extracted
lexicalized relations (which are quite heterogenous)
to formal lexical functions. Our goal is to automati-
cally create a formalized semantic lexicon of French
adjectives that would be complementary to the few
existing adjectival resources that can be used, for
instance, in NLP tasks. The adjectival lexicon, in
which each adjective is related by a lexical func-
tion to an NP/VP/adjectival/adverbial argument, was
quantitatively and qualitatively evaluated.

The first evaluation, entirely automatic, was
aimed at testing the performance of the method. It
yielded rather inconclusive results mainly due to the
scarcity of the external data available for the task. A
thorough analysis of the different types of “errors”
showed that the number of “technical problems”
can be reduced by refining the extraction rules, by
adding more of them, and by completing the map-
ping of extracted relations to LFs. It also highlighted
the necessity to evaluate the method qualitatively.
The second evaluation was, thus, aimed at rating the
acceptability of the extracted relations. It was real-
ized by an expert of the lexical functions formalism
and gave good results, with a precision of around
70 %.

The automatically created adjectival lexicon pre-
sented in this paper can be easily extended by
a straightforward inversion of the LF(ARG)=ADJ
triplets. The resulting triplets would either complete
existing lexical entries if integrated into a similarly
encoded nominal and verbal lexicon, or constitute
new entries in the adjectival lexicon, thus extend-
ing the syntactic categories represented in the lexi-
con. The LF formalism could also be used to further
enrich adjectival entries by making automatic infer-
ences between adjective-argument pairs and their re-
spective synonyms. E.g. infer A0(kitty)=feline from
A0(cat)=feline and syn(cat)=kitty. Finally, mapping
LFs with the existing relations in WordNet could al-
low to integrate this adjectival lexicon to the French
WOLF.
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Mel’čuk I. 1996. Lexical Functions: A Tool for
the Description of Lexical Relations in the Lexicon.
In: L. Wanner (ed.). Lexical Functions in Lexicog-
raphy and Natural Language Processing. Amster-
dam/Philadelphia: Benjamins, 37-102.
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Abstract

This paper describes Bayesian selectional
preference models that incorporate knowledge
from a lexical hierarchy such as WordNet. In-
spired by previous work on modelling with
WordNet, these approaches are based either on
“cutting” the hierarchy at an appropriate level
of generalisation or on a “walking” model that
selects a path from the root to a leaf. In
an evaluation comparing against human plau-
sibility judgements, we show that the mod-
els presented here outperform previously pro-
posed comparable WordNet-based models, are
competitive with state-of-the-art selectional
preference models and are particularly well-
suited to estimating plausibility for items that
were not seen in training.

1 Introduction

The concept of selectional preference captures the
intuitive fact that predicates in language have a bet-
ter semantic “fit” for certain arguments than oth-
ers. For example, the direct object argument slot
of the verb eat is more plausibly filled by a type
of food (I ate a pizza) than by a type of vehicle (I
ate a car), while the subject slot of the verb laugh
is more plausibly filled by a person than by a veg-
etable. Human language users’ knowledge about
selectional preferences has been implicated in anal-
yses of metaphor processing (Wilks, 1978) and in
psycholinguistic studies of comprehension (Rayner
et al., 2004). In Natural Language Processing, au-
tomatically acquired preference models have been
shown to aid a number of tasks, including semantic

role labelling (Zapirain et al., 2009), parsing (Zhou
et al., 2011) and lexical disambiguation (Thater et
al., 2010; Ó Séaghdha and Korhonen, 2011).

It is tempting to assume that with a large enough
corpus, preference learning reduces to a simple lan-
guage modelling task that can be solved by counting
predicate-argument co-occurrences. Indeed, Keller
and Lapata (2003) show that relatively good perfor-
mance at plausibility estimation can be attained by
submitting queries to a Web search engine. How-
ever, there are many scenarios where this approach
is insufficient: for languages and language domains
where Web-scale data is unavailable, for predicate
types (e.g., inference rules or semantic roles) that
cannot be retrieved by keyword search and for ap-
plications where accurate models of rarer words are
required. Ó Séaghdha (2010) shows that the Web-
based approach is reliably outperformed by more
complex models trained on smaller corpora for less
frequent predicate-argument combinations. Models
that induce a level of semantic representation, such
as probabilistic latent variable models, have a further
advantage in that they can provide rich structured in-
formation for downstream tasks such as lexical dis-
ambiguation (Ó Séaghdha and Korhonen, 2011) and
semantic relation mining (Yao et al., 2011).

Recent research has investigated the potential
of Bayesian probabilistic models such as Latent
Dirichlet Allocation (LDA) for modelling selec-
tional preferences (Ó Séaghdha, 2010; Ritter et al.,
2010; Reisinger and Mooney, 2011). These mod-
els are flexible and robust, yielding superior perfor-
mance compared to previous approaches. In this
paper we present a preliminary study of analogous
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models that make use of a lexical hierarchy (in our
case the WordNet hierarchy). We describe two broad
classes of probabilistic models over WordNet and
how they can be implemented in a Bayesian frame-
work. The two main potential advantages of in-
corporating WordNet information are: (a) improved
predictions about rare and out-of-vocabulary argu-
ments; (b) the ability to perform syntactic word
sense disambiguation with a principled probabilistic
model and without the need for an additional step
that heuristically maps latent variables onto Word-
Net senses. Focussing here on (a), we demon-
strate that our models attain better performance than
previously-proposed WordNet-based methods on a
plausibility estimation task and are particularly well-
suited to estimating plausibility for arguments that
were not seen in training and for which LDA cannot
make useful predictions.

2 Background and Related Work

The WordNet lexical hierarchy (Fellbaum, 1998)
is one of the most-used resources in NLP, finding
many applications in both the definition of tasks (e.g.
the SENSEVAL/SemEval word sense disambigua-
tion tasks) and in the construction of systems. The
idea of using WordNet to define selectional prefer-
ences was first implemented by Resnik (1993), who
proposed a measure of associational strength be-
tween a semantic class s and a predicate p corre-
sponding to a relation type r:

A(s, p, r) =
1

η
P (s|p, r) log2

P (s|p, r)
P (s|r)

(1)

where η is a normalisation term. This measure cap-
tures the degree to which the probability of seeing
s given the predicate p differs from the prior proba-
bility of s. Given that we are often interested in the
preference of p for a word w rather than a class and
words generally map onto multiple classes, Resnik
suggests calculating A(s, p, r) for all classes that
could potentially be expressed by w and predicting
the maximal value.

Cut-based models assume that modelling the se-
lectional preference of a predicate involves finding
the right “level of generalisation” in the WordNet
hierarchy. For example, the direct object slot of
the verb eat can be associated with the subhierarchy

rooted at the synset food#n#1, as all hyponyms of
that synset are assumed to be edible and the imme-
diate hypernym of the synset, substance#n#1, is too
general given that many substances are rarely eaten.1

This leads to the notion of “cutting” the hierarchy at
one or more positions (Li and Abe, 1998). The mod-
elling task then becomes that of finding the cuts that
are maximally general without overgeneralising. Li
and Abe (1998) propose a model in which the appro-
priate cut c is selected according to the Minimum
Description Length principle; this principle explic-
itly accounts for the trade-off between generalisa-
tion and accuracy by minimising a sum of model de-
scription length and data description length. The
probability of a predicate p taking as its argument
an synset s is modelled as:

Pla(s|p, r) = P (s|cs,p,r)P (c|p) (2)

where cs,p,r is the portion of the cut learned for p
that dominates s. The distribution P (s|cs,p,r) is held
to be uniform over all synsets dominated by cs,p,r,
while P (c|p) is given by a maximum likelihood es-
timate.

Clark and Weir (2002) present a model that, while
not explicitly described as cut-based, likewise seeks
to find the right level of generalisation for an obser-
vation. In this case, the hypernym at which to “cut”
is chosen by a chi-squared test: if the aggregate pref-
erence of p for classes in the subhierarchy rooted at c
differs significantly from the individual preferences
of p for the immediate children of c, the hierarchy is
cut below c. The probability of p taking a synset s
as its argument is given by:

Pcw(s|p, r) =
P (p|cs,p,r, r)P (s|r)

P (p|r)∑
s′∈S P (p|cs′,p,r, r)P (s′|r)

P (p|r)

(3)

where cs,p,r is the root node of the subhierarchy con-
taining s that was selected for p.

An alternative approach to modelling with Word-
Net uses its hierarchical structure to define a Markov
model with transitions from senses to senses and
from senses to words. The intuition here is that each
observation is generated by a “walk” from the root
of the hierarchy to a leaf node and emitting the word

1In this paper we use WordNet version 3.0, except where
stated otherwise.

171



corresponding to the leaf. Abney and Light (1999)
proposed such a model for selectional preferences,
trained via EM, but failed to achieve competitive
performance on a pseudodisambiguation task.

The models described above have subsequently
been used in many different studies. For exam-
ple: McCarthy and Carroll (2003) use Li and Abe’s
method in a word sense disambiguation setting;
Schulte im Walde et al. (2008) use their MDL ap-
proach as part of a system for syntactic and seman-
tic subcategorisation frame learning; Shutova (2010)
deploys Resnik’s method for metaphor interpreta-
tion. Brockmann and Lapata (2003) report a com-
parative evaluation in which the methods of Resnik
and Clark and Weir outpeform Li and Abe’s method
on a plausibility estimation task.

Much recent work on preference learning has fo-
cused on purely distributional methods that do not
use a predefined hierarchy but learn to make general-
isations about predicates and arguments from corpus
observations alone. These methods can be vector-
based (Erk et al., 2010; Thater et al., 2010), dis-
criminative (Bergsma et al., 2008) or probabilistic
(Ó Séaghdha, 2010; Ritter et al., 2010; Reisinger
and Mooney, 2011). In the probabilistic category,
Bayesian models based on the “topic modelling”
framework (Blei et al., 2003b) have been shown to
achieve state-of-the-art performance in a number of
evaluation settings; the models considered in this pa-
per are also related to this framework.

In machine learning, researchers have proposed
a variety of topic modelling methods where the la-
tent variables are arranged in a hierarchical structure
(Blei et al., 2003a; Mimno et al., 2007). In con-
trast to the present work, these models use a rel-
atively shallow hierarchy (e.g., 3 levels) and any
hierarchy node can in principle emit any vocabu-
lary item; they thus provide a poor match for our
goal of modelling over WordNet. Boyd-Graber et
al. (2007) describe a topic model that is directly in-
fluenced by Abney and Light’s Markov model ap-
proach; this model (LDAWN) is described further in
Section 3.3 below. Reisinger and Paşca (2009) in-
vestigate Bayesian methods for attaching attributes
harvested from the Web at an appropriate level in
the WordNet hierarchy; this task is related in spirit
to the preference learning task.

3 Probabilistic modelling over WordNet

3.1 Notation

We assume that we have a lexical hierarchy in the
form of a directed acyclic graph G = (S,E) where
each node (or synset) s ∈ S is associated with a
set of words Wn belonging to a large vocabulary V .
Each edge e ∈ E leads from a node n to its children
(or hyponyms) Chn. As G is a DAG, a node may
have more than one parent but there are no cycles.
The ultimate goal is to learn a distribution over the
argument vocabulary V for each predicate p in a set
P , through observing predicate-argument pairs. A
predicate is understood to correspond to a pairing of
a lexical item v and a relation type r, for example
p = (eat, direct object). The list of observations
for a predicate p is denoted by Observations(p).

3.2 Cut-based models

Model 1 Generative story for WN-CUT

for cut c ∈ {1 . . . |C|} do
Φc ∼Multinomial(βc)

end for
for predicate p ∈ {1 . . . |P |} do
θp ∼ Dirichlet(α)
for argument instance i ∈ Observations(p)
do
ci ∼Multinomial(θp)
wi ∼Multinomial(Φci)

end for
end for

The first model we consider, WN-CUT, is directly
inspired by Li and Abe’s model (2). Each predicate
p is associated with a distribution over “cuts”, i.e.,
complete subgraphs of G rooted at a single node
and containing all nodes dominated by the root. It
follows that the number of possible cuts is the same
as the number of synsets. Each cut c is associated
with a non-uniform distribution over the set of words
Wc that can be generated by the synsets contained
in c. As well as the use of a non-uniform emis-
sion distribution and the placing of Dirichlet priors
on the multinomial over cuts, a significant differ-
ence from Li and Abe’s model is that overlapping
cuts are permitted (indeed, every cut has non-zero
probability given a predicate). For example, the
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model may learn that the direct object slot of eat
gives high probability to the cut rooted at food#n#1
but also that the cut rooted at substance#n#1 has
non-negligible probability, higher than that assigned
to phenomenon#n#1. It follows that the estimated
probability of p taking argument w takes into ac-
count all possible cuts, weighted by their probability
given p.

The generative story for WN-CUT is given in Al-
gorithm 1; this describes the assumptions made by
the model about how a corpus of observations is gen-
erated. The probability of predicate p taking argu-
ment w is defined as (4); an empirical posterior esti-
mate of this quantity can be computed from a Gibbs
sampling state via (5):

P (w|p) =
∑
c

P (c|p)P (w|c) (4)

∝
∑
c

fcp + α

f·p + |C|α
fwc + β

f·c + |Wc|β
(5)

where fcw is the number of observations contain-
ing argument w that have been assigned cut c, fcp
is the number of observations containing predicate
p that have been assigned cut c and fc·, f·p are the
marginal counts for cut c and predicate p, respec-
tively. The two terms that are multiplied in (4) play
complementary roles analogous to those of the two
description lengths in Li and Abe’s MDL formula-
tion; P (c|p) will prefer to reuse more general cuts,
while P (w|c) will prefer more specific cuts with a
smaller associated argument vocabulary.

As the number of words |Wc| that can be emitted
by a cut |c| varies according to the size of the sub-
hierarchy under the cut, the proportion of probability
mass accorded to the likelihood and the prior in (5)
is not constant. An alternative formulation is to keep
the distribution of mass between likelihood and prior
constant but vary the value of the individual βc pa-
rameters according to cut size. Experiments suggest
that this alternative does not differ in performance.

The second cut-based model, WN-CUT-TOPICS,
extends WN-CUT by adding two extra layers of la-
tent variables. Firstly, the choice of cut is condi-
tional on a “topic” variable z rather than directly
conditioned on the predicate; when the topic vocab-
ulary Z is much smaller than the cut vocabulary C,
this has the effect of clustering the cuts. Secondly,

Model 2 Generative story for WN-CUT-TOPICS

for topic z ∈ {1 . . . |Z|} do
Ψz ∼ Dirichlet(α)

end for
for cut c ∈ {1 . . . |C|} do

Φc ∼ Dirichlet(γc)
end for
for synset s ∈ {1 . . . |S|} do

Ξs ∼ Dirichlet(βs)
end for
for predicate p ∈ {1 . . . |P |} do
θp ∼ Dirichlet(κ)
for argument instance i ∈ Observations(p)
do
zi ∼Multinomial(θp)
ci ∼Multinomial(Ψz)
si ∼Multinomial(Φc)
wi ∼Multinomial(Ξs)

end for
end for

instead of immediately drawing a word once a cut
has been chosen, the model first draws a synset s
and then draws a word from the vocabularyWs asso-
ciated with that synset. This has two advantages; it
directly disambiguates each observation to a specific
synset rather than to a region of the hierarchy and it
should also improve plausibility predictions for rare
synonyms of common arguments. The generative
story for WN-CUT-TOPICS is given in Algorithm 2;
the distribution over arguments for p is given in (6)
and the corresponding posterior estimate in (7):

P (w|p) =
∑
z

P (z|p)
∑
c

P (c|z)
∑
s

P (s|c)P (w|s)

(6)

∝
∑
z

fzp + κz
f·p +

∑
z′ κz′

∑
c

fcz + α

f·z + |C|α
×

∑
s

fsc + γ

f·c + |Sc|γ
fws + β

f·s + |Ws|β
(7)

As before, fzp, fcz , fsc and fws are the re-
spective co-occurrence counts of topics/predicates,
cuts/topics, synsets/cuts and words/synsets in the
sampling state and f·p, f·z , f·c and f·s are the cor-
responding marginal counts.

173



Since WN-CUT and WN-CUT-TOPICS are con-
structed from multinomials with Dirichlet priors,
it is relatively straightforward to train them by
collapsed Gibbs sampling (Griffiths and Steyvers,
2004), an iterative method whereby each latent vari-
able in the model is stochastically updated accord-
ing to the distribution given by conditioning on the
current latent variable assignments of all other to-
kens. In the case of WN-CUT, this amounts to up-
dating the cut assignment ci for each token in turn.
For WN-CUT-TOPICS there are three variables to
update; ci and si must be updated simultaneously,
but zi can be updated independently for the bene-
fit of efficiency. Although WordNet contains 82,115
noun synsets, updates for ci and si can be computed
very efficiently, as there are typically few possible
synsets for a given word type and few possible cuts
for a given synset (the maximum synset depth is 19).

The hyperparameters for the various Dirichlet pri-
ors are also reestimated in the course of learning; the
values of these hyperparameters control the degree
of sparsity preferred by the model. The “top-level”
hyperparameters α in WN-CUT and κ in WN-CUT-
TOPICS are estimated using a fixed-point iteration
proposed by Wallach (2008); the other hyperparam-
eters are learned by slice sampling (Neal, 2003).

3.3 Walk-based models

Abney and Light (1999) proposed an approach to
selectional preference learning in which arguments
are generated for predicates by following a path
λ = (l1, . . . , l|λ|) from the root of the hierarchy to a
leaf node and emitting the corresponding word. The
path is chosen according to a Markov model with
transition probabilities specific to each predicate. In
this model, each leaf node is associated with a sin-
gle word; the synsets associated with that word are
the immediate parent nodes of the leaf. Abney and
Light found that their model did not match the per-
formance of Resnik’s (1993) simpler method. We
have had a similar lack of success with a Bayesian
version of this model, which we do not describe fur-
ther here.

Boyd-Graber et al. (2007) describe a related topic
model, LDAWN, for word sense disambiguation
that adds an intermediate layer of latent variables
Z on which the Markov model parameters are con-
ditioned. In their application, each document in a

Model 3 Generative story for LDAWN
for topic z ∈ {1 . . . |Z|} do

for synset s ∈ {1 . . . |S|} do
Draw transition probabilities Ψz,s ∼
Dirichlet(σαs)

end for
end for
for predicate p ∈ {1 . . . |P |} do
θp ∼ Dirichlet(κ)
for argument instance i ∈ Observations(p)
do
zi ∼Multinomial(θp)
Create a path starting at the root synset λ0:
while not at a leaf node do
λt+1 ∼Multinomial(Ψzi,λt)

end while
Emit the word at the leaf as wi

end for
end for

corpus is associated with a distribution over topics
and each topic is associated with a distribution over
paths. The clustering effect of the topic layer allows
the documents to “share” information and hence al-
leviate problems due to sparsity. By analogy to Ab-
ney and Light, it is a short and intuitive step to ap-
ply LDAWN to selectional preference learning. The
generative story for LDAWN is given in Algorithm
3; the probability model for P (w|p) is defined by (8)
and the posterior estimate is (9):

P (w|p) =
∑
z

P (z|p)
∑
λ

1[λ→ w]P (λ|z) (8)

∝
∑
z

fzp + κz
f·p +

∑
z′ κz′

∑
λ

1[λ→ w]×

|λ|−1∏
i=1

fz,li→li+1
+ σαli→li+1

fz,li→· + σ
(9)

where 1[λ → w] = 1 when the path λ leads to leaf
node w and has value 0 otherwise. Following Boyd-
Graber et al. the Dirichlet priors on the transition
probabilities are parameterised by the product of a
strength parameter σ and a distribution αs, the latter
being fixed according to relative corpus frequencies
to “guide” the model towards more fruitful paths.

Gibbs sampling updates for LDAWN are given in
Boyd-Graber et al. (2007). As before, we reestimate
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SEEN:
staff morale 0.4889
team morale 0.5945
issue morale 0.0595
UNSEEN:
pupil morale 0.4318
minute morale -0.0352
snow morale -0.2748

Table 1: Extract from the noun-noun section of Keller and
Lapata’s (2003) dataset, with human plausibility scores

the hyperparameters during learning; κ is estimated
by Wallach’s fixed-point iteration and σ is estimated
by slice sampling.

4 Experiments

4.1 Experimental procedure

We evaluate our methods by comparing their predic-
tions to human judgements of predicate-argument
plausibility. This is a standard approach to se-
lectional preference evaluation (Keller and Lapata,
2003; Brockmann and Lapata, 2003; Ó Séaghdha,
2010) and arguably yields a better appraisal of a
model’s intrinsic semantic quality than other eval-
uations such as pseudo-disambiguation or held-out
likelihood prediction.2 We use a set of plau-
sibility judgements collected by Keller and Lap-
ata (2003). This dataset comprises 180 predicate-
argument combinations for each of three syntactic
relations: verb-object, noun-noun modification and
adjective-noun modification. The data for each re-
lation is divided into a “seen” portion containing
90 combinations that were observed in the British
National Corpus and an “unseen” portion contain-
ing 90 combinations that do not appear (though
the predicates and arguments do appear separately).
Plausibility judgements were elicited from a large
group of human subjects, then normalised and log-
transformed. Table 1 gives a representative illus-
tration of the data. Following the evaluation in Ó
Séaghdha (2010), with which we wish to compare,
we use Pearson r and Spearman ρ correlation coef-
ficients as performance measures.

All models were trained on the 90-million word
2For a related argument in the context of topic model evalu-

ation, see Chang et al. (2009).

written component of the British National Cor-
pus,3 lemmatised, POS-tagged and parsed with the
RASP toolkit (Briscoe et al., 2006). We removed
predicates occurring with just one argument type
and all tokens containing non-alphabetic characters.
The resulting datasets consist of 3,587,172 verb-
object observations (7,954 predicate types, 80,107
argument types), 3,732,470 noun-noun observations
(68,303 predicate types, 105,425 argument types)
and 3,843,346 adjective-noun observations (29,975
predicate types, 62,595 argument types).

All the Bayesian models were trained by Gibbs
sampling, as outlined above. For each model we run
three sampling chains for 1,000 iterations and aver-
age the plausibility predictions for each to produce a
final prediction P (w|p) for each predicate-argument
item. As the evaluation demands an estimate of the
joint probability P (w, p) we multiply the predicted
P (w|p) by a predicate probability P (p|r) estimated
from relative corpus frequencies. In training we use
a burn-in period of 200 iterations, after which hyper-
parameters are reestimated and P (p|r) predictions
are sampled every 50 iterations. All probability es-
timates are log-transformed to match the gold stan-
dard judgements.

In order to compare against previously proposed
selectional preference approaches based on Word-
Net we also reimplemented the methods that per-
formed best in the evaluation of Brockmann and
Lapata (2003): Resnik (1993) and Clark and Weir
(2002). For Resnik’s model we used WordNet 2.1
rather than WordNet 3.0 as the former has multi-
ple roots, a property that turns out to be necessary
for good performance. Clark and Weir’s method
requires that the user specify a significance thresh-
old α to be used in deciding where to cut; to give
it the best possible chance we tested with a range
of values (0.05, 0.3, 0.6, 0.9) and report results for
the best-performing setting, which consistently was
α = 0.9. One can also use different statistical hy-
pothesis tests; again we choose the test giving the
best results, which was Pearson’s chi-squared test.
As this method produces a probability estimate con-
ditioned on the predicate p we multiply by a MLE
estimate of P (p|r) and log-transform the result.

3http://www.natcorp.ox.ac.uk/
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eat food#n#1, aliment#n#1, entity#n#1, solid#n#1, food#n#2
drink fluid#n#1, liquid#n#1, entity#n#1, alcohol#n#1, beverage#n#1
appoint individual#n#1, entity#n#1, chief#n#1, being#n#2, expert#n#1
publish abstract entity#n#1, piece of writing#n#1, communication#n#2, publication#n#1

Table 2: Most probable cuts learned by WN-CUT for the object argument of selected verbs

Verb-object Noun-noun Adjective-noun
Seen Unseen Seen Unseen Seen Unseen

r ρ r ρ r ρ r ρ r ρ r ρ

WN-CUT .593 .582 .514 .571 .550 .584 .564 .590 .561 .618 .453 .439
WN-CUT-100 .500 .529 .575 .630 .619 .639 .662 .706 .537 .510 .464 .431
WN-CUT-200 .538 .546 .557 .608 .595 .632 .639 .669 .585 .587 .435 .431
LDAWN-100 .497 .538 .558 .594 .605 .619 .635 .633 .549 .545 .459 .462
LDAWN-200 .546 .562 .508 .548 .610 .654 .526 .568 .578 .583 .453 .450
Resnik .384 .473 .469 .470 .242 .187 .152 .037 .309 .388 .311 .280
Clark/Weir .489 .546 .312 .365 .441 .521 .543 .576 .440 .476 .271 .242
BNC (MLE) .620 .614 .196 .222 .544 .604 .114 .125 .543 .622 .135 .102
LDA .504 .541 .558 .603 .615 .641 .636 .666 .594 .558 .468 .459

Table 3: Results (Pearson r and Spearman ρ correlations) on Keller and Lapata’s (2003) plausibility data; underlining
denotes the best-performing WordNet-based model, boldface denotes the overall best performance

4.2 Results

Table 2 demonstrates the top cuts learned by the
WN-CUT model from the verb-object training data
for a selection of verbs. Table 3 gives quanti-
tative results for the WordNet-based models un-
der consideration, as well as results reported by Ó
Séaghdha (2010) for a purely distributional LDA
model with 100 topics and a Maximum Likelihood
Estimate model learned from the BNC. In general,
the Bayesian WordNet-based models outperform the
models of Resnik and Clark and Weir, and are com-
petitive with the state-of-the-art LDA results. To
test the statistical significance of performance differ-
ences we use the test proposed by Meng et al. (1992)
for comparing correlated correlations, i.e., correla-
tion scores with a shared gold standard. The dif-
ferences between Bayesian WordNet models are not
significant (p > 0.05, two-tailed) for any dataset or
evaluation measure. However, all Bayesian mod-
els improve significantly over Resnik’s and Clark
and Weir’s models for multiple conditions. Perhaps
surprisingly, the relatively simple WN-CUT model
scores the greatest number of significant improve-
ments over both Resnik (7 out of 12 conditions)
and Clark and Weir (8 out of 12), though the other

Bayesian models do follow close behind. This may
suggest that the incorporation of WordNet structure
into the model in itself provides much of the cluster-
ing benefit provided by an additional layer of “topic”
latent variables.4

In order to test the ability of the WordNet-based
models to make predictions about arguments that
are absent from the training vocabulary, we created
an artificial out-of-vocabulary dataset by removing
each of the Keller and Lapata argument words from
the input corpus and retraining. An LDA selectional
preference model will completely fail here, but we
hope that the WordNet models can still make rela-
tively accurate predictions by leveraging the addi-
tional lexical knowledge provided by the hierarchy.
For example, if one knows that a tomatillo is classed
as a vegetable in WordNet, one can predict a rel-
atively high probability that it can be eaten, even
though the word tomatillo does not appear in the
BNC.

As a baseline we use a BNC-trained model that

4An alternative hypothesis is that samplers for the more
complex models take longer to “mix”. We have run some exper-
iments with 5,000 iterations but did not observe an improvement
in performance.
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Verb-object Noun-noun Adjective-noun
Seen Unseen Seen Unseen Seen Unseen

r ρ r ρ r ρ r ρ r ρ r ρ

WN-CUT .334 .326 .518 .569 .252 .212 .254 .274 .451 .397 .471 .458
WN-CUT-100 .308 .357 .459 .489 .223 .207 .126 .074 .285 .264 .234 .226
WN-CUT-200 .273 .321 .452 .482 .192 .174 .115 .053 .266 .212 .220 .214
LDAWN-100 .223 .235 .410 .391 .259 .220 .132 .138 .016 .037 .264 .254
LDAWN-200 .291 .285 .392 .379 .240 .163 .118 .131 .041 .078 .209 .212
Resnik .203 .341 .472 .497 .054 -.054 .184 .089 .353 .393 .333 .365
Clark/Weir .222 .287 .201 .235 .225 .162 .279 .304 .313 .202 .190 .148
BNC .206 .224 .276 .240 .256 .240 .223 .225 .088 .103 .220 .231

Table 4: Forced-OOV results (Pearson r and Spearman ρ correlations) on Keller and Lapata’s (2003) plausibility data

predicts P (w, p) proportional to the MLE predicate
probability P (p); a distributional LDA model will
make essentially the same prediction. Clark and
Weir’s method does not have full coverage; if no
sense s of an argument appears in the data then
P (s|p) is zero for all senses and the resulting pre-
diction is zero, which cannot be log-transformed.
To sidestep this issue, unseen senses are assigned a
pseudofrequency of 0.1. Results for this “forced-
OOV” task are presented in Table 4. WN-CUT

proves the most adept at generalising to unseen ar-
guments, attaining the best performance on 7 of 12
dataset/evaluation conditions and a statistically sig-
nificant improvement over the baseline on 6. We ob-
serve that estimating the plausibility of unseen ar-
guments for noun-noun modifiers is particularly dif-
ficult. One obvious explanation is that the training
data for this relation has fewer tokens per predi-
cate, making it more difficult to learn their prefer-
ences. A second, more hypothetical, explanation is
that the ontological structure of WordNet is a rela-
tively poor fit for the preferences of nominal modi-
fiers; it is well-known that almost any pair of nouns
can combine to produce a minimally plausible noun-
noun compound (Downing, 1977) and it may be that
this behaviour is ill-suited by the assumption that
preferences are sparse distributions over regions of
WordNet.

5 Conclusion

In this paper we have presented a range of
Bayesian selectional preference models that incor-
porate knowledge about the structure of a lexical hi-

erarchy. One motivation for this work was to test
the hypothesis that such knowledge can be helpful
in constructing robust models that can handle rare
and unseen arguments. To this end we have re-
ported a plausibility-based evaluation in which our
models outperform previously proposed WordNet-
based preference models and make sensible predic-
tions for out-of-vocabulary items. A second motiva-
tion, which we intend to explore in future work, is
to apply our models in the context of a word sense
disambiguation task. Previous studies have demon-
strated the effectiveness of distributional Bayesian
selectional preference models for predicting lexical
substitutes (Ó Séaghdha and Korhonen, 2011) but
these models lack a principled way to map a word
onto its most likely WordNet sense. The methods
presented in this paper offer a promising solution to
this issue. Another potential research direction is in-
tegration of semantic relation extraction algorithms
with WordNet or other lexical resources, along the
lines of Pennacchiotti and Pantel (2006) and Van
Durme et al. (2009).
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Abstract
We present a method for learning syntax-
semantics mappings for verbs from unanno-
tated corpora. We learn linkings, i.e., map-
pings from the syntactic arguments and ad-
juncts of a verb to its semantic roles. By learn-
ing such linkings, we do not need to model in-
dividual semantic roles independently of one
another, and we can exploit the relation be-
tween different mappings for the same verb,
or between mappings for different verbs. We
present an evaluation on a standard test set for
semantic role labeling.

1 Introduction

A verb can have several ways of mapping its seman-
tic arguments to syntax (“diathesis alternations”):

(1) a. We increased the response rate with SHK.
b. SHK increased the response rate.
c. The response rate increased.

The subject of increase can be the agent (1a), the in-
strument (1b), or the theme (what is being increased)
(1c). Other verbs that show this pattern include
break or melt.

Much theoretical and lexicographic (descriptive)
work has been devoted to determining how verbs
map their lexical predicate-argument structure to
syntactic arguments (Burzio, 1986; Levin, 1993).
The last decades have seen a surge in activity on
the computational front, spurred in part by efforts to
annotate large corpora for lexical semantics (Baker
et al., 1998; Palmer et al., 2005). Initially, we have
seen computational efforts devoted to finding classes
of verbs that share similar syntax-semantics map-
pings from annotated and unannotated corpora (La-
pata and Brew, 1999; Merlo and Stevenson, 2001).

More recently, there has been an explosion of inter-
est in semantic role labeling (with too many recent
publications to cite).

In this paper, we explore learning syntax-
semantics mappings for verbs from unannotated cor-
pora. We are specifically interested in learning link-
ings. A linking is a mapping for one verb from its
syntactic arguments and adjuncts to all of its se-
mantic roles, so that individual semantic roles are
not modeled independently of one another and so
that we can exploit the relation between different
mappings for the same verb (as in (1) above), or
between mappings for different verbs. We there-
fore follow Grenager and Manning (2006) in treat-
ing linkings as first-class objects; however, we dif-
fer from their work in two important respects. First,
we use semantic clustering of head words of argu-
ments in an approach that resembles topic modeling,
rather than directly modeling the subcategorization
of verbs with a distribution over words. Second and
most importantly, we do not make any assumptions
about the linkings, as do Grenager and Manning
(2006). They list a small set of rules from which
they derive all linkings possible in their model; in
contrast, we are able to learn any linking observed
in the data. Therefore, our approach is language-
independent. Grenager and Manning (2006) claim
that their rules represent “a weak form of Universal
Grammar”, but their rules lack such common linking
operations as the addition of an accusative reflex-
ive for the unaccusative (Romance) or case mark-
ing (many languages), and they include a specific
(English) preposition. We have no objection to us-
ing linguistic knowledge, but we do not feel that we
have the empirical basis as of now to provide a set
of Universal Grammar rules relevant for our task.

180



A complete syntax-semantics lexicon describes
how lexemes syntactically realize their semantic ar-
guments, and provides selectional preferences on
these dependents. Though rich lexical resources ex-
ist (such as the PropBank rolesets, the FrameNet lex-
icon, or VerbNet, which relates and extends these
sources), none of them is complete, not even for En-
glish, on which most of the efforts have focused.
However, if a complete syntax-semantics lexicon
did exist, it would be an extremely useful resource:
the task of shallow semantic parsing (semantic ar-
gument detection and semantic role labeling) could
be reduced to determining the best analysis accord-
ing to this lexicon. In fact, the learning model we
present in this paper is itself a semantic role labeling
model, since we can simply apply it to the data we
want to label semantically.

This paper is a step towards the unsupervised in-
duction of a complete syntax-semantics lexicon. We
present a unified procedure for associating verbs
with linkings and for associating the discovered se-
mantic roles with selectional preferences. As input,
we assume a syntactic representation scheme and a
parser which can produce syntactic representations
of unseen sentences in the chosen scheme reason-
ably well, as well as unlabeled text. We do not as-
sume a specific theory of lexical semantics, nor a
specific set of semantic roles. We induce a set of
linkings, which are mappings from semantic role
symbols to syntactic functions. We also induce a
lexicon, which associates a verb lemma with a dis-
tribution over the linkings, and which associates the
sematic role symbols with verb-specific selectional
preferences (which are distributions over distribu-
tions of words). We evaluate on the task of semantic
role labeling using PropBank (Palmer et al., 2005)
as a gold standard.

We focus on semantic arguments, as they are de-
fined specifically for each verb and thus have verb-
specific mappings to syntactic arguments, which
may further be subject to diathesis alternations. In
contrast, semantic adjuncts (modifiers) apply (in
principle) to all verbs, and do not participate in
diathesis alternations. For this reason, the Prop-
Bank lexicon includes arguments but not adjuncts
in its framesets. The method we present in this pa-
per is designed to find verb-specific arguments, and
we therefore take the results on semantic arguments

(Argn) as our primary result. On these, we achieve a
20% F-measure error reduction over a high syntac-
tic baseline (which maps each syntactic relation to a
single semantic argument).

2 Related Work

As mentioned above, our approach is most similar
to that of Grenager and Manning (2006). However,
since their model uses hand-crafted rules, they are
able to predict and evaluate against actual PropBank
role labels, whereas our approach has to be evaluated
in terms of clustering quality.

The problem of unsupervised semantic role la-
beling has recently attracted some attention (Lang
and Lapata, 2011a; Lang and Lapata, 2011b; Titov
and Klementiev, 2012). While the present paper
shares the general aim of inducing semantic role
clusters in an unsupervised way, it differs in treat-
ing syntax-semantics linkings explicitly and model-
ing predicate-specific distributions over them.

Abend et al. (2009) address the problem of un-
supervised argument recognition, which we do not
address in the present paper. For the purpose of
building a complete unsupervised semantic parser,
a method such as theirs would be complementary to
our work.

3 Model

In this section, we decribe a model that generates
arguments for a given predicate instance. Specifi-
cally, this generative model describes the probability
of a given set of argument head words and associated
syntactic functions in terms of underlying semantic
roles, which are modelled as latent variables. The
semantic role labeling task is therefore framed as the
induction of these latent variables from the observed
data, which we assume to be preprocessed by a syn-
tactic parser.

The basic idea of our approach is to explicitly
model linkings between the syntactic realizations
and the underlying semantic roles of the arguments
in a predicate-argument structure. Since our model
of argument classification is completely unsuper-
vised, we cannot assign familiar semantic role labels
like Agent or Instrument, but rather aim at inducing
role clusters, i.e., clusters of argument instances that
share a semantic role. For example, each of the three
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instances of response rate in (1) should be assigned
to the same cluster. We assume a fixed maximum
number R of semantic roles per predicate and for-
mulate argument classification as the task of assign-
ing each argument in a predicate-argument struc-
ture to one of the numbered roles 1, . . . , R. Such
an assignment can therefore be represented by an
R-tuple, where each role position is either filled
by one of the arguments or empty (denoted as ε).
We represent each argument by its head word and
its syntactic function, i.e., the path of syntactic de-
pendency relations leading to it from the predicate.
In our example (1a), a possible assignment of ar-
guments to semantic roles could therefore be rep-
resented by a head word tuple (we, rate, ε,SHK)
and a corresponding tuple of syntactic functions
(nsubj, dobj, ε, prep with), where for the sake of the
example we have chosen R = 4 and the third se-
mantic role slot is empty. Note that this ordered
R-tuple thus represents a semantic labeling of the
unordered set of arguments, which our model takes
as input. While in the case of a single predicate-
argument structure the assignment of arguments to
arbitrary semantic role numbers does not provide
additional information, its value lies in the con-
sistent assignment of arguments to specific roles
across instances of the same predicate. For exam-
ple, to be consistent with the assignment above, (1b)
would have to be represented by (ε, rate, ε,SHK)
and (ε, dobj, ε, nsubj).

To formulate a generative model of argument tu-
ples, we separately consider the tuple of argument
head words and the tuple of syntactic functions. The
following two subsections will address each of these
in turn.

3.1 Selectional Preferences

The probability of an argument in a certain semantic
role depends strongly on the selectional preferences
of the predicate with respect to this role. In the con-
text of our model, we therefore need to describe the
probability P (wr|p, r) of an argument head wordwr
depending on the predicate p and the role r. Instead
of directly modeling predicate- and role-specific dis-
tributions over head words, however, we model se-
lectional preferences as distributions χp,r(c) over se-
mantic word classes c = 1, . . . , C (with C being a
fixed model parameter), each of which is in turn as-

sociated with a distribution ψc(wr) over the vocab-
ulary. They are thus similar to topics in semantic
topic models. An advantage of this approach is that
semantic word classes can be shared among different
predicates, which facilitates their inference. Techni-
cally, the introduction of semantic word classes can
be seen as a factorization of the probability of the
argument head P (wr|p, r) =

∑C
c=1 χp,r(c)ψc(wr).

3.2 Linkings

Another important factor for the assignment of ar-
guments to semantic roles are their syntactic func-
tions. While in the preceding subsection we consid-
ered selectional preferences for each semantic role
separately (assuming their independence), the inter-
dependence between syntactic functions is crucial
and cannot be ignored: The assignment of an ar-
gument does not depend solely on its own syntactic
function, but on the whole subcategorization frame
of the predicate-argument structure. We therefore
have to model the probability of the whole tuple
y = (y1, . . . , yR) of syntactic functions.

We assume that for each predicate there is a rela-
tively small number of ways in which it realizes its
arguments syntactically, i.e., in which semantic roles
are linked to syntactic functions. These may corre-
spond to alternations like those shown in (1). Instead
of directly modeling the predicate-specific probabil-
ity P (y|p), we consider predicate-specific distribu-
tions φp(l) over linkings l = (x1, . . . , xR). Such a
linking then gives rise to the tuple y = (y1, . . . , yR)
by way of probability distributions P (yr|xr) =
ηxr(yr). This allows us to keep the number of possi-
ble linkings l per predicate relatively small (by set-
ting φp(l) = 0 for most l), and generate a wide vari-
ety of syntactic function tuples y from them.

3.3 Structure of the Model

Figure 1 presents our linking model. For each
predicate-argument structure in the corpus, it con-
tains observable variables for the predicate p and the
unordered set s of arguments, and further shows la-
tent variables for the linking l and (for each role r)
the semantic word class c, the head word w, and the
syntactic function y.

The distributions χp,r(c) and ψc(w) are drawn
from Dirichlet priors with symmetric parameters α
and β, respectively. In the case of the linking dis-
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Figure 1: Representation of our linking model as a
Bayesian network. The nodes p and s are observed for
each of the N predicate-argument structures in the cor-
pus. The latent variables c, w, l, and y are inferred from
the data along with their distributions χ, ψ, φ, and η.

tribution φp(l), we are faced with an exponentially
large space of possible linkings (considering a set
G of syntactic functions, there are (|G| + 1)R pos-
sible linkings). This is both computationally prob-
lematic and counter-intuitive. We therefore maintain
a global list L of permissible linkings and enforce
φp(l) = 0 for all l /∈ L. On the set L we then draw
φp(l) from a Dirichlet prior with symmetric param-
eter γ. In Section 3.5, we will describe how the link-
ing list L is iteratively induced from the data.

We introduced the distribution ηx to allow for in-
cidental changes when generating the tuple of syn-
tactic functions out of the linking. If this pro-
cess were allowed to arbitrarily change any syntactic
function in the linking, the linkings would be too un-
constrained and not reflect the syntactic functions in
the corpus. We therefore parameterize ηx in such
a way that the only allowed modifications are the
addition or removal of syntactic functions from the
linking, but no change from one syntactic function
to another. We attain this by parameterizing ηx as
follows:

ηx(y) =


ηε if x = y = ε
1−ηε
|G| if x = ε and y ∈ G

1− ηx if x ∈ G and y = ε
ηx if x = y ∈ G
0 else

Here, G again denotes the set of all syntactic func-
tions. The parameter ηε is drawn from a uniform

prior on the interval [0.0, 1.0] and the |G| parame-
ters ηx for x ∈ G have uniform priors on [0.5, 1.0].
This has the effect that no syntactic function can
change into another, that a syntactic function is
never more probable to disappear than to stay, and
that all syntactic functions are added with the same
probability. This last property will be important for
the iterative refinement process described in Sec-
tion 3.5.

3.4 Training
In this subsection, we describe how we train the
model described so far, assuming that we are given
a fixed linking list L. The following subsection will
address the problem of infering this list. In Sec-
tion 3.6, we will then describe how we apply the
trained model to infer semantic role assignments for
given predicate-argument structures.

To train the linking model, we apply a Gibbs sam-
pling procedure to the latent variables shown in Fig-
ure 1. In each sampling iteration, we first sample
the values of the latent variables of each predicate-
argument structure based on the current distribu-
tions, and then the latent distributions based on
counts obtained over the corpus. For each predicate-
argument structure, we begin with a blocked sam-
pling step, simultaneously drawing values for w and
y, while summing out c. This gives us

P (w, y|p, l, s) ∝
R∏
r=1

ηxr(yr)

C∑
c=1

χp,r(c)ψc(wr)

where we have omitted the factor P (s|w, y), which
is uniform as long as we assume that w and y in-
deed represent permutations of the argument set s.
To sample efficiently from this distribution, we pre-
compute the inner sum (as a tensor contraction or,
equivalently, R matrix multiplications). We then
enumerate all permutations of the argument set and
compute their probabilities, defaulting to an approx-
imative beam search procedure in cases where the
space of permutations is too large.

Next, the linking l is sampled according to

P (l|p, y) ∝ P (l|p)P (y|l) = φp(l)
R∏
r=1

ηxr(yr)

Since the space L of possible linkings is small, com-
pletely enumerating the values of this distribution is
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not a problem.
After sampling the latent variables w, y, and l for

each corpus instance, we go on to apply Gibbs sam-
pling to the latent distributions. For example, for φp
we obtain

P (φp|p1, l1, . . . , pN , lN ) ∝ P (φp)
N∏
i=1

P (li|pi)

∝ Dir(γ)(φp) ·
∏
l∈L

[φp(l)]
np(l) = Dir(~np + γ)(φp)

Here np(l) is the number of corpus instances with
predicate p and latent linking l, and ~np is the vector
of these counts for a fixed p, indexed by l. Hence,
φp is drawn from the Dirichlet distribution parame-
terized by this vector, smoothed in each component
by γ.

In the same way, the sampling distributions for
χp,r and ψc are determined as Dir(~np,r + α) and
Dir(~nc + β), where each ~np,r is a vector of counts1

indexed by word classes c and each ~nc is a vector
of counts indexed by head words wr. Similarly,
we draw the parameter ηε in the parameterization
of ηx from Beta

(
n(ε, ε) + 1,

∑
x∈G n(ε, x) + 1

)
and approximate ηx by drawing ηx from
Beta (n(x, x) + 1, n(x, ε) + 1) and redrawing
it uniformly from [0.5, 1.0], if it is smaller than 0.5.
In this context, n(x, y) refers to the number of times
the syntactic relation x is turned into y, counted
over all corpus instances and semantic roles.

To test for convergence of the sampling process,
we monitor the log-likelihood of the data. For each
predicate-argument structure with predicate pi and
argument set si, we have

P (pi, si) ∝
∑
l

P (l|pi)P (si|l) ≈ P (si|li)

=
∑
w,y

P (w, y, si|li) =
∑

w,y⇒si
P (w, y|li) =: Li

The approximation is rather crude (replacing an ex-
pected value by a single sample from P (l|pi)), but
we expect the errors to mostly cancel out over the
instances of the corpus. The last sum ranges over all
pairs (w, y) that represent permutations of the argu-
ment set s, and this can be computed as a by-product

1Since we do not sample c, we use pseudo-counts based on
P (cr|p, r, wr) for each instance.

of the sampling process of w and y. We then com-
pute L := log

∏N
i=1 Li =

∑N
i=1 logLi, and termi-

nate the sampling process if L does not increase by
more than 0.1% over 5 iterations.

3.5 Iterative Refinement of Possible Linkings

In Section 3.3, we have addressed the problem of
the exponentially large space of possible linkings by
introducing a subset L ⊂ GR from which linkings
may be drawn. We now need to clarify how this sub-
set is determined. In contrast to Grenager and Man-
ning (2006), we do not want to use any linguistic
intuitions or manual rules to specify this subset, but
rather automatically infer it from the data, so that the
model stays agnostic to the language and paradigm
of semantic roles. We therefore adopt a strategy of
iterative refinement.

We start with a very small set that only contains
the trivial linking (ε, . . . , ε) and one linking for each
of the R most frequent syntactic functions, placing
the most frequent one in the first slot, the second one
in the second slot etc. We then run Gibbs sampling.
When it has converged in terms of log-likelihood,
we add some new linkings to L. These new link-
ings are inferred by inspecting the action of the step
from l to y in the generative model. Here, a syntac-
tic function may be added to or deleted from a link-
ing. If a particular syntactic function is frequently
added to some linking, then a corresponding linking,
i.e., one featuring this syntactic function and thus not
requiring such a modification, seems to be missing
from the set L. We therefore count for each link-
ing l how often it is either reduced by the deletion of
any syntactic function or expanded by the addition
of a syntactic function. We then rank these modifi-
cations in descending order and for each of them de-
termine the semantic role slot in which the modifica-
tion (deletion or addition) occured most frequently.
By applying the modification to this slot, each of the
linkings gives rise to a new one. We add the first a of
those, skipping new linkings if they are duplicates of
those we already have in the linking set. We iterate
this procedure, alternating between Gibbs sampling
to convergence and the addition of a new linkings.

3.6 Inference

To predict semantic roles for a given predicate and
argument set, we maximize P (l, w, y|p, s). If the
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space of permutations is too large for exhaustive
enumeration, we apply a similar beam search pro-
cedure as the one employed in training to approxi-
mately maximize P (w, y|p, s, l) for each value of l.
For efficiency, we do not marginalize over l. This
has the potential of reducing prediction quality, as
we do not predict the most likely role assignment,
but rather the most likely combination of role assign-
ment and latent linking.

In all experiments we averaged over 10 consec-
utive samples of the latent distributions, at the end
of the sampling process (i.e., when convergence has
been reached).

4 Experimental Setup

We train and evaluate our linking model on the data
set produced for the CoNLL-08 Shared Task on
Joint Parsing of Syntactic and Semantic Dependen-
cies (Surdeanu et al., 2008), which is based on the
PropBank corpus (Palmer et al., 2005). This data
set includes part-of-speech tags, lemmatized tokens,
and syntactic dependencies, which have been con-
verted from the manual syntactic annotation of the
underlying Penn Treebank (Marcus et al., 1993).

4.1 Data Set

As input to our model, we decided not to use the syn-
tactic representation in the CoNLL-08 data set, but
instead to rely on Stanford Dependencies (de Marn-
effe et al., 2006), which seem to facilitate seman-
tic analysis. We thus used the Stanford Parser2 to
convert the underlying phrase structure trees of the
Penn Tree Bank into Stanford Dependencies. In the
resulting dependency analyses, the syntactic head
word of a semantic role may differ from the syntactic
head according to the provided syntax. We therefore
mapped the semantic role annotation onto the Stan-
ford Dependency trees by identifying the tree node
that covers the same set of tokens as the one marked
in the CoNLL-08 data set.

The focus of the present work is on the linking
behavior and classification of semantic arguments
and not their identification. The latter is a substan-
tially different task, and likely to be best addressed
by other approaches, such as that of (Abend et al.,

2version 1.6.8, available at http://nlp.stanford.
edu/software/lex-parser.shtml

2009). We therefore use gold standard information
of the CoNLL-08 data set for identifying argument
sets as input to our model. The task of our model is
then to classify these arguments into semantic roles.

We train our model on a corpus consisting of the
training and the test part of the CoNLL-08 data set,
which is permissible since as a unsupervised system
our model does not make any use of the annotated
argument labels for training. We test the model per-
formance against the gold argument classification on
the test part. For development purposes (both de-
signing the model and tuning the parameters as de-
scribed in Section 4.4), we train on the training and
development part and test on the development part.

4.2 Evaluation Measures
As explained above, our model does not predict spe-
cific role labels, such as those annotated in Prop-
Bank, but rather aims at clustering like argument
instances together. Since the (numbered) labels of
these clusters are arbitrary, we cannot evaluate the
predictions of our model against the PropBank gold
annotation directly. We follow Lang and Lapata
(2011b) in measuring the quality of our clustering
in terms of cluster purity and collocation instead.

Cluster purity is a measure of the degree to which
the predicted clusters meet the goal of containing
only instances with the same gold standard class la-
bel. Given predicted clusters C1, . . . , CnC and gold
clusters G1, . . . , GnG over a set of n argument in-
stances, it is defined as

Pu =
1

n

nC∑
i=1

max
j=1,...,nG

|Ci ∩Gj |

Similarly, cluster collocation measures how well the
clustering meets the goal of clustering all gold in-
stances with the same label into a single predicted
cluster, formally:

Co =
1

n

nG∑
j=1

max
i=1,...,nC

|Ci ∩Gj |

We determine purity and collocation separately for
each predicate type and then compute their micro-
average, i.e., weighting each score by the number of
argument instances of this precidate. Just as preci-
sion and recall, purity and collocation stand in trade-
off. In the next section, we therefore report their
F1 score, i.e., their harmonic mean 2·Pu·Co

Pu+Co .
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4.3 Syntactic Baseline

We compare the performance of our model with a
simple syntactic baseline that assumes that semantic
roles are identical with syntactic functions. We fol-
low Lang and Lapata (2011b) in clustering argument
instances of each predicate by their syntactic func-
tions. We do not restrict the number of clusters per
predicate. In contrast, Lang and Lapata (2011b) re-
strict the number of clusters to 21, which is the num-
ber of clusters their system generates. We found that
this reduces the baseline by 0.1% F1-score (Argn on
the development set, c.f. Table 1). If we reduce the
number of clusters in the baseline to the number of
clusters in our system (7), the baseline is reduced by
another 0.8% F1-score. These lower baselines are
due to lower purity values. In general, we find that a
smaller number of clusters results in lower F1 mea-
sure for the baseline; the reported baseline therefore
is the strictest possible.

4.4 Parameters and Tuning

For all experiments, we fixed the number of seman-
tic roles at R = 7. This is the maximum size of the
argument set over all instances of the data set and
thus the lower limit for R. If R was set to a higher
value, the model would be able to account for the
possibility of a larger number of roles, out of which
never more than 7 are expressed simultaneously. We
leave such investigation to future work. We set the
symmetric parameters for the Dirichlet distributions
to α = 1.0, β = 0.1, and γ = 1.0. This corresponds
to uninformative uniform priors for χp,r and φp, and
a prior encouraging a sparse lexical distribution ψc,
similar as in topic models such as LDA (Blei et al.,
2003).

The number C of word classes, the number a of
additional linkings in each refinement of the linking
set L, and the number k of refinement steps were
tuned on the development set. We first fixed a = 10
and trained models for C = 10, 20, . . . , 100, per-
forming 50 refinement steps. The best F1 score was
obtained withC = 10 after k = 20 refinements (i.e.,
with 200 linkings). Next, we fixed these two param-
eters and trained models for a = 5, 10, 15, 20, 25.
Here, we confirmed an optimal value of a = 10.

5 Results

In this section, we give quantitative results, compar-
ing our system to the syntactic baseline in terms of
cluster purity and collocation, and a qualitative dis-
cussion of some phenomena observed in the perfor-
mance of the model.

5.1 Quantitative Results

Table 1 shows the results of applying our models to
the CoNLL-08 test with the parameter values tuned
in Section 4.4. For comparison, we also show re-
sults on the development set. The table is divided
into three parts, one only considering semantic ar-
guments (Argn), one considering adjuncts (ArgM),
and one aggregating results over both kinds of Prop-
Bank roles (Arg*). It can be seen that our model
consistently outperforms the syntactic baseline in
terms of collocation (by 10% on Argn, 3% on ArgM,
and 8.2% overall). In terms of purity, however, it
falls short of the baseline. As mentioned above,
there is a trade-off between purity and collocation.
Compared to our model, which we run with a total
of 7 semantic role slots, the baseline predicts a large
number of small argument clusters for each predi-
cate, whereas our model tends to group arguments
together based on selectional preferences.

In terms of F1 score, our model outperforms the
baseline by 3.6% on Argn, which translates into a
relative error reduction by 20%. On adjuncts, on
the other hand, our model falls short of the base-
line by almost 10% F1 score. This indicates that
our approach based on explicit representations of
linkings is most suited to the classification of argu-
ments rather than adjuncts, which do not participate
in diathesis alternations and do therefore not profit
as much from our explicit induction of linkings.

5.2 Qualitative Observations

Among the verbs with at least 10 test instances, in-
clude shows the largest gain in F1 score over the
baseline. In the test corpus, we find an interesting
pair of sentences for this predicate:

(2) a. Mr. Herscu proceeded to launch an ambi-
tious, but ill-fated, $1 billion acquisition
binge that included Bonwit Teller and B.
Altman & Co. [...]
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Argn ArgM Arg*
Test Set Pu Co F1 Pu Co F1 Pu Co F1

Syntactic Baseline 90.6 75.4 82.3 87.0 73.3 79.6 88.0 74.9 80.9
Linking Model 86.4 85.4 85.9 64.4 76.3 69.8 74.5 83.1 78.6
Development Set Pu Co F1 Pu Co F1 Pu Co F1

Syntactic Baseline 91.5 73.9 81.8 88.7 78.6 83.3 89.2 75.1 81.5
Linking Model 85.6 84.4 85.0 67.7 79.9 73.3 75.2 83.2 79.0

Table 1: Purity (Pu), collocation (Co), and F1 scores of our model and the syntactic baseline in percent. Performance
on arguments (Argn), adjuncts (ArgM), and overall results (Arg*) are shown separately.

b. Not included in the bid are Bonwit Teller or
B. Altman & Co. [...]

The first of these two sentences is generated from the
linking (nsubj, dobj, ε, ε, ε, ε, -rcmod), which does
not need to be modified in any way to account for the
subject that (coreferent with the head of the pred-
icate in the modifying relative clause, binge) and
the direct object Teller (head of the phrase Bonwit
Teller and B. Altman & Co.). These are assigned
to the first and second role slots, respectively. The
second sentence, on the other hand, is generated out
of the linking (prep in, nsubjpass, ε, ε, ε, ε, ε). Here,
the passive subject Teller is assigned to the second
role slot (which we may interpret as the Includee),
while the first semantic role (the Includer) is labeled
on bid, which is realized in a prepositional phrase
headed by the preposition in. Note that this alter-
nation is not the general passive alternation though,
which would have led to Teller is not included by the
bid. Instead, the model learned a specific alternation
pattern for the predicate include.

But even where a specific linking has not been
learned, the model can often still infer a correct la-
beling by virtue of its selectional preference com-
ponent. In our corpus, the predicate give occurs
mostly with a direct and an indirect object as in
CNN recently gave most employees raises of as
much as 15%. The model therefore learns a link-
ing (nsubj, dobj, ε, ε, ε, ε, iobj), but fails to learn that
the Beneficient role can also be expressed with the
preposition to as in

(3) [...] only 25% give $2,500 or more to charity
each year.

However, when applying our model to this sentence,
it nonetheless assigns charity to the last role slot (the

same one previously occupied by the indirect ob-
ject). This is due to the fact that charity is a good
fit for the selectional preference of this role slot of
the predicate give.

6 Conclusions

We have presented a novel generative model of
predicate-argument structures that incorporates se-
lectional preferences of argument heads and explic-
itly describes linkings between semantic roles and
syntactic functions. The model iteratively induces
a lexicon of possible linkings from unlabeled data.
The trained model can be used to cluster given ar-
gument instances according to their semantic roles,
outperforming a competitive syntactic baseline.

The approach is independent of any particular lan-
guage or paradigm of semantic roles. However, in
its present form the model assumes that each predi-
cate has its own set of semantic roles. In formalisms
such as Frame Semantics (Baker et al., 1998), se-
mantic roles generalize across semantically similar
predicates belonging to the same frame. A natural
extension of our approach would therefore consist in
modeling predicate groups that share semantic roles
and selectional preferences.

Acknowledgments. This work was supported by the In-

telligence Advanced Research Projects Activity (IARPA) via

Department of Interior National Business Center (DoI/NBC)

contract number D11PC20153. The U.S. Government is autho-

rized to reproduce and distribute reprints for Governmental pur-

poses notwithstanding any copyright annotation thereon. Dis-

claimer: The views and conclusions contained herein are those

of the authors and should not be interpreted as necessarily rep-

resenting the official policies or endorsements, either expressed

or implied, of IARPA, DoI/NBC, or the U.S. Government.

187



References

Omri Abend, Roi Reichart, and Ari Rappoport. 2009.
Unsupervised argument identification for semantic
role labeling. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 28–36, Singapore.

Collin F. Baker, J. Fillmore, and John B. Lowe. 1998.
The Berkeley FrameNet project. In 36th Meeting
of the Association for Computational Linguistics and
17th International Conference on Computational Lin-
guistics (COLING-ACL’98), pages 86–90, Montréal.
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Abstract

Word Sense Disambiguation aims to label the

sense of a word that best applies in a given

context. Graded word sense disambiguation

relaxes the single label assumption, allow-

ing for multiple sense labels with varying de-

grees of applicability. Training multi-label

classifiers for such a task requires substan-

tial amounts of annotated data, which is cur-

rently not available. We consider an alter-

nate method of annotating graded senses using

Word Sense Induction, which automatically

learns the senses and their features from cor-

pus properties. Our work proposes three ob-

jective to evaluate performance on the graded

sense annotation task, and two new methods

for mapping between sense inventories using

parallel graded sense annotations. We demon-

strate that sense induction offers significant

promise for accurate graded sense annotation.

1 Introduction

Word Sense Disambiguation (WSD) aims to identify

the sense of a word in a given context, using a pre-

defined sense inventory containing the word’s differ-

ent meanings (Navigli, 2009). Traditionally, WSD

approaches have assumed that each occurrence of

a word is best labeled with a single sense. How-

ever, human annotators often disagree about which

sense is present (Passonneau et al., 2010), espe-

cially in cases where some of the possible senses

are closely related (Chugur et al., 2002; McCarthy,

2006; Palmer et al., 2007).

Recently, Erk et al. (2009) have shown that in

cases of sense ambiguity, a graded notion of sense

labeling may be most appropriate and help reduce

the ambiguity. Specifically, within a given context,

multiple senses of a word may be salient to the

reader, with different levels of applicability. For ex-

ample, in the sentence

• The athlete won the gold metal due to her hard

work and dedication.

multiple senses could be considered applicable for

“won” according to the WordNet 3.0 sense inventory

(Fellbaum, 1998):

1. win (be the winner in a contest or competition; be victo-

rious)

2. acquire, win, gain (win something through one’s efforts)

3. gain, advance, win, pull ahead, make headway, get ahead,

gain ground (obtain advantages, such as points, etc.)

4. succeed, win, come through, bring home the bacon, de-

liver the goods (attain success or reach a desired goal)

In this context, many annotators would agree that the

athlete has both won an object (the gold metal itself)

and won a competition (signified by the gold medal).

Although contexts can be constructed to elicit only

one of these senses, in the example above, a graded

annotation best matches human perception.

Graded word sense (GWS) annotation offers sig-

nificant advantages for sense annotation with a fine-

grained sense inventory. However, creating a suf-

ficiently large annotated corpus for training super-

vised GWS disambiguation models presents a sig-

nificant challenge, i.e., the laborious task of gath-

ering annotations for all combinations of a word’s

senses, along with variation in those senses appli-

cabilities. To our knowledge, Erk et al. (2009) have

provided the only data set with GWS annotations for

11 terms.
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Therefore, we consider the use of Word Sense In-

duction (WSI) for GWS annotation. WSI removes

the need for substantial training data by automati-

cally deriving a word’s senses and associated sense

features through examining its contextual uses. Fur-

thermore, the data-driven sense discovery defines

senses as they are present in the corpus, which may

identify usages not present in traditional sense in-

ventories (Lau et al., 2012). Last, many WSI models

represent senses loosely as abstractions over usages,

which potentially may transfer well to expressing

GWS annotations as a blend of their sense usages.

In this paper, we consider the performance of WSI

models on a GWS task. The contributions of this

paper are as follows. First, in Sec. 2, we motivate

three GWS annotation objectives and propose corre-

sponding measures that provide fine-grained analy-

sis of the capabilities of different WSI models. Sec-

ond, in Sec. 4, we propose two new sense mapping

procedures for converting an induced sense inven-

tory to a reference sense inventory when GWS an-

notations are present, and demonstrate significant

performance improvement using these procedures

on GWS annotation. Last, in Sec. 5, we demon-

strate a complete evaluation framework using three

graph-based WSI models as examples, generating

several insights for how to better evaluate GWS dis-

ambiguation systems.

2 Evaluating GWS Annotations

Graded word sense annotation conveys multiple lev-

els of information, both in which senses are present

and their relative levels of applicability; and so, no

single evaluation measure alone is appropriate for

assessing GWS annotation capability. Therefore, we

propose three objectives for the evaluating the sense

labeling: (1) Detection of which senses are present,

(2) Ranking senses according to applicability, and

(3) Perception of the graded presence of each sense.

We separate the three objectives as a way to evaluate

how well different techniques perform on each as-

pect individually, which may encourage future work

in ensemble WSD methods that use combinations of

the techniques. Figure 1 illustrates each evaluation

on example annotations. We note that Erk and Mc-

Carthy (2009) have also proposed an alternate set of

evaluation measures for GWS annotations. Where

applicable, we describe and compare their measures

to ours for the three objectives.

In the following definitions, let Si
G refer to the set

of senses {s1, . . . , sn} present in context i according

to the gold standard, and similarly, let Si
L refer to

the set of senses for context i as labeled by a WSD

system using the same sense inventory. Let peri(sj)
refer to the perceived numeric applicability rating of

sense sj in context i.

Detection measures the ability to accurately iden-

tify which senses are applicable in a given context,

independent of their applicability. While the most

basic of the evaluations, systems that are highly ac-

curate at multi-sense detection could be used for rec-

ognizing ambiguous contexts where multiple senses

are applicable or for evaluating the granularity of

sense ontologies by testing for correlations between

senses in a multi-sense labeling. Detection is mea-

sured using the Jaccard Index between Si
G and Si

L

for a given context i:
Si
G∩S

i
L

Si
G
∪Si

L

Ranking measures the ability to order the senses

present in context i according to their applicabil-

ity but independent of their quantitative applicabil-

ity scores. Even though multiple senses are present,

a context may have a clear primary senses. By pro-

viding a ranking in agreement with human judge-

ments, systems create a primary sense label for each

context. When the induced senses are mapped to a

sense inventory, selecting the primary sense is analo-

gous to non-graded WSD where a context is labeled

with its most applicable sense.

To compare sense rankings, we use Goodman and

Kruskal’s γ, which is related to Kendall’s τ rank cor-

relation. When the data has many tied ranks, γ is

preferable to both Kendall’s τ as well as Spearman’s

ρ rank correlation (Siegel and Castellan Jr., 1988),

the latter of which is used by Erk and McCarthy

(2009) for evaluating sense rankings. The use of γ

was motivated by our observation that in the GWS

dataset (described later in Section 5.1), roughly 65%

of the instances contained at least one tied ranking

between senses.

To compute γ, we examine all pair-wise combi-

nations of senses (si, sj) of the target word. Let

rG(si) and rL(si) denote the ranks of sense si in

the gold standard and provided annotations. In the

event that a ranking does not include senses, all

of the inapplicable senses are assigned a tied rank
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Instance Gold Standard Annotation

The athlete won the gold metal due to her

hard work and dedication.

win.v.1: 0.6, win.v.2: 0.4

(not applicable: win.v.3, win.v.4)

Test Annotation Detection Ranking Perception

win.v.1: 0.7, win.v.2: 0.3 1.0 1.0 0.983

win.v.1: 1.0 0.5 1.0 0.832

win.v.2: 1.0 0.5 0.333 0.554

win.v.3: 0.5, win.v.1: 0.3, win.v.4: 0.2 0.25 -0.2 0.405

Figure 1: Example annotations of the same context compared with the gold standard according to Detection,

Ranking, and Perception.

lower than the least applicable sense; i.e., for m

applicable senses, all inapplicable senses have rank

m+1. A pair of senses, (si, sj) is said to be con-

cordant if rG(si) < rG(sj) and rL(si) < rL(sj) or

rG(si) > rG(sj) and rL(si) > rL(sj), and discor-

dant otherwise. γ is defined as c−d
c+d

where c is the

number of concordant pairs and d is the number of

discordant.

Perception measures the ability to equal human

judgements on the levels of applicability for each

sense in a context. Unlike ranking, this evaluation

quantifies the difference in sense applicability. As a

potential application, these differences can be used

to quantify the contextual ambiguity. For example,

the relative applicability differences can be used to

distinguish between ambiguous contexts where mul-

tiple highly-applicable senses exist and unambigu-

ous contexts where a single main sense exists but

other senses are still minimally applicable.

To quantify Perception, we compare sense label-

ings using the cosine similarity. Each labeling is rep-

resented as a vector with a separate component for

each sense, whose value is the applicability of that

sense. The Perception for two annotations of con-

text j is then calculated as

∑

i perj(s
G
i )× perj(s

L
i )

√

∑

i perj(s
G
i )

2 ×
√

∑

i perj(s
L
i )

2
.

Note that because all sense perceptibilities are non-

negative, the cosine similarity is bounded to [0, 1].

Erk and McCarthy (2009) propose an alternate

measure for comparing the applicability values us-

ing the Jensen-Shannon divergence. The sense an-

notations are normalized to probability distributions,

denoted G and L, and the divergence is computed as:

JSD(G||L) =
1

2
DKL(G||M) +

1

2
DKL(L||M)

where M is the average of the distributions G and L

and DKL denotes the Kullback-Leibler divergence.

While both approaches are similar in intent, we find

that the cosine similarity better matches the expected

difference in Perception for cases where two anno-

tations use different numbers of senses. For exam-

ple, the fourth test annotation in Fig. 1 has a JSS1

of 0.593, despite its significant differences in order-

ing and the omission of a sense. Indeed, in cases

where the set of senses in a test annotation is com-

pletely disjoint from the set of gold standard senses,

the JSS will be positive due to comparing the two

distributions against their average; In contrast, the

cosine similarity in such cases will be zero, which

we argue better matches the expectation that such an

annotation does not meet the Perception objective.

3 WSI Models

For evaluation we adapt three recent graph-based

WSI methods for the task of graded-sense annota-

tion: Navigli and Crisafulli (2010), referred to as

Squares, Jurgens (2011), referred to as Link, and

UoY (Korkontzelos and Manandhar, 2010). At an

abstract level, these methods operate in two stages.

First, a graph is built, using either words or word

pairs as vertices, and edges are added denoting some

form of association between the vertices. Second,

senses are derived by clustering or partitioning the

graph. We selected these methods based on their su-

perior performance on recent benchmarks and also

1The JSD is a distance measure in [0, 1], which we convert

to a similarity JSS = 1− JSD for easier comparison.
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for their significant differences in approach. Follow-

ing, we briefly summarize each method to highlight

its key parameters and then describe its adaptation

to GWS annotation.

Squares Navigli and Crisafulli (2010) propose a

method that builds a separate graph for each term

for sense induction. First, a large corpus is used to

identify associated terms using the Dice coefficient:

For two terms w1, w2, Dice(w1, w2) =
2c(w1,w2)

c(w1)+c(w2)

where c(w) is the frequency of occurrence. Next,

for a given term w the initial graph, G, is con-

structed by adding edges to every term w2 where

Dice(w,w2) ≥ δ, and then the step is repeated for

the neighbors of each term w2 that was added.

Once the initial graph is constructed, edges are

pruned to separate the graph into components. Nav-

igli and Crisafulli (2010) found improved perfor-

mance on their target application using a pruning

method based on the number of squares (closed

paths of length 4) in which an edge participates. Let

s denote the number of squares that an edge e par-

ticipates in and p denote the number of squares that

would be possible from the set of neighbors of e.

Edges with s
p
< σ are removed. The remaining con-

nected components in G denote the senses of w.

Sense disambiguation on a context of w is per-

formed by computing the intersection of the con-

text’s terms with the terms in each of the connected

components. As originally specified, the component

with the largest overlap is labeled as the sense of w.

We adapt this to graded senses by returning all inter-

secting components with applicability proportional

to their overlap. Furthermore, for efficiency, we use

only noun, verb, and adjective lemmas in the graphs.

Link Jurgens (2011) use an all-words method

where a single graph is built in order to derive the

senses of all words in it. Here, the graph’s clus-

ters do not correspond to a specific word’s senses

but rather to contextual features that can be used to

disambiguate any of the words in the cluster.

In its original specification, the graph is built with

edges between co-occurring words and edge weights

corresponding to co-occurrence frequency. Edges

below a specified threshold τ are removed, and then

link community detection (Ahn et al., 2010) is ap-

plied to discover sense-disambiguating word com-

munities, which are overlapping cluster of vertices

in the graph, rather than hard partitions. Once the set

of communities is produced, communities with three

or fewer vertices are removed, under the assumption

that these communities contain too few features to

reliably disambiguate.

Senses are disambiguated by finding the commu-

nity with the largest overlap score, computed as the

weighted Jaccard Index. For a context with the set

of features Fi and a community with features Fj , the

overlap is measured as |Fj | ·
|Fi∩Fj |
|Fi∪Fj |

.

We adapt this algorithm in three ways. First,

rather than use co-occurrence frequency to weight

edges between terms, we weight edges accord to

their statistical association with the G-test (Dunning,

1993). The G-test weighting helps remove edges

whose large edge weights are due to high corpus fre-

quency but provide no disambiguating information,

and the weighting also allows the τ parameter to

be more consistently set across corpora of different

sizes. Second, while Jurgens (2011) used only nouns

as vertices in the graph, we include both verbs and

adjectives due to needing to identify senses for both.

Third, for graded senses, we disambiguate a context

by reporting all overlapping communities, weighted

by their overlap score.

UoY Korkontzelos and Manandhar (2010) pro-

pose a WSI model that builds a graph for each term

for disambiguation. The graph is built in four stages,

with four main tuning parameters, summarized next.

First, using a reference corpus, all contexts of the

target word w are selected to build a list of co-

occurring noun lemmas, retaining all those with fre-

quency above P1. Second, the Log-Likelihood ratio

(Dunning, 1993) is computed between all selected

nouns and w, retaining only those with an associa-

tion above P2. Third, all remaining nouns are used

to create all
(

n
2

)

noun pairs. Next, each term and

pair is mapped to the set of contexts in the reference

corpus in which it is present. A pair (wi, wj) is re-

tained only if its set of contexts is dissimilar to the

sets of contexts of both its member terms, using the

Dice coefficient to measure the similarity of the sets.

Pairs with a Dice coefficient above P4 with either of

its constituent terms are removed. Last, edges are

added between nouns and noun pairs according to

their conditional probabilities of occurring with each

other. Edges with a conditional probability less than

192



P3 are not included.

Once the graph has been constructed, the Chi-

nese Whispers graph partitioning algorithm (Bie-

mann, 2006) is used to identify word senses. Each

graph partition is assigned a separate sense of w.

Next, each partition is mapped to the set of contexts

in the reference corpus in which at least one of its

vertices occurs. Partitions whose context sets are a

strict subset of another are merged with the subsum-

ing partition.

Word sense disambiguation occurs by counting

the number of overlapping vertices for each parti-

tion and selecting the partition with the highest over-

lap as the sense of w. We extend this to graded an-

notation by selecting all partitions with at least one

vertex present and set the applicability equal to the

degree of overlap.

4 Evaluation Across Sense Inventories

Directly comparing GWS annotations from the in-

duced and gold standard sense inventories requires

first creating a mapping from the induced senses to

the gold standard inventory. Agirre et al. (2006) pro-

pose a sense-mapping procedure, which was used in

the previous two SemEval WSI Tasks (Agirre and

Soroa, 2007; Manandhar et al., 2010). We consider

this procedure and two extensions of it to support

learning a mapping from graded sense annotations.

The procedure of Agirre et al. (2006) uses three

corpora: (1) a base corpus from which the senses

are derived, (2) a mapping corpus annotated with

both gold standard senses, denoted gs, and induced

senses, denoted is, and (3) a test corpus annotated

with is senses that will be converted to gs senses.

Once the senses are induced from the base cor-

pus, the mapping corpus is annotated with is senses

and a matrix M is built where cell i, j initially con-

tains the counts of each time gsj and isi were used

to label the same instance. The rows of this matrix

are then normalized such that each cell now repre-

sents p(gsj|isi). The final mapping selects the most

probable gs sense for each is sense.

To label the test corpus, each instance that is

labeled with isi is relabeled with the gs sense

with the highest conditional probability given isi.

When a context c is annotated by a set of labels

L = {isi, . . . , isj}, the final sense labeling con-

tains the set of all gs to which the is senses were

mapped, weighted by their mapping frequencies:

perc(gsj) =
1
|L|

∑

isi∈L
δ(isi, gsj) where δ returns

1 if isi is mapped to gsj and 0 otherwise.

The original algorithm of Agirre et al. (2006) does

not consider the role of applicability in evaluating

whether an is sense should be mapped to a gs sense;

is senses with different levels of applicability in the

same context are treated equivalently in updating

M . Therefore, as a first extension, referred to as

Graded, we revise the update rule for constructing

M where for the set of contexts C labeled by both

isi and gsj , Mi,j =
∑

c∈C perc(isi)×perc(gsj). As

in (Agirre et al., 2006), M is normalized and each is

sense is mapped to its most probable gs sense.

To label the test corpus using the Graded method,

the applicability of the is sense is also included.

For a context c is annotated with senses L =
{isi, . . . , isj}, the final sense labeling contains the

set of all gs senses to which the is senses were

mapped, weighted by their mapping frequencies:

perc(gsj) =
∑

isi∈L
[δ(isi, gsj)× perc(isi)] . The

applicabilities are then normalized to sum to 1.

The prior two methods restrict an is sense to map-

ping to only a single gs sense. However, an is sense

may potentially correspond to multiple gs senses,

each with different levels of applicability. There-

fore, we consider a second extension, referred to as

Distribution, that uses the same matrix construc-

tion as the Graded procedure, but rather than map-

ping each is to a single sense, maps it to a distribu-

tion over all gs senses for which it was co-annotated,

which is the normalized row vector in M for an is

sense. Labeling in the test corpus is then done by

summing the distributions of the is senses annotated

in the context and normalizing to create a probability

distribution over the union of their gs senses.

5 Experiments

We adapt the supervised WSD setting used in prior

SemEval WSI Tasks (Agirre and Soroa, 2007; Man-

andhar et al., 2010) to evaluation the models accord-

ing to the three proposed objectives. In the super-

vised setting, WSI systems provide GWS annotation

of their induced senses for the test corpus, which

is already labeled with the gold-standard GWS an-

notations. Then, a portion of the test corpus with

gold standard annotations is used to build a mapping

from induced senses to the reference sense inven-
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Term PoS # senses Avg. # Senses

per Instance

add verb 6 4.18

ask verb 7 5.98

win verb 4 3.98

argument noun 7 5.18

interest noun 7 5.12

paper noun 7 5.54

different adj. 5 4.98

important adj. 5 4.82

Table 1: The terms from the GWS dataset (Erk et

al., 2009) used in this evaluation

tory using one of the three algorithms described in

Section 4. The remaining, held-out test corpus in-

stances have their induced senses converted to the

gold standard sense inventory and the sense label-

ings are evaluated for the three objectives from Sec-

tion 2. In our experiments we divide the reference

corpus into five evenly-sized segments and then use

four segments (80% of the test corpus) for construct-

ing the mapping and then evaluate the converted

GWS annotations of the remaining segment.

5.1 Graded Annotation Data

The gold standard GWS annotations are derived

from a subset of the GWS data provided by Erk et

al. (2009). Here, three annotators rated the applica-

bility of all WordNet 3.0 senses of a word in a single

sentence context. Ratings were done using a 5-point

ordinal ranking according to the judgements from 1

– this sense is not applicable to 5 – this usage exactly

reflects this sense. Annotators used a wide-range of

responses, leading to many applicable senses per in-

stance. We selected the subset of the GWS dataset

where each term has 50 annotated contexts, which

were distributed evenly between SemCor (Miller et

al., 1993) and the SENSEVAL-3 lexical substitution

corpus (Mihalcea et al., 2004). Table 1 summarizes

the target terms in this context.

To prepare the data for evaluation, we constructed

the gold standard GWS annotations using the mean

applicability ratings of all three annotators for each

context. Senses that received a mean rating of 1 (not

applicable) were not listed in gold standard labeling

for that instance. All remaining responses were nor-

malized to sum to 1.

5.2 Model Configuration

For consistency, all three WSI models were trained

using the same reference corpus. We used a 2009

snapshot of Wikipedia,2 which was PoS tagged and

lemmatized using the TreeTagger (Schmid, 1994).

All of target terms occurred over 12,000 times. The

G-test between terms was computed using a three-

sentence sliding window within each article in the

corpus. The Dice coefficient was calculated using a

single sentence as context.

For all three models, we performed a limited grid

search to find the best performing system param-

eters, within reasonable computational limits. We

summarize the parameters and models, selecting the

configuration with the highest average Perception

score. For all models, the applicability ratings for

each instance are normalized to sum to 1.

Model Parameter Range Selected

Squares
δ={0.008, 0.009, . . . , 0.092} 0.037

σ={0.25, 0.30, . . . , 0.50, 0.55} 0.55

Link τ={400, 500, . . . , 900, 1000} 500

UoY

P1={10, 20} 20
P2={10, 20, 30} 20
P3={0.2, 0.3, 0.4} 0.3
P4={0.4, 0.6, 0.8} 0.4

5.3 Baselines

Prior WSI evaluations have used the Most Frequent

Sense (MFS) labeling a strong baseline in the super-

vised WSD task. For the GWS setting, we consider

five other baselines that select one, some, or all of

the sense of the target word, with different ordering

strategies. In the six baselines, each instance is la-

beled as follows:

MFS: the most frequent sense of the word

RS: a single, randomly-selected sense

ASF: all senses, ranked in order of frequency starting

with the most frequent

ASR: all senses, randomly ranked

ASE: all senses, ranked equally

RSM: a random number of senses, ranked arbitrarily

To establish applicability values from a ranking of n

senses, we set applicability to the ith ranked sense of
(n−i)+1∑n

k=1
k

, where rank 1 is the highest ranked sense.

2http://wacky.sslmit.unibo.it/
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Agirre et al. (2006) Mapping Graded Mapping Distribution Mapping

Model D R P D R P D R P Recall

Squares 0.192 -0.024 0.382 0.198 0.555 0.504 0.879 0.562 0.925 0.560

Link 0.282 0.081 0.454 0.335 0.436 0.528 0.854 0.503 0.907 0.800

UoY 0.238 0.116 0.445 0.244 0.486 0.528 0.848 0.528 0.907 0.940

Table 2: Average performance of the three WSI models according to Detection, Ranking, and Percetion

Baseline Detection Ranking Perception

MFS 0.204 0.334 0.469

RS 0.167 -0.036 0.363

ASF 0.846 0.218 0.830

ASR 0.846 0.006 0.776

ASE 0.846 0.000 0.862

RSM 0.546 0.005 0.632

Table 3: Average performance of the six baselines

5.4 Results and Discussion

Each WSI model was trained and then used to la-

bel the sense of each target term in the GWS corpus.

The three sense-mapping procedures were then ap-

plied to the induced sense labels on the held-out in-

stances to perform a comparison in the graded sense

annotations. Table 2 reports the performance for the

three evaluation measures for each model and map-

ping configuration on all instances where the sense

mapping is defined. The sense mapping is unde-

fined when (1) a WSI model cannot match an in-

stance’s features to any of its senses therefore leaves

the instance unannotated or (2) when an instance is

labeled with an is sense not seen in the training data.

Therefore, we report the additional statistic, Recall,

that indicates the percentage of instances that were

both labeled by the WSI model and mapped to gs

senses. Table 3 summarizes the baselines’ perfor-

mance.

The results show three main trends. First, intro-

ducing applicability into the sense mapping process

noticeably improves performance. For almost all

models and scores, using the Graded Mapping im-

proves performance a small amount. However, the

largest increase comes from using the Distribution

mapping where induced senses are represented as

distributions over the gold standard senses.

Second, performance was well ahead of the base-

lines across the three evaluations, when consider-

ing the models’ best performances. The Squares

and Link models were able to outperform the base-

lines that list all senses on the Detection objec-

tive, which the UoY model only improves slightly

from this baseline. For the Ranking objective, all

models substantially outperform the best baseline,

MFS; and similarly, for the Perception objective,

all models outperform the best performing baseline,

ASE. Overall, these performance suggest that in-

duce senses can be successfully used to produce

quality GWS annotations.

Third, the WSI models themselves show signif-

icant differences in their recall and multi-labeling

frequencies. The Squares model is only able to la-

bel approximately 56% of the GWS instances due to

sparseness in its sense representation. Indeed, only

12 of its 237 annotated instances received more than

one sense label, revealing that the model’s perfor-

mance is mostly based on correctly identifying the

primary sense in a context and not on identifying

the less applicable senses. The UoY model shows a

similar trend, with most instances being assigned a

median of 2 senses. However, its sense representa-

tion is sufficiently dense to have the highest recall of

any of the models. In contrast to the other two mod-

els, the Link model varies significantly in the num-

ber of induced senses assigned: “argument,” “ask,”

“different,” and “win” were assigned over 60 senses

on average to each of their instances, with “differ-

ent” having an average of 238, while the remaining

terms were assigned under two senses on average.

Furthermore, the results also revealed two unex-

pected findings. First, the ASE baseline performed

unexpectedly high in Perception, despite its assign-

ment of uniform applicability to all senses. We hy-

pothesize this is due to the majority of instances in

the GWS dataset being labeled with most of a word’s

senses, as indicated by Table 1, which results in their
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perceptibilities becoming normalized to small val-

ues. Because the ASE solution has applicability rat-

ings for all senses, normalization brings the ratings

close to those of the gold standard solution, and fur-

thermore, the difference in score between applicable

and inapplicable senses become too small to signifi-

cantly affect the resulting cosine similarity. As an al-

ternate model, we reevaluated the baselines against

the gold standard using the Jensen-Shannon diver-

gence as proposed by Erk and McCarthy (2009).

Again, ASE is still the highest performing baseline

on Perception. The high performance for both eval-

uation measures suggests that an alternate measure

may be better suited for quantifying the difference

in solutions’ GWS applicabilities.

Second, performance was higher on the Percep-

tion task than on Ranking, the former of which was

anticipated being more difficult. We attribute the

lower Ranking performance to two factors. First,

the GWS data contains main tied rank senses; how-

ever, ties in sense ranks after the mapping process

are relatively rare, which reduces γ. Second, in-

stances in the GWS often have senses within close

applicability ranges. When scoring an induced an-

notation that swaps the applicability, the Perception

is less affected by the small change in applicability

magnitude, whereas Ranking is more affected due to

the change in ordering.

6 Conclusion and Future Work

GWS annotations offer great potential for reli-

ably annotating using fine-grained sense invento-

ries, where word instance may elicit several concur-

rent meanings. Given the expense of creating an-

notated training corpora with sufficient examples of

the graded senses, WSI offers significant promise for

learning senses automatically while needing only a

small amount GWS annotated data to learn the sense

mapping for a WSD task.

In this paper, we have carried out an initial study

on the performance of WSI systems on a GWS an-

notation task. Our primary contribution is an end-

to-end framework for mapping and evaluating in-

duced GWS data. We first proposed three objectives

for graded sense annotation along with correspond-

ing evaluation measures that reliably convey the ef-

fectiveness given the nature of GWS annotations.

Second, we proposed two new mapping procedures

that use graded sense applicability for converting in-

duced senses into a reference sense inventory. Using

three graph-based WSI models, we demonstrated

that incorporating graded sense applicability into the

sense mapping significantly improves GWS perfor-

mance over the commonly used method of Agirre et

al. (2006). Furthermore, our study demonstrated the

potential of WSI systems, showing that all the mod-

els were able to outperform all six of the proposed

baseline on the Ranking and Perception objectives.

Our findings raise several avenues for future

work. First, our study only considered three graph-

based WSI models; future work is needed to as-

sess the capabilities other WSI approaches, such as

vector-based or Bayesian. We are also interested in

comparing the performance of the Link model with

other recently developed all-words WSI approaches

such as Van de Cruys and Apidianaki (2011).

Second, the proposed evaluation relies on a su-

pervised mapping to the gold standard sense inven-

tory, which has potential to lose information and in-

correctly map new senses not in the gold standard.

While unsupervised clustering evaluations such as

the V-measure (Rosenberg and Hirschberg, 2007)

and paired Fscore (Artiles et al., 2009) are capable

of evaluating without such a mapping, future work

is needed to test extrinsic soft clustering evaluations

such as BCubed (Amigó et al., 2009) or develop

analogous techniques that take into account graded

class membership used in GWS annotations.

Last, we note that our setup normalized the GWS

ratings into probability distribution, which is stan-

dard in the SemEval evaluation setup. However, this

normalization incorrectly transforms GWS annota-

tions where no predominant sense was rated at the

highest value, e.g., an annotation of only two senses

rated as 3 on a scale of 1 to 5. While these percepti-

bilities may be left unnormalized, it is not clear how

to compare the induced GWS annotations with such

mid-interval values, or when the rating scale of the

WSI system is potentially unbounded. Future work

is needed both in GWS evaluation and in quantify-

ing applicability along a range in GWS-based WSI

systems to address this issue.

All models and data will be released as a part of

the S-Space Package (Jurgens and Stevens, 2010).3

3https://github.com/fozziethebeat/S-Space
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Abstract

We present an ensemble-based framework
for semantic lexicon induction that incorpo-
rates three diverse approaches for semantic
class identification. Our architecture brings
together previous bootstrapping methods for
pattern-based semantic lexicon induction and
contextual semantic tagging, and incorpo-
rates a novel approach for inducing semantic
classes from coreference chains. The three
methods are embedded in a bootstrapping ar-
chitecture where they produce independent
hypotheses, consensus words are added to the
lexicon, and the process repeats. Our results
show that the ensemble outperforms individ-
ual methods in terms of both lexicon quality
and instance-based semantic tagging.

1 Introduction

One of the most fundamental aspects of meaning is
the association between words and semantic cate-
gories, which allows us to understand that a “cow”
is an animal and a “house” is a structure. We will
use the term semantic lexicon to refer to a dictionary
that associates words with semantic classes. Se-
mantic dictionaries are useful for many NLP tasks,
as evidenced by the widespread use of WordNet
(Miller, 1990). However, off-the-shelf resources are
not always sufficient for specialized domains, such
as medicine, chemistry, or microelectronics. Fur-
thermore, in virtually every domain, texts contain
lexical variations that are often missing from dic-
tionaries, such as acronyms, abbreviations, spelling
variants, informal shorthand terms (e.g., “abx” for

“antibiotics”), and composite terms (e.g., “may-
december” or “virus/worm”). To address this prob-
lem, techniques have been developed to automate
the construction of semantic lexicons from text cor-
pora using bootstrapping methods (Riloff and Shep-
herd, 1997; Roark and Charniak, 1998; Phillips and
Riloff, 2002; Thelen and Riloff, 2002; Ng, 2007;
McIntosh and Curran, 2009; McIntosh, 2010), but
accuracy is still far from perfect.

Our research explores the use of ensemble meth-
ods to improve the accuracy of semantic lexicon in-
duction. Our observation is that semantic class as-
sociations can be learned using several fundamen-
tally different types of corpus analysis. Bootstrap-
ping methods for semantic lexicon induction (e.g.,
(Riloff and Jones, 1999; Thelen and Riloff, 2002;
McIntosh and Curran, 2009)) collect corpus-wide
statistics for individual words based on shared con-
textual patterns. In contrast, classifiers for semantic
tagging (e.g., (Collins and Singer, 1999; Niu et al.,
2003; Huang and Riloff, 2010)) label word instances
and focus on the local context surrounding each in-
stance. The difference between these approaches is
that semantic taggers make decisions based on a sin-
gle context and can assign different labels to differ-
ent instances, whereas lexicon induction algorithms
compile corpus statistics from multiple instances of
a word and typically assign each word to a single
semantic category.1 We also hypothesize that coref-
erence resolution can be exploited to infer semantic

1This approach would be untenable for broad-coverage se-
mantic knowledge acquisition, but within a specialized domain
most words have a dominant word sense. Our experimental re-
sults support this assumption.
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class labels. Intuitively, if we know that two noun
phrases are coreferent, then they probably belong to
the same high-level semantic category (e.g., “dog”
and “terrier” are both animals).

In this paper, we present an ensemble-based
framework for semantic lexicon induction. We in-
corporate a pattern-based bootstrapping method for
lexicon induction, a contextual semantic tagger, and
a new coreference-based method for lexicon induc-
tion. Our results show that coalescing the decisions
produced by diverse methods produces a better dic-
tionary than any individual method alone.

A second contribution of this paper is an analysis
of the effectiveness of dictionaries for semantic tag-
ging. In principle, an NLP system should be able to
assign different semantic labels to different senses
of a word. But within a specialized domain, most
words have a dominant sense and we argue that us-
ing domain-specific dictionaries for tagging may be
equally, if not more, effective. We analyze the trade-
offs between using an instance-based semantic tag-
ger versus dictionary lookup on a collection of dis-
ease outbreak articles. Our results show that the in-
duced dictionaries yield better performance than an
instance-based semantic tagger, achieving higher ac-
curacy with comparable levels of recall.

2 Related Work

Several techniques have been developed for seman-
tic class induction (also called set expansion) using
bootstrapping methods that consider co-occurrence
statistics based on nouns (Riloff and Shepherd,
1997), syntactic structures (Roark and Charniak,
1998; Phillips and Riloff, 2002), and contextual pat-
terns (Riloff and Jones, 1999; Thelen and Riloff,
2002; McIntosh and Curran, 2008; McIntosh and
Curran, 2009). To improve the accuracy of in-
duced lexicons, some research has incorporated neg-
ative information from human judgements (Vyas
and Pantel, 2009), automatically discovered neg-
ative classes (McIntosh, 2010), and distributional
similarity metrics to recognize concept drift (McIn-
tosh and Curran, 2009). Phillips and Riloff (2002)
used co-training (Blum and Mitchell, 1998) to ex-
ploit three simple classifiers that each recognized a
different type of syntactic structure. The research
most closely related to ours is an ensemble-based

method for automatic thesaurus construction (Cur-
ran, 2002). However, that goal was to acquire fine-
grained semantic information that is more akin to
synonymy (e.g., words similar to “house”), whereas
we associate words with high-level semantic classes
(e.g., a “house” is a transient structure).

Semantic class tagging is closely related to named
entity recognition (NER) (e.g., (Bikel et al., 1997;
Collins and Singer, 1999; Cucerzan and Yarowsky,
1999; Fleischman and Hovy, 2002)). Some boot-
strapping methods have been used for NER (e.g.,
(Collins and Singer, 1999; Niu et al., 2003) to
learn from unannotated texts. However, most NER
systems will not label nominal noun phrases (e.g.,
they will not identify “the dentist” as a person)
or recognize semantic classes that are not associ-
ated with proper named entities (e.g., symptoms).2

ACE mention detection systems (e.g., (ACE, 2007;
ACE, 2008)) can label noun phrases that are asso-
ciated with 5-7 semantic classes and are typically
trained with supervised learning. Recently, (Huang
and Riloff, 2010) developed a bootstrapping tech-
nique that induces a semantic tagger from unanno-
tated texts. We use their system in our ensemble.

There has also been work on extracting semantic
class members from the Web (e.g., (Paşca, 2004; Et-
zioni et al., 2005; Kozareva et al., 2008; Carlson et
al., 2009)). This line of research is fundamentally
different from ours because these techniques benefit
from the vast repository of information available on
the Web and are therefore designed to harvest a wide
swath of general-purpose semantic information. Our
research is aimed at acquiring domain-specific se-
mantic dictionaries using a collection of documents
representing a specialized domain.

3 Ensemble-based Semantic Lexicon
Induction

3.1 Motivation

Our research combines three fundamentally differ-
ent techniques into an ensemble-based bootstrap-
ping framework for semantic lexicon induction:
pattern-based dictionary induction, contextual se-
mantic tagging, and coreference resolution. Our
motivation for using an ensemble of different tech-

2Some NER systems will handle special constructions such
as dates and monetary amounts.
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niques is driven by the observation that these meth-
ods exploit different types of information to infer se-
mantic class knowledge. The coreference resolver
uses features associated with coreference, such as
syntactic constructions (e.g., appositives, predicate
nominals), word overlap, semantic similarity, prox-
imity, etc. The pattern-based lexicon induction al-
gorithm uses corpus-wide statistics gathered from
the contexts of all instances of a word and compares
them with the contexts of known category members.
The contextual semantic tagger uses local context
windows around words and classifies each word in-
stance independently from the others.

Since each technique draws its conclusions from
different types of information, they represent inde-
pendent sources of evidence to confirm whether a
word belongs to a semantic class. Our hypothe-
sis is that, combining these different sources of ev-
idence in an ensemble-based learning framework
should produce better accuracy than using any one
method alone. Based on this intuition, we create
an ensemble-based bootstrapping framework that it-
eratively collects the hypotheses produced by each
individual learner and selects the words that were
hypothesized by at least 2 of the 3 learners. This
approach produces a bootstrapping process with
improved precision, both at the critical beginning
stages of the bootstrapping process and during sub-
sequent bootstrapping iterations.

3.2 Component Systems in the Ensemble

In the following sections, we describe each of the
component systems used in our ensemble.

3.2.1 Pattern-based Lexicon Induction
The first component of our ensemble is Basilisk

(Thelen and Riloff, 2002), which identifies nouns
belonging to a semantic class based on collec-
tive information over lexico-syntactic pattern con-
texts. The patterns are automatically generated us-
ing AutoSlog-TS (Riloff, 1996). Basilisk begins
with a small set of seed words for each seman-
tic class and a collection of unannotated documents
for the domain. In an iterative bootstrapping pro-
cess, Basilisk identifies candidate nouns, ranks them
based on its scoring criteria, selects the 5 most confi-
dent words for inclusion in the lexicon, and this pro-
cess repeats using the new words as additional seeds

in subsequent iterations.

3.2.2 Lexicon Induction with a Contextual
Semantic Tagger

The second component in our ensemble is a con-
textual semantic tagger (Huang and Riloff, 2010).
Like Basilisk, the semantic tagger also begins with
seed nouns, trains itself on a large collection of
unannotated documents using bootstrapping, and it-
eratively labels new instances. This tagger labels
noun instances and does not produce a dictionary.

To adapt it for our purposes, we ran the bootstrap-
ping process over the training texts to induce a se-
mantic classifier. We then applied the classifier to
the same set of training documents and compiled a
lexicon by collecting the set of nouns that were as-
signed to each semantic class. We ignored words
that were assigned different labels in different con-
texts to avoid conflicts in the lexicons. We used
the identical configuration described by (Huang and
Riloff, 2010) that applies a 1.0 confidence threshold
for semantic class assignment.

3.2.3 Coreference-Based Lexicon Construction
The third component of our ensemble is a new

method for semantic lexicon induction that exploits
coreference resolution. Members of a coreference
chain represent the same entity, so all references to
the entity should belong to the same semantic class.
For example, suppose “Paris” and “the city” are in
the same coreference chain. If we know that city is
a Fixed Location, then we can infer that Paris is also
a Fixed Location.

We induced lexicons from coreference chains us-
ing a similar bootstrapping framework that begins
with seed nouns and unannotated texts. Let S de-
note a set of semantic classes and W denote a set of
unknown words. For any s ∈ S and w ∈ W , let
Ns,w denote the number of instances of s in the cur-
rent lexicon3 that are coreferent with w in the text
corpus. Then we estimate the probability that word
w belongs to semantic class s as:

P (s|w) =
Ns,w∑

s′∈S Ns′,w

We hypothesize the semantic class of w,
SemClass(w) by:

SemClass(w) = arg maxs P (s|w)

3In the first iteration, the lexicon is initialized with the seeds.
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To ensure high precision for the induced lexicons,
we use a threshold of 0.5. All words with a prob-
ability above this thresold are added to the lexicon,
and the bootstrapping process repeats. Although the
coreference chains remain the same throughout the
process, the lexicon grows so more words in the
chains have semantic class labels as bootstrapping
progresses. Bootstrapping ends when fewer than 5
words are learned for each of the semantic classes.

Many noun phrases are singletons (i.e., they are
not coreferent with any other NPs), which limits the
set of words that can be learned using coreference
chains. Furthermore, coreference resolvers make
mistakes, so the accuracy of the induced lexicons
depends on the quality of the chains. For our experi-
ments, we used Reconcile (Stoyanov et al., 2010), a
freely available supervised coreference resolver.

3.3 Ensemble-based Bootstrapping
Framework

Figure 1 shows the architecture of our ensemble-
based bootstrapping framework. Initially, each lexi-
con only contains the seed nouns. Each component
hypothesizes a set of candidate words for each se-
mantic class, based on its own criteria. The word
lists produced by the three systems are then com-
pared, and we retain only the words that were hy-
pothesized with the same class label by at least two
of the three systems. The remaining words are dis-
carded. The consenus words are added to the lexi-
con, and the bootstrapping process repeats. As soon
as fewer than 5 words are learned for each of the
semantic classes, bootstrapping stops.

Figure 1: Ensemble-based bootstrapping framework

We ran each individual system with the same seed

words. Since bootstrapping typically yields the best
precision during the earliest stages, we used the se-
mantic tagger’s trained model immediately after its
first bootstrapping iteration. Basilisk generates 5
words per cycle, so we report results for lexicons
generated after 20 bootstrapping cycles (100 words)
and after 80 bootstrapping cycles (400 words).

3.4 Co-Training Framework
The three components in our ensemble use different
types of features (views) to identify semantic class
members, so we also experimented with co-training.
Our co-training model uses an identical framework,
but the hypotheses produced by the different meth-
ods are all added to the lexicon, so each method can
benefit from the hypotheses produced by the others.
To be conservative, each time we added only the 10
most confident words hypothesized by each method.

In contrast, the ensemble approach only adds
words to the lexicon if they are hypothesized by two
different methods. As we will see in Section 4.4,
the ensemble performs much better than co-training.
The reason is that the individual methods do not con-
sistently achieve high precision on their own. Con-
sequently, many mistakes are added to the lexicon,
which is used as training data for subsequent boot-
strapping. The benefit of the ensemble is that con-
sensus is required across two methods, which serves
as a form of cross-checking to boost precision and
maintain a high-quality lexicon.

4 Evaluation

4.1 Semantic Class Definitions
We evaluated our approach on nine semantic cate-
gories associated with disease outbreaks. The se-
mantic classes are defined below.

Animal: Mammals, birds, fish, insects and other
animal groups. (e.g., cow, crow, mosquito, herd)

4http://www.nlm.nih.gov/research/umls/
5http://www.maxmind.com/app/worldcities
6http://www.listofcountriesoftheworld.

com/
7http://names.mongabay.com/most_common_

surnames.htm
8http://www.sec.gov/rules/other/

4-460list.htm
9http://www.utexas.edu/world/univ/state/

10http://www.uta.fi/FAST/GC/usabacro.
html/
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Semantic External Word List Sources
Class
Animal WordNet: [animal], [mammal family], [animal group]
Body Part WordNet: [body part], [body substance], [body covering], [body waste]
DisSym WordNet: [symptom], [physical condition], [infectious agent]; Wikipedia: common and infectious

diseases, symptoms, disease acronyms; UMLS Thesaurus4: diseases, abnormalities, microorganisms
(Archaea, Bacteria, Fungus, Virus)

Fixed Loc. WordNet: [geographic area], [land], [district, territory], [region]; Wiki:US-states; Other:cities5, countries6

Human WordNet: [person], [people], [personnel]; Wikipedia: people names, office holder titles, nationalities,
occupations, medical personnels & acronyms, players; Other: common people names & surnames7

Org WordNet: [organization], [assembly]; Wikipedia: acronyms in healthcare, medical organization acronyms,
news agencies, pharmaceutical companies; Other: companies8, US-universities9, organizations10

Plant & Food WordNet: [food], [plant, flora], [plant part]
Temp. Ref. WordNet: [time], [time interval], [time unit],[time period]

TimeBank: TimeBank1.2 (Pustejovsky et al., 2003) TIMEX3 expressions
Trans. Struct. WordNet: [structure, construction], [road, route], [facility, installation], [work place]

Table 1: External Word List Sources

Body Part: A part of a human or animal body, in-
cluding organs, bodily fluids, and microscopic parts.
(e.g., hand, heart, blood, DNA)

Diseases and Symptoms (DisSym): Diseases
and symptoms. We also include fungi and disease
carriers because, in this domain, they almost always
refer to the disease that they carry. (e.g. FMD, An-
thrax, fever, virus)

Fixed Location (Fixed Loc.): Named locations,
including countries, cities, states, etc. We also in-
clude directions and well-defined geographic areas
or geo-political entities. (e.g., Brazil, north, valley)

Human: All references to people, including
names, titles, professions, and groups. (e.g., John,
farmer, traders)

Organization (Org.): An entity that represents a
group of people acting as a single recognized body,
including named organizations, departments, gov-
ernments, and their acronyms. (e.g., department,
WHO, commission, council)

Temporal Reference (Temp. Ref.): Any refer-
ence to a time or duration, including months, days,
seasons, etc. (e.g., night, May, summer, week)

Plants & Food11: plants, plant parts, or any type
of food. (e.g., seed, mango, beef, milk)

Transient Structures (Trans. Struct.): Transient
physical structures. (e.g., hospital, building, home)

Additionally, we defined a Miscellaneous class
for words that do not belong to any of the other cat-

11We merged plants and food into a single category as it is
difficult to separate them because many food items are plants.

egories. (e.g., output, information, media, point).

4.2 Data Set

We ran our experiments on ProMED-mail12 articles.
ProMED-mail is an internet based reporting system
for infectious disease outbreaks, which can involve
people, animals, and plants grown for food. Our
ProMED corpus contains 5004 documents. We used
4959 documents as (unannotated) training data for
bootstrapping. For the remaining 45 documents,
we used 22 documents to train the coreference re-
solver (Reconcile) and 23 documents as our test set.
The coreference training set contains MUC-7 style
(Hirschman, 1997) coreference annotations13. Once
trained, Reconcile was applied to the 4959 unanno-
tated documents to produce coreference chains.

4.3 Gold Standard Semantic Class Annotations

To obtain gold standard annotations for the test set,
two annotators assigned one of the 9 semantic class
labels, or Miscellaneous, to each head noun based on
its surrounding context. A noun with multiple senses
could get assigned different semantic class labels in
different contexts. The annotators first annotated 13
of the 23 documents, and discussed the cases where
they disagreed. Then they independelty annotated

12http://www.promedmail.org/
13We omit the details of the coreference annotations since

it is not the focus of this research. However, the annotators
measured their agreement on 10 documents and achieved MUC
scores of Precision = .82, Recall = .86, F-measure = .84.
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the remaining 10 documents and measured inter-
annotator agreement with Cohen’s Kappa (κ) (Car-
letta, 1996). The κ score for these 10 documents was
0.91, indicating a high level of agreement. The an-
notators then adjudicated their disagreements on all
23 documents to create the gold standard.

4.4 Dictionary Evaluation

To assess the quality of the lexicons, we estimated
their accuracy by compiling external word lists
from freely available sources such as Wikipedia14

and WordNet (Miller, 1990). Table 1 shows the
sources that we used, where the bracketed items re-
fer to WordNet hypernym categories. We searched
each WordNet hypernym tree (also, instance-
relationship) for all senses of the word. Addition-
ally, we collected the manually labeled words in our
test set and included them in our gold standard lists.

Since the induced lexicons contain individual
nouns, we extracted only the head nouns of multi-
word phrases in the external resources. This
can produce incorrect entries for non-compositional
phrases, but we found this issue to be relatively rare
and we manually removed obviously wrong entries.
We adopted a conservative strategy and assumed that
any lexicon entries not present in our gold standard
lists are incorrect. But we observed many correct en-
tries that were missing from the external resources,
so our results should be interpreted as a lower bound
on the true accuracy of the induced lexicons.

We generated lexicons for each method sepa-
rately, and also for the ensemble and co-training
models. We ran Basilisk for 100 iterations (500
words). We refer to a Basilisk lexicon of size N
using the notation B[N ]. For example, B400 refers
to a lexicon containing 400 words, which was gen-
erated from 80 bootstrapping cycles. We refer to the
lexicon obtained from the semantic tagger as ST Lex.

Figure 2 shows the dictionary evaluation results.
We plotted Basilisk’s accuracy after every 5 boot-
strapping cycles (25 words). For ST Lex, we sorted
the words by their confidence scores and plotted the
accuracy of the top-ranked words in increments of
50. The plots for Coref, Co-Training, and Ensemble
B[N] are based on the lexicons produced after each
bootstrapping cycle.

14www.wikipedia.org/

The ensemble-based framework yields consis-
tently better accuracy than the individual methods
for Animal, Body Part, Human and Temporal Refer-
ence, and similar if not better for Disease & Symp-
tom, Fixed Location, Organization, Plant & Food.
However, relying on consensus from multiple mod-
els produce smaller dictionaries. Big dictionaries are
not always better than small dictionaries in practice,
though. We believe, it matters more whether a dic-
tionary contains the most frequent words for a do-
main, because they account for a disproportionate
number of instances. Basilisk, for example, often
learns infrequent words, so its dictionaries may have
high accuracy but often fail to recognize common
words. We investigate this issue in the next section.

4.5 Instance-based Tagging Evaluation

We also evaluated the effectiveness of the induced
lexicons with respect to instance-based semantic
tagging. Our goal was to determine how useful the
dictionaries are in two respects: (1) do the lexicons
contain words that appear frequently in the domain,
and (2) is dictionary look-up sufficient for instance-
based labeling? Our bootstrapping processes en-
force a constraint that a word can only belong to one
semantic class, so if polysemy is common, then dic-
tionary look-up will be problematic.15

The instance-based evaluation assigns a semantic
label to each instance of a head noun. When using a
lexicon, all instances of the same noun are assigned
the same semantic class via dictionary look-up. The
semantic tagger (SemTag), however, is applied di-
rectly since it was designed to label instances.

Table 2 presents the results. As a baseline, the
W.Net row shows the performance of WordNet for
instance tagging. For words with multiple senses,
we only used the first sense listed in WordNet.
The Seeds row shows the results when perform-
ing dictionary look-up using only the seed words.
The remaining rows show the results for Basilisk
(B100 and B400), coreference-based lexicon induc-
tion (Coref), lexicon induction using the semantic
tagger (ST Lex), and the original instance-based tag-
ger (SemTag). The following rows show the results
for co-training (after 4 iterations and 20 iterations)

15Only coarse polysemy across semantic classes is an issue
(e.g., “plant” as a living thing vs. a factory).
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Figure 2: Dictionary Evaluation Results

and for the ensemble (using Basilisk size 100 and
size 400). Table 3 shows the micro & macro average
results across all semantic categories.

Table 3 shows that the dictionaries produced by
the Ensemble w/B100 achieved better results than
the individual methods and co-training with an F
score of 80%. Table 2 shows that the ensemble
achieved better performance than the other methods
for 4 of the 9 classes, and was usually competitive
on the remaining 5 classes. WordNet (W.Net) con-
sistently produced high precision, but with compar-
atively lower recall, indicating that WordNet does
not have sufficient coverage for this domain.

4.6 Analysis

Table 4 shows the performance of our ensemble
when using only 2 of the 3 component methods.

Removing any one method decreases the average
F-measure by at least 3-5%. Component pairs
that include induced lexicons from coreference (ST
Lex+Coref and B100+Coref) yield high precision
but low recall. The component pair ST Lex+B100
produces higher recall but with slightly lower accu-
racy. The ensemble framework boosted recall even
more, while maintaining the same precision.

We observe that some of the smallest lexicons
produced the best results for instance-based seman-
tic tagging (e.g., Organization). Our hypothesis is
that consensus decisions across different methods
helps to promote the acquisition of high frequency
domain words, which are crucial to have in the dic-
tionary. The fact that dictionary look-up performed
better than an instance-based semantic tagger also
suggests that coarse polysemy (different senses that
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Method Animal Body DisSym Fixed Human Org. Plant & Temp. Trans.
Part Loc. Food Ref. Struct.

P R F P R F P R F P R F P R F P R F P R F P R F P R F
Individual Methods

W.Net 92 88 90 93 59 72 99 77 87 86 58 69 83 55 66 86 44 59 65 79 71 93 85 89 85 64 73
Seeds 100 54 70 92 55 69 100 59 74 95 10 18 100 22 36 100 41 58 100 61 76 100 52 69 100 09 17
B100 99 77 86 94 73 82 100 66 80 96 23 37 96 31 47 91 58 71 82 64 72 68 83 75 67 22 33
B400 94 90 92 51 86 64 100 69 81 97 35 51 91 51 65 79 77 78 46 82 59 49 94 64 83 78 80
Coref 90 67 77 92 55 69 66 83 73 65 46 54 57 50 53 54 68 60 81 61 69 60 74 67 45 09 15
ST Lex 94 89 91 68 77 72 80 91 85 91 74 82 79 43 55 84 62 71 51 68 58 73 91 81 82 49 61
SemTag 91 90 90 52 68 59 77 90 83 91 78 84 81 48 60 80 63 70 43 82 56 77 93 84 83 53 64

Co-Training
pass4 64 76 70 67 73 70 91 79 85 91 39 54 98 44 61 83 69 76 43 68 53 73 94 82 49 36 42
pass20 60 89 71 56 91 69 88 91 90 83 64 72 92 54 68 72 77 74 28 71 40 65 98 78 46 40 43

Ensembles
w/B100 93 94 94 74 77 76 93 81 86 92 73 81 94 55 70 90 78 84 56 89 68 55 94 70 79 75 77
w/B400 94 93 93 65 91 75 96 87 91 89 75 81 92 56 70 79 79 79 47 86 61 53 94 68 63 55 58

Table 2: Instance-based Semantic Tagging Results (P = Precision, R = Recall, F = F-measure)

Method Micro Average Macro Average
P R F P R F

Individual Systems
W.Net 88 66 75 87 68 76
Seeds 99 35 52 99 40 57
B100 89 50 64 88 55 68
B400 77 66 71 77 74 75
Coref 65 59 62 68 57 62
ST Lex 82 72 77 78 72 75
SemTag 80 74 77 75 74 74

Co-Training
pass4 77 61 68 73 64 68
pass20 69 74 71 65 75 70

Ensembles
w/B100 83 77 80 81 80 80
w/B400 79 78 78 75 79 77

Table 3: Micro & Macro Average for Semantic Tagging

cut across semantic classes) is a relatively minor is-
sue within a specialized domain.

5 Conclusions

Our research combined three diverse methods
for semantic lexicon induction in a bootstrapped
ensemble-based framework, including a novel ap-
proach for lexicon induction based on coreference
chains. Our ensemble-based approach performed
better than the individual methods, in terms of
both dictionary accuracy and instance-based seman-
tic tagging. In future work, we believe this ap-
proach could be enhanced further by adding new
types of techniques to the ensemble and by investi-

Method Micro Average Macro Average
P R F P R F

Ensemble with component pairs
ST Lex+Coref 92 59 72 92 57 70
B100+Coref 92 40 56 94 44 60
ST Lex+B100 82 69 75 81 75 77

Ensemble with all components
ST Lex+B100+Coref 83 77 80 81 80 80

Table 4: Ablation Study of the Ensemble Framework for
Semantic Tagging

gating better methods for estimating the confidence
scores from the individual components.
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Abstract

We present a novel technique for jointly predict-
ing semantic arguments for lexical predicates. The
task is to find the best matching between seman-
tic roles and sentential spans, subject to struc-
tural constraints that come from expert linguistic
knowledge (e.g., in the FrameNet lexicon). We
formulate this task as an integer linear program
(ILP); instead of using an off-the-shelf tool to
solve the ILP, we employ a dual decomposition
algorithm, which we adapt for exact decoding via
a branch-and-bound technique. Compared to a
baseline that makes local predictions, we achieve
better argument identification scores and avoid all
structural violations. Runtime is nine times faster
than a proprietary ILP solver.

1 Introduction

Semantic knowledge is often represented declara-
tively in resources created by linguistic experts. In
this work, we strive to exploit such knowledge in
a principled, unified, and intuitive way. An ex-
ample resource where a wide variety of knowledge
has been encoded over a long period of time is the
FrameNet lexicon (Fillmore et al., 2003),1 which
suggests an analysis based on frame semantics (Fill-
more, 1982). This resource defines hundreds of
semantic frames. Each frame represents a gestalt
event or scenario, and is associated with several se-
mantic roles, which serve as participants in the event
that the frame signifies (see Figure 1 for an exam-
ple). Along with storing the above data, FrameNet
also provides a hierarchy of relationships between
frames, and semantic relationships between pairs of
roles. In prior NLP research using FrameNet, these
interactions have been largely ignored, though they
1http://framenet.icsi.berkeley.edu

have the potential to improve the quality and consis-
tency of semantic analysis.

In this paper, we present an algorithm that finds
the full collection of arguments of a predicate given
its semantic frame. Although we work within the
conventions of FrameNet, our approach is general-
izable to other semantic role labeling (SRL) frame-
works. We model this argument identification task
as constrained optimization, where the constraints
come from expert knowledge encoded in a lexi-
con. Following prior work on PropBank-style SRL
(Kingsbury and Palmer, 2002) that dealt with simi-
lar constrained problems (Punyakanok et al., 2004;
Punyakanok et al., 2008, inter alia), we incorporate
this declarative knowledge in an integer linear pro-
gram (ILP).

Because general-purpose ILP solvers are propri-
etary and do not fully exploit the structure of the
problem, we turn to a class of optimization tech-
niques called dual decomposition (Komodakis et
al., 2007; Rush et al., 2010; Martins et al., 2011a).
We derive a modular, extensible, parallelizable ap-
proach in which semantic constraints map not just
to declarative components of the algorithm, but also
to procedural ones, in the form of “workers.” While
dual decomposition algorithms only solve a relax-
ation of the original problem, we make a novel con-
tribution by wrapping the algorithm in a branch-and-
bound search procedure, resulting in exact solutions.

We experimentally find that our algorithm
achieves accuracy comparable to a state-of-the-art
system, while respecting all imposed linguistic con-
straints. In comparison to inexact beam search that
violates many of these constraints, our exact decoder
has less than twice the runtime; furthermore, it de-
codes nine times faster than CPLEX, a state-of-the-
art, proprietary, general-purpose exact ILP solver.
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Austria , once expected to waltz smoothly into the European Union , is elbowing its partners , 

treading on toes and pogo-dancing in a most un-Viennese manner .

SELF_MOTION COLLABORATION

CONDUCT
GoalManner Partner_1 Partner_2

Manner

Agent

Self_mover

Figure 1: An example sentence from the annotations released as part of FrameNet 1.5 with three predicates marked in
bold. Each predicate has its evoked semantic frame marked above it, in a distinct color. For each frame, its semantic
roles are shown in the same color, and the spans fulfilling the roles are underlined. For example, manner evokes the
CONDUCT frame, and has the Agent and Manner roles fulfilled by Austria and most un-Viennese respectively.

2 Collective Argument Identification

Here, we take a declarative approach to modeling
argument identification using an ILP and relate our
formulation to prior work in shallow semantic pars-
ing. We show how knowledge specified in a lin-
guistic resource can be used to derive the constraints
used in our ILP. Finally, we draw connections of our
specification to graphical models, a popular formal-
ism in AI, and describe how the constraints can be
treated as factors in a factor graph.

2.1 Declarative Specification
Let us denote a predicate by t and the semantic
frame it evokes within a sentence x by f . In this
work, we assume that the semantic frame f is given,
which is traditionally the case in controlled exper-
iments used to evaluate SRL systems (Màrquez et
al., 2008). Given the semantic frame of a predicate,
the semantic roles that might be filled are assumed
to be given by the lexicon (as in PropBank and
FrameNet). Let the set of roles associated with the
frame f be Rf . In sentence x, the set of candidate
spans of words that might fill each role is enumer-
ated, usually following an overgenerating heuristic;2

let this set of spans be St. We include the null span ∅
in St; connecting it to a role r ∈ Rf denotes that the
role is not overt. Our approach assumes a scoring
function that gives a strength of association between
roles and candidate spans. For each role r ∈ Rf and
span s ∈ St, this score is parameterized as:

c(r, s) = ψ · h(t, f,x, r, s), (1)

where ψ are model weights and h is a feature func-
tion that looks at the predicate t, the evoked frame
f , sentence x, and its syntactic analysis, along with
2Here, as in most SRL literature, role fillers are assumed to be
expressed as contiguous spans, though such an assumption is
easy to relax in our framework.

r and s. The SRL literature provides many feature
functions of this form and many ways to use ma-
chine learning to acquire ψ. Our presented method
does not make any assumptions about the score ex-
cept that it has the form in Eq. 1.

We define a vector z of binary variables zr,s ∈
{0, 1} for every role and span pair. We have that:
z ∈ {0, 1}d, where d = |Rf | × |St|. zr,s = 1 means
that role r is filled by span s. Given the binary z vec-
tor, it is straightforward to recover the collection of
arguments by checking which components zr,s have
an assignment of 1; we use this strategy to find argu-
ments, as described in §4.2 (strategies 4 and 6). The
joint argument identification task can be represented
as a constrained optimization problem:

maximize
∑

r∈Rf

∑
s∈St

c(r, s)× zr,s
with respect to z ∈ {0, 1}d

such that Az ≤ b. (2)

The last line imposes constraints on the mapping be-
tween roles and spans; these are motivated on lin-
guistic grounds and are described next.3

Uniqueness: Each role r is filled by at most one
span in St. This constraint can be expressed by:

∀r ∈ Rf ,
∑

s∈St
zr,s = 1. (3)

There are O(|Rf |) such constraints. Note that since
St contains the null span ∅, non-overt roles are also
captured using the above constraints. Such a con-
straint is used extensively in prior literature (Pun-
yakanok et al., 2008, §3.4.1).
Overlap: SRL systems commonly constrain roles
to be filled by non-overlapping spans. For example,
Toutanova et al. (2005) used dynamic programming
over a phrase structure tree to prevent overlaps be-
tween arguments, and Punyakanok et al. (2008) used
3Note that equality constraints a ·z = b can be transformed into
double-side inequalities a · z ≤ b and −a · z ≤ −b.
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constraints in an ILP to respect this requirement. In-
spired by the latter, we require that each input sen-
tence position of x be covered by at most one argu-
ment. For each role r ∈ Rf , we define:

Gr(i) = {s | s ∈ St, s covers position i in x}. (4)

We can define our overlap constraints in terms of Gr
as follows, for every sentence position i:

∀i ∈ {1, . . . , |x|},
∑

r∈Rf

∑
s∈Gr(i) zr,s ≤ 1, (5)

This gives us O(|x|) constraints.
Pairwise “Exclusions”: For many predicate
classes, there are pairs of roles forbidden to appear
together in the analysis of a single predicate token.
Consider the following two sentences:

A blackberry
Entity 1

resembles a loganberry
Entity 2

. (6)

Most berries
Entities

resemble each other. (7)

Consider the uninflected predicate resemble in
both sentences, evoking the same meaning. In exam-
ple 6, two roles, which we call Entity 1 and Entity 2
describe two entities that are similar to each other.
In the second sentence, a phrase fulfills a third role,
called Entities, that collectively denotes some ob-
jects that are similar. It is clear that the roles Entity 1
and Entities cannot be overt for the same predicate
at once, because the latter already captures the func-
tion of the former; a similar argument holds for the
Entity 2 and Entities roles. We call this phenomenon
the “excludes” relationship. Let us define a set of
pairs fromRf that have this relationship:

Exclf = {(ri, rj) | ri and rj exclude each other}

Using the above set, we define the constraint:
∀(ri, rj) ∈ Exclf , zri,∅ + zrj ,∅ ≥ 1 (8)

In English: if both roles are overt in a parse, this
constraint will be violated, and we will not respect
the “excludes” relationship between the pair. If nei-
ther or only one of the roles is overt, the constraint
is satisfied. The total number of such constraints is
O(|Exclf |), which is the number of pairwise “ex-
cludes” relationships of a given frame.
Pairwise “Requirements”: The sentence in exam-
ple 6 illustrates another kind of constraint. The pred-
icate resemble cannot have only one of Entity 1 and
Entity 2 as roles in text. For example,

* A blackberry
Entity 1

resembles. (9)

Enforcing the overtness of two roles sharing this
“requires” relationship is straightforward. We define
the following set for a frame f :

Reqf = {(ri, rj) | ri and rj require each other}

This leads to constraints of the form

∀(ri, rj) ∈ Reqf , zri,∅ − zrj ,∅ = 0 (10)

If one role is overt (or absent), so must the other
be. A related constraint has been used previously
in the SRL literature, enforcing joint overtness re-
lationships between core arguments and referential
arguments (Punyakanok et al., 2008, §3.4.1), which
are formally similar to the example above.4

Integer Linear Program and Relaxation: Plug-
ging the constraints in Eqs. 3, 5, 8 and 10 into the
last line of Eq. 2, we have the argument identifica-
tion problem expressed as an ILP, since the indica-
tor variables z are binary. In this paper, apart from
the ILP formulation, we will consider the follow-
ing relaxation of Eq. 2, which replaces the binary
constraint z ∈ {0, 1}d by a unit interval constraint
z ∈ [0, 1]d, yielding a linear program:

maximize
∑

r∈Rf

∑
s∈St

c(r, s)× zr,s
with respect to z ∈ [0, 1]d

such that Az ≤ b. (11)

There are several LP and ILP solvers available,
and a great deal of effort has been spent by the
optimization community to devise efficient generic
solvers. An example is CPLEX, a state-of-the-art
solver for mixed integer programming that we em-
ploy as a baseline to solve the ILP in Eq. 2 as well
as its LP relaxation in Eq. 11. Like many of the best
implementations, CPLEX is proprietary.
4 We noticed in the annotated data, in some cases, the “requires”
constraint is violated by the FrameNet annotators. This hap-
pens mostly when one of the required roles is absent in the
sentence containing the predicate, but is rather instantiated in
an earlier sentence; see Gerber and Chai (2010). We apply the
hard constraint in Eq. 10, though extending our algorithm to
seek arguments outside the sentence is straightforward (Chen
et al., 2010).
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2.2 Linguistic Constraints from FrameNet
Although enforcing the four different sets of con-
straints above is intuitive from a general linguistic
perspective, we ground their use in definitive lin-
guistic information present in the FrameNet lexicon
(Fillmore et al., 2003). FrameNet, along with lists
of semantic frames, associated semantic roles, and
predicates that could evoke the frames, gives us a
small number of annotated sentences with frame-
semantic analysis. From the annotated data, we
gathered that only 3.6% of the time is a role instanti-
ated multiple times by different spans in a sentence.
This justifies the uniqueness constraint enforced by
Eq. 3. Use of such a constraint is also consistent
with prior work in frame-semantic parsing (Johans-
son and Nugues, 2007; Das et al., 2010a). Similarly,
we found that in the annotations, no arguments over-
lapped with each other for a given predicate. Hence,
the overlap constraints in Eq. 5 are also justified.

Our third and fourth sets of constraints, presented
in Eqs. 8 and 10, come from FrameNet, too; more-
over, they are explicitly mentioned in the lexicon.
Examples 6–7 are instances where the predicate re-
semble evokes the SIMILARITY frame, which is de-
fined in FrameNet as: “Two or more distinct en-
tities, which may be concrete or abstract objects
or types, are characterized as being similar to each
other. Depending on figure/ground relations, the
entities may be expressed in two distinct frame el-
ements and constituents, Entity 1 and Entity 2, or
jointly as a single frame element and constituent,
Entities.”

For this frame, the lexicon lists several roles other
than the three roles we have already observed, such
as Dimension (the dimension along which the enti-
ties are similar), Differentiating fact (a fact that re-
veals how the concerned entities are similar or dif-
ferent), and so forth. Along with the roles, FrameNet
also declares the “excludes” and “requires” relation-
ships noted in our discussion in Section 2.1. The
case of the SIMILARITY frame is not unique; in Fig. 1,
the frame COLLABORATION, evoked by the predicate
partners, also has two roles Partner 1 and Partner 2
that share the “requires” relationship. In fact, out
of 877 frames in FrameNet 1.5, the lexicon’s latest
edition, 204 frames have at least a pair of roles that
share the “excludes” relationship, and 54 list at least

a pair of roles that share the “requires” relationship.

2.3 Constraints as Factors in a Graphical Model
The LP in Eq. 11 can be represented as a maxi-
mum a posteriori (MAP) inference problem in an
undirected graphical model. In the factor graph,
each component of z corresponds to a binary vari-
able, and each instantiation of a constraint in
Eqs. 3, 5, 8 and 10 corresponds to a factor. Smith
and Eisner (2008) and Martins et al. (2010) used
such a representation to impose constraints in a de-
pendency parsing problem; the latter discussed the
equivalence of linear programs and factor graphs for
representing discrete optimization problems. Each
of our constraints take standard factor forms we can
describe using the terminology of Smith and Eisner
(2008) and Martins et al. (2010). The uniqueness
constraint in Eq. 3 corresponds to an XOR factor,
while the overlap constraint in Eq. 5 corresponds to
an ATMOSTONE factor. The constraints in Eq. 8
enforcing the “excludes” relationship can be repre-
sented with an OR factor. Finally, each “requires”
constraints in Eq. 10 is equivalent to an XORWITH-
OUTPUT factor.

In the following section, we describe how we ar-
rive at solutions for the LP in Eq. 11 using dual de-
composition, and how we adapt it to efficiently re-
cover the exact solution of the ILP (Eq. 2), without
the need of an off-the-shelf ILP solver.

3 “Augmented” Dual Decomposition

Dual decomposition methods address complex op-
timization problems in the dual, by dividing them
into simple worker problems, which are repeat-
edly solved until a consensus is reached. The
most simple technique relies on the subgradient
algorithm (Komodakis et al., 2007; Rush et al.,
2010); as an alternative, an augmented Lagrangian
technique was proposed by Martins et al. (2011a,
2011b), which is more suitable when there are many
small components—commonly the case in declara-
tive constrained problems, such as the one at hand.
Here, we present a brief overview of the latter, which
is called Dual Decomposition with the Alternating
Direction Method of Multipliers (AD3).

Let us start by establishing some notation. Let
m ∈ {1, . . . ,M} index a factor, and denote by i(m)
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the vector of indices of variables linked to that fac-
tor. (Recall that each factor represents the instantia-
tion of a constraint.) We introduce a new set of vari-
ables, u ∈ Rd, called the “witness” vector. We split
the vector z into M overlapping pieces z1, . . . , zM ,
where each zm ∈ [0, 1]|i(m)|, and add M constraints
zm = ui(m) to impose that all the pieces must agree
with the witness (and therefore with each other).
Each of the M constraints described in §2 can be
encoded with its own matrix Am and vector bm
(which jointly define A and b in Eq. 11). For conve-
nience, we denote by c ∈ Rd the score vector, whose
components are c(r, s), for each r ∈ Rf and s ∈ St
(Eq. 1), and define the following scores for the mth
subproblem:

cm(r, s) = δ(r, s)−1c(r, s), ∀(r, s) ∈ i(m), (12)

where δ(r, s) is the number of constraints that in-
volve role r and span s. Note that according to this
definition, c · z =

∑M
m=1 cm · zm. We can rewrite

the LP in Eq. 11 in the following equivalent form:

maximize
M∑
m=1

cm · zm

with respect to u ∈ Rd, zm ∈ [0, 1]i(m), ∀m
such that Amzm ≤ bm, ∀m

zm = ui(m), ∀m. (13)

We next augment the objective with a quadratic
penalty term ρ

2

∑M
m=1 ‖zm−ui(m)‖2 (for some ρ >

0). This does not affect the solution of the problem,
since the equality constraints in the last line force
this penalty to vanish. However, as we will see, this
penalty will influence the workers and will lead to
faster consensus. Next, we introduce Lagrange mul-
tipliers λm for those equality constraints, so that the
augmented Lagrangian function becomes:

Lρ(z,u,λ) =

M∑
m=1

(cm + λm) · zm − λm · ui(m)

−ρ
2
‖zm − ui(m)‖2. (14)

The AD3 algorithm seeks a saddle point of Lρ by
performing alternating maximization with respect to
z and u, followed by a gradient update of λ. The re-
sult is shown as Algorithm 1. Like dual decomposi-
tion approaches, it repeatedly performs a broadcast
operation (the zm-updates, which can be done in pa-

Algorithm 1 AD3 for Argument Identification

1: input:
• role-span matching scores c := 〈c(r, s)〉r,s,
• structural constraints 〈Am,bm〉Mm=1,
• penalty ρ > 0

2: initialize u uniformly (i.e., u(r, s) = 0.5, ∀r, s)
3: initialize each λm = 0, ∀m ∈ {1, . . . ,M}
4: initialize t← 1
5: repeat
6: for each m = 1, . . . ,M do
7: make a zm-update by finding the best scoring

analysis for the mth constraint, with penalties
for deviating from the consensus u:

zt+1
m ← arg max

Amzm≤bm

(cm+λm)·zm−
ρ

2
‖zm−ui(m)‖2

8: end for
9: make a u-update by updating the consensus solu-

tion, averaging z1, . . . , zm:

ut+1(r, s)← 1

δ(r, s)

∑
m:(r,s)∈i(m)

zt+1
m (r, s)

10: make a λ-update:

λt+1
m ← λt

m − ρ(z(t+1)
m − u

(t+1)
i(m) ), ∀m

11: t← t+ 1
12: until convergence.
13: output: relaxed primal solution u∗ and dual solution

λ∗. If u∗ is integer, it will encode an assignment of
spans to roles. Otherwise, it will provide an upper
bound of the true optimum.

-rallel, one constraint per “worker”) and a gather op-
eration (the u- and λ-updates). Each u-operation
can be seen as an averaged voting which takes into
consideration each worker’s results.

Like in the subgradient method, theλ-updates can
be regarded as price adjustments, which will affect
the next round of zm-updates. The only difference
with respect to the subgradient method (Rush et al.,
2010) is that each subproblem involved in a zm-
update also has a quadratic penalty that penalizes de-
viations from the previous average voting; it is this
term that accelerates consensus and therefore con-
vergence. Martins et al. (2011b) also provide stop-
ping criteria for the iterative updates using primal
and dual residuals that measure convergence; we re-
fer the reader to that paper for details.

A key attraction of this algorithm is all the com-
ponents of the declarative specification remain intact
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in the procedural form. Each worker corresponds
exactly to one constraint in the ILP, which corre-
sponds to one linguistic constraint. There is no need
to work out when, during the procedure, each con-
straint might have an effect, as in beam search.

Solving the subproblems. In a different appli-
cation, Martins et al. (2011b, §4) showed how
to solve each zm-subproblem associated with the
XOR, XORWITHOUTPUT and OR factors in runtime
O(|i(m)| log |i(m)|). The only subproblem that re-
mains is that of the ATMOSTONE factor, to which
we now turn. The problem can be transformed into
that of projecting a point (a1, . . . , ak) onto the set

Sm =
{
zm ∈ [0, 1]|i(m)| ∣∣ ∑|i(m)|

j=1 zm,j ≤ 1
}
.

This projection can be computed as follows:
1. Clip each aj into the interval [0, 1] (i.e., set
a′j = min{max{aj , 0}, 1}). If the result satisfies∑k

j=1 a
′
j ≤ 1, then return (a′1, . . . , a

′
k).

2. Otherwise project (a1, . . . , ak) onto the probabil-
ity simplex:{

zm ∈ [0, 1]|i(m)| ∣∣ ∑|i(m)|
j=1 zm,j = 1

}
.

This is precisely the XOR subproblem and can be
solved in time O(|i(m)| log |i(m)|).

Caching. As mentioned by Martins et al. (2011b),
as the algorithm comes close to convergence, many
subproblems become unchanged and their solutions
can be cached. By caching the subproblems, we
managed to reduce runtime by about 60%.

Exact decoding. Finally, it is worth recalling that
AD3, like other dual decomposition algorithms,
solves a relaxation of the actual problem. Although
we have observed that the relaxation is often tight—
cf. §4—this is not always the case. Specifically, a
fractional solution may be obtained, which is not in-
terpretable as an argument, and therefore it is de-
sirable to have a strategy to recover the exact solu-
tion. Two observations are noteworthy. First, the
optimal value of the relaxed problem (Eq. 11) pro-
vides an upper bound to the original problem (Eq. 2).
This is because Eq. 2 has the additional integer con-
straint on the variables. In particular, any feasible
dual point provides an upper bound to the original

problem’s optimal value. Second, during execution
of the AD3 algorithm, we always keep track of a se-
quence of feasible dual points. Therefore, each it-
eration constructs tighter and tighter upper bounds.
With this machinery, we have all that is necessary for
implementing a branch-and-bound search that finds
the exact solution of the ILP. The procedure works
recursively as follows:
1. Initialize L = −∞ (our best value so far).
2. Run Algorithm 1. If the solution u∗ is integer, re-

turn u∗ and set L to the objective value. If along
the execution we obtain an upper bound less than
L, then Algorithm 1 can be safely stopped and
return “infeasible”—this is the bound part. Oth-
erwise (if u∗ is fractional) go to step 3.

3. Find the “most fractional” component of u∗ (call
it u∗j ) and branch: constrain uj = 0 and go to
step 2, eventually obtaining an integer solution u∗0
or infeasibility; and then constrain uj = 1 and do
the same, obtaining u∗1. Return the u∗ ∈ {u∗0,u∗1}
that yields the largest objective value.

Although this procedure may have worst-case expo-
nential runtime, we found it empirically to rapidly
obtain the exact solution in all test cases.

4 Experiments and Results

4.1 Dataset, Preprocessing, and Learning
In our experiments, we use FrameNet 1.5, which
contains a lexicon of 877 frames and 1,068 role
labels, and 78 documents with multiple predicate-
argument annotations (a superset of the SemEval
shared task dataset; Baker et al., 2007). We used the
same split as Das and Smith (2011), with 55 doc-
uments for training (containing 19,582 frame anno-
tations) and 23 for testing (with 4,458 annotations).
We randomly selected 4,462 predicates in the train-
ing set as development data. The raw sentences in all
the training and test documents were preprocessed
using MXPOST (Ratnaparkhi, 1996) and the MST
dependency parser (McDonald et al., 2005).

The state-of-the-art system for this task is SE-
MAFOR, an open source tool (Das et al., 2010a)5

that provides a baseline benchmark for our new al-
gorithm. We use the components of SEMAFOR
as-is to define the features h and train the weights
ψ used in the scoring function c. We also use its
5http://www.ark.cs.cmu.edu/SEMAFOR
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heuristic mechanism to find potential spans St for a
given predicate t. SEMAFOR learns weights using
`2-penalized log-likelihood; we augmented its dev
set-tuning procedure to tune both the regularization
strength and the AD3 penalty strength ρ. We ini-
tialize ρ = 0.1 and follow Martins et al. (2011b)
in dynamically adjusting it. Note that we do not use
SEMAFOR’s automatic frame identification compo-
nent in our presented experiments, as we assume that
we have gold frames on each predicate. This lets us
compare the different argument identification meth-
ods in a controlled fashion.

4.2 Decoding Strategies
We compare the following algorithms:
1. Local: this is a naı̈ve argument identification

strategy that selects the best span for each role r,
according to the score function c(r, s). It ignores
all constraints except “uniqueness.”

2. SEMAFOR: this strategy employs greedy beam
search to eliminate overlaps between predicted ar-
guments (Das et al., 2010b, Algorithm 1). Note
that it does not try to respect the “excludes” and
“requires” constraints between pairs of roles. The
default size of the beam in SEMAFOR was a safe
10,000; this resulted in extremely slow decoding
times. We also tried beam sizes of 100 and 2
(the latter being the smallest size that achieves the
same F1 score on the dev set as beam width 100.)

3. CPLEX, LP: this uses CPLEX to solve the re-
laxed LP in Eq. 11. To handle fractional z, for
each role r, we choose the best span s∗, such that
s∗ = arg maxs∈Sr

zr,s, solving ties arbitrarily.
4. CPLEX, exact: this tackles the actual ILP (Eq. 2)

with CPLEX.
5. AD3, LP: this is the counterpart of the LP version

of CPLEX, where the relaxed problem is solved
using AD3. We choose the spans for each role in
the same way as in strategy 3.

6. AD3, exact: this couples AD3 with branch-and-
bound search to get the exact integer solution.

4.3 Results
Table 1 shows performance of the different decoding
strategies on the test set. We report precision, recall,
and F1 scores.6 Since these scores do not penal-
6We use the evaluation script from SemEval 2007 shared task,
modified to evaluate only the argument identification output.

ize structural violations, we also report the number
of overlap, “excludes,” and “requires” constraints
that were violated in the test set. Finally, we tab-
ulate each setting’s decoding time in seconds on the
whole test set averaged over 5 runs.7 The Local
model is very fast but suffers degradation in pre-
cision and violates one constraint roughly per nine
predicates. SEMAFOR used a default beam size of
10,000, which is extremely slow; a faster version of
beam size 100 results in the same precision and re-
call values, but is 15 times faster. Beam size 2 results
in slightly worse precision and recall values, but is
even faster. All of these, however, result in many
constraint violations. Strategies involving CPLEX
and AD3 perform similarly to each other and SE-
MAFOR on precision and recall, but eliminate most
or all of the constraint violations. SEMAFOR with
beam size 2 is 11-16 times faster than the CPLEX
strategies, but is only twice as fast than AD3, and re-
sults in significantly more structural violations. The
exact algorithms are slower than the LP versions, but
compared to CPLEX, AD3 is significantly faster and
has a narrower gap between its exact and LP ver-
sions. We found that relaxation was tight 99.8% of
the time on the test examples.

The example in Fig. 1 is taken from our test set,
and shows an instance where two roles, Partner 1
and Partner 2 share the “requires” relationship; for
this example, the beam search decoder misses the
Partner 2 role, which is a violation, while our AD3

decoder identifies both arguments correctly. Note
that beam search makes plenty of linguistic viola-
tions, but has precision and recall values that are
marginally better than AD3. We found that beam
search, when violating many “requires” constraints,
often finds one role in the pair, which increases its
recall. AD3 is sometimes more conservative in such
cases, predicting neither role. A second issue, as
noted in footnote 4, is that the annotations some-
times violate these constraints. Overall, we found
it interesting that imposing the constraints did not
have much effect on standard measures of accuracy.
7We used a 64-bit machine with 2 2.6GHz dual-core CPUs (i.e.,
4 processors in all) with a total of 8GB of RAM. The work-
ers in AD3 were not parallelized, while CPLEX automatically
parallelized execution.
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Violations
Method P R F1 Overlap Requires Excludes Time in Secs.

Local 67.69 59.76 63.48 441 45 15 1.26 ± 0.01
SEMAFOR (beam = 2) 70.18 59.54 64.42 0 49 0 2.74 ± 0.10
SEMAFOR (beam = 100) 70.43 59.64 64.59 0 50 1 29.00 ± 0.25
SEMAFOR (beam = 10000) 70.43 59.64 64.59 0 50 1 440.67 ± 5.53
CPLEX, LP 70.34 59.43 64.43 0 1 0 32.67 ± 1.29
CPLEX, exact 70.31 59.45 64.43 0 0 0 43.12 ± 1.26
AD3, LP 70.30 59.45 64.42 2 2 0 4.17 ± 0.01
AD3, exact 70.31 59.45 64.43 0 0 0 4.78 ± 0.04

Table 1: Comparison of decoding strategies in §4.2. We evaluate in terms of precision, recall and F1 score on a test
set containing 4,458 predicates. We also compute the number of structural violations each model makes: number
of overlapping arguments and violations of the “requires” and “excludes” constraints of §2. Finally decoding time
(without feature computation steps) on the whole test set is shown in the last column averaged over 5 runs.

5 Related Work

Semantic role labeling: Most SRL systems use
conventions from PropBank (Kingsbury and Palmer,
2002) and NomBank (Meyers et al., 2004), which
store information about verbal and nominal pred-
icates and corresponding symbolic and meaning-
specific semantic roles. A separate line of work,
including this paper, investigates SRL systems that
use FrameNet conventions; while less popular, these
systems, pioneered by Gildea and Jurafsky (2002),
consider predicates of a wider variety of syntactic
categories, use semantic frame abstractions, and em-
ploy explicit role labels. A common trait in prior
work has been the use of a two-stage model that
identifies arguments first, then labels them. They are
treated jointly here, unlike what has typically been
done in PropBank-style SRL (Màrquez et al., 2008).
Dual decomposition: Rush et al. (2010) proposed
subgradient-based dual decomposition as a way of
combining models which are tractable individually,
but not jointly, by solving a relaxation of the origi-
nal problem. This was followed by work adopting
this method for syntax and translation (Koo et al.,
2010; Auli and Lopez, 2011; DeNero and Macherey,
2011; Rush and Collins, 2011; Chang and Collins,
2011). Recently, Martins et al. (2011b) showed that
the success of subgradient-based dual decomposi-
tion strongly relies on breaking down the original
problem into a “good” decomposition, i.e., one with
few overlapping components. This leaves out many
declarative constrained problems, for which such a
good decomposition is not readily available. For
those, Martins et al. (2011b) proposed the AD3 al-

gorithm, which retains the modularity of previous
methods, but can handle thousands of small over-
lapping components.
Exact decoding: This paper contributes an exact
branch-and-bound technique wrapped around AD3.
A related line of research is that of Rush and Collins
(2011), who proposed a tightening procedure for
dual decomposition, which can be seen as a cutting
plane method (another popular approach in combi-
natorial optimization).

6 Conclusion

We presented a novel algorithm for incorporating
declarative linguistic knowledge as constraints in
shallow semantic parsing. It outperforms a naı̈ve
baseline that is oblivious to the constraints. Further-
more, it is significantly faster than a decoder em-
ploying a state-of-the-art proprietary solver, and less
than twice as slow as beam search, which is inexact
and does not respect all linguistic constraints. Our
method is easily amenable to the inclusion of more
constraints, which would require minimal program-
ming effort. Our implementation of AD3 within
SEMAFOR will be publicly released at http://
www.ark.cs.cmu.edu/SEMAFOR.
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Abstract

Discourse coherence is an important aspect of
natural language that is still understudied in
computational linguistics. Our aim is to learn
factors that constitute coherent discourse from
data, with a focus on how to realize predicate-
argument structures (PAS) in a model that ex-
ceeds the sentence level. In particular, we aim
to study the case of non-realized arguments
as a coherence inducing factor. This task can
be broken down into two subtasks. The first
aligns predicates across comparable texts, ad-
mitting partial argument structure correspon-
dence. The resulting alignments and their con-
texts can then be used for developing a coher-
ence model for argument realization.

This paper introduces a large corpus of com-
parable monolingual texts as a prerequisite for
approaching this task, including an evaluation
set with manual predicate alignments. We il-
lustrate the potential of this new resource for
the empirical investigation of discourse coher-
ence phenomena. Initial experiments on the
task of predicting predicate alignments across
text pairs show promising results. Our findings
establish that manual and automatic predicate
alignments across texts are feasible and that
our data set holds potential for empirical re-
search into a variety of discourse-related tasks.

1 Introduction

Research in the fields of discourse and pragmatics
has led to a number of theories that try to explain and
formalize the effect of discourse coherence induc-
ing elements either locally or globally. For exam-
ple, Centering Theory (Grosz et al., 1995) provides

a framework to model local coherence by relating
the choice of referring expressions to the salience of
an entity at certain stages of a discourse. An exam-
ple for a global coherence model would be Rhetori-
cal Structure Theory (Mann and Thompson, 1988),
which addresses overall text structure by means of
coherence relations between the parts of a text.

In addition to such theories, computational ap-
proaches have been proposed to capture correspond-
ing phenomena empirically. A prominent example
is the entity-based model by Barzilay and Lapata
(2008). In their approach, local coherence is mod-
eled by the observation of sentence-to-sentence re-
alization patterns of individual entities. The learned
model reflects a key idea from Centering Theory,
namely that adjacent sentences in a coherent dis-
course are likely to involve the same entities.

One shortcoming of Barzilay and Lapata’s model
(and extensions of it) is that it only investigates overt
realization patterns in terms of grammatical func-
tions. These functions reflect explicit realizations of
predicate argument structures (PAS), but they do not
capture the full range of salience factors. In partic-
ular, the model does not reflect the importance of
discourse entities that fill core roles of the predicate,
but that remain implicit in the predicate’s local argu-
ment structure. We develop a specific set-up that al-
lows us to further investigate the factors that govern
such a null-instantiations of argument positions (cf.
Fillmore et al. (2003)), as a special form of coher-
ence inducing element in discourse. We henceforth
refer to such cases as non-realized arguments.

Our main hypothesis is that context specific re-
alization patterns for PAS can be automatically

218



learned from a semantically parsed corpus of com-
parable text pairs. This assumption builds on
the success of previous research, where compara-
ble and parallel texts have been exploited for a
range of related learning tasks, e.g., unsupervised
discourse segmentation (Barzilay and Lee, 2004)
and bootstrapping semantic analyzers (Titov and
Kozhevnikov, 2010).

For our purposes, we are interested in finding cor-
responding PAS across comparable texts that are
known to talk about the same events, and hence in-
volve the same set of underlying event participants.
By aligning predicates in such texts, we can investi-
gate the factors that determine discourse coherence
in the realization patterns for the involved partici-
pants. As a first step towards this overall goal, we
describe the construction of a resource that contains
more than 160,000 document pairs that are known to
talk about the same events and participants. Exam-
ple (1), extracted from our corpus of aligned texts,
illustrates this point: Both texts report on the same
event, in particular the (aligned) event of locating
victims in an avalanche. While (1.a) explicitly talks
about the location of this event, the role remains im-
plicit in the second sentence of (1.b), given that it
can be recovered from the preceding sentence. In
fact, realization of this argument would impede the
fluency of discourse by being overly repetitive.

(1) a. . . . The official said that [no bodies]Arg1 had
been recovered [from the avalanches]Arg2 which
occurred late Friday in the Central Asian coun-
try near the Afghan border some 300 kilometers
(185 miles) southeast of the capital Dushanbe.

b. Three other victims were trapped in an
avalanche in the village of Khichikh. [None
of the victims bodies]Arg1 have been found
[ ]Argm-loc.

Our aim is to identify comparable predications
across pairs of texts, and to study the coherence
factors that determine the realization patterns of ar-
gument structures (including roles that remain im-
plicit) in discourse. This can be achieved by consid-
ering the full set of arguments that can be recovered
from the aligned predications, including both core
and non-core (i.e. adjunct) roles. However, in order
to relate PAS across texts to one another, we first
need to identify corresponding predicates.

In this paper, we construct a large data set to be
used for the induction of a coherence model for ar-
gument structure realization and related tasks. We
discuss the prospects of this data set for the study
of coherence factors in PAS realization. Finally, we
present first results on the initial task of predicate
alignment across comparable monolingual texts.

The remainder of this paper is structured as fol-
lows: In Section 2, we discuss previous work in re-
lated tasks. Section 3 introduces the new task to-
gether with a description of how we prepared a suit-
able data set. Section 4 discusses the potential bene-
fits of the created resource in more detail. Section 5
presents experiments on predicate alignment using
this new data set and outlines first results. Finally,
we conclude in Section 6 and discuss future work.

2 Related Work

Data sets comprising parallel texts have been re-
leased for various different tasks, including para-
phrase extraction and statistical machine translation
(SMT). While corpora for SMT are typically mul-
tilingual (e.g. Europarl, Koehn (2005)), there also
exist monolingual parallel corpora that consist of
multiple translations of one text into the same lan-
guage (Barzilay and McKeown, 2001; Huang et
al., 2002, inter alia). Each translation can pro-
vide alternative verbalizations of the same events
but little variation can be observed in context, as
the overall discourse remains the same. A higher
degree of variation can be found in the Microsoft
Research Paraphrase Corpus (e.g. MSRPC, Dolan
and Brockett (2005)), which consists of paraphrases
automatically extracted from different sources. In
the MSRPC, however, original discourse contexts
are not provided for each sentence. In contrast to
truly parallel monolingual corpora, there also exist
a range of comparable corpora that have been used
for tasks such as (multi-document) summarization
(McKeown and Radev, 1995, inter alia). Corpora for
this task are collected manually and hence are rather
small. Our work presents a method to automatically
construct a large corpus of text pairs describing the
same underlying events.

In this novel corpus, we identify common events
across texts and investigate the argument structures
that were realized in each context to establish a co-
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herent discourse. Different aspects related to this
setting have been studied in previous work. For ex-
ample, Filippova and Strube (2007) and Cahill and
Riester (2009) examine factors that determine con-
stituent order and Belz et al. (2009) study the con-
ditions for the use of different types of referring ex-
pressions. The specific set-up we examine allows
us to further investigate the factors that govern the
non-realization of an argument position, as a special
form of coherence inducing element in discourse.
As in the aforementioned work, we are specifically
interested in the generation of coherent discourses
(e.g. for summarization). Yet, our work also com-
plements research in discourse analysis. A recent
example for such work is the Semeval 2010 Task 10
(Ruppenhofer et al., 2010), which aims at linking
events and their participants in discourse. The pro-
vided data sets for this task, however, are critically
small (438 train and 525 test sentences). Eventu-
ally, the corpus we present in this paper could also
be beneficial for data-driven approaches to role link-
ing in discourse.

3 A Corpus for Aligning Predications
across Comparable Texts

Our aim is to construct a corpus of comparable texts
that can be assumed to be about the same events,
but include variation in textual presentation. This re-
quirement fits well with the news domain, for which
we can trace varying textual sources for the same
underlying events.

The English Gigaword Fifth Edition (Parker et al.,
2011) corpus (henceforth just Gigaword) is one of
the largest corpus collections for English. It com-
prises a total of 9.8 million newswire articles from
seven distinct sources. For construction of our cor-
pus we make use of all combinations of agency pairs
in Gigaword.

3.1 Corpus Creation

In order to extract pairs of articles describing the
same news event, we implemented the pairwise sim-
ilarity method presented by Wubben et al. (2009).
The method is based on measuring word overlap in
news headlines, weighting each word by its TF*IDF
score to give a higher impact to words occurring
with lower frequency. As our focus is to provide

a high-quality data set for predicate alignment and
follow-up tasks, we impose an additional date con-
straint to favor precision over recall. We apply this
constraint by requiring a pair of articles to be pub-
lished within a two-day time frame in order to be
considered as pairs of comparable news items.

Following this two-step procedure, we extracted a
total of 167,728 document pairs, an overall collec-
tion of 50 million word tokens. We inspected about
100 randomly selected document pairs and found
only two of them describing different events. This
is in line with the results of Wubben et al. who re-
ported a precision of 93% without explicitly impos-
ing a date constraint. Overall, we found that most
text pairs share a high degree of similarity and vary
only in length (up to 7.564 words with a mean and
median of 301 and 213 words, respectively) and de-
tail. Closer examination of a development set of
10 document pairs (described below) revealed that
we can indeed find multiple cases where roles are
not locally filled in predicate argument structures.
We show instances of this phenomenon, in which
aligned PAS help to resolve implicit role references,
in Section 4.

3.2 Gold Standard Annotation

We pre-processed all texts using MATE tools
(Bohnet, 2010; Björkelund et al., 2010), a pipeline
of natural language processing modules including a
state-of-the-art semantic role labeler that computes
Prop/NomBank annotations (Palmer et al., 2005;
Meyers et al., 2008). The output was used to provide
pre-labeled verbal and nominal predicates for anno-
tation. We asked two students1 to tag alignments
of corresponding predicates in 70 text pairs derived
from the created corpus. All document pairs were
randomly chosen from the AFP and APW sections
of Gigaword with the constraint that each text con-
sists of 100 to 300 words2. We chose this constraint
as longer text pairs contain a high number of unre-
lated predicates, making this task difficult to manage
for the annotators.

Sure and possible links. Following standard prac-
tice in word alignment tasks (cf. Cohn et al. (2008))

1Both annotators are students in Computational Linguistics,
one undergraduate (A) and one postgraduate (B) student.

2This constraint is satisfied by 75.3% of the documents.
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the annotators were instructed to distinguish be-
tween sure (S) and possible (P) alignments, depend-
ing on how certainly, in their opinion, two predi-
cates (including their arguments) describe the same
event. The following examples show cases of predi-
cate pairings marked as sure (S link) (2) and as pos-
sible (P link) alignments (3):

(2) a. The regulator ruled on September 27 that Nas-
daq too was qualified to bid for OMX [. . . ]3

b. The authority [. . . ] had already approved a sim-
ilar application by Nasdaq.4

(3) a. Myanmar’s military government said earlier this
year it has released some 220 political prisoners
[. . . ]5

b. The government has been regularly releasing
members of Suu Kyi’s National League for
Democracy party [. . . ]6

Replaceability. As a guideline for deciding
whether two predicates are to be aligned, the
annotators were given the following two criteria: 1)
whether the predicates are replaceable in a given
context and 2) whether they share (potentially
implicit) arguments.

Missing context. In case one text does not provide
enough context to decide whether two predicates in
the paired documents refer to the same event, an
alignment should not be marked as sure.

Similar predicates. Annotators were told explic-
itly that sure links can be used even if two predicates
are semantically different but have the same mean-
ing in context. Example (4) illustrates such a case:

(4) a. The volcano roared back to life two weeks ago.

b. It began erupting last month.

1-to-1 vs. n-to-m. We asked the annotators to find
as many 1-to-1 correspondences as possible and to
prefer 1-to-1 matches over n-to-m alignments. In
case of multiple mentions (cf. Example (5)) of the
same event, we further asked the annotators to pro-
vide only one S link per predicate and mark remain-
ing cases as P links. If possible, the S link should

3Source document ID: AFP ENG 20071112.0235
4Source document ID: APW ENG 20071112.0645
5Source document ID: AFP ENG 20020301.0041
6Source document ID: APW ENG 20020301.0132

be used for the pairing of PAS with the highest in-
formation overlap (e.g. “performa3”–“performb2” in
(5)). If there is no difference in information over-
lap, the predicate pair that occurs first in both texts
should be marked as a sure alignment (e.g. “singa1”–
“performb1” in (5)). The intuition behind this guide-
line is that the first mention introduces the actual
event while later mentions just (co-)refer or add fur-
ther information.

(5) a. Susan Boyle said she will singa1 in front of
Britain’s Prince Charles (. . . ) “It’s going to be
a privilege to be performinga2 before His Royal
Highness,” the singer said (. . . ) British copy-
right laws will allow her to performa3 the hit in
front of the prince and his wife.7

b. British singing sensation Susan Boyle is going
to performb1 for Prince Charles (. . . ) The show
star will performb2 her version of Perfect Day
for Charles and his wife Camilla.8

3.3 Development and Evaluation Data Sets

In total, the annotators (A/B) aligned 487/451 sure
and 221/180 possible alignments with a Kappa score
(Cohen, 1960) of 0.86. Following Brockett (2007),
we computed agreement on labeled annotations, in-
cluding unaligned predicate pairs as an additional
null category. For the construction of a gold stan-
dard, we merged the alignments from both annota-
tors by taking the union of all possible alignments
and the intersection of all sure alignments. Cases
which involved a sure alignment on which the anno-
tators disagreed were resolved in a group discussion
with the first author. We split the final corpus into a
development set of 10 document pairs and a test set
of 60 document pairs.

Table 1 summarizes information about the result-
ing annotations in the development and test sets,
respectively. It gives information about the paired
texts (PT): number of predicates marked in prepro-
cessing (nouns and verbs), the set of manual predi-
cate alignments (PA): sure and possible, as well as
information about whether they were annotated for
predicates of the same PoS (N,V) or lemma.

Finally, as a rough indicator for diverging ar-
gument structures captured in the annotated align-

7Source document ID: AFP ENG 20101102.0028
8Source document ID: APW ENG 20101102.0923
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Dev Set Test Set
nb. of PT 10 60
nb. marked predicates 395 3,453
nb. marked nouns 168 1,531
nb. marked verbs 227 1,922
sure PA/PT: avg. (total) 3.9 (35) 7.4 (446)
poss. PA/PT: avg. (total) 4.8 (43) 6.0 (361)
same PoS in PA (N/V) 88.5% (24/42) 82.4% (242/423)
same lemma in PA 53.8% (42) 47.5% (383)
unequal nb. args in PA 30.8% (24) 39.7% (320)

Table 1: Information on Paired Texts (PT) and manual
Predicate Alignments (PA) in development and test set

ments, we analyzed the number of PAs that involve
a different number of arguments.

4 Potential of Aggregation

In this section, we analyze the predicate alignments
in our manually annotated data set, to illustrate the
potential of aggregating corresponding PAS across
comparable texts.

We are particularly interested in cases of non-
realization of arguments, and thus take a closer look
at alignments involving roles that are not filled in
their local PAS. We extract a subset of such cases
by extracting pairs of aligned predicates that con-
tain a different number of realized arguments. We
deliberately focus on the more restricted core roles
in this exposition, but will consider the full range
of roles for developing a comprehensive coherence
model for argument structure realization.9 Our se-
lection of alignment examples is drawn from the de-
velopment set.

The following excerpts are from a pair of com-
parable texts describing a news report on Chadian
refugees crossing into Nigeria:

(6) a. The Chadians said [they]Arg0 had fled [ ]Arg1 in
fear of their lives.10

b. The United Nations says
[some 20,000 refugees]Arg0 have fled
[into Cameroon]Arg1.11

In both examples, the Arg0 role of the predicate fled
is filled, but Arg1 has not been realized in (6.a). Note

9Accordingly, the number of PAs involving diverging role
realizations in Table 1 is strongly underestimated.

10Source document ID: AFP ENG 20080205.0230
11Source document ID: APW ENG 20080206.0766

that the sentence is still part of a coherent discourse
as fillers for the omitted role can be inferred from
the preceding discourse context. Aggregating the
aligned PAS presents an effective means to identify
such appropriate fillers.

Example (7) presents another text pair, reporting
on elections in Iraq, in which role realizations differ
for the same hold event.

(7) a. He said (. . . ) [elections]Arg1 will be held [ ]Arg0
to form a government.12

b. The president (. . . ) said Wednesday
[his country]Arg0 will definitely hold
[elections]Arg1 in 2004.13

Here, the changes in argument realization go
along with a diathesis alternation, while the pair in
(6) exemplifies a case of lexical licensing for omis-
sion of a role.14

Example (8.b) illustrates a case in which the Arg1
of a decline event is involved in a preceding pred-
ication (rise) and thus has already been overtly re-
alized. The constructional properties of the subse-
quent predicates decline as a participle and noun, re-
spectively, are more adverse to overt realization of
the Arg1 role. Suppression of Arg1 in such cases
yields a much more coherent discourse as compared
to their realization. This is brought out by the con-
structed examples in (a’/b’), which are both highly
repetitive.

(8) a. The closely watched [index]Arg1 rose to 93.7
. . . after declining for . . . months.15

a’. ? . . . after the index declining for . . . months.

b. Consumer confidence rose . . . following three
months of dramatic decline [ ]Arg1.16

b’. ? . . . following three months of dramatic decline
[of consumer confidence]Arg1.

As showcased by the previous examples, the de-
cision on whether to realize a role filler in a lo-
cal PAS can be rather complex. Obviously, the

12Source document ID: AFP ENG 20031015.0353
13Source document ID: APW ENG 20031015.0236
14These different configurations are termed constructional

vs. lexical licensors in the SemEval 2010 Task 10 (Ruppen-
hofer et al., 2010).

15Source document ID: AFP ENG 20011228.0365
16Source document ID: APW ENG 20011228.0572
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Figure 1: The predicates of two sentences (white: “The company has said it plans to restate its earnings for 2000
through 2002.”; gray: “The company had announced in January that it would have to restate earnings (. . . )”) from the
Microsoft Research Paragraph Corpus are aligned by computing clusters with minimum cuts.

above instances do not provide exhaustive informa-
tion for grounding all such decisions. A comprehen-
sive model of discourse coherence will need to esti-
mate the argument realization potential of different
predicates and roles from larger corpora. But as can
be seen from the discussed examples, training a se-
mantic model with suitable discourse features on all
predicate argument structures in a large corpus such
as ours will provide indicative range of realization
decisions.

5 Experiments

This section presents an initial experiment using an
unsupervised graph-based clustering method for the
task of aligning predicates across comparable texts.
We describe the alignment model, two baselines as
well as the experimental setting and results.17

5.1 Clustering Model
Similarity Measures. We define a number of sim-
ilarity measures between predicates, which make
use of complementary lexical information. One
source of information are token-based frequency
counts, which we compute over all documents
from the AFP and APW sections of Gigaword18.
Given two lemmatized predicates and their respec-
tive PAS, we employ the following four similarity

17The technicalities of this model, including detailed def-
initions of the similarity measures, are described elsewhere
(manuscript, under submission).

18These sections make up 56.6% of documents in Gigaword.

measures: Similarity in WordNet (simWN) and Verb-
Net (simVN), distributional similarity (simDist) and
bag-of-word similarity of arguments (simArgs). The
first three measures are type-based, whereas the lat-
ter is token-based.

Graph Representation. The input for graph clus-
tering is a bi-partite graph representation for pairs
of texts to be predicate-aligned. In this graph, each
node represents a PAS that was assigned during pre-
processing (cf. Section 3). Edges are inserted be-
tween pairs of predicates that are from two distinct
texts. A weight is assigned to each edge by a com-
bination of the introduced similarity measures.

Clustering algorithm. The graph clustering
method uses minimum cuts (or Mincuts) in order
to partition the bipartite text graph into clusters of
aligned predicates. Each Mincut operation divides
a graph into two disjoint sub-graphs, such that the
sum of weights of removed edges will be minimal.
As the goal is to induce clusters consisting of pairs
of similar predicates, a maximum number of two
nodes per cluster is set as stopping criterion. We
apply Mincut recursively to the input graph and
resulting sub-graphs until we reach the stopping
criterion. Figure 1 shows an example of a graph
clustered by the Mincut approach.

5.2 Setting
We perform evaluations of the graph-based align-
ment model (henceforth called Clustering) on the
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task of inducing predicate alignments across com-
parable monolingual texts. We evaluate on the man-
ually annotated gold alignments in the test data set
described in Section 3.2.

Parameter Tuning. As the graph representation
becomes rather inefficient to handle using edges be-
tween all predicate pairs, we use the development
set of 10 text pairs to estimate a threshold for adding
edges. We found the best similarity threshold to be
an edge weight of 2.5. Note that the edge weights are
calculated as a weighted linear combination of four
different similarity measures. Subsequently, we also
tune the weighting scheme for similarity measures
on the development set. We found the best perform-
ing combination of weights to be 0.09, 0.19, 0.48
and 0.24 for simWN, simVN, simDist and simArgs, re-
spectively.

Baselines. A simple baseline for this task is to
align all predicates whose lemmas are identical
(SameLemma). As a more sophisticated baseline,
we make use of alignment tools commonly used in
statistical machine translation (SMT). We train our
own word alignment model using the state-of-the-art
tool Berkeley Aligner (Liang et al., 2006). As word
alignment tools require pairs of sentences as input,
we first extract paraphrases for this baseline using a
re-implementation of the paraphrase detection sys-
tem by Wan et al. (2006). In the following sections,
we abbreviate this model as WordAlign.

5.3 Results
Following Cohn et al. (2008) we measure precision
as the number of predicted alignments also anno-
tated in the gold standard divided by the total num-
ber of predictions. Recall is measured as the num-
ber of correctly predicted sure alignments devided
by the total number of sure alignments in the gold
standard. We subsequently compute the F1-score as
the harmonic mean between precision and recall.

Table 2 presents the results for our model and
the two baselines. From all four approaches,
WordAlign performs worst. We identify two main
reasons for this: On the one hand, the paraphrase
detection does not perform perfectly. Hence, the
extracted sentence pairs do not always contain gold
alignments. On the other hand, even sentence pairs
that contain gold alignments are generally less paral-

Precision Recall F1
WordAlign 19.7% 15.2% 17.2%

SameLemma 40.3% 60.3% 48.3%
Clustering 59.7% 50.7% 54.8%

Table 2: Results for all models on our test set; significant
improvements (p<0.005) over the results given in each
previous line are marked in bold face.

lel compared to a typical SMT setting, which makes
them harder to align.

We observe that the majority of all sure align-
ments (60.3%) can be retrieved by applying the
SameLemma model, yet at a low precision (40.3%).
While the Clustering model only recalls 50.7% of
all cases, it clearly outperforms SameLemma in
terms of precision (+19.4% points), an important
factor for us as we plan to use the alignments in
subsequent tasks. With 54.8%, Clustering also
achieves the best overall F1-score. We computed
statistical significance of result differences with a
paired t-test (Cohen, 1995), yielding significance at
the 99.5% level for precision and F1-score.

5.4 Analysis of Results
We perform an analysis of the output of the Clus-
tering model on the development set to categorize
correct and incorrect alignment decisions.19 In to-
tal, the model missed 13 out of 35 sure alignments
(Type I errors) and predicted 23 alignments not an-
notated in the gold standard (Type II errors). Six
Type I errors (46%) occurred when the lemma of an
affected predicate occurred more than once in a text
and the model missed the correct link. Vice versa,
we find 18 Type II errors (78%) that were made be-
cause of a high predicate similarity despite low ar-
gument overlap. An example is given in (9).

(9) a. The US alert (. . . ) followed intelligence reports
that . . . 20

b. The Foreign Ministry announcement called on
Japanese citizens to be cautious . . . 21

While argument overlap itself can be low even for
correct alignments, the results clearly indicate that

19We decided to leave the test set untouched for further exper-
iments. Due to parameter tuning, the results on the development
set also provide us with an upper bound of the proposed model.

20Source document ID: AFP ENG 20101004.0367
21Source document ID: APW ENG 20101004.0207
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a better integration of context is necessary: Exam-
ple (10.a) illustrates a case in which the agent of a
warning event is not realized. Here, contextual in-
formation is required to correctly align it to one of
the warning events in (10.b). This involves inference
beyond the local PAS.

(10) a. The US alert (. . . ) is one step down from a full
[travel]Arg1 warning [ ]Arg0.20

b. Japan has issued a travel alert . . . (which)
follows similar warnings [from Ameri-
can and British authorities]Arg0. (. . . ) An offi-
cial said it was highly unusual for [Tokyo]Arg0
to issue such a warning . . . 21

On the positive side, Clustering achieves a precision
of 61.4% and a recall of 65.7% on the development
set. Example (11) shows a correctly aligned PAS
pair that involves non-realized arguments:

(11) a. . . . the Governing Council has established
[a committee]Arg0 to draft [a constitution]Arg1.22

b. A .. resolution calls on the Governing
Council for elections and the drafting [ ]Arg0

[of a new constitution]Arg1.23

In (11.a), the follow-up sentences will refer back to
the committee that will draft the new Iraqi constitu-
tion, hence the institution has to be introduced in the
discourse at this point. In contrast, excerpt (11.b) is
the last sentence of a news report. Since it presents
a summary, introducing new (omissible) entities at
this point would not concord with general coherence
principles.

6 Conclusion

In this paper, we presented a novel corpus of compa-
rable texts that provides full discourse contexts for
alternative verbalizations. The motivation for the
construction of this corpus is to acquire empirical
data for studying discourse coherence factors related
to argument structure realization. A special phe-
nomenon we are interested in are discourse-related
factors that license the omission of argument roles.

Our data set satisfies two conditions that are es-
sential for the purported task: the texts are about

22Source document ID: AFP ENG 20031015.0353
23Source document ID: APW ENG 20031015.0236.

the same events and constitute alternative verbaliza-
tions. Selected from the Gigaword corpus, the doc-
uments pertain to the news domain, and satisfy the
further constraint that we have access to the full sur-
rounding discourse context. The constructed corpus
could thus be profitable for a range of other tasks
that need to investigate factors for knowledge aggre-
gation, such as summarization, or inference in dis-
course, such as textual entailment.

In total, we derived more than 160,000 document
pairs from all pairwise combinations of newswire
sources in the English Gigaword Fifth Edition. Us-
ing a subset of these pairs, we constructed a devel-
opment and an evaluation data set with gold align-
ments that relate predications with (possibly partial)
PAS correspondence. We established that the anno-
tation task, while difficult, can be performed with
good inter-annotator agreement (κ at 0.86).

We presented first experiments on the task of au-
tomatically predicting predicate alignments. This
step is essential to gather empirical evidence of dif-
ferent PAS realizations for the same event, given
varying discourse contexts. Analysis of the data
shows that the aligned predications capture a wide
variety of sources and variations of coherence ef-
fects, including constructional, lexical and discourse
phenomena.

In future work, we will enhance our model by in-
corporating more refined semantic similarity mea-
sures including discourse-based criteria for estab-
lishing cross-document alignments. Given that our
data set includes sets of aligned documents from
several newswire sources, we will explore transitiv-
ity constraints across multiple document pairs in or-
der to further enhance the precision of the alignment
model. We will then proceed to the ultimate aim of
our work: the development of a coherence model for
argument structure realization, including the design
of an appropriate task and evaluation setting.
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Abstract

We investigate the effects of adding semantic
annotations including word sense hypernyms
to the source text for use as an extra source
of information in HPSG parse ranking for the
English Resource Grammar. The semantic an-
notations are coarse semantic categories or en-
tries from a distributional thesaurus, assigned
either heuristically or by a pre-trained tagger.
We test this using two test corpora in different
domains with various sources of training data.
The best reduces error rate in dependency F-
score by 1% on average, while some methods
produce substantial decreases in performance.

1 Introduction

Most start-of-the-art natural language parsers (Char-
niak, 2000; Clark and Curran, 2004; Collins, 1997)
use lexicalised features for parse ranking. These are
important to achieve optimal parsing accuracy, and
yet these are also the features which by their nature
suffer from data-sparseness problems in the training
data. In the absence of reliable fine-grained statis-
tics for a given token, various strategies are possible.
There will often be statistics available for coarser
categories, such as the POS of the particular token.
However, it is possible that these coarser represen-
tations discard too much, missing out information
which could be valuable to the parse ranking. An
intermediate level of representation could provide
valuable additional information here. For example,

∗This research was conducted while the second author was
a postdoctoral researcher within NICTA VRL.

†The third author is a visiting scholar on the Erasmus
Mundus Masters Program in ‘Language and Communication
Technologies’ (LCT, 2007–0060).

assume we wish to correctly attach the prepositional
phrases in the following examples:

(1) I saw a tree with my telescope
(2) I saw a tree with no leaves

The most obvious interpretation in each case has the
prepositional phrase headed by with attaching in dif-
ferent places: to the verb phrase in the first example,
and to the noun tree in the second. Such distinctions
are difficult for a parser to make when the training
data is sparse, but imagine we had seen examples
such as the following in the training corpus:

(3) Kim saw a eucalypt with his binoculars
(4) Sandy observed a willow with plentiful foliage

There are few lexical items in common, but in each
case the prepositional phrase attachment follows the
same pattern: in (3) it attaches to the verb, and in
(4) to the noun. A conventional lexicalised parser
would have no knowledge of the semantic similarity
between eucalypt and tree, willow and tree, binoc-
ulars and telescope, or foliage and leaves, so would
not be able to make any conclusions about the earlier
examples on the basis of this training data. However
if the parse ranker has also been supplied with in-
formation about synonyms or hypernyms of the lex-
emes in the training data, it could possibly have gen-
eralised, to learn that PPs containing nouns related
to seeing instruments often modify verbs relating to
observation (in preference to nouns denoting inani-
mate objects), while plant flora can often be modi-
fied by PPs relating to appendages of plants such as
leaves. This is not necessarily applicable only to PP
attachment, but may help in a range of other syntac-
tic phenomena, such as distinguishing between com-
plements and modifiers of verbs.
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The synonyms or hypernyms could take the form
of any grouping which relates word forms with se-
mantic or syntactic commonality – such as a label
from the WordNet (Miller, 1995) hierarchy, a sub-
categorisation frame (for verbs) or closely related
terms from a distributional thesaurus (Lin, 1998).

We present work here on using various levels
of semantic generalisation as an attempt to im-
prove parse selection accuracy with the English Re-
source Grammar (ERG: Flickinger (2000)), a preci-
sion HPSG-based grammar of English.

2 Related Work

2.1 Parse Selection for Precision Grammars

The focus of this work is on parsing using hand-
crafted precision HPSG-based grammars, and in
particular the ERG. While these grammars are care-
fully crafted to avoid overgeneration, the ambiguity
of natural languages means that there will unavoid-
ably be multiple candidate parses licensed by the
grammar for any non-trivial sentence. For the ERG,
the number of parses postulated for a given sentence
can be anywhere from zero to tens of thousands. It
is the job of the parse selection model to select the
best parse from all of these candidates as accurately
as possible, for some definition of ‘best’, as we dis-
cuss in Section 3.2.

Parse selection is usually performed by training
discriminative parse selection models, which ‘dis-
criminate’ between the set of all candidate parses.
A widely-used method to achieve this is outlined
in Velldal (2007). We feed both correct and incor-
rect parses licensed by the grammar to the TADM
toolkit (Malouf, 2002), and learn a maximum en-
tropy model. This method is used by Zhang et al.
(2007) and MacKinlay et al. (2011) inter alia. One
important implementation detail is that rather than
exhaustively ranking all candidates out of possibly
many thousands of trees, Zhang et al. (2007) showed
that it was possible to use ‘selective unpacking’,
which means that the exhaustive parse forest can be
represented compactly as a ‘packed forest’, and the
top-ranked trees can be successively reconstructed,
enabling faster parsing using less memory.

2.2 Semantic Generalisation for parse ranking

Above, we outlined a number of reasons why
semantic generalisation of lexemes could enable
parsers to make more efficient use of training data,
and indeed, there has been some prior work investi-
gating this possibility. Agirre et al. (2008) applied
two state-of-the-art treebank parsers to the sense-
tagged subset of the Brown corpus version of the
Penn Treebank (Marcus et al., 1993), and added
sense annotation to the training data to evaluate their
impact on parse selection and specifically on PP-
attachment. The annotations they used were oracle
sense annotations, automatic sense recognition and
the first sense heuristic, and it was this last method
which was the best performer in general. The sense
annotations were either the WordNet synset ID or
the coarse semantic file, which we explain in more
detail below, and replaced the original tokens in
the training data. The largest improvement in pars-
ing F-score was a 6.9% reduction in error rate for
the Bikel parser (Bikel, 2002), boosting the F-score
from 0.841 to 0.852, using the noun supersense only.
More recently, Agirre et al. (2011) largely repro-
duced these results with a dependency parser.

Fujita et al. (2007) add sense information to im-
prove parse ranking with JaCy (Siegel and Bender,
2002), an HPSG-based grammar which uses simi-
lar machinery to the ERG. They use baseline syn-
tactic features, and also add semantic features based
on dependency triples extracted from the semantic
representations of the sentence trees output by the
parser. The dataset they use has human-assigned
sense tags from a Japanese lexical hierarchy, which
they use as a source of annotations. The dependency
triples are modified in each feature set by replacing
elements of the semantic triples with corresponding
senses or hypernyms. In the best-performing con-
figuration, they use both syntactic and semantic fea-
tures with multiple levels of the the semantic hier-
archy from combined feature sets. They achieve a
5.6% improvement in exact match parsing accuracy.

3 Methodology

We performed experiments in HPSG parse rank-
ing using the ERG, evaluating the impact on parse
selection of semantic annotations such as coarse
sense labels or synonyms from a distributional the-
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WESCIENCE LOGON
Total Sentences 9632 9410
Parseable Sentences 9249 8799
Validated Sentences 7631 8550
Train/Test Sentences 6149/1482 6823/1727
Tokens/sentence 15.0 13.6
Training Tokens 92.5k 92.8k

Table 1: Corpora used in our experiments, with total sen-
tences, how many of those can be parsed, how many of
the parseable sentences have a single gold parse (and are
used in these experiments), and average sentence length

saurus. Our work here differs from the aforemen-
tioned work of Fujita et al. (2007) in a number of
ways. Firstly, we use purely syntactic parse selec-
tion features based on the derivation tree of the sen-
tence (see Section 3.4.3), rather than ranking using
dependency triples, meaning that our method is in
principle able to be integrated into a parser more eas-
ily, where the final set of dependencies would not be
known in advance. Secondly, we do not use human-
created sense annotations, instead relying on heuris-
tics or trained sense-taggers, which is closer to the
reality of real-world parsing tasks.

3.1 Corpora

Following MacKinlay et al. (2011), we use two pri-
mary training corpora. First, we use the LOGON
corpus (Oepen et al., 2004), a collection of En-
glish translations of Norwegian hiking texts. The
LOGON corpus contains 8550 sentences with ex-
actly one gold parse, which we partitioned ran-
domly by sentence into 10 approximately equal sec-
tions, reserving two sections as test data, and us-
ing the remainder as our training corpus. These
sentences were randomly divided into training and
development data. Secondly, we use the We-
Science (Ytrestøl et al., 2009) corpus, a collection
of Wikipedia articles related to computational lin-
guistics. The corpus contains 11558 sentences, from
which we randomly chose 9632, preserving the re-
mainder for future work. This left 7631 sentences
with a single gold tree, which we divided into a
training set and a development set in the same way.
The corpora are summarised in Table 1.

With these corpora, we are able to investigate in-
domain and cross-domain effects, by testing on a

different corpus to the training corpus, so we can
examine whether sense-tagging alleviates the cross-
domain performance penalty noted in MacKinlay et
al. (2011). We can also use a subset of each training
corpus to simulate the common situation of sparse
training data, so we can investigate whether sense-
tagging enables the learner to make better use of a
limited quantity of training data.

3.2 Evaluation

Our primary evaluation metric is Elementary De-
pendency Match (Dridan and Oepen, 2011). This
converts the semantic output of the ERG into a set
of dependency-like triples, and scores these triples
using precision, recall and F-score as is conven-
tional for other dependency evaluation. Following
MacKinlay et al. (2011), we use the EDMNA mode
of evaluation, which provides a good level of com-
parability while still reflecting most the semantically
salient information from the grammar.

Other work on the ERG and related grammars has
tended to focus on exact tree match, but the granu-
lar EDM metric is a better fit for our needs here –
among other reasons, it is more sensitive in terms
of error rate reduction to changes in parse selection
models (MacKinlay et al., 2011). Additionally, it is
desirable to be able to choose between two different
parses which do not match the gold standard exactly
but when one of the parses is a closer match than the
other; this is not possible with exact match accuracy.

3.3 Reranking for parse selection

The features we are adding to the parse selection
procedure could all in principle be applied by the
parser during the selective unpacking stage, since
they all depend on information which can be pre-
computed. However, we wish to avoid the need for
multiple expensive parsing runs, and more impor-
tantly the need to modify the relatively complex in-
ternals of the parse ranking machinery in the PET

parser (Callmeier, 2000). So instead of performing
the parse ranking in conjunction with parsing, as is
the usual practice, we use a pre-parsed forest of the
top-500 trees for each corpus, and rerank the forest
afterwards for each configuration shown.

The pre-parsed forests use the same models which
were used in treebanking. Using reranking means
that the set of candidate trees is held constant, which
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means that parse selection models never get the
chance to introduce a new tree which was not in
the original parse forest from which the gold tree
was annotated, which may provide a very small per-
formance boost (although when the parse selection
models are similar as is the case for most of the mod-
els here, this effect is likely to be very small).

3.4 Word Sense Annotations

3.4.1 Using the WordNet Hierarchy
Most experiments we report on here make some

use of the WordNet sense inventory. Obviously we
need to determine the best sense and corresponding
WordNet synset for a given token. We return to this
in Section 3.4.2, but for now assume that the sense
disambiguation is done.

As we are concerned primarily with making
commonalities between lemmas with different base
forms apparent to the parse selection model, the fine-
grained synset ID will do relatively little to provide
a coarser identifier for the token – indeed, if two
tokens with identical forms were assigned different
synset IDs, we would be obscuring the similarity.1

We can of course make use of the WordNet hier-
archy, and use hypernyms from the hierarchy to tag
each candidate token, but there are a large number
of ways this can be achieved, particularly when it
is possibly to assign multiple labels per token as is
the case here (which we discuss in Section 3.4.3).
We apply two relatively simple strategies. We noted
in Section 2.2 that Agirre et al. (2008) found that
the semantic file was useful. This is the coarse lex-
icographic category label, elsewhere denoted super-
sense (Ciaramita and Altun, 2006), which is the
terminology we use. Nouns are divided into 26
coarse categories such as ‘animal’, ‘quantity’ or
‘phenomenon’, and verbs into 15 categories such as
‘perception’ or ‘consumption’. In some configura-
tions, denoted SS, we tag each open-class token with
one of the supersense labels.

Another configuration attempts to avoid making
assumptions about which level of the hierarchy will
be most useful for parse disambiguation, instead
leaving it the MaxEnt parse ranker to pick those la-
bels from the hierarchy which are most useful. Each

1This could be useful for verbs since senses interact strongly
subcategorisation frames, but that is not our focus here.

open class token is labelled with multiple synsets,
starting with the assigned leaf synset and travelling
as high as possible up the hierarchy, with no distinc-
tion made between the different levels in the hier-
archy. Configurations using this are designated HP,
for ‘hypernym path’.

3.4.2 Disambiguating senses
We return now to the question of determination

of the synset for a given token. One frequently-
used and robust strategy is to lemmatise and POS-
tag each token, and assign it the first-listed sense
from WordNet (which may or may not be based on
actual frequency counts). We POS-tag using TnT
(Brants, 2000) and lemmatise using WordNet’s na-
tive lemmatiser. This yields a leaf-level synset, mak-
ing it suitable as a source of annotations for both SS
and HP. We denote this ‘WNF’ for ‘WordNet First’
(shown in parentheses after SS or HP).

Secondly, to evaluate whether a more informed
approach to sense-tagging helps beyond the naive
WNF method, in the ‘SST’ method, we use the out-
puts of SuperSense Tagger (Ciaramita and Altun,
2006), which is optimised for assigning the super-
senses described above, and can outperform a WNF-
style baseline on at least some datasets. Since this
only gives us coarse supersense labels, it can only
provide SS annotations, as we do not get the leaf
synsets needed for HP. The input we feed in is POS-
tagged with TnT as above, for comparability with
the WNF method, and to ensure that it is compati-
ble with the configuration in which the corpora were
parsed – specifically, the unknown-word handling
uses a version of the sentences tagged with TnT. We
ignore multi-token named entity outputs from Su-
perSense Tagger, as these would introduce a con-
founding factor in our experiments and also reduce
comparability of the results with the WNF method.

3.4.3 A distributional thesaurus method
A final configuration attempts to avoid the need

for curated resources such as WordNet, instead us-
ing an automatically-constructed distributional the-
saurus (Lin, 1998). We use the thesaurus from
McCarthy et al. (2004), constructed along these
lines using the grammatical relations from RASP
(Briscoe and Carroll, 2002) applied to 90 millions
words of text from the British National Corpus.
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root_frag

np_frg_c

hdn_bnp_c

aj-hdn_norm_c

legal_a1

"legal"

n_pl_olr

issue_n1

"issues"

Figure 1: ERG derivation tree for the phrase Legal issues

[n_-_c_le "issues"]
[n_pl_olr n_-_c_le "issues"]
[aj-hdn_norm_c n_pl_olr n_-_c_le "issues"]

(a) Original features

[n_-_c_le noun.cognition]
[n_pl_olr n_-_c_le noun.cognition]
[aj-hdn_norm_c n_pl_olr n_-_c_le noun.cognition]

(b) Additional features in leaf mode, which augment the original
features
[noun.cognition "issues"]
[n_pl_olr noun.cognition "issues"]
[aj-hdn_norm_c n_pl_olr noun.cognition "issues"]

(c) Additional features in leaf-parent (‘P’) mode, which augment
the original features

Figure 2: Examples of features extracted from for
"issues" node in Figure 1 with grandparenting level
of 2 or less

To apply the mapping, we POS-tag the text with
TnT as usual, and for each noun, verb and adjec-
tive we lemmatise the token (with WordNet again,
falling back to the surface form if this fails), and
look up the corresponding entry in the thesaurus. If
there is a match, we select the top five most simi-
lar entries (or fewer if there are less than five), and
use these new entries to create additional features,
as well as adding a feature for the lemma itself in all
cases. This method is denoted LDT for ‘Lin Distri-
butional Thesaurus’. We note that many other meth-
ods could be used to select these, such as different
numbers of synonyms, or dynamically changing the
number of synonyms based on a threshold against
the top similarity score, but this is not something we
evaluate in this preliminary investigation.

Adding Word Sense to Parse Selection Models

We noted above that parse selection using the
methodology established by Velldal (2007) uses
human-annotated incorrect and correct derivation
trees to train a maximum entropy parse selection
model. More specifically, the model is trained using
features extracted from the candidate HPSG deriva-
tion trees, using the labels of each node (which are
the rule names from the grammar) and those of a
limited number of ancestor nodes.

As an example, we examine the noun phrase Le-
gal issues from the WESCIENCE corpus, for which
the correct ERG derivation tree is shown in Figure 1.
Features are created by examining each node in the
tree and at least its parent, with the feature name set
to the concatenation of the node labels. We also gen-
erally make used of grandparenting features, where
we examine earlier ancestors in the derivation tree.
A grandparenting level of one means we would also
use the label of the grandparent (i.e. the parent’s par-
ent) of the node, a level of two means we would add
in the great-grandparent label, and so on. Our exper-
iments here use a maximum grandparenting level of
three. There is also an additional transformation ap-
plied to the tree – the immediate parent of each leaf
is, which is usually a lexeme, is replaced with the
corresponding lexical type, which is a broader par-
ent category from the type hierarchy of the grammar,
although the details of this are not relevant here.

For the node labelled "issues" in Figure 1 with
grandparenting levels from zero to two, we would
extract the features as shown in Figure 2(a) (where
the parent node issue_n1 has already been re-
placed with its lexical type n_-c_le).

In this work here, we create variants of these fea-
tures. A preprocessing script runs over the training
or test data, and for each sentence lists variants of
each token using standoff markup indexed by char-
acter span, which are created from the set of addi-
tional semantic tags assigned to each token by the
word sense configuration (from those described in
Section 3.4) which is currently in use. These sets of
semantic tags for a given word could be a single su-
persense tag, as in SS, a set of synset IDs as in HP
or a set of replacement lemmas in LDT. In all cases,
the set of semantic tags could also be empty – if ei-
ther the word has a part of speech which we are not
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Test Train SS (WNF) SSp(WNF)
P/ R/ F P/ R/ F ∆F P/ R/ F ∆F

LOG

WESC (23k) 85.02/82.22/83.60 85.09/82.33/83.69 +0.09 84.81/82.20/83.48 −0.11
WESC (92k) 86.56/83.58/85.05 86.83/84.04/85.41 +0.36 87.03/83.96/85.47 +0.42
LOG (23k) 88.60/87.23/87.91 88.72/87.20/87.95 +0.04 88.43/87.00/87.71 −0.21
LOG (92k) 91.74/90.15/90.94 91.82/90.07/90.94 −0.00 91.90/90.13/91.01 +0.07

WESC

WESC (23k) 86.80/84.43/85.60 87.12/84.44/85.76 +0.16 87.18/84.50/85.82 +0.22
WESC (92k) 89.34/86.81/88.06 89.54/86.76/88.13 +0.07 89.43/87.23/88.32 +0.26
LOG (23k) 83.74/81.41/82.56 84.02/81.43/82.71 +0.15 84.10/81.67/82.86 +0.31
LOG (92k) 85.98/82.93/84.43 86.02/82.69/84.32 −0.11 85.89/82.76/84.30 −0.13

Table 2: Results for SS (WNF) (supersense from first WordNet sense), evaluated on 23k tokens (approx 1500
sentences) of either WESCIENCE or LOGON, and trained on various sizes of in-domain and cross-domain training
data. Subscript ‘p’ indicates mappings were applied to leaf parents rather than leaves.

Test Train SS (SST) SSp(SST)
P/ R/ F P/ R/ F ∆F P/ R/ F ∆F

LOG

WESC (23k) 85.02/82.22/83.60 84.97/82.38/83.65 +0.06 85.32/82.66/83.97 +0.37
WESC (92k) 86.56/83.58/85.05 87.05/84.47/85.74 +0.70 86.98/83.87/85.40 +0.35
LOG (23k) 88.60/87.23/87.91 88.93/87.50/88.21 +0.29 88.84/87.40/88.11 +0.20
LOG (92k) 91.74/90.15/90.94 91.67/90.02/90.83 −0.10 91.47/89.96/90.71 −0.23

WESC

WESC (23k) 86.80/84.43/85.60 86.88/84.29/85.56 −0.04 87.32/84.48/85.88 +0.27
WESC (92k) 89.34/86.81/88.06 89.53/86.54/88.01 −0.05 89.50/86.56/88.00 −0.05
LOG (23k) 83.74/81.41/82.56 84.06/81.30/82.66 +0.10 83.96/81.64/82.78 +0.23
LOG (92k) 85.98/82.93/84.43 86.13/82.96/84.51 +0.08 85.76/82.84/84.28 −0.16

Table 3: Results for SS (SST) (supersense from SuperSense Tagger)

Test Train HPWNF HPp(WNF)
P/ R/ F P/ R/ F ∆F P/ R/ F ∆F

LOG

WESC (23k) 85.02/82.22/83.60 84.56/82.03/83.28 −0.32 84.74/82.20/83.45 −0.15
WESC (92k) 86.56/83.58/85.05 86.65/84.22/85.42 +0.37 86.41/83.65/85.01 −0.04
LOG (23k) 88.60/87.23/87.91 88.58/87.26/87.92 +0.00 88.58/87.35/87.96 +0.05
LOG (92k) 91.74/90.15/90.94 91.68/90.19/90.93 −0.01 91.66/89.85/90.75 −0.19

WESC

WESC (23k) 86.80/84.43/85.60 86.89/84.19/85.52 −0.08 87.18/84.43/85.78 +0.18
WESC (92k) 89.34/86.81/88.06 89.74/86.96/88.33 +0.27 89.23/86.88/88.04 −0.01
LOG (23k) 83.74/81.41/82.56 83.87/81.20/82.51 −0.04 83.47/81.00/82.22 −0.33
LOG (92k) 85.98/82.93/84.43 85.89/82.38/84.10 −0.33 85.75/83.03/84.37 −0.06

Table 4: Results for HPWNF (hypernym path from first WordNet sense)

Test Train LDTp(5)
P/ R/ F P/ R/ F ∆F

LOG

WESC (23k) 85.02/82.22/83.60 84.48/82.18/83.31 −0.28
WESC (92k) 86.56/83.58/85.05 86.36/84.14/85.23 +0.19
LOG (23k) 88.60/87.23/87.91 88.28/86.99/87.63 −0.28
LOG (92k) 91.74/90.15/90.94 91.01/89.25/90.12 −0.82

WESC

WESC (23k) 86.80/84.43/85.60 86.17/83.51/84.82 −0.78
WESC (92k) 89.34/86.81/88.06 88.31/85.61/86.94 −1.12
LOG (23k) 83.74/81.41/82.56 83.60/81.18/82.37 −0.19
LOG (92k) 85.98/82.93/84.43 85.74/82.96/84.33 −0.11

Table 5: Results for LDT (5) (Lin-style distributional thesaurus, expanding each term with the top-5 most similar)
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attempting to tag semantically, or if our method has
no knowledge of the particular word.

The mapping is applied at the point of feature ex-
traction from the set of derivation trees – at model
construction time for the training set and at rerank-
ing time for the development set. If a given leaf to-
ken has some set of corresponding semantic tags, we
add a set of variant features for each semantic tag,
duplicated and modified from the matching “core”
features described above. There are two ways these
mappings can be applied, since it is not immedi-
ately apparent where the extra lexical generalisation
would be most useful. The ‘leaf’ variant applies to
the leaf node itself, so that in each feature involving
the leaf node, add a variant where the leaf node sur-
face string has been replaced with the new seman-
tic tag. The ‘parent’ variant, which has a subscript
‘P’ (e.g. SSp(WNF) ) applies the mapping to the
immediate parent of the leaf node, leaving the leaf
itself unchanged, but creating variant features with
the parent nodes replaced with the tag.

For our example here, we assume that we have
an SS mapping for Figure 2(a), and that this has
mapped the token for "issues" to the WordNet
supersense noun.cognition. For the leaf vari-
ant, the extra features that would be added (either for
considering inclusion in the model, or for scoring a
sentence when reranking) are shown in Figure 2(b),
while those for the parent variant are in Figure 2(c).

3.4.4 Evaluating the contribution of sense
annotations

We wish to evaluate whether adding sense annota-
tions improve parser accuracy against the baseline of
training a model in the conventional way using only
syntactic features. As noted above, we suspect that
this semantic generalisation may help in cases where
appropriate training data is sparse – that is, where
the training data is from a different domain or only
a small amount exists. So to evaluate the various
methods in these conditions, we train models from
small (23k token) training sets and large (96k token)
training sets created from subsets of each corpus
(WESCIENCE and LOGON). For the baseline, we
train these models without modification. For each
of the various methods of adding semantic tags, we
then re-use each of these training sets to create new
models after adding the appropriate additional fea-

tures as described above, to evaluate whether these
additional features improve parsing accuracy

4 Results

We present an extensive summary of the results ob-
tained using the various methods in Tables 2, 3, 4
and 5. In each case we show results for applying
to the leaf and to the parent. Aggregating the re-
sults for each method, the differences range between
substantially negative and modestly positive, with a
large number of fluctuations due to statistical noise.

LDT is the least promising performer, with only
one very modest improvement, and the largest de-
creases in performance, of around 1%. The HP-
WNF and HPp(WNF) methods make changes in
either direction – on average, over all four train-
ing/test combinations, there are very small drops
in F-score of 0.02% for HPWNF, and 0.06% for
HPp(WNF), which indicates that neither of the
methods is likely to be useful in reliably improving
parser performance.

The SS methods are more promising. SS (WNF)
and SSp(WNF) methods yield an average im-
provement of 0.10% each, while SS (SST) and
SSp(SST) give average improvements of 0.12%
and 0.13% respectively (representing an error rate
reduction of around 1%). Interestingly, the increase
in tagging accuracy we might expect using Super-
Sense Tagger only translates to a modest (and prob-
ably not significant) increase in parser performance,
possibly because the tagger is not optimised for the
domains in question. Amongst the statistical noise
it is hard to discern overall trends; surprisingly, it
seems that the size of the training corpus has rela-
tively little to do with the success of adding these su-
persense annotations, and that the corpus being from
an unmatched domain doesn’t necessarily mean that
sense-tagging will improve accuracy either. There
may be a slight trend for sense annotations to be
more useful when WESCIENCE is the training cor-
pus (either in the small or the large size).

To gain a better insight into how the effects
change as the size of the training corpus changes for
the different domains, we created learning curves for
the best-performing method, SSp(SST) (although
as noted above, all SS methods give similar levels
of improvement), shown in Figure 3. Overall, these
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Figure 3: EDMNA learning curves for SS (SST) (supersense from SuperSense Tagger). ‘*’ denotes in-domain
training corpus.

graphs support the same conclusions as the tables
– the gains we see are very modest and there is a
slight tendency for WESCIENCE models to benefit
more from the semantic generalisation, but no strong
tendencies for this to work better for cross-domain
training data or small training sets.

5 Conclusion

We have presented an initial study evaluat-
ing whether a fairly simple approach to using
automatically-created coarse semantic annotations
can improve HPSG parse selection accuracy using
the English Resource Grammar. We have provided
some weak evidence that adding features based on
semantic annotations, and in particular word super-
sense, can provide modest improvements in parse
selection performance in terms of dependency F-
score, with the best-performing method SSp(SST)
providing an average reduction in error rate over 4
training/test corpus combinations of 1%. Other ap-
proaches were less promising. In all configurations,
there were instances of F-score decreases, some-
times substantial.

It is somewhat surprising that we did not achieve
reliable performance gains which were seen in the
related work described above. One possible expla-
nation is that the model training parameters were
suboptimal for this data set since the characteris-
tics of the data are somewhat different than with-
out sense annotations. The failure to improve some-

what mirrors the results of Clark (2001), who was at-
tempting to improve the parse ranking performance
of the unification-based based probabilistic parser of
Carroll and Briscoe (1996). Clark (2001) used de-
pendencies to rank parses, and WordNet-based tech-
niques to generalise this model and learn selectional
preferences, but failed to improve performance over
the structural (i.e. non-dependency) ranking in the
original parser. Additionally, perhaps the changes
we applied in this work to the parse ranking could
possibly have been more effective with features
based on semantic dependences as used by Fujita
et al. (2007), although we outlined reasons why we
wished to avoid this approach.

This work is preliminary and there is room for
more exploration in this space. There is scope for
much more feature engineering on the semantic an-
notations, such as using different levels of the se-
mantic hierarchy, or replacing the purely lexical fea-
tures instead of augmenting them. Additionally,
more error analysis would reveal whether this ap-
proach was more useful for avoiding certain kinds
of parser errors (such as PP-attachment).
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Abstract

Identifying textual inferences, where the
meaning of one text follows from another, is
a general underlying task within many natu-
ral language applications. Commonly, it is ap-
proached either by generative syntactic-based
methods or by “lightweight” heuristic lexical
models. We suggest a model which is confined
to simple lexical information, but is formu-
lated as a principled generative probabilistic
model. We focus our attention on the task of
ranking textual inferences and show substan-
tially improved results on a recently investi-
gated question answering data set.

1 Introduction

The task of identifying texts which share semantic
content arises as a general need in many natural lan-
guage processing applications. For instance, a para-
phrasing application has to recognize texts which
convey roughly the same content, and a summariza-
tion application needs to single out texts which con-
tain the content stated by other texts. We refer to this
general task as textual inference similar to prior use
of this term (Raina et al., 2005; Schoenmackers et
al., 2008; Haghighi et al., 2005).

In many textual inference scenarios the setting re-
quires a classification decision of whether the infer-
ence relation holds or not. But in other scenarios
ranking according to inference likelihood would be
the natural task. In this work we focus on ranking
textual inferences; given a sentence and a corpus,
the task is to rank the corpus passages by their plau-
sibility to imply as much of the sentence meaning as

possible. Most naturally, this is the case in question
answering (QA), where systems search for passages
that cover the semantic components of the question.
A recent line of research was dedicated to this task
(Wang et al., 2007; Heilman and Smith, 2010; Wang
and Manning, 2010).

A related scenario is the task of Recognizing Tex-
tual Entailment (RTE) within a corpus (Bentivogli
et al., 2010)1. In this task, inference systems should
identify, for a given hypothesis, the sentences which
entail it in a given corpus. Even though RTE was
presented as a classification task, it has an appeal-
ing potential as a ranking task as well. For instance,
one may want to find texts that validate a claim such
as cellular radiation is dangerous for children, or to
learn more about it from a newswire corpus. To that
end, one should look for additional mentions of this
claim such as extensive usage of cell phones may be
harmful for youngsters. This can be done by rank-
ing the corpus passages by their likelihood to entail
the claim, where the top ranked passages are likely
to contain additional relevant information.

Two main approaches have been used to address
textual inference (for either ranking or classifica-
tion). One is based on transformations over syntac-
tic parse trees (Echihabi and Marcu, 2003; Heilman
and Smith, 2010). Some works in this line describe
a probabilistic generative process in which the parse
tree of the question is generated from the passage
(Wang et al., 2007; Wang and Manning, 2010).

In the second approach, lexical models have been
employed for textual inference (MacKinlay and
Baldwin, 2009; Clark and Harrison, 2010). Typi-

1http://www.nist.gov/tac/2010/RTE/index.html
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cally, lexical models consider a text fragment as a
bag of terms and split the inference decision into
two steps. The first is a term-level estimation of the
inference likelihood for each term independently,
based on direct lexical match and on lexical knowl-
edge resources. Some commonly used resources are
WordNet (Fellbaum, 1998), distributional-similarity
thesauri (Lin, 1998), and web knowledge resources
such as (Suchanek et al., 2007). The second step
is making a final sentence-level decision based on
these estimations for the component terms. Lex-
ical models have the advantage of being fast and
easy to utilize (e.g. no dependency on parsing tools)
while being highly competitive with top performing
systems, e.g. the system of Majumdar and Bhat-
tacharyya (2010).

In this work, we investigate how well such lexi-
cal models can perform in textual inference ranking
scenarios. However, while lexical models usually
apply heuristic methods, we would like to pursue a
principled learning-based generative framework, in
analogy to the approaches for syntactic-based infer-
ence. An attractive work in this spirit is presented in
(Shnarch et al., 2011a), that propose a model which
is both lexical and probabilistic. Later, Shnarch et
al. (2011b) improved this model and reported re-
sults that outperformed previous lexical models and
were on par with state-of-the-art RTE models.

Whereas their term-level model provides means
to integrate lexical knowledge in a probabilistic
manner, their sentence-level model depends to a
great extent on heuristic normalizations which were
introduced to incorporate prominent aspects of the
sentence-level decision. This deviates their model
from a pure probabilistic methodology.

Our work aims at amending this deficiency and
proposes a new probabilistic sentence-level model
based on a Markovian process. In that model, all
parameters are estimated by an EM algorithm. We
evaluate this model on the tasks of ranking passages
for QA and ranking textual entailments within a cor-
pus, and show that eliminating the need for heuris-
tic normalizations greatly improves state-of-the-art
performance. The full implementation of our model
is available for download2 and can be used as an
easy-to-install and highly competitive inference en-

2http://www.cs.biu.ac.il/̃nlp/downloads/probLexModel.html

gine that operates only on lexical knowledge, or as a
lexical component integrated within a more complex
inference system.

2 Background

Wang et al. (2007) provided an annotated data set,
based on the Text REtrieval Conference (TREC) QA
tracks3, specifically for the task of ranking candidate
answer passages. We adopt their experimental setup
and next review the line of syntactic-based works
which reported results on this data set.

2.1 Syntactic generative models

Wang et al. (2007) propose a quasi-synchronous
grammar formulation which specifies the generation
of the question parse tree, loosely conditioned on the
parse tree of the candidate answer passage. Their
model showed improvement over previous syntac-
tic models for QA: Punyakanok et al. (2004), who
computed similarity between question-answer pairs
with a generalized tree-edit distance, and Cui et al.
(2005), who developed an information measure for
sentence similarity based on dependency paths of
aligned words. Wang et al. (2007) reproduced these
methods and extended them to utilize WordNet.

More recently, Heilman and Smith (2010) im-
proved Wang et al. (2007) results with a classifica-
tion based approach. Feature for the classifier were
extracted from a greedy algorithm which searches
for tree-edit sequences which transform the parse
tree of the candidate answer into the one of the ques-
tion. Unlike other works reviewed here, this one
does not utilize lexical knowledge resources.

Similarly, Wang and Manning (2010) present an
extended tree-edit operations set and search for edit
sequences to generate the question from the answer
candidate. Their CRF-based classifier models these
sequences as latent variables.

An important merit of these methods is that they
offer principled, often probabilistic, generative mod-
els for the task of ranking candidate answers. Their
drawback is the need for syntactic analysis which
makes them slower to run, dependent on parsing per-
formance, which is often mediocre in many text gen-
res, and inadequate for languages which lack proper
parsing tools.

3http://trec.nist.gov/data/qamain.html
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2.2 Lexical models

Lexical models, on the other hand, are faster, eas-
ier to implement and are more practical for vari-
ous genres and languages. Such models derive from
knowledge resources lexical inference rules which
indicate that the meaning of a lexical term can be
inferred from the meaning of another term (e.g.
youngsters→ children and harmful→ dangerous).
They are common in the Recognizing Textual En-
tailment (RTE) systems and we present some rep-
resentative methods for that task. We adopt textual
entailment terminology and henceforth use Hypoth-
esis (denoted H) for the inferred text fragment and
Text (denoted T ) for the text from which it is being
inferred4.

Majumdar and Bhattacharyya (2010) utilized a
simple union of lexical rules derived from vari-
ous lexical resources for the term-level step. They
derived their sentence-level decision based on the
number of matched hypothesis terms. The results
of this simple model were only slightly worse than
the best results of the RTE-6 challenge which were
achieved by a syntactic-based system (Jia et al.,
2010). Clark and Harrison (2010), on the other hand,
considered the number of mismatched terms in es-
tablishing their sentence-level decision. MacKinlay
and Baldwin (2009) represented text and hypothe-
sis as word vectors augmented with lexical knowl-
edge. For sentence-level similarity they used a vari-
ant of the cosine similarity score. Common to most
of these lexical models is the application of heuris-
tic methods in both the term and the sentence level
steps.

Targeted to replace heuristic methods with princi-
pled ones, Shnarch et al. (2011a) present a model
which aims at combining the advantages of a proba-
bilistic generative model with the simplicity of lex-
ical methods. In some analogy to generative parse-
tree based models, they propose a generative process
for the creation of the hypothesis from the text.

At the term-level, their model combines knowl-
edge from various input resources and has the ad-
vantages of considering the effect of transitive rule
application (e.g. mobile phone→ cell phone→ cel-
lular) as well as the integration of multiple pieces

4In the task of passage ranking for QA, the hypothesis is the
question and the text is the candidate passage.

of evidence for the inference of a term (e.g. both
the appearance of harmful and risky in T provide
evidence for the inference of dangerous in H). We
denote this term-level Probabilistic Lexical Model
as PLMTL, and have reproduced it in our work as
presented in Section 4.1. For the sentence-level de-
cision they describe an AND gate mechanism, i.e.
deducing a positive inference decision for H as a
whole only if all its terms were inferred from T .

In an extension to that work, Shnarch et al.
(2011b) modified PLMTL to improve the sentence-
level step. They pointed out some prominent aspects
for the sentence-level decision. First, they suggest
that a hypothesis as a whole can be inferred from
the text even if some of its terms are not inferred.
To model this, they introduced a noisy-AND mech-
anism (Pearl, 1988). Additionally, they emphasized
the effect of hypothesis length and the dependency
between terms on the sentence-level decision. How-
ever, they did not fully achieve their target of pre-
senting a fully coherent probabilistic model, as their
model included heuristic normalization formulae.

On the contrary, the model we present is the first
along this line to be fully specified in terms of a
generative setting and formulated in pure probabilis-
tic terms. We introduce a Markovian-style proba-
bilistic model for the sentence-level decision. This
model receives as input term-level probabilistic es-
timates, which may be provided by any term-level
model. In our implementation we embed PLMTL as
the term-level model and present a complete coher-
ent Markovian-based Probabilistic Lexical Model,
which we term M-PLM.

3 Markovian sentence-level model

The goal of a sentence-level model is to integrate
term-level inputs into an inference decision for the
hypothesis as a whole. For a hypothesis H =
h1, . . . , hn and a text T , term-level models first esti-
mate independently for each term ht its probability
to be inferred from T . Let xt be a binary random
variable representing the event that ht is indeed in-
ferred from T (i.e., xt = 1 if ht is inferred and 0
otherwise).

Given these term-level probabilities, a sentence-
level model is employed to estimate the probability
that H as a whole is inferred from T . This step is
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term-level

sentence-level

Text:

Hypo:

t1 tm…

h1 h2 hn…

x1 x2 xn…

y1 y2 yn…

Figure 1: A probabilistic lexical model: the upper part is the
term-level input to the sentence-level Markovian process, de-
picted in the lower part. xi is a binary variable representing the
inference of hi and yj is a variable for the accumulative infer-
ence decision for the first j terms of Hypo. The final sentence-
level decision is given by yn.

the focus of our work. We assume that the term-
level probabilities are given as input. Section 4.1
describes PLMTL, as a concrete method for deriving
these probabilities.

Our sentence-level model is based on a Marko-
vian process and is described in Section 3.1. In par-
ticular, it takes into account, in probabilistic terms,
the prominent factors in lexical entailment, men-
tioned in Section 2. An efficient inference algorithm
for our model is given in Section 3.2 and EM-based
learning is specified in Section 3.3.

3.1 Markovian sentence-level decision

The motivation for proposing a Markovian process
for the sentence-level is to establish an intermedi-
ate model, lying between two extremes: assuming
full independence between hypothesis terms versus
assuming that every term is dependent on all other
terms. The former alternative is too weak, while
the latter alternative is computationally hard and
not very informative, and thus hard to capture in
a model. Our model specifies a Markovian depen-
dence structure, which limits the dependence scope
to adjacent terms, as follows.

We define a binary variable yt to be the accumu-
lated sentence-level inference decision up to ht. In
other words, yt =1 if the subset {h1, . . . , ht} of H’s
terms is inferred as a whole from T .

Note that this means that yt can be 1 even if some
terms amongst h1, . . . , ht are not inferred. As yn is

the decision for the complete hypothesis, our model
addresses this way the prominent aspect that the hy-
pothesis as a whole may be inferred even if some of
its terms are not inferred. The reason for allowing
this is that such un-inferred terms may be inferred
from the global context of T , or alternatively, are ac-
tually inferred from T but the knowledge resources
in use do not contain the proper lexical rule to make
such inference.

Figure 1 describes both steps of a full lexical in-
ference model. Its lower part depicts our Markovian
process. In the proposed model the inference deci-
sion at each position t is a combination of xt, the
variable for the event of ht being inferred, and yt−1,
the accumulated decision at the previous position.
Therefore, the transition parameters of M-PLM can
be modeled as:

qij(k)=P (yt =k|yt−1 = i, xt =j) ∀k, i, j∈{0, 1}

where y1=x1. For instance, q01(1) is the probability
that yt =1, given that yt−1 =0 and xt =1.

Applying the Markovian process on the entire
hypothesis we get yn, which represents the final
sentence-level decision, where a soft decision is ob-
tained by computing the probability of yn =1:

P (yn =1) =
∑

x1, ..., xn

y2, ..., yn−1, yn =1

P (x1)

n∏
t=2

P (xt)P (yt|yt−1, xt)

The summation is done over all possible binary
values of the term-level variables x1, ..., xn and the
accumulated sentence-level variables y2, ..., yn−1

where yn =1. Note that for clarity, in this formula xt

and yt denote the binary values at the corresponding
variable positions. A tractable form for computing
P (yn =1) is presented in Section 3.2.

Overall, the prominent factors in lexical entail-
ment, raised by prior works, are incorporated within
the core structure of this probabilistic model, with-
out the need to resort to heuristic normalizations.
Reducing the negative affect of hypothesis length on
the entailment probability is achieved by having yt,
at each position, being directly dependent only on xt

and yt−1 as opposed to being affected by all hypoth-
esis terms. The second factor, modeling the depen-
dency between hypothesis terms, is addressed by the
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indirect dependency of yn on all preceding hypothe-
sis terms. This dependency arises from the recursive
nature of the Markovian model, as can be seen in the
next section.

Our proposed Markovian process presents a linear
dependency between terms which, to some extent,
poses an anomaly with respect to the structure of the
entailment phenomenon. Yet, as we do want to limit
the dependence structure, following the natural or-
der of the sentence words seems the most reasonable
choice, as common in many other types of sequential
models. We also tried randomizing the word order
which, on average, did not improve performance.

3.2 Inference

The accumulated sentence-level inference can be
efficiently computed using a typical forward algo-
rithm. We denote the probability of xt =j, j∈{0, 1}
by ht(j) = P (xt = j). The forward step is given in
Eq. (1) and its initialization is defined in Eq. (2).

αt(k) = P (yt =k)=
∑

i,j∈{0,1}

αt−1(i)ht(j)qij(k) (1)

α1(k) = P (x1 =k) (2)

where k∈{0, 1} and t = 2, ..., n.
αt(k) is the probability that the accumulated de-

cision at position t is k. It is calculated by sum-
ming over the probabilities of all four combinations
of αt−1(i) and ht(j), multiplied by the correspond-
ing transition probability, qij(k).

The soft sentence-level decision can be efficiently
calculated by:

P (yn =a) = αn(a) a∈{0, 1} (3)

3.3 Learning

Typically, natural language applications work at the
sentence-level. The training data for such applica-
tions is, therefore, available as annotations at the
sentence-level. Term-level alignments between pas-
sage terms and question terms are rarely available.
Hence, we learn our term-level parameters from
available sentence-level annotations, using the gen-
erative process described above to bridge the gap be-
tween these two levels.

For learning we use the typical backwards algo-
rithm which is described by Eq. (4) and Eq. (5),

where βt(a|i) is the probability that the full hypoth-
esis inference value is a given that yt = i.

βn(a|i) = P (yn =a|yn = i) = 1{a=i} (4)

βt(a|i) = P (yn =a|yt = i) =

=
∑

j,k∈{0,1}

ht+1(j)qij(k)βt+1(a|k) (5)

where t = n−1, .., 1, a ∈ {0, 1} and 1{condition} is
the indicator function which returns 1 if condition
holds and 0 otherwise.

To estimate qij(k), the parameters of the Marko-
vian process, we employ the EM algorithm:

E-step: For each (T,H) pair in the training
data set, annotated with a ∈ {0, 1} as its sentence-
level inference value, we evaluate the expected
probability of every transition given the annotation
value a:

wtijk(T,H) = P (yt−1 = i, xt =j, yt =k|yn =a)

=
αt−1(i)ht(j)qij(k)βt(a|k)

P (yn =a)
(6)

∀i, j, k∈{0, 1} and t = 2, ..., |H|.

M-step: Given the values of wtijk(T,H) we
can estimate each qij(1), i, j∈{0, 1}, by taking the
proportion of transitions in which yt−1 = i, xt = j
and yt = 1, out of the total transitions in which
yt−1 = i and xt =j:

qij(1)←
∑

(T,H)

∑|H|
t=2wtij1(T,H)∑

(T,H)

∑|H|
t=2

∑
k∈{0,1}wtijk(T,H)

(7)

qij(0) = 1−qij(1)

4 Complete model implementation

We next describe the end-to-end probabilistic lexical
inference model we used in our evaluations. We im-
plemented PLMTL as our term-level model to pro-
vide us with ht(j), the term-level probabilities. We
chose this model since it is fully lexical, has the ad-
vantages of lexical knowledge integration described
in Section 2 and achieved top results on RTE data
sets. Next, we summarize PLMTL, and in Appendix
A we show how to adjust the learning schema to fit
into our sentence-level model.
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4.1 PLMTL

Shnarch et al. (2011a) provide a term-level model
which integrates lexical rules from various knowl-
edge resources. As described below it also consid-
ers transitive chains of rule applications as well as
the impact of parallel chains which provide multiple
evidence that h∈H is inferred from T .

Their model assumes a parameter θR for each
knowledge resource R in use. θR specifies the re-
source’s reliability, i.e. the prior probability that ap-
plying a rule from R to an arbitrary text-hypothesis
pair would yield a valid inference.

Next, transitive chains may connect a text term to
a hypothesis term via intermediate term(s). For in-
stance, starting from the text term T-Mobile, a chain
that utilizes the lexical rules T-Mobile→ telecom
and telecom→ cell phone enables the inference of
the term cell phone from T . They compute, for each
step in a chain, the probability that this step is valid
based on the θR values. Denoting the resource which
provided a rule r by R(r), Eq. (8) specifies that the
validity probability of the inference step correspond-
ing to the application of the rule r within the chain c
pointing at ht (as represented by xtcr) is θR(r).

Next, for a chain c pointing at ht (represented by
xtc) to be valid, all its rule steps should be valid for
this pair. Eq. (9) estimates this probability by the
joint probability that the applications of all rules r∈
c are valid, assuming independence of rules.

Several chains may connect terms in T to ht, thus
providing multiple pieces of evidence that ht is in-
ferred from T . For instance, both youngsters and
kids in T may indicate the inference of children in
H . For a term ht to be inferred from the entire sen-
tence T it is enough that at least one of the chains
from T to ht is valid. This is the complement event
of ht not being inferred from T which happens when
all chains which suggest the inference of ht, denoted
by C(ht), are invalid. Eq. (10) specifies this proba-
bility (again assuming independence of chains).

P (xtcr = 1) = θR(r) (8)

P (xtc = 1) =
∏
r∈c

P (xtcr = 1) (9)

ht(1) = P (xt = 1) = 1−P (xt = 0) (10)

= 1−
∏

c∈C(ht)

P (xtc = 0)

With respect to the contributions of our work, we
note that previous works resorted to applying some
heuristic amendments on these equations to achieve
valuable results. In contrast, our work is the first
to present a purely generative model. This achieve-
ment shows that it is possible to shift from ad-hoc
heuristic methods, which are common practice, to
more solid mathematically-based methods.

Finally, for ranking text passages from a corpus
for a given hypothesis (question in the QA scenario),
our Markovian sentence-level model takes as its in-
put the outcome of Eq. (10) for each ht ∈ H . For
PLMTL we need to estimate the model parameters,
that is the various θR values. In our Markovian
model this is done by the scheme detailed in Ap-
pendix A. Given these term-level probabilities, our
model computes for each hypothesis its probabil-
ity to be inferred from each of the corpus passages,
namely P (yn = 1) in Eq (3). Passages are then
ranked according to this probability.

5 Evaluations and Results

To evaluate the performance of M-PLM for ranking
textual inferences we focused on the task of ranking
candidate answer passages for question answering
(QA) as presented in Section 5.1. Additionally, we
demonstrate the added value of our sentence-level
model in another ranking experiment based on RTE
data sets, described in Section 5.2.

5.1 Answer ranking for question answering

Data set We adopted the experimental setup of
Wang et al. (2007) who also provided an annotated
data set for answer passage ranking in QA5.

In their data set an instance is a pair of a factoid
question and a candidate answer passage (a single
sentence in this data set). It was constructed from the
data of the QA tracks at TREC 8–13. The question-
candidate pairs were manually judged and a pair was
annotated as positive if the candidate passage indi-
cates the correct answer for the question. The train-
ing and test sets roughly contain 5700 and 1500 pairs
correspondingly.

5The data set was kindly provided to us by
Mengqiu Wang and is available for download at
http://www.cs.stanford.edu/̃mengqiu/data/qg-emnlp07-
data.tgz.
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Method PLMTL utilizes WordNet and the Catvar
(Categorial Variation) derivations database (Habash
and Dorr, 2003) as generic and publicly available
lexical knowledge resources, when question and
answer terms are restricted to the first WordNet
sense. In order to be consistent with (Shnarch et al.,
2011b), the best performing model of prior work,
we restricted our model to utilize only these two re-
sources which they used. However, additional lexi-
cal resources can be provided as input to our model
(e.g. a distributional similarity-base thesaurus).

We report Mean Average Precision (MAP) and
Mean Reciprocal Rank (MRR), the standard mea-
sures for ranked lists. In the cases of tie we took
a conservative approach and ranked positive anno-
tated instances below the negative instances scored
with the same probability. Hence, the reported fig-
ures are lower-bounds for any tie-breaking method
that could have been applied.

Results We compared our model to all 5 mod-
els evaluated for this data set, described in Sec-
tion 2, and to our own implementation of (Shnarch
et al., 2011b). We term this model Heuristically-
Normalized Probabilistic Lexical Model, HN-PLM,
since it modifies PLMTL by introducing heuristic
normalization formulae. As explained earlier, both
M-PLM and HN-PLM embed PLMTL in their im-
plementation but they differ in their sentence-level
model. In our implementation of both models,
PLMTL applies chains of transitive rule applications
whose maximal length is 3.

As seen in Table 1, M-PLM outperforms all prior
models by a large margin. A comparison of M-PLM
and HN-PLM reveals the major positive effect of
choosing the Markovian process for the sentence-
level decision. By avoiding heuristically-normalized
formulae and having all our parameters being part of
the Markovian model, we managed to increases both
MAP and MRR by nearly 2.5%6.

Ablation Test As an additional examination of
the impact of the Markovian process components,
we evaluated the contribution of having 4 transition
parameters. The AND-logic applied by (Shnarch et

6The difference is not significant according to the Wilcoxon
test, however we note that given the data set size it is hard to get
a significant difference and that both Heilman and Smith (2010)
and Wang and Manning (2010) improvements over the results
of Wang et al. (2007) were not statistically significant.

System MAP MRR
Punyakanok et al. 41.89 49.39
Cui et al. 43.50 55.69
Wang & Manning 59.51 69.51
Wang et al. 60.29 68.52
Heilman & Smith 60.91 69.17
Shnarch et al. HN-PLM 61.89 70.24
M-PLM 64.38 72.69

Table 1: Results (in %) for the task of answer ranking for
question answering (sorted by MAP).

al., 2011a) to their sentence-level decision roughly
corresponds to 2 of the Markovian parameters. A
binary AND outputs 1 if both its inputs are 1. This
corresponds to q11(1) which is indeed estimate to be
near 1. In any other case an AND gate outputs 0.
This corresponds to q00(1) which was estimated to
be near zero.

The two parameters q01 and q10 are novel to the
Markovian process and do not have counterparts in
(Shnarch et al., 2011a). These parameters are the
cases in which the sentence-level decision accumu-
lated so far and the term-level decision do not agree.
Introducing these 2 parameters enables our model to
provide a positive decision for the hypothesis as a
whole (or for a part of it) even if some of its terms
were not inferred. We performed an ablation test on
each of these two parameters by forcing the value of
the ablated parameter to be zero. The notable perfor-
mance drop presented in Table 2 indicates the crucial
contribution of these parameters to our model.

Ablated parameter ∆ MAP ∆ MRR
q01(1) = 0 -2.61 -4.91
q10(1) = 0 -2.12 -2.86

Table 2: Ablation test for the novel parameters of the Marko-
vian process. Results (in %) indicate performance drop when
forcing a parameter to be zero.

5.2 RTE evaluations
To assess the added value of our model on an addi-
tional ranking evaluation, we utilize the search task
data sets of the recent Recognizing Textual Entail-
ment (RTE) benchmarks (Bentivogli et al., 2009;
Bentivogli et al., 2010), which were originally con-
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structed for the task of entailment classification. In
that task a hypothesis is given with a corpus and the
goal is to identify which sentences of the corpus en-
tail the hypothesis. This setting naturally lends itself
to a ranking scenario, in which the desired output is
a list of the corpus sentences ranked by their proba-
bility to entail the given hypothesis.

To that end, we employed the same method-
ology as described in the previous section. Ta-
ble 3 presents the improvement of our model over
HN-PLM, whose classification performance was re-
ported to be on par with best-performing systems on
these data sets7. As can be seen, the improvement
is substantial for both measures on both data sets.
These results further assess the contribution of our
Markovian sentence-level model.

RTE-5 RTE-6
MAP MRR MAP MRR

HN-PLM 58.0 82.9 54.0 71.9
M-PLM 61.6 84.8 60.0 79.2

∆ +3.6 +1.9 +6.0 +7.3

Table 3: Improvements of our sentence-level model over
HN-PLM. Results (in %) are shown for the last RTE and
for the search task in RTE-5.

6 Discussion

This paper investigated probabilistic lexical mod-
els for ranking textual inferences focusing on pas-
sage ranking for QA. We showed that our coher-
ent probabilistic model, whose sentence-level model
is based on a Markovian process, considerably im-
proves five prior syntactic-based models as well as
a heuristically-normalized lexical model. Therefore,
it raises the baseline for future methods.

In future work we would like to further explore
a broader range of related probabilistic models. Es-
pecially, as our Markovian process is dependent on
term order, it would be interesting to investigate
models which are not order dependent.

Initial experiments on the classification task show
that M-PLM performs well above the average sys-
tem but below HN-PLM, since it does not normalize

7RTE data sets were only used for the classification task
so far, therefore there are no state-of-the-art results to compare
with, when utilizing them for the ranking task.

the estimated probability well across hypothesis. We
therefore suggest a future work on better classifica-
tion models.

Finally, we view this work as joining a line of re-
search which develops principled probabilistic mod-
els for the task of textual inference and demonstrates
their superiority over heuristic methods.

A Appendix: Adaptation of PLMTL

learning

M-PLM embeds PLMTL as its term-level model.
PLMTL introduces θR values as additional parame-
ters for the complete model. We show how we mod-
ify (Shnarch et al., 2011a) E-step formula to fit our
Markovian modeling, described in Section 3.1. The
M-step formula remains exactly the same.

Eq. (11) estimates the a-posteriori validity prob-
ability of a single application of the rule r in the
transitive chain c pointing at ht, given that the an-
notation of the pair is a.

wtcr(T,H) = P (xtcr = 1|yn = a) =
(11)∑

i,j,k∈{0,1} αt−1(i)P (xt =j|xtcr =1)θR(r)qij(k)βt(a|k)

P (yn = a)

where t=2 . . . n and P (xt =j|xtcr =1) is the prob-
ability that the inference value of xt is j, given that
the application of r provides a valid inference step.
As appeared in (Shnarch et al., 2011b) this probabil-
ity can be evaluated as follows:

P (xt =1|xtcr =1)=1− P (xt = 0)

P (xtc = 0)

(
1−P (xtc = 1)

θR(r)

)
For t = 1 there is no accumulated sentence-level

decision at the previous position (i.e. no αt−1) there-
fore Eq. (11) becomes:

w1cr(T,H) =

∑
j∈{0,1}P (x1 =j|x1cr =1)θR(r)β1(a|j)

P (yn = a)
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Abstract

Detecting emotions in microblogs and so-
cial media posts has applications for industry,
health, and security. However, there exists no
microblog corpus with instances labeled for
emotions for developing supervised systems.
In this paper, we describe how we created such
a corpus from Twitter posts using emotion-
word hashtags. We conduct experiments to
show that the self-labeled hashtag annotations
are consistent and match with the annotations
of trained judges. We also show how the Twit-
ter emotion corpus can be used to improve
emotion classification accuracy in a different
domain. Finally, we extract a word–emotion
association lexicon from this Twitter corpus,
and show that it leads to significantly better
results than the manually crafted WordNet Af-
fect lexicon in an emotion classification task.1

1 Introduction

We use language not just to convey facts, but also
our emotions. Automatically identifying emotions
expressed in text has a number of applications, in-
cluding customer relation management (Bougie et
al., 2003), determining popularity of products and
governments (Mohammad and Yang, 2011), and
improving human-computer interaction (Velásquez,
1997; Ravaja et al., 2006).

Twitter is an online social networking and mi-
croblogging service where users post and read mes-
sages that are up to 140 characters long. The mes-
sages are called tweets.

1Email the author to obtain a copy of the hash-tagged tweets
or the emotion lexicon: saif.mohammad@nrc-cnrc.gc.ca.

Often a tweet may include one or more words im-
mediately preceded with a hash symbol (#). These
words are called hashtags. Hashtags serve many
purposes, but most notably they are used to indicate
the topic. Often these words add to the information
in the tweet: for example, hashtags indicating the
tone of the message or their internal emotions.

From the perspective of one consuming tweets,
hashtags play a role in search: Twitter allows peo-
ple to search tweets not only through words in the
tweets, but also through hashtagged words. Con-
sider the tweet below:

We are fighting for the 99% that have been
left behind. #OWS #anger

A number of people tweeting about the Occupy
Wall Street movement added the hashtag #OWS to
their tweets. This allowed people searching for
tweets about the movement to access them simply
by searching for the #OWS hashtag. In this partic-
ular instance, the tweeter (one who tweets) has also
added an emotion-word hashtag #anger, possibly to
convey that he or she is angry.

Currently there are more than 200 million Twitter
accounts, 180 thousand tweets posted every day, and
18 thousand Twitter search queries every second.
Socio-linguistic researchers point out that Twitter is
primarily a means for people to converse with other
individuals, groups, and the world in general (Boyd
et al., 2010). As tweets are freely accessible to all,
the conversations can take on non-traditional forms
such as discussions developing through many voices
rather than just two interlocuters. For example, the
use of Twitter and Facebook has been credited with
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providing momentum to the 2011 Arab Spring and
Occupy Wall Street movements (Skinner, 2011; Ray,
2011). Understanding how such conversations de-
velop, how people influence one another through
emotional expressions, and how news is shared to
elicit certain emotional reactions, are just some of
the compelling reasons to develop better models for
the emotion analysis of social media.

Supervised methods for emotion detection tend to
perform better than unsupervised ones. They use
ngram features such as unigrams and bigrams (indi-
vidual words and two-word sequences) (Aman and
Szpakowicz, 2007; Neviarouskaya et al., 2009; Mo-
hammad, 2012b). However, these methods require
labeled data where utterances are marked with the
emotion they express. Manual annotation is time-
intensive and costly. Thus only a small amount of
such text exists. Further, supervised algorithms that
rely on ngram features tend to classify accurately
only if trained on data from the same domain as the
target sentences (Mohammad, 2012b). Thus even
the limited amount of existing emotion-labeled data
is unsuitable for use in microblog analysis.

In this paper, we show how we automatically cre-
ated a large dataset of more than 20,000 emotion-
labeled tweets using hashtags. We compiled labeled
data for six emotions—joy, sadness, anger, fear, dis-
gust, and surprise—argued to be the most basic (Ek-
man, 1992). We will refer to our dataset as the Twit-
ter Emotion Corpus (TEC). We show through ex-
periments that even though the tweets and hashtags
cover a diverse array of topics and were generated
by thousands of different individuals (possibly with
very different educational and socio-economic back-
grounds), the emotion annotations are consistent and
match the intuitions of trained judges. We also show
how we used the TEC to improve emotion detection
in a domain very different from social media.

Finally, we describe how we generated a large lex-
icon of ngrams and associated emotions from TEC.
This emotion lexicon can be used in many applica-
tions, including highlighting words and phrases in a
piece of text to quickly convey regions of affect. We
show that the lexicon leads to significantly better re-
sults than that obtained using the manually crafted
WordNet Affect lexicon in an emotion classification
task.

2 Related Work

Emotion analysis can be applied to all kinds of text,
but certain domains and modes of communication
tend to have more overt expressions of emotions
than others. Genereux and Evans (2006), Mihalcea
and Liu (2006), and Neviarouskaya et al. (2009) ana-
lyzed web-logs. Alm et al. (2005) and Francisco and
Gervás (2006) worked on fairy tales. Boucouvalas
(2002), John et al. (2006), and Mohammad (2012a)
explored emotions in novels. Zhe and Boucouvalas
(2002), Holzman and Pottenger (2003), and Ma et al.
(2005) annotated chat messages for emotions. Liu et
al. (2003) and Mohammad and Yang (2011) worked
on email data. Kim et al. (2009) analyzed sadness in
posts reacting to news of Michael Jackson’s death.
Tumasjan et al. (2010) study Twitter as a forum for
political deliberation.

Much of this work focuses on six Ekman emo-
tions. There is less work on complex emotions, for
example, work by Pearl and Steyvers (2010) that fo-
cuses on politeness, rudeness, embarrassment, for-
mality, persuasion, deception, confidence, and dis-
belief. Bolen et al. (2009) measured tension, depres-
sion, anger, vigor, fatigue, and confusion in tweets.
One of the advantages of our work is that we can eas-
ily collect tweets with hashtags for many emotions,
well beyond the basic six.

Go et al. (2009) and González-Ibáñez et al. (2011)
noted that sometimes people use the hashtag #sar-
casm to indicate that their tweet is sarcastic. They
collected tweets with hashtags of #sarcasm and
#sarcastic to create a dataset of sarcastic tweets. We
follow their ideas and collect tweets with hashtags
pertaining to different emotions. Additionally, we
present several experiments to validate that the emo-
tion labels in the corpus are consistent and match
intuitions of trained judges.

3 Existing Emotion-Labeled Text

The SemEval-2007 Affective Text corpus has news-
paper headlines labeled with the six Ekman emo-
tions by six annotators (Strapparava and Mihalcea,
2007). More precisely, for each headline–emotion
pair, the annotators gave scores from 0 to 100 indi-
cating how strongly the headline expressed the emo-
tion. The inter-annotator agreement as determined
by calculating the Pearson’s product moment corre-
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# of % of
emotion instances instances r
anger 132 13.2 0.50
disgust 43 4.3 0.45
fear 247 24.7 0.64
joy 344 34.4 0.60
sadness 283 28.3 0.68
surprise 253 25.3 0.36

simple average 0.54
frequency-based average 0.43

Table 1: Inter-annotator agreement (Pearson’s correla-
tion) amongst 6 annotators on the 1000-headlines dataset.

lation (r) between the scores given by each anno-
tator and the average of the other five annotators is
shown in Table 1. For our experiments, we consid-
ered scores greater than 25 to indicate that the head-
line expresses the corresponding emotion.

The dataset was created for an unsupervised com-
petition, and consisted of 250 headlines of trial data
and 1000 headlines of test data. We will refer to
them as the 250-headlines and the 1000-headlines
datasets respectively. However, the data has also
been used in a supervised setting through (1) ten-
fold cross-validation on the 1000-headlines dataset
and (2) using the 1000 headlines as training data and
testing on the 250-headlines dataset (Chaffar and
Inkpen, 2011).

Other datasets with sentence-level annotations of
emotions include about 4000 sentences from blogs,
compiled by Aman and Szpakowicz (2007); 1000
sentences from stories on topics such as educa-
tion and health, compiled by Neviarouskaya et al.
(2009); and about 4000 sentences from fairy tales,
annotated by Alm and Sproat (2005).

4 Creating the Twitter Emotion Corpus

Sometimes people use hashtags to notify others of
the emotions associated with the message they are
tweeting. Table 2 shows a few examples. On reading
just the message before the hashtags, most people
will agree that the tweeter #1 is sad, tweeter #2 is
happy, and tweeter #3 is angry.

However, there also exist tweets such as the fourth
example, where reading just the message before the
hashtag does not convey the emotions of the tweeter.
Here, the hashtag provides information not present
(implicitly or explicitly) in the rest of the message.

1. Feeling left out... #sadness
2. My amazing memory saves the day again! #joy
3. Some jerk stole my photo on tumblr. #anger
4. Mika used my photo on tumblr. #anger
5. School is very boring today :/ #joy
6. to me.... YOU are ur only #fear

Table 2: Example tweets with emotion-words hashtags.

There are also tweets, such as those shown in ex-
amples 5 and 6, that do not seem to express the
emotions stated in the hashtags. This may occur
for many reasons including the use of sarcasm or
irony. Additional context is required to understand
the full emotional import of many tweets. Tweets
tend to be very short, and often have spelling mis-
takes, short forms, and various other properties that
make such text difficult to process by natural lan-
guage systems. Further, it is probable, that only
a small portion of emotional tweets are hashtagged
with emotion words.

Our goal in this paper is to determine if we can
successfully use emotion-word hashtags as emotion
labels despite the many challenges outlined above:

• Can we create a large corpus of emotion-
labeled hashtags?

• Are the emotion annotations consistent, de-
spite the large number of annotators, despite no
control over their socio-economic and cultural
background, despite the many ways in which
hashtags are used, and despite the many id-
iosyncracies of tweets?

• Do the hashtag annotations match with the in-
tuitions of trained judges?

We chose to collect tweets with hashtags corre-
sponding to the six Ekman emotions: #anger, #dis-
gust, #fear, #happy, #sadness, and #surprise.

Eisenstein et al. (2010) collected about 380,000
tweets2 from Twitter’s official API.3 Similarly, Go
et al. (2009) collected 1.6 million tweets.4 However,
these datasets had less than 50 tweets that contained
emotion-word hashtags. Therefore, we abandoned
the search-in-corpora approach in favor of the one
described below.

2http://www.ark.cs.cmu.edu/GeoText
3https://dev.twitter.com/docs/streaming-api
4https://sites.google.com/site/twittersentimenthelp
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4.1 Hashtag-based Search on the Twitter
Search API

The Archivist5 is a free online service that helps
users extract tweets using Twitter’s Search API.6

For any given query, Archivist first obtains up to
1500 tweets from the previous seven days. Sub-
sequently, it polls the Twitter Search API every
few hours to obtain newer tweets that match the
query. We supplied Archivist with the six hashtag
queries corresponding to the Ekman emotions, and
collected about 50,000 tweets from those posted be-
tween November 15, 2011 and December 6, 2011.

We discarded tweets that had fewer than three
valid English words. We used the Roget Thesaurus
as the lexicon of English words.7 This helped filter
out most, if not all, of the non-English tweets that
had English emotion hashtags. It also eliminated
very short phrases, and some expressions with very
bad spelling. We discarded tweets with the prefix
“Rt”, “RT”, and “rt”, which indicate that the mes-
sages that follow are re-tweets (re-postings of tweets
sent earlier by somebody else). Like González-
Ibáñez et al. (2011), we removed tweets that did not
have the hashtag of interest at the end of the mes-
sage. It has been suggested that middle-of-tweet
hashtags may not be good labels of the tweets.8 Fi-
nally, we were left with about 21,000 tweets, which
formed the Twitter Emotion Corpus (TEC).

4.2 Distribution of emotion-word hashtags

Table 3 presents some details of the TEC. Observe
that the distribution of emotions in the TEC is very
different from the distribution of emotions in the
1000-headlines corpus (see Table 1). There are more
messages tagged with the hashtag #joy than any of
the other Ekman emotions.

Synonyms can often be used to express the same
concept or emotion. Thus it is possible that the true
distribution of hashtags corresponding to emotions
is different from what is shown in Table 3. In the
future, we intend to collect tweets with synonyms of
joy, sadness, fear, etc., as well.

5http://archivist.visitmix.com
6https://dev.twitter.com/docs/using-search
7Roget’s Thesaurus: www.gutenberg.org/ebooks/10681
8End-of-message hashtags are also much more common

than hashtags at other positions.

# of % of
hashtag instances instances
#anger 1,555 7.4
#disgust 761 3.6
#fear 2,816 13.4
#joy 8,240 39.1
#sadness 3,830 18.2
#surprise 3,849 18.3
Total tweets 21,051 100.0
# of tweeters 19,059

Table 3: Details of the Twitter Emotion Corpus.

5 Consistency and Usefulness of Emotion
Hashtagged Tweets

As noted earlier, even with trained judges, emotion
annotation obtains only a modest inter-annotator
agreement (see Table 1). As shown in Table 3, the
TEC has about 21,000 tweets from about 19,000 dif-
ferent people. If TEC were to be treated as manu-
ally annotated data (which in one sense, it is), then
it is data created by a very large number of judges,
and most judges have annotated just one instance.
Therefore, an important question is to determine
whether the hashtag annotations of the tens of thou-
sands of tweeters are consistent with one another. It
will also be worth determining if this large amount
of emotion-tagged Twitter data can help improve
emotion detection in sentences from other domains.

To answer these questions, we conducted two
automatic emotion classification experiments de-
scribed in the two sub-sections below. For these ex-
periments, we created binary classifiers for each of
the six emotions using Weka (Hall et al., 2009).9 For
example, the Fear–NotFear classifier determined
whether a sentence expressed fear or not. Note
that, for these experiments, we treated the emotion
hashtags as class labels and removed them from the
tweets. Thus a classifier has to determine that a
tweet expresses anger, for example, without having
access to the hashtag #anger.

We chose Support Vector Machines (SVM) with
Sequential Minimal Optimization (Platt, 1999) as
the machine learning algorithm because of its suc-
cessful application in various research problems. We
used binary features that captured the presence or
absence of unigrams and bigrams.

9http://www.cs.waikato.ac.nz/ml/weka
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Label (X) #gold #right #guesses P R F
I. System using ngrams with freq. > 1

anger 132 35 71 49.3 26.5 34.5
disgust 43 8 19 42.1 18.6 25.8
fear 247 108 170 63.5 43.7 51.8
joy 344 155 287 54.0 45.1 49.1
sadness 283 104 198 52.5 36.7 43.2
surprise 253 74 167 44.3 29.2 35.2
ALL LABELS 1302 484 912 53.1 37.2 43.7

II. System using all ngrams (no filtering)
ALL LABELS 1302 371 546 67.9 28.5 40.1

III. System that guesses randomly
ALL LABELS 1302 651 3000 21.7 50.0 30.3

Table 4: Cross-validation results on the 1000-headlines dataset. #gold is the number of headlines expressing a partic-
ular emotion. #right is the number these instances the classifier correctly marked as expressing the emotion. #guesses
is the number of instances marked as expressing an emotion by the classifier.

In order to set a suitable benchmark for experi-
ments with the TEC corpus, we first applied the clas-
sifiers to the SemEval-2007 Affective Text corpus.
We executed ten-fold cross-validation on the 1000-
headlines dataset. We experimented with using all
ngrams, as well as training on only those ngrams that
occurred more than once.

The rows under I in Table 4 give a breakdown
of results obtained by the EmotionX–NotEmotionX
classifiers. when they ignored single-occurrence n-
grams (where X is one of the six basic emotions).
#gold is the number of headlines expressing a par-
ticular emotion X . #right is the number of instances
that the classifier correctly marked as expressing X .
#guesses is the number of instances marked as ex-
pressing X by the classifier. Precision (P ) and recall
(R) are calculated as shown below:

P =
#right

#guesses
∗ 100 (1)

R =
#right
#gold

∗ 100 (2)

F is the balanced F-score. The ALL LABELS row
shows the sums of #gold, #right, and #guesses.

The II and III rows in the table show overall re-
sults obtained by a system that uses all ngrams and
by a system that guesses randomly.10 We do not

10A system that randomly guesses whether an instance is ex-
pressing an emotion X or not will get half of the #gold instances
right. Further, the system will mark half of all the instances as
expressing emotion X . For ALL LABELS,
#right = #gold

2
, and #guesses = #instances∗6

2
.

show a breakdown of results by emotions for II and
III due to space constraints.

It is not surprising that the emotion classes with
the most training instances and the highest inter-
annotator agreement (joy, sadness, and fear) are also
the classes on which the classifiers perform best (see
Table 1).

The F-score of 40.1 obtained using all ngrams
is close to 39.6 obtained by Chaffar and Inkpen
(2011)—a sanity check for our baseline system. Ig-
noring words that occur only once in the train-
ing data seems beneficial. All classification results
shown ahead are for the cases when ngrams that oc-
curred only once were filtered out.

5.1 Experiment I: Can a classifier learn to
predict emotion hashtags?

We applied the binary classifiers described above to
the TEC. Table 5 shows ten-fold cross-validation re-
sults. Observe that even though the TEC was cre-
ated from tens of thousands of users, the automatic
classifiers are able to predict the emotions (hash-
tags) with F-scores much higher than the random
baseline, and also higher than those obtained on the
1000-headlines corpus. Note also that this is de-
spite the fact that the random baseline for the 1000-
headlines corpus (F = 30.3) is higher than the ran-
dom baseline for the TEC (F = 21.7). The results
suggest that emotion hashtags assigned to tweets are
consistent to a degree such that they can be used for
detecting emotion hashtags in other tweets.

Note that expectedly the Joy–NotJoy classifier
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Label #gold #right #guesses P R F
I. System using ngrams with freq. > 1

anger 1555 347 931 37.3 22.31 27.9
disgust 761 102 332 30.7 13.4 18.7
fear 2816 1236 2073 59.6 43.9 50.6
joy 8240 4980 7715 64.5 60.4 62.4
sadness 3830 1377 3286 41.9 36.0 38.7
surprise 3849 1559 3083 50.6 40.5 45.0
ALL LABELS 21051 9601 17420 55.1 45.6 49.9

II. System that guesses randomly
ALL LABELS 21051 10525 63,153 16.7 50.0 21.7

Table 5: Cross-validation results on the TEC. The highest F-score is shown in bold.

gets the best results as it has the highest number of
training instances. The Sadness–NotSadness clas-
sifier performed relatively poorly considering the
amount of training instances available, whereas the
Fear-NotFear classifier performed relatively well. It
is possible that people use less overt cues in tweets
when they are explicitly giving it a sadness hashtag.

5.2 Experiment II: Can TEC improve emotion
classification in a new domain?

As mentioned earlier, supervised algorithms per-
form well when training and test data are from the
same domain. However, certain domain adaptation
algorithms may be used to combine training data in
the target domain with large amounts of training data
from a different source domain.

The Daumé (2007) approach involves the trans-
formation of the original training instance feature
vector into a new space made up of three copies of
the original vector. The three copies correspond to
the target domain, the source domain, and the gen-
eral domain. If X represents an original feature vec-
tor from the target domain, then it is transformed
into XOX, where O is a zero vector. If X repre-
sents original feature vector from the source domain,
then it is transformed into OXX. This data is given
to the learning algorithm, which learns information
specific to the target domain, specific to the source
domain, as well as information that applies to both
domains. The test instance feature vector (which
is from the target domain) is transformed to XOX.
Therefore, the classifier applies information specific
to the target domain as well as information common
to both the target and source domains, but not infor-
mation specific only to the source domain.

In this section, we describe experiments on us-
ing the Twitter Emotion Corpus for emotion clas-
sification in the newspaper headlines domain. We
applied our binary emotion classifiers on unseen
test data from the newspaper headlines domain—the
250-headlines dataset—using each of the following
as a training corpus:
• Target-domain data: the 1000-headlines data.
• Source-domain data: the TEC.
• Target and Source data: A joint corpus of the

1000-headlines dataset and the TEC.
Additionally, when using the ‘Target and Source’
data, we also tested the domain adaptation algo-
rithm proposed in Daumé (2007). Since the Emo-
tionX class (the positive class) has markedly fewer
instances than the NotEmotionX class, we assigned
higher weight to instances of the positive class dur-
ing training.11 The rows under I in Table 6 give the
results. (Row II results are for the experiment de-
scribed in Section 6, and can be ignored for now.)

We see that the macro-averaged F-score when us-
ing target-domain data (row I.a.) is identical to the
score obtained by the random baseline (row III).
However, observe that the precision of the ngram
system is higher than the random system, and its
recall is lower. This suggests that the test data has
many n-grams not previously seen in the training
data. Observe that as expected, using source-domain
data produces much lower scores (row I.b.) than
when using target-domain training data (row I.a.).

Using both target- and source-domain data pro-
duced significantly better results (row I.c.1.) than

11For example, for the anger–NotAnger classifier, if 10 out
of 110 instances have the label anger, then they are each given
a weight of 10, whereas the rest are given a weight of 1.
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# of features P R F
I. System using ngrams in training data:

a. the 1000-headlines text (target domain) 1,181 40.2 32.1 35.7
b. the TEC (source domain) 32,954 29.9 26.1 27.9
c. the 1000-headlines text and the TEC (target and source)

c.1. no domain adaptation 33,902 41.7 35.5 38.3
c.2. with domain adaptation 101,706 46.0 35.5 40.1

II. System using ngrams in 1000-headlines and:
a. the TEC lexicon 1,181 + 6 44.4 35.3 39.3
b. the WordNet Affect lexicon 1,181 + 6 39.7 30.5 34.5
c. the NRC emotion lexicon 1,181 + 10 46.7 38.6 42.2

III. System that guesses randomly - 27.8 50.0 35.7

Table 6: Results on the 250-headlines dataset. The highest F-scores in I and II are shown in bold.

using target-domain data alone (I.a.). Applying the
domain adaptation technique described in Daumé
(2007), obtained even better results (row I.c.2.). (We
used the Fisher Exact Test and a confidence inter-
val of 95% for all precision and recall significance
testing reported in this paper.) The use of TEC
improved both precision and recall over just using
the target-domain text. This shows that the Twitter
Emotion Corpus can be leveraged, preferably with
a suitable domain adaptation algorithm, to improve
emotion classification results even on datasets from
a different domain. It is also a validation of the
premise that the self-labeled emotion hashtags are
consistent, at least to some degree, with the emotion
labels given by trained human judges.

6 Creating the TEC Emotion Lexicon

Word–emotion association lexicons are lists of
words and associated emotions. For example, the
word victory may be associated with the emotions
of joy and relief. These emotion lexicons have many
applications, including automatically highlighting
words and phrases to quickly convey regions of af-
fect in a piece of text. Mohammad (2012b) shows
that these lexicon features can significantly improve
classifier performance over and above that obtained
using ngrams alone.

WordNet Affect (Strapparava and Valitutti, 2004)
includes 1536 words with associations to the six Ek-
man emotions.12 Mohammad and colleagues com-
piled emotion annotations for about 14,000 words
by crowdsourcing to Mechanical Turk (Mohammad

12http://wndomains.fbk.eu/wnaffect.html

and Turney, 2012; Mohammad and Yang, 2011).13

This lexicon, referred to as the NRC emotion lexi-
con, has annotations for eight emotions (six of Ek-
man, trust, and anticipation) as well as for pos-
itive and negative sentiment.14 Here, we show
how we created an ngram–emotion association lex-
icon from emotion-labeled sentences in the 1000-
headlines dataset and the TEC.

6.1 Method
Given a dataset of sentences and associated emo-
tion labels, we compute the Strength of Association
(SoA) between an n-gram n and an emotion e to be:

SoA(n, e) = PMI (n, e)− PMI (n,¬e) (3)

where PMI is the pointwise mutual information.

PMI (n, e) = log
freq(n, e)

freq(n) ∗ freq(e)
(4)

where freq(n, e) is the number of times n occurs in
a sentence with label e. freq(n) and freq(e) are the
frequencies of n and e in the labeled corpus.

PMI (n,¬e) = log
freq(n,¬e)

freq(n) ∗ freq(¬e)
(5)

where freq(n,¬e) is the number of times n occurs in
a sentence that does not have the label e. freq(¬e) is
the number of sentences that do not have the label e.
Thus, equation 4 is simplified to:

SoA(n, e) = log
freq(n, e) ∗ freq(¬e)
freq(e) ∗ freq(n,¬e)

(6)

13http://www.purl.org/net/saif.mohammad/research
14Plutchik (1985) proposed a model of 8 basic emotions.
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Emotion lexicon # of word types
1000-headlines lexicon 152
TEC lexicon 11,418
WordNet Affect lexicon 1,536
NRC emotion lexicon 14,000

Table 7: Number of word types in emotion lexicons.

Since PMI is known to be a poor estimator of associ-
ation for low-frequency events, we ignored ngrams
that occurred less than five times.

If an n-gram has a stronger tendency to occur in
a sentence with a particular emotion label, than in
a sentence that does not have that label, then that
ngram–emotion pair will have an SoA score that is
greater than zero.

6.2 Emotion lexicons created from the
1000-headlines dataset and the TEC

We calculated SoA scores for the unigrams and bi-
grams in the TEC with the six basic emotions. All
ngram–emotion pairs that obtained scores greater
than zero were extracted to form the TEC emo-
tion lexicon. We repeated these steps for the 1000-
headlines dataset as well. Table 7 shows the number
of word types in the two automatically generated and
the two manually created lexicons. Observe that the
1000-headlines dataset produces very few entries,
whereas the large size of the TEC enables the cre-
ation of a substantial emotion lexicon.

6.3 Evaluating the TEC lexicon
We evaluate the TEC lexicon by using it for clas-
sifying emotions in a setting similar to the one dis-
cussed in the previous section. The test set is the
250-headlines dataset. The training set is the 1000-
headlines dataset. We used binary features that cap-
tured the presence or absence of unigrams and bi-
grams just as before. Additionally, we also used
integer-valued affect features that captured the num-
ber of word tokens in a sentence associated with dif-
ferent emotions labels in the TEC emotion lexicon
and the WordNet Affect lexicon. For example, if a
sentence has two joy words and one surprise word,
then the joy feature has value 2, surprise has value
1, and all remaining affect features have value 0.15

We know from the results in Table 6 (I.a. and I.c)
that using the Twitter Emotion Corpus in addition

15Normalizing by sentence length did not give better results.

to the 1000-headlines training data significantly im-
proves results. Now we investigate if the TEC lex-
icon, which is created from TEC, can similarly im-
prove performance. The rows under II in Table 6
give the results.

Observe that even though the TEC lexicon is a
derivative of the TEC that includes fewer unigrams
and bigrams, the classifiers using the TEC lexicon
produces an F-score (row II.a.) significantly higher
than in the scenarios of I.a. and almost as high as in
I.c.2. This shows that the TEC lexicon successfully
captures the word–emotion associations that are la-
tent in the Twitter Emotion Corpus. We also find that
the the classifiers perform significantly better when
using the TEC lexicon (row II.a.) than when using
the WordNet Affect lexicon (row II.b.), but not as
well as when using the NRC emotion lexicon (row
II.c.). The strong results of the NRC emotion lexi-
con are probably because of its size and because it
was created by direct annotation of words for emo-
tions, which required significant time and effort. On
the other hand, the TEC lexicon can be easily im-
proved further by compiling an even larger set of
tweets using synonyms and morphological variants
of the emotion words used thus far.

7 Conclusions and Future Work

We compiled a large corpus of tweets and associ-
ated emotions using emotion-word hashtags. Even
though the corpus has tweets from several thousand
people, we showed that the self-labeled hashtag an-
notations are consistent. We also showed how the
Twitter emotion corpus can be combined with la-
beled data from a different target domain to improve
classification accuracy. This experiment was espe-
cially telling since it showed that self-labeled emo-
tion hashtags correspond well with annotations of
trained human judges. Finally we extracted a large
word–emotion association lexicon from the Twitter
emotion corpus. Our future work includes collect-
ing tweets with hashtags for various other emotions
and also hashtags that are near-synonyms of the ba-
sic emotion terms described in this paper.
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Abstract

Previous work on paraphrase extraction and
application has relied on either parallel
datasets, or on distributional similarity met-
rics over large text corpora. Our approach
combines these two orthogonal sources of in-
formation and directly integrates them into
our paraphrasing system’s log-linear model.
We compare different distributional similar-
ity feature-sets and show significant improve-
ments in grammaticality and meaning reten-
tion on the example text-to-text generation
task of sentence compression, achieving state-
of-the-art quality.

1 Introduction

A wide variety of applications in natural language
processing can be cast in terms of text-to-text gen-
eration. Given input in the form of natural lan-
guage, a text-to-text generation system produces
natural language output that is subject to a set of
constraints. Compression systems, for instance, pro-
duce shorter sentences. Paraphrases, i.e. differ-
ing textual realizations of the same meaning, are a
crucial components of text-to-text generation sys-
tems, and have been successfully applied to tasks
such as multi-document summarization (Barzilay et
al., 1999; Barzilay, 2003), query expansion (An-
ick and Tipirneni, 1999; Riezler et al., 2007), ques-
tion answering (McKeown, 1979; Ravichandran and
Hovy, 2002), sentence compression (Cohn and La-
pata, 2008; Zhao et al., 2009), and simplification
(Wubben et al., 2012).

Paraphrase collections for text-to-text generation
have been extracted from a variety of different cor-
pora. Several approaches rely on bilingual paral-

lel data (Bannard and Callison-Burch, 2005; Zhao
et al., 2008; Callison-Burch, 2008; Ganitkevitch et
al., 2011), while others leverage distributional meth-
ods on monolingual text corpora (Lin and Pantel,
2001; Bhagat and Ravichandran, 2008). So far, how-
ever, only preliminary studies have been undertaken
to combine the information from these two sources
(Chan et al., 2011).

In this paper, we describe an extension of Gan-
itkevitch et al. (2011)’s bilingual data-based ap-
proach. We augment the bilingually-sourced para-
phrases using features based on monolingual distri-
butional similarity. More specifically:

• We show that using monolingual distributional
similarity features improves paraphrase quality
beyond what we can achieve with features esti-
mated from bilingual data.

• We define distributional similarity for para-
phrase patterns that contain constituent-level
gaps, e.g.

sim(one JJ instance of NP , a JJ case of NP).

This generalizes over distributional similarity
for contiguous phrases.

• We compare different types of monolingual
distributional information and show that they
can be used to achieve significant improve-
ments in grammaticality.

• Finally, we compare our method to several
strong baselines on the text-to-text generation
task of sentence compression. Our method
shows state-of-the-art results, beating a purely
bilingually sourced paraphrasing system.
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Figure 1: Pivot-based paraphrase extraction for con-
tiguous phrases. Two phrases translating to the same
phrase in the foreign language are assumed to be
paraphrases of one another.

2 Background

Approaches to paraphrase extraction differ based on
their underlying data source. In Section 2.1 we out-
line pivot-based paraphrase extraction from bilin-
gual data, while the contextual features used to de-
termine closeness in meaning in monolingual ap-
proaches is described in Section 2.2.

2.1 Paraphrase Extraction via Pivoting
Following Ganitkevitch et al. (2011), we formulate
our paraphrases as a syntactically annotated syn-
chronous context-free grammar (SCFG) (Aho and
Ullman, 1972; Chiang, 2005). An SCFG rule has
the form:

r = C → 〈f, e,∼, ~ϕ〉,
where the left-hand side of the rule, C, is a nonter-
minal and the right-hand sides f and e are strings
of terminal and nonterminal symbols. There is a
one-to-one correspondency between the nontermi-
nals in f and e: each nonterminal symbol in f has
to also appear in e. The function ∼ captures this bi-
jective mapping between the nonterminals. Drawing
on machine translation terminology, we refer to f as
the source and e as the target side of the rule.

Each rule is annotated with a feature vector of fea-
ture functions ~ϕ = {ϕ1...ϕN} that, using a corre-
sponding weight vector ~λ, are combined in a log-
linear model to compute the cost of applying r:

cost(r) = −
N∑

i=1

λi logϕi. (1)

A wide variety of feature functions can be formu-
lated. We detail the feature-set used in our experi-
ments in Section 4.

NP NN

NP

EU

NN NP

NP

intentions

's

EUder ......⌃
h i

's

in the long term

in the long term 

langfristigen Pläne

the long-term of

Europeofthe long-term plans

IBM goals

IBM 's

's in the long term 

längerfristige Ziele
IBMofthe long-term ambitions

..

Figure 2: Extraction of syntactic paraphrases via the
pivoting approach: We aggregate over different sur-
face realizations, matching the lexicalized portions
of the rule and generalizing over the nonterminals.

To extract paraphrases we follow the intuition that
two English strings e1 and e2 that translate to the
same foreign string f can be assumed to have the
same meaning, as illustrated in Figure 1.1

First, we use standard machine translation meth-
ods to extract a foreign-to-English translation gram-
mar from a bilingual parallel corpus (Koehn, 2010).
Then, for each pair of translation rules where the
left-hand side C and foreign string f match:

r1 = C → 〈f, e1,∼1, ~ϕ1〉
r2 = C → 〈f, e2,∼2, ~ϕ2〉,

we pivot over f to create a paraphrase rule rp:

rp = C → 〈e1, e2,∼p, ~ϕp〉,

with a combined nonterminal correspondency func-
tion ∼p. Note that the common source side f im-
plies that e1 and e2 share the same set of nonterminal
symbols.

The paraphrase feature vector ~ϕp is computed
from the translation feature vectors ~ϕ1 and ~ϕ2 by
following the pivoting idea. For instance, we esti-
mate the conditional paraphrase probability p(e2|e1)
by marginalizing over all shared foreign-language
translations f :

p(e2|e1) =
∑

f

p(e2, f |e1) (2)

=
∑

f

p(e2|f, e1)p(f |e1) (3)

≈
∑

f

p(e2|f)p(f |e1). (4)

1See Yao et al. (2012) for an analysis of this assumption.
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twelve cartoons insulting the prophet mohammad
CD NNS JJ DT NNP
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NP
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cartoons offensiveof the that are to

Figure 3: An example of a synchronous paraphras-
tic derivation, here a sentence compression. Shaded
words are deleted in the indicated rule applications.

Figure 2 illustrates syntax-constrained pivoting and
feature aggregation over multiple foreign language
translations for a paraphrase pattern.

After the SCFG has been extracted, it can be used
within standard machine translation machinery, such
as the Joshua decoder (Ganitkevitch et al., 2012).
Figure 3 shows an example for a synchronous para-
phrastic derivation produced as a result of applying
our paraphrase grammar in the decoding process.

The approach outlined relies on aligned bilingual
texts to identify phrases and patterns that are equiva-
lent in meaning. When extracting paraphrases from
monolingual text, we have to rely on an entirely dif-
ferent set of semantic cues and features.

2.2 Monolingual Distributional Similarity

Methods based on monolingual text corpora mea-
sure the similarity of phrases based on contextual
features. To describe a phrase e, we define a set of
features that capture the context of an occurrence of
e in our corpus. Writing the context vector for the
i-th occurrence of e as ~se,i, we can aggregate over
all occurrences of e, resulting in a distributional sig-
nature for e, ~se =

∑
i ~se,i. Following the intuition

that phrases with similar meanings occur in similar
contexts, we can then quantify the goodness of e′ as
a paraphrase of e by computing the cosine similarity
between their distributional signatures:

sim(e, e′) =
~se · ~se′

|~se||~se′ |
.

A wide variety of features have been used to de-
scribe the distributional context of a phrase. Rich,

linguistically informed feature-sets that rely on de-
pendency and constituency parses, part-of-speech
tags, or lemmatization have been proposed in widely
known work such as by Church and Hanks (1991)
and Lin and Pantel (2001). For instance, a phrase
is described by the various syntactic relations it has
with lexical items in its context, such as: “for what
verbs do we see with the phrase as the subject?”, or
“what adjectives modify the phrase?”.

However, when moving to vast text collections or
collapsed representations of large text corpora, lin-
guistic annotations can become impractically expen-
sive to produce. A straightforward and widely used
solution is to fall back onto lexical n-gram features,
e.g. “what words or bigrams have we seen to the left
of this phrase?” A substantial body of work has fo-
cussed on using this type of feature-set for a variety
of purposes in NLP (Lapata and Keller, 2005; Bha-
gat and Ravichandran, 2008; Lin et al., 2010; Van
Durme and Lall, 2010).

2.3 Other Related Work

Recently, Chan et al. (2011) presented an initial in-
vestigation into combining phrasal paraphrases ob-
tained through bilingual pivoting with monolingual
distributional information. Their work investigated
a reranking approach and evaluated their method via
a substitution task, showing that the two sources of
information are complementary and can yield im-
provements in paraphrase quality when combined.

3 Incorporating Distributional Similarity

In order to incorporate distributional similarity in-
formation into the paraphrasing system, we need
to calculate similarity scores for the paraphrastic
SCFG rules in our grammar. For rules with purely
lexical right-hand sides e1 and e2 this is a simple
task, and the similarity score sim(e1, e2) can be di-
rectly included in the rule’s feature vector ~ϕ. How-
ever, if e1 and e2 are long, their occurrences become
sparse and their similarity can no longer be reliably
estimated. In our case, the right-hand sides of our
rules often contain gaps and computing a similarity
score is less straightforward.

Figure 4 shows an example of such a discontin-
uous rule and illustrates our solution: we decom-
pose the discontinuous patterns that make up the
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Figure 4: Scoring a rule by extracting and scoring
contiguous phrases consistent with the alignment.
The overall score of the rule is determined by av-
eraging across all pairs of contiguous subphrases.

right-hand sides of a rule r into pairs of contiguous
phrases P(r) = {〈e, e′〉}, for which we can look
up distributional signatures and compute similarity
scores. This decomposition into phrases is non-
trivial, since our sentential paraphrase rules often
involve significant reordering or structural changes.
To avoid comparing unrelated phrase pairs, we re-
quire P(r) to be consistent with a token alignment
a. The alignment is defined analogously to word
alignments in machine translation, and computed by
treating the source and target sides of our paraphrase
rules as a parallel corpus.

We define the overall similarity score of the rule
to be the average of the similarity scores of all ex-
tracted phrase pairs:

sim(r,a) =
1

|P(a)|
∑

(e,e′)∈P(a)

sim(e, e′).

Since the distributional signatures for long, rare
phrases may be computed from only a handful of
occurrences, we additionally query for the shorter
sub-phrases that are more likely to have been ob-
served often enough to have reliable signatures and
thus similarity estimates.

Our definition of the similarity of two discon-
tinuous phrases substantially differs from others in
the literature. This difference is due to a differ-
ence in motivation. Lin and Pantel (2001), for in-
stance, seek to find new paraphrase pairs by compar-
ing their arguments. In this work, however, we try
to add orthogonal information to existing paraphrase
pairs. Both our definition of pattern similarity and
our feature-set (see Section 4.3) are therefore geared

towards comparing the substitutability and context
similarity of a pair of paraphrases.

Our two similarity scores are incorporated into
the paraphraser as additional rule features in ~ϕ,
simngram and simsyn , respectively. We estimate the
corresponding weights along with the other λi as de-
tailed in Section 4.

4 Experimental Setup

4.1 Task: Sentence Compression

To evaluate our method on a real text-to-text appli-
cation, we use the sentence compression task. To
tune the parameters of our paraphrase system for
sentence compression, we need an appropriate cor-
pus of reference compressions. Since our model is
designed to compress by paraphrasing rather than
deletion, the commonly used deletion-based com-
pression data sets like the Ziff-Davis corpus are not
suitable. We thus use the dataset introduced in our
previous work (Ganitkevitch et al., 2011).

Beginning with 9570 tuples of parallel English–
English sentences obtained from multiple reference
translations for machine translation evaluation, we
construct a parallel compression corpus by select-
ing the longest reference in each tuple as the source
sentence and the shortest reference as the target sen-
tence. We further retain only those sentence pairs
where the compression ratio cr falls in the range
0.5 < cr ≤ 0.8. From these, we select 936 sen-
tences for the development set, as well as 560 sen-
tences for a test set that we use to gauge the perfor-
mance of our system.

We contrast our distributional similarity-informed
paraphrase system with a pivoting-only baseline, as
well as an implementation of Clarke and Lapata
(2008)’s state-of-the-art compression model which
uses a series of constraints in an integer linear pro-
gramming (ILP) solver.

4.2 Baseline Paraphrase Grammar

We extract our paraphrase grammar from the
French–English portion of the Europarl corpus (ver-
sion 5) (Koehn, 2005). The Berkeley aligner (Liang
et al., 2006) and the Berkeley parser (Petrov and
Klein, 2007) are used to align the bitext and parse
the English side, respectively. The paraphrase gram-
mar is produced using the Hadoop-based Thrax
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Figure 5: An example of the n-gram feature extrac-
tion on an n-gram corpus. Here, “the long-term” is
seen preceded by “revise” (43 times) and followed
by “plans” (97 times). The corresponding left- and
right-side features are added to the phrase signature
with the counts of the n-grams that gave rise to them.

grammar extractor’s paraphrase mode (Ganitkevitch
et al., 2012). The syntactic nonterminal labels we
allowed in the grammar were limited to constituent
labels and CCG-style slashed categories. Paraphrase
grammars extracted via pivoting tend to grow very
large. To keep the grammar size manageable, we
pruned away all paraphrase rules whose phrasal
paraphrase probabilities p(e1|e2) or p(e2|e1) were
smaller than 0.001.

We extend the feature-set used in Ganitkevitch et
al. (2011) with a number of features that aim to bet-
ter describe a rule’s compressive power: on top of
the word count features wcountsrc and wcount tgt

and the word count difference feature wcountdiff ,
we add character based count and difference features
ccountsrc , ccount tgt , and ccountdiff , as well as log-
compression ratio features wordcr = log

wcount tgt
wcountsrc

and the analogously defined charcr = log
ccount tgt
ccountsrc

.
For model tuning and decoding we used the

Joshua machine translation system (Ganitkevitch et
al., 2012). The model weights are estimated using an
implementation of the PRO tuning algorithm (Hop-
kins and May, 2011), with PRÉCIS as our objective
function (Ganitkevitch et al., 2011). The language
model used in our paraphraser and the Clarke and
Lapata (2008) baseline system is a Kneser-Ney dis-
counted 5-gram model estimated on the Gigaword
corpus using the SRILM toolkit (Stolcke, 2002).

long-term investment holding on to

det
amod

the
JJ NN VBG IN TO DT

NP
PP

VP

⇣ ⇣
the long-term

⌘
=~sigsyntax

⇣
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pos-L-TO 
pos-R-NN  
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lex-L-to 

dep-amod-R-investment

syn-gov-NP syn-miss-L-NN 

lex-L-on-to 
pos-L-IN-TO  

dep-det-R-NN dep-amod-R-NN

Figure 6: An example of the syntactic feature-
set. The phrase “the long-term” is annotated with
position-aware lexical and part-of-speech n-gram
features (e.g. “on to” on the left, and “investment”
and “NN” to its right), labeled dependency links
(e.g. amod − investment) and features derived
from the phrase’s CCG label NP/NN .

4.3 Distributional Similarity Model

To investigate the impact of the feature-set used to
construct distributional signatures, we contrast two
approaches: a high-coverage collection of distribu-
tional signatures with a relatively simple feature-set,
and a much smaller set of signatures with a rich, syn-
tactically informed feature-set.

4.3.1 n-gram Model

The high-coverage model (from here on: n-gram
model) is drawn from a web-scale n-gram corpus
(Brants and Franz, 2006; Lin et al., 2010). We ex-
tract signatures for phrases up to a length of 4. For
each phrase p we look at n-grams of the form wp
and pv, where w and v are single words. We then
extract the corresponding features wleft and vright .
The feature count is set to the count of the n-gram,
reflecting the frequency with which p was preceded
or followed, respectively, by w and v in the data the
n-gram corpus is based on. Figure 5 illustrates this
feature extraction approach. The resulting collection
comprises distributional signatures for the 200 mil-
lion most frequent 1-to-4-grams in the n-gram cor-
pus.
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4.3.2 Syntactic Model
For the syntactically informed signature model

(from here on: syntax model), we use the
constituency and dependency parses provided in
the Annotated Gigaword corpus (Napoles et al.,
2012). We limit ourselves to the Los Angeles
Times/Washington Post portion of the corpus and
extract phrases up to a length of 4. The following
feature set is used to compute distributional signa-
tures for the extracted phrases:

• Position-aware lexical and part-of-speech uni-
gram and bigram features, drawn from a three-
word window to the right and left of the phrase.

• Features based on dependencies for both links
into and out of the phrase, labeled with the cor-
responding lexical item and POS. If the phrase
corresponds to a complete subtree in the con-
stituency parse we additionally include lexical
and POS features for its head word.

• Syntactic features for any constituents govern-
ing the phrase, as well as for CCG-style slashed
constituent labels for the phrase. The latter are
split in governing constituent and missing con-
stituent (with directionality).

Figure 6 illustrates the syntax model’s feature ex-
traction for an example phrase occurrence. Using
this method we extract distributional signatures for
over 12 million 1-to-4-gram phrases.

4.3.3 Locality Sensitive Hashing
Collecting distributional signatures for a large

number of phrases quickly leads to unmanageably
large datasets. Storing the syntax model’s 12 mil-
lion signatures in a compressed readable format,
for instance, requires over 20GB of disk space.
Like Ravichandran et al. (2005) and Bhagat and
Ravichandran (2008), we rely on locality sensitive
hashing (LSH) to make the use of these large collec-
tions practical.

In order to avoid explicitly computing the fea-
ture vectors, which can be memory intensive for fre-
quent phrases, we chose the online LSH variant de-
scribed by Van Durme and Lall (2010), as imple-
mented in the Jerboa toolkit (Van Durme, 2012).
This method, based on the earlier work of Indyk and

Motwani (1998) and Charikar (2002), approximates
the cosine similarity between two feature vectors
based on the Hamming distance in a dimensionality-
reduced bitwise representation. Two feature vec-
tors u, v each of dimension d are first projected
through a d×b random matrix populated with draws
from N (0, 1). We then convert the resulting b-
dimensional vectors into bit-vectors by setting each
bit of the signature conditioned on whether the cor-
responding projected value is less than 0. Now,
given the bit signatures h(~u) and h(~v), we can ap-
proximate the cosine similarity of u and v as:

sim ′(u, v) = cos
(D(h(~u), h(~v))

b
π
)
,

where d(·, ·) is the Hamming distance. In our ex-
periments we use 256-bit signatures. This reduces
the memory requirements for the syntax model to
around 600MB.

5 Evaluation Results

To rate the quality of our output, we solicit human
judgments of the compressions along two five-point
scales: grammaticality and meaning preservation.
Judges are instructed to decide how much the mean-
ing from a reference translation is retained in the
compressed sentence, with a score of 5 indicating
that all of the important information is present, and
1 being that the compression does not retain any of
the original meaning. Similarly, a grammar score
of 5 indicates perfect grammaticality, while a score
of 1 is assigned to sentences that are entirely un-
grammatical. We ran our evaluation on Mechani-
cal Turk, where a total of 126 judges provided 3 re-
dundant judgments for each system output. To pro-
vide additional quality control, our HITs were aug-
mented with both positive and negative control com-
pressions. For the positive control we used the refer-
ence compressions from our test set. Negative con-
trol was provided by adding a compression model
based on random word deletions to the mix.

In Table 1 we compare our distributional
similarity-augmented systems to the plain pivoting-
based baseline and the ILP approach. The compres-
sion ratios of the paraphrasing systems are tuned to
match the average compression ratio seen on the de-
velopment and test set. The ILP system is config-
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ured to loosely match this ratio, as to not overly con-
strain its search space. Our results indicate that the
paraphrase approach significantly outperforms ILP
on meaning retention. However, the baseline sys-
tem shows notable weaknesses in grammaticality.
Adding the n-gram distributional similarity model
to the paraphraser recovers some of the difference in
grammaticality while simultaneously yielding some
gain in the compressions’ meaning retention. Mov-
ing to distributional similarity estimated on the syn-
tactic feature-set yields additional improvement, de-
spite the model’s lower coverage.

It is known that human evaluation scores correlate
linearly with the compression ratio produced by a
sentence compression system (Napoles et al., 2011).
Thus, to ensure fairness in our comparisons, we pro-
duce a pairwise comparison breakdown that only
takes into account compressions of almost identical
length.2 Figure 7 shows the results of this analysis,
detailing the number of wins and ties in the human
judgements.

We note that the gains in meaning retention over
both the baseline and the ILP system are still present
in the pairwise breakdown. The gains over the
paraphrasing baseline, as well as the improvement
in meaning over ILP are statistically significant at
p < 0.05 (using the sign test).

We can observe that there is substantial overlap
between the baseline paraphraser and the n-gram
model, while the syntax model appears to yield no-
ticeably different output far more often.

Table 2 shows two example sentences drawn from
our test set and the compressions produced by the
different systems. It can be seen that both the
paraphrase-based and ILP systems produce good
quality results, with the paraphrase system retaining
the meaning of the source sentence more accurately.

6 Conclusion

We presented a method to incorporate monolingual
distributional similarity into linguistically informed
paraphrases extracted from bilingual parallel data.
Having extended the notion of similarity to dis-
contiguous pattern with multi-word gaps, we inves-
tigated the effect of using feature-sets of varying

2We require the compressions to be within ±10% length of
one another.
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Figure 7: A pairwise breakdown of the human judg-
ments comparing the systems. Dark grey regions
show the number of times the two systems were tied,
and light grey shows how many times one system
was judged to be better than the other.

CR Meaning Grammar
Reference 0.80 4.80 4.54

ILP 0.74 3.44 3.41
PP 0.78 3.53 2.98

PP + n-gram 0.80 3.65 3.16
PP + syntax 0.79 3.70 3.26

Random Deletions 0.78 2.91 2.53

Table 1: Results of the human evaluation on longer
compressions: pairwise compression rates (CR),
meaning and grammaticality scores. Bold indicates
a statistically significance difference at p < 0.05.

complexity to compute distributional similarity for
our paraphrase collection. We conclude that, com-
pared to a simple large-scale model, a rich, syntax-
based feature-set, even with significantly lower cov-
erage, noticeably improves output quality in a text-
to-text generation task. Our syntactic method sig-
nificantly improves grammaticality and meaning re-
tention over a strong paraphrastic baseline, and of-
fers substantial gains in meaning retention over a
deletion-based state-of-the-art system.
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Source should these political developments have an impact on sports ?

Reference should these political events affect sports ?

Syntax should these events have an impact on sports ?

n-gram these political developments impact on sports ?

PP should these events impact on sports ?

ILP political developments have an impact

Source now we have to think and make a decision about our direction and choose only one way .
thanks .

Reference we should ponder it and decide our path and follow it , thanks .

Syntax now we think and decide on our way and choose one way . thanks .

n-gram now we have and decide on our way and choose one way . thanks .

PP now we have and decide on our way and choose one way . thanks .

ILP we have to think and make a decision and choose way thanks

Table 2: Example compressions produced by our systems and the baselines Table 1 for three input sentences
from our test data.
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Abstract

The Joint Conference on Lexical and Compu-
tational Semantics (*SEM) each year hosts a
shared task on semantic related topics. In its
first edition held in 2012, the shared task was
dedicated to resolving the scope and focus of
negation. This paper presents the specifica-
tions, datasets and evaluation criteria of the
task. An overview of participating systems is
provided and their results are summarized.

1 Introduction

Semantic representation of text has received consid-
erable attention these past years. While early shal-
low approaches have been proven useful for several
natural language processing applications (Wu and
Fung, 2009; Surdeanu et al., 2003; Shen and La-
pata, 2007), the field is moving towards analyzing
and processing complex linguistic phenomena, such
as metaphor (Shutova, 2010) or modality and nega-
tion (Morante and Sporleder, 2012).

The *SEM 2012 Shared Task is devoted to nega-
tion, specifically, to resolving its scope and focus.
Negation is a grammatical category that comprises
devices used to reverse the truth value of proposi-
tions. Broadly speaking, scope is the part of the
meaning that is negated and focus the part of the
scope that is most prominently or explicitly negated
(Huddleston and Pullum, 2002). Although negation
is a very relevant and complex semantic aspect of
language, current proposals to annotate meaning ei-
ther dismiss negation or only treat it in a partial man-
ner.

The interest in automatically processing nega-
tion originated in the medical domain (Chapman
et al., 2001), since clinical reports and discharge

summaries must be reliably interpreted and indexed.
The annotation of negation and hedge cues and their
scope in the BioScope corpus (Vincze et al., 2008)
represented a pioneering effort. This corpus boosted
research on scope resolution, especially since it was
used in the CoNLL 2010 Shared Task (CoNLL
ST 2010) on hedge detection (Farkas et al., 2010).
Negation has also been studied in sentiment analy-
sis (Wiegand et al., 2010) as a means to determine
the polarity of sentiments and opinions.

Whereas several scope detectors have been de-
veloped using BioScope (Morante and Daelemans,
2009; Velldal et al., 2012), there is a lack of cor-
pora and tools to process negation in general domain
texts. This is why we have prepared new corpora
for scope and focus detection. Scope is annotated
in Conan Doyle stories (CD-SCO corpus). For each
negation, the cue, its scope and the negated event, if
any, are marked as shown in example (1a). Focus is
annotated on top of PropBank, which uses the WSJ
section of the Penn TreeBank (PB-FOC corpus). Fo-
cus annotation is restricted to verbal negations an-
notated with MNEG in PropBank, and all the words
belonging to a semantic role are selected as focus.
An annotated example is shown in (1b)1.
(1) a. [John had] never [said as much before]

b. John had never said {as much} before
The rest of this paper is organized as follows.

The two proposed tasks are described in Section 2,
and the corpora in Section 3. Participating systems
and their results are summarized in Section 4. The
approaches used by participating systems are de-
scribed in Section 5, as well as the analysis of re-
sults. Finally, Section 6 concludes the paper.

1Throughout this paper, negation cues are marked in bold
letters, scopes are enclosed in square brackets and negated
events are underlined; focus is enclosed in curly brackets.
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2 Task description

The *SEM 2012 Shared Task2 was dedicated to re-
solving the scope and focus of negation (Task 1 and
2 respectively). Participants were allowed to engage
in any combination of tasks and submit at most two
runs per task. A pilot task combining scope and
focus detection was initially planned, but was can-
celled due to lack of participation. We received a
total of 14 runs, 12 for scope detection (7 closed, 5
open) and 2 for focus detection (0 closed, 2 open).

Submissions fall into two tracks:

• Closed track. Systems are built using exclusively
the annotations provided in the training set and are
tuned with the development set. Systems that do
not use external tools to process the input text or
that modify the annotations provided (e.g., simplify
parse tree, concatenate lists of POS tags, ) fall under
this track.

• Open track. Systems can make use of any external
resource or tool. For example, if a team uses an ex-
ternal semantic parser, named entity recognizer or
obtains the lemma for each token by querying ex-
ternal resources, it falls under the open track. The
tools used cannot have been developed or tuned us-
ing the annotations of the test set.

Regardless of the track, teams were allowed to
submit their final results on the test set using a sys-
tem trained on both the training and development
sets. The data format is the same as in several pre-
vious CoNLL Shared Tasks (Surdeanu et al., 2008).
Sentences are separated by a blank line. Each sen-
tence consists of a sequence of tokens, and a new
line is used for each token.

2.1 Task 1: Scope Resolution
Task 1 aimed at resolving the scope of negation cues
and detecting negated events. The task is divided
into 3 subtasks:

1. Identifying negation cues, i.e., words that express
negation. Cues can be single words (e.g., never),
multiwords (e.g., no longer, by no means), or affixes
(e.g.l im-, -less). Note that negation cues can be
discontinuous, e.g., neither [. . . ] nor.

2. Resolving the scope of negation. This subtask ad-
dresses the problem of determining which tokens
within a sentence are affected by the negation cue.
A scope is a sequence of tokens that can be discon-
tinuous.

2www.clips.ua.ac.be/sem2012-st-neg/

3. Identifying the negated event or property, if any.
The negated event or property is always within the
scope of a cue. Only factual events can be negated.

For the sentence in (2), systems have to identify
no and nothing as negation cues, after his habit he
said and after mine I asked questions as scopes, and
said and asked as negated events.

(2) [After his habit he said] nothing, and after mine I
asked no questions.
After his habit he said nothing, and [after mine I

asked] no [questions].

2.1.1 Evaluation measures
Previously, scope resolvers have been evaluated at
either the token or scope level. The token level eval-
uation checks whether each token is correctly la-
beled (inside or outside the scope), while the scope
level evaluation checks whether the full scope is cor-
rectly labeled. The CoNLL 2010 ST introduced pre-
cision and recall at scope level as performance mea-
sures and established the following requirements: A
true positive (TP) requires an exact match for both
the negation cue and the scope. False positives (FP)
occur when a system predicts a non-existing scope
in gold, or when it incorrectly predicts a scope exist-
ing in gold because: (1) the negation cue is correct
but the scope is incorrect; (2) the cue is incorrect
but the scope is correct; (3) both cue and scope are
incorrect. These three scenarios also trigger a false
negative (FN). Finally, FN also occur when the gold
annotations specify a scope but the system makes no
such prediction (Farkas et al., 2010).

As we see it, the CONLL 2010 ST evaluation
requirements were somewhat strict because for a
scope to be counted as TP, the negation cue had
to be correctly identified (strict match) as well as
the punctuation tokens within the scope. Addi-
tionally, this evaluation penalizes partially correct
scopes more than fully missed scopes, since partially
correct scopes count as FP and FN, whereas missed
scopes count only as FN. This is a standard prob-
lem when applying the F measures to the evaluation
of sequences. For this shared task we have adopted
a slightly different approach based on the following
criteria:

• Punctuation tokens are ignored.
• We provide a scope level measure that does not re-

quire strict cue match. To count a scope as TP this
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measure requires that only one cue token is cor-
rectly identified, instead of all cue tokens.

• To count a negated event as TP we do not require
correct identification of the cue.

• To evaluate cues, scopes and negated events, partial
matches are not counted as FP, only as FN. This is to
avoid penalizing partial matches more than missed
matches.

The following evaluation measures have been
used to evaluate the systems:

• Cue-level F1-measures (Cue).
• Scope-level F1-measures that require only partial

cue match (Scope NCM).
• Scope-level F1-measures that require strict cue

match (Scope CM). In this case, all tokens of the
cue have to be correctly identified.

• F1-measure over negated events (Negated), com-
puted independently from cues and from scopes.

• Global F1-measure of negation (Global): the three
elements of the negation — cue, scope and negated
event — all have to be correctly identified (strict
match).

• F1-measure over scope tokens (Scope tokens). The
total of scope tokens in a sentence is the sum of to-
kens of all scopes. For example, if a sentence has
two scopes, one of five tokens and another of seven
tokens, then the total of scope tokens is twelve.

• Percentage of correct negation sentences (CNS).

A second version of the measures (Cue/Scope
CM/Scope NCM/Negated/Global-B) was calculated
and provided to participants, but was not used to
rank the systems, because it was introduced in the
last period of the development phase following the
request of a participant team. In the B version of the
measures, precision is not counted as (TP/(TP+FP)),
but as (TP / total of system predictions), counting in
this way the percentage of perfect matches among
all the system predictions. Providing this version of
the measures also allowed us to compare the results
of the two versions and to check if systems would
be ranked in a different position depending on the
version.

Even though we believe that relaxing scope eval-
uation by ignoring punctuation marks and relaxing
the strict cue match requirement is a positive feature
of our evaluation, we need to explore further in order
to define a scope evaluation measure that captures
the impact of partial matches in the scores.

2.2 Task 2: Focus Detection
This task tackles focus of negation detection. Both
scope and focus are tightly connected. Scope is the
part of the meaning that is negated and focus is that
part of the scope that is most prominently or explic-
itly negated (Huddleston and Pullum, 2002). Focus
can also be defined as the element of the scope that is
intended to be interpreted as false to make the over-
all negative true.

Detecting focus of negation is useful for retriev-
ing the numerous words that contribute to implicit
positive meanings within a negation. Consider the
statement The government didn’t release the UFO
files {until 2008}. The focus is until 2008, yielding
the interpretation The government released the UFO
files, but not until 1998. Once the focus is resolved,
the verb release, its AGENT The government and its
THEME the UFO files are positive; only the TEMPO-
RAL information until 2008 remains negated.

We only target verbal negations and focus is al-
ways the full text of a semantic role. Some examples
of annotation and their interpretation (Int) using fo-
cus detection are provided in (3–5).

(3) Even if that deal isn’t {revived}, NBC hopes to
find another.
Int: Even if that deal is suppressed, NBC hopes to
find another.

(4) A decision isn’t expected {until some time next
year}.
Int: A decision is expected at some time next year.

(5) . . . it told the SEC it couldn’t provide financial
statements by the end of its first extension
“{without unreasonable burden or expense}”.
Int: It could provide them by that time with a huge
overhead.

2.2.1 Evaluation measures
Task 2 is evaluated using precision, recall and F1.
Submissions are ranked by F1. For each negation,
the predicted focus is considered correct if it is a per-
fect match with the gold annotations.

3 Data Sets

We have released two datasets, which will be avail-
able from the web site of the task: CD-SCO for
scope detection and PB-FOC for focus detection.
The next two sections introduce the datasets.
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WL2 108 0 After After IN (S(S(PP* After
WL2 108 1 his his PRP$ (NP* his
WL2 108 2 habit habit NN *)) habit
WL2 108 3 he he PRP (NP*) he
WL2 108 4 said say VBD (VP* said said
WL2 108 5 nothing nothing NN (NP*))) nothing
WL2 108 6 , , , *
WL2 108 7 and and CC *
WL2 108 8 after after IN (S(PP* after
WL2 108 9 mine mine NN (NP*)) mine
WL2 108 10 I I PRP (NP*) I
WL2 108 11 asked ask VBD (VP* asked asked
WL2 108 12 no no DT (NP* no
WL2 108 13 questions question NNS *))) questions
WL2 108 14 . . . *)

Figure 1: Example sentence from CD-SCO.

3.1 CD-SCO: Scope Annotation
The corpus for Task 1 is CD-SCO, a corpus of Co-
nan Doyle stories. The training corpus contains The
Hound of the Baskervilles, the development corpus,
The Adventure of Wisteria Lodge, and the test corpus
The Adventure of the Red Circle and The Adventure
of the Cardboard Box. The original texts are freely
available from the Gutenberg Project.3

CD-SCO is annotated with negation cues and
their scope, as well as the event or property that is
negated. The cues are the words that express nega-
tion and the scope is the part of a sentence that is
affected by the negation cues. The negated event
or property is the main event or property actually
negated by the negation cue. An event can be a pro-
cess, an action, or a state.

Figure 1 shows an example sentence. Column 1
contains the name of the file, column 2 the sentence
#, column 3 the token #, column 4 the word, column
5 the lemma, column 6 the PoS, column 7 the parse
tree information and columns 8 to end the negation
information. If a sentence does not contain a nega-
tion, column 8 contains “***” and there are no more
columns. If it does contain negations, the informa-
tion for each one is encoded in three columns: nega-
tion cue, scope, and negated event respectively.

The annotation of cues and scopes is inspired by
the BioScope corpus, but there are several differ-
ences. First and foremost, BioScope does not an-
notate the negated event or property. Another im-

3http://www.gutenberg.org/browse/
authors/d\#a37238

Training Dev. Test
# tokens 65,450 13,566 19,216
# sentences 3644 787 1089
# negation sent. 848 144 235
% negation sent. 23.27 18.29 21.57
# cues 984 173 264
# unique cues 30 20 20
# scopes 887 168 249
# negated 616 122 173

Table 1: CD-SCO Corpus statistics.

portant difference concerns the scope model itself:
in CD-SCO, the cue is not considered to be part of
the scope. Furthermore, scopes can be discontinu-
ous and all arguments of the negated event are con-
sidered to be part of the scope, including the subject,
which is kept out of the scope in BioScope. A final
difference is that affixal negation is annotated in CD-
SCO, as in (6).

(6) [He] declares that he heard cries but [is] un[{able}
to state from what direction they came].

Statistics for the corpus is presented in Table 1.
More information about the annotation guidelines is
provided by Morante et al. (2011) and Morante and
Daelemans (2012), including inter-annotator agree-
ment.

The corpus was preprocessed at the University
of Oslo. Tokenization was obtained by the PTB-
compliant tokenizer that is part of the LinGO En-
glish Resource Grammar. 4

4http://moin.delph-in.net/
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Apart from the gold annotations, the corpus was
provided to participants with additional annotations:

• Lemmatization using the GENIA tagger (Tsuruoka
and Tsujii, 2005), version 3.0.1, with the ’-nt’ com-
mand line option. GENIA PoS tags are comple-
mented with TnT PoS tags for increased compati-
bility with the original PTB.

• Parsing with the Charniak and Johnson (2005) re-
ranking parser.5 For compatibility with PTB con-
ventions, the top-level nodes in parse trees (‘S1’),
were removed. The conversion of PTB-style syntax
trees into CoNLL-style format was performed using
the CoNLL 2005 Shared Task software.6

3.2 PB-FOC: Focus Annotation
We have adapted the only previous annotation effort
targeting focus of negation for PB-FOC (Blanco and
Moldovan, 2011). This corpus provides focus an-
notation on top of PropBank. It targets exclusively
verbal negations marked with MNEG in PropBank
and selects as focus the semantic role containing the
most likely focus. The motivation behind their ap-
proach, annotation guidelines and examples can be
found in the aforementioned paper.

We gathered all negations from sections 02–21,
23 and 24 and discarded negations for which the fo-
cus or PropBank annotations were not sound, leav-
ing 3,544 instances.7 For each verbal negation, PB-
FOC provides the current sentence, and the previous
and next sentences as context. For each sentence,
along with the gold focus annotations, PB-FOC con-
tains the following additional annotations:

• Token number;
• POS tags using the Brill tagger (Brill, 1992);
• Named Entities using the Stanford named en-

tity recognizer recognizer (Finkel et al., 2005);
• Chunks using the chunker by Phan (2006);
• Syntactic tree using the Charniak parser (Char-

niak, 2000);
• Dependency tree derived from the syntactic

tree (de Marneffe et al., 2006);

ErgTokenization, http://moin.delph-in.net/
ReppTop

5November 2009 release available from Brown University.
6http://www.lsi.upc.edu/˜srlconll/

srlconll-1.1.tgz
7The original focus annotation targeted the 3,993 negations

marked with MNEG in the whole PropBank.

Train Devel Test
1 role 2,210 515 672
2 roles 89 15 38
3 roles 3 0 2
All 2,302 530 712

Se
m

an
tic

ro
le

s
fo

cu
s

be
lo

ng
s

to

A1 980 222 309
AM-NEG 592 138 172
AM-TMP 161 35 46
AM-MNR 127 27 38
A2 112 28 36
A0 94 23 31
None 88 19 35
AM-ADV 78 23 26
C-A1 46 6 16
AM-PNC 33 8 12
AM-LOC 25 4 10
A4 11 2 5
R-A1 10 2 2
Other 40 8 16

Table 2: Basic numeric analysis for PB-FOC. The first 4
rows indicate the number of unique roles each negation
belongs to, the rest indicate the counts for each role.

• Semantic roles using the labeler described by
(Punyakanok et al., 2008); and

• Verbal negation, indicates with ‘N’ if that token
correspond to a verbal negation for which focus
must be predicted.

Figure 2 provides a sample of PB-FOC. Know-
ing that the original focus annotations were done on
top of PropBank and that focus corresponds to a sin-
gle role, semantic role information is key to predict
the focus. In Table 2, we show some basic numeric
analysis regarding focus annotation and the automat-
ically obtained semantic role labels. Most instances
of focus belong to a single role in the three splits
and the most common role focus belongs to is A1,
followed by AM-NEG, M-TMP and M-MNR. Note
that some instances have at least one word that does
not belong to any role (88 in training, 19 in develop-
ment and 35 in test).

4 Submissions and results

A total of 14 runs were submitted: 12 for scope de-
tection and 2 for focus detection. The unbalanced
number of submissions might be due to the fact that
both tasks are relatively new and the tight timeline
(six weeks) under which systems were developed.
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Marketers 1 NNS O B-NP (S1(S(NP*) 2 nsubj (A0*) * - *
believe 2 VBP O B-VP (VP* 0 root (V*) * - *
most 3 RBS O B-NP (SBAR(S(NP* 4 amod (A1* (A0* - FOCUS
Americans 4 NNPS O I-NP *) 7 nsubj * *) - FOCUS
wo 5 MD O B-VP (VP* 7 aux * (AM-MOD*) - *
n’t 6 RB O I-VP * 7 neg * (AM-NEG*) - *
make 7 VB O I-VP (VP* 2 ccomp * (V*) N *
the 8 DT O B-NP (NP* 10 det * (A1* - *
convenience 9 NN O I-NP * 10 nn * * - *
trade-off 10 NN O I-NP *)))))) 7 dobj *) *) - *
... 11 : O O * 2 punct * * - *
. 12 . O O *)) 2 punct * * - *

Figure 2: Example sentence from PB-FOC.

Team Prec. Rec. F1

O
pe

n UConcordia, run 1 60.00 56.88 58.40
UConcordia, run 2 59.85 56.74 58.26

Table 3: Official results for Task 2.

Some participants showed interest in the second task
and expressed that they did not participate because
of lack of time. In this section, we present the results
for each task.

4.1 Task 1
Six teams (UiO1, UiO2, FBK, UWashington,
UMichigan, UABCoRAL) submitted results for the
closed track with a total of seven runs, and four
teams (UiO2, UGroningen, UCM-1, UCM-2) sub-
mitted results for the open track with a total of five
runs. The evaluation results are provided in Ta-
ble 4, which contains the official results, and Table 5,
which contains the results for evaluation measures
B.

The best Global score in the closed track was ob-
tained by UiO1 (57.63 F1). The best score for Cues
was obtained by FBK (92.34 F1), for Scopes CM
by UiO2 (73.39 F1), for Scopes NCM by UWash-
ington (72.40 F1), and for Negated by UiO1 (67.02
F1). The best Global score in the open track was ob-
tained by UiO2 (54.82 F1), as well as the best scores
for Cues (91.31 F1), Scopes CM (72.39 F1), Scopes
NCM (72.39 F1), and Negated (61.79 F1).

4.2 Task 2
Only one team participated in Task 2, UConcordia
from CLaC Lab at Concordia University. They sub-
mitted two runs and the official results are summa-
rized in Table 3. Their best run scored 58.40 F1.

5 Approaches and analysis

In this section we summarize the methodologies ap-
plied by participants to solve the tasks and we ana-
lyze the results.

5.1 Task 1
To solve Task 1 most teams develop a three module
pipeline with a module per subtask. Scope resolu-
tion and negated event detection are independent of
each other and both depend on cue detection. An
exception is the UiO1 system, which incorporates a
module for factuality detection. Most systems ap-
ply machine learning algorithms, either Conditional
Random Fields (CRFs) or Support Vector Machines
(SVMs), while less systems implement a rule-based
approach. Syntax information is widely employed,
either in the form of rules or incorporated in the
learning model. Multi-word and affixal negation
cues receive a special treatment in most cases, and
scopes are generally postprocessed.

The systems that participate in the closed track
are machine learning based. The UiO1 system is an
adaptation of another system (Velldal et al., 2012),
which combines SVM cue classification with SVM-
based ranking of syntactic constituents for scope
resolution. The approach is extended to identify
negated events by first classifying negations as fac-
tual or non-factual, and then applying an SVM
ranker over candidate events. The original treat-
ment of factuality in this system results in the high-
est score for both the negated event subtask and the
global task.

The UiO2 system combines SVM cue classifica-
tion with CRF-based sequence labeling. An original
aspect of the UiO2 approach is the model represen-
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tation for scopes and negated events, where tokens
are assigned a set of labels that attempts to de-
scribe their behavior within the mechanics of nega-
tion. After unseen sequences are labeled, in-scope
and negated tokens are assigned to their respective
cues using simple post-processing heuristics.

The FBK system consists of three different CRF
classifiers, as well as the UMichigan. A character-
istic of the cue model of the UMichigan system is
that tokens are assigned five labels in order to rep-
resent the different types of negation. Similarly, the
UWashington system has a CRF sequence tagger for
scope and negated event detection, while the cue de-
tector learns regular expression matching rules from
the training set. The UABCoRAL system follows
the same strategy, but instead of CRFs it employs
SVM Light.

The resources utilized by participants in the open
track are diverse. UiO2 reparsed the data with Malt-
Parser in order to obtain dependency graphs. For the
rest, the system is the same as in the closed track.
The global results obtained by this system in the
closed track are higher than the results obtained in
the open track, which is mostly due to a higher per-
formance of the scope resolution module. This is the
only machine learning system in the open track and
the highest performing one.

The UGroningen system is based on tools that
produce complex semantic representations. The sys-
tem employs the C&C tools8 for parsing and Boxer9

to produce semantic representations in the form of
Discourse Representation Structures (DRSs). For
cue detection, the DRSs are converted to flat, non-
recursive structures, called Discourse Representa-
tion Graphs (DRGs). These DRGs allow for cue de-
tection by means of labelled tuples. Scope detection
is done by gathering the tokens that occur within the
scope of the negated DRSs. For negated event detec-
tion, a basic algorithm takes the detected scope and
returns the negated event based on information from
the syntax tree within the scope.

UCM-1 and UCM-2 are rule-based systems that
rely heavily on information from the syntax tree.
The UCM-1 system was initially designed for pro-

8http://svn.ask.it.usyd.edu.au/trac/
candc/wiki/Documentation

9http://svn.ask.it.usyd.edu.au/trac/
candc/wiki/boxer

cessing opinionated texts. It applies a dictionary ap-
proach to cue detection, with the detection of affixal
cues being performed using WordNet. Non-affixal
cue detection is performed by consulting a prede-
fined list of cues. It then uses information from the
syntax tree in order to get a first approximation to
the scope, which is later refined using a set of post-
processing rules. In the case of the UCM-2 system
an algorithm detects negation cues and their scope
by traversing Minipar dependency structures. Fi-
nally, the scope is refined with post-processing rules
that take into account the information provided by
the first algorithm and linguistic clause boundaries.

If we compare tracks, the Global best results ob-
tained in the closed track (57.63 F1) are higher than
the Global best results obtained in the open track
(54.82 F1). If we compare approaches, the best re-
sults in the two tracks are obtained with machine
learning-based systems. The rule-based systems
participating in the open track clearly score lower
(39.56 F1 the best) than the machine learning-based
system (54.82 F1).

Regarding subtasks, systems achieve higher re-
sults in the cue detection task (92.34 F1 the best) and
lower results in the scope resolution (72.40 F1 the
best) and negated event detection (67.02 F1 the best)
tasks. This is not surprising, not only because of
the error propagation effect, but also because the set
of negation cues is closed and comprises mostly sin-
gle tokens, whereas scope sequences are longer. The
best results in cue detection are obtained by the FBK
system that uses CRFs and applies a special proce-
dure to detect the negation cues that are subtokens.
The best scores for scope resolution (72.40, 72.39
F1) are obtained by two machine learning compo-
nents. UWashington uses CRFs with features de-
rived from the syntax tree. UiO2 uses CRFs mod-
els with syntactic and lexical features for scopes, to-
gether with a set of labels aimed at capturing the
behavior of certain tokens within the mechanics of
negation. The best scores for negated events (67.02
F1) are obtained by the UiO1 system that first clas-
sifies negations as factual or non-factual, and then
applies an SVM ranker over candidate events.

Finally, we would like to draw the attention to the
different scores obtained depending on the evalua-
tion measure used. When scope resolution is evalu-
ated with the Scope (NCM, CM) measure, results
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are much lower than when using the Scope To-
kens measure, which does not reflect the ability of
systems to deal with sequences. Another observa-
tion is related to the difference in precision scores
between the two versions of the evaluation mea-
sures. Whereas for Cues and Negated the differ-
ences are not so big because most cues and negated
events span over a single token, for Scopes they are.
The best Scope NCM precision score is 90.00 %,
whereas the best Scope NCM B precision score is
59.54 %. This shows that the scores can change
considerably depending on how partial matches are
counted (as FP and FN, or only as FN). As a final
remark it is worth noting that the ranking of systems
does not change when using the B measures.

5.2 Task 2
UConcordia submitted two runs in the open track.
Both of them follow the same three component ap-
proach. First, negation cues are detected. Second,
the scope of negation is extracted based on depen-
dency relations and heuristics defined by Kilicoglu
and Bergler (2011). Third, the focus of negation
is determined within the elements belonging to the
scope following three heuristics.

6 Conclusions

In this paper we presented the description of the first
*SEM Shared Task on Resolving the Scope and Fo-
cus of Negation, which consisted of two different
tasks related to different aspects of negation: Task 1
on resolving the scope of negation, and Task 2 on
detecting the focus of negation. Task 1 was di-
vided into three subtasks: identifying negation cues,
resolving their scope, and identifying the negated
event. Two new datasets have been produced for this
Shared Task: the CD-SCO corpus of Conan Doyle
stories annotated with scopes, and the PB-FOC cor-
pus, which provides focus annotation on top of Prop-
Bank. New evaluation software was also developed
for this task. The datasets and the evaluation soft-
ware will be available on the web site of the Shared
Task. As far as we know, this is the first task that fo-
cuses on resolving the focus and scope of negation.

A total of 14 runs were submitted, 12 for scope
detection and 2 for focus detection. Of these, four
runs are from systems that take a rule-based ap-

proach, two runs from hybrid systems, and the rest
from systems that take a machine learning approach
using SVMs or CRFs. Most participants designed a
three component architecture.

For a future edition of the shared task we would
like to unify the annotation schemes of the two cor-
pora, namely the annotation of focus in PB-FOC and
negated events in CD-SCO. The annotation of more
data with both scope and focus would allow us to
study the two aspects jointly. We would also like to
provide better evaluation measures for scope reso-
lution. Currently, scopes are evaluated in terms of
F1, which demands a division of errors into the cat-
egories TP/FP/TN/FN borrowed from the evaluation
of information retrieval systems. These categories
are not completely appropriate to be assigned to se-
quence tasks, such as scope resolution.
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Abstract

This paper describes our participation in the
closed track of the *SEM 2012 Shared Task
of finding the scope of negation. To perform
the task, we propose a system that has three
components: negation cue detection, scope of
negation detection, and negated event detec-
tion. In the first phase, the system creates a
lexicon of negation signals from the training
data and uses the lexicon to identify the nega-
tion cues. Then, it applies machine learning
approaches to detect the scope and negated
event for each negation cue identified in the
first phase. Using a preliminary approach, our
system achieves a reasonably good accuracy
in identifying the scope of negation.

1 Introduction

All human language samples, either written or spo-
ken, contain some information in negated form. In
tasks such as information retrieval, sometimes, we
should consider only the positive information of an
event and disregard its negation information, and
vice versa. For example, while searching for the pa-
tients with diabetes, we should not include a patient
who has a clinical report saying No symptoms of di-
abetes were observed. Thus, finding the negation
and its scope is important in tasks where the nega-
tion and assertion information need to be treated dif-
ferently. However, most of the systems developed
for processing natural language data do not consider
negations present in the sentences. Although various
works (Morante et al., 2008; Morante and Daele-
mans, 2009; Li et al., 2010; Councill et al., 2010;

Apostolova et al., 2011) have dealt with the identifi-
cation of negations and their scope in sentences, this
is still a challenging task.

The first task in *SEM 2012 Shared
Task (Morante and Blanco, 2012) is concerned
with finding the scope of negation. The task
includes identifying: i) negation cues, ii) scope of
negation, and iii) negated event for each negation
present in the sentences. Negation cue is a word,
part of a word, or a combination of words that
carries the negation information. Scope of negation
in a sentence is the longest group of words in
the sentence that is influenced by the negation
cue. Negated event is the shortest group of words
that is actually affected by the negation cue. In
Example (1) below, word no is a negation cue, the
discontinuous word sequences ‘I gave him’ and
‘sign of my occupation’ are the scopes, and ‘gave’
is the negated event.

(1) I [gave] him no sign of my occupation.

In this paper, we propose a system to detect the
scope of negation for the closed track of *SEM 2012
Shared Task. Our system uses a combination of
a rule based approach, and a machine learning ap-
proach. We use a rule based approach to create a
lexicon of all the negation words present in the train-
ing data. Then we use this lexicon to detect the
negation cues present in the test data. We do a pre-
liminary analysis of finding the scope of negation
and the negated events by applying a machine learn-
ing approach, and using basic features created from
the words, lemmas, and parts-of-speech (POS) tags
of words in the sentences. The F-measure scores
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achieved by our system are about 85% for negation
cue detection, 65% in full scope identification, 48%
in negated event detection, and 39% in identifying
full negation. Our error analysis shows that the use
of lexicon is not very appropriate to detect the nega-
tion cues. We also describe the challenges in identi-
fying the scope and the negated events.

2 Problem Description

The *SEM 2012 shared task competition provided
three data sets: training, development, and test data
set. Each sentence in each data set is split into
words. The dataset contains the information such
as lemma, part of speech, and other syntactic infor-
mation of each word. Each sentence of training and
development data is annotated with negation cues,
scopes and negated events. Using the training and
the development data, the task is to identify negation
cues, scopes and negated events in all unannotated
sentences of the test data.

Sentence
tokens

Negation
cue

Scope Negated
event

I - I -
am - am -
not not - -
sure - sure sure
whether - whether -
I - I -
left - left -
it - it -
here - here -

Table 1: An example of negation cue, scope and the
negated event

A sentence can contain more than one negation
cue. Negation cues in the data set can be i) a sin-
gle word token such as n′t, nowhere, ii) a contin-
uous sequence of two or more words, such as no
more, by no means or iii) two or more discontinu-
ous words such as ..neither...nor... A negation cue
is either a part or same as its corresponding nega-
tion word. This corresponding negation word is re-
ferred as a negation signal in the remaining sections
of the paper. For example, for a negation signal
unnecessary, the negation cue is un, and similarly,
for a negation signal needless, the negation cue is
less.

Scope of a negation in a sentence can be a con-
tinuous sequence of words or a discontinuous set
of words in the sentence. Scope of negation some-
times includes the negation word. A negation word
may not have a negated event. Presence of a negated
event in a sentence depends upon the facts described
by the sentence. Non-factual sentences such as in-
terrogative, imperative, and conditional do not con-
tain negated events. Morante and Daelemans (2012)
describe the details of the negation cue, scope, and
negated event, and the annotation guidelines. An ex-
ample of the task is shown in Table 1.

3 System Description

We decompose the system to identify the scope of
negation into three tasks. They are:

1. Finding the negation cue

2. Finding the scope of negation

3. Finding the negated event

The scope detection and the negated event de-
tection tasks are dependent on the task of finding
the negation cue. But the scope detection and the
negated event detection tasks are independent of
each other.

We identify the negation cues present in the test
data based on a lexicon of negation signals that
are present in the training and the development
data. The tasks of identifying scope of negation and
negated event are modeled as classification prob-
lems. To identify scope and negated event, we train
classifiers with the instances created from the train-
ing data provided. We create test instances from the
test data annotated with negation cues predicted by
our cue detection component. Due to the use of test
data annotated by our cue detection component, the
false negative rate in predicting the negation cues is
propagated to the scope detection as well as negated
event detection components. The details of all the
three components are described in the subsections
below.

3.1 Identifying the negation cue

In this task, we identify all the negation cues present
in the sentences. We group the negation cues under
three types depending upon how they are present in
the data. They are: single word cues, continuous
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multiword cues, and discontinuous multiword cues.
All the cues present in the training and development
datasets are shown in Table 2.

Cue types Cues
Single word
cues

absence, dis, except, fail, im, in, ir, less, n’t,
neglected, neither, never, no, nobody, none,
nor, not, nothing, nowhere, prevent, refused,
save, un, without

Continuous
multiword
cues

no more, rather than, by no means, nothing
at all, on the contrary, not for the world

Discontinuous
multiword
cues

neither nor, no nor, not not

Table 2: Negation cues present in training and develop-
ment data

In the training and development data, multiword
negation cues account for only 1.40% of the total
negation cues. At this stage, we decided to focus
on identifying the single word negation cues. The
system first creates a lexicon that contains the pairs
of negation cues and their corresponding negation
signals for all the single word negation cues present
in the training and the development datasets. In or-
der to identify a negation cue in the test set, the sys-
tem searches all the words in the sentences of the
test data that match the negation signals of the lexi-
con. For each word that matches, it assigns the cor-
responding cue of the signal from the lexicon as its
negation cue.

3.2 Identifying the scope of negation

We apply a machine learning technique to identify
the scope of negation. For each negation cue present
in a sentence, we create the problem instances as the
tuple of the negation signal and each word present
in the same sentence. To create the instances, we
use only those sentences having at least one nega-
tion. For training, we create instances from the train-
ing data, but we consider only those words that are
within a window of size 20 from the negation signal
and within the sentence boundary. We restricted the
words to be within the window in order to minimize
the problem of imbalanced data. This window was
chosen following our observation that only 1.26%
of the scope tokens go beyond the 20 word win-
dow from the negation signal. Including the words

beyond this window causes a major increase in the
negative instances resulting in a highly imbalanced
training set. While creating test instances, we do not
restrict the words by window size. This restriction is
not done in order to include all the words of the sen-
tences in the test instances. An instance is labeled
as positive if the word used to create the instance is
the scope of the negation signal; else it is labeled as
negative.

We extract 10 features to identify the scope of
negation as follows:

1. Negation signal in the tuple

2. Lemma of the negation signal

3. POS tag of the negation signal

4. Word in the tuple

5. Lemma of the word in the tuple

6. POS tag of the word in the tuple

7. Distance between the negation signal and the
word in terms of number of words

8. Position of the word from the negation signal
(left, right)

9. Whether a punctuation character (‘,’, ‘:’,‘;’) ex-
ists between the word and the negation signal

10. Sequence of POS tags in between the negation
signal and the word

After the classification, if an instance is predicted
as positive, the word used to create the instance is
considered as the scope of the negation signal. If a
negation signal has prefix such as ‘dis’, ‘un’, ‘in’,
‘ir’, or ‘im’, the scope of negation includes only the
part of word (signal) excluding the prefix. Thus, for
each negation signal having these prefix, we remove
the prefix from the signal and consider the remain-
ing part of it as the scope, regardless of whether the
classifier classifies the instance pair as positive or
negative.
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3.3 Identifying the negated event

The task of identifying the negated event is simi-
lar to the task of identifying the scope of negation.
The process of creating the instances for this task
is almost the same to that of finding the scope of
negation, except that, we limit the window size to
4 words from the negation signal. 4.24% of the
negated events lie away from the 4 word window.
Beyond this window, the events are very sparse and
a small increment in the window size leads to abrupt
increase in negative instances and creates an imbal-
ance in the data. The 4 word window size was se-
lected based on the best result obtained among var-
ious experiments performed with different window
sizes greater than and equal to 4. The same rule
applies while creating instances for training data as
well as test data. We use only nine features in this
step, excluding the 9th feature used in the scope de-
tection. We also apply the same rule of mapping the
negation signals starting with ‘dis’, ‘un’, ‘in’, ‘ir’,
and ‘im’ to the negated event as in the previous step.

4 Experimental Settings

We evaluated our system only on the test data of the
shared task. For the machine learning tasks, we used
the SVM light classifier (Joachims, 1999) with 4th

degree polynomial kernel and other default param-
eters. The identification of cues, scopes, negated
events, and full negation are evaluated on the basis
of the F-measures. We also use ‘B’ variant for cues,
scopes, negated events and the full negation for eval-
uation. The precision of ‘B’ variant is calculated as
the ratio of true positives to the system count. Iden-
tification of cues and negated events are measured
independent of any other steps. But the identifica-
tion of the scopes is measured depending upon the
correct identification of cues in three different ways
as follows:

i) scopes (cue match): the cue has to be correct
for the scope to be correct

ii) scopes (no cue match): the system must iden-
tify part of the cue for the scope to be correct

iii) scope tokens (no cue match): a part of the sys-
tem identified cue must overlap with the gold stan-
dard cue for the scope tokens to be correct

The F1 score of the full negation detection was

used to rank the systems of the participants. The
details about the evaluation measures can be found
in Morante and Blanco (2012).

5 Results Analysis

The results obtained by our system over the test data
are shown in Table 3. The results obtained by each
component, and their analysis are described in the
subsections below.

5.1 Identifying the negation cues

The system is able to achieve an 85.77% F1 score in
the task of identifying the negation cues using a sim-
ple approach based on the lexicon of the negation
signals. Because of the system’s inability to iden-
tify multiword negation cues, it could not detect the
multiword cues such as ..neither..nor.., ..absolutely
nothing.., ..far from.., ..never more.., that account for
3.5% of the total negation cues present in the test
data.

The accuracy of the system is limited by the cov-
erage of the lexicon. Due to the low coverage of the
lexicon, the system fails to identify signals such as
ceaseless, discoloured, incredulity, senseless,
and unframed that are present only in the test data.
These signals account for 4.5% of the total negation
signals present in the test data. Some words such
as never, nothing, not, n′t, no, and without are
mostly present as the negation signals in the data.
But these words are not always the negation signals.
The phrase no doubt is present nine times in the test
data, but the word no is a negation signal in only
four of them. This accounts for 1.89% error in the
negation cue detection. The word save is present
once as a negation signal in the training data, but it
is never a negation signal in the test data. Therefore,
our lexicon based system invariably predicts two oc-
currences of save in the test data as negation signals.

5.2 Identifying the scope of negation

The system achieves 63.46% F1 score in identifying
scopes with cue match, 64.76% F1 score in identify-
ing scopes with no cue match, and 76.23% F1 score
in identifying scope tokens with no cue match. The
results show that our system has a higher precision
than recall in identifying the scope. As mentioned
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gold system tp fp fn precision (%) recall (%) F1 (%)
Cues 264 284 226 37 38 85.93 85.61 85.77
Scopes (cue match) 249 239 132 35 117 79.04 53.01 63.46
Scopes (no cue match) 249 239 132 35 113 79.53 54.62 64.76
Scope tokens (no cue match) 1805 1456 1243 213 562 85.37 68.86 76.23
Negated (no cue match) 173 104 65 35 104 65.00 38.46 48.33
Full negation 264 284 73 37 191 66.36 27.65 39.04
Cues B 264 284 226 37 38 79.58 85.61 82.48
Scopes B (cue match) 249 239 132 35 117 55.23 53.01 54.10
Scopes B (no cue match) 249 239 132 35 113 56.90 54.62 55.74
Negated B (no cue match) 173 104 65 35 104 62.50 38.46 47.62
Full negation B 264 284 73 37 191 25.70 27.65 26.64

Total sentences: 1089
Negation sentences: 235
Negation sentences with errors: 172
% Correct sentences: 81.73
% Correct negation sentences: 26.81

Table 3: Results of the system

earlier, the negation cues identified in the first task
are used to identify the scope of negation and the
negated events. Using the test data with 15% error
in negation cues as the input to this component and
some of the wrong predictions of the scope by this
component led to a low recall value in the scope de-
tection.

The results show that the system works well when
a negation signal has fewer scope tokens and when
the scope tokens are closer to the negation signal.
There are some cases where the system could not
identify the scope tokens properly. It is unable to de-
tect the scope tokens that are farther in distance from
the negation signals. The system is not performing
well in predicting the discontinuous scopes. When
a negation cue has discontinuous scope, mostly the
system predicts one sequence of words correctly but
could not identify the next sequence. In sentence
(2) in the example below, the underlined word se-
quences are the discontinuous scopes of the nega-
tion cue not. In the sentence, our system predicts
only the second sequence of scope, but not the first
sequence. In some cases, our system does not have a
good coverage of scope tokens. In sentence (3), the
underlined word sequence is the scope of the signal
no, but our system detects only at ninety was hard-
ship as its scope. These inabilities to detect the full
scope have led to have a higher accuracy in predict-
ing the partial scope tokens (76.23%) than predicting
the full scope (64.76%).

(2) the box is a half pound box of honeydew to-
bacco and does not help us in any way

(3) ...a thermometer at ninety was no hardship

(4) ...I cannot see anything save very vague
indications

Analyzing the results, we see that the error in pre-
dicting the scope of the negation is high when the
scope is distributed in two different phrases. In the
example (2) above, does not help us in any way is
a single verb phrase and all the scope within the
phrase is correctly identified by our system. The
box being a separate phrase, it is unable to identify
it. However, in some cases such as example (4), the
system could not identify any scope tokens for nega-
tion cue not.

Some of the findings of previous works have
shown that the features related to syntactic path are
helpful in identifying the scope of negation. Li et
al. (2010) used the syntactic path from the word to
the negation signal and showed that this helped to
improve the accuracy of scope detection. Similarly,
work by Councill et al. (2010) showed that the ac-
curacy of scope detection could be increased using
the features from the dependency parse tree. In our
experiment, there was a good improvement in the
scope detection rate when we included “sequence
of POS tags” between the negation signal and the
word as a feature. This improvement after including
the sequence of POS tags feature and its consistency
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with the previous works implies that adding path re-
lated features might help to improve the accuracy in
scope detection.

5.3 Identifying the negated event

We are able to achieve an F1 score of 48.33% in pre-
dicting the negated events, which is the lowest score
among all three components. As in the scope de-
tection task, error in negation cue detection led to
lower the recall rate of the negated event detection
system. The accuracy of full negation is based on
the correct identification of the negation cues, scope
and the negated events of all the negations present
in the sentences. The output shows that there are
many cases where negation cues and the scope are
correctly identified but there is an error in identify-
ing the negated events. The higher error in predict-
ing the negated events led to reduce the score of full
negation and achieve an F1 score of 39.04%.

Our system is unable to detect some negated
events even though they are adjacent to the nega-
tion signal. This shows that the use of simple fea-
tures extracted from words, lemmas, and POS tags
is not enough to predict the negated events properly.
Adding features related to words in left and right of
the negation signal and the path feature may help to
improve the detection of negated events.

In order to analyze the impact of error in the nega-
tion cue detection component upon the scope and
negated event detection components, we performed
an experiment using the gold standard negation cues
to detect the scope and the negated events. F1 scores
achieved by this system are 73.1% in full scope de-
tection, 54.87% in negated event detection, 81.46%
in scope tokens detection, and 49.57% in full nega-
tion detection. The result shows that there is al-
most 10% increment in the F1 score in all the com-
ponents. Thus, having an improved cue detection
component greatly helps to improve the accuracy of
scope and negated event detection components.

6 Discussion and Conclusion

In this paper we outline a combination of a rule
based approach and a machine learning approach to
identify the negation cue, scope of negation, and the
negated event. We show that applying a basic ap-
proach of using a lexicon to predict the negation cues

achieves a considerable accuracy. However, our sys-
tem is unable to identify the negation cues such as
never, not, nothing, n’t, and save that can appear
as a negation signal as well as in other non-negated
contexts. It also cannot cover the negation cues of
the signals that are not present in the training data.
Moreover, in order to improve the overall accuracy
of the scope and negated event detection, we need an
accurate system to detect the negation cues since the
error in the negation cue detection propagates to the
next steps of identifying the scope and the negated
event. It is difficult to identify the scope of nega-
tions that are farther in distance from the negation
signal. Detecting the tokens of the scope that are
discontinuous is also challenging.

As future work, we would like to extend our task
to use a machine learning approach instead of the
lexicon of negation signals to better predict the nega-
tion cues. The system we presented here uses a pre-
liminary approach without including any syntactic
information to detect the scope and negated events.
We would also incorporate syntactic information to
identify the scope and negated events in our future
work. To improve the accuracy of identifying the
scope and the negated events, adding other features
related to the neighbor words of the negation signal
might be helpful. In our tasks, we limit the scope
and negated event instances by the window size in
order to avoid imbalance data problem. Another in-
teresting work to achieve better accuracy could be to
use other approaches of imbalanced dataset classifi-
cation instead of limiting the training instances by
the window size.
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C/ Prof. José Garcı́a Santesmases, s/n

28040 Madrid (Spain)
{jcalbornoz,lplazam,albertodiaz,miballes}@fdi.ucm.es

Abstract

This paper presents one of the two contribu-
tions from the Universidad Complutense de
Madrid to the *SEM Shared Task 2012 on Re-
solving the Scope and Focus of Negation. We
describe a rule-based system for detecting the
presence of negations and delimitating their
scope. It was initially intended for process-
ing negation in opinionated texts, and has been
adapted to fit the task requirements. It first
detects negation cues using a list of explicit
negation markers (such as not or nothing), and
infers other implicit negations (such as affixal
negations, e.g, undeniable or improper) by us-
ing semantic information from WordNet con-
cepts and relations. It next uses the informa-
tion from the syntax tree of the sentence in
which the negation arises to get a first approxi-
mation to the negation scope, which is later re-
fined using a set of post-processing rules that
bound or expand such scope.

1 Introduction

Detecting negation is important for many NLP tasks,
as it may reverse the meaning of the text affected
by it. In information extraction, for instance, it is
obviously important to distinguish negated informa-
tion from affirmative one (Kim and Park, 2006). It
may also improve automatic indexing (Mutalik et
al., 2001). In sentiment analysis, detecting and deal-
ing with negation is critical, as it may change the
polarity of a text (Wiegand et al., 2010). How-
ever, research on negation has mainly focused on the
biomedical domain, and addressed the problem of

detecting if a medical term is negated or not (Chap-
man et al., 2001), or the scope of different negation
signals (Morante et al., 2008).

During the last years, the importance of process-
ing negation is gaining recognition by the NLP re-
search community, as evidenced by the success of
several initiatives such as the Negation and Spec-
ulation in Natural Language Processing workshop
(NeSp-NLP 2010)1 or the CoNLL-2010 Shared
Task2, which aimed at identifying hedges and their
scope in natural language texts. In spite of this, most
of the approaches proposed so far deal with negation
in a superficial manner.

This paper describes our contribution to the
*SEM Shared Task 2012 on Resolving the Scope
and Focus of Negation. As its name suggests, the
task aims at detecting the scope and focus of nega-
tion, as a means of encouraging research in negation
processing. In particular, we participate in Task 1:
scope detection. For each negation in the text, the
negation cue must be detected, and its scope marked.
Moreover, the event or property that is negated must
be recognized. A comprehensive description of the
task may be found in (Morante and Blanco, 2012).

For the sake of clarity, it is important to define
what the organization of the task understands by
negation cue, scope of negation and negated event.
The words that express negation are called negation
cues. Not and no are common examples of such
cues. Scope is defined as the part of the mean-
ing that is negated, and encloses all negated con-
cepts. The negated event is the property that is

1http://www.clips.ua.ac.be/NeSpNLP2010/
2www.inf.u-szeged.hu/rgai/conll2010st/
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negated by the cue. For instance, in the sentence:
[Holmes] did not [say anything], the scope is en-
closed in square brackets, the negation cue is under-
lined and the negated event is shown in bold. More
details about the annotation of negation cues, scopes
and negated events may be found in (Morante and
Daelemans, 2012).

The system presented to the shared task is an
adaptation of the one published in (Carrillo de Al-
bornoz et al., 2010), whose aim was to detect and
process negation in opinionated text in order to im-
prove polarity and intensity classification. When
classifying sentiments and opinions it is important
to deal with the presence of negations and their ef-
fect on the emotional meaning of the text affected by
them. Consider the sentence (1) and (2). Sentence
(1) expresses a positive opinion, whereas that in sen-
tence (2) the negation word not reverses the polarity
of such opinion.

(1) I liked this hotel.
(2) I didn’t like this hotel.
Our system has the main advantage of being sim-

ple and highly generic. Even though it was origi-
nally conceived for treating negations in opinionated
texts, a few simple modifications have been suffi-
cient to successfully address negation in a very dif-
ferent type of texts, such as Conan Doyle stories. It
is rule-based and does not need to be trained. It also
uses semantic information in order to automatically
detect the negation cues.

2 Methodology

As already told, the UCM-I system is a modified ver-
sion of the one presented in (Carrillo de Albornoz
et al., 2010). Next sections detail the modifications
performed to undertake the present task.

2.1 Detecting negation cues

Our previous work was focused on explicit nega-
tions (i.e., those introduced by negation tokens such
as not, never). In contrast, in the present work
we also consider what we call implicit negations,
which includes affixal negation (i.,e., words with
prefixes such as dis-, un- or suffixes such as -less;
e.g., impatient or careless), inffixal negation (i.e.,
pointlessness, where the negation cue less is in the
middle of the noun phrase). Note that we did not

Table 1: Examples of negation cues.
Explicit negation cues
no not non nor
nobody never nowhere ...
Words with implicit negation cues
unpleasant unnatural dislike impatient
fearless hopeless illegal ...

have into account these negation cues when ana-
lyzing opinionated texts because these words them-
selves usually appear in affective lexicons with their
corresponding polarity values (i.e., impatient, for in-
stance, appears in SentiWordNet with a negative po-
larity value).

In order to detect negation cues, we use a list of
predefined negation signals, along with an automatic
method for detecting new ones. The list has been
extracted from different previous works (Councill et
al., 2010; Morante, 2010). This list also includes the
most frequent contracted forms (e.g., don’t, didn’t,
etc.). The automated method, in turn, is intended
for discovering in text new affixal negation cues. To
this end, we first find in the text all words with pre-
fixes dis-, a-, un-, in-, im-, non-, il-, ir- and the suf-
fix -less that present the appropriate part of speech.
Since not all words with such affixes are negation
cues, we use semantic information from WordNet
concepts and relations to decide. In this way, we re-
trieve from WordNet the synset that correspond to
each word, using WordNet::SenseRelate (Patward-
han et al., 2005) to correctly disambiguate the mean-
ing of the word according to its context, along with
all its antonym synsets. We next check if, after re-
moving the affix, the word exists in WordNet and
belongs to any of the antonym synsets. If so, we
consider the original word to be a negation cue (i.e.,
the word without the affix has the opposite meaning
than the lexical item with the affix).

Table 1 presents some examples of explicit nega-
tion cues and words with implicit negation cues. For
space reasons, not all cues are shown. We also con-
sider common spelling errors such as the omission
of apostrophes (e.g., isnt or nt). They are not likely
to be found in literary texts, but are quite frequent in
user-generated content.

This general processing is, however, improved
with two rules:
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Table 2: Examples of false negation cues.
no doubt without a doubt not merely not just
not even not only no wonder ...

1. False negation cues: Some negation words
may be also used in other expressions with-
out constituting a negation, as in sentence (3).
Therefore, when the negation token belongs
to such expressions, this is not processed as a
negation. Examples of false negation cues are
shown in Table 2.

(3) ... the evidence may implicate not only your
friend Mr. Stapleton but his wife as well.

2. Tag questions: Some sentences in the cor-
pora present negative tag questions in old En-
glish grammatical form, as it may shown in
sentences (4) and (5). We have implemented a
specific rule to deal with this type of construc-
tions, so that they are not treated as negations.

(4) You could easily recognize it , could you not?.
(5) But your family have been with us for several
generations , have they not?

2.2 Delimiting the scope of negation

The scope of a negation is determined by using the
syntax tree of the sentence in which the negation
arises, as generated by the Stanford Parser.3 To this
end, we find in the syntax tree the first common an-
cestor that encloses the negation token and the word
immediately after it, and assume all descendant leaf
nodes to the right of the negation token to be af-
fected by it. This process may be seen in Figure
1, where the syntax tree for the sentence: [Watson
did] not [solve the case] is shown. In this sentence,
the method identifies the negation token not and as-
sumes its scope to be all descendant leaf nodes of the
common ancestor of the words not and solve (i.e.,
solve the case).

This modeling has the main advantage of being
highly generic, as it serves to delimit the scope of
negation regardless of what the negated event is (i.e.,
the verb, the subject, the object of the verb, an ad-
jective or an adverb). As shown in (Carrillo de Al-

3http://nlp.stanford.edu/software/lex-parser.shtml

Figure 1: Syntax tree of the sentence: Watson did not
solve the case.

bornoz et al., 2010), it behaves well when determin-
ing the scope of negation for the purpose of classi-
fying product reviews in polarity classes. However,
we have found that this scope is not enough for the
present task, and thus we have implemented a set of
post-processing rules to expand and limit the scope
according to the task guidelines:

1. Expansion to subject. This rule expands the
negation scope in order to include the subject of
the sentence within it. In this way, in sentence
(6) the appropriate rule is fired to include “This
theory” within the negation scope.

(6) [This theory would] not [work].

It must be noted that, for polarity classifica-
tion purposes, we do not consider the subject
of the sentence to be part of this scope. Con-
sider, for instance, the sentence: The beauti-
ful views of the Eiffel Tower are not guaranteed
in all rooms. According to traditional polarity
classification approaches, if the subject is con-
sidered as part of the negation scope, the polar-
ity of the positive polar expression “beautiful”
should be changed, and considered as negative.

2. Subordinate boundaries. Our original nega-
tion scope detection method works well with
coordinate sentences, in which negation cues
scope only over their clause, as if a “boundary”
exists between the different clauses. This oc-
curs, for instance, in the sentence:
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Table 3: List of negation scope delimiters.
Tokens POS
so, because, if, while

INuntil, since, unless
before, than, despite IN
what, whose WP
why, where WRB
however RB
“,”, - , :, ;, (, ), !, ?, . -

(7) [It may be that you are] not [yourself lumi-
nous], but you are a conductor of light.

It also works properly in subordinate sentences,
when the negation occurs in the subordinate
clause, as in: You can imagine my surprise
when I found that [there was] no [one there].

However, it may fail in some types of subor-
dinate sentences, where the scope should be
limited to the main clause, but our model pre-
dict both clauses to be affected by the negation.
This is the case for the sentences where the de-
pendent clause is introduced by the subordinate
conjunctions in Table 3. An example of such
type of sentence is (8), where the conjunction
token because introduces a subordinate clause
which is out of the negation scope. To solve this
problem, the negation scope detection method
includes a set of rules to delimit the scope in
those cases, using as delimiters the conjunc-
tions in Table 3. Note that, since some of these
delimiters are ambiguous, their part of speech
tags are used to disambiguate them.

(8) [Her father] refused [to have anything to do
with her] because she had married without his
consent.

3. Prepositional phrases: Our original method
also fails to correctly determine the negation
scope when the negated event is followed by
a prepositional phrase, as it may be seen in
Figure 2, where the syntax tree for the sen-
tence: [There was] no [attempt at robbery] is
shown. Note that, according to our original
model, the phrase “at robbery” does not belong
to the negation scope. This is an error that was
not detected before, but has been fixed for the
present task.

Figure 2: Syntax tree for the sentence: There was no at-
tempt at robbery.

2.3 Finding negated events
We only consider a single type of negated events,
so that, when a cue word contains a negative affix,
the word after removing the affix is annotated as the
negated event. In this way, “doubtedly” is correctly
annotated as the negated event in sentence (9). How-
ever, the remaining types of negated events are rele-
gated to future work.

(9) [The oval seal is] undoubtedly [a plain
sleeve-link].

3 Evaluation Setup

The data collection consists of a development set, a
training set, and two test sets of 787, 3644, 496 and
593 sentences, respectively from different stories by
Conan Doyle (see (Morante and Blanco, 2012) for
details). Performance is measured in terms of recall,
precision and F-measure for the following subtasks:

• Predicting negation cues.

• Predicting both the scope and cue.

• Predicting the scope, the cue does not need to
be correct.

• Predicting the scope tokens, where not a full
scope match is required.

• Predicting negated events.

• Full evaluation, which requires all elements to
be correct.
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Table 4: Results for the development set.
Metric Pr. Re. F-1
Cues 92.55 86.13 89.22
Scope (cue match) 86.05 44.05 58.27
Scope (no cue match) 86.05 44.05 58.27
Scope tokens (no cue match) 88.05 59.05 70.69
Negated (no cue match) 65.00 10.74 18.43
Full negation 74.47 20.23 31.82

4 Evaluation Results

The results of our system when evaluated on the de-
velopment set and the two test sets (both jointly and
separately), are shown in Tables 4, 5, and 6.

It may be seen from these tables that our sys-
tem behaves quite well in the prediction of negation
cues subtask, achieving around 90% F-measure in
all data sets, and the second position in the com-
petition. Performance in the scope prediction task,
however, is around 60% F-1, and the same results
are obtained if the correct prediction of cues is re-
quired (Scope (cue match)). This seems to indicate
that, for all correct scope predictions, our system
have also predicted the negation cues correctly. Ob-
viously these results improve for the Scope tokens
measure, achieving more than 77% F-1 for the Card-
board data set. We also got the second position in
the competition for these three subtasks. Concerning
detection of negated events, our system gets poor re-
sults, 22.85% and 19.81% F-1, respectively, in each
test data set. These results affect the performance
of the full negation prediction task, where we get
32.18% and 32.96% F-1, respectively. Surprisingly,
the result in the test sets are slightly better than those
in the development set, and this is due to a better be-
havior of the WordNet-based cue detection method
in the formers than in the later.

5 Discussion

We next discuss and analyze the results above.
Firstly, and regarding detection of negation cues, our
initial list covers all explicit negations in the devel-
opment set, while the detection of affixal negation
cues using our WordNet-based method presents a
precision of 100% but a recall of 53%. In particu-
lar, our method fails when discovering negation cues
such as unburned, uncommonly or irreproachable,
where the word after removing the affix is a derived

form of a verb or adjective.
Secondly, and concerning delimitation of the

scope, our method behaves considerably well. We
have found that it correctly annotates the negation
scope when the negation affects the predicate that
expresses the event, but sometimes fails to include
the subject of the sentence in such scope, as in:
[I know absolutely] nothing [about the fate of this
man], where our method only recognizes as the
negation scope the terms about the fate of this man.

The results have also shown that the method fre-
quently fails when the subject of the sentence or the
object of an event are negated. This occurs, for
instance, in sentences: I think, Watson, [a brandy
and soda would do him] no [harm] and No [woman
would ever send a reply-paid telegram], where we
only point to “harm” and “woman” as the scopes.

We have found a further category of errors in the
scope detection tasks, which concern some types
of complex sentences with subordinate conjunctions
where our method limits the negation scope to the
main clause, as in sentence: [Where they came from,
or who they are,] nobody [has an idea] , where our
method limits the scope to “has an idea”. However,
if the negation cue occurs in the subordinate clause,
the method behaves correctly.

Thirdly, with respect to negated event detection,
as already told our method gets quite poor results.
This was expected, since our system was not orig-
inally designed to face this task and thus it only
covers one type of negated events. Specifically,
it correctly identifies the negated events for sen-
tences with affixal negation cues, as in: It is most
improper, most outrageous, where the negated event
is “proper”. However, it usually fails to identify
these events when the negation affects the subject
of the sentence or the object of an event.

6 Conclusions and Future Work

This paper presents one of the two contributions
from the Universidad Complutense de Madrid to the
*SEM Shared Task 2012. The results have shown
that our method successes in identifying negation
cues and performs reasonably well when determin-
ing the negation scope, which seems to indicate that
a simple unsupervised method based on syntactic in-
formation and a reduced set of post-processing rules
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Table 5: Results for the test sets (jointly).
Metric Gold System Tp Fp Fn Precision Recall F-1
Cues 264 278 241 29 23 89.26 91.29 90.26
Scopes (cue match) 249 254 116 24 133 82.86 46.59 59.64
Scopes (no cue match) 249 254 116 24 133 82.86 46.59 59.64
Scope tokens (no cue match) 1805 1449 1237 212 568 85.37 68.53 76.03
Negated (no cue match) 173 33 22 11 151 66.67 12.72 21.36
Full negation 264 278 57 29 207 66.28 21.59 32.57

Table 6: Results for the Cardboard and Circle test sets.
Metric Cardboard set Circle set

Pr. Re. F-1 Pr. Re. F-1
Cues 90.23 90.23 90.23 88.32 92.37 90.30
Scope (cue match) 83.33 46.88 60.00 82.35 46.28 59.26
Scope (no cue match) 83.33 46.88 60.00 82.35 46.28 59.26
Scope tokens (no cue match) 84.91 72.08 77.97 85.96 64.50 73.70
Negated (no cue match) 66.67 13.79 22.85 66.67 11.63 19.81
Full negation 68.29 21.05 32.18 64.44 22.14 32.96

is a viable approach for dealing with negation. How-
ever, detection of negated events is the main weak-
ness of our approach, and this should be tackled in
future work. We also plan to improve our method
for detecting affixal negations to increment its recall,
by using further WordNet relations such as “derived
from adjective”, and “pertains to noun”, as well as
to extend this method to detect infixal negations.
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Abstract

UCM-2 infers the words that are affected by
negations by browsing dependency syntactic
structures. It first makes use of an algo-
rithm that detects negation cues, like no, not
or nothing, and the words affected by them
by traversing Minipar dependency structures.
Second, the scope of these negation cues is
computed by using a post-processing rule-
based approach that takes into account the in-
formation provided by the first algorithm and
simple linguistic clause boundaries. An initial
version of the system was developed to handle
the annotations of the Bioscope corpus. For
the present version, we have changed, omitted
or extended the rules and the lexicon of cues
(allowing prefix and suffix negation cues, such
as impossible or meaningless), to make it suit-
able for the present task.

1 Introduction

One of the challenges of the *SEM Shared Task
(Morante and Blanco, 2012) is to infer and classify
the scope and event associated to negations, given
a training and a development corpus based on Co-
nan Doyle stories (Morante and Daelemans, 2012).
Negation, simple in concept, is a complex but essen-
tial phenomenon in any language. It turns an affir-
mative statement into a negative one, changing the
meaning completely. We believe therefore that be-
ing able to handle and classify negations we would
be able to improve several text mining applications.

Previous to this Shared Task, we can find several
systems that handle the scope of negation in the state

of the art. This is a complex problem, because it re-
quires, first, to find and capture the negation cues,
and second, based on either syntactic or semantic
representations, to identify the words that are di-
rectly (or indirectly) affected by these negation cues.
One of the main works that started this trend in natu-
ral language processing was published by Morante’s
team (2008; 2009), in which they presented a ma-
chine learning approach for the biomedical domain
evaluating it on the Bioscope corpus.

In 2010, a Workshop on Negation and Spec-
ulation in Natural Language Processing (Morante
and Sporleder, 2010) was held in Uppsala, Swe-
den. Most of the approaches presented worked in
the biomedical domain, which is the most studied in
negation detection.

The system presented in this paper is a modifica-
tion of the one published in Ballesteros et al. (2012).
This system was developed in order to replicate (as
far as possible) the annotations given in the Bio-
scope corpus (Vincze et al., 2008). Therefore, for
the one presented in the task we needed to modify
most of the rules to make it able to handle the more
complex negation structures in the Conan Doyle cor-
pus and the new challenges that it represents. The
present paper has the intention of exemplifying the
problems of such a system when the task is changed.

Our system presented to the Shared Task is based
on the following properties: it makes use of an algo-
rithm that traverses dependency structures, it classi-
fies the scope of the negations by using a rule-based
approach that studies linguistic clause boundaries
and the outcomes of the algorithm for traversing
dependency structures, it applies naive and simple
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solutions to the problem of classifying the negated
event and it does not use the syntactic annotation
provided in the Conan Doyle corpus (just in an ex-
ception for the negated event annotation).

In Section 2 we describe the algorithms that we
propose for inferring the scope of negation and the
modifications that we needed to make to the previ-
ous version. In Section 3 we discuss the evaluation
performed with the blind test set and development
set and the error analysis over the development set.
Finally, in Section 4 we give our conclusions and
suggestions for future work.

2 Methodology

Our system consists of two algorithms: the first one
is capable of inferring words affected by the negative
operators (cues) by traversing dependency trees and
the second one is capable of annotating sentences
within the scope of negations. This second algo-
rithm is the one in which we change the behaviour in
a deeper way. The first one just serves as a consult-
ing point in some of the rules of the second one. By
using the training set and development set provided
to the authors we modified, omitted or changed the
old rules when necessary.

The first algorithm which traverses a dependency
tree searching for negation cues to determine the
words affected by negations, was firstly applied (at
an earlier stage) to a very different domain (Balles-
teros et al., 2010) obtaining interesting results. At
that time, the Minipar parser (Lin, 1998) was se-
lected to solve the problem in a simple way with-
out needing to carry out several machine learning
optimizations which are well known to be daunting
tasks. We also selected Minipar because at that mo-
ment we only needed unlabelled parsing.

Therefore, our system consists of three different
modules: a static negation cue lexicon, an algorithm
that from a parse given by Minipar and the nega-
tion cue lexicon produces a set of words affected
by the negations, and a rule-based system that pro-
duces the annotation of the scope of the studied sen-
tence. These components are described in the fol-
lowing sections.

In order to annotate the sentence as it is done in
the Conan Doyle corpus, we also developed a post-
processing system that makes use of the outcomes

of the initial system and produces the expected out-
put. Besides this, we also generate a very naive rule-
based approach to handle the problem of annotating
the negated event.

It is worth to mention that we did not make
use of the syntactic annotation provided in the Co-
nan Doyle corpus, our input is the plain text sen-
tence. Therefore, the system could work without the
columns that are included in the annotation, just with
the word forms. We only make use of the annota-
tion when we annotate the negated event, checking
the part-of-speech tag to ascertain whether the cor-
responding word is a verb or not. The system could
work without these columns but only the results of
the negated event would be affected.

2.1 Negation Cue Lexicon

The lexicon containing the negation cues is static. It
can be extended indefinitely but it has the restriction
that it does not learn and it does not grow automat-
ically when applying it to a different domain. The
lexicon used in the previous system (Ballesteros et
al., 2012) was also static but it was very small com-
pared to the one employed by the present system,
just containing less than 20 different negation cues.

Therefore, in addition to the previous lexicon, we
analysed the training set and development sets and
extracted 153 different negation cues (plus the ones
already present in the previous system). We stored
these cues in a file that feeds the system when it
starts. Table 1 shows a small excerpt of the lexicon.

not no neither..nor
unnecessary unoccupied unpleasant
unpractical unsafe unseen
unshaven windless without

Table 1: Excerpt of the lexicon

2.2 Affected Wordforms Detection Algorithm

The algorithm that uses the outcomes of Minipar is
the same employed in (Ballesteros et al., 2012) with-
out modifications. It basically traverses the depen-
dency structures and returns for each negation cue a
set of words affected by the cue.

The algorithm takes into account the way of han-
dling main verbs by Minipar, in which these verbs
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appear as heads and the auxiliary verbs are depen-
dants of them. Therefore, the system first detects the
nodes that contain a word which is a negation cue,
and afterwards it does the following:

• If the negation cue is a verb, such as lack, it is
marked as a negation cue.

• If the negation cue is not a verb, the algorithm
marks the main verb (if it exists) that governs
the structure as a negation cue.

For the rest of nodes, if a node depends directly
on any of the ones previously marked as negation
cue, the system marks it as affected. The negation is
also propagated until finding leaves, so wordforms
that are not directly related to the cues are detected
too.

Finally, by using all of the above, the algorithm
generates a list of words affected by each negation
cue.

2.3 Scope Classification Algorithm
This second algorithm is the one that has suffered
the deepest modifications from the first version. The
previous version handled the annotation as it is done
in the Bioscope corpus. The algorithm works as fol-
lows:

• The system opens a scope when it finds a new
negation cue detected by the affected word-
forms detection algorithm. In Bioscope, only
the sentences in passive voice include the sub-
ject inside the scope. However, the Conan
Doyle corpus does not contain this exception
always including the subject in the scope when
it exists. Therefore, we modified the decision
that fires this rule, and we apply the way of an-
notating sentences in passive voice for all the
negation cues, either passive or active voice
sentences.

Therefore, for most of the negation cues the
system goes backward and opens the scope
when it finds the subject involved or a marker
that indicates another statement, like a comma.

There are some exceptions to this, such as
scopes in which the cue is without or nei-
ther...nor. For them the system just opens the
scope at the cue.

• The system closes a scope when there are no
more wordforms to be added, i.e.:

– It finds words that indicate another state-
ment, such as but or because.

– No more words in the output of the first
algorithm.

– End of the sentence.

• We also added a new rule that can handle the
negation cues that are prefix or suffix of another
word, such as meaning-less: if the system finds
a cue word like this, it then annotates the suffix
or prefix as the cue (such as less) and the rest of
the word as part of the scope. Note that the Af-
fected Wordforms Detection algorithm detects
the whole word as a cue word.

2.4 Negated Event Handling
In order to come up with a solution that could pro-
vide at least some results in the negated event han-
dling, we decided to do the following:

• When the cue word contains a negative prefix
or a negative suffix, we annotate the word as
the negated event.

• When the cue word is either not or n’t and the
next word is a verb, according to the part-of-
speech annotation of the Conan Doyle corpus,
we annotate the verb as the negated event.

2.5 Post-Processing Step
The post-processing step basically processes the an-
notated sentence with Bioscope style, (we show
an example for clarification: <scope>There is
<cue>no</cue> problem</scope>). It tokenizes
the sentences, in which each token is a word or a
wordform, after that, it does the following:

• If the token contains the string <scope>, the
system just starts a new scope column reserv-
ing three new columns and it puts the word in
the first free “scope” column. Because it means
that there is a new scope for the present sen-
tence.

• If the token is between a <cue> annotation, the
system puts it in the corresponding free “cue”
column of the scope already opened.
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• If the token is annotated as “negated event”, the
system just puts the word in the last column of
the scope already opened.

Note that these three rules are not exclusive and
can be fired for the same token, but in this case they
are fired in the same order as they are presented.

3 Results and Discussion

In this section we first show the evaluation results
and second the error analysis after studying the re-
sults on the development set.

3.1 Results
In this section we show the results obtained in two
different tables: Table 2 shows the results of the sys-
tem with the test set, Table 3 shows the results of the
system with the development set.

As we can observe, the results for the develop-
ment set are higher than the ones obtained for the
test set. The reason is simple, we used the develop-
ment set (apart from the training set) to modify the
rules and to make the system able to annotate the
sentences of the test set.

Note that our system only detects some of the
negation cues (around 72% F1 and 76% F1, respec-
tively, for the test and development sets). We there-
fore believe that one of the main drawbacks of the
present system is the static lexicon of cues. In the
previous version, due to the simplicity of the task,
this was not an issue. However, it is worth noting
that once the negation is detected the results are not
that bad, we show a high precision in most of the
tasks. But the recall suffers due to the coverage of
the lexicon.

It is also worth noting that for the measure Scope
tokens, which takes into account the tokens included
in the scope but not a full scope match, our system
provides interesting outcomes (around 63% F1 and
73% F1, respectively), showing that it is able to an-
notate the tokens in a similar way. We believe that
this fact evidences that the present system comes
from a different kind of annotation and a different
domain, and the extension or modification of such a
system is a complex task.

We can also observe that the negated events re-
sults are very low (around 17.46% F1 and 22.53%
F1, respectively), but this was expected because by

using our two rules we are only covering two cases
and moreover, these two cases are not always behav-
ing in the same way in the corpora.

3.2 Error Analysis

In this section we analyse the different errors of our
system with respect to the development set. This set
contains 787 sentences, of which 144 are negation
sentences containing 168 scopes, 173 cues and 122
negation events.

With respect to the negation cue detection we
have obtained 58 false negatives (fn) and 16 false
positives (fp). These results are not directly derived
from the static lexicon of cues. The main problem is
related with the management of sentences with more
than one scope. The majority of the errors have been
produced because in some cases all the cues are as-
signed to all the scopes detected in the same sen-
tence, generating fp, and in other cases the cues of
the second and subsequent scopes are ignored, gen-
erating fn. The first case occurs in sentences like
(1), no and without are labelled as cues in the two
scopes. The second case occurs in sentences like
(2), where neither the second scope nor the second
cue are labelled. In sentence (3) un is labelled as
cue two times (unbrushed, unshaven) but within the
same scope, generating a fp in the first scope and a
fn in the second one.

• (1) But no [one can glance at your toilet and at-
tire without [seeing that your disturbance dates
from the moment of your waking .. ’]]

• (2) [You do ]n’t [mean] - . [you do] n’t [mean
that I am suspected] ? ”

• (3) Our client smoothed down [his] un[brushed
hair] and felt [his] un[shaven chin].

We also found false negatives that occur in multi
word negation cues as by no means, no more and
rather than.

A different kind of false positives is related to
modality cues, dialogue elements and special cases
(Morante and Blanco, 2012). For example, no in (4),
not in (5) and save in (6).

• (4) “ You traced him through the telegram , no
[doubt]., ” said Holmes .
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Test set gold system tp fp fn precision (%) recall (%) F1 (%)
Cues: 264 235 170 39 94 81.34 64.39 71.88
Scopes(cue match): 249 233 96 47 153 67.13 38.55 48.98
Scopes(no cue match): 249 233 96 48 152 66.90 38.96 49.24
Scope tokens(no cue match): 1805 2096 1222 874 583 58.30 67.70 62.65
Negated(no cue match): 173 81 36 42 134 46.15 21.18 29.03
Full negation: 264 235 29 39 235 42.65 10.98 17.46

Table 2: Test set results.

Development gold system tp fp fn precision (%) recall (%) F1 (%)
Cues: 173 161 115 16 58 87.79 66.47 75.66
Scopes(cue match): 168 160 70 17 98 80.46 41.67 54.90
Scopes(no cue match): 168 160 70 17 98 80.46 41.67 54.90
Scope tokens(no cue match): 1348 1423 1012 411 336 71.12 75.07 73.04
Negated(no cue match): 122 71 35 31 82 53.03 29.91 38.25
Full negation: 173 161 24 16 149 60.00 13.87 22.53

Table 3: Development set results.

• (5) “ All you desire is a plain statement , [is it]
not ? ’.

• (6) Telegraphic inquiries ... that [Marx knew]
nothing [of his customer save that he was a
good payer] .

We can also find problems with affixal negations,
that is, bad separation of the affix and root of the
word. For example, in (7) dissatisfied was erro-
neously divided in di- and ssatisfied. Again, it is
derived from the use of a static lexicon.

• (7) He said little about the case, but from
that little we gathered that [he also was not
dis[satisfied] at the course of events].

Finally, we could also find cases that may be due
to annotation errors. For example, incredible is not
annotated as negation cue in (8). The annotation of
this cue we think is inconsistent, it appears 5 times
in the training corpus, 2 times is labelled as cue, but
3 times is not. According to the context in this sen-
tence, incredible means not credible.

• (8) “Have just had most incredible and
grotesque experience.

With respect to the full scope detection, most of
the problems are due again to the management of

sentences with more than one scope. We have ob-
tained 98 fn and 17 fp. Most of the problems are
related with affixal negations, as in (9), in which all
the words are included in the scope, which accord-
ing to the gold standard is not correct.

• (9) [Our client looked down with a rueful face
at his own] un[conventional appearance].

With respect to the scope tokens detection, the
results are higher, around 73% F1 in scope tokens
compared to 55% in full match scopes. The reason
is because our system included tokens for the ma-
jority of scopes, increasing the recall until 75% but
lowering the precision due to the inclusion of more
fp.

4 Conclusions and Future Work

In this paper we presented our participation in the
SEM-Shared Task, with a modification of a rule-
based system that was designed to be used in a dif-
ferent domain. As the main conclusion we could say
that modifying such a system to perform in a differ-
ent type of texts is complicated. However, taking
into account this fact, and the results obtained, we
are tempted to say that our system presents compet-
itive results.
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We believe that the present system has a lot of
room for improvement: (i) improve the manage-
ment of sentences with more than one scope modify-
ing the scope classification algorithm and the post-
processing step, (ii) replacing the dependency parser
with a state-of-the-art parser in order to get higher
performance, or (iii) proposing a different way of
getting a reliable lexicon of cues, by using a seman-
tic approach that informs if the word has a negative
meaning in the context of the sentence. Again, this
could be achieved by using one of the parsers pre-
sented in the ConLL 2008 Shared Task (Surdeanu et
al., 2008).
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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

UConcordia: CLaC Negation Focus Detection at *Sem 2012

Sabine Rosenberg and Sabine Bergler
CLaC Lab, Concordia University

1455 de Maisonneuve Blvd West, Montréal, QC, Canada, H3W 2B3
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Abstract

Simply detecting negation cues is not suffi-
cient to determine the semantics of negation,
scope and focus must be taken into account.
While scope detection has recently seen re-
peated attention, the linguistic notion of focus
is only now being introduced into computa-
tional work. The *Sem2012 Shared Task is
pioneering this effort by introducing a suitable
dataset and annotation guidelines. CLaC’s
NegFocus system is a solid baseline approach
to the task.

1 Introduction

Negation has attracted the attention of the NLP com-
munity and we have seen an increased advance in
sophistication of processing tools. In order to assess
factual information as asserted or not, it is important
to distinguish the difference between

(1) (a) Newt Gingrich Not Conceding Race
After Losing Florida Primary

(b) Newt Gingrich Conceding Race Af-
ter Losing Florida Primary

This distinction is important and cannot be properly
inferred from the surrounding context, not conced-
ing a race after losing is in fact contrary to expecta-
tion in the original headline (1a), and the constructed
(1b) is more likely in isolation.

Negation has been addressed as a task in itself,
rather than as a component of other tasks in recent
shared tasks and workshops. Detection of negation
cues and negation scope at CoNLL (Farkas et al.,
2010), BioNLP (Kim et al., 2011) and the Negation

and Speculation in NLP Workshop (Morante and
Sporleder, 2010) laid the foundation for the *Sem
2012 Shared Task. While the scope detection has
been extended to fictional text in this task, an impor-
tant progression from the newspaper and biomedi-
cal genres, the newly defined Focus Detection for
Negation introduces the important question: what is
the intended opposition in (1a)? The negation trig-
ger is not, the scope of the negation is the entire
verb phrase, but which aspect of the verb phrase is
underscored as being at variance with reality, that
is, which of the following possible (for the sake of
linguistic argument only) continuations is the more
likely one:

(2) i . . . , Santorum does.
(¬Newt Gingrich)

ii . . . , Doubling Efforts (¬concede)
iii . . . , Demanding Recount (¬race)
iv . . . , Texas redistricting at fault

(¬Florida)

This notion of focus of negation is thus a prag-
matic one, chosen by the author and encoded with
various means. Usually, context is necessary to de-
termine focus. Often, different possible interpreta-
tions of focus do not change the factual meaning of
the overall text, but rather its coherence. In (1 a) the
imagined possible contexts (2 ii) and (2 iii) closely
correspond to a simple negation of (1 b), (2 i) and
(2 iv) do not feel properly represented by simply
negating (1 b). This level of interpretation is con-
tentious among people and it is the hallmark of well-
written, well-edited text to avoid unnecessary guess-
work while at the same time avoiding unnecessary
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clarifying repetition. The potential for ambiguity is
demonstrated by Example (3) from (Partee, 1993),
where it is questionable whether the speaker in fact
has possession of the book in question.

(3) I didn’t get that book from Mary

Here, if the focus is from Mary, it would be likely
that the speaker has possion of the book, but received
it some other way. If the focus is that book, the
speaker does not have possession of it.

It is important to note hat this notion of focus is
not syntactically determined as shown in (3) (even
though we use syntactic heuristics here to approxi-
mate it) but pragmatically and it correlates with pro-
nunciation stress, as discussed in linguistics by (Han
and Romero, 2001). More recently, focus negation
has been identified as a special use (Poletto, 2008).
The difference of scope and focus of negation are
elaborated by (Partee, 1993), and have been used for
computational use by (Blanco and Moldovan, 2011).

The *Sem 2012 Task 2 on Focus Detection builds
on recent negation scope detection capabilities and
introduces a gold standard to identify the focus item.
Focus of negation is annotated over 3,993 sentences
in the WSJ section of the Penn TreeBank marked
with MNEG in PropBank. It accounts for verbal,
analytical and clausal relation to a negation trigger;
the role most likely to correspond to the focus was
selected as focus. All sentences of the training data
contain a negation. A sample annotation from the
gold standard is given in (4), where PropBank se-
mantic roles are labelled A1, M-NEG, and M-TMP
and focus is underlined (until June).

(4) 〈A decisionA1
〉 is〈n′tM−NEG〉 expected

〈 until June M−TMP 〉

2 Previous Work

A recent study in combining regular pattern ex-
traction with parse information for enhanced in-
dexing of radiology reports showed effective de-
tection of negated noun phrases for that corpus
(Huang and Lowe, 2007). NegFinder (Mutalik et
al., 2001) detects negated concepts in dictated med-
ical documents with a simple set of corpus spe-
cific context-free rules, and they observe that in
their corpus “One of the words no, denies/denied,
not, or without was present in 92.5 percent of

all negations.” Interestingly, several of their rules
concern coordination (and, or) or prepositional
phrase attachment patterns (of, for). NegEx (Chap-
man et al., 2001) is publicly available and main-
tained and updated with community-enhanced trig-
ger lists (http://code.google.com/p/negex/
wiki/NegExTerms). NegEx “locates trigger terms
indicating a clinical condition is negated or possi-
ble and determines which text falls within the scope
of the trigger terms.” NegEx uses a simple regular
expression algorithm with a small number of nega-
tion phrases and focuses on a wide variety of trig-
gers but limits them to domain relevant ones. Con-
sequently, the trigger terms and conditions are heav-
ily stacked with biomedical domain specific terms.
Outside the biomedical text community, sentiment
and opinion analysis research features negation de-
tection (Wilson, 2008). Current gold standard anno-
tations for explicit negation as well as related phe-
nomena include TIMEBANK (Pustejovsky et al.,
2003), MPQA (Wiebe et al., 2005), and Bio-Scope
(Vincze et al., 2008).

(Wiegand et al., 2010) presents a flat feature com-
bination approach of features of different granularity
and analytic sophistication, since in opinion mining
the boundary between negation and negative expres-
sions is fluid.

3 CLaC’s NegFocus

CLaC Labs’ general, lightweight negation mod-
ule is intended to be embedded in any process-
ing pipeline. The heuristics-based system is com-
posed of three modules for the GATE (Cunningham
et al., 2011) environment: the first component de-
tects and annotates explicit negation cues present in
the corpus, the second component detects and an-
notates the syntactic scope of the detected instances
of verbal negation, and the third component im-
plements focus heuristics for negation. The first
two steps were developed independently, drawing on
data from MPQA (Wiebe et al., 2005) and TIME-
BANK (Pustejovsky et al., 2003) with validation on
Bio-Scope (Vincze et al., 2008). The third step has
been added based on data for the *Sem 2012 chal-
lenge and is intended to validate both, the first two
“preprocessing” steps and the simple heuristic ap-
proximation of focus.
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3.1 Data Preprocessing

Parser-based, our focus detection pipeline requires
as input entire sentences. Therefore, the first step
requires the extraction of each sentence utilizing the
supplied token numbers and save them in the correct
format. The system then performs standard prepro-
cessing: sentence splitting, tokenization, parsing us-
ing the Stanford Parser (Klein and Manning, 2003;
de Marneffe and Manning, 2006) and morphologi-
cal preprocessing. Note that NegFocus does not use
any PropBank annotations nor other provided train-
ing annotations, resulting in an independent, parser-
based stand-alone module.

3.2 Detection of Negation Triggers

The Focus Detection task only considers the explicit
negation cues not, nor, never. The first step in Neg-
Focus is thus to identify these triggers in the sen-
tences using an explicit negation trigger word list.

3.3 Syntactic Scope Detection

The Focus Detection task only considers negation of
verbs. Thus, NegFocus extracts the syntactic com-
plement of the verb to form the negated verb phrase
from the dependency graphs (de Marneffe and Man-
ning, 2006). We annotate this as the syntactic scope
of the negation. Note that while we use dependency
graphs, our syntactic scope is based on the parse tree
and differs from the notion of scope encoded in Bio-
Scope (Vincze et al., 2008) and the related format
used for the *Sem 2012 Negation Scope Annotation
task, which represent in our opinion the pragmatic
notion of scope for the logical negation operation.
Syntactic scope detection is thus considered to be
a basic stepping stone towards the pragmatic scope
and since the Focus Detection task does not provide
scope annotations, we use syntactic scope here to
validate this principle.

Our heuristics are inspired by (Kilicoglu and
Bergler, 2011). In the majority of cases the depen-
dency relation which identifies the syntactic scope
is the neg relation. Traditionally, parse trees iden-
tify scope as lower or to the right of the trigger term,
and our scope module assumes these grammatical
constraints, yet includes the verb itself for the pur-
poses of the shared task. Example 5, from the train-
ing dataset “The Hound of the Baskervilles” by Co-

nan Doyle for the *Sem 2012 Negation Scope Anno-
tation task, demonstrates our syntactic scope of the
negation (underlined), in contrast with the gold stan-
dard scope annotation (in brackets). The gold anno-
tation guidelines follow the proposal of Morante et
al. (Morante et al., 2011)1.

(5) [We did] not [drive up to the door] but
got down near the gate of the avenue.

3.4 Focus Heuristics
The third and final step for NegFocus is to annotate
focus in sentences containing verbal negations. Us-
ing the verbal negation scope annotations of the pre-
vious step, four focus heuristics are invoked:

3.4.1 Baseline
The Baseline heuristic for this component is de-

fined according to notions discussed in (Huddle-
ston and Pullum, 2002), where the last constituent
in the verb phrase of a clause is commonly the de-
fault location to place the heaviest stress, which we
here equate with the focus. Example (6) depicts an
instance where both NegFocus results (underlined)
and the gold focus annotation (in brackets) match
exactly. The baseline heuristic achieves 47.4% re-
call and 49.4% precision on the training set and 47%
recall and 49.7% precision on the test set.

(6) NBC broadcast throughout the entire
night and did not go off the air
[until noon yesterday] .

As pointed out in Section 3.3, focus is not always
determined by scope (Partee, 1993). The training
data gave rise to three additional heuristics.

3.4.2 Adverb
When an adverb is directly preceding and con-

nected through an advmod dependency relation to
the negated verb, the adverb constituent is deter-
mined as the focus of the negation.

(7) Although it may not be [legally] obli-
gated to sell the company if the buy-
out group can’t revive its bid, it may
have to explore alternatives if the buyers
come back with a bid much lower than
the group ’s original $ 300-a-share pro-
posal.

1http://www.clips.ua.ac.be/sites/default/files/ctrs-n3.pdf
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3.4.3 Noun Subject Passive
Passives are frequent in newspaper articles and

passive constructions front what would otherwise
be the verb complement. Thus the fronted mate-
rial should be eligible for focus assignment. Pas-
sives are flagged through the nsubjpass dependency,
and for cases where the negated verb participates in
an nsubjpass relation and has no other complement,
the nsubjpass is determined as the focus.

(8) [Billings] were n’t disclosed.

3.4.4 Negation Cue
The challenge data has cases where the negation

cue itself is its own focus. These cases seem to be
pragmatically determined. Error cases were reduced
when determining the negation cue to be its own fo-
cus in two cases. The first case occurs when the
negated verb has an empty complement (and is not a
passive construction), as in Example 9.

(9) Both said the new plan would [n’t] work.

The second case occurs when the negated verb
embeds a verb that we identify as an implicit nega-
tion. We have a list of implicit negation triggers
largely compiled from MPQA (Wiebe et al., 2005).
Implicit negations are verbs that lexically encode a
predicate and a negation, such as reject or fail.

(10) Black activist Walter Sisulu said the
African National Congress would [n’t]
reject violence as a way to pressure
the South African government into con-
cessions that might lead to negotiations
over apartheid . . .

4 Results

Ordering the heuristics impacts on recall. We place
the most specific heuristics before the more general
ones to avoid starvation effects. For example, the
adverb heuristic followed by the noun subject pas-
sive heuristic achieved better results at the begin-
ning, since they are more specific then the negation
cue heuristic.

Table 1 shows the performance of the heuristics
of NegFocus on the test set and on the development
set. We observe that the heuristics are stable across
the two sets with a 60% accuracy on the test set. The
worst performer is the baseline, which is very coarse

for such a semantically sophisticated task: assuming
that the last element of the negated verb phrase is the
focus is truly a baseline.

heuristic corr. incorr. acc.
Test Set
baseline 336 238 .59
adverb 26 4 .87
nsubjpass 10 8 .56
neg. cue 33 20 .62
Development Set
baseline 257 174 .6
adverb 15 6 .71
nsubjpass 10 6 .63
neg. cue 21 19 .53

Figure 1: Performance of NegFocus heuristics

The overall performance of the system is almost
balanced between precision and recall with an f-
measure of .58.

Test Set
Precision 60.00 [405/675]
Recall 56.88 [405/712]
F-score 58.40

Development Set
Precision 59.65 [303/508]
Recall 57.06 [303/531]
F-score 58.33

Figure 2: System Results

Our heuristics, albeit simplistic, are based on lin-
guistically sound observations. The heuristic nature
allows additional heuristics that are more tailored to
a corpus or a task to be added without incurring un-
manageable complexity, in fact each heuristic can
be tested on the development set and can report on
the test set to monitor its performance. The heuris-
tics will also provide excellent features for statistical
systems.

5 Error Analysis

We distinguish 11 classes of errors on the test set.
The classes of errors depicted in Table (3) indi-

cates that the classes of errors and their frequencies
are consistent across the different data sets. The
third error class in Table (3) is of particular inter-
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Error Type Test Set Dev Set
1 Precision Errors: Verbal Negation Scope not found by NegFocus 37 23
2 Focus Mismatch: gold focus annotation is the neg. cue 138 112
3 Focus Mismatch: gold focus annotation is a constituent triggered

by the nsubj dependency to the negated verb
44 16

4 Focus Mismatch: gold focus annotation is the constituent trig-
gered by the nsubjpass dependency

7 12

5 Focus Mismatch: gold focus annotation is an adverb triggered by
the advmod dependency with the verb, but is not adjacent to the
verb

14 4

6 Partial Match: the spans of the gold focus annotation and NegFo-
cus annotation overlap

6 8

7 Focus Mismatch: gold focus annotation is not contained within
the NegFocus Syntactic Scope

4 5

8 NegFocus Syntactic Scope annotation error 10 9
9 Focus Mismatch: Miscellaneous errors 27 25
10 Focus Mismatch: gold focus annotation matches CLaC baseline

heuristic, however another CLaC focus heuristic was chosen
3 3

11 Focus Mismatch: gold focus annotation contains two discontinu-
ous focus annotation spans

17 11

TOTAL 307 228

Figure 3: System Errors

est to us, as it highlights the different interpretations
of verbal negation scope. NegFocus will not include
the noun subject in the syntactic negation scope, and
therefore the noun subject constituent is never a fo-
cus candidate as required in Example (11).

(11) In New York, [a spokesman for American
Brands] would n’t comment.

Similarly, the seventh error class in Table (3) con-
tains focus annotations that are not contained in
NegFocus negation scopes. Example (12) shows an
error where the sentence begins with a prepositional
phrase that is annotated as the gold focus.

(12) [On some days], the Nucor plant does n’t
produce anything.

We disagree with the gold annotations on this and
similar cases: the prepositional phrase on some days
is not negated, it provides a temporal specification
for the negated statement the Nucor plant produces
something and in our opinion, the negation negates
something, contrasting it with

(13) [On some days], the Nucor plant does n’t
produce a lot.

which allows for some production, which indi-
cates to us that without context information, low fo-
cus is warranted here.

NegFocus incorporates a focus heuristic for deter-
mining the passive noun subject constituent as the
focus of the negation, however only in cases where
the negated verb has an empty complement. The
fourth error class contains errors in focus determina-
tion where this heuristic fails and where the passive
subject is the gold focus despite the complement of
the negated verb not being empty, requiring further
analysis:

(14) To simplify the calculations , [com-
missions on the option and underlying
stock] are n’t included in the table.

NegFocus determines an adverb directly preced-
ing the verb trigger as the focus of the negation, but,
as described in the fifth error class, the gold focus
annotations in a few cases determine adverbs to be
the focus of the negation even when they don’t di-
rectly precede the verb, but are linked by the adv-
mod relation, as in Example (15). When we exper-
imented with relaxing the adjacency constraint, re-
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Error Type Test Set Dev Set
1 NegFocus annotation is adverb 2 3
2 NegFocus annotation is passive noun subject 7 4
3 NegFocus Scope Error 7 14
4 NegFocus baseline heuristic at variance with gold annotation 122 91

TOTAL 138 112

Figure 4: Negation cue annotation misses

sults suffered. This, too, is an area where we wish
to investigate whether any general patterns are pos-
sible and what additional resources they require to
be reliable.

(15) “ The intervention has been friendly,
meaning that they [really] did n’t
have to do it, ” said Maria Fiorini
Ramirez, money-market economist at
Drexel Burnham Lambert Inc .

The majority of NegFocus errors occur in the sec-
ond error class. Table (4) further analyzes the second
error class, where the gold annotation puts the nega-
tion trigger in the focus but NegFocus finds another
focus (usually in the verb complement).

The gold standard annotations place the focus of
the negation of verb v on the negation trigger if it
cannot be inferred that an action v occurred (Blanco
and Moldovan, 2011). NegFocus will only make this
assumption when the verb complement constituent
is empty, otherwise the baseline focus heuristic will
be triggered, as depicted in Example (16).

(16) AMR declined to comment , and
Mr. Trump did [n’t] respond
to requests for interviews.

Furthermore, the CLaC system will choose to trigger
the subject passive focus heuristic in the case where
the verb complement constituent is empty, and the
passive noun subject is present. In contrast, the gold
standard annotations do not necessarily follow this
heuristic as seen in Example (17).

(17) That is n’t 51 %, and the claim is [n’t]
documented .

Lastly, the gold focus annotations include focus
spans which are discontinuous. NegFocus will only
detect one continuous focus span within one in-
stance of a verbal negation. The eleventh error class

includes those cases where NegFocus matches one
of the gold focus spans but not the other as seen in
Example (18).

(18) [The payments] aren’t expected
[to have an impact on coming operating
results], Linear added .

These error cases show that more analysis of the
data, but also of the very notion of focus, is neces-
sary.

6 Conclusion

We conclude that this experiment confirmed the hy-
pothesis that negation trigger detection, syntactic
scope determination, and focus determination are
usefully modelled as a pipeline of three simple mod-
ules that apply after standard text preprocessing and
dependency parsing. Approximating focus from a
principled, linguistic point of view proved to be a
quick and robust exercise. Performance on develop-
ment and test sets is nearly identical and in a range
around 58% f-measure. While the annotation stan-
dards as well as our heuristics warrant revisiting, we
believe that the value of the focus annotation will
prove its value beyond negation. The challenge data
provide a valuable resource in themselves, but we
believe that their true value will be shown by using
the derived notion of focus in downstream applica-
tions. For initial experiments, the simple NegFocus
pipeline is a stable prototype.
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Abstract

We use the NLP toolchain that is used to con-
struct the Groningen Meaning Bank to address
the task of detecting negation cue and scope,
as defined in the shared task “Resolving the
Scope and Focus of Negation”. This toolchain
applies the C&C tools for parsing, using the
formalism of Combinatory Categorial Gram-
mar, and applies Boxer to produce seman-
tic representations in the form of Discourse
Representation Structures (DRSs). For nega-
tion cue detection, the DRSs are converted
to flat, non-recursive structures, called Dis-
course Representation Graphs (DRGs). DRGs
simplify cue detection by means of edge la-
bels representing relations. Scope detection
is done by gathering the tokens that occur
within the scope of a negated DRS. The re-
sult is a system that is fairly reliable for cue
detection and scope detection. Furthermore, it
provides a fairly robust algorithm for detect-
ing the negated event or property within the
scope.

1 Introduction

Nothing is more home to semantics than the phe-
nomenon of negation. In classical theories of mean-
ing all states of affairs are divided in two truth val-
ues, and negation plays a central role to determine
which truth value is at stake for a given sentence.
Negation lies at the heart of deductive inference, of
which consistency checking (searching for contra-
dictions in texts) is a prime example in natural lan-
guage understanding.

It shouldn’t therefore come as a surprise that
detecting negation and adequately representing its

scope is of utmost importance in computational se-
mantics. In this paper we present and evaluate a sys-
tem that transforms texts into logical formulas – us-
ing the C&C tools and Boxer (Bos, 2008) – in the
context of the shared task on recognising negation
in English texts (Morante and Blanco, 2012).

We will first sketch the background and the basics
of the formalism that we employ in our analysis of
negation (Section 2). In Section 3 we explain how
we detect negation cues and scope. Finally, in Sec-
tion 4 we present the results obtained in the shared
task, and we discuss them in Section 5.

2 Background

The semantic representations that are used in this
shared task on detecting negation in texts are con-
structed by means of a pipeline of natural language
processing components, of which the backbone is
provided by the C&C tools and Boxer (Curran et
al., 2007). This tool chain is currently in use semi-
automatically for constructing a large semantically
annotated corpus, the Groningen Meaning Bank
(Basile et al., 2012).

The C&C tools are applied for tagging the data
with part-of-speech and super tags and for syntactic
parsing, using the formalism of Combinatory Cate-
gorial Grammar, CCG (Steedman, 2001). The out-
put of the parser, CCG derivations, form the in-
put of Boxer, producing formal semantic representa-
tions in the form of Discourse Representation Struc-
tures (DRSs), the basic meaning-carrying structures
in the framework of Discourse Representation The-
ory (Kamp and Reyle, 1993). DRT is a widely ac-
cepted formal theory of natural language meaning
that has been used to study a wide range of linguistic
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Figure 1: CCG derivation and unresolved semantics for the sentence “I saw nothing suspicious”

phenomena, such as anaphoric pronouns, temporal
relations (Kamp and Reyle, 1993), presuppositions
(Van der Sandt, 1992), abstract anaphora and rhetor-
ical relations (Asher, 1993; Asher and Lascarides,
2003).

A DRS contains two parts: a set of of discourse
referents, and a set of conditions. Negation is repre-
sented in a condition by a unary operator in DRT. As
an example, Figure 1 shows the derivation for one
sentence as produced by the pipeline, illustrating
how lexical semantic entries are used to construct
a DRS for a whole sentence, guided by the syntac-
tic parse tree. Here, machinery of the λ-calculus is
employed to deal with variable renaming when re-
quired.

DRSs are recursive structures by nature. They can
be produced in several formats (in Prolog or XML)
and translated into first-order formulas. The rep-
resentations can also be generated as a set of tu-
ples, forming together a directed graph equivalent

to the original DRS, where discourse referents and
symbols are nodes and predicates and relations are
viewed as labelled edges. These “flat” Discourse
Representation Graphs, DRGs, are often more suit-
able for certain processing tasks. The tuples also
hold additional information, mapping DRS condi-
tions to surface tokens. This mapping is important
in tasks where surface realisation plays a role. We
also use it in this shared task to get back from com-
plex structures to a flat, token-based annotation of
scope.

3 Method

The shared task aims at detecting negation in text —
systems are supposed to label tokens that are in the
scope of negation, and also identify the token that
triggered the negation. The basic idea of our method
was to run the existing Boxer system for semantic
analysis, then traverse the produced DRSs, and, on
encountering an embbeded negated DRS, output the
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tokens associated with this negation, as well as the
token triggering it.

As this isn’t what Boxer is usually asked to do,
it required some bookkeeping adjustments. Boxer’s
anaphora resolution feature was turned off because
it is not necessary for the task and would lead
to unwanted inclusion of antecedents into negation
scopes. Also, its features for representing tense in-
formation and rhetorical relations were not used.

The rest of this section pays a closer look at how
negation cues are detected and how scope is as-
signed to tokens. We address the issues of trans-
lating a formal representation such as DRS into the
format required by the shared task — a represen-
tation more oriented at the surface form. We sub-
mitted two runs of our system, which both used the
C&C tools and Boxer. For the second run, we added
some postprocessing steps that tune the result to-
wards a higher performance, especially on scope de-
tection. While these postprocessing steps improve
performance, many of them may be specific to the
genre and style of the texts used in the shared task.

3.1 Cue detection
Since Boxer has been developed as a system to
generate full semantic representations, its lexicon
implicitly contains a list of negation cues: those
words giving rise to semantic representations of the
form ¬B, where B is the DRS representing the
meaning of the scope of the negation. Key examples
here are determiners and noun phrases (no, none, no-
one), and verb phrase negation (not).

However, negation detection is not the primary
function of Boxer, as it is part of the larger aim of
providing interpretable semantic representation for
English texts, and doing so robustly. So for the cur-
rent task, after investigating the development data
made available by the organisers, Boxer’s lexicon
was revised at a few points to account for particu-
lar negation cues that Boxer originally did not de-
tect. This included the detection of never as negation
cue, as well as words with a negative prefix or suffix
(e.g. inadequate, motionless). These affix negations
were detected using an automatically generated list
of negatively affixed nouns, adjectives and adverbs
from WordNet (Fellbaum, 1998). The list was cre-
ated by means of an algorithm that returns all nouns,
adjectives and adverbs in WordNet that start with

one of a, an, dis, in, il, im, ir, non, non-, un, or end
with one of less, lessness, lessly, and have a direct
antonym such that the lemma form equals the stem
of the affixed negation (i.e., without the affix).

On the other hand, not everything that introduces
a negated DRS in Boxer is a typical negation cue.
A case in point is the quantifier all, which up un-
til the shared task received a semantics similar to
λPλQ.¬∃x(P (x)∧¬Q(x)) in Boxer’s lexicon. As
a consequence, Boxer predicted all to be a nega-
tion cue trigger, in contrast to the shared task gold
standard data. Such instances were replaced by log-
ically equivalent representations (in the case of all:
λPλQ.∀x(P (x) → Q(x))).

In order to obtain the tokens that triggered the
negated DRS, Boxer’s DRG output was used. Oc-
currences of predicates, relations and connectives in
the DRG output carry explicit associations with the
tokens in the input whose lexical entries they come
from. For basic cue detection, the system annotates
as a negation cue those tokens (or affixes) associated
with the connective¬ (represented in the DRG as the
relation subordinates:neg). Example (1) shows a
part of the DRG’s tuple format that represents the
negation cue “no”. Argument structure tuples (la-
beled concept and instance) are also shown, cor-
responding to a noun in the negation scope, as in
“no problem”. The first and third columns represent
nodes of the DRG graph (both discourse units in this
example), the second column represents the label of
the edge between the nodes, and the fourth column
shows the token associated with the relation (if any).

(1)

... ... ... ...
k1 subordinates:neg k6 no
k6 concept c1:problem

c1:problem instance k6:x1 problem
... ... ... ...

In this case, the token “no” is detected as negation
cue because it is associated with the relation subor-
dinates:neg.

In the case of affix negation, ideally only the af-
fix should be associated with the negation tuple, and
the stem with a corresponding instance tuple. How-
ever, since the last column contains tokens, this does
not easily fit into the format. We therefore associate
the whole affix-negated token with the negation tu-
ple and use separate tuples for affix and stem in order
to preserve the information which part of the word
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is the cue and which part is in the scope of the nega-
tion. The resulting three tuples from a sentence con-
taining the word “injustice” are shown in the follow-
ing example:

(2)

... ... ... ...
k3 subordinates:neg k4 injustice
k4 concept c2:in:71
k4 concept c3:justice:1
... ... ... ...

The target nodes of the two argument structure tu-
ples (labeled concept because “injustice” is a noun)
are labeled with the relevant part of the affix-negated
word, and a special ID to indicate the presence of
a prefix or suffix. This information is used by the
script producing the token-based result format. Al-
though multi-word cues, such as neither...nor and on
the contrary, were not correctly predicted as such by
Boxer, no effort was made to include them. Due to
the token-based detection approach, the cue detec-
tion algorithm would have to be severly complicated
to include these cases as one negation cue. Because
of the relatively small frequency of multi-word cues,
we decided not to include special processing steps to
account for them.

The second run includes some postprocessing
steps implemented on top of the basic output. Since
Boxer is not designed to deal with dialogue, inter-
jections were originally ignored as negation cues.
Therefore, the postprocessing script added the word
“no” as a negation cue (with empty scope) when it
occurred as an interjection (tagged “UH”). It also ex-
cluded negations with the cue “no” when occurring
as part of the expression “no doubt” and not imme-
diately preceded by a verb with the lemma “have”
or “be” as in “I have no doubt that...”, which is to be
annotated as a negation. High precision and recall
for cue detection on the training data suggested that
no further processing steps were worth the effort.

3.2 Scope detection

The tokens in the scope of a negation are deter-
mined on the basis of the detected negation cue. It
is associated with the negation connective of some
negated DRS ¬B, so the system annotates as scope
all the tokens (and stems in the case of affix nega-
tion) directly or indirectly associated with predicates
and relations inside B. This includes tokens di-
rectly associated with predicates that appear within

the negated DRS, as well as those predicates outside
of the negated DRS whose discourse referent occurs
within the negation scope as the second argument of
a thematic role relation.

x2

person(x2)
¬ x3 e4

see(e4)
thing(x3)
suspicious(x3)
Agent(e4, x2)
Theme(e4, x3)

Figure 2: DRS for the sentence “I saw nothing suspi-
cious”

An example is given in Figure 2, where e.g. the
tokens see and suspicious are associated, respec-
tively, with see(e4) and suspicious(x3). Although
the predicate person(x2) associated with the pro-
noun I occurs outside of the negated DRS, its refer-
ent occurs as an argument within the negated DRS
in Agent(e4, x2) and therefore it is taken to be part
of the scope of the negation. The desired scope is
thus detected, containing the tokens I, saw and sus-
picious.

Again, in the second run some postprocessing
steps were implemented to improve performance.
We observed that the scopes in the manually anno-
tated data were usually continuous, except for nega-
tion cues within them. However, the scopes pro-
duced by the DRS algorithm contained many “gaps”
between the tokens of the detected scope, due to an
intrinsic feature of the DRS representation. Conven-
tionally, DRSs only explicitly contain content words
(i.e. nouns, verbs, adjectives, adverbs), while func-
tion words, such as determiners, modals and auxil-
iary verbs, are represented e.g. as structural proper-
ties or temporal features, or not at all, as in the case
of the infinitival to. Thus, when retrieving the sur-
face representation of the negated scopes from the
DRSs, not all structural properties can be directly as-
sociated with a surface token and thus not all tokens
required for the scope are retrieved. Because in the
gold standard annotation these function words were
considered part of the negation scope, we designed
an ad hoc mechanism to include them, namely filling
all the gaps that occur in the negation scope (leaving
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out the negation cue). For the same reason, deter-
miners immediately preceding the detected scopes
were added in postprocessing. Finally, conjunc-
tions were removed from the beginning of negation
scopes, because they were sometimes wrongly rec-
ognized by our pipeline as adverbs.

3.3 Negated event/property detection

Although not among our main goals, we also ad-
dressed the issue of detecting the “negated event or
property” in negation scopes within factual state-
ments. This is done using a heuristic algorithm that
uses the detected scope, as well as the syntax tree
provided as part of the data.

Since the scope is provided as a set of tokens, the
first step is to identify what we call the scope con-
stituent, i.e. a constituent in the syntax tree that cor-
responds to the scope. This is done by going through
the tokens in the scope from left to right and de-
termining for each token the largest constituent that
starts with this token. The first constituent found in
this way the category of whose root is one of SBAR,
S and VP is taken to be the scope constituent.

In the second step, the scope VP is determined
as the first VP encountered when doing a pre-order,
left-to-right traversal of the scope constituent. The
first verb directly dominated by this VP node deter-
mines how the process continues: (i) For non-factual
modals (e.g. may, must, should), no event/property
is annotated. (ii) For futurity modals (e.g. would,
will, shall), the negated event/property is determined
recursively by taking the first embedded VP as the
new scope VP. (iii) For forms of the verb be, the
algorithm first looks for the head of an embedded
ADJP or NP. If one is found, this is annotated as a
negated property. Otherwise, the verb is assumed to
be a passive auxiliary and the negated event/property
is again determined recursively on the basis of the
first embedded VP. (iv) In all other cases, the verb
itself is annotated as the negated event.

To limit the undesired detection of negated
events/properties outside of factual statements, the
algorithm is not applied to any sentence that con-
tains a question mark.

4 Results

Here we discuss our results on the Shared Task as
compared to the gold standard annotations provided
by (Morante and Daelemans, 2012). The output of
our two runs will be discussed with respect to Task 1.
The first run includes the results of our system with-
out postprocessing steps and in the second run the
system is augmented with the postprocessing steps,
as discussed in Section 3.

During the process of evaluating the results of the
training data, an issue with the method of evaluation
was discovered. In the first version of the evaluation
script precision was calculated using the standard
formula: tp

tp+fp . However, partial matches are ex-
cluded from this calculation (they are only counted
as false negatives), which means that in the case
of scopes(cue match), precision is calculated as the
number of exact scope matches (true positives) di-
vided by the number of exact scope matches plus
the number of completely wrong instances with no
overlap (false positives). As precision is a measure
for calculating correctly detected instances among
all detected instances, it seems that partial matches
should also be taken into account as detected in-
stance. Therefore, we proposed a new evaluation
method (B): tp

system , where system includes all de-
tected negations of the current system (including
partial matches). However, this measure may be too
strict as it penalizes a system harder for outputting a
partially correct scope than for outputting no scope
at all.1 This choice between two evils seems to in-
dicate that precision is too simple a measure for tar-
gets where partial matches are possible. Therefore,
in our evaluation of scope detection, we will focus
on the scope tokens measure where there are no par-
tial matches. For cue and negated event/property de-
tection, we use the stricter, but more meaningful B
version. The difference here is almost negligible be-
cause these targets typically have just one token.

4.1 Run 1 (without postprocessing)

Table 1 shows the results of the basic system with-
out postprocessing, with the most important results
for our system highlighted. As we can see, the
basic system performs well on cue detection (F1=

1This was pointed out by an anonymous reviewer.
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Table 1: Results of the first run (without postprocessing)
Task gold system tp fp fn precision (%) recall (%) F1 (%)
Cues: 264 261 219 33 45 86.90 82.95 84.88
Scopes(cue match): 249 261 32 37 217 46.38 12.85 20.12
Scopes(no cue match): 249 261 32 37 217 46.38 12.85 20.12
Scope tokens(no cue match): 1805 1821 1269 552 536 69.69 70.30 69.99
Negated(no cue match): 173 169 89 76 82 53.94 52.05 52.98
Full negation: 264 261 20 33 244 37.74 7.58 12.62
Cues B: 264 261 219 33 45 83.91 82.95 83.43
Scopes B (cue match): 249 261 32 37 217 12.26 12.85 12.55
Scopes B (no cue match): 249 261 32 37 217 12.26 12.85 12.55
Negated B (no cue match): 173 169 89 76 82 52.66 52.05 52.35
Full negation B: 264 261 20 33 244 7.66 7.58 7.62

Table 2: Results of the second run (with postprocessing)
Task gold system tp fp fn precision (%) recall (%) F1 (%)
Cues: 264 261 224 28 40 88.89 84.85 86.82
Scopes(cue match): 249 256 102 32 147 76.12 40.96 53.26
Scopes(no cue match): 249 256 102 32 147 76.12 40.96 53.26
Scope tokens(no cue match): 1805 2146 1485 661 320 69.20 82.27 75.17
Negated(no cue match): 173 201 111 85 59 56.63 65.29 60.65
Full negation: 264 261 72 28 192 72.00 27.27 39.56
Cues B: 264 261 224 28 40 85.82 84.85 85.33
Scopes B (cue match): 249 256 102 32 147 39.84 40.96 40.39
Scopes B (no cue match): 249 256 102 32 147 39.84 40.96 40.39
Negated B (no cue match): 173 201 111 85 59 55.22 65.29 59.83
Full negation B: 264 261 72 28 192 27.59 27.27 27.43

83.43%), and reasonably well on the detection of
scope tokens (F1= 69.99%).

Note that the results for Scopes(cue match) and
Scopes(no cue match) are the same for our system.
Since we make use of token-based cue detection, the
only cases of partial cue detection are instances of
multi-word cues, which, as discussed above, were
not accounted for in our system. In these cases, the
part of the cue that is not detected has a large chance
of becoming part of the scope of the cue that is de-
tected due to collocation. So, we hypothesize that
Scopes(cue match) and Scopes(no cue match) are the
same because in all cases of partial cue detection, the
scope incorrectly contains part of the gold-standard
cue, which affects both measures negatively.

There is a large discrepancy between the detec-
tion of scope tokens and the detection of com-
plete scopes, as the latter is low on both precision
(12.26%) and recall (12.85%). The relatively high
precision and recall for scope tokens (69.69% and
70.30%, respectively) suggests that there are many
cases of partial scope detection, i.e. cases where the
scope is either under- or overdetected with respect

to the gold standard scope. Since the postprocessing
steps for scope detection were developed to reduce
exactly this under- and overdetection, we expect that
the results for the second run are significantly better.
The same holds for negated/event property detection
(F1= 52.98%) since it uses the results from scope
detection.

4.2 Run 2 (with postprocessing)

Table 2 reports the results of the extended system,
which extends the basic system with postprocessing
steps for cue detection and especially for scope de-
tection. The postprocessing steps indeed result in
higher precision and recall for all tasks, except for
Scope tokens, which shows a negligible decrease in
precision (from 69.69% to 69.20%). This suggests
that there are more cases of overdetected scopes
than underdetected scopes, because the number of
wrongly detected tokens (false positives) increased
while the number of undetected scope tokens (false
negatives) decreased. This is probably due to the
gap-filling mechanism that was implemented as a
postprocessing step for scope detection, generaliz-
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ing that all scopes should be continuous. We will
elaborate more on this point in the discussion in Sec-
tion 5.

As expected, the detection of complete scopes
shows the highest increase in F1 score (from 12.55%
to 40.39%). This indicates that the postprocessing
steps effectively targeted the weak points of the ba-
sic system.

While there are no postprocessing steps for
negated event or property detection, the F1 score for
this task also increases (from 52.35% to 59.83%),
as expected, due to the improvement in scope detec-
tion.

5 Discussion

Overall, we can say that both of our systems perform
well on cue detection, with a small increase when in-
cluding the postprocessing steps. This was expected
since the postprocessing for cue detection targeted
only two specific types of cues, namely, interjections
and occurrences of “no doubt”. The scope detection
benefits consideraby from adding the postprocessing
steps, as was their main goal. In the final results of
the shared task, run 2 of our system ended second
out of five in the open track, while run 1 was ranked
last. We will here discuss some points that deserve
special attention.

5.1 Affix Negation

As discussed above, affix negations received a spe-
cial treatment because they were not originally de-
tected as negation cues in Boxer. In the DRS, the
token containing the affixed negation cue is associ-
ated with two predicates, representing the negative
affix and the negated stem. The algorithm secures
that only the affix is annotated as the negation cue
and that the negated stem is annotated as part of the
scope. An example of a sentence containing affix
negation is shown in (3) (cardboard 31).2

(3) a. [You do yourself an] in[justice]. gold
b. You do yourself an in[justice]. run1
c. You do yourself [an] in[justice]. run2

2In the following, boldfaced tokens represent the negation
cues, brackets embed the scope and underlining signifies the
negated event or property (subscripts added in case of multiple
negation cues).

Table 3: Results of negated event/property detection on
gold standard cue and scope annotation

Task prec.(%) rec.(%) F1(%)
Negated (no cue match): 64.06 76.88 69.89
Negated B (no cue match): 59.71 76.88 67.22

Note that in neither of the runs the complete scope
from the gold standard is detected, although post-
processing increases the recall of scope tokens by
adding the determiner “an” to the scope of the nega-
tion. However, examples like this are not unambigu-
ous with respect to their negation scope. For ex-
ample, the sentence in (3) can be interpreted in two
ways: “It is not the case that you do yourself (some-
thing that is) justice” and “It is the case that you do
yourself (something that is) not justice”. While the
gold standard annotation assumes the former, wide-
scope reading, our system predicts the narrow scope
reading for the negation. The narrow scope read-
ing can be motivated by means of Grice’s Maxim of
Manner (Grice, 1975); the choice of an affix nega-
tion instead of a verbal negation signals a narrow
scope, because in case a wide scope negation is in-
tended, a verbal negation would be more perspicu-
ous. Thus, the difference in the output of our sys-
tem and the gold standard annotation is in this case
caused by a different choice in disambiguating nega-
tion scope, rather than by a shortcoming of the de-
tection algorithm.

5.2 Negated event/property detection

Although correct detection of the negated event or
property was not our prime concern, the results
obtained with our algorithm were quite promising.
Among the systems participating in the closed track
of task 1, our extended system is ranked third out
of seven for negated event/property detection even
though the performance on scope detection is lower
than all of the other systems in this track. Since
negated event/property detection depends on the de-
tected scope, it seems that our heuristic algorithm
for detecting the negated event/property is very ro-
bust against noisy input. The performance of the de-
tection algorithm on the gold-standard annotation of
scopes is shown in Table 3. Although we cannot
compare these results to the performance of other
systems on the gold standard data, it should be noted

307



that the results shown here are unmatched by the
test results of any other system. It would therefore
be worthwile for future work to refine the negated
event/property detection algorithm outlined here.

5.3 Postprocessing

The results for the two versions of our system
showed that the postprocessing steps implemented
in the extended system improved the results consid-
erably, especially for scope detection. Example (4)
(cardboard 62) shows the effect of postprocessing on
the detection of scopes for negative interjections.

(4) a. “No1, [I saw]2 nothing2.” gold
b. “[No], [I saw] nothing.” run1
c. “[No1, I saw]2 nothing2.” run2

In Run 1, the system correctly detects the cue “noth-
ing” and the event “saw”, although the detected
scope is too wide due to an error in the output of
the parser we used. In Run 2, postprocessing also
correctly recognizes the interjection “no” as a nega-
tion cue. Gap filling in this case makes the scope
overdetection worse by also adding the comma to
the scope. A similar case of the overdetection of
scope is shown in (5) (cardboard 85).

(5) a. [The box] is a half-pound box of honey-
dew tobacco and [does] not [help us in
any way]. gold

b. [The box] is a half-pound box of hon-
eydew tobacco and does not [help us in
any way]. run1

c. [The box is a half-pound box of honey-
dew tobacco and does] not [help us in
any way]. run2

Note that in Run 1 the first part of the coordinated
structure is correctly excluded from the scope of
the negation, but the auxiliary “does” is incorrectly
not counted as scope. The gap-filling mechanism
then adds the intermediary part to the scope of the
negation, resulting in an increase in recall for scope
tokens detection (since “does” is now part of the
scope) but a lower precision because of the overgen-
eration of the coordinated part.

Nevertheless, the increased precision and recall
for scope detection can mainly be ascribed to the
gap-filling mechanism implemented in the postpro-

cessing steps for scope detection. As discussed
above, the presence of gaps in the original output
is due to the non-sequential nature of the DRT rep-
resentation and the fact that function words are not
directly associated with any element in the represen-
tations. This suggests that future work on surface re-
alisation from DRSs should focus on translating the
structural properties of DRSs into function words.

5.4 Differences between texts

We noted that there was a difference between the
performance on text 1 (The Adventure of the Red
Circle) and text 2 (The Adventure of the Cardboard
Box). The results for text 2 were overall higher than
the results for text 1 (except for a 1% decline in re-
call for Full negation). There was a higher scope
precision for text 2 and after the postprocessing steps
an even larger difference was found for scope de-
tection (15% versus 44% increase in F1 score for
Scopes). We hypothesize that this difference may be
due to a higher number of multiword expressions in
text 1 (7 vs. 2) and to the fact that text 1 seems to
have more scopes containing gaps. This latter ob-
servation is supported by the fact that gap filling re-
sults in more overgeneration (more false positives),
which is reflected in the ratios of false positives in
text 1 (38%) and text 2 (27%). Thus, while the post-
processing steps improve performance, they seem to
be genre and style dependent. This motivates further
development of the “clean”, theoretically motivated
version of our system in order to secure domain-
independent broad coverage of texts, which is the
goal of the Groningen Meaning Bank project.

6 Conclusion

Participating in this shared task on negation detec-
tion gave us a couple of interesting insights into our
natural language processing pipeline that we are de-
veloping in the context of the Groningen Meaning
Bank. It also showed that it is not easy to trans-
fer the information about negation from a formal,
logical representation of scope to a theory-neutral
surface-oriented approach. The results were in line
with what we expected beforehand, with the highest
loss appearing in the awkward translation from one
formalism to another.
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Abstract

This paper describes the first of two systems
submitted from the University of Oslo (UiO)
to the 2012 *SEM Shared Task on resolving
negation. Our submission is an adaption of
the negation system of Velldal et al. (2012),
which combines SVM cue classification with
SVM-based ranking of syntactic constituents
for scope resolution. The approach further ex-
tends our prior work in that we also identify
factual negated events. While submitted for
the closed track, the system was the top per-
former in the shared task overall.

1 Introduction

The First Joint Conference on Lexical and Compu-
tational Semantics (*SEM 2012) hosts a shared task
on resolving negation (Morante and Blanco, 2012).
This involves the subtasks of (i) identifying nega-
tion cues, (ii) identifying the in-sentence scope of
these cues, and (iii) identifying negated (and factual)
events. This paper describes a system submitted by
the Language Technology Group at the University of
Oslo (UiO). Our starting point is the negation system
developed by Velldal et al. (2012) for the domain of
biomedical texts, an SVM-based system for classi-
fying cues and ranking syntactic constituents to re-
solve cue scopes. However, we extend and adapt
this system in several important respects, such as in
terms of the underlying linguistic formalisms that
are used, the textual domain, handling of morpho-
logical cues and discontinuous scopes, and in that
the current system also identifies negated events.

The data sets used for the shared task include
the following, all based on negation-annotated Co-
nan Doyle (CD) stories (Morante and Daelemans,
2012): a training set of 3644 sentences (hereafter

referred to as CDT), a development set of 787 sen-
tences (CDD), and a held-out evaluation set of 1089
sentences (CDE). We will refer to the combination
of CDT and CDD as CDTD. An example of an an-
notated sentence is shown in (1) below, where the
cue is marked in bold, the scope is underlined, and
the event marked in italics.

(1) There was no answer.

We describe two different system configurations,
both of which were submitted for the closed track
(hence we can only make use of the data provided
by the task organizers). The systems only differ
with respect to how they were optimized. In the
first configuration, (hereafter I), all components in
the pipeline had their parameters tuned by 10-fold
cross-validation across CDTD. The second config-
uration (II) is tuned against CDD using CDT for
training. The rationale for this strategy is to guard
against possible overfitting effects that could result
from either optimization scheme, given the limited
size of the data sets. For the held-out testing all mod-
els are estimated on the entire CDTD.

Unless otherwise noted, all reported scores are
generated using the evaluation script provided by the
organizers, which breaks down performance with re-
spect to cues, events, scope tokens, and two vari-
ants of scope-level exact match (one requiring exact
match of cues and the other only partial cue match).
The latter two scores are identical for our system
hence are not duplicated in this paper. Furthermore,
as we did not optimize for the scope tokens measure
this is only reported for the final evaluation.

Note also that the evaluation actually includes
two variants of the metrics mentioned above; a set
of primary measures with precision computed as
P = TP/(TP + FP ) and a set of so-called B mea-
sures that instead uses P = TP/S, where S is the
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total number of predictions made by the system. The
reason why S is not identical with TP + FP is
that partial matches are only counted as FNs (and
not FPs) in order to avoid double penalties. We
do not report the B measures for development test-
ing as they were only introduced for the final eval-
uation and hence were not considered in our sys-
tem optimization. We note though, that the relative-
ranking of participating systems for the primary and
B measures is identical, and that the correlation be-
tween the paired lists of scores is nearly perfect
(r = 0.997).

The paper is structured according to the compo-
nents of our system. Section 2 details the process of
identifying instances of negation through the disam-
biguation of known cue words and affixes. Section 3
describes our hybrid approach to scope resolution,
which utilizes both heuristic and data-driven meth-
ods to select syntactic constituents. Section 4 dis-
cusses our event detection component, which first
applies a classifier to filter out non-factual events
and then uses a learned ranking function to select
events among in-scope tokens. End-to-end results
are presented in Section 5.

2 Cue Detection

Cue identification is based on the light-weight clas-
sification scheme presented by Velldal et al. (2012).
By treating the set of cue words as a closed class,
Velldal et al. (2012) showed that one could greatly
reduce the number of examples presented to the
learner, and correspondingly the number of fea-
tures, while at the same time improving perfor-
mance. This means that the classifier only attempts
to ‘disambiguate’ known cue words, while ignoring
any words not observed as cues in the training data.

The classifier applied in the current submission
is extended to also handle morphological or affixal
negation cues, such as the prefix cue in impatience,
the infix in carelessness, and the suffix of colourless.
The negation affixes observed in CDTD are; the pre-
fixes un, dis, ir, im, and in; the infix less (we inter-
nally treat this as the suffixes lessly and lessness);
and the suffix less. Of the total set of 1157 cues in
the training and development data, 192 are affixal.
There are, however, a total of 1127 tokens matching
one of the affix patterns above, and while we main-

tain the closed class assumption also for the affixes,
the classifier will need to consider their status as a
cue or non-cue when attaching to any such token, as
in image, recklessness, and bless.

2.1 Features
In the initial formulation of Velldal (2011), an SVM
classifier was applied using simple n-gram features
over words, both full forms and lemmas, to the
left and right of the candidate cues. In addition to
these token-level features, the classifier we apply
here includes features specifically targeting affixal
cues. The first such feature records character n-
grams from both the beginning and end of the base
that an affix attaches to (up to five positions). For
a context like impossible we would record n-grams
such as {possi, poss, . . .} and {sible, ible, . . .}, and
combine this with information about the affix itself
(im) and the token part-of-speech (“JJ”).

For the second type of affix-specific features, we
try to emulate the effect of a lexicon look-up of the
remaining substring that an affix attaches to, check-
ing its status as an independent base form and its
part-of-speech. In order to take advantage of such
information while staying within the confines of the
closed track, we automatically generate a lexicon
from the training data, counting the instances of each
PoS tagged lemma in addition to n-grams of word-
initial characters (again recording up to five posi-
tions). For a given match of an affix pattern, a fea-
ture will then record these counts for the substring it
attaches to. The rationale for this feature is that the
occurrence of a substring such as un in a token such
as underlying should be less likely as a cue given
that the first part of the remaining string (e.g., derly)
would be an unlikely way to begin a word.

It is also possible for a negation cue to span multi-
ple tokens, such as the (discontinuous) pair neither /
nor or fixed expressions like on the contrary. There
are, however, only 16 instances of such multiword
cues (MWCs) in the entire CDTD. Rather than let-
ting the classifier be sensitive to these corner cases,
we cover such MWC patterns using a small set of
simple post-processing heuristics. A small stop-list
is used for filtering out the relevant words from the
examples presented to the classifier (on, the, etc.).
Note that, in terms of training the final classifiers,
CDTD provides us with a total of 1162 positive and
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Data set Model Prec Rec F1

CDTD
Baseline 92.25 88.50 90.34
ClassifierI 94.99 95.07 95.03

CDD
Baseline 90.68 84.39 87.42
ClassifierII 93.75 95.38 94.56

CDE
Baseline 87.10 92.05 89.51
ClassifierI 91.42 92.80 92.10
ClassifierII 89.17 93.56 91.31

Table 1: Detecting negation cues using the two clas-
sifiers and the majority-usage baseline.

1100 negative training examples, given our closed-
class treatment of cues.

Before we turn to the results, note that the dif-
ference between the two submitted versions of the
classifier (I and II) only concerns the orders of the
n-grams used for the token-level features.1

2.2 Results
Table 1 presents the results for our cue classifier. As
an informed baseline, we also tried classifying each
word based on its most frequent use as a cue or non-
cue in the training data. (Affixal cue occurrences are
counted by looking at both the affix-pattern and the
base it attaches to, basically treating the entire token
as a cue. Tokens that end up being classified as cues
are then matched against the affix patterns observed
during training in order to correctly delimit the an-
notation of the cue.) This simple majority-usage
approach actually provides a fairly strong baseline,
yielding an F1 of 90.34 on CDTD. Compare this to
the F1 of 95.03 obtained by the classifier on the same
data set. However, when applying the models to the
held-out set, with models estimated over the entire
CDTD, the classifier suffers a slight drop in perfor-
mance, leaving the baseline even more competitive:
While our best performing final cue classifier (I)
achieves F1=92.10, the baseline achieves F1=89.51,
and even outperforms four of the ten cue detection
systems submitted for the shared task (three of the
12 shared task submissions use the same classifier).

1Classifier I records the lemma and full form of the target
token, and lemmas two positions left/right. Classifier II records
the lemma, form, and PoS of the target, full forms three posi-
tions to the left and one to the right, PoS one position right/left,
and lemmas three positions to the right. The affixal-specific fea-
tures are the same for both configurations as described above.

S

NP

EX

There

VP

VBD

was

NP

DT

no

NN

answer

.

.

Figure 1: Example parse tree provided in the data,
highlighting our candidate scope constituents.

Inspecting the predictions of the classifier on
CDD, which comprises a total of 173 gold anno-
tated cues, we find that Classifier I mislabels 11
false positives (FPs) and seven false negatives (FNs).
Of the FPs, we find five so-called false negation
cues (Morante et al., 2011), including three in-
stances of the fixed expression none the less. The
others are affixal cues, of which two are clearly
wrong (underworked, universal) while others might
arguably be due to annotation errors (insuperable,
unhappily, endless, listlessly). Among the FNs, two
are due to MWCs not covered by our heuristics (e.g.,
no more), with the remainder concerning affixes.

3 Constituent-Based Scope Resolution

During the development of our scope resolution sys-
tem we have pursued both a rule-based and data-
driven approach. Both are rooted in the assumption
that the scope of negations corresponds to a syntac-
tically meaningful unit. Our starting point here will
be the syntactic analyses provided by the task or-
ganizers (see Figure 1), generated using the rerank-
ing parser of Charniak and Johnson (2005). How-
ever, as alignment between scope annotations and
syntactic units is not straightforward for all cases,
we apply several exception rules that ‘slacken’ the
requirements for alignment, as discussed in Sec-
tion 3.1. In Sections 3.2 and 3.3 we detail our
rule-based and data-driven approaches, respectively.
Note that the predictions of the rule-based compo-
nent will be incorporated as features in the learned
model, similarly to the set-up described by Read et
al. (2011). Section 3.4 details the post-processing
we apply to handle cases of discontinuous scope, be-
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fore Section 3.5 finally presents development results
together with a brief error analysis.

3.1 Constituent Alignment and Slackening
In order to test our initial assumption that syntactic
units correspond to scope annotations, we quantify
the alignment of scopes with constituents in CDT,
excluding 97 negations that do not have a scope.
We find that the initial alignment is rather low at
52.42%. We therefore formulate a set of slacken-
ing heuristics, designed to improve on this alignment
by removing certain constituents at the beginning or
end of a scope. First of all, removing constituent-
initial and -final punctuation improves alignment to
72.83%. We then apply the following slackening
rules, with examples indicating the resulting scope
following slackening (not showing events):

- Remove coordination (CC) and following con-
juncts if the coordination is a rightwards sibling
of an ancestor of the cue and it is not directly
dominated by an NP.

(2) Since we have been so unfortunate as to miss him
and have no notion [. . . ]

- Remove S* to the right of cue, if delimited by
punctuation.

(3) “There is no other claimant, I presume ?”

- Remove constituent-initial SBAR.

(4) If it concerned no one but myself I would not
try to keep it from you.”

- Remove punctuation-delimited NPs.

(5) “But I can’t forget them, Miss Stapleton,” said I.

- Remove constituent-initial RB, CC, UH,
ADVP or INTJ.

(6) And yet it was not quite the last.

The slackening rules are based on a few obser-
vations. First, scope rarely crosses coordination
boundaries (with the exception of nominal coordi-
nation). Second, scope usually does not cross clause
boundaries (indicated by S/SBAR). Furthermore, ti-
tles and other nominals of address are not included
in the scope. Finally, sentence and discourse adver-
bials are often excluded from the scope. Since these
express semantic distinctions, we approximate this

RB//VP/SBAR if SBAR\WH*
RB//VP/S
RB//S
DT/NP if NP/PP
DT//SBAR if SBAR\WHADVP
DT//S
JJ//ADJPVP/S if S\VP\VB*[@lemma="be"]
JJ/NP/NP if NP\PP
JJ//NP
UH
IN/PP
NN/NP//S/SBAR if SBAR\WHNP
NN/NP//S
CC/SINV

Figure 2: Scope resolution heuristics.

notion syntactically using parts-of-speech and con-
stituent category labels expressing adverbials (RB),
coordinations (CC), various types of interjections
(UH, INTJ) and adverbial phrases (ADVP). We may
note here that syntactic categories are not always
sufficient to express semantic distinctions. Preposi-
tional phrases, for instance, are often used to express
the same type of discourse adverbials, but can also
express a range of other distinctions (e.g., tempo-
ral or locative adverbials), which are included in the
scope. So a slackening rule removing initial PPs was
tried but not found to improve overall alignment.

After applying the above slackening rules the
alignment rate for CDT improves to 86.13%. This
also represents an upper-bound on our performance,
as we will not be able to correctly predict a scope
that does not align with a (slackened) constituent.

3.2 Heuristics Operating over Constituents
The alignment of constituents and scopes reveal con-
sistent patterns and we therefore formulate a set of
heuristic rules over constituents. These are based
on frequencies of paths from the cue to the scope-
aligned constituent for the annotations in CDT, as
well as the annotation guidelines (Morante et al.,
2011). The rules are formulated as paths over con-
stituent trees and are presented in Figure 2. The
path syntax is based on LPath (Lai and Bird, 2010).
The rules are listed in order of execution, showing
how more specific rules are consulted before more
general ones. We furthermore allow for some ad-
ditional functionality in the interpretation of rules
by enabling simple constraints that are applied to
the candidate constituent. For example, the rule
RB//VP/SBAR if SBAR\WH* will be activated when
the cue is an adverb having some ancestor VP which
has a parent SBAR, where the SBAR must contain a
WH-phrase among its children.
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In cases where no rule is activated we use a de-
fault scope prediction, which expands the scope to
both the left and the right of the cue until either the
sentence boundary or a punctuation mark is reached.
The rules are evaluated individually in Section 3.5
below and the rule predictions are furthermore em-
ployed as features for the ranker described below.

3.3 Constituent Ranking
Our data-driven approach to scope resolution in-
volves learning a ranking function over candidate
syntactic constituents. The approach has similari-
ties to discriminative parse selection, except that we
here rank subtrees rather than full parses.

When defining the training data, we begin by se-
lecting negations for which the parse tree contains
a constituent that (after slackening) aligns with the
gold scope. We then select an initial candidate by
selecting the smallest constituent that spans all the
words in the cue, and then generate subsequent can-
didates by traversing the path to the root of the
tree (see Figure 1). This results in a mean ambi-
guity of 4.9 candidate constituents per negation (in
CDTD). Candidates whose projection corresponds
to the gold scope are labeled as correct; all others are
labeled as incorrect. Experimenting with a variety of
feature types (listed in Table 2), we use the imple-
mentation of ordinal ranking in the SVMlight toolkit
(Joachims, 2002) to learn a linear scoring function
for preferring correct candidate scopes.

The most informative feature type is the LPath
from cue, which in addition to recording the full
path from the cue to the candidate constituent
(e.g., the path to the correct candidate in Fig-
ure 1 is no/DT/NP/VP/S), also includes delexicalized
(./DT/NP/VP/S), generalized (no/DT//S), and gen-
eralized delexicalized versions (./DT//S).

Note that the rule prediction feature facilitates a
hybrid approach by recording whether the candidate
matches the boundaries of the scope predicted by the
rules of Section 3.2, as well as the degree of overlap.

3.4 Handling Discontinuous Scope
10.3% of the scopes in the training data are what
(Morante et al., 2011) refer to as discontinuous. This
means that the scope contains two or more parts
which are bridged by tokens other than the cue.

Feature types I II

LPath from cue • •
LPath from cue bigrams and trigrams • •
LPath from cue to left/right boundary •
LPath to left/right boundary •
LPath to root •
Punctuation to left/right • •
Rule prediction •
Sibling bigrams •
Size in tokens, relative to sentence (%) • •
Surface bigrams • •
Tree distance from cue • •

Table 2: Features used to describe candidate con-
stituents for scope resolution, with indications of
presence in our two system configurations.

(7) I therefore spent the day at my club and did not
return to Baker Street until evening.

(8) There was certainly no physical injury of any kind.

The sentence in (7) exemplifies a common cause
of scopal discontinuity in the data, namely ellipsis
(Morante et al., 2011). Almost all of these are cases
of coordination, as in example (7) where the cue is
found in the final conjunct (did not return [. . . ]) and
the scope excludes the preceding conjunct(s) (there-
fore spent the day at my club). There are also some
cases of adverbs that are excluded from the scope,
causing discontinuity, as in (8), where the adverb
certainly is excluded from the scope.

In order to deal with discontinuous scopes we for-
mulate two simple post-processing heuristics, which
are applied after rules/ranking: (1) If the cue is in
a conjoined phrase, remove the previous conjuncts
from the scope, and (2) remove sentential adverbs
from the scope (where a list of sentential adverbs
was compiled from the training data).

3.5 Results
Our development procedure evaluated all permuta-
tions of feature combinations, searching for opti-
mal parameters using gold-standard cues. Table 2
indicates which features are included in our two
ranker configurations, i.e., tuning by 10-fold cross-
validation on CDTD (I) vs. a train/test-split for
CDT/CDD(II).

Table 3 lists the results of our scope resolution
approaches applied to gold cues. As a baseline, all
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Data set Model Prec Rec F1

CDTD
Baseline 98.31 33.18 49.61
Rules 100.00 71.37 83.29
RankerI 100.00 73.55 84.76

CDD
Baseline 100.00 36.31 53.28
Rules 100.00 69.64 82.10
RankerII 100.00 70.24 82.52

CDE

Baseline 96.47 32.93 49.10
Rules 98.73 62.65 76.66
RankerI 98.77 64.26 77.86
RankerII 98.75 63.45 77.26

Table 3: Scope resolution for gold cues using the
two versions of the ranker, also listing the perfor-
mance of the rule-based approach in isolation.

cases are assigned the default scope prediction of the
rule-based approach. On CDTD this results in an F1

of 49.61 (P=98.31, R=33.18); compare to the ranker
in Configuration I on the same data set (F1=84.76,
P=100.00, R=73.55). We note that our different op-
timization procedures do not appear to have made
much difference to the learned ranking functions as
both perform similarly on the held-out data, though
suffering a slight drop in performance compared to
the development results. We also evaluate the rules
and observe that this approach achieves similar held-
out results. This is particularly note-worthy given
that there are only fourteen rules plus the default
scope baseline. Note that, as the rankers performed
better than the rules in isolation on both CDTD and
CDD during development, our final system submis-
sions are based on rankers I and II from Table 3.

We performed a manual error analysis of our
scope resolution system (RankerII) on the basis of
CDD (using gold cues). First, we may note that
parse errors are a common sources of scope res-
olution errors. It is well-known that coordina-
tion presents a difficult construction for syntactic
parsers, and we often find incorrectly parsed coordi-
nate structures among the system errors. Since coor-
dination is used both in the slackening rules and the
analysis of discontinuous scopes, these errors have
clear effects on system performance. We may fur-
ther note that discourse-level adverbials, such as in
the second place in example (9) below, are often in-
cluded in the scope assigned by our system, which
they should not be according to the gold annotation.

(9) But, in the second place, why did you not come at once?

There are also quite a few errors related to the scope
of affixal cues, which the ranker often erroneously
assigns a scope that is larger than simply the base
which the affix attaches to.

4 Event Detection

Our event detection component implements two
stages: First we apply a factuality classifier, and
then we identify negated events2 for those contexts
that have been labeled as factual. We detail the two
stages in order below.

4.1 Factuality Detection
The annotation guidelines of Morante et al. (2011)
specify that events should only be annotated for
negations that have a scope and that occur in fac-
tual statements. This means that we can view the
*SEM data sets to implicitly annotate factuality and
non-factuality, and take advantage of this to train an
SVM factuality classifier. We take positive exam-
ples to correspond to negations annotated with both
a scope and an event, while negative examples corre-
spond to scope negations with no event. For CDTD,
this strategy gives 738 positive and 317 negative ex-
amples, spread over a total of 930 sentences. Note
that we do not have any explicit annotation of cue
words for these examples. All we have are instances
of negation that we know to be within a factual or
non-factual context, but the indication of factuality
may typically be well outside the annotated nega-
tion scope. For our experiments here, we therefore
use the negation cue itself as a place-holder for the
abstract notion of context that we are really classi-
fying. Given the limited amount of data, we only
optimize our factuality classifier by 10-fold cross-
validation on CDTD (i.e., the same configuration is
used for submissions I and II).

The feature types we use are all variations over
bag-of-words (BoW) features. We include left- and
right-oriented BoW features centered on the nega-
tion cue, recording forms, lemmas, and PoS, and us-
ing both unigrams and bigrams. The features are ex-

2Note that the annotation guidelines use the term event
rather broadly as referring to a process, action, state, or prop-
erty (Morante et al., 2011).
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Data set Model Prec Rec F1 Acc

CDTD
Baseline 69.95 100.00 82.32 69.95
Classifier 84.51 96.07 89.92 83.98

CDE
Baseline 69.48 100.00 81.99 69.48
Classifier 77.73 95.91 85.86 78.31

Table 4: Results for factuality detection (using gold
negation cues and scopes). Due to the limited train-
ing data for factuality, the classifier is only opti-
mized by 10-fold cross-validation on CDTD.

tracted from the sentence as a whole, as well as from
a local window of six tokens to each side of the cue.

Table 4 provides results for factuality classifica-
tion using gold-standard cues and scopes.3 We also
include results for a baseline approach that simply
considers all cases to be factual, i.e., the majority
class. In this case precision is identical to accuracy
and recall is 100%. For precision and accuracy we
see that the classifier improves substantially over the
baseline on both data sets, although there is a bit of a
drop in performance when going from the 10-fold to
held-out results. There also seem to be some signs
of overfitting, given that roughly 70% of the training
examples end up as support vectors.

4.2 Ranking Events
Having filtered out non-factual contexts, events are
identified by applying a similar approach to that of
the scope-resolving ranker described in Section 3.3.
In this case, however, we rank tokens as candidates
for events. For simplicity in this first round of de-
velopment we make the assumption that all events
are single words. Thus, the system will be unable to
correctly predict the event in the 6.94% of instances
in CDTD that are multi-word.

We select candidate words from all those marked
as being in the scope (including substrings of to-
kens with affixal cues). This gives a mean ambigu-
ity of 7.8 candidate events per negation (in CDTD).
Then, discarding multi-word training examples, we
use SVMlight to learn a ranking function for identi-
fying events among the candidates.

Table 5 shows the features employed, with in-
3As this is not singled out as a separate subtask in the shared

task itself, these are the only scores in the paper not computed
using the script provided by the organizers.

Feature type I II

Contains affixal cue •
Following lemma •
Lemma • •
LPath to scope constituent • •
LPath to scope constituent bigrams • •
Part-of-speech • •
Position in scope • •
Preceding lemma • •
Preceding part-of-speech • •
Token distance from cue • •

Table 5: Features used to describe candidates for
event detection, with indications of presence in our
two system configurations.

Data set Model Prec Rec F1

CDTD RankerI 91.49 90.83 91.16
CDD RankerII 92.11 91.30 91.70

CDE RankerI 83.73 83.73 83.73
RankerII 84.94 84.95 84.94

Table 6: Event detection for gold scopes and gold
factuality information.

dications as to their presence in our two configu-
rations (after an exhaustive search of feature com-
binations). The most important feature was LPath
to scope constituent. For example, in Figure 1
the scope constituent is the S root of the tree;
the path that describes the correct candidate is
answer/NN/NP/VP/S. As discussed in Section 3.3,
we also record generalized, delexicalized and gener-
alized delexicalized paths.

Table 6 lists the results of the event ranker applied
to gold-standard cues, scopes, and factuality. For a
comparative baseline, we implemented a keyword-
based approach that simply searches in-scope words
for instances of events previously observed in the
training set, sorted according to descending fre-
quency. This baseline achieves F1=29.44 on CDD.
For comparison, the ranker (II) achieves F1=91.70
on the same data set, as seen in Table 6. We also
see that Configuration II appears to generalize best,
with over 1.2 points improvement over the F1 of I.

An analysis of the event predictions for CDD in-
dicates that the most frequent errors (41.2%) are in-
stances where the ranker correctly predicts part of
the event but our single word assumption is invalid.
Another apparent error is that the system fails to
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Submission I Submission II
Prec Rec F1 Prec Rec F1

Cues 91.42 92.80 92.10 89.17 93.56 91.31
Scopes 87.43 61.45 72.17 83.89 60.64 70.39
Scope Tokens 81.99 88.81 85.26 75.87 90.08 82.37
Events 60.50 72.89 66.12 60.58 75.00 67.02
Full negation 83.45 43.94 57.57 79.87 45.08 57.63

Cues B 89.09 92.80 90.91 86.97 93.56 90.14
Scopes B 59.30 61.45 60.36 56.55 60.64 58.52
Events B 57.62 72.89 64.36 58.60 75.00 65.79
Full negation B 42.18 43.94 43.04 41.90 45.08 43.43

Table 7: End-to-end results on the held-out data.

predict a main verb for the event, and instead pre-
dicts nouns (17.7% of all errors), modals (17.7%) or
prepositions (11.8%).

5 Held-Out Evaluation

Table 7 presents our final results for both system
configurations on the held-out evaluation data (also
including the B measures, as discussed in the intro-
duction). Comparing submission I and II, we find
that the latter has slightly better scores end-to-end.
However, as seen throughout the paper, the picture is
less clear-cut when considering the isolated perfor-
mance of each component. When ranked according
to the Full Negation measures, our submissions were
placed first and second (out of seven submissions in
the closed track, and twelve submissions total). It
is difficult to compare system performance on sub-
tasks, however, as each component will be affected
by the performance of the previous.

6 Conclusions

This paper has presented two closed-track submis-
sions for the *SEM 2012 shared task on negation
resolution. The systems were ranked first and sec-
ond overall in the shared task end-to-end evaluation,
and the submissions only differ with respect to the
data sets used for parameter tuning. There are four
components in the pipeline: (i) An SVM classifier
for identifying negation cue words and affixes, (ii)
an SVM-based ranker that combines empirical evi-
dence and manually-crafted rules to resolve the in-
sentence scope of negation, (iii) a classifier for de-
termining whether a negation is in a factual or non-

factual context, and (iv) a ranker that determines
(factual) negated events among in-scope tokens.

For future work we would like to try training sepa-
rate classifiers for affixal and token-level cues, given
that largely separate sets of features are effective for
the two cases. The system might also benefit from
sources of information that would place it in the
open track. These include drawing information from
other parsers and formalisms, generating cue fea-
tures from an external lexicon, and using additional
training data for factuality detection, e.g., FactBank
(Saurı́ and Pustejovsky, 2009).

From observations on CDTD we note that approx-
imately 14% of scopes will be unresolvable as they
are not aligned with constituents (see Section 3.1).
This can perhaps be tackled by ranking tokens as
candidates for left and right scope boundaries (sim-
ilar to the event ranker in the current work). This
would improve the upper-bound to 100% at the ex-
pense of greatly increasing the number of candi-
dates. However, the strong discriminative power of
our current approach can still be incorporated using
constituent-based features.

Acknowledgments

We thank Roser Morante and Eduardo Blanco for
their work in organizing this shared task and com-
mitment to producing quality data. We also thank
the anonymous reviewers for their feedback. Large-
scale experimentation was carried out with the TI-
TAN HPC facilities at the University of Oslo.

317



References
Eugene Charniak and Mark Johnson. 2005. Coarse-to-

fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of the Forty-Third Annual Meeting
of the Association for Computational Linguistics, Ann
Arbor, MI.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the Eighth
ACM International Conference on Knowledge Discov-
ery and Data Mining, Alberta.

Catherine Lai and Steven Bird. 2010. Querying linguis-
tic trees. Journal of Logic, Language and Information,
19:53–73.

Roser Morante and Eduardo Blanco. 2012. *SEM 2012
shared task: Resolving the scope and focus of nega-
tion. In Proceedings of the First Joint Conference on
Lexical and Computational Semantics, Montreal.

Roser Morante and Walter Daelemans. 2012.
ConanDoyle-neg: Annotation of negation in Conan
Doyle stories. In Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evalu-
ation, Istanbul.

Roser Morante, Sarah Schrauwen, and Walter Daele-
mans. 2011. Annotation of negation cues and their
scope: Guidelines v1.0. Technical report, Univer-
sity of Antwerp. CLIPS: Computational Linguistics
& Psycholinguistics technical report series.

Jonathon Read, Erik Velldal, Stephan Oepen, and Lilja
Øvrelid. 2011. Resolving speculation and negation
scope in biomedical articles using a syntactic con-
stituent ranker. In Proceedings of the Fourth Inter-
national Symposium on Languages in Biology and
Medicine, Singapore.

Roser Saurı́ and James Pustejovsky. 2009. Factbank:
a corpus annotated with event factuality. Language
Resources and Evaluation, 43(3):227–268.

Erik Velldal, Lilja Øvrelid, Jonathon Read, and Stephan
Oepen. 2012. Speculation and negation: Rules,
rankers and the role of syntax. Computational Lin-
guistics, 38(2).

Erik Velldal. 2011. Predicting speculation: A simple dis-
ambiguation approach to hedge detection in biomedi-
cal literature. Journal of Biomedical Semantics, 2(5).

318



First Joint Conference on Lexical and Computational Semantics (*SEM), pages 319–327,
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Abstract

This paper describes the second of two sys-
tems submitted from the University of Oslo
(UiO) to the 2012 *SEM Shared Task on re-
solving negation. The system combines SVM
cue classification with CRF sequence labeling
of events and scopes. Models for scopes and
events are created using lexical and syntactic
features, together with a fine-grained set of la-
bels that capture the scopal behavior of certain
tokens. Following labeling, negated tokens are
assigned to their respective cues using simple
post-processing heuristics. The system was
ranked first in the open track and third in the
closed track, and was one of the top perform-
ers in the scope resolution sub-task overall.

1 Introduction

Negation Resolution (NR) is the task of determin-
ing, for a given sentence, which tokens are affected
by a negation cue. The data set most prominently
used for the development of systems for automatic
NR is the BioScope Corpus (Vincze et al., 2008), a
collection of clinical reports and papers in the bio-
medical domain annotated with negation and specu-
lation cues and their scopes. The data sets released
in conjunction with the 2012 shared task on NR
hosted by The First Joint Conference on Lexical and
Computational Semantics (*SEM 2012) are com-
prised of the following negation annotated stories of
Conan Doyle (CD): a training set of 3644 sentences
drawn from The Hound of the Baskervilles (CDT), a
development set of 787 sentences taken from Wis-
teria Lodge (CDD; we will refer to the combina-
tion of CDT and CDD as CDTD), and a held-out

test set of 1089 sentences from The Cardboard Box
and The Red Circle (CDE). In these sets, the con-
cept of negation scope extends on the one adopted
in the BioScope corpus in several aspects: Nega-
tion cues are not part of the scope, morphological
(affixal) cues are annotated and scopes can be dis-
continuous. Moreover, in-scope states or events are
marked as negated if they are factual and presented
as events that did not happen (Morante and Daele-
mans, 2012). Examples (1) and (2) below are exam-
ples of affixal negation and discontinuous scope re-
spectively: The cues are bold, the tokens contained
within their scopes are underlined and the negated
event is italicized.

(1) Since we have been so unfortunate as to miss him [. . . ]

(2) If he was in the hospital and yet not on the staff he could
only have been a house-surgeon or a house-physician: lit-
tle more than a senior student.

Example (2) has no negated events because the sen-
tence is non-factual.

The *SEM shared task thus comprises three sub-
tasks: cue identification, scope resolution and event
detection. It is furthermore divided into two separate
tracks: one closed track, where only the data sup-
plied by the organizers (word form, lemma, PoS-tag
and syntactic constituent for each token) may be em-
ployed, and an open track, where participants may
employ any additional tools or resources.

Pragmatically speaking, a token can be either out
of scope or assigned to one or more of the three re-
maining classes: negation cue, in scope and negated
event. Additionally, in-scope tokens and negated
events are paired to the cues they are negated by.
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Our system achieves this by remodeling the task as a
sequence labeling task. With annotations converted
to sequences of labels, we train a Conditional Ran-
dom Field (CRF) classifier with a range of different
feature types, including features defined over depen-
dency graphs. This article presents two submissions
for the *SEM shared task, differing only with re-
spect to how these dependency graphs were derived.
For our open track submission, the dependency rep-
resentations are produced by a state-of-the-art de-
pendency parser, whereas the closed track submis-
sion employs dependencies derived from the con-
stituent analyses supplied with the shared task data
sets through a process of constituent-to-dependency
conversion. In both systems, labeling of test data is
performed in two stages. First, cues are detected us-
ing a token classifier,1 and secondly, scope and event
resolution is achieved by post-processing the output
of the sequence labeler.

The two systems described in this paper have been
developed using CDT for training and CDD for test-
ing, and differ only with regard to the source of syn-
tactic information. All reported scores are generated
using an evaluation script provided by the task or-
ganizers. In addition to providing a full end-to-end
evaluation, the script breaks down results with re-
spect to identification of cues, events, scope tokens,
and two variants of scope-level exact match; one re-
quiring exact match also of cues and another only
partial cue match. For our system these two scope-
level scores are identical and so are not duplicated
in our reporting. Additionally we chose not to opti-
mize for the scope tokens measure, and hence this is
also not reported as a development result.

Note also that the official evaluation actually in-
cludes two different variants of the metrics men-
tioned above; a set of primary measures with pre-
cision computed as P=TP/(TP+FP) and a set of B
measures where precision is rather computed as
P=TP/SYS, where SYS is the total number of pre-
dictions made by the system. The reason why SYS is
not identical with TP+FP is that partial matches are

1Note that the cue classifier applied in the current paper is
the same as that used in the other shared task submission from
the University of Oslo (Read et al., 2012), and the two system
descriptions will therefore have much overlap on this particular
point. For all other components the architectures of the two
system are completely different, however.

only counted as FNs (and not FPs) in order to avoid
double penalties. We do not report the B measures
for development testing as they were introduced for
the final evaluation and hence were not considered
in our system optimization. We note though, that the
relative-ranking of participating systems for the pri-
mary and B measures is identical, and that the cor-
relation between the paired lists of scores is nearly
perfect (r=0.997).

The rest of the paper is structured as follows.
First, the cue classifier, its features and results are
described in Section 2. Section 3 presents the sys-
tem for scope and event resolution and details differ-
ent features, the model-internal representation used
for sequence-labeling, as well as the post-processing
component. Error analyses for the cue, scope and
event components are provided in the respective sec-
tions. Section 4 and 5 provide developmental and
held-out results, respectively. Finally, we provide
conclusions and some reflections regarding future
work in Section 6.

2 Cue detection

Identification of negation cues is based on the light-
weight classification scheme presented by Velldal et
al. (2012). By treating the set of cue words as a
closed class, Velldal et al. (2012) showed that one
could greatly reduce the number of examples pre-
sented to the learner, and correspondingly the num-
ber of features, while at the same time improving
performance. This means that the classifier only at-
tempts to “disambiguate” known cue words while
ignoring any words not observed as cues in the train-
ing data.

The classifier applied in the current submission
is extended to also handle affixal negation cues,
such as the prefix cue in impatience, the infix in
carelessness, and the suffix of colourless. The types
of negation affixes observed in CDTD are; the pre-
fixes un, dis, ir, im, and in; the infix less (we inter-
nally treat this as the suffixes lessly and lessness);
and the suffix less. Of the total number of 1157 cues
in the training and development set, 192 are affixal.
There are, however, a total of 1127 tokens matching
one of the affix patterns above, and while we main-
tain the closed class assumption also for the affixes,
the classifier will need to consider its status as a cue
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or non-cue when attaching to any such token, like
for instance image, recklessness, and bless.

2.1 Features
In the initial formulation of Velldal (2011), an SVM
classifier was trained using simple n-gram features
over words, both full forms and lemmas, to the left
and right of the candidate cues. In addition to these
token-level features, the classifier we apply here in-
cludes some features specifically targeting morpho-
logical or affixal cues. The first such feature records
character n-grams from both the beginning and end
of the base that an affix attaches to (up to five po-
sitions). For a context like impossible we would
record n-grams such {possi, poss, pos, . . .} and
{sible, ible, ble, . . .}, and combine this with infor-
mation about the affix itself (im) and the token part-
of-speech (“JJ”).

For the second feature type targeting affix cues
we try to emulate the effect of a lexicon look-up
of the remaining substring that an affix attaches to,
checking its status as an independent base form and
its part-of-speech. In order to take advantage of
such information while staying within the confines
of the closed track, we automatically generate a lex-
icon from the training data, counting the instances
of each PoS tagged lemma in addition to n-grams
of word-initial characters (again recording up to five
positions). For a given match of an affix pattern, a
feature will then record the counts from this lexicon
for the substring it attaches to. The rationale for this
feature is that the occurrence of a substring such as
un in a token such as underlying should be consid-
ered more unlikely to be a cue given that the first
part of the remaining string (e.g., derly) would be an
unlikely way to begin a word.

Note that, it is also possible for a negation cue
to span multiple tokens, such as the (discontinuous)
pair neither / nor or fixed expressions like on the
contrary. There are, however, only 16 instances of
such multiword cues (MWCs) in the entire CDTD.
Rather than letting the classifier be sensitive to these
corner cases, we cover such MWC patterns using
a small set of simple post-processing heuristics. A
small stop-list is used for filtering out the relevant
words from the examples presented to the classifier
(on, the, etc.).

Data set Model Prec Prec F1

CDD
Baseline 90.68 84.39 87.42
Classifier 93.75 95.38 94.56

CDE
Baseline 87.10 92.05 89.51
Classifier 89.17 93.56 91.31

Table 1: Cue classification results for the final classifier
and the majority-usage baseline, showing test scores for
the development set (training on CDT) and the final held-
out set (training on CDTD).

2.2 Results
Table 1 presents results for the cue classifier. While
the classifier configuration was optimized against
CDD, the model used for the final held-out testing
is trained on the entire CDTD, which (given our
closed-class treatment of cues) provides a total of
1162 positive and 1100 negative training examples.
As an informed baseline, we also tried classifying
each word based on its most frequent use as cue
or non-cue in the training data. (Affixal cue oc-
currences are counted by looking at both the affix-
pattern and the base it attaches to, basically treating
the entire token as a cue. Tokens that end up be-
ing classified as cues are then matched against the
affix patterns observed during training in order to
correctly delimit the annotation of the cue.) This
simple majority-usage approach actually provides a
fairly strong baseline, yielding an F1 of 87.42 on
CDD (P=90.68, R=84.39). Compare this to the F1 of
94.56 obtained by the classifier on the same data set
(P=93.75, R=95.38). However, when applying the
models to the held-out set, with models estimated
over the entire CDTD, the baseline seems to able
to make good use of the additional data and proves
to be even more competitive: While our final cue
classifier achieves F1=91.31, the baseline achieves
F1=89.51, almost two percentage points higher than
its score on the development data, and even outper-
forms four of the ten cue detection systems submit-
ted for the shared task (three of the 12 shared task
submissions use the same classifier).

When inspecting the predictions of our final cue
classifier on CDD, comprising a total of 173 gold
annotated cues, we find that our system mislabels
11 false positives (FPs) and 7 false negatives (FNs).
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Of the FPs, we find five so-called false negation cues
(Morante et al., 2011), including three instances of
none in the fixed expression none the less. The
others are affixal cues, of which two are clearly
wrong (underworked, universal) while others might
arguably be due to annotation errors (insuperable,
unhappily, endless, listlessly). Among the FNs, two
are due to MWCs not covered by our heuristics (e.g.,
no more), while the remaining errors concern af-
fixes, including one in an interesting context of dou-
ble negation; not dissatisfied.

3 Scope and event resolution

In this work, we model negation scope resolution
as a special instance of the classical IOB (Inside,
Outside, Begin) sequence labeling problem, where
negation cues are labeled to be sequence starters and
scopes and events as two different kinds of chunks.
CRFs allow the computation of p(X|Y), where X is
a sequence of labels and Y is a sequence of observa-
tions, and have already been shown to be efficient in
similar, albeit less involved, tasks of negation scope
resolution (Morante and Daelemans, 2009; Councill
et al., 2010). We employ the CRF implementation in
the Wapiti toolkit, using default settings (Lavergne
et al., 2010). A number of features were used to
create the models. In addition to the information
provided for each token in the CD corpus (lemma,
part of speech and constituent), we extracted both
left and right token distance to the closest negation
cue. Features were expanded to include forward and
backward bigrams and trigrams on both token and
PoS level, as well as lexicalized PoS unigrams and
bigrams2. Table 2 presents a complete list of fea-
tures. The more intricate, dependency-based fea-
tures are presented in Section 3.1, while the labeling
of both scopes and events is detailed in Section 3.2.

3.1 Dependency-based features
For the system submitted to the closed track, the syn-
tactic representations were converted to dependency
representations using the Stanford dependency con-
verter, which comes with the Stanford parser (de
Marneffe et al., 2006).3 These dependency represen-

2By lexicalized PoS we mean an instance of a PoS-Tag in
conjunction with the sentence token.

3Note that the converter was applied directly to the phrase-
structure trees supplied with the negation data sets, and the

General features

Token
Lemma
PoS unigram
Forward token bigram and trigram
Backward token bigram and trigram
Forward PoS trigram
Backward PoS trigram
Lexicalized PoS
Forward Lexicalized PoS bigram
Backward Lexicalized PoS bigram
Constituent
Dependency relation
First order head PoS
Second order head PoS
Lexicalized dependency relation
PoS-disambiguated dependency relation

Cue-dependent features

Token distance
Directed dependency distance
Bidirectional dependency distance
Dependency path
Lexicalized dependency path

Table 2: List of features used to train the CRF models.

tations result from a conversion of Penn Treebank-
style phrase structure trees, combining ‘classic’ head
finding rules with rules that target specific linguistic
constructions, such as passives or attributive adjec-
tives. The so-called basic format provides a depen-
dency graph which is a directed tree, see Figure 1
for an example.

For the open track submission we used Maltparser
(Nivre et al., 2006) with its pre-trained parse model
for English.4 The parse model has been trained on a
conversion of sections 2-21 of the Wall Street Jour-
nal section of the Penn Treebank to Stanford depen-
dencies, augmented with data from Question Bank.
The parser was applied to the negation data, using
the word tokens and supplied parts-of-speech as in-
put to the parser.

The features extracted via the dependency graphs
aim at modeling the syntactic relationship between
each token and the closest negation cue. Token dis-
tance was therefore complemented with two variants
of dependency distance from each token to the lexi-

Stanford parser was not used to parse the data.
4The pre-trained model is available from maltparser.org
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we   have  never  gone  out  without  keeping  a  sharp  watch  ,  and  no  one  could  have  escaped  our  notice  .  "

nsubj

aux

neg

conj

cc
punct

prep

part

pcomp dobj
det
amod

dep

nsubj
aux

aux

punct
punct

dobj
poss

root

ann. 1:
ann. 2:
ann. 3:

cue
cue

cue
labels: CUE CUE CUEN N E E N N N N E N N N NS O S ON

Figure 1: A sentence from the CD corpus showing a dependency graph and the annotation-to-label conversion.

cally closest cue, Directed Distance (DD) and Bidi-
rectional Distance (BD). DD is extracted by follow-
ing the reversed, directed edges from token X to the
cue. If there is no such path, the value of the feature
is -1. BD uses the Dijkstra shortest path algorithm
on an undirected representation of the graph. The
latter feature proved to be more effective than the
former when not used together; using them in con-
junction seemed to confuse the model, thus the fi-
nal model utilizes only BD. We furthermore use the
Dependency Graph Path (DGP) as a feature. This
feature was inspired by the Parse Tree Path feature
presented in Gildea and Jurafsky (2002) in the con-
text of Semantic Role Labeling. It represents the
path traversed from each token to the cue, encod-
ing both the dependency relations and the direction
of the arc that is traversed: for instance, the rela-
tion between our and no in Figure 1 is described as
� poss � dobj � nsubj � det. Like Councill et
al. (2010), we also encode the PoS of the first and
second order syntactic head of each token. For the
token no in Figure 1, for instance, we record the PoS
of one and escaped, respectively.

3.2 Model-internal representation
The token-wise annotations in the CD corpus con-
tain multiple layers of information. Tokens may or
may not be negation cues and they can be either in
or out of scope; in-scope tokens may or may not
be negated events, and are associated with each of
the cues they are negated by. Moreover, scopes may
be (partially) overlapping, as in Figure 1, where the

PoS # S PoS # MCUE PoS # CUE

punctuation 1492 JJ 268 RB 1026
CC 52 RB 28 DT 296

IN + TO 46 NN 16 NN 146
RB 38 NN 4 UH 118
PRP 32 IN 2 IN 64
rest 118 rest ˜ rest 38

Table 3: Frequency distribution of parts of speech over
the S, MCUE and CUE labels in CDTD.

scope of without is contained within the scope of
never. We convert this representation internally by
assigning one of six labels to each token: O, CUE,
MCUE, N, E and S, for out-of-scope, cue, mor-
phological (affixal) cue, in-scope, event and nega-
tion stop respectively. The CUE, O, N and E la-
bels parallel the IOB chunking paradigm and are
eventually translated in the final annotations by our
post-processing component. MCUE and S extend
the label set to account for the specific behavior of
the tokens they are associated with. The rationale
behind the separation of cues in two classes is the
pronounced differences between the PoS frequency
distributions of standard versus morphological cues.
Table 3 presents the frequency distribution of PoS-
tags over the different cue types in CDTD and shows
that, unsurprisingly, the majority class for morpho-
logical cues is adjectives, which typically generate
different scope patterns compared to the majority
class for standard cues. The S label, a special in-
stance of an out-of-scope token, is defined as the
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first non-cue, out-of-scope token to the right of one
labeled with N, and targets mostly punctuation.

After some experimentation with joint labeling of
scopes and events, we opted for separation of the
two models, hence training separate models for the
two tasks of scope resolution and event detection.
In the model for scopes, all E labels are switched
to N; conversely, Ns become Os in the event model.
Given the nature of the annotations, the predictions
provided by the model for events serve a double pur-
pose: finding the negated token in a sentence and
deciding whether a sentence is factual or not. The
outputs of the two classifiers are merged during post-
processing.

3.3 Post-processing
A simple, heuristics-based algorithm was applied
to the output of the labelers in order to pair each
in-scope token to its negation cue(s) and determine
overlaps. Our algorithm works by first determining
the overlaps among negation cues. Cue A negates
cue B if the following conditions are met:

• B is to the right of A.

• There are no tokens labeled with S between A
and B.

• Token distance between A and B does not ex-
ceed 10.

In the example in Figure 1, the overlapping condi-
tion holds for never and without but not for without
and no, because of the punctuation between them.
The token distance threshold of 10 was determined
empirically on CDT. In order to assign in-scope to-
kens to their respective cue, tokens labeled with N
are treated as follows:

• Assign each token T to the closest negation cue
A with no S-labeled tokens or punctuation sep-
arating it from T.

• If A was found to be negated by cue B, assign
T to B as well.

• If T is labeled with E by the event classifier,
mark it as an event.

F1

Configuration Closed Open

(A) O, N, CUE, MCUE, E, S 64.85 66.41Dependency Features

(B) O, N, CUE, MCUE, E, S 59.35 59.35No Dependency Features

(C) O, N, CUE, E 62.69 63.24Dependency Features

(D) O, N, CUE, E 56.44 56.44No Dependency Features

Table 4: Full negation results on CDD with gold cues.

This algorithm yields the correct annotations for
the example in Figure 1; when applied to label se-
quences originating from the gold scopes in CDD,
the reported F1 is 95%. We note that this loss of in-
formation could have been avoided by presenting the
CRF with a version of a sentence for each negation
cue. Then, when labeling new sentences, the model
could be applied repeatedly (based on the number of
cues provided by the cue detection system). How-
ever, training with multiple instances of the same
sentence could result in a dilution of the evidence
needed for scope labeling; this remains to be inves-
tigated in future work.

4 Development results

To investigate the effects of the augmented set of la-
bels and that of dependency features comparatively,
we present four different configurations of our sys-
tem in Table 4, using F1 for the stricter score that
counts perfect-match negation resolution for each
negation cue. Comparing (B) and (D), we observe
that explicitly encoding significant tokens with extra
labels does improve the performance of the classi-
fier. Comparing (A) to (B) and (C) to (B) shows the
effect of the dependency features with and without
the augmented set of labels. With (A) being our top
performing system and (D) a kind of internal base-
line, we observe that the combined effects of the la-
bels and dependency features is beneficial, with a
margin of about 8 and 10 percentage points for our
closed and open track systems respectively.

Table 5 presents the results for scope resolution on
CDD with gold cues. Interestingly, the constituent
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Closed Open

Prec Rec F1 Prec Rec F1

Scopes 100.00 70.24 82.52 100.00 66.67 80.00
Scope Tokens 94.69 82.16 87.98 90.64 81.36 85.75
Negated 82.47 72.07 76.92 83.65 77.68 80.55
Full negation 100.00 47.98 64.85 100.00 49.71 66.41

Table 5: Results for scope resolution on CDD with gold cues.

trees converted to Stanford dependencies used in the
closed track outperform the open system employing
Maltparser on scopes, while for negated events the
latter is over 5 percentage points better than the for-
mer, as shown in Table 5.

4.1 Error analysis
We performed a manual error analysis of the scope
resolution on the development data using gold cue
information. Since our system does not deal specifi-
cally with discontinuous scopes, and seeing that we
are employing a sequence classifier with a fairly lo-
cal window, we are not surprised to find that a sub-
stantial portion of the errors are caused by discon-
tinuous scopes. In fact, in our closed track system,
these errors amount to 34% of the total number of
errors. Discontinuous scopes, as in (3) below, ac-
count for 9.3% of all scopes in CDD and the closed
task system does not analyze any of these correctly,
whereas the open system correctly analyzes one dis-
continuous scope.

(3) I therefore spent the day at my club and did not
return to Baker Street until evening.

A similar analysis with respect to event detection
on gold scope information indicated that errors are
mostly due to either predicting an event for a non-
factual context (false positive) or not predicting an
event for a factual context (false negative), i.e., there
are relatively few instances of predicting the wrong
token for a factual context (which result in both a
false negative and a false positive). This suggests
that the CRF has learned what tokens should be la-
beled as an event for a negation, but has not learned
so well how to determine whether the negation is
factual or non-factual. In this respect it may be that
incorporating information from a separate and dedi-
cated component for factuality detection — as in the
system of Read et al. (2012) — could yield improve-
ments for the CRF event model.

5 Held-out evaluation

Final results on held-out data for both closed and
open track submissions are reported in Table 6. For
the final run, we trained our systems on CDTD. We
observe a similar relative performance to our devel-
opment results, with the open track system outper-
forming the closed track one, albeit by a smaller
margin than what we saw in development. We are
also surprised to see that despite not addressing dis-
continuous scopes directly, our system obtained the
best score on scope resolution (according to the met-
ric dubbed “Scopes (cue match)”).

6 Conclusions and future work

This paper has provided an overview of our system
submissions for the *SEM 2012 shared task on re-
solving negation. This involves the subtasks of iden-
tifying negations cues, identifying the in-sentence
scope of these cues, as well as identifying negated
(and factual) events. While a simple SVM token
classifier is applied for the cue detection task, we ap-
ply CRF sequence classifiers for predicting scopes
and events. For the CRF models we experimented
with a fine-grained set of labels and a wide range of
feature types, drawing heavily on information from
dependency structures. We have detailed two dif-
ferent system configurations — one submitted for
the open track and another for the closed track —
and the two configurations only differ with respect
to the source used for the dependency parses: For
the closed track submission we simply converted
the constituent structures provided in the shared task
data to Stanford dependencies, while for the open
track we apply the Maltparser. For the end-to-end
evaluation, our submission was ranked first in the
open track and third in the closed track. The system
also had the best performance for each individual
sub-task in the open track, as well as being among
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Closed Open

Prec Rec F1 Prec Rec F1

Cues 89.17 93.56 91.31 89.17 93.56 91.31
Scopes 85.71 62.65 72.39 85.71 62.65 72.39
Scope Tokens 86.03 81.55 83.73 82.25 82.16 82.20
Negated 68.18 52.63 59.40 66.90 57.40 61.79
Full negation 78.26 40.91 53.73 78.72 42.05 54.82

Cues B 86.97 93.56 90.14 86.97 93.56 90.14
Scopes B 59.32 62.65 60.94 59.54 62.65 61.06
Negated B 67.16 52.63 59.01 63.82 57.40 60.44
Full negation B 38.03 40.91 39.42 39.08 42.05 40.51

Table 6: End-to-end results on the held-out data.

the top-performers on the scope resolution sub-task
across both tracks.

Due to time constraints we were not able to di-
rectly address discontinuous scopes in our system.
For future work we plan on looking for ways to
tackle this problem by taking advantage of syntac-
tic information, both in the classification and in the
post-processing steps. We are also interested in de-
veloping the CRF-internal label-set to include more
informative labels. We also want to test the sys-
tem design developed for this task on other corpora
annotated for negation (or other related phenom-
ena such as speculation), as well as perform extrin-
sic evaluation of our system as a sub-component to
other NLP tasks such as sentiment analysis or opin-
ion mining. Lastly, we would like to try training
separate classifiers for affixal and token-level cues,
given that largely separate sets of features are effec-
tive for the two cases.
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Abstract

In this paper, we present a system for de-
tecting negation in English text. We address
three tasks: negation cue detection, negation
scope resolution and negated event identifi-
cation. We pose these tasks as sequence la-
beling problems. For each task, we train a
Conditional Random Field (CRF) model on
lexical, structural, and syntactic features ex-
tracted from labeled data. The models are
trained and tested using the dataset distributed
with the *sem Shared Task 2012 on resolving
the scope and focus of negation. The system
detects negation cues with 90.98% F1 mea-
sure (94.3% and 87.88% recall). It identifies
negation scope with 82.70% F1 on token-by-
token level and 64.78% F1 on full scope level.
Negated events are detected with 51.10% F1
measure.

1 Introduction

Negation is a linguistic phenomenon present in all
languages (Tottie, 1993; Horn, 1989). The seman-
tic function of negation is to transform an affirma-
tive statement into its opposite meaning. The auto-
matic detection of negation and its scope is a prob-
lem encountered in a wide range of natural language
processing applications including, but not limited to,
data mining, relation extraction, question answering,
and sentiment analysis. For example, failing to ac-
count for negation may result in giving wrong an-
swers in question answering systems or in the pre-
diction of opposite sentiment in sentiment analysis
systems.

The occurrence of negation in a sentence is deter-
mined by the presence of a negation cue. A nega-
tion cue is a word, a phrase, a prefix, or a postfix
that triggers negation. Scope of negation is the part
of the meaning that is negated (Huddleston and Pul-
lum, 2002). The negated event is the event or the en-
tity that the negation indicates its absence or denies
its occurrence. For example, in the sentence below
never is the negation cue. The scope is enclosed in
square brackets. The negated event is underlined.

[Andrew had] never [liked smart phones],
but he received one as a gift last week and
started to use it.

Negation cues and scopes may be discontinuous.
For example, the negation cue neither ... nor is dis-
continuous.

In this chapter, we present a system for automat-
ically detecting negation cues, negated events, and
negation scopes in English text. The system uses
conditional random field (CRF) models trained on
labeled sentences extracted from two classical En-
glish novels. The CRF models are trained using lex-
ical, structural, and syntactic features. The experi-
ments show promising results.

This paper is organized as follows. Section 2 re-
views previous work. Section 3 describes the data.
Section 4 describes the CRFs models. Section 5
presents evaluation, results, and discussion.

2 Previous Work

Most research on negation has been done in the
biomedical domain (Chapman et al., 2001; Mutalik
et al., 2001; Kim and Park, 2006; Morante et al.,
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Token Lemma POS Syntax Cue 1 Scope 1 Event 1 Cue 2 Scope 2 Event 2
She She PRP (S(NP*) - She - - - -
would would MD (VP* - would - - - -
not not RB * not - - - - -
have have VB (VP* - have - - - -
said say VBD (VP* - said - - - -
‘ ‘ “ (SBAR(S(NP* - ’ - - - -
Godspeed Godspeed NNP * - Godspeed - - - -
’ ’ ” *) - ’ - - - -
had have VBD (VP* - had - - had -
it it PRP (ADVP* - it - - it -
not not RB *) - not - not - -
been be VBN (VP* - been - - been -
so so RB (ADVP*)))))))) - so - - so -
. . . *) - - - - - -

Table 1: Example sentence annotated for negation following sem shared task 2012 format

2008a; Morante and Daelemans, 2009; Agarwal and
Yu, 2010; Morante, 2010; Read et al., 2011), mostly
on clinical reports. The reason is that most NLP re-
search in the biomedical domain is interested in au-
tomatically extracting factual relations and pieces of
information from unstructured data. Negation detec-
tion is important here because information that falls
in the scope of a negation cue cannot be treated as
facts.

Chapman et al. (2001) proposed a rule-based al-
gorithm called NegEx for determining whether a
finding or disease mentioned within narrative med-
ical reports is present or absent. The algorithm
uses regular-expression-based rules. Mutalik et
al. (2001) developed another rule based system
called Negfinder that recognizes negation patterns
in biomedical text. It consists of two components:
a lexical scanner, lexer that uses regular expres-
sion rules to generate a finite state machine, and a
parser. Morante (2008b) proposed a supervised ap-
proach for detecting negation cues and their scopes
in biomedical text. Their system consists of two
memory-based engines, one that decides if the to-
kens in a sentence are negation signals, and another
one that finds the full scope of these negation sig-
nals.

Negation has been also studied in the context of
sentiment analysis (Wilson et al., 2005; Jia et al.,
2009; Councill et al., 2010; Heerschop et al., 2011;
Hogenboom et al., 2011). Wiegand et al. (2010) sur-
veyed the recent work on negation scope detection
for sentiment analysis. Wilson et al. (2005) studied

the contextual features that affect text polarity. They
used a machine learning approach in which nega-
tion is encoded using several features. One feature
checks whether a negation expression occurs in a
fixed window of four words preceding the polar ex-
pression. Another feature accounts for a polar pred-
icate having a negated subject. They also have dis-
ambiguation features to handle negation words that
do not function as negation cues in certain contexts,
e.g. not to mention and not just.

Jia et al. (2009) proposed a rule based method to
determine the polarity of sentiments when one or
more occurrences of a negation term such as not ap-
pear in a sentence. The hand-crafted rules are ap-
plied to syntactic and dependency parse tree repre-
sentations of the sentence.

Hogenboom et al. (2011) found that applying a
simple rule that considers two words, following a
negation keyword, to be negated by that keyword,
to be effective in improving the accuracy of senti-
ment analysis in movie reviews. This simple method
yields a significant increase in overall sentiment
classification accuracy and macro-level F1 of 5.5%
and 6.2%, respectively, compared to not accounting
for negation.

This work is characterized by addressing three
tasks at once: negation cue detection, negated
event identification, and negation scope resolution.
Our proposed approach uses a supervised graphical
probabilistic model trained using labeled data.
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3 Data

We use the dataset distributed by the organizers of
the *sem Shared Task 2012 on resolving the scope
and focus of negation. This dataset includes two sto-
ries by Conan Doyle, The Hound of the Baskervilles,
The Adventures of Wisteria Lodge. All occur-
rences of negation are annotated accounting for
negation expressed by nouns, pronouns, verbs, ad-
verbs, determiners, conjunctions and prepositions.
For each negation cue, the negation cue and scope
are marked, as well as the negated event (if any ex-
ists). The annotation guidelines follow the proposal
of Morante et al. (2011)1. The data is split into three
sets: a training set containing 3,644 sentences, a de-
velopment set containing 787 sentences, and a test-
ing set containing 1,089 sentences. The data is pro-
vided in CoNLL format. Each line corresponds to a
token and each annotation is provided in a column;
empty lines indicate end of sentences. The provided
annotations are:

• Column 1: chapter name

• Column 2: sentence number within chapter

• Column 3: token number within sentence

• Column 4: word

• Column 5: lemma

• Column 6: part-of-speech

• Column 7: syntax

• Columns 8 to last:

– If the sentence has no negations, column
8 has a ”***” value and there are no more
columns.

– If the sentence has negations, the annota-
tion for each negation is provided in three
columns. The first column contains the
word or part of the word (e.g., morpheme
”un”), that belongs to the negation cue.
The second contains the word or part of
the word that belongs to the scope of the
negation cue. The third column contains
the word or part of the word that is the

1http://www.clips.ua.ac.be/sites/default/files/ctrs-n3.pdf

Token Lemma Punc. Cat. POS Label
Since Since 0 OTH IN O
we we 0 PRO PRP O
have have 0 VB VBP O
been be 0 VB VBN O
so so 0 ADVB RB O
unfortunate unfortunate 0 ADJ JJ PRE
as as 0 ADVB RB O
to to 0 OTH TO O
miss miss 0 VB VB O
him him 0 PRO PRP O
and and 0 OTH CC O
have have 0 VB VBP O
no no 0 OTH DT NEG
notion notion 0 NOUN NN O
of of 0 OTH IN O
his his 0 PRO PRP$ O
errand errand 0 NOUN NN O
, , 1 OTH , O
this this 0 OTH DT O
accidental accidental 0 ADJ JJ O
souvenir souvenir 0 NOUN NN O
becomes become 0 VB VBZ O
of of 0 OTH IN O
importance importance 0 NOUN NN O
. . 1 OTH . O

Table 2: Example sentence labeled for negation cue de-
tection

negated event or property. It can be the
case that no negated event or property are
marked as negated.

Table 1 shows an example of an annotated sen-
tence that contains two negation cues.

4 Approach

The problem that we are trying to solve can be split
into three tasks. The first task is to detect negation
cues. The second task is to identify the scope of each
detected negation cue. The third task is to identify
the negated event. We use a machine learning ap-
proach to address these tasks. We train a Condi-
tional Random Field (CRF) (Lafferty et al., 2001)
model on lexical, structural, and syntactic features
extracted from the training dataset. In the following
subsections, we describe the CRF model that we use
for each task.

4.1 Negation Cue Detection
Negation cues are lexical elements that indicate the
existence of negation in a sentence. From lexical
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point of view, negation cues can be divided into four
categories:

1. Prefix (i.e. in-, un-, im-, il-, dis-). For example,
un- in unsuitable) is a prefix negation cue.

2. Postfix (i.e. -less). for example, -less in
careless.

3. Multi-word negation cues such as neither...nor,
rather than, by no means, etc.

4. Single word negation cues such as not, no,
none, nobody, etc.

The goal of this task is to detect negation cues.
We pose this problem as a sequence labeling task.
The reason for this choice is that some negation cues
may not indicate negation in some contexts. For
example, the negation cue not in the phrase not to
mention does not indicate negation. Also, as we saw
above, some negation cues may consist of multiple
words, some of them are continuous and others are
discontinuous. Treating the task as a sequence label-
ing problem help model the contextual factors that
affect the function of negation cues. We train a CRF
model using features extracted from the sentences of
the training dataset. The token level features that we
train the model on are:

• Token: The word or the punctuation mark as it
appears in the sentence.

• Lemma: The lemmatized form of the token.

• Part-Of-Speech tag: The part of speech tag of
the token.

• Part-Of-Speech tag category: Part-of-speech
tags reduced into 5 categories: Adjec-
tive (ADJ), Verb (VB), Noun (NN), Adverb
(ADVB), Pronoun (PRO), and other (OTH).

• Is punctuation mark: This feature takes the
value 1 if the token is a punctuation mark and 0
otherwise.

• Starts with negation prefix: This feature takes
the value 1 if the token is a word that starts with
un-, in-, im-, il-, or dis- and 0 otherwise.

• Ends with negation postfix: This feature takes
the value 1 if the token is a word that ends with
-less and 0 otherwise.

The CRF model that we use considers at each to-
ken the features of the current token, the two pre-
ceding tokens, and the two proceeding tokens. The
model also uses token bigrams and trigrams, and
part-of-speech tag bigrams and trigrams as features.

The labels are 5 types: ”O” for tokens that are
not part of any negation cue; ”NEG” for single
word negation cues; ”PRE” for prefix negation cue;
”POST” for postfix negation cue; and ”MULTI-
NEG” for multi-word negation cues. Table 2 shows
an example labeled sentence.

At testing time, if a token is labeled ”NEG” or
”MULTI-NEG” the whole token is treated as a nega-
tion cue or part of a negation cue respectively. If a
token is labeled as ”PRE” or ”POST”, a regular ex-
pression is used to determine the prefix/postfix that
trigged the negation.

4.2 Negation Scope Detection

Scope of negation is the sequence of tokens (can
be discontinuous) that expresses the meaning that
is meant to be negated by a negation cue. A sen-
tence may contain zero or more negation cues. Each
negation cue has its own scope. It is possible that
the scope of two negation cues overlap. We use
each negation instance (i.e. each negation cue and
its scope) as one training example. Therefore, a
sentence that contains two negation cues provides
two training examples. We train a CRF model on
features extracted from all negation instances in the
training dataset. The features that we use are:

• Token: The word or the punctuation mark as it
appears in the sentence.

• Lemma: The lemmatized form of the token.

• Part-Of-Speech tag: The part of speech tag of
the token.

• Part-Of-Speech tag category: Part-of-speech
tags reduced into 5 categories: Adjec-
tive (ADJ), Verb (VB), Noun (NN), Adverb
(ADVB), Pronoun (PRO), and other (OTH).
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• Is punctuation mark: This feature takes the
value 1 if the token is a punctuation mark and 0
otherwise.

• Type of negation cue: Possible types are:
”NEG” for single word negation cues; ”PRE”
for prefix negation cue; ”POST” for postfix
negation cue; and ”MULTI” for multi-word
negation cues.

• Relative position: This feature takes the value
1 if the token position in the sentence is be-
fore the position of the negation cue, 2 if the
token position is after the position of the nega-
tion cue, and 3 if the token is the negation cue
itself.

• Distance: The number of tokens between the
current token and the negation cue.

• Same segment: This feature takes the value 1
if this token and the negation cue fall in the
segment in the sentence. The sentence is seg-
mented by punctuation marks.

• Chunk: This feature takes the value NP-B (VP-
B) if this token is the first token of a noun (verb)
phrase, NP-I (VP-I) if it is inside a noun (verb)
phrase, NP-E (VP-E) if it is the last token of a
noun (verb) phrase.

• Same chunk: This feature takes the value 1 if
this token and the negation cue fall in the same
chunk (noun phrase or verb phrase).

• Is negation: This feature takes the value 1 if
this token is a negation cue, and 0 otherwise.

• Syntactic distance: The number of edges in the
shortest path that connects the token and the
negation in the syntactic parse tree.

• Common ancestor node: The type of the node
in the syntactic parse tree that is the least com-
mon ancestor of this token and the negation cue
token.

The CRF model considers the features of 4 tokens
to the left and to the right at each position. It also
uses bigram and trigram combinations of some of
the features.

At testing time a few postprocessing rules are
used to fix sure labels if they were labeled incor-
rectly. For example, if a word starts with a prefix
negation cue, the word itself (without the prefix) is
always part of the scope and it is also the negated
event.

4.3 Negated Event Identification

It is possible that a negation cue comes associated
with an event. A negation has an event if it oc-
curs in a factual context. The dataset that we use
was labeled for negated events whenever one exists.
We used the same features described in the previous
subsection to train a CRF model for negated event
identification. We have also tried to use one CRF
model for both scope resolution and negated event
identification, but we noticed that using two sepa-
rate models results in significantly better results for
both tasks.

5 Evaluation

We use the testing set described in Section 3 to eval-
uate the system. The testing set contains 1089 sen-
tences 235 of which contains at least one negation.

We use the standard precision, recall, and f-
measure metrics to evaluate the system. We perform
the evaluation on different levels:

1. Cues: the metrics are computed only for cue
detection.

2. Scope (tokens): the metrics are calculated at to-
ken level. If a sentence has 2 scopes, one with
5 tokens and another with 4, the total number
of scope tokens is 9.

3. Scope (full): the metrics are calculated at the
full scope level. Both the negation cue and
the whole scope should be correctly identified.
If a sentence contains 2 negation cues, then 2
scopes are checked. We report two values here
one the requires the cue match correctly and
one that does not.

4. Negated Events: the metrics are computed only
for negated events identification (apart from
negation cue and scope).
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Variant A

gold system tp fp fn precision recall F1
Cues 264 250 232 14 32 94.31 87.88 90.98
Scope (cue match) 249 227 126 14 123 90.00 50.60 64.78
Scope (no cue match) 249 227 126 14 123 90.00 50.60 64.78
Scope (tokens - no cue match) 1805 1716 1456 260 349 84.85 80.66 82.70
Negated (no cue match) 173 183 70 70 64 50.00 52.24 51.10
Full negation: 264 250 75 14 189 84.27 28.41 42.49

Variant B

gold system tp fp fn precision recall F1
Cues : 264 250 232 14 32 92.80 87.88 90.27
Scope (cue match): 249 227 126 14 123 55.51 50.60 52.94
Scope (no cue match): 249 227 126 14 123 55.51 50.60 52.94
Negated (no cue match): 173 183 70 70 64 38.25 52.24 44.16
Full negation : 264 250 75 14 189 30.00 28.41 29.18

# Sentences 1089
# Negation sentences 235
# Negation sentences with errors 171
% Correct sentences 83.47
% Correct negation sentences 27.23

Table 3: Results of negation cue, negated event, and negation scope detection

5. Full negation: the metrics are computed for all
the three tasks at once and requiring everything
to match correctly.

For cue, scope and negated event to be correct,
both the tokens and the words or parts of words have
to be correctly identified. The final periods in abbre-
viations are disregarded. If gold has value ”Mr.” and
system ”Mr”, system is counted as correct. Also,
punctuation tokens are *not* taken into account for
evaluation.

Two variants of the metrics are computed. In the
first variant (A), precision is calculated as tp / (tp +
fp) and recall is calculated as tp / (tp + fn) where tp
is the count of true positive labels, fp is the count
of false positive labels, and fn is the count of false
negative labels. In variant B, the precision is calcu-
lated differently, using the formula precision = tp /
system.

Table 3 shows the results of our system.

6 Error Analysis

The system used no external resources outside the
training data. This means that the system recognizes
only negation cues that appeared in the training set.
This was the first source of error. For example, the
word unacquainted that starts with the negation pre-
fix un has never been seen in the training data. In-

tuitively, if no negation cue is detected, the system
does not attempt to produce scope levels. This prob-
lem can be overcome by using a lexicon of negation
words and those words that can be negated by adding
a negation prefix to them.

We noticed in several occasions that scope detec-
tion accuracy can be improved if some simple rules
can be imposed after doing the initial labeling us-
ing the CRF model (but we have not actually imple-
mented any such rules in the system). For example,
the system can require all the tokens that belong to
the same chunk (noun group, verb group, etc.) all
have the same label (e.g. the majority vote label).
The same thing could be also applied on the segment
rather than the chunk level where the boundaries of
segments are determined by punctuation marks.

7 Conclusion

We presented a supervised system for identifying
negation in English sentences. The system uses
three CRF trained models. One model is trained for
negation cue detection. Another model is trained
for negated event identification. A third one is
trained for negation scope identification. The mod-
els are trained using features extracted from a la-
beled dataset. Our experiments show that the system
achieves promising results.
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Abstract

This  paper  reports  on  a  simple  system  for 
resolving the scope of negation in the closed 
track of  the *SEM 2012 Shared Task.   Cue 
detection  is  performed  using  regular 
expression  rules  extracted  from  the  training 
data.  Both  scope  tokens  and  negated  event 
tokens  are  resolved  using  a  Conditional 
Random  Field  (CRF)  sequence  tagger  – 
namely  the  SimpleTagger  library  in  the 
MALLET machine learning toolkit.  The full 
negation  F1 score  obtained  for  the  task 
evaluation is 48.09% (P=74.02%, R=35.61%) 
which ranks this system fourth among the six 
submitted for the closed track.

1 Introduction

Resolving the scope of negation is an interesting 
area of research for Natural Language Processing 
(NLP) systems because many such systems have 
used methods that are insensitive to polarity.  As a 
result  it  is  fairly  common to have  a system that 
treats “X does Y” and “X does not Y” as having 
the same, or very nearly the same, meaning1.   A 
few  application  areas  that  have  been  addressing 
this issue recently are in sentiment analysis,  bio­
medical  NLP,  and  recognition  of  textual  entail­
ment.   Sentiment analysis systems are frequently 
used in corporate and product marketing, call cen­
ter quality control, and within “recommender” sys­
tems which are all contexts where it is important to 
recognize that “X does like Y” is contrary to “X 
does not like Y”.  Similarly in biomedical text such 

1A one token difference between the strings surely indicating 
at least an inexact match.

as research papers and abstracts, diagnostic proce­
dure reports, and medical records it is important to 
differentiate between statements about what is the 
case and what is not the case.

The *SEM 2012 Shared Task is actually two re­
lated tasks run in parallel.  The one this system was 
developed for is the identification of three features 
of  negation:  the  cue,  the  scope,  and  the  factual 
negated event (if any).  The other task is concerned 
with the focus of negation.  Detailed description of 
both subtasks, including definition of the relevant 
concepts  and  terminology  (negation,  cue,  scope, 
event, and focus) appears in this volume (Morante 
and Blanco, 2012).  Roser Morante  and Eduardo 
Blanco  describe  the  corpora  provided  to  partici­
pants with numbers and examples,  methods used 
used to process the data, and briefly describes each 
participant and analyzes the overall results.

Annotation of the corpus was undertaken at the 
University of Antwerp and was performed on sev­
eral Sherlock Holmes works of fiction written by 
Sir Arthur Conan Doyle.  The corpus includes all 
sentences from the original text, not just those em­
ploying  negation.   Roser  Morante  and  Walter 
Daelemans  provide  a  thorough  explanation  of 
those gold annotations of negation cue, scope, and 
negated  event  (if  any)  (Morante  and Daelemans, 
2012).  Their paper explains the motivations for the 
particular annotation decisions and describes in de­
tail the guidelines, including many examples.

2 Related Work

Recognition of phrases containing negation, partic­
ularly in the medical domain, using regular expres­
sions has been described using several different ap­
proaches. Systems such as Negfinder  (Mutalik et 
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al,  2001) and NegEx  (Chapman et  al,  2001) use 
manually constructed rules to extract phrases from 
text and classify them as to whether they contain 
an expression of negation.  Rokach et al evaluate 
several  methods  and  show their  highest  level  of 
performance (an F1 of 95.9 ± 1.9%) by using cas­
caded decision trees of regular expressions learned 
from labelled narrative medical reports (Rokach et 
al, 2008).  

Those systems perform a different function than 
that  required for this task though.  They classify 
phrases  extracted  from  plain  text  as  to  whether 
they contain negation or not, while the requirement 
of this shared task for negation cue detection is to 
identify the particular token(s) or part of a token 
that signals the presence of negation.  Furthermore, 
those systems only identify the scope of negation 
at the level of phrasal constituents, which is differ­
ent than what is required for this task in which the 
scopes are not necessarily contiguous.

Conditional Random Field (CRF) sequence tag­
gers have been successfully applied to many scope 
resolution problems,  including those of negation. 
The  NegScope  system  (Agarwal  and  Yu,  2010) 
trains a CRF sequence tagger on labelled data to 
identify both the cue and scope of negation.  How­
ever, that system only recognizes a whole word as 
a cue and does not recognize nor generalize nega­
tion cues which are affixes.  There are also systems 
that  use  CRF  sequence  taggers  for  detection  of 
hedge scopes (Tang et al, 2010, Zhao et al, 2010). 
Morante and Daelemans describe a method for im­
proving  resolution  of  the  scope  of  negation  by 
combining IGTREE, CRF, and Support Vector Ma­
chines (SVM) (Morante and Daelemans, 2009).  

3 System Description

This system is implemented as a three stage cas­
cade  with  the  output  from each  of  the  first  two 
stages  included as  input  to the subsequent  stage. 
The stages are ordered as cue detection, scope de­
tection,  and  finally  negated  event  detection.  The 
format of the inputs and outputs for each stage use 
the shared task’s  CoNLL­style file  format.   That 
simplifies  the  use  of  the  supplied  gold­standard 
data for training of each stage separately.

 Because  this  system  was  designed  for  the 
closed track of the shared task, it makes minimal 
language­specific assumptions and learns (nearly) 
all  language­specific  rules from the gold­labelled 

training data (which includes the development set 
for the final system).

The CRF sequence tagger used by the system is 
that implemented in the SimpleTagger class of the 
MALLET toolkit, which is a Java library distrib­
uted under the Common Public License2.

The system is implemented in the Groovy pro­
gramming  language,  an  agile  and  dynamic  lan­
guage for the Java Virtual Machine3.  The source 
code is available under the GNU Public License on 
GitHub4.

3.1 Cue Detection

Cues are recognized by four different regular ex­
pression rule patterns: affixes (partial token), single 
(whole)  token,  contiguous  multiple  token,  and 
gappy  (discontiguous)  multiple  token.  The  rules 
are learned by a two pass process.  In the first pass, 
for each positive example of a negation cue in the 
training data, a rule that matches that example is 
added to the prospective rule set.  Then, in the sec­
ond pass, the rules are applied to the training data 
and the counts of correct and incorrect matches are 
accumulated. Rules that are wrong more often than 
they are right are removed from the set used by the 
system.

A further  filtering  of  the  prospective  rules  is 
done  in  which  gappy  multiple  token  rules  that 
match the same word type more than once are re­
moved.   Those  prospective  rules  are  created  to 
match cases in the supplied training data where the 
a repetition has occurred and then encoded by the 
annotators as a single cue (and thus scope) of nega­
tion5.  

The single token and multiple token rules match 
both the word string feature (ignoring case) and the 
part­of­speech (POS) feature of each token.  And 
because a single token rule might also match a cue 
that belongs to a multiple token rule, multiple to­
ken rules are checked first.

  Affix rules are of two types: prefix cues and 
non­prefix cues.  The distinction is that while pre­
fix cues must match starting at the beginning of the 
word string, the non­prefix cues may have a suffix 
following them in the word string that is not part of 
the cue.  Affix rules only match against the word 

2http://mallet.cs.umass.edu/  
3http://groovy.codehaus.org/   
4https://github.com/jimwhite/SEMST2012   
5Such as baskervilles12 174: “Not a whisper, not a rustle, 
rose...” which has a cue annotation of “Not” gap “not”.
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string feature of the tokens and are insensitive to 
the POS feature.

In order to generalize the affix rules, sets are ac­
cumulated of both base word strings (the substring 
following  a  prefix  cue  or  substring  preceding  a 
non­prefix cue) and suffixes (the substring follow­
ing non­prefix cues, if any).  In addition, all other 
word strings and lemma strings in the training cor­
pus that are at least four characters long are added 
to the set of possible base word strings6.  A set of 
negative word  strings is  also  accumulated  in the 
second pass of the rule training to condition against 
false positive matches for each affix rule.

A prefix  cue  rule  will  match  a  token  with  a 
word string that  starts  with the cue string and is 
followed by any of the strings in the base word set. 
Similarly  a  suffix  cue  rule  will  match  a  token 
whose word string contains the cue string preceded 
by a string in the base word set and is either at the 
end  of  the  string  or  is  followed  by  one  of  the 
strings in the suffix string set.  Affix rules, unlike 
the other cue­matching rules, also output the string 
for matched base word as the value of the scope for 
the matched token.  In any case, if the token’s word 
string is in the negative word string set for the rule 
then it will not be matched.

Following submission of the system outputs for 
the shared tasked I discovered that a hand written 
regular expression rule that filters out the (poten­
tial)  cues  detected  for  “(be|have)  no  doubt”  and 
“none the (worse|less)” was inadvertently included 
in  the  system.   Although  those  rules  could  be 
learned automatically from the training data (and 
such  was  my  intention),  the  system  as  reported 
here does not currently do so.

3.2 Negation Scope Resolution

For  each  cue  detected,  scope  resolution  is  per­
formed as a ternary classification of each token in 
the sentence as to whether it is part of a cue, part of 
a scope, or neither.  The classifier is the CRF se­
quence  tagger  implemented  in  the  SimpleTagger 
class of the MALLET toolkit  (McCallum, 2002). 
Training is performed using the gold­standard data 
including the gold cues.  The output of the tagger is 
not used to determine the scope value of a token in 

6This “longer than four character” rule was manually created 
to correct for over­generalization observed in the training data.  
If the affix rule learner selected this value using the correct/in­
correct counts as it does with the other rule parameters then 
this bit of language­specific tweaking would be unnecessary.

those cases where an affix rule in the cue detector 
has matched a token and therefore has supplied the 
matched base word string as the value of the scope 
for the token.

For features that are computed in terms of the 
cue  token,  the  first  (lowest  numbered)  token 
marked as a cue is used when there is more than 
one cue token for the scope.  

Features used by the scope CRF sequence tag­
ger are:

• Of the per­token data: word string in low­
ercase, lemma string in lowercase, part­of­
speech  (POS)  tag,  binary  flag  indicating 
whether the token is a cue, a binary flag in­
dicating whether the token is at the edge of 
its parent non­terminal node or an internal 
sibling,  a  binary  flag  indicating  whether 
the token is a cue token, and relative posi­
tion to the cue token in number of tokens.

• Of the cue token data:  word string in low­
ercase,  lemma  string  in  lowercase,   and 
POS tag.

• Of the path through the syntax tree from 
the cue token: an ordered list of the non­
terminal labels of each node up the tree to 
the lowest common parent, an ordered list 
of  the  non­terminal  labels  of  each  node 
down the tree  from that  lowest  common 
parent, a path relation value consisting of 
the  label  of  the  lowest  common  parent 
node  concatenated  with  an  indication  of 
the relative position of the paths to the cue 
and token in terms of sibling order.

3.3 Negated Event Resolution

Detection of the negated event or property is per­
formed using the same CRF sequence tagger and 
features used for scope detection.  The only differ­
ence is that the token classification is in terms of 
whether each token in the sentence is part of a fac­
tual negated event for each negation cue.

3.4 Feature Set Selection

A comparison  of  the  end­to­end  performance  of 
this system using several different sets of per token 
feature  choices  for  the  scope  and  negated  event 
classifiers is shown in Table 1.  In each case the 
training data is the entire training data and the dev 
data is the entire dev data supplied by the organiz­
ers for this shared task.  The scores are computed 
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by the evaluation program also supplied by the or­
ganizers.  The baseline features are those provided 
in the data, with the exception of the syntactic tree 
fragment: word string in lowercase, lemma in low­
ercase, and POS tag.  The “set 1” features are the 
remainder of the features described in section 3.2, 
with the exception of those of the path through the 
syntax tree from the cue token.  The “set 2” fea­
tures are the three baseline features plus the three 
features of the path through the syntax tree from 
the cue token: list of non­terminal labels from cue 
up to the lowest common parent, lowest common 
parent label concatenated with the relative distance 
in nodes between the siblings, list of non­terminals 
from the lowest common parent down to the token. 
The “system” feature set is the union of set 1 and 
set 2, and is the one used by the submitted system.

The baseline score is an F1 of 31.5% (P=79.1%, 
R=19.7%) on the dev data.  Using either feature set 
1 or 2 results in substantially better performance. 
They achieve nearly the same score on the dev set 
with an F1 of 50±0.5% (P=87±0.2%, R=35±0.3%) 
in which the difference is that between one case of 
true positive  vs.  false  negative out  of  173.   The 
combination  of  those  feature  sets  is  better  still 
though with an F1 of 54.4% (P=88.3%, R=39.3%).

4 Results

Table 2 presents the scores computed for the sys­
tem output on the held­out evaluation data.  The F1 

for  full  negation  is  48.1%  (P=74%,  R=35.6%), 
which  is  noticeably  lower  than  that  seen  for  the 
dev data (54.4%).  That reduction is to be expected 
because the dev data was used for system tuning. 
There was also evidence of significant over­fitting 
to  the  training  data  because  the  F1 for  that  was 
76.5% (P=92%,  R=65.5%).   The  largest  compo­
nent of the fall off in performance is in the recall. 

The worst performing component of the system 
is the negated event detection which has an F1 of 
54.3% (P=58%,  R=51%) on  the evaluation  data. 
One contributor to low precision for the negated 
event detector is that the root word of an affix cue 
is always output as a negated event, bypassing the 
negated  event  CRF  sequence  classifier.   In  the 
combined training and dev data there is a total of 
1157 gold cues (and scopes) of which 738 (63.8%) 
are annotated as having a negated event.  Of the 
1198  cues  the  system outputs  for  that  data,  188 
(15.7%) are affix cues, each of which will also be 
output as a negated event.  Therefore it would be 
reasonable  to  expect  that  approximately  16 
(27.7%) of the false positives for the negated event 
in the evaluation (60) are due to that behavior.

Table 1: Comparison of full negation scores for various feature sets.

 Gold  System  TP FP FN Precision (%) Recall (%) F1 (%)
Baseline  (train) 984 1034 382 56 602 87.21 38.82 53.73
                (dev)  173 164 34 9 139 79.07 19.65 31.48
Set 1        (train) 984 1034 524 56 460 90.34 53.25 67.00
                (dev) 173 164 60 9 113 86.96 34.68 49.59
Set 2        (train) 984 1034 666 56 318 92.24 67.68 78.07
                (dev) 173 164 61 9 112 87.14 35.26 50.21
System    (train) 984 1034 644 56 340 92.00 65.45 76.49
                (dev) 173 164 68 9 105 88.31 39.31 54.40

Table 2: System evaluation on held­out data.

                             Gold  System  TP FP FN Precision (%) Recall (%) F1 (%)
Cues 264 285 243 33 21 88.04 92.05 90.00
Scopes (no cue match) 249 270 158 33 89 82.90 64.26 72.40
Scope tokens (no cue match) 1805 1816 1512 304 293 83.26 83.77 83.51
Negated (no cue match) 173 154 83 60 80 58.04 50.92 54.25
Full negation 264 285 94 33 170 74.02 35.61 48.09
Cues B 264 285 243 33 21 85.26 92.05 88.52
Scopes B (no cue match) 249 270 158 33 89 59.26 64.26 61.66
Negated B (no cue match) 173 154 83 60 80 53.9 50.92 52.37
Full negation B 264 285 94 33 170 32.98 35.61 34.24
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5 Conclusion

This paper describes the system I implemented for 
the closed track of the *SEM 2012 Shared Task for 
negation cue, scope, and event resolution.  The sys­
tem’s performance on the held­out evaluation data, 
an F1 of  48.09% (P=74.02%, R=35.61%) for the 
full  negation,  relative to the other entries for the 
task  is  fourth  among  the  six  teams  that  partici­
pated.  

The strongest part of this system is the scope re­
solver which performs at a level near that of the 
best­performing  systems  in  this  shared  task.   I 
think it is likely that the performance on scope res­
olution would be equivalent to them with a better 
negation cue detector.  That is supported by the “no 
cue match” version of the scope resolution evalua­
tion  for  which  this  system  has  the  highest  F1 

(72.4%).
Clearly the weakest  link is  the  negated  event 

detector.  Since one obvious source of error is that 
the root word extracted when an affix cue is de­
tected  is  always  output  as  a  negated  event,  a 
promising approach for improvement would be to 
instead  utilize  that  as  a  feature  for  the  negated 
event’s CRF sequence tagger so that they have a 
chance to be filtered out in non­factual contexts.

Acknowledgements
I  want  to  thank  Roser  Morante  and  Eduardo 
Blanco for organizing this task, the reviewers for 
their  thorough and very  helpful  suggestions,  and 
Emily Bender for her guidance.

References

Shashank Agarwal and Hong Yu.  2010.  Biomedical 
negation scope detection with conditional random 
fields. Journal of the American Medical Informatics As­
sociation, 17(6), 696–701. 
doi:10.1136/jamia.2010.003228

Chapman, W. W., Bridewell, W., Hanbury, P., Cooper, 
G. F., & Buchanan, B. G..  2001.  A simple algorithm 
for identifying negated findings and diseases in dis­
charge summaries. Journal of Biomedical Informatics, 
34(5), 301–310. doi:10.1006/jbin.2001.1029

Andrew McCallum.  2002. MALLET: A Machine 
Learning for Language Toolkit.  Retrieved from 
http://mallet.cs.umass.edu

Roser Morante and Eduardo Blanco.  2012.  *SEM 
2012 Shared Task: Resolving the Scope and Focus of 
Negation. Proceedings of the First Joint Conference on 
Lexical and Computational Semantics. Presented at the 
*SEM 2012, Montreal, Canada.

Roser Morante and Walter Daelemans.  2009.  A Met­
alearning Approach to Processing the Scope of Nega­
tion. Proceedings of the Thirteenth Conference on Com­
putational Natural Language Learning (CoNLL­2009) 
(pp. 21–29). Boulder, Colorado: Association for Com­
putational Linguistics. 

Roser Morante and Walter Daelemans.  2012.  Conan­
Doyle­neg: Annotation of negation in Conan Doyle sto­
ries. Proceedings of the Eighth International Confer­
ence on Language Resources and Evaluation (LREC).

Pradeep G. Mutalik, Aniruddha Deshpande, and Prakash 
M. Nadkarni.  2001.  Use of general­purpose negation 
detection to augment concept indexing of medical docu­
ments: a quantitative study using the UMLS. Journal of 
the American Medical Informatics Association: JAMIA, 
8(6), 598–609.

Lior Rokach, Roni Romano, and Oded Maimon.  2008. 
Negation recognition in medical narrative reports. 
Information Retrieval, 11(6), 499–538. 
doi:10.1007/s10791­008­9061­0

Buzhou Tang, Xiaolong Wang, Xuan Wang, Bo Yuan, 
and Shixi Fan.  2010.  A Cascade Method for Detecting 
Hedges and their Scope in Natural Language Text. Pro­
ceedings of the Fourteenth Conference on Computa­
tional Natural Language Learning (pp. 13–17). Upp­
sala, Sweden: Association for Computational Linguis­
tics. 

Qi Zhao, Chengjie Sun, Bingquan Liu, and Yong Cheng.  
2010. Learning to Detect Hedges and their Scope Using 
CRF. Proceedings of the Fourteenth Conference on 
Computational Natural Language Learning (pp. 100–
105). Uppsala, Sweden: Association for Computational 
Linguistics. 

339



First Joint Conference on Lexical and Computational Semantics (*SEM), pages 340–346,
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Abstract

Automatic detection of negation cues along
with their scope and corresponding negated
events is an important task that could bene-
fit other natural language processing (NLP)
tasks such as extraction of factual information
from text, sentiment analysis, etc. This paper
presents a system for this task that exploits
phrasal and contextual clues apart from vari-
ous token specific features. The system was
developed for the participation in the Task 1
(closed track) of the *SEM 2012 Shared Task
(Resolving the Scope and Focus of Negation),
where it is ranked 3rd among the participating
teams while attaining the highest F1 score for
negation cue detection.

1 Introduction

Negation is a linguistic phenomenon that can al-
ter the meaning of a textual segment. While auto-
matic detection of negation expressions (i.e. cues)
in free text has been a subject of research interest
for quite some time (e.g. Chapman et al. (2001),
Elkin et al. (2005) etc), automatic detection of full
scope of negation is a relatively new topic (Morante
and Daelemans, 2009; Councill et al., 2010). Detec-
tion of negation cues, their scope and corresponding
negated events in free text could improve accuracy in
other natural language processing (NLP) tasks such
as extraction of factual information from text, senti-
ment analysis, etc (Jia et al., 2009; Councill et al.,
2010).

In this paper, we present a system that was de-
veloped for the participation in the Scope Detection

task of the *SEM 2012 Shared Task1. The proposed
system exploits phrasal and contextual clues apart
from various token specific features. Exploitation
of phrasal clues is not new for negation scope de-
tection. But the way we encode this information
(i.e. the features for phrasal clues) is novel and dif-
fers completely from the previous work (Councill et
al., 2010; Morante and Daelemans, 2009). More-
over, the total number of features that we use is also
comparatively lower. Furthermore, to the best of our
knowledge, automatic negated event/property iden-
tification has not been explored prior to the *SEM
2012 Shared Task. So, our proposed approach for
this particular sub-task is another contribution of this
paper.

The remainder of this paper is organised as fol-
lows. First, we describe the scope detection task
as well as the accompanying datasets in Section 2.
Then in Section 3, we present how we approach the
task. Following that, in Section 4, various empiri-
cal results and corresponding analyses are discussed.
Finally, we summarize our work and discuss how the
system can be further improved in Section 5.

2 Task Description: Scope Detection

The Scope Detection task (Task 1) of *SEM 2012
Shared Task deals with intra-sentential (i.e. con-
text is single sentence) negations. According to
the guidelines of the task (Morante and Daelemans,
2012; Morante et al., 2011), the scope of a nega-
tion cue(s) is composed of all negated concepts and
negated event/property, if any. Negation cue(s) is

1http://www.clips.ua.ac.be/sem2012-st-neg/
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Training Development Test

Total sentence 3644 787 1089

Negation sentences 848 144 235

Negation cues 984 173 264

Cues with scopes 887 168 249

Tokens in scopes 6929 1348 1805

Negated events 616 122 173

Table 1: Various statistics of the training, development
and test datasets.

not considered as part of the scope. Cues and scopes
may be discontinuous.

The organisers provided three sets of data – train-
ing, development and test datasets, all consisting of
stories by Conan Doyle. The training dataset con-
tains Chapters 1-14 from The Hound of the
Baskervilles. While development dataset
contains The Adventures of Wisteria
Lodge. For testing, two other stories, The
Adventure of the Red Circle and The
Adventure of the Cardboard Box, were
released during the evaluation period of the shared
task. Table 1 shows various statistics regarding the
datasets.

In the training and development data, all occur-
rences of negation are annotated. For each negation
cue, the cue and corresponding scope are marked,
as well as the negated event/property, if any. The
data is provided in CoNLL-2005 Shared Task for-
mat. Table 2 shows an example of annotated data
where “un” is the negation cue, “his own conven-
tional appearance” is the scope, and “conventional”
is the negated property.

The test data has a format similar to the training
data except that only the Columns 1–7 (as shown in
Table 2) are provided. Participating systems have to
output the remaining column(s).

During a random checking we have found at least
2 missing annotations2 in the development data. So,
there might be few wrong/missing annotations in the
other datasets, too.

There were two tracks in the task. For the closed
2Annotations for the following negation cues (and their cor-

responding scope/negated events) in the development data are
missing – {cue: “no”, token no.: 8, sentence no.: 237, chap-
ter: wisteria01} and {cue: “never”, token no.: 3, sentence no.:
358, chapter: wisteria02}.

track, systems have to be built strictly with infor-
mation contained in the given training corpus. This
includes the automatic annotations that the organiz-
ers provide for different levels of analysis (POS tags,
lemmas and parse trees). For the open track, sys-
tems can be developed making use of any kind of
external tools and resources.

We participated in the closed track of the scope
detection task.

3 Our Approach

We approach the subtasks (i.e. cue, scope and
negated event detection) of the Task 1 as sequence
identification problems and train three different 1st
order Conditional Random Field (CRF) classifiers
(i.e. one for each of them) using the MALLET ma-
chine learning toolkit (McCallum, 2002). All these
classifiers use ONLY the information available in-
side the training corpus (i.e. training and develop-
ment datasets) as provided by the task organisers,
which is the requirement of the closed track.

3.1 Negation Cue Detection

At first, our system automatically collects a vocab-
ulary of all the positive tokens (i.e. those which are
not negation cues) of length greater than 3 charac-
ters, after excluding negation cue affixes (if any),
from the training data and uses them to extract fea-
tures that could be useful to identify potential nega-
tion cues which are subtokens (e.g. *un*able). We
also create a list of highly probable negation ex-
pressions (henceforth, NegExpList) from the train-
ing data based on frequencies. The list consists of
the following terms – nor, neither, without, nobody,
none, nothing, never, not, no, nowhere, and non.

Negation cue subtokens are identified if the token
itself is predicted as a negation cue by the classi-
fier and has one of the following affixes that are col-
lected from the training data – less, un, dis, im, in,
non, ir.

Lemmas are converted to lower case inside the
feature set. Additional post-processing is done to
annotate some obvious negation expressions that are
seen inside the training data but sometimes missed
by the classifier during prediction on the develop-
ment data. These expressions include neither, no-
body, save for, save upon, and by no means. A spe-
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wisteria01 60 0 Our Our PRP$ (S(NP*

wisteria01 60 1 client client NN *)

wisteria01 60 2 looked look VBD (VP*

wisteria01 60 3 down down RB (ADVP*)

wisteria01 60 4 with with IN (PP*

wisteria01 60 5 a a DT (NP(NP*

wisteria01 60 6 rueful rueful JJ *

wisteria01 60 7 face face NN *)

wisteria01 60 8 at at IN (PP*

wisteria01 60 9 his his PRP$ (NP* his

wisteria01 60 10 own own JJ * own

wisteria01 60 11 unconventional unconventional JJ * un conventional conventional

wisteria01 60 12 appearance appearance NN *))))) appearance

Table 2: Example of the data provided for *SEM 2012 Shared Task.

Feature name Description

POSi Part-of-speech of tokeni

Lemmai Lemma form of tokeni

Lemmai−1 Lemma form of tokeni−1

hasNegPrefix If tokeni has a negation

prefix and is found inside the

automatically created vocabulary

hasNegSuffix If tokeni has a negation

suffix and is found inside the

automatically created vocabulary

matchesNegExp If tokeni is found in NegExpList

Table 3: Feature set for negation cue classifier

cial check is done for the phrase “none the less”
which is marked as a non-negation expression inside
the training data.

Finally, a CRF model is trained using the col-
lected features (see Table 3) and used to predict
negation cue on test instance.

3.2 Scope and Negated Event Detection

Once the negation cues are identified, the next tasks
are to detect scopes of the cues and negated events
which are approached independently using separate
classifiers. If a sentence has multiple negation cues,
we create separate training/test instance of the sen-
tence for each of the cues.

Tables 4 and 5 show the feature sets that are used
to train classifiers. Both the feature sets exclusively
use various phrasal clues, e.g. whether the (clos-

est) NP, VP, S or SBAR containing the token un-
der consideration (i.e. tokeni) and that of the nega-
tion cue are different. Further phrasal clues that are
exploited include whether the least common phrase
of tokeni has no other phrase as child, and also
list of the counts of different common phrasal cat-
egories (starting from the root of the parse tree) that
contain tokeni and the cue. These latter two types
of phrasal clue features are found effective for the
negated event detection but not for scope detection.

We also use various token specific features (e.g.
lemma, POS, etc) and contextual features (e.g.
lemma of the 1st word of the corresponding sen-
tence, position of the token with respect to the cue,
presence of conjunction and special characters be-
tween tokeni and the cue, etc). Finally, new fea-
tures are created by combining different features of
the neighbouring tokens within a certain range of the
tokeni. The range values are selected empirically.

Once scopes and negated events are identified
(separately), the prediction output of all the three
classifiers are merged to produce the full negation
scope.

Initially, a number of features is chosen by doing
manual inspection (randomly) of the scopes/negated
events in the training data as well analysing syntac-
tic structures of the corresponding sentences. Some
of those features (e.g. POS of previous token for
scope detection) which are found (empirically) as
not useful for performance improvement have been
discarded.
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Feature name: Description

Lemma1 Lemma of the 1st word

of the sentence

POSi Part-of-speech of tokeni

Lemmai Lemma of tokeni

Lemmai−1 Lemma of tokeni−1

isCue If tokeni is negation cue

isCueSubToken If a subtoken of tokeni

is negation cue

isCcBetCueAndCurTok If there is a conjunction

between tokeni and cue

isSpecCharBetCueAndCurTok If there is a

non-alphanumeric token

between tokeni and cue

Position Position of tokeni : before,

after or same w.r.t. the cue

isCueAndCurTokInDiffNP If tokeni and cue

belong to different NPs

isCueAndCurTokInDiffVP If tokeni and cue

belong to different VPs

isCueAndCurTokInDiffSorSBAR If tokeni and cue belong

to different S or SBAR

FeatureConjunctions New features by combining

those of tokeni−2 to tokeni+2

Table 4: Feature set for negation scope classifier. Bold
features are the phrasal clue features.

We left behind two verifications unintentionally
which should have been included. One of them is
to take into account whether a sentence is a fac-
tual statement or a question before negated event de-
tection. The other is to check whether a predicted
negated event is found inside the predicted scope of
the corresponding negation cue.

4 Results and Discussions

In this section, we discuss various empirical re-
sults on the development data and test data. De-
tails regarding the evaluation criteria are described
in Morante and Blanco (2012).

4.1 Results on the Development Dataset

Our feature sets are selected after doing a number of
experiments by combining various potential feature
types. In these experiments, the system is trained
on the training data and tested on development data.

Feature name Description

Lemma1 Lemma of the 1st word

of the sentence

POSi Part-of-speech of tokeni

Lemmai Lemma of tokeni

POSi−1 POS of tokeni−1

isCue If tokeni is negation cue

isCueSubToken If a subtoken of tokeni

is negation cue

isSpecCharBetCueAndCurTok If there is a

non-alphanumeric token

between tokeni and cue

IsModal If POS of tokeni is MD

IsDT If POS of tokeni is DT

isCueAndCurTokInDiffNP If tokeni and cue

belong to different NPs

isCueAndCurTokInDiffVP If tokeni and cue

belong to different VPs

isCueAndCurTokInDiffSorSBAR If tokeni and cue belong

to different S or SBAR

belongToSamePhrase If the least common phrase of

tokeni and cue do not

contain other phrase

CPcatBetCueAndCurTok All common phrase categories

(and their counts) that

contain tokeni and cue

FeatureConjunctions New features by combining

those of tokeni−3 to tokeni+1

Table 5: Feature set for negated event classifier. Bold
features are the phrasal clue features.

Due to time limitation we could not do parameter
tuning for CRF model training which we assume
could further improve the results.

Table 8 shows the results3 on the development
data using the feature sets described in Section 3.
There are two noticeable things in these results.
Firstly, there is a very high F1 score (93.29%) ob-
tained for negation cue identification. And secondly,
the precision obtained for scope detection (97.92%)
is very high as well.

Table 6 shows the results (of negated event iden-

3All the results reported in this paper, apart from the ones
on test data which are directly obtained from the organisers,
reported in this paper are computed using the official evaluation
script provided by the organisers.
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TP FP FN Prec. Rec. F1

Using only 71 16 46 81.61 60.68 69.61

contextual and token

specific features

After adding phrasal 81 17 34 82.65 70.43 76.05

clue features

Table 6: Negated event detection results on development
data with and without the 5 phrasal clue feature types.
The results are obtained using gold annotation of nega-
tion cues. Note that, TP+FN is not the same. However, since these
results are computed using the official evaluation script, we are not sure
why there is this mismatch.

Using negation cues annotated by our system

TP FP FN Prec. Rec. F1

Scope detection 94 2 74 97.92 55.95 71.21

Event detection 63 19 51 76.83 55.26 64.28

Using gold annotations of negation cues

TP FP FN Prec. Rec. F1

Scope detection 103 0 65 100.00 61.31 76.02

Event detection 81 17 34 82.65 70.43 76.05

Table 7: Scope and negated event detection results on
development data with and without gold annotations of
negation cues. Note that, for negated events, TP+FN is not the same.
However, since these results are computed using the official evaluation
script, we are not sure why there is this mismatch.

tification) obtained before and after the usage of our
proposed 5 phrasal clue feature types (using gold an-
notation of negation cues). As we can see, there is a
significant improvement in recall (almost 10 points)
due to the usage of phrasal clues which ultimately
leads to a considerable increase (almost 6.5 points)
of F1 score.

4.2 Results on the Official Test Dataset

Table 9 shows official results of our system in the
*SEM 2012 Shared Task (closed track) of scope de-
tection, as provided by the organisers. It should be
noted that the test dataset is almost 1.5 times bigger
than the combined training corpus (i.e. training +
development data). Despite this fact, the results of
cue and scope detection on the test data are almost
similar as those on the development data. How-
ever, there is a sharp drop (almost 4 points lower F1

score) in negated event identification, primarily due
to lower precision. This resulted in a lower F1 score
(almost 4.5 points) for full negation identification.

4.3 Further Analyses of the Results and
Feature Sets

Our analyses of the empirical results (conducted
on the development data) suggest that negation cue
identification largely depends on the token itself
rather than its surrounding syntactic construction.
Although context (i.e. immediate neighbouring to-
kens) are also important, the significance of a vo-
cabulary of positive tokens (for the identification of
negation cue subtokens) and the list of negation cue
expressions is quite obvious. In a recently published
study, Morante (2010) listed a number of negation
cues and argued that their total number are actually
not exhaustive. We refrained from using the cues
listed in that paper (instead we built a list automati-
cally from the training data) since additional knowl-
edge/resource outside the training data was not al-
lowed for the closed track. But we speculate that
usage of such list of expressions as well as an exter-
nal dictionary of (positive) words can further boost
the high performance that we already achieved.

Since scope and negation event detection are de-
pendent on the correct identification of cues, we
have done separate evaluation on the development
data using the gold cues (instead of predicting the
cues first). As the results in Table 7 show, there is a
considerable increment in the results for both scope
and event detection if the correct annotation of cues
are available.

The general trend of errors that we have observed
in scope detection is that the more distant a token is
from the negation cue in the phrase structure tree (of
the corresponding sentence) the harder it becomes
for the classifier to predict whether the token should
be included in the scope or not. For example, in the
sentence “I am not aware that in my whole life such
a thing has ever happened before.” of the devel-
opment data, the negation cue “not” has scope over
the whole sentence. But the scope classifier fails to
include the last 4 words in the scope. Perhaps syn-
tactic dependency can provide complementary infor-
mation in such cases.

As for the negated event identification errors, the
majority of the prediction errors (on the develop-
ment data) occurred for verb and noun tokens which
are mostly immediately preceded by the negation
cue. Information of syntactic dependency should be
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Gold System TP FP FN Prec. (%) Rec. (%) F1 (%)

Cues: 173 156 153 2 20 98.71 88.44 93.29

Scopes (cue match): 168 150 94 2 74 97.92 55.95 71.21

Scopes (no cue match): 168 150 94 2 74 97.92 55.95 71.21

Scope tokens (no cue match): 1348 1132 1024 108 324 90.46 75.96 82.58

Negated (no cue match): 122 90 63 19 51 76.83 55.26 64.28

Full negation: 173 156 67 2 106 97.10 38.73 55.37

Cues B: 173 156 153 2 20 98.08 88.44 93.01

Scopes B (cue match): 168 150 94 2 74 62.67 55.95 59.12

Scopes B (no cue match): 168 150 94 2 74 62.67 55.95 59.12

Negated B (no cue match): 122 90 63 19 51 70.00 55.26 61.76

Full negation B: 173 156 67 2 106 42.95 38.73 40.73

# Sentences: 787 # Negation sentences: 144 # Negation sentences with errors: 97

% Correct sentences: 87.55 % Correct negation sentences: 32.64

Table 8: Results on the development data. In the “B” variant of the results, Precision = TP / System, instead of
Precision = TP / (TP + FP).

helpful to reduce such errors, too.

5 Conclusions

In this paper, we presented our approach for nega-
tion cue, scope and negated event detection task
(closed track) of *SEM 2012 Shared Task, where
our system ranked 3rd among the participating
teams for full negation detection while obtaining the
best F1 score for negation cue detection. Interest-
ingly, according to the results provided by the organ-
isers, our system performs better than all the systems
of the open track except one (details of these results
are described in (Morante and Blanco, 2012)).

The features exploited by our system include
phrasal and contextual clues as well as token spe-
cific information. Empirical results show that the
system achieves very high precision for scope de-
tection. The results also imply that the novel phrasal
clue features exploited by our system improve iden-
tification of negated events significantly.

We believe the system can be further improved
in a number of ways. Firstly, this can be done by
incorporating linguistic knowledge as described in
Morante (2010). Secondly, we did not take into ac-
count whether a sentence is a factual statement or
a question before negated event detection. We also
did not check whether a predicted negated event is
found inside the predicted scope of the correspond-
ing negation cue. These verifications should in-

crease the results more. Finally, previous work re-
ported that usage of syntactic dependency informa-
tion helps in scope detection (Councill et al., 2010).
Hence, this could be another possible direction for
improvement.
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Abstract

We describe the English Lexical Simplifica-
tion task at SemEval-2012. This is the first
time such a shared task has been organized
and its goal is to provide a framework for the
evaluation of systems for lexical simplification
and foster research on context-aware lexical
simplification approaches. The task requires
that annotators and systems rank a number of
alternative substitutes – all deemed adequate –
for a target word in context, according to how
“simple” these substitutes are. The notion of
simplicity is biased towards non-native speak-
ers of English. Out of nine participating sys-
tems, the best scoring ones combine context-
dependent and context-independent informa-
tion, with the strongest individual contribution
given by the frequency of the substitute re-
gardless of its context.

1 Introduction

Lexical Simplification is a subtask of Text Simpli-
fication (Siddharthan, 2006) concerned with replac-
ing words or short phrases by simpler variants in a
context aware fashion (generally synonyms), which
can be understood by a wider range of readers. It
generally envisages a certain human target audience
that may find it difficult or impossible to understand
complex words or phrases, e.g., children, people
with poor literacy levels or cognitive disabilities, or
second language learners. It is similar in many re-
spects to the task of Lexical Substitution (McCarthy
and Navigli, 2007) in that it involves determining
adequate substitutes in context, but in this case on
the basis of a predefined criterion: simplicity.

A common pipeline for a Lexical Simplification
system includes at least three major components: (i)
complexity analysis: selection of words or phrases
in a text that are considered complex for the reader
and/or task at hand; (ii) substitute lookup: search
for adequate replacement words or phrases deemed
complex in context, e.g., taking synonyms (with
the same sense) from a thesaurus or finding similar
words/phrases in a corpus using distributional simi-
larity metrics; and (iii) context-based ranking: rank-
ing of substitutes according to how simple they are
to the reader/task at hand.

As an example take the sentence: “Hitler com-
mitted terrible atrocities during the second World
War.” The system would first identify complex
words, e.g. atrocities, then search for substitutes
that might adequately replace it. A thesaurus lookup
would yield the following synonyms: abomination,
cruelty, enormity and violation, but enormity should
be dropped as it does not fit the context appropri-
ately. Finally, the system would determine the sim-
plest of these substitutes, e.g., cruelty, and use it
to replace the complex word, yielding the sentence:
“Hitler committed terrible cruelties during the sec-
ond World War.”.

Different from other subtasks of Text Simplifica-
tion like Syntactic Simplification, which have been
relatively well studied, Lexical Simplification has
received less attention. Although a few recent at-
tempts explicitly address dependency on context (de
Belder et al., 2010; Yatskar et al., 2010; Biran et al.,
2011; Specia, 2010), most approaches are context-
independent (Candido et al., 2009; Devlin and Tait,
1998). In addition, a general deeper understanding
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of the problem is yet to be gained. As a first attempt
to address this problem in the shape of a shared task,
the English Simplification task at SemEval-2012 fo-
cuses on the third component, which we believe is
the core of the Lexical Simplification problem.

The SemEval-2012 shared task on English Lexi-
cal Simplification has been conceived with the fol-
lowing main purposes: advancing the state-of-the-
art Lexical Simplification approaches, and provid-
ing a common framework for evaluation of Lexical
Simplification systems for participants and other re-
searchers interested in the field. Another central mo-
tive of such a shared task is to bring awareness to the
general vagueness associated with the notion of lex-
ical simplicity. Our hypothesis is that in addition to
the notion of a target application/reader, the notion
of simplicity is highly context-dependent. In other
words, given the same list of substitutes for a given
target word with the same sense, we expect different
orderings of these substitutes in different contexts.
We hope that participation in this shared task will
help discover some underlying traits of lexical sim-
plicity and furthermore shed some light on how this
may be leveraged in future work.

2 Task definition

Given a short context, a target word in English,
and several substitutes for the target word that are
deemed adequate for that context, the goal of the
English Simplification task at SemEval-2012 is to
rank these substitutes according to how “simple”
they are, allowing ties. Simple words/phrases are
loosely defined as those which can be understood by
a wide range of people, including those with low lit-
eracy levels or some cognitive disability, children,
and non-native speakers of English. In particular,
the data provided as part of the task is annotated by
fluent but non-native speakers of English.

The task thus essentially involves comparing
words or phrases and determining their order of
complexity. By ranking the candidates, as opposed
to categorizing them into specific labels (simple,
moderate, complex, etc.), we avoid the need for a
fixed number of categories and for more subjective
judgments. Also ranking enables a more natural and
intuitive way for humans (and systems) to perform
annotations by preventing them from treating each

individual case in isolation, as opposed to relative
to each other. However, the inherent subjectivity
introduced by ranking entails higher disagreement
among human annotators, and more complexity for
systems to tackle.

3 Corpus compilation

The trial and test corpora were created from the cor-
pus of SemEval-2007 shared task on Lexical Sub-
stitution (McCarthy and Navigli, 2007). This de-
cision was motivated by the similarity between the
two tasks. Moreover the existing corpus provided an
adequate solution given time and cost constraints for
our corpus creation. Given existing contexts with the
original target word replaced by a placeholder and
the lists of substitutes (including the target word),
annotators (and systems) are required to rank substi-
tutes in order of simplicity for each context.

3.1 SemEval-2007 - LS corpus
The corpus from the shared task on Lexical Substi-
tution (LS) at SemEval-2007 is a selection of sen-
tences, or contexts, extracted from the English Inter-
net Corpus of English (Sharoff, 2006). It contains
samples of English texts crawled from the web.

This selection makes up the dataset of a total of
2, 010 contexts which are divided into Trial and Test
sets, consisting of 300 and 1710 contexts respec-
tively. It covers a total of 201 (mostly polysemous)
target words, including nouns, verbs, adjectives and
adverbs, and each of the target words is shown in
10 different contexts. Annotators had been asked to
suggest up to three different substitutes (words or
short phrases) for each of the target words within
their contexts. The substitutes were lemmatized un-
less it was deemed that the lemmatization would al-
ter the meaning of the substitute. Annotators were
all native English speakers and each annotated the
entire dataset. Here is an example of a context for
the target word “bright”:

<lexelt item="bright.a">

<instance id="1">

<context>During the siege, George
Robertson had appointed Shuja-ul-Mulk,
who was a <head>bright</head> boy
only 12 years old and the youngest surviv-
ing son of Aman-ul-Mulk, as the ruler of
Chitral.</context>
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</instance> ... </lexelt>

The gold-standard document contains each target
word along with a ranked list of its possible substi-
tutes, e.g., for the context above, three annotators
suggested “intelligent” and “clever” as substitutes
for “bright”, while only one annotator came up with
“smart”:

bright.a 1:: intelligent 3; clever 3; smart 1;

3.2 SemEval-2012 Lexical Simplification
corpus

Given the list of contexts and each respective list
of substitutes we asked annotators to rank substi-
tutes for each individual context in ascending order
of complexity. Since the notion of textual simplic-
ity varies from individual to individual, we carefully
chose a group of annotators in an attempt to cap-
ture as much of a common notion of simplicity as
possible. For practical reasons, we selected annota-
tors with high proficiency levels in English as sec-
ond language learners - all with a university first de-
gree in different subjects.

The Trial dataset was annotated by four people
while the Test dataset was annotated by five peo-
ple. In both cases each annotator tagged the com-
plete dataset.

Inter-annotator agreement was computed using an
adaptation of the kappa index with pairwise rank
comparisons (Callison-Burch et al., 2011). This is
also the primary evaluation metric for participating
systems in the shared task, and it is covered in more
detail in Section 4.

The inter-annotator agreement was computed for
each pair of annotators and averaged over all possi-
ble pairs for a final agreement score. On the Trial
dataset, a kappa index of 0.386 was found, while
for the Test dataset, a kappa index of 0.398 was
found. It may be noted that certain annotators dis-
agreed considerably with all others. For example,
on the Test set, if annotations from one judge are re-
moved, the average inter-annotator agreement rises
to 0.443. While these scores are apparently low, the
highly subjective nature of the annotation task must
be taken into account. According to the reference
values for other tasks, this level of agreement is con-
sidered “moderate” (Callison-Burch et al., 2011).

It is interesting to note that higher inter-annotator
agreement scores were achieved between annota-
tors with similar language and/or educational back-
grounds. The highest of any pairwise annotator
agreement (0.52) was achieved between annotators
of identical language and educational background,
as well as very similar levels of English proficiency.
High agreement scores were also achieved between
annotators with first languages belonging to the
same language family.

Finally, it is also worth noticing that this agree-
ment metric is highly sensitive to small differences
in annotation, thus leading to overly pessimistic
scores. A brief analysis reveals that annotators often
agree on clusters of simplicity and the source of the
disagreement comes from the rankings within these
clusters.

Finally, the gold-standard annotations for the
Trial and Test datasets – against which systems are
to be evaluated – were generated by averaging the
annotations from all annotators. This was done
context by context where each substitution was at-
tributed a score based upon the average of the rank-
ings it was ascribed. The substitutions were then
sorted in ascending order of scores, i.e., lowest score
(highest average ranking) first. Tied scores were
grouped together to form a single rank. For exam-
ple, assume that for a certain context, four annota-
tors provided rankings as given below, where multi-
ple candidates between {} indicate ties:

Annotator 1: {clear} {light} {bright} {lumi-
nous} {well-lit}

Annotator 2: {well-lit} {clear} {light}
{bright} {luminous}

Annotator 3: {clear} {bright} {light} {lumi-
nous} {well-lit}

Annotator 4: {bright} {well-lit} {luminous}
{clear} {light}

Thus the word “clear”, having been ranked 1st,
2nd, 1st and 4th by each of the annotators respec-
tively is given an averaged ranking score of 2. Sim-
ilarly “light” = 3.25, “bright” = 2.5, “luminous” =
4 and “well-lit” = 3.25. Consequently the gold-
standard ranking for this context is:

Gold: {clear} {bright} {light, well-lit} {lumi-
nous}

349



3.3 Context-dependency

As mentioned in Section 1, one of our hypothe-
ses was that the notion of simplicity is context-
dependent. In other words, that the ordering of sub-
stitutes for different occurrences of a target word
with a given sense is highly dependent on the con-
texts in which such a target word appears. In order
to verify this hypothesis quantitatively, we further
analyzed the gold-standard annotations of the Trial
and Test datasets. We assume that identical lists of
substitutes for different occurrences of a given tar-
get word ensure that such a target word has the same
sense in all these occurrences. For every target word,
we then generate all pairs of contexts containing the
exact same initial list of substitutes and check the
proportion of these contexts for which human an-
notators ranked the substitutes differently. We also
check for cases where only the top-ranked substitute
is different. The numbers obtained are shown in Ta-
ble 1.

Trial Test
1) # context pairs 1350 7695

2) # 1) with same list 60 242
3) # 2) with different rankings 24 139

4) # 2) with different top substitute 19 38

Table 1: Analysis on the context-dependency of the no-
tion of simplicity.

Although the proportion of pairs of contexts with
the same list of substitutes is very low (less than
5%), it is likely that there are many other occur-
rences of a target word with the same sense and
slightly different lists of substitutes. Further man-
ual inspection is necessary to determine the actual
numbers. Nevertheless, from the observed sample
it is possible to conclude that humans will, in fact,
rank the same set of words (with the same sense)
differently depending on the context (on an average
in 40-57% of the instances).

4 Evaluation metric

No standard metric has yet been defined for eval-
uating Lexical Simplification systems. Evaluating
such systems is a challenging problem due to the
aforementioned subjectivity of the task. Since this
is a ranking task, rank correlation metrics are desir-

able. However, metrics such as Spearman’s Rank
Correlation are not reliable on the limited number of
data points available for comparison on each rank-
ing (note that the nature of the problem enforces a
context-by-context ranking, as opposed to a global
score), Other metrics for localized, pairwise rank
correlation, such as Kendall’s Tau, disregard ties, –
which are important for our purposes – and are thus
not suitable.

The main evaluation metric proposed for this
shared task is in fact a measure of inter-annotator
agreement, which is used for both contrasting two
human annotators (Section 3.2) and contrasting a
system output to the average of human annotations
that together forms the gold-standard.

Out metric is based on the kappa index (Cohen,
1960) which in spite of many criticisms is widely
used for its simplicity and adaptability for different
applications. The generalized form of the kappa in-
dex is

κ =
P (A)− P (E)

1− P (E)

where P (A) denotes the proportion of times two
annotators agree and P (E) gives the probability of
agreement by chance between them.

In order to apply the kappa index for a ranking
task, we follow the method proposed by (Callison-
Burch et al., 2011) for measuring agreement over
judgments of translation quality. This method de-
fines P (A) and P (E) in such a way that it now
counts agreement whenever annotators concur upon
the order of pairwise ranks. Thus, if one annotator
ranked two given words 1 and 3, and the second an-
notator ranked them 3 and 7 respectively, they are
still in agreement. Formally, assume that two anno-
tators A1 and A2 rank two instance a and b. Then
P (A) = the proportion of times A1 and A2 agree
on a ranking, where an occurrence of agreement is
counted whenever rank(a < b) or rank(a = b) or
rank(a > b).
P (E) (the likelihood that annotators A1 and A2

agree by chance) is based upon the probability that
both of them assign the same ranking order to a and
b. Given that the probability of getting rank(a <
b) by any annotator is P (a < b), the probability
that both annotators get rank(a < b) is P (a < b)2

(agreement is achieved when A1 assigns a < b by
chance and A2 also assigns a < b). Similarly, the
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probability of chance agreement for rank(a = b)
and rank(a > b) are P (a = b)2 and P (a > b)2

respectively. Thus:

P (E) = P (a < b)2 + P (a = b)2 + P (a > b)2

However, the counts of rank(a < b) and
rank(a > b) are inextricably linked, since for any
particular case of a1 < b1, it follows that b1 >
a1, and thus the two counts must be incremented
equally. Therefore, over the entire space of ranked
pairs, the probabilities remain exactly the same. In
essence, after counting for P (a = b), the remaining
probability mass is equally split between P (a < b)
and P (a > b). Therefore:

P (a < b) = P (a > b) =
1− P (a = b)

2

Kappa is calculated for every pair of ranked items
for a given context, and then averaged to get an over-
all kappa score:

κ =

|N |∑
n=1

Pn(A)− Pn(E)

1− Pn(E)

|N |

where N is the total number of contexts, and Pn(A)
and Pn(E) are calculated based on counts extracted
from the data on the particular context n.

The functioning of this evaluation metric is illus-
trated by the following example:

Context: During the siege, George Robert-
son had appointed Shuja-ul-Mulk, who was a
_____ boy only 12 years old and the youngest
surviving son of Aman-ul-Mulk, as the ruler
of Chitral.
Gold: {intelligent} {clever} {smart} {bright}
System: {intelligent} {bright} {clever,
smart}

Out of the 6 distinct unordered pairs of lexical
items, system and gold agreed 3 times. Conse-
quently, Pn(A) = 3

6 . In addition, count(a =
b) = 1. Thus, Pn(a = b) = 1

12 . Which gives a
P (E) = 41

96 and the final kappa score for this partic-
ular context of 0.13.

The statistical significance of the results from two
systems A and B is measured using the method

of Approximate Randomization, which has been
shown to be a robust approach for several NLP tasks
(Noreen, 1989). The randomization is run 1, 000
times and if the p-value is ≤ 0.05 the difference be-
tween systems A and B is asserted as being statisti-
cally significance.

5 Baselines

We defined three baseline lexical simplification sys-
tems for this task, as follows.

L-Sub Gold: This baseline uses the gold-standard
annotations from the Lexical Substitution cor-
pus of SemEval-2007 as is. In other words, the
ranking is based on the goodness of fit of sub-
stitutes for a context, as judged by human anno-
tators. This method also serves to show that the
Lexical Substitution and Lexical Simplification
tasks are indeed different.

Random: This baseline provides a randomized or-
der of the substitutes for every context. The
process of randomization is such that is allows
the occurrence of ties.

Simple Freq.: This simple frequency baseline uses
the frequency of the substitutes as extracted
from the Google Web 1T Corpus (Brants and
Franz, 2006) to rank candidate substitutes
within each context.

The results in Table 2 show that the “L-Sub Gold”
and “Random” baselines perform very poorly on
both Trial and Test sets. In particular, the reason for
the poor scores for “L-Sub Gold” can be attributed
to the fact that it yields many ties, whereas the gold-
standard presents almost no ties. Our kappa met-
ric tends to penalize system outputs with too many
ties, since the probability of agreement by chance is
primarily computed on the basis of the number of
ties present in the two rankings being compared (see
Section 4).

The “Simple Freq.” baseline, on the other hand,
performs very strongly, in spite of its simplistic ap-
proach, which is entirely agnostic to context. In fact
it surpasses the average inter-annotator agreement
on both Trial and Test datasets. Indeed, the scores on
the Test set approach the best inter-annotator agree-
ment scores between any two annotators.
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Trial Test
L-Sub Gold 0.050 0.106

Random 0.016 0.012
Simple Freq. 0.397 0.471

Table 2: Baseline kappa scores on trial and test sets

6 Results and Discussion

6.1 Participants
Five sites submitted one or more systems to the task,
totaling nine systems:

ANNLOR-lmbing: This system (Ligozat et al.,
2012) relies on language models probabili-
ties, and builds on the principle of the Sim-
ple Frequency baseline. While the baseline
uses Google n-grams to rank substitutes, this
approach uses Microsoft Web n-grams in the
same way. Additionally characteristics, such
as the contexts of each term to be substituted,
were integrated into the system. Microsoft Web
N-gram Service was used to obtain log likeli-
hood probabilities for text units, composed of
the lexical item and 4 words to the left and right
from the surrounding context.

ANNLOR-simple: The system (Ligozat et al.,
2012) is based on Simple English Wikipedia
frequencies, with the motivation that the lan-
guage used in this version of Wikipedia is
targeted towards people who are not first-
language English speakers. Word n-grams (n =
1-3) and their frequencies were extracted from
this corpus using the Text-NSP Perl module
and a ranking of the possible substitutes of a
target word according to these frequencies in
descending order was produced.

EMNLPCPH-ORD1: The system performs a se-
ries of pairwise comparisons between candi-
dates. A binary classifier is learned purpose
using the Trial dataset and artificial unlabeled
data extracted based on Wordnet and a corpus
in a semi-supervised fashion. A co-training
procedure that lets each classifier increase the
other classifier’s training set with selected in-
stances from the unlabeled dataset is used. The
features include word and character n-gram

probabilities of candidates and contexts using
web corpora, distributional differences of can-
didate in a corpus of “easy” sentences and a
corpus of normal sentences, syntactic complex-
ity of documents that are similar to the given
context, candidate length, and letter-wise rec-
ognizability of candidate as measured by a tri-
gram LM. The first feature sets for co-training
combines the syntactic complexity, character
trigram LM and basic word length features, re-
sulting in 29 features against the remaining 21.

EMNLPCPH-ORD2: This is a variant of the
EMNLPCPH-ORD1 system where the first fea-
ture set pools all syntactic complexity fea-
tures and Wikipedia-based features (28 fea-
tures) against all the remaining 22 features in
the second group.

SB-mmSystem: The approach (Amoia and Ro-
manelli, 2012) builds on the baseline defini-
tion of simplicity using word frequencies but
attempt at defining a more linguistically mo-
tivated notion of simplicity based on lexical
semantics considerations. It adopts different
strategies depending on the syntactic complex-
ity of the substitute. For one-word substitutes
or common collocations, the system uses its
frequency from Wordnet as a metric. In the
case of multi-words substitutes the system uses
“relevance” rules that apply (de)compositional
semantic criteria and attempts to identify a
unique content word in the substitute that might
better approximate the whole expression. The
expression is then assigned the frequency asso-
ciated to this content word for the ranking. Af-
ter POS tagging and sense disambiguating all
substitutes, hand-written rules are used to de-
compose the meaning of a complex phrase and
identify the most relevant word conveying the
semantics of the whole.

UNT-SimpRank: The system (Sinha, 2012) uses
external resources, including the Simple En-
glish Wikipedia corpus, a set of Spoken En-
glish dialogues, transcribed into machine read-
able form, WordNet, and unigram frequencies
(Google Web1T data). SimpRank scores each
substitute by a sum of its unigram frequency, its
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frequency in the Simple English Wikipedia, its
frequency in the spoken corpus, the inverse of
its length, and the number of senses the sub-
stitute has in WordNet. For a given context,
the substitutes are then reverse-ranked based on
their simplicity scores.

UNT-SimpRankLight: This is a variant of Sim-
pRank which does not use unigram frequen-
cies. The goal of this system is to check
whether a memory and time-intensive and non-
free resource such as the Web1T corpus makes
a difference over other free and lightweight re-
sources.

UNT-SaLSA: The only resource SaLSA depends
on is the Web1T data, and in particular only
3-grams from this corpus. It leverages the con-
text provided with the dataset by replacing the
target placeholder one by one with each of the
substitutes and their inflections thus building
sets of 3-grams for each substitute in a given
instance. The score of any substitute is then the
sum of the 3-gram frequencies of all the gener-
ated 3-grams for that substitute.

UOW-SHEF-SimpLex: The system (Jauhar and
Specia, 2012) uses a linear weighted ranking
function composed of three features to pro-
duce a ranking. These include a context sen-
sitive n-gram frequency model, a bag-of-words
model and a feature composed of simplicity
oriented psycholinguistic features. These three
features are combined using an SVM ranker
that is trained and tuned on the Trial dataset.

6.2 Pairwise kappa

The official task results and the ranking of the sys-
tems are shown in Table 3.

Firstly, it is worthwhile to note that all the top
ranking systems include features that use frequency
as a surrogate measure for lexical simplicity. This
indicates a very high correlation between distribu-
tional frequency of a given word and its perceived
complexity level. Additionally, the top two systems
involve context-dependent and context-independent
features, thus supporting our hypothesis of the com-
posite nature of the lexical simplification problem.

Rank Team - System Kappa
1 UOW-SHEF-SimpLex 0.496

2
UNT-SimpRank 0.471

Baseline-Simple Freq. 0.471
ANNLOR-simple 0.465

3 UNT-SimpRankL 0.449
4 EMNLPCPH-ORD1 0.405
5 EMNLPCPH-ORD2 0.393
6 SB-mmSystem 0.289
7 ANNLOR-lmbing 0.199
8 Baseline-L-Sub Gold 0.106
9 Baseline-Random 0.013

10 UNT-SaLSA -0.082

Table 3: Official results and ranking according to the pair-
wise kappa metric. Systems are ranked together when the
difference in their kappa score is not statistically signifi-
cant.

Few of the systems opted to use some form of
supervised learning for the task, due to the limited
number of training examples given. As pointed out
by some participants who checked learning curves
for their systems, the performance is likely to im-
prove with larger training sets. Without enough
training data, context agnostic approaches such as
the “Simple Freq.” baseline become very hard to
beat.

We speculate that the reason why the effects of
context-aware approaches are somewhat mitigated is
because of the isolated setup of the shared task. In
practice, humans produce language at an even level
of complexity, i.e. consistently simple, or consis-
tently complex. In the shared task’s setup, systems
are expected to simplify a single target word in a
context, ignoring the possibility that sometimes sim-
ple words may not be contextually associated with
complex surrounding words. This not only explains
why context-aware approaches are less successful
than was originally expected, but also gives a reason
for the good performance of context-agnostic sys-
tems.

6.3 Recall and top-rank

As previously noted, the primary evaluation met-
ric is very susceptible to penalize slight changes,
making it overly pessimistic about systems’ perfor-
mance. Hence, while it may be an efficient way to
compare and rank systems within the framework of
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a shared task, it may be unnecessarily devaluing the
practical viability of approaches. We performed two
post hoc evaluations that assess system output from
a practical point of view. We check how well the
top-ranked substitute, i.e., the simplest substitute ac-
cording to a given system (which is most likely to
be used in a real simplification task) compares to the
top-ranked candidate from the gold standard. This is
reported in the TRnk column of Table 4: the percent-
age of contexts in which the intersection between the
simplest substitute set from a system’s output and
the gold standard contained at least one element.
We note that while ties are virtually inexistent in the
gold standard data, ties in the system output can af-
fect this metric: a system that naively predicts all
substitutes as the simplest (i.e., a single tie includ-
ing all candidates) will score 100% in this metric.

We also measured the “recall-at-n" values for 1 ≤
n ≤ 3, which gives the ratio of candidates from the
top n substitute sets to those from the gold-standard.
For a given n, we only consider contexts that have
at least n+1 candidates in the gold-standard (so that
there is some ranking to be done). Table 4 shows the
results of this additional analysis.

Team - System TRnk n=1 n=2 n=3
UOW-SHEF-SimpLex 0.602 0.575 0.689 0.769

UNT-SimpRank 0.585 0.559 0.681 0.760
Baseline-Simple Freq. 0.585 0.559 0.681 0.760

ANNLOR-simple 0.564 0.538 0.674 0.768
UNT-SimpRankL 0.567 0.541 0.674 0.753

EMNLPCPH-ORD1 0.539 0.513 0.645 0.727
EMNLPCPH-ORD2 0.530 0.503 0.637 0.722

SB-mmSystem 0.477 0.452 0.632 0.748
ANNLOR-lmbing 0.336 0.316 0.494 0.647

Baseline-L-Sub Gold 0.454 0.427 0.667 0.959
Baseline-Random 0.340 0.321 0.612 0.825

UNT-SaLSA 0.146 0.137 0.364 0.532

Table 4: Additional results according to the top-rank
(TRnk) and recall-at-n metrics.

These evaluation metrics favour systems that pro-
duce many ties. Consequently the baselines “L-Sub
Gold" and “Random" yield overly high scores for
recall-at-n for n=2 and n= 3. Nevertheless the rest
of the results are by and large consistent with the
rankings from the kappa metric.

The results for recall-at-2, e.g., show that most
systems, on average 70% of the time, are able to

find the simplest 2 substitute sets that correspond
to the gold standard. This indicates that most ap-
proaches are reasonably good at distinguishing very
simple substitutes from very complex ones, and that
the top few substitutes will most often produce ef-
fective simplifications.

These results correspond to our experience from
the comparison of human annotators, who are easily
able to form clusters of simplicity with high agree-
ment, but who strongly disagree (based on personal
biases towards perceptions of lexical simplicity) on
the internal rankings of these clusters.

7 Conclusions

We have presented the organization and findings of
the first English Lexical Simplification shared task.
This was a first attempt at garnering interest in the
NLP community for research focused on the lexical
aspects of Text Simplification.

Our analysis has shown that there is a very strong
relation between distributional frequency of words
and their perceived simplicity. The best systems on
the shared task were those that relied on this asso-
ciation, and integrated both context-dependent and
context-independent features. Further analysis re-
vealed that while context-dependent features are im-
portant in principle, their applied efficacy is some-
what lessened due to the setup of the shared task,
which treats simplification as an isolated problem.

Future work would involve evaluating the im-
portance of context for lexical simplification in the
scope of a simultaneous simplification to all the
words in a context. In addition, the annotation of
the gold-standard datasets could be re-done taking
into consideration some of the features that are now
known to have clearly influenced the large variance
observed in the rankings of different annotators,
such as their background language and the educa-
tion level. One option would be to select annotators
that conform a specific instantiation of these fea-
tures. This should result in a higher inter-annotator
agreement and hence a simpler task for simplifica-
tion systems.
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Abstract

Up to now, work on semantic relations has fo-

cused on relation classification: recognizing

whether a given instance (a word pair such as

virus:flu) belongs to a specific relation class

(such as CAUSE:EFFECT). However, instances

of a single relation class may still have signif-

icant variability in how characteristic they are

of that class. We present a new SemEval task

based on identifying the degree of prototypi-

cality for instances within a given class. As

a part of the task, we have assembled the first

dataset of graded relational similarity ratings

across 79 relation categories. Three teams

submitted six systems, which were evaluated

using two methods.

1 Introduction

Relational similarity measures the degree of corre-

spondence between two relations, where instance

pairs that have high relational similarity are said to

be analogous, i.e., to express the same relation (Tur-

ney, 2006). However, a class of analogous relations

may still have significant variability in the degree of

relational similarity of its members. Consider the

four word pairs dog:bark, cat:meow, floor:squeak,

and car:honk. We could say that these four X:Y

pairs are all instances of the semantic relation EN-

TITY:SOUND; that is, X is an entity that character-

istically makes the sound Y . Within a class of anal-

ogous pairs, certain pairs are more characteristic of

the relation. For example, many would agree that

dog:bark and cat:meow are better prototypes of the

ENTITY:SOUND relation than floor:squeak. Our task

requires automatic systems to quantify the degree of

prototypicality of a target pair by measuring the re-

lational similarity between it and pairs that are given

as defining examples of a particular relation.

So far, most work in semantic relations has fo-

cused on differences between relation categories for

classifying new relation instances. Past SemEval

tasks that use relations have focused largely on dis-

crete classification (Girju et al., 2007; Hendrickx et

al., 2010) and paraphrasing the relations connecting

noun compounds with a verb (Butnariu et al., 2010),

which is also a form of discrete classification due to

the lack of continuous degrees. However, there is

some loss of information in any discrete classifica-

tion of semantic relations. Furthermore, while some

discrete classifiers provide a degree of confidence or

probability for a relation classification, there is no

a priori reason that such values would correspond

to human prototypicality judgments. Our proposed

task is distinct from these past tasks in that we fo-

cus on measuring the degree of relational similarity.1

A graded measure of the degree of relational simi-

larity would tell us that dog:bark is more similar to

cat:meow than to floor:squeak. The discrete classifi-

cation ENTITY:SOUND drops this information.

Systems that are successful at identifying degrees

of relation similarity can have a significant impact

where an application must choose between multi-

ple instances of the same relation. We illustrate

this with two examples. First, consider a rela-

tional search task (Cafarella et al., 2006). A user

of a relational search engine might give the query,

1Task details and data are available at

https://sites.google.com/site/semeval2012task2/ .
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Subcategory Relation name Relation schema Paradigms Responses

8(e) AGENT:GOAL “Y is the goal of X” pilgrim:shrine patient:health

assassin:death runner:finish

climber:peak astronaut:space

5(e) OBJECT:TYPICAL ACTION “an X will typically Y ” glass:break ice:melt

soldier:fight lion:roar

juggernaut:crush knife:stab

4(h) DEFECTIVE “an X is is a defect in Y ” fallacy:logic pimple:skin

astigmatism:sight ignorance:learning

limp:walk tumor:body

Table 1: Examples of the three manually selected paradigms and the corresponding pairs generated by Turkers.

“List all things that are part of a car.” SemEval-

2007 Task 4 proposed that a relational search engine

would use semantic relation classification to answer

queries like this one. For this query, a classifier that

was trained with the relation PART:WHOLE would be

used. However, a system for measuring degrees of

relational similarity would be better suited to rela-

tional search than a discrete classifier, because the

relational search engine could then rank the output

list in order of applicability. For the same query, the

search engine could rank each item X in descending

order of the degree of relational similarity between

X:car and a training set of prototypical examples of

the relation PART:WHOLE. This would be analogous

to how standard search engines rank documents or

web pages in descending order of relevance to the

user’s query.

As a second example, consider the role of rela-

tional similarity in analogical transfer. When faced

with a new situation, we look for an analogous sit-

uation in our past experience, and we use analogi-

cal inference to transfer information from the past

experience (the source domain) to the new situation

(the target domain) (Gentner, 1983; Holyoak, 2012).

Analogy is based on relational similarity (Gentner,

1983; Turney, 2008). The degree of relational sim-

ilarity in an analogy is indicative of the likelihood

that transferred knowledge will be applicable in the

target domain. For example, past experience tells us

that a dog barks to send a signal to other creatures. If

we transfer this knowledge to a new experience with

a cat meowing, we can predict that the cat is sending

a signal, and we can act appropriately with that pre-

diction. If we transfer this knowledge to a new expe-

rience with a floor squeaking, we might predict that

the floor is sending a signal, which might lead us to

act inappropriately. If we have a choice among sev-

eral source analogies, usually the source pair with

the highest degree of relational similarity to the tar-

get pair will prove to be the most useful analogy in

the target domain, providing practical benefits be-

yond discrete relational classification.

2 Task Description

Here, we describe our task and the two-level hierar-

chy of semantic relation classes used for the task.

2.1 Objective

Our task is to rate word pairs by the degree to

which they are prototypical members of a given re-

lation class. The relation class is specified by a

few paradigmatic (highly prototypical) examples of

word pairs that belong to the class and also by a

schematic representation of the relation class. The

task requires comparing a word pair to the paradig-

matic examples and/or the schematic representation.

For example, suppose the relation class is REVERSE.

We may specify this class by the paradigmatic ex-

amples attack:defend, buy:sell, love:hate, and the

schematic representation “X is the reverse act of

Y ” or “X may be undone by Y .” Given a pair

such as repair:break, we compare this pair to the

paradigmatic examples and/or the schematic repre-

sentation, in order to estimate its degree of prototyp-

icality. The challenges are (1) to infer the relation

from the paradigmatic examples and identify what

relational or featural attributes best characterize that

relation, and (2) to identify the relation of the given

pair and rate how similar it is to that shared by the

paradigmatic examples.
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2.2 Relation Categories

Researchers in psychology and linguistics have con-

sidered many different categorizations of semantic

relations. The particular relation categorization is

often driven by both the type of data and the in-

tended application. Nastase and Szpakowicz (2003)

propose a two-level hierarchy for noun-modifier re-

lations, which has been widely used (Nakov and

Hearst, 2008; Nastase et al., 2006; Turney and

Littman, 2005; Turney, 2005). Others have used

classifications based on the requirements for a spe-

cific task, such as Information Extraction (Pantel

and Pennacchiotti, 2006) or biomedical applications

(Stephens et al., 2001).

We adopt the relation classification scheme of Be-

jar et al. (1991), which includes ten high-level cat-

egories (e.g., CAUSE-PURPOSE and SPACE-TIME).

Each category has between five and ten more re-

fined subcategories (e.g., CAUSE-PURPOSE includes

CAUSE:EFFECT and ACTION:GOAL), for a total of

79 distinct subcategories. Although these cate-

gories do not reflect all possible semantic rela-

tions, they greatly expand the coverage of rela-

tion types from those used in past relation-based

SemEval tasks (Girju et al., 2007; Hendrickx et

al., 2010), which used only seven and nine re-

lation types, respectively. Furthermore, the clas-

sification includes many of the fundamental rela-

tions, e.g., TAXONOMIC and PART:WHOLE, while

also including relations between a variety of parts

of speech and less common relations, such as REF-

ERENCE (e.g., SIGN:SIGNIFICANT) and NONAT-

TRIBUTE (e.g., AGENT:ATYPICAL ACTION). Using

such a large relation class inventory enables evalu-

ating the generality of an approach, while still mea-

suring performance on commonly used relations.

3 Task Data

We constructed a new data set for the task, in which

word pairs are manually classified into relation cat-

egories. Word pairs within a category are manually

distinguished according to how well they represent

the category; that is, the degree to which they are

relationally similar to paradigmatic members of the

given semantic relation class. Paradigmatic mem-

bers of a class were taken from examples provided

by Bejar et al. (1991). Due to the large number of

Question 1: Consider the following word pairs: pil-

grim:shrine, hunter:quarry, assassin:victim, climber:peak.

What relation best describes these X:Y word pairs?

(1) “X worships/reveres Y ”

(2) “X seeks/desires/aims for Y ”

(3) “X harms/destroys Y ”

(4) “X uses/exploits/employs Y ”

Question 2: Consider the following word pairs: pil-

grim:shrine, hunter:quarry, assassin:victim, climber:peak.

These X:Y pairs share a relation, “X R Y ”. Give four ad-

ditional word pairs that illustrate the same relation, in the

same order (X on the left, Y on the right). Please do not

use phrases composed of two or more words in your ex-

amples (e.g., “racing car”). Please do not use names of

people, places, or things in your examples (e.g., “Europe”,

“Kleenex”).

(1) :

(2) :

(3) :

(4) :

Figure 1: An example of the two questions for Phase 1.

annotations needed, we used Amazon Mechanical

Turk (MTurk),2 which is a popular choice in com-

putational linguistics for gathering large numbers of

human responses to linguistic questions (Snow et al.,

2008; Mohammad and Turney, 2010). We refer to

the MTurk workers as Turkers.

The data set was built in two phases. In the first

phase, Turkers were given three paradigmatic exam-

ples of a subcategory and asked to create new pairs

that instantiate the same relation as the paradigms.

In the second phase, people were asked to distin-

guish the new pairs from the first phase according to

the degree to which they are good representatives of

the given subcategory.

Phase 1 In the first phase, we built upon the

paradigmatic examples of Bejar et al. (1991), who

provided one to ten examples for each subcategory.

From these examples, we manually selected three

instances to use as seeds for generating new exam-

ples, adding examples when a subcategory had less

than three. The examples were selected to be bal-

anced across topic domains so as not to bias the

Turkers. For each subcategory, we manually created

a schematic representation of the relation for the ex-

amples. Table 1 gives three examples.

2https://www.mturk.com/
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To gather new examples of each subcategory,

a two-part questionnaire was presented to Turk-

ers (see Figure 1). In the first part, Turkers were

shown the three paradigm word pairs for a sub-

category along with a list of four relation descrip-

tions (schematic representations of possible rela-

tions). One of the four schematic representations

accurately described the three paradigm pairs and

the other three schematics were distractors (con-

founding descriptions). Turkers were asked to se-

lect which of the four schematic representations best

matched the paradigms. The first part of the ques-

tionnaire serves as quality control by ensuring that

the Turker is capable of recognizing the relation. An

incorrect answer to the question is used to recog-

nize and eliminate confused or negligent responses,

which were approximately 7% of the responses.

In the second part of the Phase 1 questionnaire,

Turkers were shown the three prototypes again and

asked to generate four word pairs that expressed the

same relation. Turkers were directed to be mindful

of the order of the words in each pair, as reversed

orderings can have very different degrees of proto-

typicality in the case of directional relations.

The Turkers provided a total of 3160 additional

examples for the 79 subcategories, 2905 of which

were unique. We applied minor manual correction

to remove spelling errors, which reduced the total

number of examples to 2823. A median of 38 exam-

ples were found per subcategory with a maximum of

40 and minimum of 23. We note that Phase 1 gathers

both high and low quality examples of the relation,

which were all included to capture different degrees

of prototypicality.

We included an additional 395 pairs by randomly

sampling five instances of each subcategory and

creating a new pair from the reversed arguments,

i.e., adding pair Y :X to the subcategory contain-

ing X:Y . Adding reversals was inspired by an ob-

servation during Phase 1 that reversed pairs would

occasionally be added by the Turkers themselves.

We were curious to see what impact reversals would

have on Turker responses and on the output of au-

tomatic systems. Reversals should reveal order sen-

sitivity with a strongly directional relation, such as

PART:WHOLE, but also perhaps there is order sensi-

tivity with more symmetric relations, such as SYN-

ONYMY. Phase 1 produced a total of 3218 pairs.

Question 1: Consider the following word pairs: pil-

grim:shrine, hunter:quarry, assassin:victim, climber:peak.

What relation best describes these X:Y word pairs?

(1) “X worships/reveres Y ”

(2) “X seeks/desires/aims for Y ”

(3) “X harms/destroys Y ”

(4) “X uses/exploits/employs Y ”

Question 2: Consider the following word pairs: pil-

grim:shrine, hunter:quarry, assassin:victim, climber:peak.

These X:Y pairs share a relation, “X R Y ”. Now consider

the following word pairs:

(1) pig:mud

(2) politician:votes

(3) dog:bone

(4) bird:worm

Which of the above numbered word pairs is the MOST illus-

trative example of the same relation “X R Y ”?

Which of the above numbered word pairs is the LEAST illus-

trative example of the same relation “X R Y ”?

Note: In some cases, a word pair might be in reverse order.

For example, tree:forest is in reverse order for the relation

“X is made from a collection of Y ”. The correct order would

be forest:tree; a forest is made from a collection of trees.

You should treat reversed pairs as BAD examples of the given

relation.

Figure 2: An example of the two questions for Phase 2.

Phase 2 In the second phase, the response pairs

from Phase 1 were ranked according to their pro-

totypicality. We opted to create a ranking using

MaxDiff questions (Louviere, 1991). MaxDiff is a

choice procedure consisting of a question about a

target concept and four or five alternatives. A partic-

ipant must choose both the best and worse answers

from the given alternatives.

MaxDiff is a strong alternative to creating a rank-

ing from standard rating scales, such as the Likert

scale, because it avoids scale biases. Furthermore

MaxDiff is more efficient than other choice proce-

dures such as pairwise comparison, because it does

not require comparing all pairs.

Like Phase 1, Phase 2 was performed using a two-

part questionnaire. The first question was identical

to that of Phase 1: four examples of the same re-

lation subcategory generated in Phase 1 were pre-

sented and the Turker was asked to select the cor-

rect relation from a list of four options. This first

question served as a quality control measure for en-

suring the Turker could properly identify the rela-

tion in question and it also served as a hint, guiding
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the Turker toward the intended understanding of the

shared relation underlying the three paradigms. In

the second part, the Turker selects the most and least

illustrative example of that relation from among

the four examples of pairs generated by Turkers in

Phase 1.

We aimed for five Turker responses for each

MaxDiff question but averaged 4.73 responses for

each MaxDiff question in a subcategory, with a

minimum of 3.45 responses per MaxDiff question.

Turkers answered a total of 48,846 questions over a

period of five months, of which 6,536 (13%) were

rejected due to a missing answer or an incorrect re-

sponse to the first question.

3.1 Measuring Prototypicality

The MaxDiff responses were converted into the

prototypicality scores using a counting procedure

(Orme, 2009). For each word pair, the prototyp-

icality is scored as the percentage of times it is

chosen as most illustrative minus the percentage of

times it is chosen as least illustrative (see Figure 2).

While methods such as hierarchical Bayes models

can be used to compute a numerical rank from the

responses, we found the counting method to produce

very reasonable results.

3.2 Data Sets

The 79 subcategories were divided into training

and testing segments. Ten subcategories were pro-

vided as training with both the Turkers’ MaxDiff

responses and the computed prototypicality ratings.

The ten training subcategories were randomly se-

lected. The remaining 69 subcategories were used

for testing. All data sets are now released on the task

website under the Creative Commons 3.0 license.3

Participants were given the list of all pairs gath-

ered in Phase 1 and the Phase 2 responses for the 10

training subcategories. Phase 2 responses for the 69

test categories were not made available. Participants

also had access to the set of questionnaire materials

provided to the Turkers, the full list of paradigmatic

examples provided by Bejar et al. (1991), and the

confounding schema relations from the initial ques-

tions in Phase 1 and Phase 2, which might serve as

negative training examples.

3http://creativecommons.org/licenses/by/3.0/

4 Evaluation

Systems are given examples of pairs from a single

category and asked to provide numeric ratings of the

degree of relational similarity for each pair relative

to the relation expressed in that category.

4.1 Scoring

Spearman’s rank correlation coefficient, ρ, and a

MaxDiff score were used to evaluate the systems.

For Spearman’s ρ, the prototypicality rating of each

pair is used to build a ranking of all pairs in a sub-

category. Spearman’s ρ is then computed between

the pair rankings of a system and the gold standard

ranking. This evaluation abstracts away from com-

paring the numeric values so that only their relative

ordering in prototypicality is measured.

In the second scoring procedure, we measure the

accuracy of a system at answering the same set of

MaxDiff questions as answered by the Turkers in

Phase 2 (see Figure 2). Given the four word pairs,

the system selects the pair with the lowest numeri-

cal rating as least illustrative and the pair with the

highest numerical rating as most illustrative. Ties

in prototypicality are broken arbitrarily. Accuracy is

measured as the percentage of questions answered

correctly. An answer is considered correct when it

agrees with the majority of the Turkers. In some

cases, two answers may be considered correct. For

example, when five Turkers answer a given MaxD-

iff question, two Turkers might choose one pair as

the most illustrative and two other Turkers might

choose another pair as the most illustrative. In this

case, both pairs would count as correct choices for

the most illustrative pair.

4.2 Baselines

We consider two baselines for evaluation: Random

and PMI. The Random baseline rates each pair in a

subcategory randomly. The expected Spearman cor-

relation for Random ratings is zero. The expected

MaxDiff score for Random ratings would be 25%

(because there are four word pairs to choose from

in Phase 2) if there were always a unique majority,

but it is actually about 31%, due to cases where two

pairs both get two votes from the Turkers.

Given a MaxDiff question, a Turker might select

the pair whose words are most strongly associated
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Team Members System Description

Benemérita

Universidad

Autónoma de

Puebla (México)

(BUAP)

Mireya T. Vidal,

Darnes V. Ayala,

Jose A.R. Ortiz,

Azucena M.

Rendon,

David Pinto, and

Saul L. Silverio

BUAP Each pair is represented as a vector over multiple features: lexical,

intervening words, WordNet relations between the pair, and syntactic

features such as part of speech and morphology. Prototypicality is

based on cosine similarity with the class’s pairs.

University of Texas at

Dallas (UTD)

Bryan Rink and

Sanda Harabagiu

NB Unsupervised learning identifies intervening patterns between all word

pairs. Each pattern is then ranked according to its subcategory

specificity by learning a generative model from patterns to word pairs.

Prototypicality ratings are based on confidence that the highest scoring

pattern found for a pair belongs to the subcategory.

SVM Intervening patterns are found using the same method as UTD-NB.

Word pairs are then represented as feature vectors of matching

patterns. An SVM classifier is trained using a subcategory’s pairs as

positive training data and all other pairs as negative. Prototypicality

ratings are based on SVM confidence of class inclusion.

University of

Minnesota, Duluth

(Duluth)

Ted Pedersen V0 WordNet is used to build the set of concepts connected by WordNet

relations to the pairs’ words. Prototypicality is estimated using the

vector similarity of the concatenated glosses.

V1 Same procedure as V0, with one further expansion to related concepts.

V2 Same procedure as V0, with two further expansions to related concepts.

Table 2: Descriptions of the participating teams and systems.

as the most illustrative and the least associated as

the least illustrative. Therefore, we propose a sec-

ond baseline where pairs are rated according to their

Pointwise Mutual Information (PMI) (Church and

Hanks, 1990), which measures the statistical asso-

ciation between two words. For this baseline, the

prototypicality rating given to a word pair is simply

the PMI score for the pair. For two terms x and y,

PMI(x, y) is defined as log2

(

p(x,y)
p(x)p(y)

)

where p(·)

denotes the probability of a term or pair of terms.

The PMI score was calculated using the method of

Turney (2001) on a corpus of approximately 50 bil-

lion tokens, indexed by the Wumpus search engine.4

To calculate p(x, y), we recorded all co-occurrences

of both terms within a ten-word window.

5 Systems

Three teams submitted six systems for evaluation.

Table 2 summarizes the teams and systems. Two

teams (BUAP and UTD) based their approaches on

discovering relation-specific patterns for each cat-

egory, while the third team (Duluth) used vector

space comparisons of the glosses related to the pairs.

4http://www.wumpus-search.org/

No single system was able to achieve superior per-

formance on all subcategories. Table 3 reports the

averages across all subcategories for Spearman’s ρ

and MaxDiff accuracy. Five systems were able to

perform above the Random baseline, while only one

system, UTD-NB, consistently performed above the

PMI baseline.

However, the average performance masks supe-

rior performance on individual subcategories. Ta-

ble 3 also reports the number of subcategories in

which a system obtained a statistically significant

Spearman’s ρ with the gold standard ranking. De-

spite the low average performance, most models

were able to obtain significant correlation in multi-

ple subcategories. Furthermore, the significant cor-

relations for different systems were not always ob-

tained in the same subcategories. Across all subcat-

egories, 43 had a significant correlation at p < 0.05
and 27 at p < 0.01. The broad coverage of signifi-

cantly correlated subcategories spanned by the com-

bination of all systems and the PMI baseline sug-

gests that high performance on this task may be pos-

sible, but that adapting to each of the specific rela-

tion types may be very beneficial.
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Team System Spearman’s ρ # of Subcategories MaxDiff

p < 0.05 p < 0.01

BUAP BUAP 0.014 2 0 31.7

UTD NB 0.229 22 16 39.4

SVM 0.116 11 5 34.7

Duluth V0 0.050 9 3 32.4

V1 0.039 10 4 31.5

V2 0.038 7 3 31.1

Baselines Random 0.018 4 0 31.2

PMI 0.112 15 7 33.9

Table 3: Average Spearman’s ρ and MaxDiff scores for all system across all 69 test subcategories. Columns 4 and 5

denote the number of subcategories with a Spearman’s ρ that is statistically significant at the noted level of confidence.

Relation Class Random PMI BUAP UTD-NB UTD-SVM Duluth-V0 Duluth-V1 Duluth-V2

Class-Inclusion 0.057 0.221 0.064 0.233 0.093 0.045 0.178 0.168

Part-Whole 0.012 0.144 0.066 0.252 0.142 -0.061 -0.084 -0.054

Similar 0.026 0.094 -0.036 0.214 0.131 0.183 0.208 0.198

Contrast -0.049 0.032 0.000 0.206 0.162 0.142 0.120 0.051

Attribute 0.037 -0.032 -0.095 0.158 0.052 0.044 -0.003 0.008

Non-Attribute -0.070 0.191 0.009 0.098 0.094 0.079 0.066 0.074

Case Relations 0.090 0.168 -0.037 0.241 0.187 -0.011 -0.068 -0.115

Cause-Purpose -0.011 0.130 0.114 0.183 0.060 0.021 0.022 0.042

Space-Time 0.013 0.084 0.035 0.375 0.139 0.055 -0.004 0.040

Reference 0.142 0.125 -0.001 0.346 0.082 0.028 0.074 0.067

Table 4: Average Spearman’s ρ correlation with the Turker rankings in each of the high-level relation categories, with

the highest average correlation for each subcategory shown in bold.

6 Discussion

Sensitivity to Pair Association The PMI base-

line performed much better than anticipated, outper-

forming all systems but UTD-NB on many of the

subcategories, despite treating all relations as direc-

tionless. Performance was highest in subcategories

where the X:Y pair might reasonably be expected

to occur together, e.g., FUNCTIONAL or CONTRA-

DICTORY. However, PMI benefits from the design

of our task, which focuses on rating pairs within a

given subcategory. In a different task that mixed

pairs from a variety of subcategories, PMI would

perform poorly, because it would assign high scores

to pairs of strongly associated words, regardless of

whether they belong to a given subcategory.

Difficulty of Specific Subcategories Performance

across the high-level categories was highly varied

between approaches. The category-level summary

shown in Table 4 reveals high-level trends in diffi-

culty across all submitted systems. The submitted

systems performed best for subcategories under the

Similar category, while the systems performed worst

for Non-Attribute subcategories.

As a further possibility of explaining performance

differences between subcategories, we considered

the hypothesis that the difficulty of a subcategory is

inversely proportional to the range of prototypicality

scores, i.e., subcategories with restricted ranges are

more difficult. However, we found that the difficulty

was uncorrelated with both the size of the interval

spanned by prototypicality scores and the standard

deviation of the scores.

Sensitivity to Argument Reversal The direction-

ality of a relation can significantly impact the rated

prototypicality of a pair whose arguments have been

reversed. As an approximate measure of the ef-

fect on prototypicality when a pairs’ arguments are

reversed, we calculated the expected drop in rank
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Spearman’s ρ

Team System No Reversals With Reversals

BUAP BUAP -0.003 0.014

UTD NB 0.190 0.229

SVM 0.104 0.116

Duluth V0 0.062 0.050

V1 0.040 0.039

V2 0.046 0.038

Baselines Random 0.004 0.018

PMI 0.143 0.112

Table 5: Average pair ranking correlation for all subcate-

gories when reversed pairs are included and excluded.

between a pair and its reversed form. Based on

the Turker rankings, the SEQUENCE (e.g., preg-

nancy:birth) and FUNCTIONAL (e.g., weapon:knife)

subcategories exhibited the strongest sensitivity to

argument reversal, while ATTRIBUTE SIMILARITY

(e.g., rake:fork) and CONTRARY (e.g., happy:sad)

exhibited the least.

The inclusion of reversed pairs potentially adds

a small amount of noise to the relation identifica-

tion process for subcategories with directional rela-

tions. Two teams, BUAP and UTD, accounted for

relation directionality, while Duluth did not, which

resulted in the Duluth systems ranking reversed pairs

the same. Therefore, we conducted a post-hoc anal-

ysis of the impact of reversals by removing the re-

versed pairs from the computed prototypicality rank-

ings. Table 5 reports the resulting Spearman’s ρ.

With Spearman’s ρ, we can easily evaluate the im-

pact of the reversals, because we can delete a re-

versed pair without affecting anything else. For the

MaxDiff questions, if there is one reversal in a group

of four choices, then we need to delete the whole

MaxDiff question. Therefore we do not include the

MaxDiff score in Table 5.

Removing reversals decreased performance in the

three systems that were sensitive to pair order-

ing (BUAP, UTD-NB, and UTD-SVM), while only

marginally increasing performance in the three sys-

tems that ignored the ordering. The performance de-

crease in systems that use ordering suggests that the

reversed pairs are easily identified and ranked ap-

propriately low. As a further estimate of the models’

ability to correctly order reversals, we compared the

difference in a reversal’s rank for both a system’s

Team System RMSE

BUAP BUAP 256.07

UT Dallas NB 257.15

SVM 209.95

Baseline Random 227.25

Table 6: RMSE in estimating the difference in rank be-

tween a pair and its reversal in the gold standard.

ranking and the ranking computed from Turker Re-

sponses. Table 6 reports the Root Mean Squared

Error (RMSE) in ranking difference for the three

systems that took argument order into account. Al-

though not the best performing system, Table 6 indi-

cates that the UTD-SVM system was most able to

appropriately weight reversals’ prototypicality. In

contrast, the UTD-NB system often had many pairs

tied for the lowest rank, which either resulted in pair

and its reversal being tied or having a much smaller

rank difference, thereby increasing its RMSE.

7 Conclusions

We have introduced a new task focused on rating the

degrees of prototypicality for word pairs sharing the

same relation. Participants first identify the relation

shared between example pairs and then rate the de-

gree to which each pair expresses that relation. As

a part of the task, we constructed a dataset of proto-

typicality ratings for 3218 word pairs in 79 different

relation categories.

Participating systems used combinations of

corpus-based, syntactic, and WordNet features, with

varying degrees of success. The task also included a

competitive baseline, PMI, which surpassed all but

one system. Several models obtained moderate per-

formance in select relation subcategories, but no one

approach succeeded in general, which introduces

much opportunity for future improvement. We also

hope that both the example pairs and their prototyp-

icality ratings will be a valuable data set for future

research in Linguistics as well as Cognitive Psychol-

ogy. All data sets for this task have been made pub-

licly available on the task website.
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Abstract

This SemEval2012 shared task is based on a
recently introduced spatial annotation scheme
called Spatial Role Labeling. The Spatial Role
Labeling task concerns the extraction of main
components of the spatial semantics from nat-
ural language: trajectors, landmarks and spa-
tial indicators. In addition to these major
components, the links between them and the
general-type of spatial relationships includ-
ing region, direction and distance are targeted.
The annotated dataset contains about 1213
sentences which describe 612 images of the
CLEF IAPR TC-12 Image Benchmark. We
have one participant system with two runs.
The participant’s runs are compared to the sys-
tem in (Kordjamshidi et al., 2011c) which is
provided by task organizers.

1 Introduction

One of the essential functions of natural language is
to talk about spatial relationships between objects.
The sentence “Give me the book on AI on the big
table behind the wall.” expresses information about
the spatial configuration of the objects (book, table,
wall) in some space. Particularly, it explains the re-
gion occupied by the book with respect to the table
and the direction (orientation) of the table with re-
spect to the wall. Understanding such spatial utter-
ances is a problem in many areas, including robotics,
navigation, traffic management, and query answer-
ing systems (Tappan, 2004).

Linguistic constructs can express highly complex,
relational structures of objects, spatial relations be-
tween them, and patterns of motion through space

relative to some reference point. Compared to nat-
ural language, formal spatial models focus on one
particular spatial aspect such as orientation, topol-
ogy or distance and specify its underlying spatial
logic in detail (Hois and Kutz, 2008). These for-
mal models enable spatial reasoning that is difficult
to perform on natural language expressions.

Learning how to map natural language spatial in-
formation onto a formal representation is a challeng-
ing problem. The complexity of spatial semantics
from the cognitive-linguistic point of view on the
one hand, the diversity of formal spatial represen-
tation models in different applications on the other
hand and the gap between the specification level of
the two sides has led to the present situation that no
well-defined framework for automatic spatial infor-
mation extraction exists that can handle all of these
aspects.

In a previous paper (Kordjamshidi et al., 2010b),
we introduced the task of spatial role labeling
(SpRL) and proposed an annotation scheme that is
language-independent and practically facilitates the
application of machine learning techniques. Our
framework consists of a set of spatial roles based
on the theory of holistic spatial semantics (Zlat-
evl, 2007) with the intent of covering the main as-
pects of spatial concepts at a course level, includ-
ing both static and dynamic spatial semantics. This
shared task is defined on the basis of that annota-
tion scheme. Since this is the first shared task on the
spatial information and this particular data, we pro-
posed a simplified version of the original scheme.
The intention of this simplification was to make this
practice feasible in the given timeframe. However,
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the current task is very challenging particularly for
learning the spatial links and relations.

The core problem of SpRL is: i) the identification
of the words that play a role in describing spatial
concepts, and ii) the classification of the relational
role that these words play in the spatial configura-
tion.

For example, consider again the sentence “Give
me the book on AI on the big table behind the wall.”.
The phrase headed by the token book is referring
to a trajector object. The trajector (TR) is an en-
tity whose location is described in the sentence. The
phrase headed by the token table is referring to the
role of a landmark (LM). The landmark is a refer-
ence object for describing the location of a trajector.
These two spatial entities are related by the spatial
expression on denoted as spatial indicator (SP). The
spatial indicator (often a preposition in English, but
sometimes a verb, noun, adjective, or adverb) indi-
cates the existence of spatial information in the sen-
tence and establishes the type of a spatial relation.
The spatial relations that can be extracted from the
whole sentence are <onSP bookTR tableLM> and
<behindSP tableTR wallLM>. One could also use
spatial reasoning to infer that the statement <behind
book wall> holds, however, such inferred relations
are not considered in this task. Although the spa-
tial indicators are mostly prepositions, the reverse
may not hold- for example, the first preposition
on only states the topic of the book, so <on book
AI> is not a spatial relation. For each of the true
spatial relations, a general type is assigned. The
<onSP bookTR tableLM> relation expresses a kind
of topological relationship between the two objects
and we assign it a general type named region. The
<behindSP tableTR wallLM> relation expresses di-
rectional information and we assign it a general type
named direction.

In general we assume two main abstraction layers
for the extraction of spatial information (Bateman,
2010; Kordjamshidi et al., 2010a; Kordjamshidi et
al., 2011a): (a) a linguistic layer, corresponding to
the annotation scheme described above, which starts
with unrestricted natural language and predicts the
existence of spatial information at the sentence level
by identifying the words that play a particular spa-
tial role as well as their spatial relationship; (b) a
formal layer, in which the spatial roles are mapped

onto a spatial calculus model (Galton, 2009). For
example, the linguistic layer recognizes that the spa-
tial relation (on) holds between book and table, and
the formal layer maps this to a specific, formal spa-
tial representation, e.g., a logical representation like
AboveExternallyConnected(book, table) or a
formal qualitative spatial representation like EC (ex-
ternally connected) in the RCC model (Regional
Connection Calculus) (Cohn and Renz, 2008).

In this shared task we focus on the first (linguistic)
level which is a necessary step for mapping natural
language to any formal spatial calculus. The main
roles that are considered here are trajector, land-
mark, spatial indicator, their links and the general
type of their spatial relation. The general type of a
relation can be direction, region or distance.

2 Motivation and related work

Spatial role labeling is a key task for applications
that are required to answer questions or reason about
spatial relationships between entities. Examples in-
clude systems that perform text-to-scene conversion,
generation of textual descriptions from visual data,
robot navigation tasks, giving directional instruc-
tions, and geographical information systems (GIS).
Recent research trends (Ross et al., 2010; Hois et
al., 2011; Tellex et al., 2011) indicate an increasing
interest in the area of extracting spatial information
from language and mapping it to a formal spatial
representation. Although cognitive-linguistic stud-
ies have investigated this problem extensively, the
computational aspect of making this bridge between
language and formal spatial representation (Hois
and Kutz, 2008) is still in its elementary stages. The
possession of a practical and appropriate annotation
scheme along with data is the first requirement. To
obtain this one has to investigate and schematize
both linguistic and spatial ontologies. This process
needs to cover the necessary information and seman-
tics on the one hand, and to maintain the practical
feasibility of the automatic annotation of unobserved
data on the other hand.

In recent research on spatial information and nat-
ural language, several annotation schemes have been
proposed such as ACE, GUM, GML, KML, TRML
which are briefly described and compared to Spa-
tialML scheme in (MITRE Corporation, 2010). But
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to our knowledge, the main obstacles for employing
machine learning in this context and the very limited
usage of this effective approach have been (a) the
lack of an agreement on a unique semantic model
for spatial information; (b) the diversity of formal
spatial relations; and consequently (c) the lack of
annotated data on which machine learning can be
employed to learn and extract the spatial relations.
The most systematic work in this area includes the
SpatialML (Mani et al., 2008) scheme which fo-
cuses on geographical information, and the work of
(Pustejovsky and Moszkowicz, 2009) in which the
pivot of the spatial information is the spatial verb.
The most recent and active work is the ISO-Space
scheme (Pustejovsky et al., 2011) which is based
on the above two schemes. The ideas behind ISO-
Space are closely related to our annotation scheme
in (Kordjamshidi et al., 2010b), however it consid-
ers more detailed and fine-grained spatial and lin-
guistic elements which makes the preparation of the
data for machine learning more difficult.

Spatial information is directly related to the part
of the language that can be visualized. Thus, the
extraction of spatial information is useful for mul-
timodal environments. One advantage of our pro-
posed scheme is that it considers this dimension. Be-
cause it abstracts the spatial elements that could be
aligned with the objects in images/videos and used
for annotation of audio-visual descriptions (Butko et
al., 2011). This is useful in the multimodal environ-
ments where, for example, natural language instruc-
tions are given to a robot for finding the way or ob-
jects.

Not much work exists on using annotations for
learning models to extract spatial information. Our
previous work (Kordjamshidi et al., 2011c) is a first
step in this direction and provides a domain indepen-
dent linguistic and spatial analysis to this problem.
This shared task invites interested research groups
for a similar effort. The idea behind this task is
firstly to motivate the application of different ma-
chine learning approaches, secondly to investigate
effective features for this task, and thirdly to reveal
the practical problems in the annotation schemes and
the annotated concepts. This will help to enrich the
data and the annotation in parallel with the machine
learning practice.

3 Annotation scheme

As mentioned in the introduction, the annotation of
the data set is according to the general spatial role
labeling scheme (Kordjamshidi et al., 2010b). The
below example presents the annotated elements in
this scheme.

A womanTR and a childTR are
walkingMOTION overSP the squareLM .

General-type: region
Specific type: RCC
Spatial value: PP (proper part)
Dynamic
Path: middle
Frame of reference: –

According to this scheme the main spatial roles are,

Trajector (TR). The entity, i.e., person, object or
event whose location is described, which can
be static or dynamic; (also called: local/figure
object, locatum). In the above example woman
and child are two trajectors.

Landmark (LM). The reference entity in relation
to which the location or the motion of the tra-
jector is specified. (also called: reference ob-
ject or relatum). square is the landmark in the
above example.

Spatial indicator (SP). The element that defines
constraints on spatial properties such as the lo-
cation of the trajector with respect to the land-
mark. The spatial indicator determines the type
of spatial relation. The preposition over is an-
notated as the spatial indicator in the current
example.

Moreover, the links between the three roles are an-
notated as a spatial Relation. Since each spatial
relation is defined with three arguments we call
it a spatial triplet. Each triplet indicates a re-
lation between the three above mentioned spatial
roles. The sentence contains two spatial relations
of <overSP womanTR squareLM> and <overSP

childTR squareLM>, with the same spatial at-
tributes listed below the example. In spatial infor-
mation theory the relations and properties are usu-
ally grouped into the domains of topological, direc-
tional, and distance relations and also shape (Stock,
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1997). Accordingly, we propose a mapping between
the extracted spatial triplets to the coarse-grained
type of spatial relationships including region, direc-
tion or distance. We call these types as general-
type of the spatial relations and briefly describe
these below:

Region. refers to a region of space which is always
defined in relation to a landmark, e.g. the inte-
rior or exterior, e.g. “the flower is in the vase”.

Direction. denotes a direction along the axes pro-
vided by the different frames of reference, in
case the trajector of motion is not characterized
in terms of its relation to the region of a land-
mark, e.g. “the vase is on the left”.

Distance. states information about the spatial dis-
tance of the objects and could be a qualitative
expression such as close, far or quantitative
such as 12 km, e.g. “the kids are close to the
blackboard”.

The general-type of the relation in the example is
annotated as region.

After extraction of these relations a next fine-
grained step will be to map each general spatial re-
lationship to an appropriate spatial calculi represen-
tation. This step is not intended for this task and
the additional tags in the scheme will be consid-
ered in the future shared tasks. For example Re-
gion Connection Calculus RCC-8 (Cohn and Renz,
2008) representation reflects region-based topolog-
ical relations. Topological or region-based spatial
information has been researched in depth in the area
of qualitative spatial representation and reasoning.
We assume that the trajectors and landmarks can of-
ten be interpreted as spatial regions and, as a conse-
quence, their relation can be annotated with a spe-
cific RCC-8 relation. The RCC type in the above
example is specifically annotated as the PP (proper
part). Similarly, the direction and distance relations
are mapped to more specific formal representations.

Two additional annotations are about motion
verbs and dynamism. Dynamic spatial information
are associated with spatial movements and spatial
changes. In dynamic spatial relations mostly mo-
tion verbs are involved. Motion verbs carry spatial
information and influence the spatial semantics. In

the above example the spatial indicator over is re-
lated to a motion verb walking. Hence the spatial
relation is dynamic and walking is annotated as the
motion. In contrast to the dynamic spatial relations,
the static ones explain a static spatial configuration
such as the example of the previous section <onSP

bookTR tableLM> .
In the case of dynamic spatial information a path

is associated with the location of the trajector. In our
scheme the path is characterized by the three values
of beginning, middle, end and zero. The frame of
reference can be intrinsic, relative or absolute and is
typically relevant for directional relations. For more
details about the scheme, see (Kordjamshidi et al.,
2010b).

4 Tasks

The SemEval-2012 shared task is defined in three
parts.

• The first part considers labeling the spatial
indicators and trajector(s) / landmark(s). In
other words at this step we consider the
extraction of the individual roles that are
tagged with TRAJECTOR, LANDMARK and
SPATIAL INDICATOR.

• The second part is a kind of relation prediction
task and the goal is to extract triples contain-
ing (spatial-indicator, trajector, landmark). The
prediction of the tag of RELATION with its three
arguments of SP, TR, LM at the same time is
considered.

• The third part concerns the classification of the
type of the spatial relation. At the most coarse-
grained level this includes labeling the spatial
relations i.e. the triplets of (spatial indicator,
trajector, landmark) with region, direction, and
distance labels. This means the general-type
of the RELATION should be predicted. The
general-type is an attribute of the RELATION

tag, see the example represented in XML for-
mat in section 5.1.

5 Preparation of the dataset

The annotated corpus that we used for this shared
task is a subset of IAPR TC-12 image Bench-
mark (Grubinger et al., 2006). It contains 613 text
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files that include 1213 sentences in total. This is an
extension of the dataset used in (Kordjamshidi et
al., 2011c). The original corpus was available free
of charge and without copyright restrictions. The
corpus contains images taken by tourists with de-
scriptions in different languages. The texts describe
objects, and their absolute and relative positions in
the image. This makes the corpus a rich resource for
spatial information. However the descriptions are
not always limited to spatial information. Therefore
they are less domain-specific and contain free expla-
nations about the images. Table 1 shows the detailed
statistics of this data. The average length of the sen-
tences in this data is about 15 words including punc-
tuation marks with a standard deviation of 8.

The spatial roles are assigned both to phrases and
their headwords, but only the headwords are eval-
uated for this task. The spatial relations indicate a
triplet of these roles. The general-type is assigned to
each triplet of spatial indicator, trajector and land-
mark.

At the starting point two annotators including one
task-organizer and another non-expert annotator, an-
notated 325 sentences for the spatial roles and rela-
tions. The purpose was to realize the disagreement
points and prepare a set of instructions in a way to
achieve highest-possible agreement. From the first
effort an inter-annotator agreement (Carletta, 1996)
of 0.89 for Cohen’s kappa was obtained. We contin-
ued with the a third annotator for the remaining 888
sentences. The annotator had an explanatory session
and received a set of instructions and annotated ex-
amples to decrease the ambiguity in the annotations.

To avoid complexity only the relations that are di-
rectly expressed in the sentence are annotated and
spatial reasoning was avoided during the annota-
tions. Sometimes the trajectors and landmarks or
both are implicit, meaning that there is no word in
the sentence to represent them. For example in the
sentence Come over here, the trajector you is only
implicitly present. To be consistent with the number
of arguments in spatial relations, in these cases we
use the term undefined for the implicit roles. There-
fore, the spatial relation in the above example is
<overSP undefinedTR hereLM>.

5.1 Data format

The data is released in XML format. The original
textual files are split into sentences. Each sentence
is placed in a <SENTENCE/> tag and assigned an
identifier. This tag contains all the other tags which
describe the content and spatial relations of one sen-
tence.

The content of the sentence is placed in the
<CONTENT/> tag. The words in each sentence
are assigned identifiers depending on their specific
roles. Trajectors, landmarks and spatial indicators
are identified by <TRAJECTOR/>, <LANDMARK/>
and <SPATIAL INDICATOR/> tags, respectively.
Each of these XML elements has an “ID” attribute
that identifies a related word by its index. The “ID”
prefixed by either “TW”, “LW” or “SW”, respec-
tively for the mentioned roles. For example, a tra-
jector with ID=“TW2” corresponds to the word at
index 2 in the sentence. Indexes start at 0. Com-
mas, parentheses and apostrophes are also counted
as tokens.

Spatial relations are assigned identifiers too, and
relate the role-playing words to each other. Spa-
tial relations are identified by the <RELATION/>
tag. The spatial indicator, trajector and land-
mark for the relation are identified by the “SP”,
“TR” and “LM” attributes, respectively. The val-
ues of these attributes correspond to the “ID” at-
tributes in the <TRAJECTOR/>, <LANDMARK/>
and <SPATIAL INDICATOR/> elements. If a tra-
jector or landmark is implicit, then the index of
“TR” or “LM” attribute will be set to a dummy
index. This dummy index is equal to the in-
dex of the last word in the sentence plus one.
In this case, the value of TRAJECTOR or LAND-
MARK is set to “undefined”. The coarse-grained
spatial type of the relation is indicated by the
“GENERAL TYPE” attribute and gets one value
in {REGION, DIRECTION, DISTANCE}. In the
original data set there are cases annotated with
multiple spatial types. This is due to the ambi-
guity and/or under-specificity of natural language
compared to formal spatial representations (Kord-
jamshidi et al., 2010a). In this task the general-
type with a higher priority by the annotator is pro-
vided. Here, by the high priority type, we mean the
general type which has been the most informative
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Spatial Roles Relations General Types
Sentences TR LM SP Spatial triplets Region Direction Distance

1213 1593 1408 1464 1715 1036 644 35

Table 1: Number of annotated components in the data set.

and relevant type for a relation, from the annotator’s
point of view. This task considers labeling words
rather than phrases for all spatial roles. However, in
the XML file for spatial indicators often the whole
phrase is tagged. In these cases, the index of the
indicator refers to one word which is typically the
spatial preposition of the phrase. For evaluation only
the indexed words are compared and should be pre-
dicted correctly.

Below is one example copied from the data. For
more examples and details about the general anno-
tation scheme see (Kordjamshidi et al., 2010b).

<SENTENCE ID=‘S11’>
<CONTENT >
there are red umbrellas in a park on the right .
</CONTENT>
<TRAJECTOR ID=‘TW3’>
umbrellas
</TRAJECTOR>
<LANDMARK ID=‘LW6’>
park
</LANDMARK>
<SPATIAL INDICATOR ID=‘SW4’>
in
</SPATIAL INDICATOR>
<RELATION ID=‘R0’ SP=‘SW4’ TR=‘TW3’
LM=‘LW6’ GENERAL TYPE=‘REGION’/>
<SPATIAL INDICATOR ID=‘SW7’>
on the right
</SPATIAL INDICATOR>
<RELATION ID=‘R1’ SP=‘SW7’ TR=‘TW3’
LM=‘LW6’ GENERAL TYPE=‘DIRECTION’/>
</SENTENCE>

The dataset, both train and test, also the 10-fold
splits are made available in the LIIR research group
webpage of KU Leuven.1

6 Evaluation methodology

According to the usual setting of the shared tasks
our evaluation setting was based on splitting the data
set into a training and a testing set. Each set con-
tained about 50% of the whole data. The test set re-

1http://www.cs.kuleuven.be/groups/liir/software/
SpRL Data/

leased without the ground-truth labels. However, af-
ter the systems submission deadline the ground-truth
test was released. Hence the participant group per-
formed an additional 10-fold cross validation eval-
uation too. We report the results of both evaluation
settings.

Prediction of each component including TRAJEC-
TORs, LANDMARKs and SPATIAL-INDICATORs is
evaluated on the test set using their individual spatial
element XML tags. The evaluation metrics of pre-
cision, recall and F1-measure are used, which are
defined as:

recall = TP
TP+FN (1)

precision = TP
TP+FP (2)

F1 = 2∗recall∗precision
(recall+precision) , (3)

where:

TP = the number of system-produced
XML tags that match an annotated XML
tag,
FP = the number of system-produced
XML tags that do not match an annotated
tag,
FN = the number of annotated XML tags
that do not match a system-produced tag.

For the roles evaluation two XML tags match
when they have exactly same identifier. In fact,
when the identifiers are the same then the role and
the word index are the same. In addition, systems
are evaluated on how well they are able to retrieve
triplets of (trajector, spatial-indicator, landmark), in
terms of precision, recall and F1-measure. The TP,
FP, FN are counted in a similar way but two RELA-
TION tags match if the combination of their TR, LM

and SP is exactly the same. In other words a true pre-
diction requires all the three elements are correctly
predicted at the same time.

The last evaluation is on how well the systems are
able to retrieve the relations and their general type
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i.e {region, direction, distance} at the same time.
To evaluate the GENERAL-TYPE similarly the RELA-
TION tag is checked. For a true prediction, an exact
match between the ground-truth and all the elements
of the predicted RELATION tag including TR, LM,SP

and GENERAL-TYPE is required.

7 Systems and results

One system with two runs was submitted from the
University of Texas Dallas. The two runs (Roberts
and Harabagiu, 2012), UTDSPRL-SUPERVISED1
and UTDSPRL-SUPERVISED2 are based on the
joint classification of the spatial triplets in a bi-
nary classification setting. To produce the candi-
date (indicator, trajector, landmark) triples, in the
first stage heuristic rules targeting a high recall are
used. Then a binary support vector machine clas-
sifier is employed to predict whether a triple is a
spatial relation or not. Both runs start with a large
number of manually engineered features, and use
floating forward feature selection to select the most
important ones. The difference between the two
runs of UTDSPRL-SUPERVISED1 and UTDSPRL-
SUPERVISED2 is their feature set. Particularly, in
UTDSPRL-SUPERVISED1 a joint feature based on
the conjunctions (e.g. and, but) is considered before
running feature selection but this feature is removed
in UTDSPRL-SUPERVISED2.

The submitted runs are compared to a previous
system from the task organizers (Kordjamshidi et
al., 2011c) which is evaluated on the current data
with the same settings. This system, KUL-SKIP-
CHAIN-CRF, uses a skip chain conditional random
field (CRF) model (Sutton and MacCallum, 2006)
to annotate the sentence as a sequence. It considers
the long distance dependencies between the prepo-
sitions and nouns in the sentence.

The type and structure of the features used in the
UTD and KUL systems are different. In the UTD
system, the classifier works on triples and the fea-
tures are of two main types: (a) argument-specific
features about the trajector, landmark, or indicator
e.g., the landmark’s hypernyms, or the indicator’s
first token; and (b) joint features that consider two
or more of the arguments, e.g. the dependency path
between indicator and landmark. For more detail,
see (Roberts and Harabagiu, 2012). In the KUL sys-

Label Precsion Recall F1
TRAJECTOR 0.731 0.621 0.672
LANDMARK 0.871 0.645 0.741
SPATIAL-INDICATOR 0.928 0.712 0.806
RELATION 0.567 0.500 0.531
GENERAL-TYPE 0.561 0.494 0.526

Table 2: UTDSPRL-SUPERVISED1: The University
of Texas-Dallas system with a larger number of fea-
tures,test/train one split.

Label Precsion Recall F1
TRAJECTOR 0.782 0.646 0.707
LANDMARK 0.894 0.680 0.772
SPATIAL-INDICATOR 0.940 0.732 0.823
RELATION 0.610 0.540 0.573
GENERAL-TYPE 0.603 0.534 0.566

Table 3: UTDSPRL-SUPERVISED2: The University of
Texas-Dallas system with a smaller number of features,
test/train one split.

Label Precsion Recall F1
TRAJECTOR 0.697 0.603 0.646
LANDMARK 0.773 0.740 0.756
SPATIAL-INDICATOR 0.913 0.887 0.900
RELATION 0.487 0.512 0.500

Table 4: KUL-SKIP-CHAIN-CRF: The organizers’ sys-
tem (Kordjamshidi et al., 2011c)- test/train one split.

tem, the classifier works on all tokens in a sentence,
and a number of linguistically motivated local and
pairwise features over candidate words and preposi-
tions are used. To consider long distance dependen-
cies a template, called a preposition template, is used
in the general CRF framework. Loopy belief prop-
agation is used for inference. Mallet2 and GRMM:3

implementations are employed there.
Tables 2, 3 and 4 show the results of the three

runs in the standard setting of the shared task us-
ing the train/test split. In this evaluation setting the
UTDSPRL-SUPERVISED2 run achieves the highest
performance on the test set, with F1 of 0.573 for
the full triplet identification task, and an F1 of 0.566
for additionally classifying the triplet’s general-type

2http://mallet.cs.umass.edu/download.php
3http://mallet.cs.umass.edu/grmm/index.php
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System Precsion Recall F1
KUL-SKIP-CHAIN-CRF 0.745 0.773 0.758
UTDSPRL-SUPERVISED2 0.773 0.679 0.723

Table 5: The RELATION extraction of KUL-SKIP-CHAIN-CRF (Kordjamshidi et al., 2011c) vs. UTDSPRL-
SUPERVISED2 evaluated with 10-fold cross validation

correctly. It also consistently outperforms both the
UTDSPRL-SUPERVISED1 run and the KUL-SKIP-
CHAIN-CRF system on each of the individual trajec-
tor, landmark and spatial-indicator extraction.

The dataset was relatively small, so we released
the test data and the two systems were addition-
ally evaluated using 10-fold cross validation. The
results of this cross-validation are shown in Ta-
ble 5. The UTDSPRL-SUPERVISED2 run achieves
a higher precision, while the KUL-SKIP-CHAIN-
CRF system achieves a higher recall. It should be
mentioned the 10-fold splits used by KUL and UTD
are not the same. This implies that the results with
exactly the same cross-folds may vary slightly from
these reported in Table 5.

Using 10-fold cross validation, we also evaluated
the classification of the general-type of a relation
given the manually annotated positive triplets. The
UTDSPRL-SUPERVISED2 system achieved F1=
0.974, and similar experiments using SMO-SVM in
(Kordjamshidi et al., 2011b; Kordjamshidi et al.,
2011a) achieved F1= 0.973. Thus it appears that
identifying the general-type of a relation is a rela-
tively easy task on this data.

Discussion. Since the feature sets of the two sys-
tems are different and given the evaluation results
in the two evaluation settings, it is difficult to assert
which model is better in general. Obviously using
joint features potentially inputs richer information to
the model. However, it can increase the sparsity in
one hand and overfitting on the training data on the
other hand. Another problem is that finding heuris-
tics for high recall that are sufficiently general to be
used in every domain is not an easy task. By increas-
ing the number of candidates the dataset imbalance
will increase dramatically. This can cause a lower
performance of a joint model based on a binary clas-
sification setting when applied on different data sets.
It seems that this task might require a more elabo-
rated structured output prediction model which can

consider the joint features and alleviate the problem
of huge negatives in that framework while consider-
ing the correlations between the output components.

8 Conclusion

The SemEval-2012 spatial role labeling task is a
starting point to formally consider the extraction of
spatial semantics from the language. The aim is
to consider this task as a standalone linguistic task
which is important for many applications. Our first
practice on this task and the current submitted sys-
tem to SemEval 2012 clarify the type of the features
and the machine learning approaches appropriate for
it. The proposed features and models help to per-
form this task automatically in a reasonable accu-
racy. Although the spatial scheme is domain inde-
pendent, the achieved accuracy is dependent on the
domain of the used data for training a model. Our
future plan is to extend the data for the next work-
shops and to cover more semantic aspects of spatial
information particularly for mapping to formal spa-
tial representation models and spatial calculus.
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Abstract 

This task focuses on evaluating word similari-

ty computation in Chinese. We follow the way 

of Finkelstein et al. (2002) to select word 

pairs. Then we organize twenty under-

graduates who are major in Chinese linguis-

tics to annotate the data. Each pair is assigned 

a similarity score by each annotator. We rank 

the word pairs by the average value of similar 

scores among the twenty annotators. This data 

is used as gold standard. Four systems partici-

pating in this task return their results. We 

evaluate their results on gold standard data in 

term of  Kendall's tau value, and the results 

show three of them have a positive correlation 

with the rank manually created while the taus' 

value is very small. 

1 Introduction 

The goal of word similarity is to compute the simi-

larity degree between words. It is widely used in 

natural language processing to alleviate data 

sparseness which is an open problem in this field. 

Many research have focus on English language 

(Lin, 1998; Curran and Moens, 2003; Dinu and 

Lapata, 2010), some of which rely on the manual 

created thesaurus such as WordNet (Budanitsky 

and Hirst, 2006), some of which obtain the similar-

ity of the words via large scale corpus (Lee, 1999), 

and some research integrate both thesaurus and 

corpus (Fujii et al., 1997). This task tries to evalu-

ate the approach on word similarity for Chinese 

language. To the best of our knowledge, this is first 

release of  benchmark data for this study. 

In English language, there are two data sets: Ru-

benstein and Goodenough (1965) and Finkelstein 

et al. (2002) created a ranking of word pairs as the 

benchmark data. Both of them are manually anno-

tated. In this task, we follow the way to create the 

data and annotate the similarity score between 

word pairs by twenty Chinese native speakers. 

Finkelstein et al. (2002) carried out a psycholin-

guistic experiment: they selected out 353 word 

pairs, then ask the annotators assign a numerical 

similarity score between 0 and 10 (0 denotes that 

words are totally unrelated, 10 denotes that words 

are VERY closely related) to each pair. By defini-

tion, the similarity of the word to itself should be 

10. A fractional score is allowed.  

It should be noted that besides the rank of word 

pairs, the thesaurus such as Roget's thesaurus are 

often used for word similarity study (Gorman and 

Curran, 2006).  

The paper is organized as follows. In section 2 

we describe in detail the process of the data prepa-

ration. Section 3 introduces the four participating 

systems. Section 4 reports their results and gives a  

brief discussion.. And finally in section 5 we bring 

forward some suggestions for the next campaign 

and conclude the paper. 
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2 Data Preparation 

2.1 Data Set 

We use wordsim 353 (Finkelstein et al., 2002) as 

the original data set. First, each word pair is trans-

lated into Chinese by two undergraduates who are 

fluent in English. 169 word pairs are the same in 

their translation results. To the rest 184 word pairs, 

the third undergraduate student check them   fol-

lowing the rules: 

(i) Single character vs. two characters. If one 

translator translate one English word into the Chi-

nese word which consists only one Chinese charac-

ter and the other use two characters to convey the 

translation, we will prefer to the later provided that 

these two translations are semantically same. For 

example, "tiger" is translated into "虎" and "老虎", 

we will treat them as same and use "老虎" as the 

final translation. This was the same case in "drug" 

("药" and "药物" are same translations). 

(ii) Alias. The typical instance is "potato", both "

土豆" and "马铃薯" are the correct translations. So 

we will treat them as same and prefer "土豆" as the 

final translation because it is more general used 

than the latter one.  

(iii) There are five distinct word pairs  in the 

translations and are removed.    

At last, 348 word pairs are used in this task. 

Among these 348 word pairs, 50 ones are used as 

the trial data and the rest ones are used as the test 

data
1
. 

2.2 Manual Annotation 

Each word pair is assigned the similarity score by 

twenty Chinese native speakers. The score ranges 

from 0 to 5 and 0 means two words have nothing 

to do with each other and 5 means they are identi-

cally in semantic meaning. The higher score means 

the more similar between two words. Not only in-

teger but also real is acceptable as the annotated 

score. We get the average of all the scores given by 

the annotators for each word pair and then sort 

them according to the similarity scores. The distri-

bution of word pairs on the similar score is illus-

trated as table 1.   

                                                           
1 In fact there are 297 word pairs are evaluated because one 

pair is missed during the annotation.  

Score 0.0-1.0 1.0-2.0 2.0-3.0 3.0-4.0 4.0-5.0 

# Word pairs 39 90 132 72 13 

Table1: The distribution of similarity score 

 
Ra-

nk 

Word in Chi-

nese/English 

Word 2 in 

Chinese/ Eng-

lish 

Simi-

larity 

score 

Std. 

dev 

RSD 

(%) 

1 足球/football 足球/soccer 4.98 0.1 2.0 

2 老虎/tiger 老虎/tiger 4.89 0.320 6.55 

3 恒星/planet 恒星/star 4.72 0.984 20.8 

4 入场券

/admission 

门票/ticket 4.60 0.516 11.2 

5 钱/money 现金/cash 4.58 0.584 12.7 

6 银行/bank 钱/cash 4.29 0.708 16.5 

7 手机/cell 电话/phone 4.28 0.751 17.5 

8 宝石/gem 珠宝/jewel 4.24 0.767 18.1 

9 类型/type 种类/kind 4.24 1.000 23.6 

10 运算 / calcu-

lation 

计算 / compu-

tation 

4.14 0.780 19.0 

Avg - - 4.496 0.651 14.80 

Table 2: Top ten similar word pairs 

 

Table 2 and table 3 list top ten similar word 

pairs and top ten un-similar word pairs individual-

ly. Standard deviation (Std. dev) and relative standard 

deviation (RSD) are also computed. Obviously, the rela-

tive standard deviation of top ten similar word pairs is 

far less than the un-similar pairs. 

 

2.3 Annotation Analysis 

Figure 1 illustrates the relationship between the 

similarity score and relative standard deviation. 

The digits in "x" axes are the average similarity 

score of every integer interval, for an instance, 

1.506 is the average of all word pairs' similarity 

score between 1.0 and 2.0. 

3 Participating Systems  

Four systems coming from two teams participated 

in this task. 
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Figure 1. The relationship between RSD and simi-

lar score 
 
Ra-

nk 

Word1 in Chi-

nese/in English 

Word2 in Chi-

nese/in English 

Simi-

larity 

score 

Std. 

dev 

RSD(

%) 

1 中午/noon 线绳/string 0.06 .213 338.7 

2 国王/king 卷心菜

/cabbage 

0.16 .382 245.3 

3 产品

/production 

徒步/hike 0.17 .432 247.5 

4 延迟/delay 种族主义

/racism 

0.26 .502 191.1 

5 教授/professor 黄瓜/cucumber 0.30 .62 211.1 

6 股票/stock 美洲虎/jaguar 0.30 .815 268.2 

7 签名/sign 暂停/recess 0.30 .655 215.4 

8 股票/stock CD/CD 0.31 .540 173.6 

9 喝/drink 耳朵/ear 0.31 .833 264.8 

10 公鸡/rooster 航程/voyage 0.33 .771 236.7 

Avg - - 0.25 .576 239.2 

Table 3: Top ten un-similar word pairs 
 

 

MIXCC: This system used two machine reada-

ble dictionary (MRD), HIT IR-Lab Tongyici Cilin 

(Extended) (Cilin) and the other is Chinese Con-

cept Dictionary (CCD). The extended CiLin con-

sists of 12 large classes, 97 medium classes, 1,400 

small classes (topics), and 17,817 small synonym 

sets which cover 77,343 head terms. All the items 

are constructed as a tree with five levels. With the 

increasing of levels, word senses are more fine-

grained. The Chinese Concept Dictionary is a Chi-

nese WordNet produced by Peking University. 

Word concepts  are presented as synsets   corre-

sponding to WordNet 1.6. Besides synonym, anto-

nym, hypernym/hyponym, holonym/meronym, 

there is another semantic relation type named as 

attribute which happens between two words with 

different part-of-speeches.  

They first divide all word pairs into five parts 

and rank them according to their levels in Cilin in 

descending order. For each part, they computed 

word similarity by Jiang and Conrath (1997) meth-

od
2
. 

 

MIXCD: Different form MIXCC, this system 

used the trial data to learn a multiple linear regres-

sion functions. The CCD was considered as a di-

rected graph. The nodes were synsets and edges 

were the semantic relations between two synsets. 

The features for this system were derived from  

CCD and a corpus and listed as follows: 

 

 the shortest path between two synsets 

which contain the words 

 the rates of 5 semantic relation types  

 mutual information of a word pair in the 

corpus 

 

They used the result of multiple linear regres-

sions to forecast the similarity of other word pairs 

and get the rank. 

 

GUO-ngram: This system used the method 

proposed by (Gabrilovich and Markovitch, 2007). 

They downloaded the Wikipedia on 25th Novem-

ber, 2011 as the knowledge source. In order to by-

pass the Chinese segmentation, they extract one 

character (uni-gram) and two sequential characters 

(bi-gram) as the features. 

 

GUO-words: This system is very similar to 

GUO-ngram except that the features consist of 

words rather than n-grams. They implemented a 

simple index method which searches all continuous 

character strings appearing in a dictionary. For ex-

ample, given a text string ABCDEFG in which 

ABC, BC, and EF appear in the dictionary. The 

output of the tokenization algorithm is the three 

words ABC, BC, EF and the two characters E and 

G. 

                                                           
2 Because there is no sense-tagged corpus for CCD, the fre-

quency of each concept was set to 1 in this system. 
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4 Results  

Each system is required to rank these 500 word 

pairs according to their similarity scores. Table 4 

gives the overall results obtained by each of the 

systems. 

 

Rank Team ID System ID Tau's 

value 

1 

lib 

MIXCC 0.050 

2 MIXCD 0.040 

3 
Gfp1987 

Guo-ngram 0.007 

4 Guo-words -0.011 

Table 4: The results of four systmes 

 

The ranks returned by these four systems will be 

compared with the rank from human annotation by 

the Kendall Rank Correlation Coefficient: 

 

 

 

2 ,
1

1 / 2

S

N N

 
  


 

Where N  is the number of objects.  and  are 

two distinct orderings of a object in two ranks. 

( , )S   is the minimum number of adjacent 

transpositions needing to bring  and   (Lapata, 

2006). In this metric, tau's value ranges from -1 to 

+1 and -1 means that the two ranks are inverse to 

each other and +1 means the identical rank.  

From table 4, we can see that except the final 

system, three of them got the positive tau's value. It 

is regret that the tau's is very small even if the 

MIXCC system  is the best one.   

5 Conclusion  

We organize an evaluation task focuses on word 

similarity in Chinese language. Totally 347 word 

pairs are annotated similarity scores by twenty na-

tive speakers. These word pairs are ordered by the 

similarity scores and this rank is used as bench-

mark data for evaluation.  

Four systems participated  in this task.  Except 

the system MIXCD, three ones got their own rank 

only via the corpus. Kendall's tau is used as the 

evaluation metric. Three of them got the positive 

correlation rank compared with the gold standard 

data 

Generally the tau's value is very small, it indi-

cates that obtaining a good rank is still difficult. 

We will provide more word pairs and distinct them 

relatedness from similar, and attract more teams to 

participate in the interesting task. 
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Abstract
The paper presents the SemEval-2012 Shared
Task 5: Chinese Semantic Dependency Pars-
ing. The goal of this task is to identify the de-
pendency structure of Chinese sentences from
the semantic view. We firstly introduce the
motivation of providing Chinese semantic de-
pendency parsing task, and then describe the
task in detail including data preparation, data
format, task evaluation, and so on. Over ten
thousand sentences were labeled for partici-
pants to train and evaluate their systems. At
last, we briefly describe the submitted systems
and analyze these results.

1 Introduction

Semantic analysis is a long-term goal of Natural
Language Processing, and as such, has been re-
searched for several decades. A number of tasks
for encoding semantic information have been devel-
oped over the years, such as entity type recognition
and word sense disambiguation. Recently, sentence-
level semantics – in particular, semantic role label-
ing – has received increasing attention. However,
some problems concerning the semantic representa-
tion method used in semantic role labeling continue
to exist (Xue and Palmer, 2005).

1. Semantic role labeling only considers
predicate-argument relations and ignores
the semantic relations between a noun and its
modifier.

2. The meaning of semantic roles is related to spe-
cial predicates. Therefore, there are infinite se-
mantic roles to be learned, as the number of

predicates is not fixed. Although the Prop-
Bank (Xue and Palmer, 2003) normalizes these
semantic roles into certain symbols, such as
Arg0-Arg5, the same symbol can have different
semantic meanings when paired with different
predicates, and thus cannot be learned well.

Semantic dependency parsing is therefore pro-
posed to solve the two problems above for Chinese.
Firstly, the proposed method analyzes all the words’
semantic roles in a sentence and specifies the con-
crete semantic relation of each word pair. After-
ward, this work analyzes and summarizes all the
possible semantic roles, obtaining over 100 of them,
and then uses these semantic roles to specify the se-
mantic relation for each word pair.

Dependency parsing (Kübler et al., 2009) is based
on dependency grammar. It has several advantages,
such as concise formalization, easy comprehension,
high efficiency, and so on. Dependency parsing
has been studied intensively in recent decades, with
most related work focusing on syntactic structure.
Many research papers on Chinese linguistics demon-
strate the remarkable difference between semantics
and syntax (Jin, 2001; Zhou and Zhang, 2003).
Chinese is a meaning-combined language with very
flexible syntax, and semantics are more stable than
syntax. The word is the basic unit of semantics,
and the structure and meaning of a sentence consists
mainly of a series of semantic dependencies between
individual words (Li et al., 2003). Thus, a reason-
able endeavor is to exploit dependency parsing for
semantic analysis of Chinese languages. Figure 1
shows an example of Chinese semantic dependency
parsing.

378



国际
International

货币
Monetary

基金
Fund

组织
organization

调低
turn down

对
for

全球
global

经济
economy

增长
increasing

的
of

预测
prediction

d-genetive

d-restrictive d-restrictive agent
prep-depend

d-genetive d-domain aux-depend

d-restrictive
content

root

Figure 1: An example of Chinese Semantic Dependency Parsing.

Figure 1 shows that Chinese semantic dependency
parsing looks very similar to traditional syntax-
dominated dependency parsing. Below is a compar-
ison between the two tasks, dealing with three main
points:

1. Semantic relations are more fine-grained than
syntactic ones: the syntactic subject can either
be the agent or experiencer, and the syntactic
object can be the content, patient, possession,
and so on. On the whole, the number of seman-
tic relations is at least twice that of syntactic
relations.

2. Semantic dependency parsing builds the depen-
dency structure of a sentence in terms of se-
mantics, and the word pairs of a dependency
should have a direct semantic relation. This
criterion determines many sizeable differences
between semantics and syntax, especially in
phrases formed by “XP+DEG”, “XP+DEV”
and prepositional phrases. For example, in “美
丽 的 祖国” (beautiful country), the head of
“美丽” (beautiful) is “祖国” (country) in se-
mantic dependency parsing, whereas the head
is “的” (de) in syntax dependency parsing.

3. Semantic relations are independent of position.
For example, in “空气 被 污染” (the air is
contaminated) and “污染 了 空气” (contami-
nate the air), the patient “空气” (the air) can be
before or behind a predicate “污染” (contami-
nate).

The rest of the paper is organized as follows. Sec-
tion 2 gives a short overview of data annotation.
Section 3 focuses on the task description. Section
4 describes the participant systems. Section 5 com-

pares and analyzes the results. Finally, Section 6
concludes the paper.

2 Data Annotation

2.1 Corpus Section

10,068 sentences were selected from the Penn Chi-
nese Treebank 6.01 (Xue et al., 2005) (1-121, 1001-
1078, 1100-1151) as the raw corpus from which to
create the Chinese Semantic Dependency Parsing
corpus. These sentences were chosen for the anno-
tation for three reasons. First, gold syntactic depen-
dency structures can be of great help in semantic de-
pendency annotation, as syntactic dependency arcs
are often consistent with semantic ones. Second, the
semantic role labels in PropBank2 can be very use-
ful in the present annotation work. Third, the gold
word segmentation and Part-Of-Speech can be used
as the annotation input in this work.

2.2 Semantic Relations

The semantic relations in the prepared Chinese se-
mantic dependency parsing corpus came mostly
from HowNet3 (Dong and Dong, 2006), a fa-
mous Chinese semantic thesaurus. We also referred
to other sources. Aside from the relations from
HowNet, we defined two kinds of new relations: re-
verse relations and indirect relations. When a verb
modifies a noun, the relation between them is a re-
verse relation, and r-XXX is used to indicate this
kind of relation. For instance, in “打篮球的小男
孩” (the little boy who is playing basketball), the se-
mantic relation between the head word “男孩” (boy)

1http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalog\\Id=LDC2007T36

2http://verbs.colorado.edu/chinese/cpb/
3http://www.keenage.com/
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and “打” (playing) is the r-agent. When a verbal
noun is the head word, the relation between it and
the modifier is the indirect relation j-XXX. For in-
stance, in “企业管理” (business management), the
head word is “管理” (management) and the modifier
is “企业” (business), their relation is j-patient.

Finally, we defined 84 single-level semantic re-
lations. The number of multi-level semantic rela-
tions that actually appear in the labeled corpus in
this work is 39.

Table 1 summarizes all of the semantic relations
used for annotation.

2.3 Annotation Flow

Our corpus annotation flow can be divided into the
following steps.

1. Conversion of the sentences’ constituent struc-
tures into dependency structures according to
a set of rules similar with those used by the
syntactic community to find the head of a
phrase (Collins, 1999).

2. Labeling of the semantic relations for each de-
pendency relation according to another set of
rules using the functional tags in the Penn Chi-
nese Treebank and the semantic roles in the
Chinese PropBank.

3. Six human annotators are asked to check and
adjust the structure and semantic relation errors
introduced in Step 2.

The first two steps were performed automatically
using rules. A high accuracy may be achieved with
dependency structures when semantic labels are not
considered. However, accuracy declines remarkably
when the semantic label is considered. Unlabeled
Attachment Score (UAS) and Labeled Attachment
Score (LAS) can be used to evaluate the perfor-
mance of the automatic conversion. Table 2 gives
the detailed results.

UAS LAS

Conversion Result 90.53 57.38

Table 2: Accuracy after conversion from gold ProbBank.

3 Task Description

3.1 Corpus Statistics
We annotated 10,068 sentences from the Penn Chi-
nese TreeBank for Semantic Dependency Parsing,
and these sentences were divided into training, de-
velopment, and test sections. Table 3 gives the de-
tailed statistical information of the three sections.

Data Set CTB files # sent. # words.
1-10; 36-65;81-121; 8301

Training 1001-1078; 250311
1100-1119;
1126-1140

Devel 66-80; 1120-1125 534 15329
Test 11-35; 1141-1151 1233 34311
Total 1-121; 1001-1078 10068 299951

1100-1151

Table 3: Statistics of training, development and test data.

3.2 Data Format
The data format is identical to that of a syntactic de-
pendency parsing shared task. All the sentences are
in one text file, with each sentence separated by a
blank line. Each sentence consists of one or more to-
kens, and each token is represented on one line con-
sisting of 10 fields. Buchholz and Marsi (2006) pro-
vide more detailed information on the format. Fields
are separated from each other by a tab. Only five of
the 10 fields are used: token id, form, pos tagger,
head, and deprel. Head denotes the semantic depen-
dency of each word, and deprel denotes the corre-
sponding semantic relations of the dependency. In
the data, the lemma column is filled with the form
and the cpostag column with the postag. Figure 2
shows an example.

3.3 Evaluation Method
LAS, which is a method widely used in syntactic
dependency parsing, is used to evaluate the perfor-
mance of the semantic dependency parsing system.
LAS is the proportion of “scoring” tokens assigned
to both the correct head and correct semantic depen-
dency relation. Punctuation is disregarded during
the evaluation process. UAS is another important
indicator, as it reflects the accuracy of the semantic
dependency structure.
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Main Semantic Roles

Subject Roles agent, experiencer, causer, possessor, existent, whole, relevant

Object Roles isa, content, possession, patient, OfPart, beneficiary, contrast,
partner, basis, cause, cost, scope, concerning

Auxiliary Semantic Roles

Time Roles duration, TimeFin, TimeIni, time, TimeAdv

Location and State Roles LocationFin, LocationIni, LocationThru, StateFin, state,
StateIni, direction, distance, location

Others Verb Modifiers accompaniment, succeeding, frequency, instrument, material,
means, angle, times, sequence, sequence-p, negation, degree,
modal, emphasis, manner, aspect, comment

Attribute Roles

Direct modifiers d-genetive, d-category, d-member, d-domain, d-quantity-p, d-
quantity, d-deno-p, d-deno, d-host, d-TimePhrase, d-LocPhrase,
d-InstPhrase, d-attribute, d-restrictive, d-material, d-content, d-
sequence, d-sequence-p, qp-mod

Verb Phrase r-{Main Semantic Roles}, eg: r-agent, r-patient, r-possessor

Verb Ellipsis c-{Main Semantic Roles}, eg: c-agent, c-content, c-patient

Noun as Predication j-{Main Semantic Roles}, eg: j-agent, j-patient, j-target

Syntactic Roles and Others

Syntactic Roles s-cause, s-concession, s-condition, s-coordinate, s-or, s-
progression, s-besides, s-succession, s-purpose, s-measure, s-
abandonment, s-preference, s-summary, s-recount, s-concerning,
s-result

Others aux-depend, prep-depend, PU, ROOT

Table 1: Semantic Relations defined for Chinese Semantic Dependency Parsing.

ID FORM LEMMA CPOS PPOS FEAT HEAD REL PHEAD PREL
1 钱其琛 钱其琛 NR NR 2 agent
2 谈 谈 VV VV 0 ROOT
3 香港 香港 NR NR 4 d-genetive
4 前景 前景 NN NN 7 s-coordinate
5 和 和 CC CC 7 aux-depend
6 台湾 台湾 NR NR 7 d-genetive
7 问题 问题 NN NN 2 content

Figure 2: Data format of the Chinese Semantic Dependency Parsing corpus.
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4 Participating Systems

Nine organizations were registered to participate in
the Chinese Semantic Dependency Parsing task. Fi-
nally, nine systems were received from five different
participating teams. These systems are as follows:

1. Zhou Qiaoli-1, Zhou Qiaoli-2, Zhou Qiaoli-3
These three systems propose a divide-and-
conquer strategy for semantic dependency
parsing. The Semantic Role (SR) phrases are
identified (Cai et al., 2011) and then replaced
by their head or the SR of the head. The orig-
inal sentence is thus divided into two types of
parts that can be parsed separately. The first
type is SR phrase parsing, and the second in-
volves the replacement of SR phrases with ei-
ther their head or the SR of the head. Finally,
the paper takes a graph-based parser (Li et al.,
2011) as the semantic dependency parser for all
parts. These three systems differ in their phrase
identification strategies.

2. NJU-Parser-1, NJU-Parser-2
The NJU-Parser is based on the state-of-the-
art MSTParser (McDonald, 2006). NJU-Parser
applies three methods to enhance semantic de-
pendency parsing. First, sentences are split
into sub-sentences using commas and semi-
colons: (a) sentences are split using only com-
mas and semicolons, as in the primary sys-
tem, and (b) classifiers are used to determine
whether a comma or semicolon should be used
to split the sentence. Second, the last character
in a Chinese word is extracted as the lemma,
since it usually contains the main sense or se-
mantic class. Third, the multilevel-label is in-
troduced into the semantic relation, for exam-
ple, the r-{Main Semantic Roles}, with NJU-
Parser exploiting special strategies to handle it.
However, this third method does not show pos-
itive performance.

3. Zhijun Wu-1
This system extends the second-order of the
MSTParser by adding third-order features, and
then applying this model to Chinese semantic
dependency parsing. In contrast to Koo and
Collins (2010) this system does not implement

the third-order model using dynamic program-
ming, as it requires O(n4) time. It first first ob-
tained the K-best results of second-order mod-
els and then added the third-order features into
the results.

4. ICT-1
The ICT semantic dependency parser employs
a system-combining strategy to obtain the de-
pendency structure and then uses the classifier
from Le Zhang’s Maximum Entropy Model-
ing Toolkit4 to predict the semantic relation for
each dependency. The system-combining strat-
egy involves three steps:

• Parsing each sentence using Nivre’s arc
standard, Nivre’s arc eager (Nivre and
Nilsson, 2005; Nivre, 2008), and Liang’s
dynamic algorithm (Huang and Sagae,
2010);
• Combining parses given by the three

parsers into a weighted directed graph;
• Using the Chu-Liu-Edmonds algorithm to

search for the final parse for each sen-
tence.

5. Giuseppe Attardi-SVM-1-R, Giuseppe Attardi-
SVM-1-rev
We didn’t receive the system description of
these two systems.

5 Results & Analysis

LAS is the main evaluation metric in Chinese Se-
mantic Dependency Parsing, whereas UAS is the
secondary metric. Table 4 shows the results for these
two indicators in all participating systems.

As shown in Table 4, the Zhou Qiaoli-3 system
achieved the best results with LAS of 61.84. The
LAS values of top systems are very closely. We per-
formed significance tests5 for top six results. Table
5 shows the results , from which we can see that
the performances of top five results are comparative
(p > 0.1) and the rank sixth system is significantly
(p < 10−5) worse than top five results.

4http://homepages.inf.ed.ac.uk/s0450736/
maxenttoolkit.html

5http://www.cis.upenn.edu/˜dbikel/
download/compare.pl
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NJU-Parser-2 NJU-Parser-1 Zhijun Wu-1 Zhou Qiaoli-1 Zhou Qiaoli-2
Zhou Qiaoli-3 ∼ ∼ ∼ ∼ >
NJU-Parser-2 – ∼ ∼ ∼ >
NJU-Parser-1 – – ∼ ∼ >
Zhijun Wu-1 – – – ∼ >
Zhou Qiaoli-1 – – – – >

Table 5: Significance tests of the top five systems. ∼ denotes that the two systems are comparable (p > 0.1), and >
means the system of this row is significantly (p < 10−5) better than the system of this column.

System LAS UAS
Zhou Qiaoli-3 61.84 80.60
NJU-Parser-2 61.64 80.29
NJU-Parser-1 61.63 80.35
Zhijun Wu-1 61.58 80.64
Zhou Qiaoli-1 61.15 80.41
Zhou Qiaoli-2 57.55 78.55
ICT-1 56.31 73.20
Giuseppe Attardi-SVM-1-R 44.46 60.83
Giuseppe Attardi-SVM-1-rev 21.86 40.47
Average 54.22 72.82

Table 4: Results of the submitted systems.

The average LAS for all systems was 54.22.
Chinese Semantic Dependency Parsing performed
much more poorly than Chinese Syntactic Depen-
dency Parsing due to the increased complexity
brought about by the greater number of semantic re-
lations compared with syntactic relations, as well as
greater difficulty in classifying semantic relations.

In general, all the systems employed the tradi-
tional syntax-dominated dependency parsing frame-
works. Some new methods were proposed for
this task. Zhou Qiaoli’s systems first identified
the semantic role phrase in a sentence, and then
employed graph-based dependency parsing to ana-
lyze the semantic structure of the sentence. NJU-
Parser first split the sentence into sub-sentences,
then trained and parsed the sentence based on these
sub-sentences; this was shown to perform well. In
addition, ensemble models were also proposed to
solve the task using ICT systems.

6 Conclusion

We described the Chinese Semantic Dependency
Parsing task for SemEval-2012, which is designed to

parse the semantic structures of Chinese sentences.
Nine results were submitted by five organizations,

with the best result garnering an LAS score of 61.84,
which is far below the performance of Chinese Syn-
tax. This demonstrates that further research on the
structure of Chinese Semantics is needed.

In the future, we will check and improve the anno-
tation standards while building a large, high-quality
corpus for further Chinese semantic research.
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Abstract

Semantic Textual Similarity (STS) measures
the degree of semantic equivalence between
two texts. This paper presents the results of
the STS pilot task in Semeval. The training
data contained 2000 sentence pairs from pre-
viously existing paraphrase datasets and ma-
chine translation evaluation resources. The
test data also comprised 2000 sentences pairs
for those datasets, plus two surprise datasets
with 400 pairs from a different machine trans-
lation evaluation corpus and 750 pairs from a
lexical resource mapping exercise. The sim-
ilarity of pairs of sentences was rated on a
0-5 scale (low to high similarity) by human
judges using Amazon Mechanical Turk, with
high Pearson correlation scores, around 90%.
35 teams participated in the task, submitting
88 runs. The best results scored a Pearson
correlation>80%, well above a simple lexical
baseline that only scored a 31% correlation.
This pilot task opens an exciting way ahead,
although there are still open issues, specially
the evaluation metric.

1 Introduction

Semantic Textual Similarity (STS) measures the
degree of semantic equivalence between two sen-
tences. STS is related to both Textual Entailment
(TE) and Paraphrase (PARA). STS is more directly
applicable in a number of NLP tasks than TE and
PARA such as Machine Translation and evaluation,
Summarization, Machine Reading, Deep Question
Answering, etc. STS differs from TE in as much as
it assumes symmetric graded equivalence between
the pair of textual snippets. In the case of TE the

equivalence is directional, e.g. a car is a vehicle, but
a vehicle is not necessarily a car. Additionally, STS
differs from both TE and PARA in that, rather than
being a binary yes/no decision (e.g. a vehicle is not a
car), STS incorporates the notion of graded semantic
similarity (e.g. a vehicle and a car are more similar
than a wave and a car).

STS provides a unified framework that allows for
an extrinsic evaluation of multiple semantic compo-
nents that otherwise have tended to be evaluated in-
dependently and without broad characterization of
their impact on NLP applications. Such components
include word sense disambiguation and induction,
lexical substitution, semantic role labeling, multi-
word expression detection and handling, anaphora
and coreference resolution, time and date resolution,
named-entity handling, underspecification, hedging,
semantic scoping and discourse analysis. Though
not in the scope of the current pilot task, we plan to
explore building an open source toolkit for integrat-
ing and applying diverse linguistic analysis modules
to the STS task.

While the characterization of STS is still prelim-
inary, we observed that there was no comparable
existing dataset extensively annotated for pairwise
semantic sentence similarity. We approached the
construction of the first STS dataset with the fol-
lowing goals: (1) To set a definition of STS as a
graded notion which can be easily communicated to
non-expert annotators beyond the likert-scale; (2) To
gather a substantial amount of sentence pairs from
diverse datasets, and to annotate them with high
quality; (3) To explore evaluation measures for STS;
(4) To explore the relation of STS to PARA and Ma-
chine Translation Evaluation exercises.
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In the next section we present the various sources
of the STS data and the annotation procedure used.
Section 4 investigates the evaluation of STS sys-
tems. Section 5 summarizes the resources and tools
used by participant systems. Finally, Section 6
draws the conclusions.

2 Source Datasets

Datasets for STS are scarce. Existing datasets in-
clude (Li et al., 2006) and (Lee et al., 2005). The
first dataset includes 65 sentence pairs which cor-
respond to the dictionary definitions for the 65
word pairs in Similarity(Rubenstein and Goode-
nough, 1965). The authors asked human informants
to assess the meaning of the sentence pairs on a
scale from 0.0 (minimum similarity) to 4.0 (maxi-
mum similarity). While the dataset is very relevant
to STS, it is too small to train, develop and test typ-
ical machine learning based systems. The second
dataset comprises 50 documents on news, ranging
from 51 to 126 words. Subjects were asked to judge
the similarity of document pairs on a five-point scale
(with 1.0 indicating “highly unrelated” and 5.0 indi-
cating “highly related”). This second dataset com-
prises a larger number of document pairs, but it goes
beyond sentence similarity into textual similarity.

When constructing our datasets, gathering natu-
rally occurring pairs of sentences with different de-
grees of semantic equivalence was a challenge in it-
self. If we took pairs of sentences at random, the
vast majority of them would be totally unrelated, and
only a very small fragment would show some sort of
semantic equivalence. Accordingly, we investigated
reusing a collection of existing datasets from tasks
that are related to STS.

We first studied the pairs of text from the Recog-
nizing TE challenge. The first editions of the chal-
lenge included pairs of sentences as the following:

T: The Christian Science Monitor named a US
journalist kidnapped in Iraq as freelancer Jill
Carroll.
H: Jill Carroll was abducted in Iraq.

The first sentence is the text, and the second is
the hypothesis. The organizers of the challenge an-
notated several pairs with a binary tag, indicating
whether the hypothesis could be entailed from the
text. Although these pairs of text are interesting we
decided to discard them from this pilot because the

length of the hypothesis was typically much shorter
than the text, and we did not want to bias the STS
task in this respect. We may, however, explore using
TE pairs for STS in the future.

Microsoft Research (MSR) has pioneered the ac-
quisition of paraphrases with two manually anno-
tated datasets. The first, called MSR Paraphrase
(MSRpar for short) has been widely used to evaluate
text similarity algorithms. It contains 5801 pairs of
sentences gleaned over a period of 18 months from
thousands of news sources on the web (Dolan et
al., 2004). 67% of the pairs were tagged as para-
phrases. The inter annotator agreement is between
82% and 84%. Complete meaning equivalence is
not required, and the annotation guidelines allowed
for some relaxation. The pairs which were anno-
tated as not being paraphrases ranged from com-
pletely unrelated semantically, to partially overlap-
ping, to those that were almost-but-not-quite seman-
tically equivalent. In this sense our graded annota-
tions enrich the dataset with more nuanced tags, as
we will see in the following section. We followed
the original split of 70% for training and 30% for
testing. A sample pair from the dataset follows:

The Senate Select Committee on Intelligence
is preparing a blistering report on prewar
intelligence on Iraq.

American intelligence leading up to the
war on Iraq will be criticized by a powerful
US Congressional committee due to report
soon, officials said today.

In order to construct a dataset which would reflect
a uniform distribution of similarity ranges, we sam-
pled the MSRpar dataset at certain ranks of string
similarity. We used the implementation readily ac-
cessible at CPAN1 of a well-known metric (Ukko-
nen, 1985). We sampled equal numbers of pairs
from five bands of similarity in the [0.4 .. 0.8] range
separately from the paraphrase and non-paraphrase
pairs. We sampled 1500 pairs overall, which we split
50% for training and 50% for testing.

The second dataset from MSR is the MSR Video
Paraphrase Corpus (MSRvid for short). The authors
showed brief video segments to Annotators from
Amazon Mechanical Turk (AMT) and were asked

1http://search.cpan.org/˜mlehmann/
String-Similarity-1.04/Similarity.pm
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Figure 1: Video and corresponding descriptions from
MSRvid

Figure 2: Definition and instructions for annotation

to provide a one-sentence description of the main ac-
tion or event in the video (Chen and Dolan, 2011).
Nearly 120 thousand sentences were collected for
2000 videos. The sentences can be taken to be
roughly parallel descriptions, and they included sen-
tences for many languages. Figure 1 shows a video
and corresponding descriptions.

The sampling procedure from this dataset is sim-
ilar to that for MSRpar. We construct two bags of
data to draw samples. The first includes all possible
pairs for the same video, and the second includes
pairs taken from different videos. Note that not all
sentences from the same video were equivalent, as
some descriptions were contradictory or unrelated.
Conversely, not all sentences coming from different
videos were necessarily unrelated, as many videos
were on similar topics. We took an equal number of
samples from each of these two sets, in an attempt to
provide a balanced dataset between equivalent and
non-equivalent pairs. The sampling was also done
according to string similarity, but in four bands in the
[0.5 .. 0.8] range, as sentences from the same video
had a usually higher string similarity than those in
the MSRpar dataset. We sampled 1500 pairs overall,
which we split 50% for training and 50% for testing.

Given the strong connection between STS sys-
tems and Machine Translation evaluation metrics,
we also sampled pairs of segments that had been
part of human evaluation exercises. Those pairs in-
cluded a reference translation and a automatic Ma-
chine Translation system submission, as follows:

The only instance in which no tax is levied is
when the supplier is in a non-EU country and
the recipient is in a Member State of the EU.

The only case for which no tax is still
perceived ”is an example of supply in the
European Community from a third country.

We selected pairs from the translation shared task
of the 2007 and 2008 ACL Workshops on Statistical
Machine Translation (WMT) (Callison-Burch et al.,
2007; Callison-Burch et al., 2008). For consistency,
we only used French to English system submissions.
The training data includes all of the Europarl human
ranked fr-en system submissions from WMT 2007,
with each machine translation being paired with the
correct reference translation. This resulted in 729
unique training pairs. The test data is comprised of
all Europarl human evaluated fr-en pairs from WMT
2008 that contain 16 white space delimited tokens or
less.

In addition, we selected two other datasets that
were used as out-of-domain testing. One of them
comprised of all the human ranked fr-en system
submissions from the WMT 2007 news conversa-
tion test set, resulting in 351 unique system refer-
ence pairs.2 The second set is radically different as
it comprised 750 pairs of glosses from OntoNotes
4.0 (Hovy et al., 2006) and WordNet 3.1 (Fellbaum,
1998) senses. The mapping of the senses of both re-
sources comprised 110K sense pairs. The similarity
between the sense pairs was generated using simple
word overlap. 50% of the pairs were sampled from
senses which were deemed as equivalent senses, the
rest from senses which did not map to one another.

3 Annotation

In this first dataset we defined a straightforward lik-
ert scale ranging from 5 to 0, but we decided to pro-
vide definitions for each value in the scale (cf. Fig-
ure 2). We first did pilot annotations of 200 pairs se-

2At the time of the shared task, this data set contained dupli-
cates resulting in 399 sentence pairs.
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lected at random from the three main datasets in the
training set. We did the annotation, and the pairwise
Pearson ranged from 84% to 87% among ourselves.
The agreement of each annotator with the average
scores of the other was between 87% and 89%.

In the future, we would like to explore whether
the definitions improve the consistency of the tag-
ging with respect to a likert scale without defini-
tions. Note also that in the assessment of the qual-
ity and evaluation of the systems performances, we
just took the resulting SS scores and their averages.
Using the qualitative descriptions for each score in
analysis and evaluation is left for future work.

Given the good results of the pilot we decided to
deploy the task in Amazon Mechanical Turk (AMT)
in order to crowd source the annotation task. The
turkers were required to have achieved a 95% of ap-
proval rating in their previous HITs, and had to pass
a qualification task which included 6 example pairs.
Each HIT included 5 pairs of sentences, and was
paid at 0.20$ each. We collected 5 annotations per
HIT. In the latest data collection, each HIT required
114.9 second for completion.

In order to ensure the quality, we also performed
post-hoc validation. Each HIT contained one pair
from our pilot. After the tagging was completed
we checked the correlation of each individual turker
with our scores, and removed annotations of turkers
which had low correlations (below 50%). Given the
high quality of the annotations among the turkers,
we could alternatively use the correlation between
the turkers itself to detect poor quality annotators.

4 Systems Evaluation

Given two sentences, s1 and s2, an STS system
would need to return a similarity score. Participants
can also provide a confidence score indicating their
confidence level for the result returned for each pair,
but this confidence is not used for the main results.
The output of the systems performance is evaluated
using the Pearson product-moment correlation co-
efficient between the system scores and the human
scores, as customary in text similarity (Rubenstein
and Goodenough, 1965). We calculated Pearson for
each evaluation dataset separately.

In order to have a single Pearson measure for each
system we concatenated the gold standard (and sys-
tem outputs) for all 5 datasets into a single gold stan-

dard file (and single system output). The first ver-
sion of the results were published using this method,
but the overall score did not correspond well to the
individual scores in the datasets, and participants
proposed two additional evaluation metrics, both of
them based on Pearson correlation. The organizers
of the task decided that it was more informative, and
on the benefit of the community, to also adopt those
evaluation metrics, and the idea of having a single
main evaluation metric was dropped. This decision
was not without controversy, but the organizers gave
more priority to openness and inclusiveness and to
the involvement of participants. The final result ta-
ble thus included three evaluation metrics. For the
future we plan to analyze the evaluation metrics, in-
cluding non-parametric metrics like Spearman.

4.1 Evaluation metrics
The first evaluation metric is the Pearson correla-
tion for the concatenation of all five datasets, as de-
scribed above. We will use overall Pearson or sim-
ply ALL to refer to this measure.

The second evaluation metric normalizes the out-
put for each dataset separately, using the linear least
squares method. We concatenated the system results
for five datasets and then computed a single Pear-
son correlation. Given Y = {yi} and X = {xi}
(the gold standard scores and the system scores,
respectively), we transform the system scores into
X ′ = {x′

i} in order to minimize the squared error∑
i (yi − x′

i)
2. The linear transformation is given by

x′
i = xi ∗ β1 + β2, where β1 and β2 are found an-

alytically. We refer to this measure as Normalized
Pearson or simply ALLnorm. This metric was sug-
gested by one of the participants, Sergio Jimenez.

The third evaluation metric is the weighted mean
of the Pearson correlations on individual datasets.
The Pearson returned for each dataset is weighted
according to the number of sentence pairs in that
dataset. Given ri the five Pearson scores for
each dataset, and ni the number of pairs in each
dataset, the weighted mean is given as

∑
i=1..5(ri ∗

ni)/
∑

i=1..5 ni We refer to this measure as weighted
mean of Pearson or Mean for short.

4.2 Using confidence scores
Participants were allowed to include a confidence
score between 1 and 100 for each of their scores.
We used weighted Pearson to use those confidence
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scores3. Table 2 includes the list of systems which
provided a non-uniform confidence. The results
show that some systems were able to improve their
correlation, showing promise for the usefulness of
confidence in applications.

4.3 The Baseline System
We produced scores using a simple word overlap
baseline system. We tokenized the input sentences
splitting at white spaces, and then represented each
sentence as a vector in the multidimensional to-
ken space. Each dimension had 1 if the token was
present in the sentence, 0 otherwise. Similarity of
vectors was computed using cosine similarity.

We also run a random baseline several times,
yielding close to 0 correlations in all datasets, as ex-
pected. We will refer to the random baseline again
in Section 4.5.

4.4 Participation
Participants could send a maximum of three system
runs. After downloading the test datasets, they had
a maximum of 120 hours to upload the results. 35
teams participated, submitting 88 system runs (cf.
first column of Table 1). Due to lack of space we
can’t detail the full names of authors and institutions
that participated. The interested reader can use the
name of the runs to find the relevant paper in these
proceedings.

There were several issues in the submissions. The
submission software did not ensure that the nam-
ing conventions were appropriately used, and this
caused some submissions to be missed, and in two
cases the results were wrongly assigned. Some par-
ticipants returned Not-a-Number as a score, and the
organizers had to request whether those where to be
taken as a 0 or as a 5.

Finally, one team submitted past the 120 hour
deadline and some teams sent missing files after the
deadline. All those are explicitly marked in Table 1.
The teams that included one of the organizers are
also explicitly marked. We want to stress that in
these teams the organizers did not allow the devel-
opers of the system to access any data or informa-
tion which was not available for the rest of partic-
ipants. One exception is weiwei, as they generated

3http://en.wikipedia.org/wiki/Pearson_
product-moment_correlation_coefficient#
Calculating_a_weighted_correlation

the 110K OntoNotes-WordNet dataset from which
the other organizers sampled the surprise data set.

After the submission deadline expired, the orga-
nizers published the gold standard in the task web-
site, in order to ensure a transparent evaluation pro-
cess.

4.5 Results

Table 1 shows the results for each run in alphabetic
order. Each result is followed by the rank of the sys-
tem according to the given evaluation measure. To
the right, the Pearson score for each dataset is given.
In boldface, the three best results in each column.

First of all we want to stress that the large majority
of the systems are well above the simple baseline,
although the baseline would rank 70 on the Mean
measure, improving over 19 runs.

The correlation for the non-MT datasets were re-
ally high: the highest correlation was obtained was
for MSRvid (0.88 r), followed by MSRpar (0.73 r)
and On-WN (0.73 r). The results for the MT evalu-
ation data are lower, (0.57 r) for SMT-eur and (0.61
r) for SMT-News. The simple token overlap base-
line, on the contrary, obtained the highest results
for On-WN (0.59 r), with (0.43 r) on MSRpar and
(0.40 r) on MSRvid. The results for MT evaluation
data are also reversed, with (0.40 r) for SMT-eur and
(0.45 r) for SMT-News.

The ALLnorm measure yields the highest corre-
lations. This comes at no surprise, as it involves a
normalization which transforms the system outputs
using the gold standard. In fact, a random base-
line which gets Pearson correlations close to 0 in all
datasets would attain Pearson of 0.58914.

Although not included in the results table for lack
of space, we also performed an analysis of confi-
dence intervals. For instance, the best run according
to ALL (r = .8239) has a 95% confidence interval of
[.8123,.8349] and the second a confidence interval
of [.8016,.8254], meaning that the differences are
not statistically different.

5 Tools and resources used

The organizers asked participants to submit a de-
scription file, special emphasis on the tools and re-
sources that they used. Table 3 shows in a simpli-

4We run the random baseline 10 times. The mean is reported
here. The standard deviation is 0.0005
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Run ALL Rank ALLnrm Rank Mean Rank MSRpar MSRvid SMT-eur On-WN SMT-news
00-baseline/task6-baseline .3110 87 .6732 85 .4356 70 .4334 .2996 .4542 .5864 .3908

aca08ls/task6-University Of Sheffield-Hybrid .6485 34 .8238 15 .6100 18 .5166 .8187 .4859 .6676 .4280
aca08ls/task6-University Of Sheffield-Machine Learning .7241 17 .8169 18 .5750 38 .5166 .8187 .4859 .6390 .2089

aca08ls/task6-University Of Sheffield-Vector Space .6054 48 .7946 44 .5943 27 .5460 .7241 .4858 .6676 .4280
acaputo/task6-UNIBA-DEPRI .6141 46 .8027 38 .5891 31 .4542 .7673 .5126 .6593 .4636
acaputo/task6-UNIBA-LSARI .6221 44 .8079 30 .5728 40 .3886 .7908 .4679 .6826 .4238

acaputo/task6-UNIBA-RI .6285 41 .7951 43 .5651 45 .4128 .7612 .4531 .6306 .4887
baer/task6-UKP-run1 .8117 4 .8559 4 .6708 4 .6821 .8708 .5118 .6649 .4672

baer/task6-UKP-run2 plus postprocessing smt twsi .8239 1 .8579 2 .6773 1 .6830 .8739 .5280 .6641 .4937
baer/task6-UKP-run3 plus random .7790 8 .8166 19 .4320 71 .6830 .8739 .5280 -.0620 -.0520

croce/task6-UNITOR-1 REGRESSION BEST FEATURES .7474 13 .8292 12 .6316 10 .5695 .8217 .5168 .6591 .4713
croce/task6-UNITOR-2 REGRESSION ALL FEATURES .7475 12 .8297 11 .6323 9 .5763 .8217 .5102 .6591 .4713

croce/task6-UNITOR-3 REGRESSION ALL FEATURES ALL DOMAINS .6289 40 .8150 21 .5939 28 .4686 .8027 .4574 .6591 .4713
csjxu/task6-PolyUCOMP-RUN1 .6528 31 .7642 59 .5492 51 .4728 .6593 .4835 .6196 .4290

danielcer/stanford fsa† .6354 38 .7212 70 .4848 66 .3795 .5350 .4377 .6052 .4164
danielcer/stanford pdaAll† .4229 77 .7160 72 .5044 62 .4409 .4698 .4558 .6468 .4769

danielcer/stanford rte† .5589 55 .7807 55 .4674 67 .4374 .8037 .3533 .3077 .3235
davide buscaldi/task6-IRIT-pg1 .4280 76 .7379 65 .5009 63 .4295 .6125 .4952 .5387 .3614
davide buscaldi/task6-IRIT-pg3 .4813 68 .7569 61 .5202 58 .4171 .6728 .5179 .5526 .3693
davide buscaldi/task6-IRIT-wu .4064 81 .7287 69 .4898 65 .4326 .5833 .4856 .5317 .3480

demetrios glinos/task6-ATA-BASE .3454 83 .6990 81 .2772 87 .1684 .6256 .2244 .1648 .0988
demetrios glinos/task6-ATA-CHNK .4976 64 .7160 73 .3215 86 .2312 .6595 .1504 .2735 .1426
demetrios glinos/task6-ATA-STAT .4165 79 .7129 75 .3312 85 .1887 .6482 .2769 .2950 .1336

desouza/task6-FBK-run1 .5633 54 .7127 76 .3628 82 .2494 .6117 .1495 .4212 .2439
desouza/task6-FBK-run2 .6438 35 .8080 29 .5888 32 .5128 .7807 .3796 .6228 .5474
desouza/task6-FBK-run3 .6517 32 .8106 25 .6077 20 .5169 .7773 .4419 .6298 .6085

dvilarinoayala/task6-BUAP-RUN-1 .4997 63 .7568 62 .5260 56 .4037 .6532 .4521 .6050 .4537
dvilarinoayala/task6-BUAP-RUN-2 -.0260 89 .5933 89 .1016 89 .1109 .0057 .0348 .1788 .1964
dvilarinoayala/task6-BUAP-RUN-3 .6630 25 .7474 64 .5105 59 .4018 .6378 .4758 .5691 .4057
enrique/task6-UNED-H34measures .4381 75 .7518 63 .5577 48 .5328 .5788 .4785 .6692 .4465
enrique/task6-UNED-HallMeasures .2791 88 .6694 87 .4286 72 .3861 .2570 .4086 .6006 .5305

enrique/task6-UNED-SP INIST .4680 69 .7625 60 .5615 47 .5166 .6303 .4625 .6442 .4753
georgiana dinu/task6-SAARLAND-ALIGN VSSIM .4952 65 .7871 50 .5065 60 .4043 .7718 .2686 .5721 .3505
georgiana dinu/task6-SAARLAND-MIXT VSSIM .4548 71 .8258 13 .5662 43 .6310 .8312 .1391 .5966 .3806

jan snajder/task6-takelab-simple .8133 3 .8635 1 .6753 2 .7343 .8803 .4771 .6797 .3989
jan snajder/task6-takelab-syntax .8138 2 .8569 3 .6601 5 .6985 .8620 .3612 .7049 .4683

janardhan/task6-janardhan-UNL matching .3431 84 .6878 84 .3481 83 .1936 .5504 .3755 .2888 .3387
jhasneha/task6-Penn-ELReg .6622 27 .8048 34 .5654 44 .5480 .7844 .3513 .6040 .3607
jhasneha/task6-Penn-ERReg .6573 28 .8083 28 .5755 37 .5610 .7857 .3568 .6214 .3732
jhasneha/task6-Penn-LReg .6497 33 .8043 36 .5699 41 .5460 .7818 .3547 .5969 .4137

jotacastillo/task6-SAGAN-RUN1 .5522 57 .7904 47 .5906 29 .5659 .7113 .4739 .6542 .4253
jotacastillo/task6-SAGAN-RUN2 .6272 42 .8032 37 .5838 34 .5538 .7706 .4480 .6135 .3894
jotacastillo/task6-SAGAN-RUN3 .6311 39 .7943 45 .5649 46 .5394 .7560 .4181 .5904 .3746

Konstantin Z/task6-ABBYY-General .5636 53 .8052 33 .5759 36 .4797 .7821 .4576 .6488 .3682
M Rios/task6-UOW-LEX PARA .6397 36 .7187 71 .3825 80 .3628 .6426 .3074 .2806 .2082

M Rios/task6-UOW-LEX PARA SEM .5981 49 .6955 82 .3473 84 .3529 .5724 .3066 .2643 .1164
M Rios/task6-UOW-SEM .5361 59 .6287 88 .2567 88 .2995 .2910 .1611 .2571 .2212

mheilman/task6-ETS-PERP .7808 7 .8064 32 .6305 11 .6211 .7210 .4722 .7080 .5149
mheilman/task6-ETS-PERPphrases .7834 6 .8089 27 .6399 7 .6397 .7200 .4850 .7124 .5312

mheilman/task6-ETS-TERp .4477 73 .7291 68 .5253 57 .5049 .5217 .4748 .6169 .4566
nitish aggarwal/task6-aggarwal-run1? .5777 52 .8158 20 .5466 52 .3675 .8427 .3534 .6030 .4430
nitish aggarwal/task6-aggarwal-run2? .5833 51 .8183 17 .5683 42 .3720 .8330 .4238 .6513 .4499
nitish aggarwal/task6-aggarwal-run3 .4911 67 .7696 57 .5377 53 .5320 .6874 .4514 .5827 .2818

nmalandrakis/task6-DeepPurple-DeepPurple hierarchical .6228 43 .8100 26 .5979 23 .5984 .7717 .4292 .6480 .3702
nmalandrakis/task6-DeepPurple-DeepPurple sigmoid .5540 56 .7997 41 .5558 50 .5960 .7616 .2628 .6016 .3446
nmalandrakis/task6-DeepPurple-DeepPurple single .4918 66 .7646 58 .5061 61 .4989 .7092 .4437 .4879 .2441

parthapakray/task6-JU CSE NLP-Semantic Syntactic Approach∗ .3880 82 .6706 86 .4111 76 .3427 .3549 .4271 .5298 .4034
rada/task6-UNT-CombinedRegression .7418 14 .8406 7 .6159 14 .5032 .8695 .4797 .6715 .4033

rada/task6-UNT-IndividualDecTree .7677 9 .8389 9 .5947 25 .5693 .8688 .4203 .6491 .2256
rada/task6-UNT-IndividualRegression .7846 5 .8440 6 .6162 13 .5353 .8750 .4203 .6715 .4033

sbdlrhmn/task6-sbdlrhmn-Run1 .6663 23 .7842 53 .5376 54 .5440 .7335 .3830 .5860 .2445
sbdlrhmn/task6-sbdlrhmn-Run2 .4169 78 .7104 77 .4986 64 .4617 .4489 .4719 .6353 .4353

sgjimenezv/task6-SOFT-CARDINALITY .7331 15 .8526 5 .6708 3 .6405 .8562 .5152 .7109 .4833
sgjimenezv/task6-SOFT-CARDINALITY-ONE-FUNCTION .7107 19 .8397 8 .6486 6 .6316 .8237 .4320 .7109 .4833

siva/task6-DSS-alignheuristic .5253 60 .7962 42 .6030 21 .5735 .7123 .4781 .6984 .4177
siva/task6-DSS-average .5490 58 .8047 35 .5943 26 .5020 .7645 .4875 .6677 .4324
siva/task6-DSS-wordsim .5130 61 .7895 49 .5287 55 .3765 .7761 .4161 .5728 .3964

skamler /task6-EHU-RUN1v2?† .3129 86 .6935 83 .3889 79 .3605 .5187 .2259 .4098 .3465
sokolov/task6-LIMSI-cosprod .6392 37 .7344 67 .3940 78 .3948 .6597 .0143 .4157 .2889
sokolov/task6-LIMSI-gradtree .6789 22 .7377 66 .4118 75 .4848 .6636 .0934 .3706 .2455
sokolov/task6-LIMSI-sumdiff .6196 45 .7101 78 .4131 74 .4295 .5724 .2842 .3989 .2575

spirin2/task6-UIUC-MLNLP-Blend .4592 70 .7800 56 .5782 35 .6523 .6691 .3566 .6117 .4603
spirin2/task6-UIUC-MLNLP-CCM .7269 16 .8217 16 .6104 17 .5769 .8203 .4667 .5835 .4945
spirin2/task6-UIUC-MLNLP-Puzzle .3216 85 .7857 51 .4376 69 .5635 .8056 .0630 .2774 .2409

sranjans/task6-sranjans-1 .6529 30 .8018 39 .6249 12 .6124 .7240 .5581 .6703 .4533
sranjans/task6-sranjans-2 .6651 24 .8128 22 .6366 8 .6254 .7538 .5328 .6649 .5036
sranjans/task6-sranjans-3 .5045 62 .7846 52 .5905 30 .6167 .7061 .5666 .5664 .3968

tiantianzhu7/task6-tiantianzhu7-1 .4533 72 .7134 74 .4192 73 .4184 .5630 .2083 .4822 .2745
tiantianzhu7/task6-tiantianzhu7-2 .4157 80 .7099 79 .3960 77 .4260 .5628 .1546 .4552 .1923
tiantianzhu7/task6-tiantianzhu7-3 .4446 74 .7097 80 .3740 81 .3411 .5946 .1868 .4029 .1823

weiwei/task6-weiwei-run1?† .6946 20 .8303 10 .6081 19 .4106 .8351 .5128 .7273 .4383
yeh/task6-SRIUBC-SYSTEM1† .7513 11 .8017 40 .5997 22 .6084 .7458 .4688 .6315 .3994
yeh/task6-SRIUBC-SYSTEM2† .7562 10 .8111 24 .5858 33 .6050 .7939 .4294 .5871 .3366
yeh/task6-SRIUBC-SYSTEM3† .6876 21 .7812 54 .4668 68 .4791 .7901 .2159 .3843 .2801

ygutierrez/task6-UMCC DLSI-MultiLex .6630 26 .7922 46 .5560 49 .6022 .7709 .4435 .4327 .4264
ygutierrez/task6-UMCC DLSI-MultiSem .6529 29 .8115 23 .6116 16 .5269 .7756 .4688 .6539 .5470

ygutierrez/task6-UMCC DLSI-MultiSemLex .7213 18 .8239 14 .6158 15 .6205 .8104 .4325 .6256 .4340
yrkakde/task6-yrkakde-DiceWordnet .5977 50 .7902 48 .5742 39 .5294 .7470 .5531 .5698 .3659

yrkakde/task6-yrkakde-JaccNERPenalty .6067 47 .8078 31 .5955 24 .5757 .7765 .4989 .6257 .3468

Table 1: The first row corresponds to the baseline. ALL for overall Pearson, ALLnorm for Pearson after normaliza-
tion, and Mean for mean of Pearsons. We also show the ranks for each measure. Rightmost columns show Pearson for
each individual dataset. Note: ∗ system submitted past the 120 hour window, ? post-deadline fixes, † team involving
one of the organizers.
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Run ALL ALLw MSRpar MSRparw MSRvid MSRvidw SMT-eur SMT-eurw On-WN On-WNw SMT-news SMT-newsw
davide buscaldi/task6-IRIT-pg1 .4280 .4946 .4295 .4082 .6125 .6593 .4952 .5273 .5387 .5574 .3614 .4674
davide buscaldi/task6-IRIT-pg3 .4813 .5503 .4171 .4033 .6728 .7048 .5179 .5529 .5526 .5950 .3693 .4648
davide buscaldi/task6-IRIT-wu .4064 .4682 .4326 .4035 .5833 .6253 .4856 .5138 .5317 .5189 .3480 .4482

enrique/task6-UNED-H34measures .4381 .2615 .5328 .4494 .5788 .4913 .4785 .4660 .6692 .6440 .4465 .3632
enrique/task6-UNED-HallMeasures .2791 .2002 .3861 .3802 .2570 .2343 .4086 .4212 .6006 .5947 .5305 .4858

enrique/task6-UNED-SP INIST .4680 .3754 .5166 .5082 .6303 .5588 .4625 .4801 .6442 .5761 .4753 .4143
parthapakray/task6-JU CSE NLP-Semantic Syntactic Approach .3880 .3636 .3427 .3498 .3549 .3353 .4271 .3989 .5298 .4619 .4034 .3228

tiantianzhu7/task6-tiantianzhu7-1 .4533 .5442 .4184 .4241 .5630 .5630 .2083 .4220 .4822 .5031 .2745 .3536
tiantianzhu7/task6-tiantianzhu7-2 .4157 .5249 .4260 .4340 .5628 .5758 .1546 .4776 .4552 .4926 .1923 .3362
tiantianzhu7/task6-tiantianzhu7-3 .4446 .5229 .3411 .3611 .5946 .5899 .1868 .4769 .4029 .4365 .1823 .4014

Table 2: Results according to weighted correlation for the systems that provided non-uniform confidence alongside
their scores.

fied way the tools and resources used by those par-
ticipants that did submit a valid description file. In
the last row, the totals show that WordNet was the
most used resource, followed by monolingual cor-
pora and Wikipedia. Acronyms, dictionaries, mul-
tilingual corpora, stopword lists and tables of para-
phrases were also used.

Generic NLP tools like lemmatization and PoS
tagging were widely used, and to a lesser extent,
parsing, word sense disambiguation, semantic role
labeling and time and date resolution (in this or-
der). Knowledge-based and distributional methods
got used nearly equally, and to a lesser extent, align-
ment and/or statistical machine translation software,
lexical substitution, string similarity, textual entail-
ment and machine translation evaluation software.
Machine learning was widely used to combine and
tune components. Several less used tools were also
listed but were used by three or less systems.

The top scoring systems tended to use most of
the resources and tools listed (UKP, Takelab), with
some notable exceptions like Sgjimenez which was
based on string similarity. For a more detailed anal-
ysis, the reader is directed to the papers of the par-
ticipants in this volume.

6 Conclusions and Future Work

This paper presents the SemEval 2012 pilot eval-
uation exercise on Semantic Textual Similarity. A
simple definition of STS beyond the likert-scale was
set up, and a wealth of annotated data was pro-
duced. The similarity of pairs of sentences was
rated on a 0-5 scale (low to high similarity) by hu-
man judges using Amazon Mechanical Turk. The
dataset includes 1500 sentence pairs from MSRpar
and MSRvid (each), ca. 1500 pairs from WMT,
and 750 sentence pairs from a mapping between
OntoNotes and WordNet senses. The correlation be-

tween non-expert annotators and annotations from
the authors is very high, showing the high quality of
the dataset. The dataset was split 50% as train and
test, with the exception of the surprise test datasets:
a subset of WMT from a different domain and the
OntoNotes-WordNet mapping. All datasets are pub-
licly available.5

The exercise was very successful in participation
and results. 35 teams participated, submitting 88
runs. The best results scored a Pearson correlation
over 80%, well beyond a simple lexical baseline
with 31% of correlation. The metric for evaluation
was not completely satisfactory, and three evalua-
tion metrics were finally published. We discuss the
shortcomings of those measures.

There are several tasks ahead in order to make
STS a mature field. The first is to find a satisfac-
tory evaluation metric. The second is to analyze the
definition of the task itself, with a thorough analysis
of the definitions in the likert scale.

We would also like to analyze the relation be-
tween the STS scores and the paraphrase judgements
in MSR, as well as the human evaluations in WMT.
Finally, we would also like to set up an open frame-
work where NLP components and similarity algo-
rithms can be combined by the community. All in
all, we would like this dataset to be the focus of the
community working on algorithmic approaches for
semantic processing and inference at large.
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aca08ls/task6-University Of Sheffield-Hybrid x x x x x x x
aca08ls/task6-University Of Sheffield-Machine Learning x x x x x x x

aca08ls/task6-University Of Sheffield-Vector Space x x x x x
baer/task6-UKP-run1 x x x x x x x x x x x x x x

baer/task6-UKP-run2 plus postprocessing smt twsi x x x x x x x x x x x x x x
baer/task6-UKP-run3 plus random x x x x x x x x x x x x x x

croce/task6-UNITOR-1 REGRESSION BEST FEATURES x x x x x x
croce/task6-UNITOR-2 REGRESSION ALL FEATURES x x x x x x

croce/task6-UNITOR-3 REGRESSION ALL FEATURES ALL DOMAINS x x x x x x
csjxu/task6-PolyUCOMP-RUN x x x x

danielcer/stanford fsa x x x x x x x
danielcer/stanford pdaAll x x x x x x x

danielcer/stanford rte x x x x x x x x
davide buscaldi/task6-IRIT-pg1 x x x x x
davide buscaldi/task6-IRIT-pg3 x x x x x
davide buscaldi/task6-IRIT-wu x x x x x

demetrios glinos/task6-ATA-BASE x x x x x x x
demetrios glinos/task6-ATA-CHNK x x x x x x x
demetrios glinos/task6-ATA-STAT x x x x x x x

desouza/task6-FBK-run1 x x x x x x x x x x x x x
desouza/task6-FBK-run2 x x x x x x x x
desouza/task6-FBK-run3 x x x x x x

dvilarinoayala/task6-BUAP-RUN-1 x x
dvilarinoayala/task6-BUAP-RUN-2 x
dvilarinoayala/task6-BUAP-RUN-3 x x

jan snajder/task6-takelab-simple x x x x x x x x x x x x x
jan snajder/task6-takelab-syntax x x x x x x x x x

janardhan/task6-janardhan-UNL matching x x x x x x
jotacastillo/task6-SAGAN-RUN1 x x x x x x x x
jotacastillo/task6-SAGAN-RUN2 x x x x x x x x
jotacastillo/task6-SAGAN-RUN3 x x x x x x x x

Konstantin Z/task6-ABBYY-General
M Rios/task6-UOW-LEX PARA x x x x x x x x

M Rios/task6-UOW-LEX PARA SEM x x x x x x x x
M Rios/task6-UOW-SEM x x x x x x x

mheilman/task6-ETS-PERP x x x x x x x
mheilman/task6-ETS-PERPphrases x x x x x x x x x

mheilman/task6-ETS-TERp x x x x x x x
parthapakray/task6-JU CSE NLP-Semantic Syntactic Approach x x x x x x x x x x

rada/task6-UNT-CombinedRegression x x x x x x x x x
rada/task6-UNT-IndividualDecTree x x x x x x x x x

rada/task6-UNT-IndividualRegression x x x x x x x x x
sgjimenezv/task6-SOFT-CARDINALITY x x x

sgjimenezv/task6-SOFT-CARDINALITY-ONE-FUNCTION x x x
skamler /task6-EHU-RUN1v2 x x x x x
sokolov/task6-LIMSI-cosprod x x x x
sokolov/task6-LIMSI-gradtree x x x x
sokolov/task6-LIMSI-sumdiff x x x x

spirin2/task6-UIUC-MLNLP-Blend x x x x x x x x x x x
spirin2/task6-UIUC-MLNLP-CCM x x x x x x x x x x x
spirin2/task6-UIUC-MLNLP-Puzzle x x x x x x x x x x x

sranjans/task6-sranjans-1 x x x x x x x x
sranjans/task6-sranjans-2 x x x x x x x x x x x
sranjans/task6-sranjans-3 x x x x x x x x x x x

tiantianzhu7/task6-tiantianzhu7-1 x x x x
tiantianzhu7/task6-tiantianzhu7-2 x x x
tiantianzhu7/task6-tiantianzhu7-3 x x x x

weiwei/task6-weiwei-run1 x x x x x x
yeh/task6-SRIUBC-SYSTEM1 x x x x x x x
yeh/task6-SRIUBC-SYSTEM2 x x x x x x x
yeh/task6-SRIUBC-SYSTEM3 x x x x x x x

ygutierrez/task6-UMCC DLSI-MultiLex x x x x x x x
ygutierrez/task6-UMCC DLSI-MultiSem x x x x x x x

ygutierrez/task6-UMCC DLSI-MultiSemLex x x x x x x x x
yrkakde/task6-yrkakde-DiceWordnet x x x

Total 8 6 10 33 5 5 9 20 47 7 31 37 49 13 13 4 7 12 43 9 4 13 17 10 5 15 25

Table 3: Resources and tools used by the systems that submitted a description file. Leftmost columns correspond to
the resources, and rightmost to tools, in alphabetic order.
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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

SemEval-2012 Task 7: Choice of Plausible Alternatives:  
An Evaluation of Commonsense Causal Reasoning 

 
 

Andrew S. Gordon Zornitsa Kozareva Melissa Roemmele 
Institute for Creative Technologies Information Sciences Institute Department of Linguistics 
University of Southern California University of Southern California Indiana University 

Los Angeles, CA Marina del Rey, CA Bloomington, IN 
gordon@ict.usc.edu kozareva@isi.edu msroemme@gmail.com 

 
 

 

 

 
 

Abstract 

SemEval-2012 Task 7 presented a deceptively 
simple challenge: given an English sentence 
as a premise, select the sentence amongst two 
alternatives that more plausibly has a causal 
relation to the premise. In this paper, we de-
scribe the development of this task and its mo-
tivation. We describe the two systems that 
competed in this task as part of SemEval-
2012, and compare their results to those 
achieved in previously published research. We 
discuss the characteristics that make this task 
so difficult, and offer our thoughts on how 
progress can be made in the future. 

1 Motivation 

Open-domain commonsense reasoning is one of 
the grand challenges of artificial intelligence, and 
has been the subject of research since the inception 
of the field. Until recently, this research history has 
been dominated by formal approaches (e.g. Lenat, 
1995), where logical formalizations of com-
monsense theories were hand-authored by expert 
logicians and evaluated using a handful of com-
monsense challenge problems (Morgenstern, 
2012). Progress via this approach has been slow, 
both because of the inherent difficulties in author-
ing suitably broad-coverage formal theories of the 
commonsense world and the lack of evaluation 
metrics for comparing systems from different labs 
and research traditions. 

Radically different approaches to the com-
monsense reasoning problem have recently been 
explored by natural language processing research-
ers. Speer et al. (2008) describe a novel reasoning 
approach that applies dimensionality reduction to 
the space of millions of English-language com-
monsense facts in a crowd-sourced knowledge 
base (Liu & Singh, 2004). Gordon et al., (2010) 
describe a method for extracting millions of com-
monsense facts from parse trees of English sen-
tences. Jung et al. (2010) describe a novel 
approach to the extraction of commonsense 
knowledge about activities by mining online how-
to articles. We believe that these new NLP-based 
approaches hold enormous potential for overcom-
ing the knowledge acquisition bottleneck that has 
limited progress in commonsense reasoning in pre-
vious decades. 

Given the growth and enthusiasm for these new 
approaches, there is increasing need for a common 
metric for evaluation. A common evaluation suite 
would allow researchers to gauge the performance 
of new versions of their own systems, and to com-
pare their approaches with those of other research 
groups. Evaluations for these new NLP-based ap-
proaches should themselves be based in natural 
language, and must be suitably large to truly eval-
uate the breadth of different reasoning approaches. 
Still, each evaluation should be focused on one 
dimension of the overall commonsense reasoning 
task, so as not to create a new challenge that no 
single research group could hope to succeed.  

In SemEval-2012 Task 7, we presented a new 
evaluation for open-domain commonsense reason-
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ing, focusing specifically on commonsense causal 
reasoning about everyday events. 

2 Choice of Plausible Alternatives 

Consider the following English sentence, describ-
ing a hypothetical state of the world: 

The man lost his balance on the ladder.  

In addition to parsing this sentence, resolving 
ambiguities, and constructing a semantic interpre-
tation, human readers also imagine the causal ante-
cedents and consequents that would follow if the 
statement were true. With such a brief description, 
readers are left with many questions. How high up 
on the ladder was this man? What was he doing on 
the ladder in the first place? How much experience 
does he have using ladders? Was he intoxicated? 
The answers to these questions help readers formu-
late hypotheses for the two central concerns when 
reasoning about events: What was the cause of 
this? and What happened as a result?  

As computational linguists, we imagine that our 
automated natural language processing algorithms 
will also, eventually, need to engage in similar rea-
soning processes in order to achieve human-like 
performance on text understanding tasks. Progress 
toward the goal of deep semantic interpretation of 
text has been slow. However, the last decade of 
natural language processing research has shown 
that enormous gains can be achieved when there is 
a clear evaluation metric. A shared task with an 
automated scoring mechanism allows researchers 
to compare different approaches, tune system pa-
rameters to maximize performance, and assess 
progress toward broader research objectives. De-
veloping an evaluation metric for causal reasoning 
poses a number of challenges. It is necessary to 
formulate a question with answers that can be au-
tomatically graded, but can still serve as a proxy 
for the complex, generative imagination of readers. 

Roemmele et al. (2011) offered a solution in the 
form of a simple binary-choice question. Presented 
with an English sentence describing a premise, 
systems must select between two alternatives (also 
sentences) the one that more plausibly has a causal 
relation to the premise, as in the following exam-
ple: 

Premise: The man lost his balance on the lad-
der. What happened as a result? 

Alternative 1: He fell off the ladder. 

Alternative 2: He climbed up the ladder. 

Both of these alternatives are conceivable, and 
neither is entailed by the premise. However, hu-
man readers have no difficulty selecting the alter-
native that is the more plausible of the two. This 
question asks about a causal consequent, and a 
complimentary formulation asks for the causal an-
tecedent, as in the following example: 

Premise: The man fell unconscious. What was 
the cause of this? 

Alternative 1: The assailant struck the man on 
the head. 

Alternative 2: The assailant took the man's wal-
let. 

Roemmele et al. describe their efforts to author a 
collection of 1000 questions of these two types to 
create a new causal reasoning evaluation tool: the 
Choice of Plausible Alternatives (COPA). When 
presented to humans to select the correct alterna-
tive, the inter-rater agreement was extremely high 
(Cohen's kappa = 0.965). Where disagreements 
between two raters were found (in 26 of 1000 
items), questions were removed and replaced with 
new ones with perfect agreement. 

To develop an automated evaluation tool, the 
1000 questions were randomly ordered and sorted 
into two equally sized sets of 500 questions to 
serve as development and test sets. The order of 
the correct alternative was also randomized, such 
that the expected accuracy of a random baseline 
would be 50%. Gold-standard answers for each 
split are used to automatically evaluate a given 
system's performance.  

The distribution of the COPA evaluation in-
cludes an automated test of statistical significance 
of differences seen between two competing sys-
tems. This software tool implements a compute-
intensive randomized test of statistical significance 
using stratified shuffling, as described by Noreen 
(1989). By randomly sorting answers between two 
systems over thousands of trials, this test computes 
the likelihood that differences as great as observed 
differences could be obtained by random chance. 

The COPA evaluation is most similar in style to 
the Recognizing Textual Entailment challenge 
(Degan et al., 2006), but differs in its focus on 
causal implication rather than entailment. Instead 
of asking whether the interpretation of a sentence 
necessitates the truth of another, COPA concerns 
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the defeasible inferences that can be drawn from 
the interpretation of a sentence. In this respect, 
COPA overlaps in its aims with the task of recog-
nizing causal relations in text through automated 
discourse processing (e.g. Marcu, 1999). Some 
progress in automated discourse processing has 
been made using supervised machine learning 
methods, where system learn the lexical-syntactic 
patterns that are most correlated with causal rela-
tions from a large annotated corpus (Sagae, 2009). 
Lacking a dedicated training corpus, the COPA 
evaluation encourages competitors to capture 
commonsense causal knowledge from any availa-
ble corpus or existing knowledge repository. 

3 SemEval-2012 Systems and Results 

The COPA evaluation was accepted as Task 7 of 
the 6th International Workshop on Semantic Eval-
uation (SemEval-2012). In several respects, the 
COPA evaluation was different than the typical 
shared task offered as part of this series of work-
shops. First, the task materials were available and 
distributed long before the evaluation period be-
gan, and there were published results of previous 
systems using this evaluation.1 Second, the task 
included no training data, only sets of development 
and test questions (500 each). Participants were 
encouraged to use any available text corpus or 
knowledge repositories in the construction of their 
systems. Success on the task would not be possible 
simply through the selection of machine learning 
algorithms and feature encodings. Instead, some 
creativity and ingenuity was needed to find a suita-
ble source of commonsense causal information, 
and determine an automated mechanism for apply-
ing this information to COPA questions. 

Only one team successfully completed the task 
and submitted results during the official two-week 
SemEval-2012 evaluation period. This team was 
Travis Goodwin, Bryan Rink, Kirk Roberts, and 
Sanda M. Harabagiu from the University of Texas 
at Dallas, Human Language Technology Research 
Institute. This team submitted results from two 
different systems (Goodwin et al., 2012), which 
they described to us as follows: 

UTDHLT Bigram PMI: The team's first ap-
proach selects the alternative with the maximum 
Pointwise Mutual Information (PMI) statistic 

                                                             
1 http://www.ict.usc.edu/~gordon/copa.html 

(Church & Hanks, 1990) over all pairs of bigrams 
(at the token level) between the candidate alterna-
tive and the premise. PMI statistics were collected 
using 8.4 million documents from the LDC Giga-
word corpus (Graff & Cieri, 2003). A window of 
100 terms was used for finding pairs of co-
occurring bigrams, and a window/slop size of 2 for 
the bigram itself. 

UTDHLT SVM Combined: The team's second 
approach augments the first by combining it with 
several other features and casting the task as a 
classification problem. To this end, they consider 
the PMI between events participating in a temporal 
link on a Time-ML annotated Gigaword corpus. 
That is, events that occur together frequently will 
have a higher PMI. They also consider the differ-
ence between the number of positive and negative 
polarity words between an alternative and premise 
using information from the Harvard Inquisitor. In 
addition, they used the count of matching cause-
effect pairs extracted using patterns on dependency 
structures from the Gigaword corpus. Combining 
all of these sources of information, they trained a 
support vector machine (SVM) learning algorithm 
to classify the alternative that is most causally re-
lated to the premise. 

These systems were assessed based on their ac-
curacy on the 500 questions in the test split of the 
COPA evaluation, presented in Table 1. Both sys-
tems significantly outperformed the random base-
line (50% accuracy), but the gains seen in the 
second approach were not significantly different 
than those of the first.  

 
System Accuracy 
UTDHLT Bigram PMI 61.8% 
UTDHLT SVM Combined 63.4% 

 
Table 1. SemEval-2012 Task 7 system accuracy on 
500 questions in the COPA test split 

4 Comparison to Previous Results 

In order to better evaluate the success of these two 
systems, we compared these results with the pub-
lished results of other systems that have used the 
COPA evaluation. Three other systems were con-
sidered. 

PMI Gutenberg (W=5): Described in Roem-
mele et al. (2011), this approach calculated the 
PMI between words (unigrams) in the premise and 
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each alternative, and selected the alternative with 
the stronger correlation. The PMI statistic was cal-
culated using every English-language document in 
Project Gutenberg (16GB of text), using a window 
of 5 words. 

PMI Story 1M (W=25): Described in Gordon 
et al. (2011), this approach was identical to that of 
Roemmele et al. (2011) except that the PMI statis-
tic was calculated using a corpus of nearly one mil-
lion personal stories extracted from Internet 
weblogs (Gordon & Swanson, 2009), with 1.9 GB 
of text. Using this corpus instead of Project Guten-
berg, the best results were obtained by using a 
window of 25 words for the PMI statistic.  

PMI Story 10M (W=25): Also described in 
Gordon et al. (2011), this approach explores the 
gains that can be achieved by calculating the PMI 
statistic using a much larger corpus of weblog sto-
ries. The story extraction technology used by Gor-
don and Swanson (2009) was applied to 621 
million English-language weblog entries posted to 
the Internet in 2010 to create a corpus of 10.4 mil-
lion personal stories (37GB of text). Again, the 
best results were obtained by using a window of 25 
words for the PMI statistic.  

Table 2 compares the results of these three pre-
vious systems with the two SemEval-2012 sys-
tems. Although the last two of these three previous 
systems achieved higher scores than both of the 
SemEval-2012 submissions, the differences are not 
statistically significant. 

 
System Accuracy 
PMI Gutenberg (W=5) 58.8% 
UTDHLT Bigram PMI 61.8% 
UTDHLT SVM Combined 63.4% 
PMI Story 1M (W=25) 65.2% 
PMI Story 10M (W=25) 65.4% 

 
Table 2. Comparison of SemEval-2012 Task 7 sys-
tems (in bold) with previously published results on 
the 500 questions in the COPA test split 

5 Discussion 

The two systems from the University of Texas at 
Dallas make an important contribution to progress 
on open-domain commonsense reasoning. Some 
lessons are evident from the short descriptions of 
their systems that they provided to us. 

As in each of the previously successful systems, 
this team focused their efforts on calculating corre-
lational statistics between words in COPA ques-
tions using very large text corpora. In this case, the 
Gigaword corpus is used, and the calculation is 
based on bigrams rather than unigrams. We believe 
that the content of the news articles that comprise 
the Gigaword corpus is a step further away from 
the concerns of COPA questions than both the Pro-
ject Gutenberg corpus and the weblog story corpo-
ra used in previous efforts. Indeed, the gains 
achieved by Gordon et al. (2011) appear to be en-
tirely due to the relationship between COPA ques-
tions and the personal stories that people write 
about in their public weblogs. However, the use of 
a large news corpus affords the use of more sophis-
ticated analysis techniques that have been devel-
oped for this genre. Here, the Gigaword corpus is 
annotated using Time-ML relationships, which in 
turn are used to modify the PMI strength between 
words. 

The use of bigrams is an additional enhancement 
explored by this team, as is the casting of COPA 
questions as a classification task using a diverse set 
of lexical and discourse features. Such an approach 
can facilitate the combining of diverse systems in 
the future, where correlational statistics are gath-
ered from a diverse set of text corpora, each suited 
for specific domains of COPA questions or yield-
ing complimentary feature sets. 

Still, the modest COPA performance seen from 
all existing systems is somewhat discouraging. 
With the best systems performing in the 60-65% 
range, we remain much closer to random perfor-
mance (50%) than human performance (99%). 
These results cast some doubt that the information 
necessary to answer COPA questions can be readi-
ly obtained from large text corpora. Certainly the 
use of simple correlational statistics between near-
by words is not enough. In the best case, we might 
wish for perfect identification of causal relation-
ships between events in an extremely large text 
corpus of narratives similar in content to COPA 
questions. Semantic similarity between these 
events and COPA sentences could be computed to 
gather evidence to select the best alternative. Even 
if it were possible to achieve this ideal, it is diffi-
cult to imagine that such an approach could mirror 
human performance on this task. 

To move closer to human performance, systems 
may need to stretch beyond corpus statistics into 
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the realm of automated reasoning. Just as human 
readers do when hearing that “the man lost his bal-
ance on the ladder,” successful systems may need 
to treat COPA premises as novel world states, and 
imagine a broad range of interconnected causal 
antecedents and consequents. Useful knowledge 
bases will be those that have adequate coverage 
over commonsense concerns, but also adequate 
competency to support generative inference of the 
sort more commonly seen in deductive and abduc-
tive automated reasoning frameworks. This 
knowledge may or may not be represented as text, 
but any successful system must have the capacity 
to apply this knowledge to the understanding of 
COPA's textual premises and alternatives. We con-
sider the successful application of commonsense 
inference to text understanding to be one of the 
grand challenges of natural language processing, 
and hope that the COPA evaluation continues to be 
a useful tool for benchmarking progress toward 
this goal. 
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Abstract

This paper presents the first round of the
task on Cross-lingual Textual Entailment for
Content Synchronization, organized within
SemEval-2012. The task was designed to pro-
mote research on semantic inference over texts
written in different languages, targeting at the
same time a real application scenario. Par-
ticipants were presented with datasets for dif-
ferent language pairs, where multi-directional
entailment relations (“forward”, “backward”,
“bidirectional”, “no entailment”) had to be
identified. We report on the training and test
data used for evaluation, the process of their
creation, the participating systems (10 teams,
92 runs), the approaches adopted and the re-
sults achieved.

1 Introduction

The cross-lingual textual entailment task (Mehdad et
al., 2010) addresses textual entailment (TE) recog-
nition (Dagan and Glickman, 2004) under the new
dimension of cross-linguality, and within the new
challenging application scenario of content synchro-
nization.

Cross-linguality represents a dimension of the TE
recognition problem that has been so far only par-
tially investigated. The great potential for integrat-
ing monolingual TE recognition components into
NLP architectures has been reported in several ar-
eas, including question answering, information re-
trieval, information extraction, and document sum-
marization. However, mainly due to the absence of
cross-lingual textual entailment (CLTE) recognition

components, similar improvements have not been
achieved yet in any cross-lingual application. The
CLTE task aims at prompting research to fill this
gap. Along such direction, research can now ben-
efit from recent advances in other fields, especially
machine translation (MT), and the availability of: i)
large amounts of parallel and comparable corpora in
many languages, ii) open source software to com-
pute word-alignments from parallel corpora, and iii)
open source software to set up MT systems. We
believe that all these resources can positively con-
tribute to develop inference mechanisms for multi-
lingual data.

Content synchronization represents a challenging
application scenario to test the capabilities of ad-
vanced NLP systems. Given two documents about
the same topic written in different languages (e.g.
Wiki pages), the task consists of automatically de-
tecting and resolving differences in the information
they provide, in order to produce aligned, mutually
enriched versions of the two documents. Towards
this objective, a crucial requirement is to identify the
information in one page that is either equivalent or
novel (more informative) with respect to the content
of the other. The task can be naturally cast as an
entailment recognition problem, where bidirectional
and unidirectional entailment judgments for two text
fragments are respectively mapped into judgments
about semantic equivalence and novelty. Alterna-
tively, the task can be seen as a machine translation
evaluation problem, where judgments about seman-
tic equivalence and novelty depend on the possibility
to fully or partially translate a text fragment into the
other.
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Figure 1: “bidirectional”, “forward”, “backward” and
“no entailment” judgments for SP/EN CLTE pairs.

The recent advances on monolingual TE on the
one hand, and the methodologies used in Statisti-
cal Machine Translation (SMT) on the other, offer
promising solutions to approach the CLTE task. In
line with a number of systems that model the RTE
task as a similarity problem (i.e. handling similar-
ity scores between T and H as useful evidence to
draw entailment decisions), the standard sentence
and word alignment programs used in SMT offer a
strong baseline for CLTE. However, although repre-
senting a solid starting point to approach the prob-
lem, similarity-based techniques are just approx-
imations, open to significant improvements com-
ing from semantic inference at the multilingual
level (e.g. cross-lingual entailment rules such as
“perro”→“animal”). Taken in isolation, similarity-
based techniques clearly fall short of providing an
effective solution to the problem of assigning direc-
tions to the entailment relations (especially in the
complex CLTE scenario, where entailment relations
are multi-directional). Thanks to the contiguity be-
tween CLTE, TE and SMT, the proposed task pro-
vides an interesting scenario to approach the issues
outlined above from different perspectives, and large
room for mutual improvement.

2 The task

Given a pair of topically related text fragments (T1
and T2) in different languages, the CLTE task con-
sists of automatically annotating it with one of the
following entailment judgments (see Figure 1 for
Spanish/English examples of each judgment):

• bidirectional (T1→T2 & T1←T2): the two
fragments entail each other (semantic equiva-
lence);

• forward (T1→T2 & T16←T2): unidirectional
entailment from T1 to T2;

• backward (T16→T2 & T1←T2): unidirectional
entailment from T2 to T1;

• no entailment (T16→T2 & T16←T2): there is
no entailment between T1 and T2 in both direc-
tions;

In this task, both T1 and T2 are assumed to be
true statements. Although contradiction is relevant
from an application-oriented perspective, contradic-
tory pairs are not present in the dataset created for
the first round of the task.

3 Dataset description

Four CLTE corpora have been created for the fol-
lowing language combinations: Spanish/English
(SP-EN), Italian/English (IT-EN), French/English
(FR-EN), German/English (DE-EN). The datasets
are released in the XML format shown in Figure 1.

3.1 Data collection and annotation
The dataset was created following the crowdsourc-
ing methodology proposed in (Negri et al., 2011),
which consists of the following steps:

1. First, English sentences were manually ex-
tracted from copyright-free sources (Wikipedia
and Wikinews). The selected sentences repre-
sent one of the elements (T1) of each entail-
ment pair;

2. Next, each T1 was modified through crowd-
sourcing in various ways in order to ob-
tain a corresponding T2 (e.g. introduc-
ing meaning-preserving lexical and syntactic
changes, adding and removing portions of
text);

3. Each T2 was then paired to the original T1,
and the resulting pairs were annotated with one
of the four entailment judgments. In order to
reduce the correlation between the difference
in sentences’ length and entailment judgments,
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only the pairs where the difference between the
number of words in T1 and T2 (length diff ) was
below a fixed threshold (10 words) were re-
tained.1 The final result is a monolingual En-
glish dataset annotated with multi-directional
entailment judgments, which are well dis-
tributed over length diff values ranging from 0
to 9;

4. In order to create the cross-lingual datasets,
each English T1 was manually translated into
four different languages (i.e. Spanish, German,
Italian and French) by expert translators;

5. By pairing the translated T1 with the cor-
responding T2 in English, four cross-lingual
datasets were obtained.

To ensure the good quality of the datasets, all the
collected pairs were manually checked and corrected
when necessary. Only pairs with agreement between
two expert annotators were retained. The final result
is a multilingual parallel entailment corpus, where
T1s are in 5 different languages (i.e. English, Span-
ish, German, Italian, and French), and T2s are in En-
glish. It’s worth mentioning that the monolingual
English corpus, a by-product of our data collection
methodology, will be publicly released as a further
contribution to the research community.2

3.2 Dataset statistics
Each dataset consists of 1,000 pairs (500 for training
and 500 for test), balanced across the four entail-
ment judgments (bidirectional, forward, backward,
and no entailment).

For each language combination, the distribu-
tion of the four entailment judgments according to
length diff is shown in Figure 2. Vertical bars rep-
resent, for each length diff value, the proportion
of pairs belonging to the four entailment classes.
As can be seen, the length diff constraint applied
to the length difference in the monolingual English

1Such constraint has been applied in order to focus as much
as possible on semantic aspects of the problem, by reduc-
ing the applicability of simple association rules such as IF
length(T1)>length(T2) THEN T1→T2.

2The cross-lingual datasets are already available for research
purposes at http://www.celct.it/resourcesList.
php. The monolingual English dataset will be publicly released
to non participants in July 2012.

pairs (step 3 of the creation process) is substantially
reflected in the cross-lingual datasets for all lan-
guage combinations. In fact, as shown in Table 1,
the majority of the pairs is always included in the
same length diff range (approximately [-5,+5]) and,
within this range, the distribution of the four classes
is substantially uniform. Our assumption is that such
data distribution makes entailment judgments based
on mere surface features such as sentence length in-
effective, thus encouraging the development of alter-
native, deeper processing strategies.

SP-EN IT-EN FR-EN DE-EN
Forward 104 132 121 179
Backward 202 182 191 123
No entailment 163 173 169 174
Bidirectional 175 199 193 209
ALL 644 686 674 685

Table 1: CLTE pairs distribution within the -5/+5
length diff range.

4 Evaluation metrics and baselines

Evaluation results have been automatically com-
puted by comparing the entailment judgments re-
turned by each system with those manually assigned
by human annotators. The metric used for systems’
ranking is accuracy over the whole test set, i.e. the
number of correct judgments out of the total number
of judgments in the test set. Additionally, we calcu-
lated precision, recall, and F1 measures for each of
the four entailment judgment categories taken sep-
arately. These scores aim at giving participants the
possibility to gain clearer insights into their system’s
behavior on the entailment phenomena relevant to
the task.

For each language combination, two baselines
considering the length difference between T1 and T2
have been calculated (besides the trivial 0.25 accu-
racy score obtained by assigning each test pair in the
balanced dataset to one of the four classes):

• Composition of binary judgments (Bi-
nary). To calculate this baseline an SVM
classifier is trained to take binary entailment
decisions (“YES”, “NO”). The classifier uses
length(T1)/length(T2) as a single feature to
check for entailment from T1 to T2, and
length(T2)/length(T1) for the opposite direc-
tion. For each test pair, the unidirectional
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Figure 2: CLTE pairs distribution for different length diff values across all datasets.

judgments returned by the two classifiers are
composed into a single multi-directional judg-
ment (“YES-YES”=“bidirectional”, “YES-
NO”=“forward”, “NO-YES”=“backward”,
“NO-NO”=“no entailment”);

• Multi-class classification (Multi-class). A
single SVM classifier is trained with the same
features to directly assign to each pair one of
the four entailment judgments.

Both the baselines have been calculated with the
LIBSVM package (Chang and Lin, 2011), using a
linear kernel with default parameters. Baseline re-
sults are reported in Table 2.

Although the four CLTE datasets are derived from
the same monolingual EN-EN corpus, baseline re-
sults present slight differences due to the effect of
translation into different languages.

SP-EN IT-EN FR-EN DE-EN
1-class 0.25 0.25 0.25 0.25
Binary 0.34 0.39 0.39 0.40
Multi-class 0.43 0.44 0.42 0.42

Table 2: Baseline accuracy results.

5 Submitted runs and results

Participants were allowed to submit up to five runs
for each language combination. A total of 17 teams
registered to participate in the task and downloaded
the training set. Out of them, 12 downloaded the
test set and 10 (including one of the task organizers)
submitted valid runs. Eight teams produced submis-
sions for all the language combinations, while two
teams participated only in the SP-EN task. In total,
92 runs have been submitted and evaluated (29 for
SP-EN, and 21 for each of the other language pairs).
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Despite the novelty and the difficulty of the problem,
these numbers demonstrate the interest raised by the
task, and the overall success of the initiative.

System name SP-EN IT-EN FR-EN DE-EN
BUAP run1 0.350 0.336 0.334 0.330
BUAP run2 0.366 0.344 0.342 0.268

celi run1 0.276 0.278 0.278 0.280
celi run2 0.336 0.338 0.300 0.352
celi run3 0.322 0.334 0.298 0.350
celi run4 0.268 0.280 0.280 0.274

DirRelCond3 run1 0.300 0.280 0.362 0.336
DirRelCond3 run2 0.300 0.284 0.360 0.336
DirRelCond3 run3 0.300 0.338 0.384 0.364
DirRelCond3 run4 0.344 0.316 0.384 0.374
FBK run1* 0.502 - - -
FBK run2* 0.490 - - -
FBK run3* 0.504 - - -
FBK run4* 0.500 - - -

HDU run1 0.630 0.554 0.564 0.558
HDU run2 0.632 0.562 0.570 0.552

ICT run1 0.448 0.454 0.456 0.460
JU-CSE-NLP run1 0.274 0.316 0.288 0.262
JU-CSE-NLP run2 0.266 0.326 0.294 0.296
JU-CSE-NLP run3 0.272 0.314 0.296 0.264

Sagan run1 0.342 0.352 0.346 0.342
Sagan run2 0.328 0.352 0.336 0.310
Sagan run3 0.346 0.356 0.330 0.332
Sagan run4 0.340 0.330 0.310 0.310

SoftCard run1 0.552 0.566 0.570 0.550
UAlacant run1 LATE 0.598 - - -
UAlacant run2 0.582 - - -
UAlacant run3 LATE 0.510 - - -
UAlacant run4 0.514 - - -

Highest 0.632 0.566 0.570 0.558
Average 0.440 0.411 0.408 0.408
Median 0.407 0.350 0.365 0.363
Lowest 0.274 0.326 0.296 0.296

Table 3: Accuracy results (92 runs) over the 4 lan-
guage combinations. Highest, average, median and low-
est scores are calculated considering the best run for each
team (*task organizers’ system).

Accuracy results are reported in Table 3. As can
be seen from the table, overall accuracy scores are
quite different across language pairs, with the high-
est result on SP-EN (0.632), which is considerably
higher than the highest score on DE-EN (0.558).
This might be due to the fact that most of the partic-
ipating systems rely on a “pivoting” approach that
addresses CLTE by automatically translating T1 in
the same language of T2 (see Section 6). Regard-
ing the DE-EN dataset, pivoting methods might be
penalized by the lower quality of MT output when
German T1s are translated into English.

The comparison with baselines results leads to in-
teresting observations. First of all, while all systems
significantly outperform the lowest 1-class baseline
(0.25), both other baselines are surprisingly hard to
beat. This shows that, despite the effort in keep-
ing the distribution of the entailment classes uni-
form across different length diff values, eliminating
the correlation between sentences’ length and cor-
rect entailment decisions is difficult. As a conse-
quence, although disregarding semantic aspects of
the problem, features considering such information
are quite effective.

In general, systems performed better on the SP-
EN dataset, with most results above the binary base-
line (8 out of 10), and half of the systems above the
multi-class baseline. For the other language pairs
the results are lower, with only 3 out of 8 partici-
pants above the two baselines in all datasets. Aver-
age results reflect this situation: the average scores
are always above the binary baseline, whereas only
the SP-EN average result is higher than the multi-
class baseline(0.44 vs. 0.43).

To better understand the behaviour of each sys-
tem (also in relation to the different language com-
binations), Table 4 provides separate precision, re-
call, and F1 scores for each entailment judgment,
calculated over the best runs of each participating
team. Overall, the results suggest that the “bidi-
rectional” and “no entailment” categories are more
problematic than “forward” and “backward” judg-
ments. For most datasets, in fact, systems’ perfor-
mance on “bidirectional” and “no entailment” is sig-
nificantly lower, typically on recall. Except for the
DE-EN dataset (more problematic on “forward”),
also average F1 results on these judgments are lower.
This might be due to the fact that, for all datasets, the
vast majority of “bidirectional” and “no entailment”
judgments falls in a length diff range where the dis-
tribution of the four classes is more uniform (see
Figure 2).

Similar reasons can justify the fact that “back-
ward” entailment results are consistently higher on
all datasets. Compared with “forward” entailment,
these judgments are in fact less scattered across the
entire length diff range (i.e. less intermingled with
the other classes).
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6 Approaches

A rough classification of the approaches adopted by
participants can be made along two orthogonal di-
mensions, namely:

• Pivoting vs. Cross-lingual. Pivoting meth-
ods rely on the automatic translation of one of
the two texts (either single words or the en-
tire sentence) into the language of the other
(typically English) in order perform monolin-
gual TE recognition. Cross-lingual methods as-
sign entailment judgments without preliminary
translation.

• Composition of binary judgments vs. Multi-
class classification. Compositional approaches
map unidirectional entailment decisions taken
separately into single judgments (similar to the
Binary baseline in Section 4). Methods based
on multi-class classification directly assign one
of the four entailment judgments to each test
pair (similar to our Multi-class baseline).

Concerning the former dimension, most of the
systems (6 out of 10) adopted a pivoting approach,
relying on Google Translate (4 systems), Microsoft
Bing Translator (1), or a combination of Google,
Bing, and other MT systems (1) to produce English
T2s. Regarding the latter dimension, the composi-
tional approach was preferred to multi-class classi-
fication (6 out of 10). The best performing system
relies on a “hybrid” approach (combining monolin-
gual and cross-lingual alignments) and a compo-
sitional strategy. Besides the frequent recourse to
MT tools, other resources used by participants in-
clude: on-line dictionaries for the translation of sin-
gle words, word alignment tools, part-of-speech tag-
gers, NP chunkers, named entity recognizers, stem-
mers, stopwords lists, and Wikipedia as an external
multilingual corpus. More in detail:

BUAP [pivoting, compositional] (Vilariño et al.,
2012) adopts a pivoting method based on translating
T1 into the language of T2 and vice versa (Google
Translate3 and the OpenOffice Thesaurus4). Simi-
larity measures (e.g. Jaccard index) and rules are

3http://translate.google.com/
4http://extensions.services.openoffice.

org/en/taxonomy/term/233

respectively used to annotate the two resulting sen-
tence pairs with entailment judgments and combine
them in a single decision.

CELI [cross lingual, compositional & multi-
class] (Kouylekov, 2012) uses dictionaries for word
matching, and a multilingual corpus extracted from
Wikipedia for term weighting. Word overlap and
similarity measures are then used in different ap-
proaches to the task. In one run (Run 1), they are
used to train a classifier that assigns separate en-
tailment judgments for each direction. Such judg-
ments are finally composed into a single one for each
pair. In the other runs, the same features are used for
multi-class classification.

DirRelCond3 [cross lingual, compositional]
(Perini, 2012) uses bilingual dictionaries (Freedict5

and WordReference6) to translate content words into
English. Then, entailment decisions are taken com-
bining directional relatedness scores between words
in both directions (Perini, 2011).

FBK [cross lingual, compositional & multi-
class] (Mehdad et al., 2012a) uses cross-lingual
matching features extracted from lexical phrase ta-
bles, semantic phrase tables, and dependency rela-
tions (Mehdad et al., 2011; Mehdad et al., 2012b;
Mehdad et al., 2012c). The features are used for
multi-class and binary classification using SVMs.

HDU [hybrid, compositional] (Wäschle and
Fendrich, 2012) uses a combination of binary clas-
sifiers for each entailment direction. The classifiers
use both monolingual alignment features based on
METEOR (Banerjee and Lavie, 2005) alignments
(translations obtained from Google Translate), and
cross-lingual alignment features based on GIZA++
(Och and Ney, 2000) (word alignments learned on
Europarl).

ICT [pivoting, compositional] (Meng et al.,
2012) adopts a pivoting method (using Google
Translate and an in-house hierarchical MT system),
and the open source EDITS system (Kouylekov and
Negri, 2010) to calculate similarity scores between
monolingual English pairs. Separate unidirectional
entailment judgments obtained from binary classi-
fier are combined to return one of the four valid
CLTE judgments.

5http://www.freedict.com/
6http://www.wordreference.com/
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SP-EN
Forward Backward No entailment Bidirectional

System name P R F1 P R F1 P R F1 P R F1
BUAP spa-eng run2 0,337 0,664 0,447 0,406 0,568 0,473 0,333 0,088 0,139 0,391 0,144 0,211
celi spa-eng run2 0,324 0,368 0,345 0,411 0,368 0,388 0,306 0,296 0,301 0,312 0,312 0,312
DirRelCond3 spa-eng run4 0,358 0,608 0,451 0,444 0,448 0,446 0,286 0,032 0,058 0,243 0,288 0,264
FBK spa-eng run3 0,515 0,704 0,595 0,546 0,568 0,557 0,447 0,304 0,362 0,482 0,440 0,460
HDU spa-eng run2 0,607 0,656 0,631 0,677 0,704 0,690 0,602 0,592 0,597 0,643 0,576 0,608
ICT spa-eng run1 0,750 0,240 0,364 0,440 0,472 0,456 0,395 0,560 0,464 0,436 0,520 0,474
JU-CSE-NLP spa-eng run1 0,211 0,288 0,243 0,272 0,296 0,284 0,354 0,232 0,280 0,315 0,280 0,297
Sagan spa-eng run3 0,225 0,200 0,212 0,269 0,224 0,245 0,418 0,448 0,432 0,424 0,512 0,464
SoftCard spa-eng run1 0,602 0,616 0,609 0,650 0,624 0,637 0,471 0,448 0,459 0,489 0,520 0,504
UAlacant spa-eng run1 LATE 0,689 0,568 0,623 0,645 0,728 0,684 0,507 0,544 0,525 0,566 0,552 0,559
AVG. 0,462 0,491 0,452 0,476 0,5 0,486 0,412 0,354 0,362 0,43 0,414 0,415

IT-EN
Forward Backward No entailment Bidirectional

System name P R F1 P R F1 P R F1 P R F1
BUAP ita-eng run2 0,324 0,456 0,379 0,327 0,672 0,440 0,538 0,056 0,101 0,444 0,192 0,268
celi ita-eng run2 0,349 0,360 0,354 0,455 0,36 0,402 0,294 0,320 0,307 0,287 0,312 0,299
DirRelCond3 ita-eng run3 0,323 0,488 0,389 0,480 0,288 0,360 0,331 0,368 0,348 0,268 0,208 0,234
HDU ita-eng run2 0,564 0,600 0,581 0,628 0,648 0,638 0,551 0,520 0,535 0,500 0,480 0,490
ICT ita-eng run1 0,661 0,296 0,409 0,554 0,368 0,442 0,427 0,448 0,438 0,383 0,704 0,496
JU-CSE-NLP ita-eng run2 0,240 0,280 0,258 0,339 0,480 0,397 0,412 0,280 0,333 0,359 0,264 0,304
Sagan ita-eng run3 0,306 0,296 0,301 0,252 0,216 0,233 0,395 0,512 0,446 0,455 0,400 0,426
SoftCard ita-eng run1 0,602 0,616 0,609 0,617 0,696 0,654 0,560 0,448 0,498 0,481 0,504 0,492
AVG. 0,421 0,424 0,410 0,457 0,466 0,446 0,439 0,369 0,376 0,397 0,383 0,376

FR-EN
Forward Backward No entailment Bidirectional

System name P R F1 P R F1 P R F1 P R F1
BUAP fra-eng run2 0,447 0,272 0,338 0,291 0,760 0,420 0,250 0,016 0,030 0,449 0,320 0,374
celi fra-eng run2 0,316 0,296 0,306 0,378 0,360 0,369 0,270 0,296 0,282 0,244 0,248 0,246
DirRelCond3 fra-eng run3 0,393 0,576 0,468 0,441 0,512 0,474 0,387 0,232 0,290 0,278 0,216 0,243
HDU fra-eng run2 0,564 0,672 0,613 0,582 0,736 0,650 0,676 0,384 0,490 0,500 0,488 0,494
ICT fra-eng run1 0,750 0,192 0,306 0,517 0,496 0,506 0,385 0,656 0,485 0,444 0,480 0,462
JU-CSE-NLP fra-eng run3 0,215 0,208 0,211 0,289 0,296 0,292 0,341 0,496 0,404 0,333 0,184 0,237
Sagan fra-eng run1 0,244 0,168 0,199 0,297 0,344 0,319 0,394 0,568 0,466 0,427 0,304 0,355
SoftCard fra-eng run1 0,551 0,608 0,578 0,649 0,696 0,672 0,560 0,488 0,521 0,513 0,488 0,500
AVG. 0,435 0,374 0,377 0,431 0,525 0,463 0,408 0,392 0,371 0,399 0,341 0,364

DE-EN
Forward Backward No entailment Bidirectional

System name P R F1 P R F1 P R F1 P R F1
BUAP deu-eng run1 0,395 0,120 0,184 0,248 0,224 0,235 0,344 0,688 0,459 0,364 0,288 0,321
celi deu-eng run2 0,347 0,416 0,378 0,402 0,392 0,397 0,339 0,312 0,325 0,319 0,288 0,303
DirRelCond3 deu-eng run4 0,429 0,312 0,361 0,408 0,552 0,469 0,367 0,320 0,342 0,298 0,312 0,305
HDU deu-eng run1 0,559 0,528 0,543 0,600 0,696 0,644 0,540 0,488 0,513 0,524 0,520 0,522
ICT deu-eng run1 0,718 0,224 0,341 0,493 0,552 0,521 0,390 0,512 0,443 0,439 0,552 0,489
JU-CSE-NLP deu-eng run2 0,182 0,048 0,076 0,307 0,496 0,379 0,315 0,560 0,403 0,233 0,080 0,119
Sagan deu-eng run1 0,250 0,168 0,201 0,239 0,256 0,247 0,405 0,600 0,484 0,443 0,344 0,387
SoftCard deu-eng run1 0,568 0,568 0,568 0,611 0,640 0,625 0,521 0,488 0,504 0,496 0,504 0,500
AVG. 0,431 0,298 0,332 0,414 0,476 0,440 0,403 0,496 0,434 0,390 0,361 0,368

Table 4: precision, recall and F1 scores, calculated for each team’s best run for all the language combinations.

JU-CSE-NLP [pivoting, compositional] (Neogi
et al., 2012) uses Microsoft Bing translator7 to pro-
duce monolingual English pairs. Separate lexical
mapping scores are calculated (from T1 to T2 and
vice-versa) considering different types of informa-
tion and similarity metrics. Binary entailment de-

7http://www.microsofttranslator.com/

cisions are then heuristically combined into single
decisions.

Sagan [pivoting, multi-class] (Castillo and Car-
denas, 2012) adopts a pivoting method using Google
Translate, and trains a monolingual system based on
a SVM multi-class classifier. A CLTE corpus de-
rived from the RTE-3 dataset is also used as a source
of additional training material.
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SoftCard [pivoting, multi-class] (Jimenez et al.,
2012) after automatic translation with Google Trans-
late, uses SVMs to learn entailment decisions based
on information about the cardinality of: T1, T2, their
intersection and their union. Cardinalities are com-
puted in different ways, considering tokens in T1 and
T2, their IDF, and their similarity (computed with
edit-distance)

UAlacant [pivoting, multi-class] (Esplà-Gomis
et al., 2012) exploits translations obtained from
Google Translate, Microsoft Bing translator, and the
Apertium open-source MT platform (Forcada et al.,
2011).8 Then, a multi-class SVM classifier is used
to take entailment decisions using information about
overlapping sub-segments as features.

7 Conclusion

Despite the novelty of the problem and the diffi-
culty to capture multi-directional entailment rela-
tions across languages, the first round of the Cross-
lingual Textual Entailment for Content Synchroniza-
tion task organized within SemEval-2012 was a suc-
cessful experience. This year a new interesting chal-
lenge has been proposed, a benchmark for four lan-
guage combinations has been released, baseline re-
sults have been proposed for comparison, and a
monolingual English dataset has been produced as
a by-product which can be useful for monolingual
TE research. The interest shown by participants
was encouraging: 10 teams submitted a total of 92
runs for all the language pairs proposed. Overall,
the results achieved on all datasets are encourag-
ing, with best systems significantly outperforming
the proposed baselines. It is worth observing that the
nature of the task, which lies between semantics and
machine translation, led to the participation of teams
coming from both these communities, showing in-
teresting opportunities for integration and mutual
improvement. The proposed approaches reflect this
situation, with teams traditionally working on MT
now dealing with entailment, and teams tradition-
ally participating in the RTE challenges now dealing
with cross-lingual alignment techniques. Our ambi-
tion, for the future editions of the CLTE task, is to
further consolidate the bridge between the semantics
and MT communities.

8http://www.apertium.org/
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Abstract

Our system breaks down the problem of rank-
ing a list of lexical substitutions according to
how simple they are in a given context into a
series of pairwise comparisons between can-
didates. For this we learn a binary classifier.
As only very little training data is provided,
we describe a procedure for generating artifi-
cial unlabeled data from Wordnet and a corpus
and approach the classification task as a semi-
supervised machine learning problem. We use
a co-training procedure that lets each classi-
fier increase the other classifier’s training set
with selected instances from an unlabeled data
set. Our features include n-gram probabilities
of candidate and context in a web corpus, dis-
tributional differences of candidate in a cor-
pus of “easy” sentences and a corpus of normal
sentences, syntactic complexity of documents
that are similar to the given context, candidate
length, and letter-wise recognizability of can-
didate as measured by a trigram character lan-
guage model.

1 Introduction

This paper describes a system for the SemEval 2012
English Lexical Simplification shared task. The
task description uses a loose definition of simplic-
ity, defining “simple words” as “words that can be
understood by a wide variety of people, including for
example people with low literacy levels or some cog-
nitive disability, children, and non-native speakers of
English” (Specia et al., 2012).

Feature r
Nsf 0.33
Nsf+1 0.27
Nsf−1 0.27
Lsf -0.26
Lmax -0.26
RIproto(l) -0.18
Scn -0.17
Sw -0.17
Scp -0.17

Feature r
RIproto(f) -0.15
Cmax -0.14
RIorig(l) -0.11
Ltokens -0.10
Cmin 0.10
SWfreq 0.08
SWLLR 0.07
Cavg -0.04

Table 1: Pearson’s r correlations. The table shows
the three highest correlated features per group, all of
which are significant at the p < 0.01 level

2 Features

We model simplicity with a range of features divided
into six groups. Five of these groups make use of
the distributional hypothesis and rely on external cor-
pora. We measure a candidate’s distribution in terms
of its lexical associations (RI), participation in syn-
tactic structures (S), or corpus presence in order to
assess its simplicity (N, SW, C). A single
group, L, measures intrinsic aspects of the substi-
tution candidate, such as its length.

The substitution candidate is either an adjective,
an adverb, a noun, or a verb, and all candidates within
a list share the same part of speech. Because word
class might influence simplicity, we allow our model
to fit parameters specific to the candidate’s part of
speech by making a copy of the features for each part
of speech which is active only when the candidate is
in the given part of speech.
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Simple Wikipedia (SW) These two features con-
tain relative frequency counts of the substitution
form in Simple English Wikipedia (SWfreq), and the
log likelihood ratio of finding the word in the simple
corpus to finding it in regular Wikipedia (SWLLR)1.

Word length (L) This set of three features de-
scribes the length of the substitution form in char-
acters (Lsf ), the length of the longest token
(Lmax), and the length of the substitution form in
tokens (Ltokens). Word length is an integral part
of common measures of text complexity, e.g in the
English Flesch–Kincaid (Kincaid et al., 1975) in the
form of syllable count, and in the Scandinavian LIX
(Bjornsson, 1983).

Character trigram model (C) These three
features approximate the reading difficulty of a word
in terms of the probabilities of its forming character
trigrams, with special characters to mark word be-
ginning and end. A word with an unusual combi-
nation of characters takes longer to read and is per-
ceived as less simple (Ehri, 2005).

We calculate the minimum, average, and maxi-
mum trigram probability (Cmin, Cavg, and
Cmax).2

Web corpus N-gram (N) These 12 features
were obtained from a pre-built web-scale language
model3. Features of the form Nsf±i, where
0 < i < 4, express the probability of seeing the
substitution form together with the following (or pre-
vious) unigram, bigram, or trigram. Nsf is
the probability of substitution form itself, a feature
which also is the backbone of our frequency base-
line.

Random Indexing (RI) These four features are
obtained from measures taken from a word-to-word
distributional semantic model. Random Indexing
(RI) was chosen for efficiency reasons (Sahlgren,
2005). We include features describing the seman-
tic distances between the candidate and the original

1Wikipedia dump obtained March 27, 2012. Date on the
Simple Wikipedia dump is March 22, 2012.

2Trigram probabilities derived from Google T1 unigram
counts.

3The “jun09/body” trigram model from Microsoft Web N-
gram Services.

form (RIorig), and between the candidate and a proto-
type vector (RIproto). For the distance between can-
didate and original, we hypothesize that annotators
would prefer a synonym closer to the original form.
A prototype distributional vector of a set of words is
built by summing the individual word vectors, thus
obtaining a representation that approximates the be-
havior of that class overall (Turney and Pantel, 2010).
Longer distances indicate that the currently exam-
ined substitution is far from the shared meaning of
all the synonyms, making it a less likely candidate.
The features are included for both lemma and surface
forms of the words.

Syntactic complexity (S) These 23 features
measure the syntactic complexity of documents
where the substitution candidate occurs. We used
measures from (Lu, 2010) in which they describe 14
automatic measures of syntactic complexity calcu-
lated from frequency counts of 9 types of syntactic
structures. This group of syntax-metric scores builds
on two ideas.

First, syntactic complexity and word difficulty go
together. A sentence with a complicated syntax is
more likely to be made up of difficult words, and
conversely, the probability that a word in a sentence
is simple goes up when we know that the syntax of
the sentence is uncomplicated. To model this we
search for instances of the substitution candidates in
the UKWAC corpus4 and measure the syntactic com-
plexity of the documents where they occur.

Second, the perceived simplicity of a word may
change depending on the context. Consider the ad-
jective “frigid”, which may be judged to be sim-
pler than “gelid” if referring to temperature, but per-
haps less simple than “ice-cold” when characterizing
someone’s personality. These differences in word
sense are taken into account by measuring the sim-
ilarity between corpus documents and substitution
contexts and use these values to provide a weighted
average of the syntactic complexity measures.

3 Unlabeled data
The unlabeled data set was generated by a three-
step procedure involving synonyms extracted from
Wordnet5 and sentences from the UKWAC corpus.

4http://wacky.sslmit.unibo.it/
5http://wordnet.princeton.edu/
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1) Collection: Find synsets for unambigious lem-
mas in Wordnet. The synsets must have more than
three synonyms. Search for the lemmas in the cor-
pus. Generate unlabeled instances by replacing the
lemma with each of its synonyms. 2) Sampling: In
the unlabeled corpus, reduce the number of ranking
problems per lemma to a maximum of 10. Sample
from this pool while maintaining a distribution of
part of speech similar to that of the trial and test set.
3) Filtering: Remove instances for which there are
missing values in our features.

The unlabeled part of our final data set contains
n = 1783 problems.

4 Ranking

We are given a number of ranking problems (n =
300 in the trial set and n = 1710 for the test data).
Each of these consists of a text extract with a posi-
tion marked for substitution, and a set of candidate
substitutions.

4.1 Linear order
Let X (i) be the substitution set for the i-th problem.
We can then formalize the ranking problem by as-
suming that we have access to a set of (weighted)
preference judgments, w(a ≺ b) for all a, b ∈ X (i)

such that w(a ≺ b) is the value of ranking item a
ahead of b. The values are the confidence-weighted
pair-wise decisions from our binary classifier. Our
goal is then to establish a total order on X (i) that
maximizes the value of the non-violated judgments.
This is an instance of the Linear Ordering Problem
(Martí and Reinelt, 2011), which is known to be NP-
hard. However, with problems of our size (maximum
ten items in each ranking), we escape these complex-
ity issues by a very narrow margin—10! ≈ 3.6 mil-
lion means that the number of possible orderings is
small enough to make it feasible to find the optimal
one by exhaustive enumeration of all possibilities.

4.2 Binary classication
In order to turn our ranking problem into binary clas-
sification, we generate a new data set by enumerat-
ing all point-wise comparisons within a problem and
for each apply a transformation function Φ(a, b) =
a − b. Thus each data point in the new set is the
difference between the feature values of two candi-

dates. This enables us to learn a binary classifier for
the relation “ranks ahead of”.

We use the trial set for labeled training data L and,
in a transductive manner, treat the test set as unla-
beled data Utest. Further, we supplement the pool of
unlabeled data with artificially generated instances
Ugen, such that U = Utest ∪ Ugen.

Using a co-training setup (Blum and Mitchell,
1998), we divide our features in two independent sets
and train a large margin classifier6 on each split. The
classifiers then provide labels for data in the unla-
beled set, adding the k most confidently labeled in-
stances to the training data for the other classifier, an
iterative process which continues until there is no un-
labeled data left. At the end of the training we have
two classifiers. The classification result is a mixture-
of-experts: the most confident prediction of the two
classifiers. Furthermore, as an upper-bound of the
co-training procedure, we define an oracle that re-
turns the correct answer whenever it is given by at
least one classifier.

4.3 Ties
In many cases we have items a and b that tie—in
which case both a ≺ b and b ≺ a are violated. We
deal with these instances by omitting them from the
training set and setting w(a ≺ b) = 0. For the fi-
nal ranking, our system makes no attempt to produce
ties.

5 Experiments

In our experiments we vary feature-split, size of un-
labeled data, and number of iterations. The first fea-
ture split, S–SW, pooled all syntactic complexity
features and Wikipedia-based features in one view,
with the remaining feature groups in another view.
Our second feature split, S–C–L, combined
the syntactic complexity features with the character
trigram language model features and the basic word
length features. Both splits produced a pair of classi-
fiers with similar performance—each had an F-score
of around .73 and an oracle score of .87 on the trial
set on the binary decision problem, and both splits
performed equally on the ranking task.

6Liblinear with L1 penalty and L2 loss. Parameter settings
were default. http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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System All N V R A
MF 0.449 0.367 0.456 0.487 0.493
S–SWf 0.377 0.283 0.269 0.271 0.421
S–SWl 0.425 0.355 0.497 0.408 0.425
S–C–Lf 0.377 0.284 0.469 0.270 0.421
S–C–Ll 0.435 0.362 0.481 0.465 0.439

Table 2: Performance on part of speech. Unlabeled
set was Utest. Subscripts tell whether the scores are
from the first or last iteration

With a large unlabeled data set available, the clas-
sifiers can avoid picking and labeling data points
with a low certainty, at least initially. The assump-
tion is that this will give us a higher quality training
set. However, as can be seen in Figure 1, none of our
systems are benefitting from the additional data. In
fact, the systems learn more when the pool of unla-
beled data is restricted to the test set.

Our submitted systems, O1 and O2 scored
0.405 and 0.393 on the test set, and 0.494 and 0.500
on the trial set. Following submission we adjusted
a parameter7 and re-ran each split with both U and
Utest.

We analyzed the performance by part of speech
and compared them to the frequency baseline as
shown in Table 2. For the frequency baseline, per-
formance is better on adverbs and adjectives alone,
and somewhat worse on nouns. Both our sys-
tems benefit from co-training on all word classes.
S–C–L, our best performing system, no-
tably has a score reduction (compared to the base-
line) of only 5% on adverbs, eliminates the score re-
duction on nouns, and effectively beats the baseline
score on verbs with a 6% increase.

6 Discussion
The frequency baseline has proven very strong, and,
as witnessed by the correlations in Table 1, frequency
is by far the most powerful signal for “simplicity”.
But is that all there is to simplicity? Perhaps it is.
For a person with normal reading ability, a sim-
ple word may be just a word with which the per-
son is well-acquainted—one that he has seen be-
fore enough times to have a good idea about what
it means and in which contexts it is typically used.

7In particular, we selected a larger value for the C parameter
in the liblinear classifier.
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Figure 1: Test set kappa score vs. number of data
points labeled during co-training

And so an n-gram model might be a fair approxi-
mation. However, lexical simplicity in English may
still be something very different to readers with low
literacy. For instance, the highly complex letter-to-
sound mapping rules are likely to prevent such read-
ers from arriving at the correct pronunciation of un-
seen words and thus frequent words with exceptional
spelling patterns may not seem simple at all.

A source of misclassifications discovered in our
error analysis is the fact that substituting candidates
into the given contexts in a straight-forward manner
can introduce syntactic errors. Fixing these can re-
quire significant revisions of the sentence, and yet
the substitutions resulting in an ungrammatical sen-
tence are sometimes still preferred to grammatical al-
ternatives.8 Here, scoring the substitution and the
immediate context in a language model is of little
use. Moreover, while these odd grammatical errors
may be preferable to many non-native English speak-
ers with adequate reading skills, such errors can be
more obstructing to reading impaired users and be-
ginning language learners.
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8For example sentence 1528: ”However, it appears they in-
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Abstract

In this paper we present our approach for
assigning degrees of relational similarity to
pairs of words in the SemEval-2012 Task 2.
To measure relational similarity we employed
lexical patterns that can match against word
pairs within a large corpus of 12 million docu-
ments. Patterns are weighted by obtaining sta-
tistically estimated lower bounds on their pre-
cision for extracting word pairs from a given
relation. Finally, word pairs are ranked based
on a model predicting the probability that they
belong to the relation of interest. This ap-
proach achieved the best results on the Se-
mEval 2012 Task 2, obtaining a Spearman cor-
relation of 0.229 and an accuracy on reproduc-
ing human answers to MaxDiff questions of
39.4%.

1 Introduction

Considerable prior research has examined and elab-
orated upon a wide variety of semantic relations
between concepts along with techniques for auto-
matically discovering pairs of concepts for which
a relation holds (Bejar et al., 1991; Stephens and
Chen, 1996; Rosario and Hearst, 2004; Khoo and
Na, 2006; Girju et al., 2009). However, most pre-
vious work has considered membership assignment
for a semantic relation as a binary property. In this
paper we discuss an approach which assigns a de-
gree of membership to a pair of concepts for a given
relation. For example, for the semantic relation
CLASS-INCLUSION (Taxonomic), the concept pairs
weapon:spear and bird:robin are stronger members

Consider the following word pairs: millionaire:money,
author:copyright, robin:nest. These X:Y pairs share a
relation “X R Y”. Now consider the following word
pairs:
(1) teacher:students
(2) farmer:crops
(3) homeowner:door
(4) shrubs:roots
Which of the numbered word pairs is the MOST illus-
trative example of the same relation “X R Y”?
Which of the above numbered word pairs is the
LEAST illustrative example of the same relation “X
R Y”?

Figure 1: Example Phase 2 MaxDiff question for the re-
lation 2h PART-WHOLE: Creature:Possession.

of the relationship than hair:brown, because brown
may describe many things other than hair, and brown
is also used much less frequently as a noun than the
words in the first two word pairs. Task 2 of Se-
mEval 2012 (Jurgens et al., 2012) was designed to
evaluate the effectiveness of automatic approaches
for determining the similarity of a pair of concepts
to a specific semantic relation. The task focused on
79 semantic relations from Bejar et al. (1991) which
broadly fall into the ten categories enumerated in Ta-
ble 1.

The data for the task was collected in two phases
using Amazon Mechanical Turk 1. During Phase
1, Turkers were asked to provide pairs of words
which fit a relation template, such as “X pos-
sesses/owns/has Y”. Turkers provided word pairs
such as expert:experience, mall:shops, letters:words,
and doctor:degree. A total of 3,218 word pairs

1http://www.mturk.com/mturk/
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Category Example word pairs Relations
CLASS-INCLUSION flower:tulip, weapon:knife, clothing:shirt, queen:Elizabeth 5
PART-WHOLE car:engine, fleet:ship, mile:yard, kickoff:football 10
SIMILAR car:auto, stream:river, eating:gluttony, colt:horse 8
CONTRAST alive:dead, old:young, east:west, happy:morbid 8
ATTRIBUTE beggar:poor, malleable:molded, soldier:fight, exercise:vigorous 8
NON-ATTRIBUTE sound:inaudible, exemplary:criticized, war:tranquility, dull:cunning 8
CASE RELATIONS tailor:suit, farmer:tractor, teach:student, king:crown 8
CAUSE-PURPOSE joke:laughter, fatigue:sleep, gasoline:car, assassin:death 8
SPACE-TIME bookshelf:books, coast:ocean, infancy:cradle, rivet:girder 9
REFERENCE smile:friendliness, person:portrait, recipe:cake, astronomy:stars 6

Table 1: The ten categories of semantic relations used in SemEval 2012 Task 2. Each word pair has been taken from a
different subcategory of each major category.

across 79 relations were provided by Turkers in
Phase 1. Some of these word pairs are naturally
more representative of the relationship than others.
Therefore, in the second phase, each word pair was
presented to a different set of Turkers for ranking
in the form of MaxDiff (Louviere and Woodworth,
1991) questions. Figure 1 shows an example MaxD-
iff question for the relation 2h PART-WHOLE: Crea-
ture:Possession (“X possesses/owns/has Y”). In each
MaxDiff question, Turkers were simply asked to se-
lect the word pair which was the most illustrative
of the relation and the word pair which was the
least illustrative of the relation. For the example in
Figure 1, most Turkers chose either shrubs:roots or
farmer:crops as the most illustrative of the Crea-
ture:Possession relation, and homeowner:door as
the least illustrative. When Turkers select a pair of
words they are performing a semantic inference that
we wanted to also perform in a computational man-
ner. In this paper we present a method for automat-
ically ranking word pairs according to their related-
ness to a given semantic relation.

2 Approach for Determining Relational
Similarity

In the vein of previous methods for determining re-
lational similarity (Turney, 2011; Turney, 2008a;
Turney, 2008b; Turney, 2005), we propose two ap-
proaches using patterns generated from the contexts
in which the word pairs occur. Our corpus consists
of 8.4 million documents from Gigaword (Parker
and Consortium, 2009) and over 4 million articles
from Wikipedia. For each word pair, <W1>, <W2>
provided by Turkers in Phase 1, as well as the three
relation examples, we collected all contexts which

matched the schema:

“ [0 or more non-content words] <W1> [0 to 7
words] <W2> [0 or more non-content words]”

We also include those contexts where W1 and W2
are swapped. The window size of seven words was
determined based on experiments on the training set
of ten relations provided by the task organizers. For
the non-content words, we considered closed class
words such as determiners (the, who, every), prepo-
sitions (in, on, instead of), and conjunctions (and,
but). Members of these classes were collected from
their corresponding Wikipedia pages. Below we
provide a sample of the 7,022 contexts found for the
word pair love:hate:

“they <W1> to <W2> it”
“<W1> and <W2> the most . by”
“between <W1> & <W2>”
“<W1> you then i <W2> you and”

We restrict the context before and after the word pair
to non-content words in order to match longer con-
texts without introducing exponential growth in the
number of patterns and the consequential sparsity
problems. These contexts are directly used as pat-
terns. To generate additional patterns we have one
method for shortening contexts and two methods for
generating patterns from contexts.

Any contexts which contain words before <W1>
or after <W1> are used to create additional shorter
contexts by successively removing leading and trail-
ing words. For example, the context “as much
<W1> in the <W2> as his” for the word pair
money:bank would generate the following shortened
contexts:

“much <W1> in the <W2> as his”
“<W1> in the <W2> as his”
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“as much <W1> in the <W2>” as
“as much <W1> in the <W2>”
“much <W1> in the <W2> as”
“<W1> in the <W2> as”
“<W1> in the <W2>”

These shortened contexts are used, along with the
original context, to generate patterns.

The first pattern generation method replaces each
word between<W1> and<W2> with a wildcard ([ˆ
]+ means one or more non-space characters). For ex-
ample:

“as much <W1> [ˆ ]+ the <W2> as”
“as much <W1> in [ˆ ]+ <W2> as”

The second pattern generation technique allows for
a single word to be matched in the context between
the arguments <W1> and <W2>, along with arbi-
trary matching of other tokens in the context. For
example, the context for red:stop “the <W1> flag is
flagged to indicate a <W2>” will generate new pat-
terns such as:

“the <W1>.* flag .*<W2>”
“the <W1>.* is .*<W2>”
“the <W1>.* flagged .*<W2>”
“the <W1>.* indicate .*<W2>”

After all patterns have been generated, they are used
by our two approaches to assign relational similarity
scores to word pairs.

2.1 UTD-NB Approach

The first of our two approaches, UTD-NB, assigns
weights to patterns which are then used to assign
similarity scores to word pairs. The approach begins
by obtaining all word pairs associated with a rela-
tion. Each relation is associated with a target set (T )
of word pairs from two sources: (i) the three or four
example word pairs provided for each relation, and
(ii) the word pairs provided by Turkers in Phase 1.
We collect all of the contexts for those word pairs to
generate patterns. The UTD-NB approach assumes
that the word pairs provided by Turkers, while noisy,
can be used to characterize the relation. As an exam-
ple, consider these word pairs provided by Turkers
for the relation 8a (Cause:Effect) illness:discomfort,
fire:burns, accident:damage. A pattern which ex-
tracts these word pairs is: “<W1> that caused [ˆ ]+
<W2>”. This pattern is unlikely to match the con-
texts of word pairs from other relations. Therefore,
we use the statistics about how many target word

Figure 2: Probabilistic model for the word pairs extracted
by patterns, for a single relation.

pairs a pattern extracts versus how many non-target
pairs a pattern extracts to assign a weight to the pat-
tern. A pattern which matches many of the word
pairs from the target relation and few (or none) of the
word pairs from other relations is likely to be a good
indicator of that relation. For example, the pattern
P1 for the relation 8a (Cause:Effect): “the <W1>.*
caused .*<W2> to his” matches only three word
pairs: explosion:damage, accident:damage, and in-
jury:pain, all of them belonging to the target rela-
tion. Conversely, the pattern P2: “<W1>.* caus-
ing .*<W2> but” matches five words pairs. How-
ever, only three of them belong to the target relation:
hit:injury, explosion:damage, germs:sickness. The
remaining two: city:people, action:alarm belong to
other relations: .

We use the number of target word pairs extracted,
x, and the total number of word pairs extracted, n,
to calculate τ : the probability that a word pair ex-
tracted by the pattern will belong to the target re-
lation. The maximum likelihood estimate for τ is
x
n , however for small values of x this estimate has
a high variance and can significantly overestimate
the true value. Therefore, we used the Wilson in-
terval score for determining a lower bound on τ at
a 99.9% confidence level. This gives the pattern P1
above with x = 3 and n = 3 a lower bound on τ
of 21.7% and P2 with x = 3 and n = 5 a lower
bound on τ of 16.6%. We use this lower bound as
the pattern’s weight. These pattern weights are then
combined to score each word pair for the target rela-
tion.

We model the word pairs extracted by the patterns
as a generative process shown in Figure 2. Each pat-
tern, p, is associated with with a precision, τ , which
is the probability that a word pair extracted by that
pattern is a member of the target relation. The ob-
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served word pairs extracted by a pattern are denoted
by w. Our model assumes that a word pair extracted
by a pattern may be drawn from one of two distinct
distributions over word pairs: a distribution for the
target relation ~t, and a background distribution over
word pairs ~b. The generation of a word pair be-
gins with a binary variable x drawn from a Bernoulli
distribution parametrized by τ (the pattern’s preci-
sion), which represents whether a word pair is gen-
erated according to a relation specific distribution, or
a background distribution. More explicitly, if x = 1,
then a word pair w is generated by the target relation
distribution ~t, and if x = 0, a word pair is generated
by the background distribution~b.

We may not yet perform any meaningful infer-
ence because no evidence has been observed to cor-
rectly infer whether the target distribution or the
background distribution generated w. Therefore we
use the pattern weights derived above (based on the
lower bounds on the pattern precisions) as that pat-
tern’s value of τ . For estimating the distributions
~t and ~b, we assume that x is 1 (w is generated by
~t) if and only if τ ≥ 0.1 and the word pair w be-
longs to the target set of word pairs T . This thresh-
old on τ has a filtering effect on the patterns, and
those patterns below the threshold are treated as non-
indicative of the relation. These assumptions allow
us to estimate the parameters for ~t and~b:

P (w|~t) =

{
#(w,h)
#(h) if w ∈ T

0 if w 6∈ T
(1)

P (w|~b) =
#(w,¬h) + #(w, h)1w 6∈T∑
u #(u,¬h) + #(u, h)1u6∈T

(2)

where #(w, h) is the number of times w was ex-
tracted by a high precision pattern (τ ≥ 10%), and
#(h) is the number of word pairs extracted by a high
precision pattern.

The only remaining hidden variable in the model
is x which we can now estimate using the inferred
distributions for the other variables. We chose to use
the probability of x for a word pair w as the score
by which we rank the word pairs. Furthermore, we
use only the probability of x for the highest ranking
pattern p which extracted w:

P (x = 1|p, w) =
P (x = 1, w|p)

P (w|p)
(3)

where P (x = 1, w|p) = τp × ~t(w) and P (w|p) =
P (x = 1, w|p) + P (x = 0, w|p)

This method of scoring word pairs accounts for
how common a word pair is overall. For example
for the relation 4c (CONTRAST: Reverse), the word
pair white:black occurs very commonly in both high
precision patterns and low precision patterns (those
more likely associated with other relations). There-
fore even though the word pair shares its highest
ranking pattern with the pair eat:fast, white:black re-
ceives a score of 0.019 while eat:fast receives a score
of 0.216 because ~t(white : black) = 0.006 and
~b(white : black) = 0.104, while ~t(eat : fast) =
0.0016 and ~b(eat : fast) = 0.0018. However,
if a pattern with 100% precision were to extract
white:black, the pair would appropriately receive a
score of 1.0 despite being much more common in the
background distribution. This is motivated by our
assumption that such a pattern can only extract word
pairs which truly belong to the relation. Another
motivation for scoring word pairs by their highest
ranking pattern is that it does not depend on any
assumption of independence between the patterns
which extract the pairs. For example, the pattern
“<W1> , not <W2> . ” extracts largely the same
word pairs as “<W1> [ˆ ]+ not<W2> .” and thus its
matches should not be taken as additional evidence
about the word pairs.

2.2 UTD-SVM Approach

Our second approach uses an SVM-rank (Joachims,
2006) model to rank the word pairs. Each word pair
from a target relation is represented as a binary fea-
ture vector indicating which patterns extracted the
word pair. We train the SVM-rank classifier by as-
signing all word pairs from the target relation rank 2,
and all word pairs from other relations with rank 1.
The SVM model is then trained and used to classify
the word pairs from the target relation. Even though
the model is used to classify the same word pairs it
was trained on, it still provides higher scores to word
pairs more likely to belong to the target relation. We
directly rank the word pairs using these scores.

3 Discussion

The organizers of SemEval 2012 Task 2 viewed re-
lational similarity in two different ways. The first
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Word pair % Most illustrative -
% Least illustrative

“freezing:warm” 56.0
“earsplitting:quiet” 36.0
“evil:angelic” 18.0
“ancient:modern” 12.0
“disastrous:peaceful” 6.0
“ecstatic:disgruntled” 2.0
“disgusting:tasty” 0.0
“beautiful:plain” -2.0
“dirty:sterile” -4.0
“wrinkled:smooth” -6.0
“sweet:sour” -20.0
“disgruntled:ecstatic” -32.0
“white:gray” -54.0

Table 2: A sample of the 41 word pairs provided by
Amazon Mechanical Turk participants for the relation 4f
(CONTRAST: Asymmetric Contrary - X and Y are at op-
posite ends of the same scale). The word pairs are ranked
by how illustrative of the relation participants found each
pair to be.

view was that of solving a MaxDiff problem, ques-
tion in which participants are shown a list of four
word pairs and asked to select the most and least
illustrative pairs. The second view of relation simi-
larity considers the task of assigning scores to a ac-
cording to their similarity to the relation of interest.
The first column of Table 2 provides an example of
word pairs that Amazon Turkers said belonged to the
4f: CONTRAST: Asymmetric Contrary relation in
Phase 1, ranked according to how well other Turk-
ers felt they represented the relation. The score in
the second column is calculated as the percentage of
how often Turkers rated a word pair as the most il-
lustrative and how often Turkers rated the word pair
as the least illustrative.

Both of our approaches for determining relation
similarity assign scores directly to the word pairs
collected in Phase 1, with the goal of ranking the
words in the same order that was induced from the
responses by Amazon Mechanical Turkers.

3.1 Evaluation Measures

SemEval-2012 Task 2 had two official evaluation
metrics. The first directly measured the accuracy
of automatically choosing the most and least illus-
trative word pairs among a set of four word pairs
taken from responses during Phase 1. The accuracy
of choosing the most illustrative word pair and the

Team-Algorithm Spearman MaxDiff
UTD-NB 0.229 39.4
UTD-SVM 0.116 34.7
Duluth-V0 0.050 32.4
Duluth-V1 0.039 31.5
Duluth-V2 0.038 31.1
BUAP 0.014 31.7
Random 0.018 31.2

Table 3: Results for all systems participating in SemEval
2012 Task 2 on relational similarity, including a random
baseline.

accuracy of choosing the least illustrative word pair
were calculated separately and averaged to produce
the MaxDiff accuracy.

The second evaluation metric measured the corre-
lation between an automatic ranking of word pairs
for a relation and a ranking induced by the Turkers’
responses to the MaxDiff questions. The word pairs
were given scores equal to the percentage of times
they were chosen by Turkers as the most illustra-
tive example for a relation minus the percentage of
times they were chosen as the least illustrative. Sys-
tems were then evaluated according to their Spear-
man rank correlation with the ranking of word pairs
induced by that score. Spearman correlations range
from -1 for a negative correlation to 1.0 for a perfect
correlation.

3.2 Results

Table 3 shows the results for the six systems which
participated in SemEval-2012 Task 2, along with the
results for a baseline which ranks each word pair
randomly. Our two approaches achieved the best re-
sults on both evaluation metrics. Our UTD-NB ap-
proach achieves much better performance than our
UTD-SVM approach, likely due to the unconven-
tional use of the SVM to classify its own training
data. That said, the results are still significantly
higher than those of other participants. This may
be attributed to our incorporation of better patterns
or our use of a large corpus. It might also be a con-
sequence of our approaches considering all of the
testing word pairs simultaneously.

Table 4 shows the results for each of the ten cat-
egories of relations. The best results are achieved
on SPACE-TIME relations, while the lowest perfor-
mance is on the NON-ATTRIBUTE relations. NON-
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Category Rndm BUAP UTD UMD
NB V0

1 CLASS-INCLUSION 0.057 0.064 0.233 0.045
2 PART-WHOLE 0.012 0.066 0.252 -0.061
3 SIMILAR 0.026 -0.036 0.214 0.183
4 CONTRAST -0.049 0.000 0.206 0.142
5 ATTRIBUTE 0.037 -0.095 0.158 0.044
6 NON-ATTRIBUTE -0.070 0.009 0.098 0.079
7 CASE RELATIONS 0.090 -0.037 0.241 -0.011
8 CAUSE-PURPOSE -0.011 0.114 0.183 0.021
9 SPACE-TIME 0.013 0.035 0.375 0.055
10 REFERENCE 0.142 -0.001 0.346 0.028

Table 4: Spearman correlation results for the best system
from each team, across all ten categories of relations.

ATTRIBUTE relations associate objects and actions
with an atypical attribute (harmony:discordant, im-
mortal:death, recluse:socialize). Because the pairs
of words associated with these relation are not typ-
ically associated together, our approach likely per-
forms poorly on these relations because our ap-
proach is based on finding the pairs of words to-
gether in a large corpus.

An interesting consequence of the 10% precision
threshold used in the UTD-NB approach is that 24
relations had no patterns exceeding the threshold
and therefore produced zeroes as scores for all word
pairs. However, word pairs which never occurred
within seven tokens of each other in our corpus re-
ceived a negative score and were ranked lower. Such
rankings tend to produce Spearman scores around
0.0. Our lowest Spearman score was -0.068, while
other teams had low scores of -0.344 and -0.266,
both occurring on relations for which UTD-NB pro-
duced no positive word pair scores. There are two
lessons to be learned from this result: (i) the UTD-
NB approach does a good job of recognizing when
it cannot rank word pairs, and (ii) such relations are
likely difficult and worth further investigation.

4 Conclusion

We described the UTD approaches to determining
relation similarity using lexical patterns from a large
corpus. Combined with a probabilistic model for
word pair extraction by those patterns, we were able
to achieve the highest performance at the SemEval
2012 Task 2. Our results showed the approach
significantly outperformed a model which used an
SVM-rank model used to classify its own training
set. The approach also performed well across a wide

range of relation types and argument classes which
included nouns, adjectives, verbs, and adverbs. This
implies that the approaches presented in this pa-
per could be successfully applied to other domains
which involve semantic relations.
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Abstract

We present a joint approach for recognizing
spatial roles in SemEval-2012 Task 3. Can-
didate spatial relations, in the form of triples,
are heuristically extracted from sentences with
high recall. The joint classification of spatial
roles is then cast as a binary classification over
the candidates. This joint approach allows for
a rich feature set based on the complete rela-
tion instead of individual relation arguments.
Our best official submission achieves an F1-
measure of 0.573 on relation recognition, best
in the task and outperforming the previous
best result on the same data set (0.500).

1 Introduction

A significant amount of spatial information in natu-
ral language is encoded in spatial relationships be-
tween objects. In this paper, we present our ap-
proach for detecting the special case of spatial re-
lations evaluated in SemEval-2012 Task 3, Spatial
Role Labeling (SpRL) (Kordjamshidi et al., 2012).
This task considers the most common type of spa-
tial relationships between objects, namely those de-
scribed with a spatial preposition (e.g.,in, on, over)
or a spatial phrase (e.g.,in front of, on the left), re-
ferred to as the spatial INDICATOR. A spatial INDI-
CATOR connects an object of interest (the TRAJEC-
TOR) with a grounding location (the LANDMARK ).
Examples of this type of spatial relationship include:

(1) [cars]T parked [in front of]I the [house]L .
(2) [bushes]T1 and small [trees]T2 [on]I the [hill]L .
(3) a huge [column]L with a [football]T [on top]I .
(4) [trees]T [on the right]I . [∅]L

SpRL is a type ofsemantic role labeling(SRL)
(Palmer et al., 2010), where the spatial INDICA-
TOR is the predicate (or trigger) and the TRAJEC-
TOR and LANDMARK are its two arguments. Previ-
ous approaches to SpRL (Kordjamshidi et al., 2011)
have largely followed the commonly employed SRL
pipeline: (1) find predicates (i.e., the INDICATOR),
(2) recognize the predicate’s syntactic constituents,
and (3) classify the constituent’s role (i.e., TRA-
JECTOR, LANDMARK , or neither). The problem
with this approach is that arguments are considered
largely in isolation. Consider the following:

(5) there is a picture on the wall above the bed.

This sentence contains three objects (picture, wall,
and bed) and two INDICATORs (on and above).
Since the most common spatial relation pattern is
simply trajector-indicator-landmark (as in Examples
(1) and (2)), the triplewall-above-bedis a likely can-
didate relation. However, the semantics of these ob-
jects invalidates the relation (i.e., walls are beside
beds, ceilings are above them). Instead the correct
relation is picture-above-bed because the preposi-
tion abovesyntactically attaches topicture instead
of wall. Prepositional attachment, however, is a dif-
ficult syntactic problem solved largely through the
use of semantics, so an understanding of the con-
sistency of spatial relationships plays an important
role in their recognition. Consistency checking is
not possible under a pipeline approach that classifies
whetherwall as the TRAJECTORwithout any knowl-
edge of its LANDMARK .

We therefore propose an alternative to this
pipeline approach that jointly decides whether a
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given TRAJECTOR-INDICATOR-LANDMARK triple
expresses a spatial relation. We utilize a high re-
call heuristic for recognizing objects capable of par-
ticipating in a spatial relation as well as a lexicon
of INDICATORs. All possible combinations of these
arguments (including undefined LANDMARK s) are
considered by a binary classifier in order to make a
joint decision. This allows us to incorporate features
based on all three relation elements such as the rela-
tion’s semantic consistency.

2 Joint Classification

2.1 Relation Candidate Selection

Previous joint approaches to SpRL have performed
poorly relative to the pipeline approach (Kord-
jamshidi et al., 2011). However, these approaches
have issues with data imbalance: if every token
could be a TRAJECTOR, LANDMARK , or INDICA-
TOR, then even short sentences may contain thou-
sands of negative relation candidates. Such unbal-
anced data sets are difficult for classifiers to reason
over (Japkowicz and Stephen, 2002). To reduce this
imbalance, we propose high recall heuristics to rec-
ognize candidate elements (INDICATORs, TRAJEC-
TORs, and LANDMARK s). Since INDICATORs are
taken from a closed set of prepositions and a small
set of spatial phrases, we simply use a lexicon con-
structed from the indicators in the training data (e.g.,
on, in front of). Thus, our approach is not capable of
detecting INDICATORs that were unseen in the train-
ing data. The effectiveness of this indicator lexicon
is evaluated in Section 3.2. For TRAJECTORs and
LANDMARK s, we observe that both may be consid-
ered spatial objects, which unlike INDICATORs are
not a closed class of words. Instead, we consider
noun phrase (NP) heads to be spatial objects. To
overcome part-of-speech errors and increase recall,
we incorporate three sources: (1) the NP heads from
a syntactic parse tree (Klein and Manning, 2003),
(2) the NP heads from a chunk parse1, and (3) words
that are marked as nouns in at least 66% of instances
in Treebank (Marcus et al., 1993). This approach
identifies all nouns, not just spatial nouns. But for
the SemEval-2012 Task 3 data, which is composed
of image descriptions, most nouns are spatial ob-
jects and no further refinements are necessary. Fur-

1http://www.surdeanu.name/mihai/bios/

ther heuristics (such as using WordNet (Fellbaum,
1998)) could be used to refine the set of spatial ob-
jects if other domains (such as newswire) were to
be used. Our main emphasis in this step, however,
is recall: by utilizing these heuristics we greatly re-
duce the number of negative instances while remov-
ing very few positive spatial relations. The effective-
ness of our heuristics are evaluated in Section 3.2.

Once all possible spatial INDICATORs and spa-
tial objects are marked, all possible combinations of
these are formed as candidate relations. Addition-
ally, for each spatial object and spatial INDICATOR

pair, an additional candidate relation is formed with
an undefined LANDMARK (such as in Example (4)).

2.2 Classification Framework

Given candidate spatial relations, we utilize a binary
support vector machine (SVM) classifier to indicate
which relation candidates are spatial relations. We
use the LibLINEAR (Fan et al., 2008) SVM imple-
mentation, adjusting the negative outcome weight
from 1.0 to 0.8 (tuned via cross-validation on the
training data). This adjustment sacrifices preci-
sion for recall, but raises the overall F1 score. For
type classification (REGION, DIRECTION, and DIS-
TANCE), we use LibLINEAR as a multi-class SVM
with no weight adjustment in order to maximize ac-
curacy. The features used in both classifiers are dis-
cussed in Sections 2.3 and 2.4.

2.3 Relation Detection Features

The difference between our two official submissions
(supervised1 and supervised2) is that different sets
of features were used to detect spatial relations. The
features for general type classification, discussed in
Section 2.4, were consistent across both submis-
sions. Based on previous approaches to spatial role
labeling, our own initial intuitions, and error analy-
sis, we created over 100 different features, choosing
the best feature set with a greedy forward/backward
automated feature selection technique (Pudil et al.,
1994). This greedy method iteratively chooses the
best un-used feature to add to the feature set. At the
end of each iteration, there is a pruning step to re-
move any features made redundant by the addition
of the latest feature.

Before describing the individual features used in
our submission, we first enumerate some basic fea-
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tures that form the building blocks of many of the
features in our submissions (with sample feature val-
ues from Example (1)):

(BF.1) The TRAJECTOR’s raw string (e.g.,cars).
(BF.2) The LANDMARK ’s raw string (house).
(BF.3) The INDICATOR’s raw string (in front of).
(BF.4) The TRAJECTOR’s lemma (car).
(BF.5) The LANDMARK ’s lemma (house).
(BF.6) The dependency path from the TRAJECTORto the

INDICATOR (↑NSUBJ↓PREP). Uses the Stanford
Dependency Parser (de Marneffe et al., 2006).

(BF.7) The dependency path from the INDICATOR to the
LANDMARK (↓POBJ).

For BF.2, BF.5, and BF.7, if the relation’s
LANDMARK is undefined, the feature value is sim-
ply undefined. The features for our first submission
(supervised1), in the order they were chosen by the
feature selector, are as follows:

(JF1.1) The concatenation of BF.6, BF.3, and BF.7 (i.e.,
the dependency path from the TRAJECTORto the
LANDMARK including the INDICATOR’s raw string),
for all spatial objects related to the TRAJECTORunder
consideration via a conjunction dependency relation
(including the TRAJECTORitself). For instance,
TRAJECTOR1 in Example (2) would have two feature
values:↓CONJ↓PREP↓POBJand↓PREP↓POBJ.
Since objects connected via a conjunction should
participate in the same relation, this allows the
classifier to overcome the sparsity related to the low
number of training instances containing a conjunction.

(JF1.2) The concatenation of BF.1, BF.3, and BF.2
(cars::in front of::house).

(JF1.3) Whether or not the LANDMARK is part of a term
from the INDICATOR lexicon. Words likefront and
sideare common LANDMARK s but may also be part
of an INDICATOR as well.

(JF1.4) All the words between the left-most argument in
the relation and the right-most argument (parked, the).
Does not include any word in the arguments.

(JF1.5) The value of BF.7.
(JF1.6) The first word in the INDICATOR.
(JF1.7) The LANDMARK ’s WordNet hypernyms.
(JF1.8) The TRAJECTOR’s WordNet hypernyms.
(JF1.9) Whether or not the relative order of the relation

arguments in the text is INDICATOR, LANDMARK ,
TRAJECTOR. This order is rare and thus this feature
acts as a negative indicator.

(JF1.10) Whether or not the TRAJECTORis a
prepositional object (POBJfrom the dependency tree)
of a preposition that isnot the relation’s INDICATOR

but is in the INDICATOR lexicon. Again, this is a
negative indicator.

(JF1.11) The concatenation of BF.4, BF.3, and BF.5

(car::in front of::house).
(JF1.12) The dependency path from the TRAJECTOR

to the LANDMARK . Differs from JF1.1 because it
does not consider conjunctions or differentiate
between INDICATORs.

(JF1.13) The concatenation of BF.3 and BF.7.
(JF1.14) Whether or not the relation under consideration

has an undefined LANDMARK andthe sentence
contains no spatial objects other than the TRAJECTOR

under consideration. This helps to indicate relations
with undefined LANDMARK s in short sentences.

The first feature selected by the automated feature
selector (JF1.1) utilizes conjunctions (e.g.,and, or,
either). However, conjunctions are difficult to detect
with high precision, so we decided to perform an-
other round of feature selection without this particu-
lar feature. The chosen features were then submitted
separately (supervised2):

(JF2.1) The same as JF1.2.
(JF2.2) The same as JF1.3.
(JF2.3) The same as JF1.4.
(JF2.4) The same as JF1.13.
(JF2.5) The value of BF.1.
(JF2.6) The same as JF1.5.
(JF2.7) Similar to JF1.1, but only using the concatenation

of BF.6 and BF.3 (i.e., leaving out the dependency
path from the INDICATOR to the LANDMARK ).

(JF2.8) The same as JF1.7.
(JF2.9) The same as JF1.8.
(JF2.10) The lexical pattern from the left-most

argument to the right-most argument
(TRAJECTORparked INDICATOR the LANDMARK ).

(JF2.11) The raw string of the preposition in aPREP

dependency relation with the TRAJECTORif that
preposition is not the relation’s INDICATOR.

(JF2.12) The PropBank role types for each argument in
the relation (TRAJECTOR=A1;INDICATOR=
AM LOC;LANDMARK =AM LOC). Uses SENNA
(Collobert and Weston, 2009) for the PropBank parse.

(JF2.13) The same as JF1.14.
(JF2.14) The concatenation of BF.4, BF.3, and BF.5.
(JF2.15) The same as JF1.10, but with no requirement to

be in the INDICATOR lexicon.

2.4 Type Classification Features

After joint detection of a relation’s arguments, a
separate classifier determines the relation’s general
type. The features used to classify a relation’s gen-
eral type (REGION, DIRECTION, and DISTANCE)
were also selected using an automated feature se-
lector from the same set of features. Both submis-
sions (supervised1 and supervised2) utilized these
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supervised1 supervised2
Label Precision Recall F1 Precision Recall F1

TRAJECTOR 0.731 0.621 0.672 0.782 0.646 0.707
LANDMARK 0.871 0.645 0.741 0.894 0.680 0.772
INDICATOR 0.928 0.712 0.806 0.940 0.732 0.823

Relation 0.567 0.500 0.531 0.610 0.540 0.573
Relation + Type 0.561 0.494 0.526 0.603 0.534 0.566

Table 1: Official results for submissions.

features. The following features were used for clas-
sifying a spatial relation’s general type:

(TF.1) The last word of the INDICATOR.
(TF.2) The value of BF.3.
(TF.3) The value of BF.5.
(TF.4) The same as JF1.3.
(TF.5) The same as JF2.10.

3 Evaluation

3.1 Official Submission

The official results for both of our submissions is
shown in Table 1. The argument-specific results
for TRAJECTORs, LANDMARK s, and INDICATORs
are difficult to interpret in the joint approach. In a
pipeline method, these usually indicate the perfor-
mance of individual classifiers, but in our approach
these results are simply a derivative of our joint clas-
sification output. The first submission (supervised1)
achieved a triple F1 of 0.531 for relation detection
and 0.526 when the general type is included. Our
second submission (supervised2) performed better,
with an F1 of 0.573 for relation detection and 0.566
when the general type is included. This suggests that
the feature JF1.1, even though it is the best individ-
ual feature, introduces a significant amount of noise.

The only result to compare our official submis-
sions to is that of Kordjamshidi et al. (2011), who
utilize a pipeline approach. Their method has a rela-
tion detection F1 of 0.500 (they do not report a score
with general type). We further compare our method
with theirs in Section 4.

3.2 Relation Candidate Evaluation

The heuristics described in Section 2.1 that enable
joint classification were tuned for the training data,
but their recall on the test data places a strict upper
bound on the recall to our overall approach. It is
therefore important to understand the performance
loss that occurs at this step.

Table 2 shows the performance of our heuristics
on the training and test data. The spatial INDICA-
TOR lexicon has perfect recall on the training data
because it was built from this data set. However, it
performs at only 0.951 recall on the test data, as al-
most 5% of the INDICATORs in the test data were not
seen in the training data. Most of these are phrasal
verbs (e.g.,sailing over) or include the modifiervery
(e.g.,to the very left). Our spatial object recognizer
performed better, only dropping from 0.998 (2 er-
rors) to 0.989 (16 errors). Some of these errors re-
sulted from mis-spellings (e.g.,housedinstead of
houses), non-head spatial objects (mountain from
the NPmountain landscape), NPs containing con-
junctions (treesin two palm trees, lamps and flags,
which gets marked as one simple NP), as well as
parser errors. The significant drop in precision for
both spatial indicators and objects is an additional
concern. This does not indicate the extracted items
were not valid as potential indicators or objects, but
rather that no gold relation contained them. As ex-
plained in Section 4, this is likely caused by the dis-
parity in sentence length: longer sentences result in
more matches, but not necessarily more relations.
As evidence of this, despite the training and test data
containing almost the same number of sentences,
there are 36% more spatial indicators and 20% more
spatial objects in the test set.

3.3 Further Experiments

After the evaluation deadline, the task organizers
provided the gold test data, allowing us to perform
additional experiments. In this process we found
several annotation errors which we needed to fix in
order to process our gold results. These errors were
largely annotations that were given an incorrect to-
ken index, resulting in the annotation text not match-
ing the referenced text. These fixes increased our
performance, shown on Table 3, improving relation
detection for the supervised2 feature set from 0.573
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# Precision Recall F1

Spatial Train 1,488 0.448 1.000 0.619
Indicators Test 2,335 0.328 0.951 0.487

Spatial Train 2,974 0.448 0.998 0.618
Objects Test 3,704 0.387 0.989 0.556

Table 2: Results of relation candidate selection heuristics.

Data Precision Recall F1

Train/Test 0.644 0.556 0.597
Train/Test -NSI 0.644 0.582 0.611

Train CV 0.824 0.743 0.781
Test CV 0.745 0.639 0.688

Train+Test CV 0.774 0.680 0.724

Table 3: Additional experiments on corrected test data
using the supervised2 data set. -NSI indicates that the
gold spatial INDICATORs that are not in the lexicon are
removed. CV indicates 10-fold cross validation.

to 0.597. We use this updated data set for the follow-
ing experiments. While the results aren’t compara-
ble to other methods, the goal of these experiments is
to analyze our system under various configurations
by their relative performance.

Table 3 also shows a 10-fold cross validation per-
formance on 3 data sets: (1) the training data, (2)
the test data, and (3) both the training and test data.
While our feature set is tuned to the training data,
the test data is clearly more difficult. Section 4 dis-
cusses the differences between the training and test
data that may lead to such a performance reduction.

Since our lexicon of spatial INDICATORs was
built from the training data, our method will not rec-
ognize any relations that use unseen INDICATORs.
To differentiate between how our method performs
on the full test data and just those INDICATORs that
are in the lexicon, we removed the 39 gold relations
with unseen INDICATORs and re-tested the system.
As can be seen in Table 3 (under -NSI), this im-
proves recall by 2.6 points.

3.4 Feature Experiments

To estimate the contribution of our features, we per-
formed an additive experiment to see how each fea-
ture contributes to the overall test score. Table 4
shows the feature contributions based on the order
they were added by the feature selector. For many of
the features the score goes down when added. How-
ever, without these features, the final score would
drop to 0.578, indicating they still provide valuable
information in the context of the other features. Ta-
ble 5 shows performance on the updated test set

Feature Precision Recall F1

JF2.1 0.333 0.156 0.212
+JF2.2 0.347 0.126 0.185
+JF2.3 0.708 0.115 0.197
+JF2.4 0.555 0.294 0.384
+JF2.5 0.636 0.402 0.493
+JF2.6 0.590 0.414 0.486
+JF2.7 0.621 0.553 0.585
+JF2.8 0.614 0.568 0.590
+JF2.9 0.573 0.568 0.571
+JF2.10 0.612 0.547 0.578
+JF2.11 0.625 0.571 0.597
+JF2.12 0.660 0.536 0.592
+JF2.13 0.633 0.573 0.601
+JF2.14 0.642 0.563 0.600
+JF2.15 0.644 0.556 0.597

Table 4: Additive feature experiment results using the su-
pervised2 features. Bold indicates increases in F1 over
the previous feature set.

Feature Precision Recall F1

∅ 0.644 0.556 0.597
JF2.1 0.627 0.571 0.598
JF2.2 0.629 0.542 0.582
JF2.3 0.540 0.494 0.516
JF2.4 0.591 0.412 0.485
JF2.5 0.631 0.558 0.592
JF2.6 0.657 0.515 0.577
JF2.7 0.636 0.547 0.589
JF2.8 0.641 0.562 0.599
JF2.9 0.678 0.539 0.601
JF2.10 0.607 0.569 0.587
JF2.11 0.640 0.565 0.600
JF2.12 0.646 0.566 0.603
JF2.13 0.646 0.553 0.596
JF2.14 0.618 0.572 0.594
JF2.15 0.642 0.563 0.600

Table 5: Results when individual features from the super-
vised2 submission are removed. Bold indicates improve-
ment when the feature is removed.

when individual features are removed. Here, six fea-
tures that were useful on the training data did not
prove useful on the test data.

4 Discussion

The only available work against which our method
may be compared is that of Kordjamshidi et al.
(2011). They propose both a pipeline and joint ap-
proach to SpRL. In their case, their pipeline ap-
proach performs better than their joint approach.
Joint approaches increase data sparsity, so their
greatest value is in the ability to use a richer set of
features that describe the relationships between the
arguments. Kordjamshidi et al. (2011) furthermore
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did not employ heuristics to select relation candi-
dates such as those in Section 2.1. Given this dif-
ference it is difficult to assert that a joint approach
is better with complete certainty, but we believe the
ability to analyze the consistency of the entire rela-
tion provides a significant advantage. Many of our
features (JF2.1, JF2.3, JF2.10, JF2.12, JF2.13, and
JF2.14) were of this joint type.

The drop in performance from the training data to
the test data is significant. The possibility that this is
entirely due to over-training is dispelled by the cross
validation results in Table 3. While different features
might work better on the test set, they are unlikely
to overcome the cross validation difference of 9.3
points (0.781 vs. 0.688). Much of this comes from
the recall limit due to the use of the spatial indicator
lexicon. The other significant cause of performance
degradation seems to be caused by sentence length
and complexity. The test sentences are longer (18 to-
kens vs. 15 tokens in the training data), and have far
more conjunctions (389and tokens vs. 256), indi-
cating greater syntactic complexity. But the largest
difference is the number of relation candidates gen-
erated by the heuristics: 60,377 relation candidates
from the training data vs. 167,925 relation candi-
dates from the test data (the data sets are roughly the
same size: 600 training and 613 test sentences). The
drop of precision in spatial objects in Table 2 reflects
this as well. Since the number of candidate relations
is quadratic in the number of spatial objects, it is
likely that just a few, long sentences result in this
dramatic increase in the number of candidates.

Since more general domains (such as newswire)
are likely to have this problem as well, one important
area of future work is the reduction of the number of
relation candidates (increasing precision) while still
maintaining near-perfect recall.

5 Conclusion

We have presented a joint approach for recogniz-
ing spatial roles in SemEval-2012 Task 3. Our ap-
proach improves over previous attempts at joint clas-
sification by extracting a more precise (but still ex-
tremely high recall) set of relation candidates, allow-
ing binary classification on a more balanced data set.
This joint approach allowed for a rich set of features
based on all the relation’s arguments. Our best of-

ficial submission achieved an F1-measure of 0.573
on relation recognition, best in the task and outper-
forming all previous work.
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Abstract 

This document describes three systems calcu-

lating semantic similarity between two Chi-

nese words. One is based on Machine 

Readable Dictionaries and the others utilize 

both MRDs and Corpus. These systems are 

performed on SemEval-2012 Task 4: Evaluat-

ing Chinese Word Similarity. 

1 Introduction 

The characteristics of polysemy and synonymy that 

exist in words of natural language have always 

been a challenge in the fields of Natural Language 

Processing (NLP) and Information Retrieval (IR). 

In many cases, humans have little difficulty in de-

termining the intended meaning of an ambiguous 

word, while it is extremely difficult to replicate 

this process computationally. For many tasks in 

psycholinguistics and NLP, a job is often decom-

posed to the requirement of resolving the semantic 

similarity between words or concepts. 

There are two ways to get the similarity between 

two words. One is to utilize the machine readable 

dictionary (MRD). The other is to use the corpus. 

For the 4th task in SemEval-2012 we are re-

quired to evaluate the semantic similarity of Chi-

nese word pairs. We consider 3 methods in this 

study. One uses MRDs only and the other two use 

both MRD and corpus. A post processing will be 

done on the results of these methods to treat syno-

nyms. 

In chapter 2 we introduce the previous works on 

the evaluation of Semantic Similarity. Chapter 3 

shows three methods used in this task. Chapter 4 

reveals the results of these methods. And conclu-

sion is stated in chapter 5. 

2 Related Work 

For words may have more than one sense, similari-

ty between two words can be determined by the 

best score among all the concept pairs which their 

various senses belong to. 

Before constructed dictionary is built, Lesk 

similarity (Lesk, 1986) which is proposed as a so-

lution for word sense disambiguation is often used 

to evaluating the similarity between two concepts. 

This method calculates the overlap between the 

corresponding definitions as provided by a diction-

ary. 

       (     )  |     (  )       (  )| 

Since the availability of computational lexicons 

such as WordNet, the taxonomy can be represented 

as a hierarchical structure. Then we use the struc-

ture information to evaluate the semantic similarity. 

In these methods, the hierarchical structure is often 

seen as a tree and concepts as the nodes of the tree 

while relations between two concepts as the edges. 

(Resnik, 1995) determines the conceptual simi-

larity of two concepts by calculating the infor-

mation content (IC) of the least common subsumer 

(LCS) of them. 

      (     )    (   (     )) 

where the IC of a concept can be quantified as 

follow: 

  ( )        ( ) 
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This method do not consider the distance of two 

concepts. Any two concepts have the same LCS 

will have the same similarity even if the distances 

between them are different. It is called node-based 

method. 

(Leacock and Chodorow, 1998) develops a simi-

larity measure based on the distance of two senses 

   and   . They focus on hypernymy links and 

scaled the path length by the overall depth   of the 

tree. 

      (     )      
      (     )

   
 

(Wu and Palmer, 1994) combines the depth of 

the LCS of two concepts into a similarity score. 

      (     )  
       (   (     ))

     (  )       (  )
 

These approaches are regarded as edge-based 

methods. They are more natural and direct to eval-

uating semantic similarity in taxonomy. But they 

treat all nodes as the same and do not consider the 

different information of different nodes. 

(Jiang and Conrath, 1998) uses the information 

content of concept instead of its depth. So both 

node and edge information can be considered to 

evaluate the similarity. It performs well in evaluat-

ing semantic similarity between two texts (Zhang 

et al., 2008; Corley and Mihalcea, 2005; Pedersen, 

2010). 

      (     )  
 

  (  )   (  )     (   (     ))
  

SemCor is used in Jiang's work to get the fre-

quency of a word with a specific sense treated by 

the Lagrange Smoothing. 

3 Approaches 

For SemEval-2012 task 4, we use two MRDs and 

one corpus as our knowledge resources. One MRD 

is HIT IR-Lab Tongyici Cilin (Extended) (Cilin) 

and the other is Chinese Concept Dictionary 

(CCD). The corpus we used in our system is Peo-

ple's Daily. Three systems are proposed to evaluate 

the semantic similarity between two Chinese words. 

The first one utilizes both the MRDs called 

MIXCC (Mixture of Cilin and CCD) and other two 

named MIXCD1 (Mixture of Corpus and Diction-

ary) and MIXCD2 respectively combine the infor-

mation derived from both corpus and dictionary 

into the similarity score. A post processing is done 

to trim the similarity of words with the same mean-

ing. 

3.1 Knowledge Resources 

HIT IR-Lab Tongyici Cilin (Extended) is built by 

Harbin Institute of Technology which contained 

77343 word items. Cilin is constructed as a tree 

with five levels. With the increasing of the level, 

word senses are more fine-grained. All word items 

in Cilin are located at the fifth level. The larger 

level the LCS of an item pair has, the closer their 

concepts are. 
Chinese Concept Dictionary (CCD) is a Chinese 

WordNet produced by Peking University. Word 

concepts in it are represented as Synsets and one-

one corresponding to WordNet 1.6. There are 4 

types of hierarchical semantic relations in CCD as 

follows: 

 Synonym: the meanings of two words are 

equivalence 

 Antonym: two synsets contain the words 

with opposite meaning 

 Hypernym and Hyponym: two synsets 

with the IS-A relation 

 Holonym and Meronym: two synsets with 

the IS-PART-OF relation 

Additionally there is another type of semantic 

relation such as Attribute in CCD This relation 

type often happens between two words with differ-

ent part-of-speech. Even though it is not the hierar-

chical relation, this relation type can make two 

words with different POS have a path between 

them. In WordNet it is often shown as a Morpho-

logical transform between two words, while it may 

happen on two different words with closed mean-

ing in CCD. 

The corpus we use in our system is People's 

Daily 2000 from January to June which has been 

manually segmented. 

3.2 MIXCC 

MIXCC utilizes both Cilin and CCD to evaluate 

the semantic similarity of word pair. In this method 

we get the rank in three steps. 

First, we use Cilin to separate the list of word 

pairs into five parts and sort them in descending 

order of LCS's level. The word pairs having the 

same level of LCS will be put in the same part. 
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Second, for each part we compute the similarity 

almost by Jiang and Conrath's method mentioned 

in Section 2 above. Only Synonym and Hypernym-

Hyponym relations of CCD concepts are consid-

ered in this method. So CCD could be constructed 

as a forest. We add a root node which combined 

the forest into a tree to make sure that there is a 

path between any two concepts. 

      (     )     
          (  )
           (  )

      (     ) 

   and    compose a word pair needed to cal-

culate semantic similarity between them.    (  ) is 

the Synset in CCD which contains    (  ).  

Because there is no sense-tagged corpus for 

CCD, the frequency of every word in each concept 

is always 1. 

After       (     )  of all word pairs in the 

same part are calculated, we sort the scores in a 

decreasing order again. Then we get five groups of 

ranked word pairs. 

At last the five groups are combined together as 

the result shown in table 1. 

3.3 MIXCD 

MIXCD combines the information of corpus and 

MRDs to evaluate semantic similarity. 

In this system we use trial data to learn a multiple 

linear regression function. There are two classes of 

features for this study which are derived from CCD 

and People's Daily respectively. One class of fea-

ture is the mutual information of a word pair and 

the other is the shortest path between two concepts 

containing the words of which the similarity need-

ed to be evaluated. 

We consider CCD as a large directed graph. The 

nodes of the graph are Synsets and edges are the 

semantic relations between two Synsets. All five 

types of semantic relation showed in Section 3.1 

will be used to build the graph. 

For each word pair, the shortest path between 

two Synsets which contain the words respectively 

is found. Then the path is represented in two forms. 

In one form we record the vector consisting of 

the counts of every relation type in the path. The 

system using this path's form is called MIXCD0. 

For example the path between "心理学 (psy-

chology)" and "精神病学 (psychiatry)" is repre-

sented as (0, 0, 3, 2, 0). It means that "心理学" and 

"精神病学" are not synonym and the shortest path 

between them contained 3 IS-A relations and 2 IS-

PART-OF relations. 

We suppose that the path's length is a significant 

feature to measure the semantic similarity of a 

word pair. So in the other form the length is added 

into the vector as the first component. And the 

counts of each relation are recorded in proportion 

to the length. This form of path representation is 

used in the submitted system called MIXCD. Then 

the path between "心理学" and "精神病学" is rep-

resented as (5, 0, 0, 0.6, 0.4, 0). 

In both forms, the Synonym feature will be 1 if 

the length of the path is 0. 

The mutual information of all word pairs is cal-

culated via the segmented People's Daily. 

Last we use the result of multiple linear regres-

sion to forecast the similarity of other word pairs 

and get the rank. 

3.4 Post Processing 

The word pair with the same meaning may be con-

sisted of two same words or two different words 

belong to the same concept. It is difficult for both 

systems to separate one from the other. Therefore 

we display a post processing on our systems to 

make sure that the similarity between the same 

words has a larger rank than two different words of 

the same meaning. 

4 Experiments and Results 

We perform our systems on trial data and then use 

Kendall tau Rank Correlation (Kendall, 1995; 

Wessa, 2012) to evaluate the results shown in Ta-

ble 1. The trial data contains 50 word pairs. The 

similarity of each pair is scored by several experts 

and the mean value is regarded as the standard an-

swer to get the manual ranking. 

 
Method Kendall tau 2-sided p value 

MIXCC 0.273469 0.005208 

MIXCD0 0.152653 0.119741 

MIXCD 0.260408 0.007813 

Manual(upper) 0.441633 6.27E-06 

Table 1: Kendall tau Rank Correlation of systems on trial 

 

From Table 1, we can see the tau value of MIX-

CD0 is 0.1526 and MIXCD is 0.2604. MIXCD 

performed notably better than MIXCD0. It shows 

427



that path's length between two words is on an im-

portant position of measuring semantic similarity. 

This feature does improve the similarity result. The 

2-sided p value of MIXCD0 is 0.1197. It is much 

larger than the value of MIXCD which is 0.0078. 

So the ranking result of MIXCD0 is much more 

occasional than result of MIXCD. 

The tau value of MIXCC is 0.2735 and it is 

much smaller than the manual ranking result which 

is 0.4416 seen as the upper bound. It shows that the 

similarity between two words in human's minds 

dose not only depend on their hierarchical relation 

represented in Dictionary. But the value is larger 

than that of MIXCD. It seems that the mutual in-

formation derived from corpus which is expected 

to improve the result reduces the correction of rank 

result contrarily. There may be two reasons on it. 

First, because of the use of trial data in MIXCD, 

the result of similarity ranking strongly depended 

on this data. The reliability of trial data's ranking 

may influent the performance of our system. We 

calculate the tau value between every manual and 

the correct ranking. The least tau value is 0.4416 

and the largest one is 0.8220 with a large disparity. 

We use the Fleiss' kappa value (Fleiss, 1971) to 

evaluate the agreement of manual ranking and the 

result is 0.1526 which showed the significant disa-

greement. This disagreement may make the regres-

sion result cannot show the relation between 

features and score correctly. To reduce the disa-

greement's influence we calculate the mean of 

manual similarity score omitting the maximum and 

minimum ones and get a new standard rank (trial2). 

Then we perform MIXCD on trail2 and show the 

new result as MIXCD-2 in Form 2. MIXCC's re-

sult is also compared with trail2 shown as MIXCC-

2. 
 

 MIXCC-2 MIXCD-2 MIXCC MIXCD 

Kendall tau 0.297959 0.265306 0.273469 0.260408 

Table 2: tau value on new standard (omit max/min manual 

scores) 

 

From Table 2 we can see the tau values of 

MIXCC rose to 0.2980 and MIXCD to 0.2653. It 

shows that omitting the maximum and minimum 

manual scores can reduce some influence of the 

disagreement of artificial scoring.  

Second, the combination method of mutual in-

formation and semantic path in MRD may also 

influent the performance of our system. The ranks 

between MIXCD and MIXCC are also compared 

and the tau value is 0.2065. It shows a low agree-

ment of semantic similarity measurements between 

MRD and Corpus. The mutual information exerts a 

large influence on the measure of similarity and 

sometimes may bring the noise to the result mak-

ing it worse. 

We also perform our systems on test data con-

taining 297 words pairs in the same form of trial 

data and got the follow result: 
 

Method Kendall tau 

MIXCC 0.050 

MIXCD0 -0.064 

MIXCD 0.040 

Table 3 tau values of the result of test data 

 

The ranking on test data of our systems shows 

an even worse result. Because of the low confi-

dence of trial data ranking, multiple linear regres-

sion function learning from the trial data performs 

bad on other word pairs. 

5 Conclusion 

In this paper we propose three methods to evaluate 

the semantic similarity of Chinese word pairs. The 

first one uses MRDs and the second one adds the 

information derived from corpus. The third one 

uses the same knowledge resources as the second 

one but highlights the path length of the word pair. 

The results of the systems show a large difference 

and all have a low score. From the results we can 

see the similarity showed in corpus is much differ-

ent from the one expressed in MRD. One reason of 

the low score is that the manual rank given by the 

task has a low agreement among them. We get a 

new manual rank which reduces some influence of 

disagreement by calculating the mean value of 

scores omitting the maximum and minimum ones. 

Comparing the result of our systems with the new 

ranking, all of them get a higher tau value. 
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Abstract 

This paper presents our system participated on 
SemEval-2012 task: Chinese Semantic De-
pendency Parsing. Our system extends the 
second-order MST model by adding two 
third-order features. The two third-order fea-
tures are grand-sibling and tri-sibling. In the 
decoding phase, we keep the k best results for 
each span. After using the selected third-order 
features, our system presently achieves LAS 
of 61.58% ignoring punctuation tokens which 
is 0.15% higher than the result of purely 
second-order model on the test dataset. 

1 Introduction 

Recently, semantic role labeling (SRL) has been a 
hot research topic. CoNLL shared tasks for joint 
parsing for syntactic and semantic dependencies 
both in the year 2008 and 2009, cf. (Surdeanu et al., 
2008; Hajič et al., 2009; Bohnet, 2009). Same 
shared tasks in SemEval-2007 (Sameer S., 2007). 
The SRL is traditionally implemented as two sub-
tasks, argument identification and classification. 
However, there are some problems for the seman-
tic representation method used by the semantic role 
labeling. For example, the SRL only considers the 
predicate-argument relations and ignores the rela-
tions between a noun and its modifier, the meaning 
of semantic roles is related with special predicates. 

In order to overcome those problems, semantic 
dependency parsing (SDP) is introduced. Semantic 
dependencies express semantic links between pre-
dicates and arguments and represent relations be-
tween entities and events in text. The SDP is a kind 
of dependency parsing, and its task is to build a 
dependency structure for an input sentence and to 
label the semantic relation between a word and its 
head. However, semantic relations are different 
from syntactic relations, such as position indepen-
dent. Table 1 shows the position independent of 
semantic relations for the sentence XiaoMing hit 
XiaoBai with a book today.  

Today, XiaoMing hit XiaoBai with a book. 
XiaoBai was hit by XiaoMing today with a book. 
With a book, XiaoMing hit XiaoBai today. 
XiaoMing hit XiaoBai with a book today. 

Table 1: An example position dependency 

   Although semantic relations are different from 
syntactic relations, yet they are identical in the de-
pendency tree. That means the methods used in 
syntactic dependency parsing can also be applied 
in SDP. 
    Two main approaches to syntactic dependency 
paring are Maximum Spanning Tree (MST) based 
dependency parsing and Transition based depen-
dency parsing (Eisner, 1996; Nivre et al., 2004; 
McDonald and Pereira, 2006). The main idea of 
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MSTParser is to take dependency parsing as a 
problem of searching a maximum spanning tree 
(MST) in a directed graph (Dependency Tree). We 
see MSTParser a better chance to improve the 
parsing speed and MSTParser provides the state-
of-the-art performance for both projective and non-
projective tree banks. For the reasons above, we 
choose MSTParser as our SemEval-2012 shared 
task participating system basic framework. 

2 System Architecture  

Our parser is based on the projective MSTParser 
using all the features described by (McDonald et 
al., 2006) as well as some third-order features de-
scribed in the following sections. Semantic depen-
dency paring is introduced in Section 3. We 
explain the reasons why we choose projective 
MSTParser in Section 4 which also contains the 
experiment result analysis in various conditions. 
Section 5 gives our conclusion and future work. 

3 Semantic Dependency parsers 

3.1 First-Order Model 

Dependency tree parsing as the search for the max-
imum spanning tree in a directed graph was pro-
posed by McDonald et al. (2005c). This 
formulation leads to efficient parsing algorithms 
for both projective and non-projective dependency 
trees with the Eisner algorithm (Eisner, 1996) and 
the Chu-Liu-Edmonds algorithm (Chu and Liu, 
1965; Edmonds, 1967) respectively. The formula-
tion works by defining in McDonald et al (2005a). 
The score of a dependency tree y for sentence x is 

( )
( , )

, ( , ) ( , )
i j y

s x y s i j w f i j
∈

= = ⋅∑ ∑
 

f(i, j) is a multidimensional feature vector repre-
sentation of the edge from node i to node j. We set 
the value of f(i, j) as 1 if there an edge from node i 
to node j. w is the corresponding weight vector 
between the two nodes that will be learned during 
training. Hence, finding a dependency tree with 
highest score is equivalent to finding a maximum 
spanning tree. Obviously, the scores are restricted 
to a single edge in the dependency tree, thus we 
call this first-order dependency parsing. This is a 
standard linear classifier. The features used in the 
first-order dependency parser are based on those 

listed in (Johansson, 2008). Table 2 shows the fea-
tures we choose in the first-order parsing. We use 
some shorthand notations in order to simplify the 
feature representations: h is the abbreviation for 
head, d for dependent, s for nearby nodes (may not 
be siblings), f for form, le for the lemmas, pos for 
part-of-speech tags, dir for direction, dis for dis-
tance, ‘+1’ and ‘-1’ for right and left position re-
spectively. Additional features are built by adding 
the direction and the distance plus the direction. 
The direction is left if the dependent is left to its 
head otherwise right. The distance is the number of 
words minus one between the head and the depen-
dent in a certain sentence, if ≤ 5, 5 if > 5, 10 if > 
10. ◎ means  that previous part is built once and 
the additional part follow ◎ together with the pre-
vious part is built again.  

Head and Dependent 
h-f, h-l, d-pos ◎dir(h, d) ◎dis(h, d) 
h-l, h-pos, d-f ◎dir(h, d) ◎dis(h, d) 
h-pos, h-f, d-l ◎dir(h, d) ◎dis(h, d) 
h-f, d-l, d-pos ◎dir(h, d)  ◎dis(h, d) 
h-f, d-f, d-l  ◎dir(h, d) ◎dis(h, d) 
h-f, h-l, d-f, d-l  ◎dir(h, d) ◎dis(h, d) 
h-f, h-l, d-f, d-pos ◎dir(h, d) ◎dis(h, d) 
h-f, h-pos, d-f, d-pos ◎dir(h, d) ◎dis(h, d) 
h-l, h-pos, d-l, d-pos ◎dir(h, d) ◎dis(h, d) 
Dependent and Nearby 
d-pos-1, d-pos, s-pos ◎dir(d, s) ◎dis(d, s) 
d-pos-1, s-pos, s-pos+1 ◎dir(d, s) ◎dis(d, s) 
d-pos-1, d-pos, s-pos+1 ◎dir(d, s) ◎dis(d, s) 
d-pos, s-pos, s-pos+1 ◎dir(d, s) ◎dis(d, s) 
d-pos, d-pos+1, s-pos-1 ◎dir(d, s) ◎dis(d, s) 
d-pos-1, d-pos, s-pos-1 ◎dir(d, s) ◎dis(d, s) 
d-pos, d-pos+1, s-pos ◎dir(d, s) ◎dis(d, s) 
d-pos, s-pos-1, s-pos ◎dir(d, s) ◎dis(d, s) 
d-pos+1, s-pos-1, s-pos ◎dir(d, s) ◎dis(d, s) 
d-pos-1, d-pos, s-pos-1, s-pos ◎ dir(d, s) ◎
dis(d, s) 
d-pos, d-pos+1, s-pos-1, s-pos ◎dir(d, s) ◎
dis(d, s) 
d-pos-1, d-pos, s-pos, s-pos+1 ◎dir(d, s) ◎
dis(d, s) 

Table 2: Selected features in first order parsing 
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3.2 Second-Order Model 

A second order model proposed by McDonald 
(McDonald and Pereira, 2006) alleviates some of 
the first order factorization limitations. Because the 
first order parsing restricts scores to a single edge 
in a dependency tree, the procedure is sufficient. 
However, in the second order parsing scenario 
where more than one edge are considered by the 
parsing algorithm, combinations of two edges 
might be more accurate which will be described in 
the Section 4. The second-order parsing can be 
defined as below: 

( )
( , )

, ( , , )
i j y

s x y s i k j
∈

= ∑  

where k and j are adjacent,  same-side children of i 
in the tree y. The shortcoming of this definition is 
that it restricts i on the same side of its sibling. In 
our system, we extend this restriction by adding 
the feature that as long as i is another child of k or j. 
In that case, i may be the child or grandchild of k 
or j which is shown in Figure 1. 

k  i  j ， k  i j
 

Figure 1: Sibling and grand-child relations. 

Siblings 
c1-pos, c2-pos◎dir(c1, c2)◎dis(c1, c2) 
c1-f, c2-f◎dir(c1, c2) 
c1-f, c2-pos◎dir(c1, c2) 
c1-pos, c2-f◎dir(c1, c2) 
Parent and Two Children 
p-pos, c1-pos, c2-pos◎dir(c1, c2)◎dis(c1, c2) 
p-f, c1-pos, c2-pos◎dir(c1, c2)◎dis(c1, c2) 
p-f, c1-f, c2-pos◎dir(c1, c2) ◎dis(c1, c2) 
p-f, c1-f, c2-f ◎dir(c1, c2) ◎dis(c1, c2) 
p-pos, c1-f, c2-f◎dir(c1, c2) ◎dis(c1, c2) 
p-pos, c1-f, c2-pos◎dir(c1, c2) ◎dis(c1, c2) 
p-pos, c1-pos, c2-f◎dir(c1, c2) ◎dis(c1, c2) 

Table 3: Selected features in second-order parsing 

   Shorthand notations are almost the same with the 
Section 3.1 except for that we use c1 and c2 to 
represent the two children and p for parent. In 

second-order parsing， the features selected are 
shown in Table 3. We divide the dependency dis-
tance into six parts which are 1 if > 1, 2 if > 2, … , 
5 if  > 5, 10 if > 10. 

3.3 Third-Order Features 

The order of parsing is defined according to the 
number of dependencies it contains (Koo and Col-
lins, 2010). Collins classifies the third-order as two 
models, Model 1 is all grand-siblings, and Model 2 
is grand-siblings and tri-siblings. A grand-sibling 
is a 4-tuple of indices (g, h, m, s) where g is grand-
father. (h, m, s) is a sibling part and (g, h, m) is a 
grandchild part as well as (g, h, s). A tri-sibling 
part is also a 4-tuple of indices (h, m, s, t). Both (h, 
m, s) and (h, s, t) are siblings. Figure 2 clearly 
shows these relations. 

g h  s  m ，h t  s m  
Figure 2: Grand-siblings and tri-siblings dependency. 

   Collins and Koo implement an efficient third-
order dependency parsing algorithm, but still time 
consuming compared with the second-order 
(McDonald, 2006). For that reason, we only add 
third-order relation features into our system instead 
of implementing the third-order dependency pars-
ing model. These features shown in Table 4 are 
grand-sibling and tri-sibling described above. 
Shorthand notations are almost the same with the 
Section 3.1 and 3.2 except that we use c3 for the 
third sibling and g represent the grandfather. We 
attempt to add features of words form and parts-of-
speech as well as directions into our system, which 
is used both in first-order and second-order as fea-
tures, but result shows that these decrease the sys-
tem performance. 

Tri-Sibling 
c1-pos, c2-pos, c3-pos◎dir(c1, c2) 
Grandfather and Two Children 
g-pos, c1-pos, c2-pos◎dir(c1, c2) 
g-pos, p-pos, c1-pos, c2-pos◎dir(c1, c2) 

Table 4: Third-order features. 
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4 Experiment result analysis 

As we all know that projective dependency parsing 
using edge based factorization can be processed by 
the Einster algorithm (Einster, 1996). The corpus 
given by SemEval-2012 is consists of 10000 sen-
tences converting into dependency structures from 
Chinese Penn Treebank randomly. We find that 
none of non-projective sentence existing by testing 
the 8301 sentences in training data. For this reason, 
we set the MSTParser into projective parsing mode. 
    We perform a number of experiments where we 
compare the first-order, second-order and second-
order by adding third-order features proposed in 
the previous sections. We train the model on the 
full training set which contains 8301 sentences to-
tally. We use 10 training iterations and projective 
decoding in the experiments. Experimental results 
show that 10 training iterations are better than oth-
ers. After adjusting the features of third-order, our 
best result reaches the labeled attachment score of 
62.48% on the developing dataset which ignores 
punctuation. We submitted our currently best result 
to SemEval-2012 which is 61.58% on the test data-
set. The results in Table 5 show that by adding 
third-order features to second-order model, we im-
prove the dependency parsing accuracies by 1.21% 
comparing to first-order model and 0.15% compar-
ing to second-order model. 

Models LAS UAS 
First-Order 61.26 80.18 
Second-Order 62.33 81.40 
Second-Order+ 62.48 81.43 

Table 5: Experimental results. Second-Order+ means 
second-order model by adding third-order features. 
Results are tested under the developping dataset which 
contains the heads and semantic relations given by 
organizer. 

5 Conclusion and Future Work  
In this paper, we have presented the semantic de-
pendency parsing and shown it works on the first-
order model, second-order model and second-order 
model by adding third-order features. Our experi-
mental results show more significant improve-
ments than the conventional approaches of third-
order model. 

In the future, we firstly plan to implement the 
third-order model by adding higher-order features, 

such as forth-order features. We have found that 
both in the first-order and second-order model of 
MSTParser, words form and lemmas are recog-
nized as two different features. These features are 
essential in languages that have different grid, 
however, which are the same in Chinese in the giv-
en dataset. Things are the same in POS (part-of-
speech tags) and CPOS (fine-grid POS) which are 
viewed as different features. For the applications of 
syntactic and semantic parsing, the parsing time 
and memory footprint are very important. There-
fore, secondly, we decide to remove these repeated 
features in order to reduce to training time as well 
as the space if it does not lower the system perfor-
mance.  
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Abstract

We present the UKP system which performed
best in the Semantic Textual Similarity (STS)
task at SemEval-2012 in two out of three met-
rics. It uses a simple log-linear regression
model, trained on the training data, to combine
multiple text similarity measures of varying
complexity. These range from simple char-
acter and word n-grams and common sub-
sequences to complex features such as Ex-
plicit Semantic Analysis vector comparisons
and aggregation of word similarity based on
lexical-semantic resources. Further, we em-
ploy a lexical substitution system and statisti-
cal machine translation to add additional lex-
emes, which alleviates lexical gaps. Our final
models, one per dataset, consist of a log-linear
combination of about 20 features, out of the
possible 300+ features implemented.

1 Introduction

The goal of the pilot Semantic Textual Similarity
(STS) task at SemEval-2012 is to measure the de-
gree of semantic equivalence between pairs of sen-
tences. STS is fundamental to a variety of tasks
and applications such as question answering (Lin
and Pantel, 2001), text reuse detection (Clough et
al., 2002) or automatic essay grading (Attali and
Burstein, 2006). STS is also closely related to tex-
tual entailment (TE) (Dagan et al., 2006) and para-
phrase recognition (Dolan et al., 2004). It differs
from both tasks, though, insofar as those operate on
binary similarity decisions while STS is defined as
a graded notion of similarity. STS further requires a
bidirectional similarity relationship to hold between

a pair of sentences rather than a unidirectional en-
tailment relation as for the TE task.

A multitude of measures for computing similar-
ity between texts have been proposed in the past
based on surface-level and/or semantic content fea-
tures (Mihalcea et al., 2006; Landauer et al., 1998;
Gabrilovich and Markovitch, 2007). The exist-
ing measures exhibit two major limitations, though:
Firstly, measures are typically used in separation.
Thereby, the assumption is made that a single
measure inherently captures all text characteristics
which are necessary for computing similarity. Sec-
ondly, existing measures typically exclude similar-
ity features beyond content per se, thereby implying
that similarity can be computed by comparing text
content exclusively, leaving out any other text char-
acteristics. While we can only briefly tackle the sec-
ond issue here, we explicitly address the first one by
combining several measures using a supervised ma-
chine learning approach. With this, we hope to take
advantage of the different facets and intuitions that
are captured in the single measures.

In the following section, we describe the feature
space in detail. Section 3 describes the machine
learning setup. After describing our submitted runs,
we discuss the results and conclude.

2 Text Similarity Measures

We now describe the various features we have tried,
also listing features that did not prove useful.

2.1 Simple String-based Measures

String Similarity Measures These measures op-
erate on string sequences. The longest common
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substring measure (Gusfield, 1997) compares the
length of the longest contiguous sequence of char-
acters. The longest common subsequence measure
(Allison and Dix, 1986) drops the contiguity re-
quirement and allows to detect similarity in case
of word insertions/deletions. Greedy String Tiling
(Wise, 1996) allows to deal with reordered text parts
as it determines a set of shared contiguous sub-
strings, whereby each substring is a match of maxi-
mal length. We further used the following measures,
which, however, did not make it into the final mod-
els, since they were subsumed by the other mea-
sures: Jaro (1989), Jaro-Winkler (Winkler, 1990),
Monge and Elkan (1997), and Levenshtein (1966).

Character/word n-grams We compare character
n-grams following the implementation by Barrón-
Cedeño et al. (2010), thereby generalizing the orig-
inal trigram variant to n = 2, 3, . . . , 15. We also
compare word n-grams using the Jaccard coefficient
as previously done by Lyon et al. (2001), and the
containment measure (Broder, 1997). As high n led
to instabilities of the classifier due to their high in-
tercorrelation, only n = 1, 2, 3, 4 was used.

2.2 Semantic Similarity Measures
Pairwise Word Similarity The measures for
computing word similarity on a semantic level op-
erate on a graph-based representation of words and
the semantic relations among them within a lexical-
semantic resource. For this system, we used the al-
gorithms by Jiang and Conrath (1997), Lin (1998a),
and Resnik (1995) on WordNet (Fellbaum, 1998).

In order to scale the resulting pairwise word sim-
ilarities to the text level, we applied the aggregation
strategy by Mihalcea et al. (2006): The sum of the
idf -weighted similarity scores of each word with the
best-matching counterpart in the other text is com-
puted in both directions, then averaged. In our ex-
periments, the measure by Resnik (1995) proved to
be superior to the other measures and was used in all
word similarity settings throughout this paper.

Explicit Semantic Analysis We also used the vec-
tor space model Explicit Semantic Analysis (ESA)
(Gabrilovich and Markovitch, 2007). Besides Word-
Net, we used two additional lexical-semantic re-
sources for the construction of the ESA vector space:
Wikipedia and Wiktionary1.

Textual Entailment We experimented with using
the BIUTEE textual entailment system (Stern and
Dagan, 2011) for generating entailment scores to
serve as features for the classifier. However, these
features were not selected by the classifier.

Distributional Thesaurus We used similarities
from a Distributional Thesaurus (similar to Lin
(1998b)) computed on 10M dependency-parsed sen-
tences of English newswire as a source for pairwise
word similarity, one additional feature per POS tag.
However, only the feature based on cardinal num-
bers (CD) was selected in the final models.

2.3 Text Expansion Mechanisms

Lexical Substitution System We used the lexical
substitution system based on supervised word sense
disambiguation (Biemann, 2012). This system au-
tomatically provides substitutions for a set of about
1,000 frequent English nouns with high precision.
For each covered noun, we added the substitutions
to the text and computed the pairwise word similar-
ity for the texts as described above. This feature al-
leviates the lexical gap for a subset of words.

Statistical Machine Translation We used the
Moses SMT system (Koehn et al., 2007) to trans-
late the original English texts via three bridge lan-
guages (Dutch, German, Spanish) back to English.
Thereby, the idea was that in the translation pro-
cess additional lexemes are introduced which allevi-
ate potential lexical gaps. The system was trained on
Europarl made available by Koehn (2005), using the
following configuration which was not optimized for
this task: WMT112 baseline without tuning, with
MGIZA alignment. The largest improvement was
reached for computing pairwise word similarity (as
described above) on the concatenation of the origi-
nal text and the three back-translations.

2.4 Measures Related to Structure and Style

In our system, we also used measures which go
beyond content and capture similarity along the
structure and style dimensions inherent to texts.
However, as we report later on, for this content-

1www.wiktionary.org
20-5-grams, grow-diag-final-and alignment, msd-bidirec-

tional-fe reodering, interpolation and kndiscount
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oriented task they were not selected by the classifier.
Nonetheless, we briefly list them for completeness.

Structural similarity between texts can be de-
tected by computing stopword n-grams (Sta-
matatos, 2011). Thereby, all content-bearing words
are removed while stopwords are preserved. Stop-
word n-grams of both texts are compared using the
containment measure (Broder, 1997). In our experi-
ments, we tested n-gram sizes for n = 2, 3, . . . , 10.

We also compute part-of-speech n-grams for
various POS tags which we then compare using the
containment measure and the Jaccard coefficient.

We also used two similarity measures between
pairs of words (Hatzivassiloglou et al., 1999): Word
pair order tells whether two words occur in the
same order in both texts (with any number of words
in between), word pair distance counts the number
of words which lie between those of a given pair.

To compare texts along the stylistic dimension,
we further use a function word frequencies mea-
sure (Dinu and Popescu, 2009) which operates on a
set of 70 function words identified by Mosteller and
Wallace (1964). Function word frequency vectors
are computed and compared by Pearson correlation.

We also include a number of measures which
capture statistical properties of texts, such as type-
token ratio (TTR) (Templin, 1957) and sequential
TTR (McCarthy and Jarvis, 2010).

3 System Description

We first run each of the similarity measures intro-
duced above separately. We then use the resulting
scores as features for a machine learning classifier.

Pre-processing Our system is based on DKPro3,
a collection of software components for natural
language processing built upon the Apache UIMA
framework. During the pre-processing phase, we to-
kenize the input texts and lemmatize using the Tree-
Tagger implementation (Schmid, 1994). For some
measures, we additionally apply a stopword filter.

Feature Generation We now compute similarity
scores for the input texts with all measures and for
all configurations introduced in Section 2. This re-
sulted in 300+ individual score vectors which served
as features for the following step.

3http://dkpro-core-asl.googlecode.com

Run Features

1 Greedy String Tiling
Longest common subsequence (2 normalizations)
Longest common substring
Character 2-, 3-, and 4-grams
Word 1- and 2-grams (Containment, w/o stopwords)
Word 1-, 3-, and 4-grams (Jaccard)
Word 2- and 4-grams (Jaccard, w/o stopwords)
Word Similarity (Resnik (1995) on WordNet

aggregated according to Mihalcea et al. (2006);
2 variants: complete texts + difference only)

Explicit Semantic Analysis (Wikipedia, Wiktionary)
Distributional Thesaurus (POS: Cardinal numbers)

2 All Features of Run 1
Lexical Substitution for Word Sim. (complete texts)
SMT for Word Sim. (complete texts as above)

3 All Features of Run 2
Random numbers from [4.5, 5] for surprise datasets

Table 1: Feature sets of our three system configurations

Feature Combination The feature combination
step uses the pre-computed similarity scores, and
combines their log-transformed values using a linear
regression classifier from the WEKA toolkit (Hall et
al., 2009). We trained the classifier on the training
datasets of the STS task. During the development
cycle, we evaluated using 10-fold cross-validation.

Post-processing For Runs 2 and 3, we applied a
post-processing filter which stripped all characters
off the texts which are not in the character range
[a-zA-Z0-9]. If the texts match, we set their similar-
ity score to 5.0 regardless of the classifier’s output.

4 Submitted Runs

Run 1 During the development cycle, we identi-
fied 19 features (see Table 1) which achieved the
best performance on the training data. For each
of the known datasets, we trained a separate clas-
sifier and applied it to the test data. For the surprise
datasets, we trained the classifier on a joint dataset
of all known training datasets.

Run 2 For the Run 2, we were interested in the
effects of two additional features: lexical substitu-
tion and statistical machine translation. We added
the corresponding measures to the feature set of Run
1 and followed the same evaluation procedure.

Run 3 For the third run, we used the same feature
set as for Run 2, but returned random numbers from
[4.5, 5] for the sentence pairs in the surprise datasets.
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Dim. Text Similarity Features PAR VID SE

Best Feature Set, Run 1 .711 .868 .735
Best Feature Set, Run 2 .724 .868 .742

Content Pairwise Word Similarity .564 .835 .527
Character n-grams .658 .771 .554
Explicit Semantic Analysis .427 .781 .619
Word n-grams .474 .782 .619
String Similarity .593 .677 .744
Distributional Thesaurus .494 .481 .365
Lexical Substitution .228 .554 .483
Statistical Machine Translation .287 .652 .516

Structure Part-of-speech n-grams .193 .265 .557
Stopword n-grams .211 .118 .379
Word Pair Order .104 .077 .295

Style Statistical Properties .168 .225 .325
Function Word Frequencies .179 .142 .189

Table 2: Best results for single measures, grouped by di-
mension, on the training datasets MSRpar, MSRvid, and
SMTeuroparl, using 10-fold cross-validation

5 Results on Training Data

Evaluation was carried out using the official scorer
which computes Pearson correlation of the human
rated similarity scores with the the system’s output.

In Table 2, we report the results achieved on
each of the training datasets using 10-fold cross-
validation. The best results were achieved for the
feature set of Run 2, with Pearson’s r = .724,
r = .868, and r = .742 for the datasets MSR-
par, MSRvid, and SMTeuroparl, respectively. While
individual classes of content similarity measures
achieved good results, a different class performed
best for each dataset. However, text similarity mea-
sures related to structure and style achieved only
poor results on the training data. This was to be ex-
pected due to the nature of the data, though.

6 Results on Test Data

Besides the Pearson correlation for the union of all
datasets (ALL), the organizers introduced two addi-
tional evaluation metrics after system submission:
ALLnrm computes Pearson correlation after the sys-
tem outputs for each dataset are fitted to the gold
standard using least squares, and Mean refers to the
weighted mean across all datasets, where the weight
depends on the number of pairs in each dataset.

In Table 3, we report the offical results achieved
on the test data. The best configuration of our system
was Run 2 which was ranked #1 for the evaluation

#1 #2 #3 Sys. r1 r2 r3 PAR VID SE WN SN

1 2 1 UKP2 .823 .857 .677 .683 .873 .528 .664 .493
2 3 5 TL .813 .856 .660 .698 .862 .361 .704 .468
3 1 2 TL .813 .863 .675 .734 .880 .477 .679 .398
4 4 4 UKP1 .811 .855 .670 .682 .870 .511 .664 .467
5 6 13 UNT .784 .844 .616 .535 .875 .420 .671 .403
...

...
...

...
...

...
...

...
...

...
...

...

87 85 70 B/L .311 .673 .435 .433 .299 .454 .586 .390

Table 3: Official results on the test data for the top 5
participating runs out of 89 which were achieved on the
known datasets MSRpar, MSRvid, and SMTeuroparl, as
well as on the surprise datasets OnWN and SMTnews. We
report the ranks (#1: ALL, #2: ALLnrm, #3: Mean) and
the corresponding Pearson correlation r according to the
three offical evaluation metrics (see Sec. 6). The provided
baseline is shown at the bottom of this table.

metrics ALL (r = .823)4 and Mean (r = .677), and
#2 for ALLnrm (r = .857). An exhaustive overview
of all participating systems can be found in the STS
task description (Agirre et al., 2012).

7 Conclusions and Future Work

In this paper, we presented the UKP system, which
performed best across the three official evaluation
metrics in the pilot Semantic Textual Similarity
(STS) task at SemEval-2012. While we did not
reach the highest scores on any of the single datasets,
our system was most robust across different data. In
future work, it would be interesting to inspect the
performance of a system that combines the output
of all participating systems in a single linear model.

We also propose that two major issues with the
datasets are tackled in future work: (a) It is unclear
how to judge similarity between pairs of texts which
contain contextual references such as on Monday
vs. after the Thanksgiving weekend. (b) For several
pairs, it is unclear what point of view to take, e.g. for
the pair An animal is eating / The animal is hopping.
Is the pair to be considered similar (an animal is do-
ing something) or rather not (eating vs. hopping)?

Acknowledgements This work has been sup-
ported by the Volkswagen Foundation as part of the
Lichtenberg-Professorship Program under grant No.
I/82806, and by the Klaus Tschira Foundation under
project No. 00.133.2008.

499% confidence interval: .807 ≤ r ≤ .837
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Abstract

This paper describes the two systems for
determining the semantic similarity of short
texts submitted to the SemEval 2012 Task 6.
Most of the research on semantic similarity
of textual content focuses on large documents.
However, a fair amount of information is con-
densed into short text snippets such as social
media posts, image captions, and scientific ab-
stracts. We predict the human ratings of sen-
tence similarity using a support vector regres-
sion model with multiple features measuring
word-overlap similarity and syntax similarity.
Out of 89 systems submitted, our two systems
ranked in the top 5, for the three overall eval-
uation metrics used (overall Pearson – 2nd
and 3rd, normalized Pearson – 1st and 3rd,
weighted mean – 2nd and 5th).

1 Introduction

Natural language processing tasks such as text clas-
sification (Sebastiani, 2002), text summarization
(Lin and Hovy, 2003; Aliguliyev, 2009), informa-
tion retrieval (Park et al., 2005), and word sense dis-
ambiguation (Schütze, 1998) rely on a measure of
semantic similarity of textual documents. Research
predominantly focused either on the document sim-
ilarity (Salton et al., 1975; Maguitman et al., 2005)
or the word similarity (Budanitsky and Hirst, 2006;
Agirre et al., 2009). Evaluating the similarity of
short texts such as sentences or paragraphs (Islam
and Inkpen, 2008; Mihalcea et al., 2006; Oliva et
al., 2011) received less attention from the research
community. The task of recognizing paraphrases

(Michel et al., 2011; Socher et al., 2011; Wan et
al., 2006) is sufficiently similar to reuse some of the
techniques.

This paper presents the two systems for auto-
mated measuring of semantic similarity of short
texts which we submitted to the SemEval-2012 Se-
mantic Text Similarity Task (Agirre et al., 2012). We
propose several sentence similarity measures built
upon knowledge-based and corpus-based similarity
of individual words as well as similarity of depen-
dency parses. Our two systems, simple and syn-
tax, use supervised machine learning, more specif-
ically the support vector regression (SVR), to com-
bine a large amount of features computed from pairs
of sentences. The two systems differ in the set of
features they employ.

Our systems placed in the top 5 (out of 89 sub-
mitted systems) for all three aggregate correlation
measures: 2nd (syntax) and 3rd (simple) for overall
Pearson, 1st (simple) and 3rd (syntax) for normal-
ized Pearson, and 2nd (simple) and 5th (syntax) for
weighted mean.

The rest of the paper is structured as follows. In
Section 2 we describe both knowledge-based and
corpus-based word similarity measures. In Section
3 we describe in detail the features used by our sys-
tems. In Section 4 we report the experimental results
cross-validated on the development set as well as the
official results on all test sets. Conclusions and ideas
for future work are given in Section 5.

2 Word Similarity Measures

Approaches to determining semantic similarity of
sentences commonly use measures of semantic sim-
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ilarity between individual words. Our systems use
the knowledge-based and the corpus-based (i.e., dis-
tributional lexical semantics) approaches, both of
which are commonly used to measure the semantic
similarity of words.

2.1 Knowledge-based Word Similarity
Knowledge-based word similarity approaches rely
on a semantic network of words, such as Word-
Net. Given two words, their similarity can be esti-
mated by considering their relative positions within
the knowledge base hierarchy.

All of our knowledge-based word similarity mea-
sures are based on WordNet. Some measures use
the concept of a lowest common subsumer (LCS)
of concepts c1 and c2, which represents the lowest
node in the WordNet hierarchy that is a hypernym
of both c1 and c2. We use the NLTK library (Bird,
2006) to compute the PathLen similarity (Leacock
and Chodorow, 1998) and Lin similarity (Lin, 1998)
measures. A single word often denotes several con-
cepts, depending on its context. In order to compute
the similarity score for a pair of words, we take the
maximum similarity score over all possible pairs of
concepts (i.e., WordNet synsets).

2.2 Corpus-based Word Similarity
Distributional lexical semantics models determine
the meaning of a word through the set of all con-
texts in which the word appears. Consequently, we
can model the meaning of a word using its distribu-
tion over all contexts. In the distributional model,
deriving the semantic similarity between two words
corresponds to comparing these distributions. While
many different models of distributional semantics
exist, we employ latent semantic analysis (LSA)
(Turney and Pantel, 2010) over a large corpus to es-
timate the distributions.

For each word wi, we compute a vector xi using
the truncated singular value decomposition (SVD)
of a tf-idf weighted term-document matrix. The co-
sine similarity of vectors xi and xj estimates the
similarity of the corresponding words wi and wj .

Two different word-vector mappings were com-
puted by processing the New York Times Annotated
Corpus (NYT) (Sandhaus, 2008) and Wikipedia.
Aside from lowercasing the documents and remov-
ing punctuation, we perform no further preprocess-

Table 1: Evaluation of word similarity measures

Measure ws353 ws353-sim ws353-rel

PathLen 0.29 0.61 -0.05
Lin 0.33 0.64 -0.01
Dist (NYT) 0.50 0.50 0.51
Dist (Wikipedia) 0.62 0.66 0.55

ing (e.g., no stopwords removal or stemming). Upon
removing the words not occurring in at least two
documents, we compute the tf-idf. The word vec-
tors extracted from NYT corpus and Wikipedia have
a dimension of 200 and 500, respectively.

We compared the measures by computing the
Spearman correlation coefficient on the Word-
Sim3531 data set, as well as its similarity and re-
latedness subsets described in (Agirre et al., 2009).
Table 1 provides the results of the comparison.

3 Semantic Similarity of Sentences

Our systems use supervised regression with SVR as
a learning model, where each system exploits differ-
ent feature sets and SVR hyperparameters.

3.1 Preprocessing

We list all of the preprocessing steps our systems
perform. If a preprocessing step is executed by only
one of our systems, the system’s name is indicated
in parentheses.

1. All hyphens and slashes are removed;
2. The angular brackets (< and >) that enclose the

tokens are stripped (simple);
3. The currency values are simplified, e.g.,

$US1234 to $1234 (simple);
4. Words are tokenized using the Penn Treebank

compatible tokenizer;
5. The tokens n’t and ’m are replaced with not and

am, respectively (simple);
6. The two consecutive words in one sentence that

appear as a compound in the other sentence are
replaced by the said compound. E.g., cater pil-
lar in one sentence is replaced with caterpil-
lar only if caterpillar appears in the other sen-
tence;

1http://www.cs.technion.ac.il/˜gabr/
resources/data/wordsim353/wordsim353.html
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7. Words are POS-tagged using Penn Treebank
compatible POS-taggers: NLTK (Bird, 2006)
for simple, and OpenNLP2 for syntax;

8. Stopwords are removed using a list of 36 stop-
words (simple).

While we acknowledge that some of the prepro-
cessing steps we take may not be common, we did
not have the time to determine the influence of each
individual preprocessing step on the results to either
warrant their removal or justify their presence.

Since, for example, sub-par, sub par and subpar
are treated as equal after preprocessing, we believe it
makes our systems more robust to inputs containing
small orthographic differences.

3.2 Ngram Overlap Features

We use many features previously seen in paraphrase
classification (Michel et al., 2011). Several features
are based on the unigram, bigram, and trigram over-
lap. Before computing the overlap scores, we re-
move punctuation and lowercase the words. We con-
tinue with a detailed description of each individual
feature.

Ngram Overlap
Let S1 and S2 be the sets of consecutive ngrams

(e.g., bigrams) in the first and the second sentence,
respectively. The ngram overlap is defined as fol-
lows:

ngo(S1, S2) = 2 ·
(
|S1|

|S1 ∩ S2|
+

|S2|
|S1 ∩ S2|

)−1

(1)
The ngram overlap is the harmonic mean of the de-
gree to which the second sentence covers the first
and the degree to which the first sentence covers the
second. The overlap, defined by (1), is computed for
unigrams, bigrams, and trigrams.

Additionally we observe the content ngram over-
lap – the overlap of unigrams, bigrams, and tri-
grams exclusively on the content words. The con-
tent words are nouns, verbs, adjectives, and adverbs,
i.e., the lemmas having one of the following part-of-
speech tags: JJ, JJR, JJS, NN, NNP, NNS, NNPS,
RB, RBR, RBS, VB, VBD, VBG, VBN, VBP, and
VBZ. Intuitively, the function words (prepositions,

2http://opennlp.apache.org/

conjunctions, articles) carry less semantics than con-
tent words and thus removing them might eliminate
the noise and provide a more accurate estimate of
semantic similarity.

In addition to the overlap of consecutive ngrams,
we also compute the skip bigram and trigram over-
lap. Skip-ngrams are ngrams that allow arbitrary
gaps, i.e., ngram words need not be consecutive in
the original sentence. By redefining S1 and S2 to
represent the sets of skip ngrams, we employ eq. (1)
to compute the skip-n gram overlap.

3.3 WordNet-Augmented Word Overlap

One can expect a high unigram overlap between very
similar sentences only if exactly the same words (or
lemmas) appear in both sentences. To allow for
some lexical variation, we use WordNet to assign
partial scores to words that are not common to both
sentences. We define the WordNet augmented cov-
erage PWN (·, ·):

PWN (S1, S2) =
1

|S2|
∑

w1∈S1

score(w1, S2)

score(w, S) =

1 if w ∈ S

max
w′∈S

sim(w, w′) otherwise

where sim(·, ·) represents the WordNet path length
similarity. The WordNet-augmented word over-
lap feature is defined as a harmonic mean of
PWN (S1, S2) and PWN (S2, S1).

Weighted Word Overlap
When measuring sentence similarities we give

more importance to words bearing more content, by
using the information content

ic(w) = ln

∑
w′∈C freq(w

′
)

freq(w)

where C is the set of words in the corpus and
freq(w) is the frequency of the word w in the cor-
pus. We use the Google Books Ngrams (Michel et
al., 2011) to obtain word frequencies because of its
excellent word coverage for English. Let S1 and S2

be the sets of words occurring in the first and second
sentence, respectively. The weighted word cover-
age of the second sentence by the first sentence is
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given by:

wwc(S1, S2) =

∑
w∈S1∩S2

ic(w)∑
w′∈S2

ic(w′)

The weighted word overlap between two sen-
tences is calculated as the harmonic mean of the
wwc(S1, S2) and wwc(S2, S1).

This measure proved to be very useful, but it
could be improved even further. Misspelled frequent
words are more frequent than some correctly spelled
but rarely used words. Hence dealing with mis-
spelled words would remove the inappropriate heavy
penalty for a mismatch between correctly and incor-
rectly spelled words.

Greedy Lemma Aligning Overlap
This measure computes the similarity between

sentences using the semantic alignment of lem-
mas. First we compute the word similarity be-
tween all pairs of lemmas from the first and the
second sentence, using either the knowledge-based
or the corpus-based semantic similarity. We then
greedily search for a pair of most similar lemmas;
once the lemmas are paired, they are not considered
for further matching. Previous research by Lavie
and Denkowski (2009) proposed a similar alignment
strategy for machine translation evaluation. After
aligning the sentences, the similarity of each lemma
pair is weighted by the larger information content of
the two lemmas:

sim(l1, l2) = max(ic(l1), ic(l2)) · ssim(l1, l2) (2)

where ssim(l1, l2) is the semantic similarity be-
tween lemmas l1 and l2.

The overall similarity between two sentences is
defined as the sum of similarities of paired lemmas
normalized by the length of the longer sentence:

glao(S1, S2) =

∑
(l1,l2)∈P sim(l1, l2)

max(length(S1), length(S2))

where P is the set of lemma pairs obtained by greedy
alignment. We take advantage of greedy align over-
lap in two features: one computes glao(·, ·) by us-
ing the Lin similarity for ssim(·, ·) in (2), while the
other feature uses the distributional (LSA) similarity
to calculate ssim(·, ·).

Vector Space Sentence Similarity
This measure is motivated by the idea of composi-

tionality of distributional vectors (Mitchell and La-
pata, 2008). We represent each sentence as a sin-
gle distributional vector u(·) by summing the dis-
tributional (i.e., LSA) vector of each word w in the
sentence S: u(S) =

∑
w∈S xw, where xw is the

vector representation of the word w. Another sim-
ilar representation uW (·) uses the information con-
tent ic(w) to weigh the LSA vector of each word
before summation: uW (S) =

∑
w∈S ic(w)xw.

The simple system uses |cos(u(S1), u(S2))| and
|cos(uW (S1), uW (S2))| for the vector space sen-
tence similarity features.

3.4 Syntactic Features
We use dependency parsing to identify the lemmas
with the corresponding syntactic roles in the two
sentences. We also compute the overlap of the de-
pendency relations of the two sentences.

Syntactic Roles Similarity
The similarity of the words or phrases having the

same syntactic roles in the two sentences may be in-
dicative of their overall semantic similarity (Oliva et
al., 2011). For example, two sentences with very dif-
ferent main predicates (e.g., play and eat) probably
have a significant semantic difference.

Using Lin similarity ssim(·, ·), we obtain the sim-
ilarity between the matching lemmas in a sentence
pair for each syntactic role. Additionally, for each
role we compute the similarity of the chunks that
lemmas belong to:

chunksim(C1, C2) =
∑

l1∈C1

∑
l2∈C2

ssim(l1, l2)

where C1 and C2 are the sets of chunks of
the first and second sentence, respectively. The
final similarity score of two chunks is the
harmonic mean of chunksim(C1, C2)/|C1| and
chunksim(C1, C2)/|C2| .

Syntactic roles that we consider are predicates (p),
subjects (s), direct (d), and indirect (i) (i.e., preposi-
tional) objects, where we use (o) to mean either (d)
or (i). The Stanford dependency parser (De Marn-
effe et al., 2006) produces the dependency parse of
the sentence. We infer (p), (s), and (d) from the syn-
tactic dependencies of type nsubj (nominal subject),
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nsubjpass (nominal subject passive), and dobj (di-
rect object). By combining the prep and pobj de-
pendencies (De Marneffe and Manning, 2008), we
identify (i). Since the (d) in one sentence often se-
mantically corresponds to (i) in the other sentence,
we pair all (o) of one sentence with all (o) of the
other sentence and define object similarity between
the two sentences as the maximum similarity among
all (o) pairs. Because the syntactic role might be
absent from both sentences (e.g., the object in sen-
tences “John sings” and “John is thinking”), we in-
troduce additional binary features indicating if the
comparison for the syntactic role in question exists.

Many sentences (especially longer ones) have two
or more (p). In such cases it is necessary to align
the corresponding predicate groups (i.e., the (p) with
its corresponding arguments) between the two sen-
tences, while also aggregating the (p), (s), and (o)
similarities of all aligned (p) pairs. The similarity
of two predicate groups is defined as the sum of (p),
(s), and (o) similarities. In each iteration, the greedy
algorithm pairs all predicate groups of the first sen-
tence with all predicate groups of the second sen-
tence and searches for a pair with the maximum sim-
ilarity. Once the predicate groups of two sentences
have been aligned, we compute the (p) similarity as
a weighted sum of (p) similarities for each predicate
pair group. The weight of each predicate group pair
equals the larger information content of two predi-
cates. The (s) and (o) similarities are computed in
the same manner.

Syntactic Dependencies Overlap
Similar to the ngram overlap features, we measure

the overlap between sentences based on matching
dependency relations. A similar measure has been
proposed in (Wan et al., 2006). Two syntactic depen-
dencies are considered equal if they have the same
dependency type, governing lemma, and dependent
lemma. Let S1 and S2 be the set of all dependency
relations in the first and the second sentence, respec-
tively. Dependency overlap is the harmonic mean
between |S1 ∩ S2|/|S1| and |S1 ∩ S2|/|S2| . Con-
tent dependency overlap computes the overlap in the
same way, but considers only dependency relations
between content lemmas.

Similarly to weighted word overlap, we com-
pute the weighted dependency relations overlap.

The weighted coverage of the second sentence de-
pendencies with the first sentence dependencies is
given by:

wdrc(S1, S2) =

∑
r∈S1∩S2

max(ic(g(r)), ic(d(r)))∑
r∈S2

max(ic(g(r)), ic(d(r)))

where g(r) is the governing word of the dependency
relation r, d(r) is the dependent word of the depen-
dency relation r, and ic(l) is the information con-
tent of the lemma l. Finally, the weighted depen-
dency relations overlap is the harmonic mean be-
tween wdrc(S1, S2) and wdrc(S2, S1).

3.5 Other Features

Although we primarily focused on developing the
ngram overlap and syntax-based features, some
other features significantly improve the performance
of our systems.

Normalized Differences
Our systems take advantage of the following fea-

tures that measure normalized differences in a pair
of sentences: (A) sentence length, (B) the noun
chunk, verb chunk, and predicate counts, and (C)
the aggregate word information content (see Nor-
malized differences in Table 2).

Numbers Overlap
The annotators gave low similarity scores to many

sentence pairs that contained different sets of num-
bers, even though their sentence structure was very
similar. Socher et al. (2011) improved the perfor-
mance of their paraphrase classifier by adding the
following features that compare the sets of num-
bers N1 and N2 in two sentences: N1 = N2,
N1∩N2 6= ∅, and N1 ⊆ N2∨N2 ⊆ N1. We replace
the first two features with log (1 + |N1|+ |N2|) and
2· |N1 ∩N2|/(|N1|+ |N2|) . Additionally, the num-
bers that differ only in the number of decimal places
are treated as equal (e.g., 65, 65.2, and 65.234 are
treated as equal, whereas 65.24 and 65.25 are not).

Named Entity Features
Shallow NE similarity treats capitalized words as

named entities if they are longer than one character.
If a token in all caps begins with a period, it is clas-
sified as a stock index symbol. The simple system
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Table 2: The usage of feature sets

Feature set simple syntax

Ngram overlap + +
Content-ngram overlap - +
Skip-ngram overlap - +
WordNet-aug. overlap + -
Weighted word overlap + +
Greedy align. overlap - +
Vector space similarity + -
Syntactic roles similarity - +
Syntactic dep. overlap - +
Normalized differences* A,C A,B
Shallow NERC + -
Full NERC - +
Numbers overlap + +
* See Section 3.5

uses the following four features: the overlap of cap-
italized words, the overlap of stock index symbols,
and the two features indicating whether these named
entities were found in either of the two sentences.

In addition to the overlap of capitalized words, the
syntax system uses the OpenNLP named entity rec-
ognizer and classifier to compute the overlap of en-
tities for each entity class separately. We recognize
the following entity classes: persons, organizations,
locations, dates, and rudimentary temporal expres-
sions. The absence of an entity class from both sen-
tences is indicated by a separate binary feature (one
feature for each class).

Feature Usage in TakeLab Systems

Some of the features presented in the previous sec-
tions were used by both of our systems (simple and
syntax), while others were used by only one of the
systems. Table 2 indicates the feature sets used for
the two submitted systems.

4 Results

4.1 Model Training

For each of the provided training sets we trained a
separate Support Vector Regression (SVR) model
using LIBSVM (Chang and Lin, 2011). To ob-
tain the optimal SVR parameters C, g, and p, our
systems employ a grid search with nested cross-

Table 3: Cross-validated results on train sets

MSRvid MSRpar SMTeuroparl

simple 0.8794 0.7566 0.7802
syntax 0.8698 0.7144 0.7308

validation. Table 3 presents the cross-validated per-
formance (in terms of Pearson correlation) on the
training sets. The models tested on the SMTnews
test set were trained on the SMTeuroparl train set.
For the OnWn test set, the syntax model was trained
on the MSRpar set, while the simple system’s model
was trained on the union of all train sets. The final
predictions were trimmed to a 0–5 range.

Our development results indicate that the
weighted word overlap, WordNet-augmented word
overlap, the greedy lemma alignment overlap, and
the vector space sentence similarity individually
obtain high correlations regardless of the devel-
opment set in use. Other features proved to be
useful on individual development sets (e.g., syntax
roles similarity on MSRvid and numbers overlap
on MSRpar). More research remains to be done in
thorough feature analysis and systematic feature
selection.

4.2 Test Set Results

The organizers provided five different test sets to
evaluate the performance of the submitted systems.
Table 4 illustrates the performance of our systems
on individual test sets, accompanied by their rank.
Our systems outperformed most other systems on
MSRvid, MSRpar, and OnWN sets (Agirre et al.,
2012). However, they performed poorly on the
SMTeuroparl and SMTnews sets. While the corre-
lation scores on the MSRvid and MSRpar test sets
correspond to those obtained using cross-validation
on the corresponding train sets, the performance on
the SMT test sets is drastically lower than the cross-
validated performance on the corresponding train
set. The sentences in the SMT training set are signif-
icantly longer (30.4 tokens on average) than the sen-
tences in both SMT test sets (12.3 for SMTeuroparl
and 13.5 for SMTnews). Also there are several re-
peated pairs of extremely short and identical sen-
tences (e.g., “Tunisia” – “Tunisia” appears 17 times
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Table 4: Results on individual test sets

simple syntax

MSRvid 0.8803 (1) 0.8620 (8)
MSRpar 0.7343 (1) 0.6985 (2)
SMTeuroparl 0.4771 (26) 0.3612 (63)
SMTnews 0.3989 (46) 0.4683 (18)
OnWN 0.6797 (9) 0.7049 (6)

Table 5: Aggregate performance on the test sets

All ALLnrm Mean

simple 0.8133 (3) 0.8635 (1) 0.6753 (2)
syntax 0.8138 (2) 0.8569 (3) 0.6601 (5)

in the SMTeuroparl test set). The above measure-
ments indicate that the SMTeuroparl training set was
not representative of the SMTeuroparl test set for our
choice of features.

Table 5 outlines the aggregate performance of our
systems according to the three aggregate evaluation
measures proposed for the task (Agirre et al., 2012).
Both systems performed very favourably compared
to the other systems, achieving very high rankings
regardless of the aggregate evaluation measure.

The implementation of simple system is available
at http://takelab.fer.hr/sts.

5 Conclusion and Future Work

In this paper we described our submission to the
SemEval-2012 Semantic Textual Similarity Task.
We have identified some high performing features
for measuring semantic text similarity. Although
both of the submitted systems performed very well
on all but the two SMT test sets, there is still room
for improvement. The feature selection was ad-hoc
and more systematic feature selection is required
(e.g., wrapper feature selection). Introducing ad-
ditional features for deeper understanding (e.g., se-
mantic role labelling) might also improve perfor-
mance on this task.
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Abstract

We present an approach for the construction of text
similarity functions using a parameterized resem-
blance coefficient in combination with a softened
cardinality function called soft cardinality. Our ap-
proach provides a consistent and recursive model,
varying levels of granularity from sentences to char-
acters. Therefore, our model was used to compare
sentences divided into words, and in turn, words di-
vided into q-grams of characters. Experimentally,
we observed that a performance correlation func-
tion in a space defined by all parameters was rel-
atively smooth and had a single maximum achiev-
able by “hill climbing.” Our approach used only sur-
face text information, a stop-word remover, and a
stemmer to tackle the semantic text similarity task
6 at SEMEVAL 2012. The proposed method ranked
3rd (average), 5th (normalized correlation), and 15th
(aggregated correlation) among 89 systems submit-
ted by 31 teams.

1 Introduction

Similarity is the intrinsic ability of humans and some
animals to balance commonalities and differences when
comparing objects that are not identical. Although there
is no direct evidence of how this process works in liv-
ing organisms, some models have been proposed from
the cognitive perspective (Sjöberg, 1972; Tversky, 1977;
Navarro and Lee, 2004). On the other hand, several simi-
larity models have been proposed in mathematics, statis-
tics, and computer science among other fields. Particu-
larly in AI, similarity measures play an important role in
the construction of intelligent systems that are required
to exhibit behavior similar to humans. For instance, in
the field of natural language processing, text similarity
functions provide estimates of the human similarity judg-
ments related to language. In this paper, we combine el-
ements from the perspective of cognitive psychology and

computer science to propose a model for building simi-
larity functions suitable for the task of semantic text sim-
ilarity.

We identify four main families of text similarity func-
tions: i) resemblance coefficients based on sets (e.g. Jac-
card’s (1901) and Dice’s (1945) coefficients) ii) functions
in metric spaces (e.g. cosine tf-idf similarity (Salton et
al., 1975)); iii) the edit distance family of measures (e.g.
Levenstein (1966) distance, LCS (Hirschberg, 1977));
and iv) hybrid approaches ((Monge and Elkan, 1996; Co-
hen et al., 2003; Corley and Mihalcea, 2005; Jimenez et
al., 2010)). All of these measures use a subdivision of
the texts in different granularity levels, such as q-grams
of words, words, q-grams of characters, syllables, and
characters. Among hybrid approaches, Monge-Elkan’s
measure and soft cardinality methods are recursive and
can be used to build similarity functions at any arbitrary
range of granularity. For instance, it is possible to con-
struct a similarity function to compare sentences based
on a function that compares words, which in turn can be
constructed based on a function that compares bigrams of
characters. Furthermore, hybrid approaches can integrate
similarity functions that are not based on the representa-
tion of the surface of text, such as semantic relatedness
measures (Pedersen et al., 2004).

Text similarity measures can be static or adaptive
whether they are binary functions using only surface in-
formation of the two texts, or are functions that suit
to a wider set of texts. For instance, measures using
tf-idf weights adapt their results to the set of texts in
which those weights were obtained. Other approaches
learn parameters of the similarity function from a set of
texts to optimize a particular task. For instance, Ris-
tad and Yianilos (1998) and Bikenko and Mooney (2003)
learned the costs of edit operations for all characters for
an edit-distance function in a name-matching task. Other
machine-learning approaches have also been proposed to
build adaptive measures in name-matching (Bilenko and
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Mooney, 2003) and textual-entailment tasks.
However, those machine-learning-based methods for

adaptive similarity suffer from sparseness and the “curse
of dimensionality”. For example, the method of Ristad
and Yianilos learns n2 + 2n parameters, where n is the
size of the character set. Similarly, dimensionality in the
method of Bilenko and Mooney is the size of the data
set vocabulary. This issue is addressed primarily through
machine-learning algorithms, which reduce the dimen-
sionality of the problem regularizating to achieve enough
generalization to get an acceptable performance differ-
ence between training and test data. Although machine-
learning solutions have proven effective for many appli-
cations, the principle of Occam’s razor suggests that it
should be preferable to have a model that explains the
data with a smaller number of significant parameters. In
this paper, we seek a simpler adaptive similarity model
with few meaningful parameters.

Our proposed similarity model starts with a
cardinality-based resemblance coefficient (i.e. Dice’s
coefficient 2|A∩B|/|A|+|B|) and generalizes it to model
the effect of asymmetric selection of the referent. This
effect is a human factor discovered by Tversky (1977)
that affects judgments of similarity, i.e. humans tends
to select the more prominent stimulus as the referent
and the less salient stimulus as the object. Some of
Tversky’s examples are “the son resembles the father”
rather than “the father resembles the son”, “an ellipse is
like a circle” not “a circle is like an ellipse”, and “North
Korea is like Red China” rather than “Red China is like
North Korea”. Generally speaking, “the variant is more
similar to the prototype than vice versa”. In the previous
example, stimulus salience is associated with the promi-
nence of the country; for text comparison we associate
word salience with tf-idf weights. At the text level, we
associate salience with a combination of word-salience,
inter-word similarity, and text length provided by soft
cardinality. Experimentally, we observed that this effect
also occurs when comparing texts, but not necessarily
in the same direction suggested by Tversky. We used
this effect to improve the performance of our similarity
model. In addition, we proposed a parameter that biases
the function to generate greater or lower similarity
scores.

Finally, in our model we used a soft cardinality func-
tion (Jimenez et al., 2010) instead of the classical set car-
dinality. Just as classical cardinality counts the number
of elements which are not identical in a set, soft cardi-
nality uses an auxiliary inter-element similarity function
to make a soft count. For instance, the soft cardinality of
a set with two very similar (but not identical) elements
should be a real number closer to 1.0 instead of 2.0.

The rest of the paper is organized as follows. In Sec-
tion 2 we briefly present soft cardinality. In Section 3 the

proposed parameterized similarity model is presented. In
Section 4 experimental validation is provided using 8 data
sets annotated with human similarity judgments from the
“Semantic-Text-Similarity” task at SEMEVAL-2012. Fi-
nally, a brief discussion is provided in Section 5 and con-
clusions are presented in Section 6.

2 Soft Cardinality
Let A =

{
a1, a2, . . . , a|A|

}
and B =

{
b1, b2, . . . , b|B|

}
be two sets being compared. When each element of ai

or bj has an associated weight wai
or wbj

the problem
of comparing those sets becomes a weighted similarity
problem. This means that such model has to take into
account not only the commonalities and diferences, but
also their weights. Also, if an (|A ∪ B|) × (|A ∪ B|)
similarity matrix S is available, the problem becomes a
weighted soft similarity problem because the common-
ality between A and B has to be computed not only
with identical elements, but also with elements with a
degree of similarity. The values of S can be obtained
from an auxiliary similarity function sim(a, b) that sat-
isfies at least non-negativity (∀a, b, sim(a, b) ≥ 0) and
reflexivity (∀a, sim(a, a) = 1). Other postulates such as
symmetry (∀a, b, sim(a, b) = sim(b, a)) and triangle in-
equality1 (∀a, b, c, sim(a, c) ≥ sim(a, b) + sim(b, c)−
1) are not strictly necessary.

Jimenez et al. (2010) proposed a set-based weighted
soft-similarity model using resemblance coefficients and
the soft cardinality function instead of classical set car-
dinality. The idea of calculating the soft cardinality is
to treat elements ai in set the A as sets themselves and
to treat inter-element similarities as the intersections be-
tween the elements sim(ai, aj) = |ai ∩ aj |. Therefore,

the soft cardinality of set A becomes |A|′ =
∣∣∣⋃|A|i=1ai

∣∣∣.
Since it is not feasible to calculate this union, they pro-
posed the following weighted approximation using |ai| =
wai

:

|A|
′

sim '
|A|∑
i

wai

 |A|∑
j

sim(ai, aj)
p

−1

(1)

Parameter p ≥ 0 in eq.1 controls the “softeness” of
the cardinality, taking p = 1 its no-effect value and leav-
ing element similarities unchanged for the calculation of
soft cardinality. When p is large, all sim(∗, ∗) results
lower than 1 are transformed into a number approaching
0. As a result, the soft cardinality behaves like the clas-
sical cardinality, returning the addition of all the weights
of the elements, i.e |A|′sim '

∑|A|
i wai

. When p is close
to 0, all sim(∗.∗) results are transformed approaching

1triangle inequality postulate for similarity is derived from its coun-
terpart for dissimilarity (distance) distance(a, b) = 1− sim(a, b).
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into a number approaching 1, making the soft cardinal-
ity returns the average of the weights of the elements, i.e.
|A|′sim ' 1

|A|
∑|A|

i wai
. Jimenez et al. used p = 2 and

idf weights in the same name-matching task proposed by
Cohen et al. (Cohen et al., 2003).

3 A Parameterized Similarity Model
As we mentioned above, Tvesky proposed that humans
tends to select more salient stimulus as referent and less
salient stimulus as object when comparing two objects A
and B. Based on the idea of Tvesrky, the similarity be-
tween two objects can be measured as the ratio between
the salience of commonalities and the salience of the less
salient object. Drawing an analogy between objects as
sets and salience as the cardinality of a set, the salience
of commonalities is |A ∩ B|, and the salience of the less
salient object is min(|A|, |B|). This ratio is known as the
overlap coefficient Overlap(A,B) = |A∩B|

min(|A|,|B|) . How-
ever, whether |A| < |B| or whether |A| � |B|, the sim-
ilarity obtained by Overlap(A,B) is the same. Hence,
we propose to model the selecction of the referent using
a parameter α that makes a weighted average between
min(|A|, |B|) and max(|A|, |B|), controling the degree
to which the asymmetric referent-selection effect is con-
sidered in the similarity measure.

SIM(A,B) =
|A ∩B|+ bias

αmax (|A|, |B|) + (1− α) min (|A|, |B|)
(2)

The parameter α controls the degree to which the
asymmetric referent-selection effect is considered in the
similarity measure. Its no-effect value is α = 0.5, so
the eq.2 becomes the Dice coefficient. Moreover, when
α = 0 the eq.2 becomes the overlap coefficient, other-
wise when α = 1 the opposite effect is modeled.

In addition, we introduced a bias parameter in eq. 2
that increases the commonalities of each object pair by
the same amount, and so it measures the degree to which
all of the objects have commonalities among each other.
Clearly, the non-effect value for the bias parameter is 0.

Besides, the bias parameter has the effect of biasing
SIM(A,B) by considering any pair 〈A,B〉 more sim-
ilar if bias > 0 and their cardinalities are small. Con-
versely, the similarity between pairs with large cardinal-
ities is promoted if bias < 0. However, as higher values
of biasmay result in similarity scores outside the interval
[0, 1], additional post-procesing to limit the similarities in
this interval may be required.

The proposed parameterized text similarity measure is
constructed by combining the proposed resemblance co-
efficient in eq.2 and the soft cardinality in eq.1. The
resulting measure has three parameters: α, bias, and p.
Weights wai

can be idf weights. This measure takes two

α Asymetric referent selection at text level
bias Bias parameter at text level
p Soft cardinality exponent at word level
wai

Element weights at word level
q1, q2 q1-grams or [q1 : q2]spectra word division
αsim Asymetric referent selection at q-gram level
biassim Bias parameter q-gram level

Table 1: Parameters of the proposed similarity model

texts represented as sets of words and returns their simi-
larity. The auxiliary similarity function sim(a, b) neces-
sary for calculating the soft cardinality is another param-
eter of the model. This auxiliary function is any function
that can compare two words and return a similarity score
in [0, 1].

To build this sim(a, b) function, we chose to reuse the
eq.2 but representing words as sets of q-grams or ranges
of q-grams of different sizes, i.e. [q1 : q2] spectra. Q-
grams are consecutive overlapped substrings of size q.
For instance, the word “saturday” divided into trigrams
is {/sa, sat, atu, tur, urd, rda, day, ay.}. The character
’.’ is a padding character added to differenciate q-grams
at the begining or end of the string. A [2 : 4]spectra
is the combined representation of a word using –in this
example– bigrams, trigrams and quadgrams (Jimenez and
Gelbukh, 2011). The cardinality function for sim() was
the classical set cardinality. Clearly, the soft cardinal-
ity could be used again if an auxiliary similarity func-
tion for character comparison and a q-gram weighting
mechanism are provided to allow another level of recur-
sion. Therefore, the parameters of sim(a, b) are: αsim,
biassim. Finally, the entire set of parameters of the pro-
posed similarity model is shown in Table 1.

4 Experimental Setup and Results

The aim of these experiments is to observe the behavior
of the parameters of our similarity model and verify if the
hypothesis that motivated these parameters can be con-
firmed experimentally. The experimental data are 8 data
sets (3 for training and 5 for test) proposed in the “Seman-
tic Text Similarity” task at SEMEVAL-2012. Each data
set consist of a set of pairs of text annotated with human-
similarity judgments on a scale of 0 to 5. Each similarity
judgment is the average of the judgments provided by 5
human judges. For a comprehensible description of the
task see(Agirre et al., 2012).

For the experiments, all data sets were pre-processed
by converting to lowercase characters, English stop-
words removal and stemming using Porter stemmer
(Porter, 1980). The performance measure used for all ex-
periments was the Pearson correlation r.
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4.1 Model Parameters

In order to make an initial exploration of the parame-
ters in Table 1, we set q1 = 2 (i.e. bigrams) and used
wai

= idf(ai). For other parameters, we started with all
the non-effect values, i.e. α = 0.5, bias = 0, p = 1,
αsim = 0.5 and biassim = 0. Plots in Figure 1 show
the Pearson correlation measured in each of the data sets.
For each graph, the non-effect configuration was used and
each parameter varies in the range indicated in each hor-
izontal axis. For best viewing, the non-effect values on
each graph are represented by a vertical line.

In this exploration of the parameters it was noted that
each parameter defines a function for the performance
measure that is smooth and with an unique global maxi-
mum. Therefore, we assumed that the join performance
function in the space defined by the 5 parameters also
had the same properties. The parameters for each data set
shown in Table 2 were found using a simple hill-climbing
algorithm. Different q-gram and spectra configurations
were tested manually.

5 Discussion

It is possible to observe from the results in Figure 1 and
Table 2 that the behavior of the parameters is similar in
pairs of data sets that have training and test parts. This
behavior is evident in both MSRvid and MSRpar data
sets, but it is less evident in SMTeuroparl. Furthermore,
the optimal parameters for training data sets MSRvid and
MSRpar were similar to those of their test data sets. In
conclusion, the proposed set of parameters provides a set
of features that characterize a data set for the text similar-
ity task.

Regarding the effect of asymmetry in referent selecc-
tion proposed by Tvesrky, it was observed that –at text
level– the MSRvid data sets were the only ones that sup-
ported this hypothesis (α = 0.32, 0.42). The remaining
data sets showed the opposite effect (α > 0.5). That is,
annotators chose the most salient document (the longer)
as the referent when a pair of texts is being compared.

The Table 2 also shows that the optimal parameters
for all data sets were different from the no-effect values
combination. This result can also be seen in Figure 1,
where curves crossed the vertical line of no-effect value
–in most of the cases– in values different to the optimum.
Clearly, the proposed set of parameters is useful for ad-
justing the similarity function for a particular data set and
task.

6 Conclusions

We have proposed a new parameterized similarity func-
tion for text comparison and a method for finding the op-
timal values of the parameter set when training data is

available. In addition, the parameter α, which was moti-
vated by the similarity model of Tversky, proved effective
in obtaining better performance, but we could not con-
firm the Tvesky’s hypothesis that humans tends to select
the object (text) with less stimulus salience (text length)
as the referent. This result might have occurred because
either the stimulus salience is not properly represented by
the length of the text, or Tversky’s hypothesis cannot be
extended to text comparison.

The proposed similarity function proved effective in
the task of “Semantic Text Similarity” in SEMEVAL
2012. Our method obtained the third best average cor-
relation on the 5 test data sets. This result is remarkable
because our method only used data from the surface of
the texts, a stop-word remover, and a stemmer, which can
be even be considered as a baseline method.
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Abstract

This paper describes the participation of
UNED NLP group in the SEMEVAL 2012 Se-
mantic Textual Similarity task. Our contribu-
tion consists of an unsupervised method, Het-
erogeneity Based Ranking (HBR), to combine
similarity measures. Our runs focus on com-
bining standard similarity measures for Ma-
chine Translation. The Pearson correlation
achieved is outperformed by other systems,
due to the limitation of MT evaluation mea-
sures in the context of this task. However,
the combination of system outputs that partici-
pated in the campaign produces three interest-
ing results: (i) Combining all systems without
considering any kind of human assessments
achieve a similar performance than the best
peers in all test corpora, (ii) combining the 40
less reliable peers in the evaluation campaign
achieves similar results; and (iii) the correla-
tion between peers and HBR predicts, with a
0.94 correlation, the performance of measures
according to human assessments.

1 Introduction

Imagine that we are interested in developing com-
putable measures that estimate the semantic simi-
larity between two sentences. This is the focus of
the STS workshop in which this paper is presented.
In order to optimize the approaches, the organizers

∗This work has been partially funded by the Madrid gov-
ernment, grant MA2VICMR (S-2009/TIC- 1542), the Span-
ish government, grant Holopedia (TIN2010-21128-C02-01) and
the European Community’s Seventh Framework Programme
(FP7/ 2007-2013) under grant agreement nr. 288024 (LiMo-
SINe project).

provide a training corpus with human assessments.
The participants must improve their approaches and
select three runs to participate. Unfortunately, we
can not ensure that systems will behave similarly
in both the training and test corpora. For instance,
some Pearson correlations between system achieve-
ments across test corpora in this competition are:
0.61 (MSRpar-MSRvid), 0.34 (MSRvid-SMTeur),
or 0.49 (MSRpar-SMTeur). Therefore, we cannot
expect a high correlation between the system per-
formance in a specific corpus and the test corpora
employed in the competition.

Now, imagine that we have a magic box that,
given a set of similarity measures, is able to pre-
dict which measures will obtain the highest corre-
lation with human assessments without actually re-
quiring those assessments. For instance, suppose
that putting all system outputs in the magic box, we
obtain a 0.94 Pearson correlation between the pre-
diction and the system achievements according to
human assessments, as in Figure 1. The horizontal
axis represents the magic box ouput, and the vertical
axis represents the achievement in the competition.
Each dot represents one system. In this case, we
could decide which system or system combination
to employ for a certain test set.

Is there something like this magic box? The
answer is yes. Indeed, what Figure 1 shows is
the results of an unsupervised method to combine
measures, the Heterogeneity Based Ranking (HBR).
This method is grounded on a generalization of the
heterogeneity property of text evaluation measures
proposed in (Amigó et al., 2011), which states that
the more a set of measures is heterogeneous, the
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Figure 1: Correspondence between the magic box infor-
mation and the (unknown) correlation with human assess-
ments, considering all runs in the evaluation campaign.

more a score increase according to all the mea-
sures is reliable. In brief, the HBR method consists
of computing the heterogeneity of the set of mea-
sures (systems) for which a similarity instance (pair
of texts) improves each of the rest of similarity in-
stances in comparison. The result is that HBR tends
to achieve a similar or higher correlation with human
assessments than the single measures. In order to
select the most appropriate single measure, we can
meta-evaluate measures in terms of correlation with
HBR, which is what the previous figure showed.

We participated in the STS evaluation campaign
employing HBR over automatic text evaluation mea-
sures (e.g. ROUGE (Lin, 2004)), which are not actu-
ally designed for this specific problem. For this rea-
son our results were suboptimal. However, accord-
ing to our experiments this method seem highly use-
ful for combining and evaluating current systems.
In this paper, we describe the HBR method and we
present experiments employing the rest of partici-
pant methods as similarity measures.

2 Definitions

2.1 Similarity measures

In (Amigó et al., 2011) a novel definition of sim-
ilarity is proposed in the context of automatic text
evaluation measures. Here we extend the definition
for text similarity problems in general.

Being Ω the universe of texts d, we assume that
a similarity measure, is a function x : Ω2 −→
< such that there exists a decomposition function
f : Ω −→ {e1..en} (e.g., words or other linguis-
tic units or relationships) satisfying the following

constraints; (i) maximum similarity is achieved only
when the text decomposition resembles exactly the
other text; (ii) adding one element from the second
text increases the similarity; and (iii) removing one
element that does not appear in the second text also
increases the similarity.

f(d1) = f(d2)↔ x(d1, d2) = 1

(f(d1) = f(d′1) ∪ {e ∈ f(d2) \ f(d1)})
→ x(d′1, d2) > x(d1, d2)

(f(d1) = f(d′1)− {e ∈ f(d1) \ f(d2)})
→ x(d′1, d2) > x(d1, d2)

According to this definition, a random function,
or the inverse of a similarity function (e.g. 1

x(d1d2) ),
do not satisfy the similarity constraints, and there-
fore cannot be considered as similarity measures.
However, this definition covers any kind of overlap-
ping or precision/recall measure over words, syntac-
tic structures or semantic units, which is the case of
most systems here.

Our definition assumes that measures are granu-
lated: they decompose text in a certain amount of
elements (e.g. words, grammatical tags, etc.) which
are the basic representation and comparison units to
estimate textual similarity.

2.2 Heterogeneity

Heterogeneity (Amigó et al., 2011) represents to
what extent a set of measures differ from each other.
Let us refer to a pair of texts i = (i1, i2) with a
certain degree of similarity to be computed as a sim-
ilarity instance. Then we estimate the Heterogene-
ity H(X ) of a set of similarity measures X as the
probability over similarity instances i = (i1, i2) and
j = (j1, j2) between distinct texts, that there exist
two measures in X that contradict each other. For-
mally:

H(X ) ≡ Pi1 6=i2
j1 6=j2

(∃x, x′ ∈ X|x(i) > x(j) ∧ x′(j) < x′(i))

where x(i) stands for the similarity, according to
measure x, between the texts i1, i2.
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3 Proposal: Heterogeneity-Based
Similarity Ranking

The heterogeneity property of text evaluation mea-
sures (in fact, text similarity measures to human ref-
erences) introduced in (Amigó et al., 2011) states
that the quality difference between two texts is lower
bounded by the heterogeneity of the set of evalua-
tion measures that corroborate the quality increase.
Based on this, we define the Heterogeneity Principle
which is applied to text similarity in general as: the
probability of a real similarity increase between ran-
dom text pairs is correlated with the Heterogeneity
of the set of measures that corroborate this increase:

P (h(i) ≥ h(j)) ∼ H({x|x(i) ≥ x(j)})

where h(i) is the similarity between i1, i2 accord-
ing to human assessments (gold standard). In addi-
tion, the probability is maximal if the heterogeneity
is maximal:

H({x|x(i) ≥ x(j)}) = 1⇒ P (h(i) ≥ h(j)) = 1

The first part is derived from the fact that increas-
ing Heterogeneity requires additional diverse mea-
sures corroborating the similarity increase. The di-
rect relationship is the result of assuming that a sim-
ilarity increase according to any aspect is always a
positive evidence of true similarity. In other words,
a positive match between two texts according to any
feature can never be a negative evidence of similar-
ity.

As for the second part, if the heterogeneity of a
measure set is maximal, then the condition of the
heterogeneity definition holds for any pair of dis-
tinct documents (i1 6= i2 and j1 6= j2). Given that
all measures corroborate the similarity increase, the
heterogeneity condition does not hold. Then, the
compared texts in (i1, i2) are not different. There-
fore, we can ensure that P (h(i) ≥ h(j)) = 1.

The proposal in this paper consists of rank-
ing similarity instances by estimating, for each in-
stance i, the average probability of its texts (i1, i2)
being closer to each other than texts in a different
instance j:

R(i) = Avgj(P (h(i) ≥ h(j)))

Applying the heterogeneity principle we can esti-
mate this as:

HBRX (i) = Avgj(H({x|x(i) ≥ x(j)}))

We refer to this ranking function as the Heterogene-
ity Based Ranking (HBR). It satisfies three crucial
properties for a measure combining function:

1. HBR is independent from measure scales and
it does not require relative weighting schemes
between measures. Formally, being f any strict
growing function:

HBRx1..xn(i) = HBRx1..f(xn)(i)

2. HBR is not sensitive to redundant measures:

HBRx1..xn(i) = HBRx1..xn,xn(i)

3. Given a large enough set of similarity
instances, HBR is not sensitive to non-
informative measures. Being xr a random
function such that P (xr(i) > xr(j)) = 1

2 ,
then:

HBRx1..xn(i) ∼ HBRx1..xn,xr(i)

The first two properties are trivially satisfied: the
∃ operator in H and the score comparisons are not af-
fected by redundant measures nor their scales prop-
erties. Regarding the third property, the heterogene-
ity of a set of measures plus a random function xr

is:

H(X ∪ {xr}) ≡

Pi1 6=i2
j1 6=j2

(∃x, x′ ∈ X ∪ {xr}|x(i) > x(j) ∧ x′(j) < x′(i)) =

H(X ) + (1−H(X )) ∗
1

2
=

H(X ) + 1

2

That is, the heterogeneity grows proportionally
when including a random function. Assuming that
the random function corroborates the similarity in-
crease in a half of cases, the result is a proportional
relationship between HBR and HBR with the addi-
tional measure. Note that we need to assume a large
enough amount of data to avoid random effects.
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4 Official Runs

We have applied the HBR method with excellent
results in different tasks such as Machine Transla-
tion and Summarization evaluation measures, Infor-
mation Retrieval and Document Clustering. How-
ever, we had not previously applied our method to
semantic similarity. Therefore, we decided to ap-
ply directly automatic evaluation measures for Ma-
chine Translation as single similarity measures to be
combined by means of HBR. We have used 64 auto-
matic evaluation measures provided by the ASIYA
Toolkit (Giménez and Màrquez, 2010)1. This set in-
cludes measures operating at different linguistic lev-
els (lexical, syntactic, and semantic) and includes all
popular measures (BLEU, NIST, GTM, METEOR,
ROUGE, etc.) The similarity formal constraints in
this set of measures is preserved by considering lex-
ical overlap when the target linguistic elements (i.e.
named entities) do not appear in the texts.

We participated with three runs. The first one con-
sisted of selecting the best measure according to hu-
man assessments in the training corpus. It was the
INIST measure (Doddington, 2002). The second run
consisted of selecting the best 34 measures in the
training corpus and combining them with HBR, and
the last run consisted of combining all evaluation
measures with HBR. The heterogeneity of measures
was computed over 1000 samples of similarity in-
stance pairs (pairs of sentences pairs) extracted from
the five test sets. Similarity instances were ranked
over each test set independently.

In essence, the main contribution of these runs is
to corroborate that Machine Translation evaluation
measures are not enough to solve this task. Our runs
appear at the Mean Rank positions 42, 28 and 77.
Apart of this, our results corroborate our main hy-
pothesis: without considering human assessment or
any kind of supervised tunning, combining the mea-
sures with HBR resembles the best measure (INIST)
in the combined measure set. However, when in-
cluding all measures the evaluation result decreases
(rank 77). The reason is that some Machine Trans-
lation evaluation measures do not represent a posi-
tive evidence of semantic similarity in this corpus.
Therefore, the HBR assumptions are not satisfied
and the final correlation achieved is lower. In sum-

1http://www.lsi.upc.edu/ nlp/Asiya

mary, our approach is suitable if we can ensure that
all measures (systems) combined are at least a posi-
tive (high or low) evidence of semantic similarity.

But let us focus on the HBR behavior when com-
bining participant measures, which are specifically
designed to address this problem.

5 Experiment with Participant Systems

5.1 Combining System Outputs

We can confirm empirically in the official results
that all participants runs are positive evidence of se-
mantic similarity. That is, they achieve a correlation
with human assessments higher than 0. Therefore,
the conditions to apply HBR are satisfied. Our goal
now is to resemble the best performance without ac-
cessing human assessments neither from the training
nor the test corpora. Figure 2 illustrates the Pear-
son correlation (averaged across test sets) achieved
by single measures (participants) and all peers com-
bined in an unsupervised manner by HBR (black
column). As the figure shows, HBR results are com-
parable with the best systems appearing in the ninth
position. In addition, Figure 4 shows the differences
over particular test sets between HBR and the best
system. The figure shows that there are not con-
sistent differences between these approaches across
test beds.

The next question is why HBR is not able to im-
prove the best system. Our intuition is that, in this
test set, average quality systems do not contribute
with additional information. That is, the similarity
aspects that the average quality systems are able to
capture are also captured by the best system.

However, the best system within the combined set
is not a theoretical upper bound for HBR. We can
prove it with the following experiment. We apply
HBR considering only the 40 less predictive systems
in the set (the rest of measures are not considered
when computing HBR). Then we compare the re-
sults of HBR regarding the considered single sys-
tems. As Figure 3 shows, HBR improves substan-
tially all single systems achieving the same result
than when combining all systems (0.61). The rea-
son is that all these systems are positive evidences
but they consider partial similarity aspects. But the
most important issue here is that combining the 40
less predictive systems in the evaluation campaign
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Figure 2: Measures (runs) and HBR sorted by average correlation with human assessments.

Figure 3: 40 less predictive measures (runs) and HBR
sorted by average correlation with human assessments.

is enough to achieve high final scores. This means
that the drawback of these measures as a whole is
not what information is employed but how this in-
formation is scaled and combined. This drawback is
solved by the HBR approach.

In summary, the main conclusion that we can ex-
tract from these results is that, in the absence of hu-
man assessments, HBR ensures a high performance
without the risk derived from employing potentially
biased training corpora or measures based on partial
similarity aspects.

6 An Unsupervised Meta-evaluation
Method

But HBR has an important drawback: its computa-
tional cost, which isO(n4 ∗m), being n the number

Figure 4: Average correlation with human assessments
for the best runs and HBR.

of texts involved in the computation and m the num-
ber of measures. The reason is that computing H is
quadratic with the number of texts, and the method
requires to compute H for every pair of texts. In
addition, HBR does not improve the best systems.

However, HBR can be employed as an unsuper-
vised evaluation method. For this, it is enough to
compute the Pearson correlation between runs and
HBR. This is what Figure 1 showed at the beginning
of this article. For each dot (participant run), the
horizontal axis represent the correlation with HBR
(magic box) and the vertical axis represent the cor-
relation with human assessments. This graph has a
Pearson correlation of 0.94 between both variables.
In other words, without accessing human assess-
ments, this method is able to predict the quality of

458



Figure 5: Predicting the quality of measures over a single test set.

textual similarity system with a 0.94 of accuracy in
this test bed.

In this point, we have two options for optimiz-
ing systems. First, we can optimize measures ac-
cording to the results achieved in an annotated train-
ing corpus. The other option consists of considering
the correlation with HBR in the test corpus. In or-
der to compare both approaches we have developed
the following experiment. Given a test corpus t, we
compute the correlation between system scores in t
versus a training corpus t′. This approach emulates
the scenario of training systems over a (training) set
and evaluating over a different (test) set. We also
compute the correlation between system scores in
all corpora vs. the scores in t. Finally, we compute
the correlation between system scores in t and our
predictor in t (which is the correlation system/HBR
across similarity instances in t). This approach em-
ulates the use of HBR as unsupervised optimization
method.

Figure 5 shows the results. The horizontal axis
represents the test set t. The black columns rep-
resent the prediction over HBR in the correspond-
ing test set. The grey columns represent the predic-
tion by using the average correlation across test sets.
The light grey columns represents the prediction us-
ing the correlation with humans in other single test
set. Given that there are five test sets, the figure in-
cludes four grey columns for each test set. The fig-
ure clearly shows the superiority of HBR as measure
quality predictor, even when it does not employ hu-
man assessments.

7 Conclusions

The Heterogeneity Based Ranking provides a mech-
anism to combine similarity measures (systems)
without considering human assessments. Interest-
ingly, the combined measure always improves or
achieves similar results than the best single measure
in the set. The main drawback is its computational
cost. However, the correlation between single mea-
sures and HBR predicts with a high confidence the
accuracy of measures regarding human assessments.
Therefore, HBR is a very useful tool when optimiz-
ing systems, specially when a representative training
corpus is not available. In addition, our results shed
some light on the contribution of measures to the
task. According to our experiments, the less reliable
measures as a whole can produce reliable results if
they are combined according to HBR.

The HBR software is available at
http://nlp.uned.es/∼enrique/
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Abstract

The Choice of Plausible Alternatives (COPA)
task in SemEval-2012 presents a series of
forced-choice questions wherein each question
provides a premise and two viable cause or ef-
fect scenarios. The correct answer is the cause
or effect that is the most plausible. This paper
describes the COPACETIC system developed
by the University of Texas at Dallas (UTD) for
this task. We approach this task by casting it
as a classification problem and using features
derived from bigram co-occurrences, TimeML
temporal links between events, single-word po-
larities from the Harvard General Inquirer, and
causal syntactic dependency structures within
the gigaword corpus. Additionally, we show
that although each of these components im-
proves our score for this evaluation, the dif-
ference in accuracy between using all of these
features and using bigram co-occurrence infor-
mation alone is not statistically significant.

1 The Problem

“The surfer caught the wave.” This statement, al-
though almost tautological for human understanding,
requires a considerable depth of semantic reasoning.
What is a surfer? What does it mean to “catch a
wave”? How are these concepts related? What if
we want to ascertain, given that the surfer caught the
wave, whether the most likely next event is that “the
wave carried her to the shore” or that “she paddled her
board into the ocean”? This type of causal and tempo-
ral reasoning requires a breadth of world-knowledge,
often called commonsense understanding.

Question 15 (Find the EFFECT)
Premise: I poured water on my sleeping friend.
Alternative 1: My friend awoke.
Alternative 2: My friend snored.

Question 379 (Find the CAUSE)
Premise: The man closed the umbrella.
Alternative 1: He got out of the car.
Alternative 2: He approached the building.

Figure 1: An example of each type of question, one target-
ing an effect, and another targeting a cause.

The seventh task of SemEval-2012 evaluates pre-
cisely this type of cogitation. COPA: Choice of Plau-
sible Alternatives presents 1,0001 sets of two-choice
questions (presented as a premise and two alterna-
tives) provided in simple English sentences. The
goal for each question is to choose the most plausible
cause or effect entailed by the premise (the dataset
provided an equal distribution of cause and effect
targetting questions). Additionally, each question is
labeled so as to describe whether the answer should
be a cause or an effect, as indicated in Figure 1.

The topics of these questions were drawn from two
sources:

1. Randomly selected accounts of personal stories
taken from a collection of Internet weblogs (Gor-
don and Swanson, 2009).

2. Randomly selected subject terms from the Li-
brary of Congress Thesaurus for Graphic Mate-
rials (of Congress. Prints et al., 1980).

Additionally, the incorrect alternatives were authored
1This data set was split into a 500 question development (or

training) set and a 500 question test set.
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Figure 2: Architecture of the COPACETIC System

with the intent of impeding “purely associative meth-
ods” (Roemmele et al., 2011). The task aims to
evaluate the state of commonsense causal reasoning
(Roemmele et al., 2011).

2 System Architecture

Given a question, such as Question 15 (as shown
in Figure 1), our system selects the most plausible
alternative by using the output of an SVM classifier,
trained on the 500 provided development questions
and tested on the 500 provided test questions. The
classifier operates with features describing informa-
tion extracted from the processing of the question’s
premise and alternatives. As illustrated by Figure 2,
the preprocessing involves part of speech (POS) tag-
ging, and syntactic dependency parsing provided
by the Stanford parser (Klein and Manning, 2003;
Toutanova et al., 2003), multi-word expression detec-
tion using Wikipedia, automatic TimeML annotation
using TARSQI (Verhagen et al., 2005; Pustejovsky
et al., 2003), and Brown clustering as provided in
(Turian, 2010).

The architecture of the COPACETIC system is di-
vided into offline (independent of any question) and
online (question dependent) processing. The online
aspect of our system inspects each question using
an SVM and selects the most likely alternative. Our
system’s offline functions focus on pre-processing
resources so that they may be used by components

of the online aspect of our system. In the next sec-
tion, we describe the offline processing upon which
our system is built, and in the following section, the
online manner in which we evaluate each question.

2.1 Offline Processing

Because the questions presented in this task require
a wealth of commonsense knowledge, we first ex-
tracted commonsense and temporal facts. This sub-
section describes the process of mining this informa-
tion from the fourth edition of the English Gigaword
corpus2 (Parker et al., 2009).

We collected commonsense facts by extracting
cause and effect pairs using twenty-four hand-crafted
patterns. Rather than lexical patterns, we used pat-
terns over syntactic dependency structures in order
to capture the syntactic role each word plays. Fig-
ure 3 illuminates two examples of the dependency
structures encoded by our causal patterns. Causal
Pattern 1 captures all cases of causality indicated by
the verb causes, while Causal Pattern 2 illustrates a
more sophisticated pattern, in which the phrasal verb
brought on indicates causality.

In order to extract this information, we first parsed
the syntactic dependence structure of each sentence
using the Stanford parser (Klein and Manning, 2003).
Next, we loaded each sentence’s dependence tree

2The LDC Catalog number of the English Gigaword Fourth
Edition corpus is LDC2009T13.
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CAUSAL PATTERN 1:

"causes"

?cause

nsubj

?effect

dobj

CAUSAL PATTERN 2:

"brought"

?cause

nsubj

"on"

prep

?effect

pobj

Figure 3: The dependency structures associated with
the causal patterns: ?cause “causes” ?effect, and
?cause “brought on” ?effect.

into the RDF3X (Neumann and Weikum, 2008)
implementation of an RDF3 database. Then, we
represented our dependency structures using in the
SPARQL4query language and extracted cause and
effect pairs by issuing SPARQL queries against the
RDF3X database. We used SPARQL and RDF repre-
sentations because they allowed us to easily represent
and reason over graphical structures, such as those of
our dependency trees.

It has been shown that causality often manifests as
a temporal relation (Bethard, 2008; Bethard and Mar-
tin, 2008). The questions presented in this task are
no exception: many of the alternative-premise pairs
necessitate temporal understanding. For example,
consider question 63 provided in Figure 4.

Question 63 (Find the EFFECT)
Premise: The man removed his coat.
Alternative 1: He entered the house.
Alternative 2: He loosened his tie.

Figure 4: Example question 63, which illustrates the ne-
cessity for temporal reasoning.

3The Resource Description Framework (RDF) is is a spec-
ification from the W3C. Information on RDF is available at
http://www.w3.org/RDF/.

3The SPARQL Query Language is defined at http://www.
w3.org/TR/rdf-sparql-query/. An examples of the
WHERE clause for a SPARQL query associated with the brought
on pattern from Figure 3 is provided below:

{ ?a <nsubj> ?cause ;
<token> "brought" ;
<prep> ?b .

?b <token> "on" ;
<pobj> ?effect . }

In order to extract this temporal information, we
automatically annotated our corpus with TimeML
annotations using the TARSQI Toolkit (Verhagen
et al., 2005). Unfortunately, the events represented
in this corpus were too sparse to use directly. To
mitigate this sparsity, we clustered events using the
3,200 Brown clusters5 described in (Turian, 2010).

After all such offline processing has been com-
pleted, we incorporate the knowledge encoded by
this processing in the online components of our sys-
tem (online preprocessing, and feature extraction) as
described in the following section.

2.2 Online Processing

We cast the task of selecting the most plausible al-
ternative as a classification problem, using a support
vector machine (SVM) supervised classifier (using
a linear kernel). To this end, we pre-process each
question for lexical information. We extract parts
of speech (POS) and syntactic dependencies using
the Stanford CoreNLP parser (Klein and Manning,
2003; Toutanova et al., 2003). Stopwords are re-
moved using a manually curated list of one hundred
and one common stopwords; non-content words (de-
fined as words whose POS is not a noun, verb, or
adjective) are also discarded. Additionally, we ex-
tract multi-word expressions (noun collocations6 and
phrasal verbs7). Finally, in order to utilize our of-
fline TimeML annotations, we extract events using
POS. Examples of the retained content words are
underlined in Figures 5, 6, 7 and 8.

After preprocessing each question, we convert
it into two premise-alternative pairs (PREMISE-
ALTERNATIVE1, and PREMISE-ALTERNATIVE2).
For each of these pairs, we attempt to form a bridge
from the causal sentence to the effect sentence, with-
out distinction over whether the cause or effect origi-
nated from the premise or the alternative. This bridge
is provided by four measures, or features, described
in the following section.

5These clusters are available at http://metaoptimize.
com/projects/wordreprs/.

6These were detected using a list of English Wikipedia ar-
ticle titles available at http://dumps.wikimedia.org/
backup-index.html.

7Phrasal verbs were determined using a list avail-
able at http://www.learn-english-today.com/
phrasal-verbs/phrasal-verb-list.htm.
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3 The Features of the COPACETIC
System

In determining the causal relatedness between a cause
and an effect sentence, we utilize four features. Each
feature calculates a value indicating the perceived
strength of the causal relationship between a cause
and an effect using a different measure of causality.
The four features used by our COPACETIC system
are described in the following subsections.

3.1 Bigram Relatedness

Our first feature measures the degree of relatedness
between all pairs of bigrams (at the token level) in the
cause and effect pair. We do this by calculating the
point-wise mutual Information (PMI) (Fano, 1961)
for all bigram combinations between the candidate
alternative and its premise in the English Gigaword
corpus (Parker et al., 2009) as shown in Equation 1.

PMI(x; y) ≡ log
p(x, y)

p(x)p(y)
(1)

Under the assumption that distance words are un-
likely to causally influence each other, we only con-
sider co-occurrences within a window of one hundred
tokens when calculating the joint probability of the
PMI. Additionally, we allow for up to two tokens
to occur within a single bigram’s occurrence (e.g.
the phrase pierced her ears would be considered a
match for the bigram pierced ears ). Although these
relaxations skew the values of our calculated PMIs
by artificially lowering the joint probability, we are
only concerned with how the values compare to each
other. Note that because we employ no smoothing,
the PMI of an unseen bigram is set to zero. The max-
imum PMI over all pairs of bigrams is retained as the
value for this feature. Figure 5 illustrates this feature
for Question 495.

3.2 Temporal Relatedness

Although most of the questions in this task focus on
causal relationships, for many questions, the nature
of this causal relationship manifests instead as a tem-
poral one (Bethard and Martin, 2008; Bethard, 2008).
We use temporal link information from TimeML
(Pustejovsky et al., 2005; Pustejovsky et al., 2003)
annotations on our corpus to determine how tempo-
rally related a given cause and effect sentence are.

Question 495 (Find the EFFECT)
Premise: The girl wanted to wear earrings.
Alternative 1: She got her ears pierced.
Alternative 2: She got a tattoo.

Alternative 1 Alternative 2
PMI(wear earrings, pierced ears) = -10.928 PMI(wear earrings, tattoo) = -12.77
PMI(wanted wear, pierced ears) = -13.284 PMI(wanted wear, tattoo) = -14.284
PMI(girl wanted, pierced ears) = -13.437 PMI(girl wanted, tattoo) = -14.762
PMI(girl, pierced ears) = -15.711 PMI(girl, tattoo) = -14.859
Maximum PMI = -10.928 Maximum PMI = -12.77

Figure 5: Example PMI values for bigrams and unigrams
(with content words underlined). Alternative 1 is correctly
chosen as it has largest maxi mum PMI.

This is accomplished by using the point-wise mutual
information (PMI) between all pairs of events from
the cause to the effect (see Equation 1). We define
the relevant probabilities as follows:

• The joint probability (P (x, y)) of a cause and
effect event is defined as the number of times
the cause event participates in a temporal link
ending with the effect event.
• The probability of a cause event (P (x)) is de-

fined as the number of times the cause event
precipitates a temporal link to any event.
• The probability of an effect event (P (y)) is de-

fined as the number of times the effect event
ends a temporal link begun by any event.

We define the PMI to be zero for any unseen pair of
events (and for any pairs involving an unseen event).
The summation of all pairs of PMIs is used as the
value of this feature. Figure 6 shows how this feature
behaves.

Question 468 (Find the CAUSE)
Premise: The dog barked.
Alternative 1: The cat lounged on the couch.
Alternative 2: A knock sounded at the door.

Alternative 1 Alternative 2
PMI(lounge, bark) = 5.60436 PMI(knock, bark) = 5.77867

PMI(sound, bark) = 5.26971

Figure 6: Example temporal PMI values (with content
words underlined). Alternative 2 is correctly chosen as it
has the highest summation.

3.3 Causal Dependency Structures
We attempted to capture the degree of direct causal re-
latedness between a cause sentence and an effect sen-
tence. To determine the strength of this relationship,
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we considered how often phrases from the cause and
effect sentences occur within a causal dependency
structure. We detect this through the use of twenty-
four8 manually crafted causal patterns (described in
Section 2.1). The alternative that has the maximum
number of matched dependency structures with the
premise is retained as the correct choice. Figure 7
illustrates this feature.

Question 490 (Find the EFFECT)
Premise: The man won the lottery.
Alternative 1: He became rich.
Alternative 2: He owed money.

Alternative 1 Alternative 2
won→ rich = 15 won→ owed = 5

Figure 7: Example casual dependency matches (with con-
tent words underlined). Alternative 1 is correctly selected
because more patterns extracted “won” causing “rich” than
“won” causing “owed”.

3.4 Polarity Comparison
We observed that many of the questions involve the
dilemma of determining whether a positive premise
is more related to a positive or negative alternative
(and vice-versa). This differs from sentiment analysis
in that rather than determining if a sentence expresses
a negative statement or view, we instead desire the
overall sentimental connotation of a sentence (and
thus of each word). For example, the premise from
Question 494 (Figure 8) is “the woman became fa-
mous.” Although this sentence makes no positive or
negative claims about the woman, the word “famous”
– when considered on its own – implies positive con-
notations.

We capture this information using the Harvard
General Inquirer (Stone et al., 1966). Originally de-
veloped in 1966, the Harvard General Inquirer pro-
vides a mapping from English words to their polarity
(POSITIVE, or NEGATIVE). For example, it de-
notes the word “abandon” as NEGATIVE, and the
word “abound” as POSITIVE. We use this informa-
tion by summing the score for all words in a sen-
tence (assigning POSITIVE words a score of 1.0,
NEGATIVE words a score of -1.0, and NEUTRAL or
unseen words a score of 0.0). The difference between

8Twenty-four patterns was deemed sufficient due to time
constraints.

these scores between the cause sentence and the ef-
fect sentence is used as the value of this feature. This
feature is illustrated in Figure 8.

Question 494 (Find the CAUSE)
Premise: The woman became famous.
Alternative 1: Photographers followed her.
Alternative 2: Her family avoided her.

Premise Alternative 1 Alternative 2
famous POSITIVE 1.0 follow NEUTRAL 0.0 avoid NEGATIVE−1.0

photographer NEUTRAL 0.0 family NEUTRAL 0.0
Sum 1.0 Sum 0.0 Sum −1.0

Figure 8: Example polarity comparison (with content
words underlined). Alternative 1 is correctly chosen as it
has the least difference from the score of the premise.

4 Results

The COPA task of SemEval-2012 provided partici-
pants with 1,000 causal questions, divided into 500
questions for development or training, and 500 ques-
tions for testing. We submitted two systems to the
COPA Evaluation for SemEval-2012, both of which
are trained on the 500 development questions. Our
first system uses only the bigram PMI feature and is
denoted as bigram pmi. Our second system uses
all four features and is denoted as svm combined.
The accuracy of our two systems on the 500 provided
test questions is provided in Table 1 (Gordon et al.,
2012). On this task, accuracy is defined as the quo-
tient of dividing the number of questions for which
the correct alternative was chosen by the number of
questions. Although multiple groups registered, ours
were the only submitted results. Note that the differ-
ence in performance between our two systems is not
statistically significant (p = 0.411) (Gordon et al.,
2012).

Team ID System ID Score
UTDHLT bigram pmi 0.618
UTDHLT svm combined 0.634

Table 1: Accuracy of submitted systems

The primary hindrance to our approach is in com-
bining each feature – that is, determining the con-
fidence of each feature’s judgement. Because the
questions vary significantly in their subject matter
and the nature of the causal relationship between
given causes and effects, a single approach is unlikely
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to satisfy all scenarios. Unfortunately, the problem
of determining which feature best applies to a give
question requires non-trivial reasoning over implicit
semantics between the premise and alternatives.

5 Conclusion

This evaluation has shown that although common-
sense causal reasoning is trivial for humans, it belies
deep semantic reasoning and necessitates a breadth of
world knowledge. Additional progress towards cap-
turing world knowledge by leveraging a large number
of cross-domain knowledge resources is necessary.
Moreover, distilling information not specific to any
domain – that is, a means of inferring basic and fun-
damental information about the world – is not only
necessary but paramount to the success of any fu-
ture system desiring to build chains of commonsense
or causal reasoning. At this point, we are merely
approximating such possible distillation.
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Abstract

We describe the Heidelberg University system
for the Cross-lingual Textual Entailment task
at SemEval-2012. The system relies on fea-
tures extracted with statistical machine trans-
lation methods and tools, combining mono-
lingual and cross-lingual word alignments
as well as standard textual entailment dis-
tance and bag-of-words features in a statisti-
cal learning framework. We learn separate bi-
nary classifiers for each entailment direction
and combine them to obtain four entailment
relations. Our system yielded the best overall
score for three out of four language pairs.

1 Introduction

Cross-lingual textual entailment (CLTE) (Mehdad et
al., 2010) is an extension of textual entailment (TE)
(Dagan and Glickman, 2004). The task of recog-
nizing entailment is to determine whether a hypoth-
esis H can be semantically inferred from a text T .
The CLTE task adds a cross-lingual dimension to the
problem by considering sentence pairs, where T and
H are in different languages. The SemEval-2012
CLTE task (Negri et al., 2012) asks participants to
judge entailment pairs in four language combina-
tions1, defining four target entailment relations, for-
ward, backward, bidirectional and no entailment.

We investigate this problem in a statistical learn-
ing framework, which allows us to combine cross-
lingual word alignment features as well as common

1Spanish-English (es-en), Italian-English (it-en), French-
English (fr-en) and German-English (de-en).

monolingual entailment metrics, such as bag-of-
words overlap, edit distance and monolingual align-
ments on translations of T and H , using standard
statistical machine translation (SMT) tools and re-
sources. Our goal is to address this task without deep
processing components to make it easily portable
across languages. We argue that the cross-lingual
entailment task can benefit from direct alignments
between T and H , since a large amount of bilin-
gual parallel data is available, which naturally mod-
els synonymy and paraphrasing across languages.

2 Related Work

With the yearly Recognizing Textual Entailment
(RTE) challenge (Dagan et al., 2006), there has been
a lot of work on monolingual TE. We therefore in-
clude established monolingual features in our ap-
proach, such as alignment scores (MacCartney et
al., 2008), edit distance and bag-of-words lexical
overlap measures (Kouylekov and Negri, 2010). So
far, the only work on CLTE that we are aware of is
Mehdad et al. (2010), where the problem is reduced
to monolingual entailment using machine transla-
tion, and Mehdad et al. (2011), which exploits par-
allel corpora for generating features based on phrase
alignments as input to an SVM. Our approach com-
bines ideas from both, mostly resembling Mehdad
et al. (2011). There are, however, several differ-
ences; we use word translation probabilities instead
of phrase tables and model monolingual and cross-
lingual alignment separately. We also include addi-
tional similarity measures derived from the MT eval-
uation metric Meteor, which was used in Volokh and
Neumann (2011) for the monolingual TE task. Con-
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versely, Padó et al. (2009) showed that textual entail-
ment features can be used for measuring MT quality,
indicating a strong relatedness of the two problems.

The CLTE task is also related to the problem of
identifying parallel sentence pairs in a non-parallel
corpus, so we adapt alignment-based features from
Munteanu and Marcu (2005), where a Maximum
Entropy classifier was used to judge if two sentences
are sufficiently parallel.

Regarding the view on entailment, MacCartney
and Manning (2007) proposed the decomposition
of top-level entailment, such as equivalence (which
corresponds to the CLTE bidirectional class), into
atomic forward and backward entailment predic-
tions, which is mirrored in our multi-label approach
with two binary classifiers.

3 SMT Features for CLTE

The SemEval-2012 CLTE task emerges from the
monolingual RTE task; however the perception of
entailment differs slightly. In CLTE, the sentences
T1 and T2 are of roughly the same length and the
entailment is predicted in both directions. Negri et
al. (2011) states that the CLTE pairs were created
by paraphrasing an English sentence E and leaving
out or adding information to construct a modified
sentence E′, which was then translated into a dif-
ferent language2, yielding sentence F and thus cre-
ating a bilingual entailment pair. For this reason,
we believe that our system should be less inference-
oriented than some previous RTE systems and rather
should capture

• paraphrases and synonymy to identify semantic
equivalence,

• phrases that have no matching correspondent in
the other sentence, indicating missing (respec-
tively, additional) information.

To this end, we define a number of similarity
metrics based on different views on the data pairs,
which we combine as features in a statistical learn-
ing framework. Our features are both cross- and
monolingual. We obtain monolingual pairs by trans-
lating the English sentence E into the foreign lan-

2We refer to the non-English language sentence as F .

guage, yielding T (E) and vice versa T (F ) from F ,
using Google Translate3.

3.1 Token ratio features

A first indicator for additional or missing informa-
tion are simple token ratio features, i.e. the fraction
of the number of tokens in T1 and T2. We define
three token ratio measures:

• English-to-Foreign, |E||F |

• English-to-English-Translation, |E|
|T (F )|

• Foreign-to-Foreign-Translation, |T (E)|
|F |

3.2 Bag-of-words and distance features

Typical similarity measures used in monolingual
TE are lexical overlap metrics, computed on bag-
of-words representations of both sentences. We
use the following similarities, computing both
sim(E, T (F )) and sim(F, T (E)).

• Jaccard coefficient, sim(A, B) = |A∩B|
|A∪B|

• Overlap coefficient, sim(A, B) = |A∩B|
min(|A|,|B|)

We also compute the lexical overlap on bigrams
and trigrams.

In addition, we include a simple distance measure
based on string edit distance ed, summing up over
all distances between every token a in A and its most
similar token b in B, where we assume that the cor-
responding token is the one with the smallest edit
distance:

• dist(A, B) = log
∑
a∈A

min
b∈B

ed(a, b)

3.3 Meteor features

The Meteor scoring tool (Denkowski and Lavie,
2011) for evaluating the output of statistical machine
translation systems can be used to calculate the simi-
larity of two sentences in the same language. Meteor
uses stemming, paraphrase tables and synonym col-
lections to align words between the two sentences
and scores the resulting alignment. We include the
overall weighted Meteor score both for (E, T (F ))

3http://translate.google.com/
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and (F, T (E))4 as well as separate alignment preci-
sion, recall and fragmentation scores for (E, T (F )).

3.4 Monolingual alignment features
We use the alignments output by the Meteor-1.3
scorer for (E, T (F ))5 to calculate the following
metrics:

• number of unaligned words

• percentage of aligned words

• length of the longest unaligned subsequence

3.5 Cross-lingual alignment features
We calculate IBM model 1 word alignments (Brown
et al., 1993) with GIZA++ (Och and Ney, 2003) on
a data set concatenated from Europarl-v66 (Koehn,
2005) and a bilingual dictionary obtained from
dict.cc7 for coverage. We then heuristically align
each word e in E with the word f in F for which we
find the highest word translation probability p(e|f)
and vice versa. Words for which no translation is
found are considered unaligned. From this align-
ment a, we derive the following features both for
E and F (resulting in a total of eight cross-lingual
alignment features):

• number of unaligned words

• percentage of aligned words

• alignment score 1
|E|

∑
e∈E

p(e|a(e))

• length of the longest unaligned subsequence

4 Classification

To account for the different data ranges, we normal-
ized all feature value distributions to the normal dis-
tribution N (0, 1

3), so that 99% of the feature values
are in [−1, 1]. We employed SVMlight (Joachims,
1999) for learning different classifiers to output the
four entailment classes. We submitted a second

4Meteor-1.3 supports English, Spanish, French and German.
We used the Spanish version for scoring Italian, since those lan-
guages are related.

5Since the synonymy module is only available for English,
we do not use the alignment of (F, T (E)).

6http://www.statmt.org/europarl/
7http://www.dict.cc/

T1 → T2 T2 → T1 entailment
1 1 bidirectional
1 0 forward
0 1 backward
0 0 no entailment

Table 1: Combination of atomic entailment relations.

run to evaluate our recently implemented stochastic
learning toolkit Sol (Fendrich, 2012), which imple-
ments binary, multi-class, and multi-label classifica-
tion.

For development, we split the training set in two
parts, which were alternatingly used as training and
test set. We first experimented with a multi-class
classifier that learned all four entailment classes at
once. However, although the task defines four tar-
get entailment relations, those can be broken down
into two atomic relations, namely directional entail-
ment from T1 to T2 and from T2 to T1 (table 1). We
therefore learned a binary classifier for each atomic
entailment relation and combined the output to ob-
tain the final entailment class. We found this view to
be a much better fit for the problem, improving the
accuracy score on the development set by more than
10 percentage points (table 2). This two-classifiers
approach can also be seen as a variant of multi-label
learning, with the two atomic entailment relations
as labels. We therefore also trained a direct imple-
mentation of multi-label classification. Although it
substantially outperformed the multi-class approach,
the system yielded considerably lower scores than
the version using two binary classifiers.

5 Results

The accuracy scores of our two runs on the
SemEval-2012 CLTE test set are presented in ta-
ble 3. Our system performed best out of ten sys-
tems for the language pairs es-en and de-en and tied
in first place for fr-en. For it-en, our system came
in second. Regarding the choice of the learner, our
toolkit slightly outperformed SVMlight on three of
the four language pairs.

To determine the contribution of different fea-
ture types for each language combination, we per-
formed ablation tests on the development set, where
we switched off groups of features and measured the
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es-en it-en fr-en de-en
multi-class 0.47 0.456 0.466 0.458
multi-label 0.586 0.526 0.568 0.522
2× binary 0.646 0.614 0.628 0.588

Table 2: Different classifiers on development set.

es-en it-en fr-en de-en
SVMlight 0.630 0.554 0.564 0.558
Sol 0.632 0.562 0.570 0.552

Table 3: Results on test set.

impact on the accuracy score (table 4). We assessed
the statistical significance of differences in score
with an approximate randomization test8 (Noreen,
1989), indicating a significant impact in bold font.
The results show that only in two cases a single fea-
ture group significantly impacts the score, namely
the Meteor score features for es-en and the cross-
lingual alignment features for de-en. However, no
feature group hurts the score either, since negative
variations in score are not significant. To ensure
that the different feature groups actually express di-
verse information, we also evaluated our system us-
ing only one group of features at a time. The re-
sults confirm the most significant feature type for
each language pair, but even the best-scoring feature
group for each pair always yielded scores 3-6 per-
centage points lower than the system with all feature
groups combined. We therefore conclude that the
combination of diverse features is one key aspect of
our system.

8Using a significance level of 0.05.

6 Conclusions

We have shown that SMT methods can be profitably
applied for the problem of CLTE and that combining
different feature types improves accuracy. Key to
our approach is furthermore the view of the four-
class entailment problem as a bidirectional binary or
multi-label problem. A possible explanation for the
superior performance of the multi-label approach is
that the overlap of the bidirectional entailment with
forward and backward entailment might confuse the
multi-class learner.

Regarding future work, we think that our results
can be improved by building on better alignments,
i.e. using more data for estimating cross-lingual
alignments and larger paraphrase tables. Further-
more, we would like to investigate more thoroughly
in what way the representation of the problem in
terms of machine learning impacts the system per-
formance on the task – in particular, why the two-
classifiers approach substantially outperforms the
multi-label implementation.
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Abstract

This paper describes a new method for cross-
lingual textual entailment (CLTE) detection
based on machine translation (MT). We use
sub-segment translations from different MT
systems available online as a source of cross-
lingual knowledge. In this work we describe
and evaluate different features derived from
these sub-segment translations, which are used
by a support vector machine classifier to detect
CLTEs. We presented this system to the Se-
mEval 2012 task 8 obtaining an accuracy up to
59.8% on the English–Spanish test set, the sec-
ond best performing approach in the contest.

1 Introduction

Cross-lingual textual entailment (CLTE) detec-
tion (Mehdad et al., 2010) is an extension of the
textual entailment (TE) detection (Dagan et al., 2006)
problem. TE detection consists of finding out, for
two text fragments T and H in the same language,
whether T entails H from a semantic point of view
or not. CLTE presents a similar problem, but with T
and H written in different languages.

During the last years, many authors have focused
on resolving TE detection, as solutions to this prob-
lem have proved to be useful in many natural lan-
guage processing tasks, such as question answer-
ing (Harabagiu and Hickl, 2006) or machine trans-
lation (MT) (Mirkin et al., 2009; Padó et al., 2009).
Therefore, CLTE may also be useful for related tasks
in which more than one language is involved, such
as cross-lingual question answering or cross-lingual
information retrieval. Although CLTE detection is
a relatively new problem, it has already been tack-
led. Mehdad et al. (2010) propose to use machine

translation (MT) to translate H from LH , the lan-
guage of H , into LT , the language of T , and then use
any of the state-of-the-art TE approaches. In a later
work (Mehdad et al., 2011), the authors use MT, but
in a more elaborate way. They train a phrase-based
statistical MT (PBSMT) system (Koehn et al., 2003)
translating from LH to LT , and use the translation
table obtained as a by-product of the training process
to extract a set of features which are processed by a
support vector machine classifier (Theodoridis and
Koutroumbas, 2009, Sect. 3.7) to decide whether T
entails H or not. Castillo (2011) discusses another
machine learning approach in which the features are
obtained from semantic similarity measures based on
WordNet (Miller, 1995).

In this work we present a new approach to tackle
the problem of CLTE detection using a machine learn-
ing approach, partly inspired by that of Mehdad et
al. (2011). Our method uses MT as a source of infor-
mation to detect semantic relationships between T
and H . To do so, we firstly split both T and H into
all the possible sub-segments with lengths between 1
and L, the maximum length, measured in words. We
then translate the set of sub-segments from T into
LH , and vice versa, and collect all the sub-segment
pairs in a single set. We claim that when T -side
sub-segments match T and their corresponding H-
side sub-segments match H , this reveals a semantic
relationship between them, which can be used to de-
termine whether T entails H or not. Note that MT
is used as a black box, i.e. sub-segment translations
may be collected from any MT system, and that our
approach could even use any other sources of bilin-
gual sub-sentential information. It is even possible
to combine different MT systems as we do in our
experiments. This is a key point of our work, since
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it uses MT in a more elaborate way than Mehdad et
al. (2010), and it does not depend on a specific MT
approach. Another important difference between this
work and that of Mehdad et al. (2011) is the set of
features used for classification.

The paper is organized as follows: Section 2 de-
scribes the method used to collect the MT informa-
tion and obtain the features; Section 3 explains the
experimental framework; Section 4 shows the results
obtained for the different features combination pro-
posed; the paper ends with concluding remarks.

2 Features from machine translation

Our approach uses MT as a black box to detect par-
allelisms between the text fragments T and H by
following these steps:

1. T is segmented in all possible sub-segments
tm+p−1
m of length p with 1 ≤ p ≤ L and 1 ≤

m ≤ |T | − p + 1, where L is the maximum
sub-segment length allowed. Analogously, H is
segmented to get all the possible sub-segments
hn+q−1

n of length q, with 1 ≤ q ≤ L and 1 ≤
n ≤ |T | − q + 1.

2. The sub-segments obtained from T are trans-
lated using all the available MT systems into
LH . Analogously, the sub-segments from H
are translated into LT , to generate a set of sub-
segment pairs (t, h).

3. Those pairs of sub-segments (t, h) such that t is
a sub-string of T and h is a sub-string of H are
annotated as sub-segment links.

Note that it could be possible to use statistical MT to
translate both T and H and then use word alignments
to obtain the sub-segment links. However, we use this
methodology to ensure that any kind of MT system
can be used by our approach. As a result of this
process, a sub-segment in T may be linked to more
than one sub-segment in H , and vice versa. Based
on these sub-segment links we have designed a set of
features which may be used by a classifier for CLTE.

2.1 Basic features [Bas]
We used a set of basic features to represent the infor-
mation from the sub-segment links between T and H ,
which are computed as the fraction of words in each
of them covered by linked sub-segments of length

l ∈ [1, L]. We define the feature function Fl(S),
applied on a text fragment S (either T or H) as:

Fl(S) = Cov(S, l)/|S|

where Cov(S, l) is a function which obtains the num-
ber of words in S covered by at least one sub-segment
of length l which is part of a sub-segment link. An
additional feature is computed to represent the total
proportion of words in each text fragment:

Ftotal(S) = Cov(S, ∗)/|S|

where Cov(S, ∗) is the same as Cov(S, l) but using
sub-segments of any length up to L. Ftotal(S) pro-
vide information about overlapping that Fl(S) can-
not grasp. For instance, if we have F1(T ) = 0.5 and
F2(T ) = 0.5, we cannot know if the sub-segments
of l = 1 and l = 2 are covering the same or different
words, so Ftotal(S) represents the actual proportion
of words covered in a text fragment S. These fea-
ture functions are applied both on T and H , thus
obtaining a set of 2 ∗ L + 2 features, henceforth Bas.

2.2 Extensions to the basic features
Some extensions can be made to the basic features
defined above by using additional external resources.
In this section we propose two extensions.

Separate analysis of function words and content
words [Spl]. In this case, features represent, sepa-
rately, function words, with poor lexical information,
and content words, with richer lexical and seman-
tic information. In this way, Fl(S) is divided into
FFl(S) and CFl(S) defined as:

FFl(S) = CovF(S, l)/|FW(S)|

and
CFl(S) = CovC(S, l)/|CW(S)|

where FW(S) is a function that returns the func-
tion words in text fragment S and CW(S) per-
forms the same task for content words. Analogously,
CovF(S, l) and CovC(S, l) are versions of Cov(S, l)
which only consider function and content words, re-
spectively. This extension can be also be applied to
Ftotal(T ) and Ftotal(H). The set of 4L + 4 features
obtained in this way (henceforth Spl) allows the clas-
sifier to use the information from the most relevant
words in T and H to detect entailment.
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Stemming [Stm and SplStm]. Stemming can also
be used when detecting the sub-segment links. Both
the table of sub-segment pairs and the text fragment
pair (T ,H) are stemmed before matching. In this
way, conflicts of number or gender disagreement in
the translations can be overcome in order to detect
more sub-segment links. This new extension can
be applied both to Bas, obtaining the set of features
Stm, and to Spl, obtaining the set of features SplStm.
Although lemmatization could have been used, stem-
ming was preferred because it does not require the
part-of-speech ambiguity to be solved, which may
be difficult to solve when dealing with very short
sub-segments.

2.3 Additional features
Two additional features were defined unrelated with
the basic features proposed. The first one, called here
R, is the length ratio |T |/|H|. Intuitively we can
guess that if H is much longer than T it is unlikely
that T entails H .

The second additional set of features is the one
defined by Mehdad et al. (2011), so we will refer to
it as M . The corresponding feature function com-
putes, for the total number of sub-segments of a given
length l ∈ [1, L] obtained from a text fragment S, the
fraction of them which appear in a sub-segment link.
It is applied both to H and T and is defined as:

F ′l (S) = Linkedl(S)/(|S| − l + 1)

where Linkedl is the number of sub-segments from
S with length l which appear in a sub-segment link.

3 Experimental settings

The experiments designed for this task are aimed
at evaluating the features proposed in Section 2.
We evaluate our CLTE approach using the English–
Spanish data sets provided in the task 8 of SemEval
2012 (Negri et al., 2012).

Datasets. Two datasets were provided by the or-
ganization of SemEval 2012 (Negri et al., 2011): a
training set and a test set, both composed by a set
of 500 pairs of sentences. CLTE detection is evalu-
ated in both directions, so instances belong to one of
these four classes: forward (the sentence in Spanish
entails the one in English); backward (the sentence
in English entails the one in Spanish); bidirectional

(both sentences entail each other); and no entailment
(neither of the sentences entails each other).

For the whole data set, both sentences in each in-
stance were tokenized using the scripts1 included in
the Moses MT system (Koehn et al., 2007). Each sen-
tence was segmented to get all possible sub-segments
which were then translated into the other language.

External resources. We used three different MT
systems to translate the sub-segments from English
to Spanish, and vice versa:

• Apertium:2 a free/open-source platform for the
development of rule-based MT systems (For-
cada et al., 2011). We used the English–Spanish
MT system from the project’s repository3 (revi-
sion 34706).

• Google Translate:4 an online MT system by
Google Inc.

• Microsoft Translator:5 an online MT system by
Microsoft.

External resources were also used for the extended
features described in Section 2.2. We used the stem-
mer6 and the stopwords list provided by the SnowBall
project for Spanish7 and English.8

Classifier. We used the implementation of support
vector machine included in the WEKA v.3.6.6 data
mining software package (Hall et al., 2009) for multi-
class classification, and a polynomial kernel.

4 Results and discussion

We tried the different features proposed in Section 2
in isolation, and also different combinations of them.
Table 1 reports the accuracy for the different fea-
tures described in Section 2 on the test set using
sub-segments with lengths up to L = 6.9

1http://bit.ly/H4LNux
2http://www.apertium.org
3http://bit.ly/HCbn8a
4http://translate.google.com
5http://www.microsofttranslator.com
6http://bit.ly/H2HU97
7http://bit.ly/JMybmL
8http://bit.ly/Iwg9Vm
9All the results in this section are computed with L = 6,

which proved to be the value providing the best accuracy for the
dataset available after trying different values of L.
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Bas ∪ Spl ∪ Stm ∪ SplStm ∪M ∪R Bas ∪ Spl ∪M ∪R
Apertium Ap.+Go.+Mi. Apertium Ap.+Go.+Mi.
P R P R P R P R

Backward 64.3% 64.8% 64.5% 72.8% 59.1% 64.8% 57.3% 60.0%
Forward 65.5% 57.6% 68.9 % 56.8% 59.8% 56.0% 58.7% 59.2%

Bidirectional 57.7% 56.8% 56.6% 55.2% 43.7% 41.6% 42.5% 40.8%
No-entailment 47.5% 53.6% 50.7% 54.4% 42.5% 43.2% 44.7% 44.0%

Accuracy 58.2% 59.8% 51.4% 51.0%

Table 2: Precision (P) and recall (R) obtained by our approach for each of the four entailment classes and total accuracy
on the English–Spanish test set using different feature combinations and different MT systems: Apertium, and a
combination of Apertium, Google Translate, and Microsoft Translator (Ap.+Go.+Mi.).

Feature set Nf Accuracy
Bas 14 50.0%
Spl 28 56.0%
Stm 14 49.6%

SplStm 28 56.8%
R 1 45.8%
M 12 47.0%

Bas ∪ Spl 42 56.6%
Bas ∪ Stm 28 51.0%

Bas ∪ Spl ∪ Stm ∪ SplStm 84 57.4%
Bas ∪ Spl ∪M ∪R 41 58.2%
Bas ∪ Spl ∪ Stm ∪
∪ SplStm ∪M ∪R

97 59.8%

Table 1: Accuracy obtained by the system using the dif-
ferent feature sets proposed in Section 2 for the test set.
Nf is the number of features.

As can be seen, the features providing the best
results on accuracy are the SplStm features. In ad-
dition, results show that all versions of the basic
features (Bas, Spl, Stm, and SplStm) provide better
results than the M feature alone. Some combinations
of features are also reported in Table 1. Although
many combinations were tried, we only report the
results of the combinations of features performing
best because of lack of space.

As can be seen, both feature combinations Bas ∪
Spl and Bas ∪ Stm obtain higher accuracy than the
separated features. Combining all these features
Bas ∪ Spl ∪ Stm ∪ SplStm provide even better re-
sults, thus confirming some degree of orthogonality
between them. Combination Bas ∪ Spl ∪M ∪ R
obtains one of the best results, since it produces
an improvement of almost 1% over combination
Bas ∪ Spl ∪ Stm ∪ SplStm but using less than a
half of features. Combining all the features provides

the best accuracy as expected, so this seems to be the
best combination for the task.

Table 2 reports the results sent for the SemEval
2012 task 8. We chose feature combinations Bas ∪
Spl∪M ∪R and Bas∪Spl∪Stm∪SplStm∪M ∪
R since they are the best performing combinations.
We sent two runs of our method using all three MT
systems described in Section 3 and two more runs
using only sub-segment translations from Apertium.

From the ten teams presenting systems for the con-
test, only one overcomes our best result. Even the
results obtained using Apertium as the only MT sys-
tem overcome seven of the ten approaches presented.
This result confirms that state-of-the-art MT is a rich
source of information for CLTE detection.

5 Concluding remarks

In this paper we have described a new method for
CLTE detection which uses MT as a black-box source
of bilingual information. We experimented with dif-
ferent features which were evaluated with the datasets
for task 8 of SemEval 2012. We obtained up to 59.8%
of accuracy on the Spanish–English test set provided,
becoming the second best performing approach of
the contest. As future works, we are now preparing
experiments for other pairs of languages and we plan
to use weights to promote those translations coming
from more-reliable MT systems.
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Felipe Sánchez-Martı́nez, Gema Ramı́rez-Sánchez, and
Francis Tyers. 2011. Apertium: a free/open-source
platform for rule-based machine translation. Machine
Translation, 25(2):127–144.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. 2009.
The WEKA data mining software: an update. SIGKDD
Explorations Newsletter, 11(1):10–18.

Sanda Harabagiu and Andrew Hickl. 2006. Methods
for using textual entailment in open-domain question
answering. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th
Annual Meeting of the Association for Computational
Linguistics, pages 905–912, Sydney, Australia.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings of
the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on
Human Language Technology, pages 48–54, Edmonton,
Canada.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
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Abstract

This paper describes SimpLex,1 a Lexical
Simplification system that participated in the
English Lexical Simplification shared task at
SemEval-2012. It operates on the basis of
a linear weighted ranking function composed
of context sensitive and psycholinguistic fea-
tures. The system outperforms a very strong
baseline, and ranked first on the shared task.

1 Introduction

Lexical Simplification revolves around replacing
words by their simplest synonym in a context aware
fashion. It is similar in many respects to the task of
Lexical Substitution (McCarthy and Navigli, 2007)
in that it involves elements of selectional preference
on the basis of a central predefined criterion (sim-
plicity in the current case), as well as sensitivity to
context.

Lexical Simplification envisages principally a hu-
man target audience, and can greatly benefit chil-
dren, second language learners, people with low lit-
eracy levels or cognitive disabilities, and in general
facilitate the dissemination of knowledge to wider
audiences.

We experimented with a number of features that
we posited might be inherently linked with tex-
tual simplicity and selected the three that seemed
the most promising on an evaluation with the trial
dataset. These include contextual and psycholin-
guistic components. When combined using an SVM

1Developed by co-organizers of the shared task

ranker to build a model, such a model provides re-
sults that offer a statistically significant improve-
ment over a very strong context-independent base-
line. The system ranked first overall on the Lexical
Simplification task.

2 Related Work

Lexical Simplification has received considerably
less interest in the NLP community as compared
with Syntactic Simplification. However, there are
a number of notable works related to the topic.

In particular Yatskar et al. (2010) leverage the
relations between Simple Wikipedia and English
Wikipedia to extract simplification pairs. Biran et al.
(2011) extend this base methodology to apply lexi-
cal simplification to input sentences. De Belder and
Moens (2010), in contrast, provide a more general
architecture for the task, with scope for possible ex-
tension to other languages.

These studies and others have envisaged a range
of different target user groups including children
(De Belder and Moens, 2010), people with low liter-
acy levels (Aluisio et al., 2008) and aphasic readers
(Carroll et al., 1998).

The current work differs from previous research
in that it envisages a stand-alone lexical simpli-
fication system based on linguistically motivated
and cognitive principles within the framework of a
shared task. Its core methodology remains open to
integration into a larger Text Simplification system.

3 Task Setup

The English Lexical Simplification shared task at
SemEval-2012 (Specia et al., 2012) required sys-
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tems to rank a number of candidate substitutes
(which were provided beforehand) based on their
simplicity of usage in a given context. For example,
given the following context with an empty place-
holder, and its candidate substitutes:

Context: During the siege , George
Robertson had appointed Shuja-ul-Mulk,
who was a boy only 12 years old and
the youngest surviving son of Aman-ul-
Mulk, as the ruler of Chitral.

Candidates: {clever} {smart}
{intelligent} {bright}

a system is required to produce a ranking, e.g.:

System: {intelligent} {bright} {clever,
smart}

Note that ties were permitted and that all candi-
dates needed to be included in the system rankings.

4 The SimpLex Lexical Simplification
System

In an approach similar to what Hassan et al. (2007)
used for Lexical Substitution, SimpLex ranks can-
didates based on a weighted linear scoring function,
which has the generalized form:

s (cn,i) =
∑

m∈M

1

rm (cn,i)

where cn,i is the candidate substitute to be scored,
and each rm is a standalone ranking function that
attributes to each candidate its rank based on its
uniquely associated features. Based on this scoring,
candidates for context are ranked in descending or-
der of scores.

In the development of the system we experi-
mented with a number of these features including
ranking based on word length, number of syllables,
scoring with a 2-step cluster and rank architecture,
latent semantic analysis, and average point-wise mu-
tual information between the candidate and neigh-
boring words in the context.

However, the features which were intuitively the
simplest proved, in the end, to give the best results.
They were selected based on their superior perfor-
mance on the trial dataset and their competitiveness
with the strong Simple Frequency baseline. These
stand-alone features are described in what follows.

4.1 Adapted N-Gram Model
The motivation behind an n-gram model for Lexical
Simplification is that the task involves an inherent
WSD problem. This is because the same word may
be used with different senses (and consequently dif-
ferent levels of complexity) in different contexts.

A blind application of n-gram frequency search-
ing on the shared task’s dataset, however, gives sub-
optimal results because of two main factors:

1. Inconsistently lemmatized candidates.

2. Blind replacement of even correctly lemma-
tized forms in context producing ungrammat-
ical results.

We infer the correct inflection of all candidates for
a given context based on the appearance of the orig-
inal target word (which is also one of the candidate
substitutes) in context. To do this we run a part-of-
speech (POS) tagger on the source text and note the
POS of the target word. Then handcrafted rules are
used to correctly inflect the other candidates based
on this POS tag.

To resolve the issue of ungrammatical textual out-
put, we further use a simple approach of popping
words in close proximity to the placeholder and per-
forming n-gram searches on all possible query com-
binations. Take for instance the following example:

Context: He was away.

Candidates: {going} {leaving}

where “going” is evidently the original word in con-
text, but “leaving” has also been suggested as a sub-
stitute (there are many such cases in the datasets).
One of the possible outcomes of popping context
words leads to the correct sequence for the latter
substitute, i.e. “He was leaving” with the word
“away” having been popped.

The rationale behind this approach is that if one of
the combinations is grammatically correct, the num-
ber of n-gram hits it returns will far exceed those
returned by ungrammatical ones.

The n-gram (2 ≤ n ≤ 5) searches are performed
on the Google Web 1T corpus (Brants and Franz,
2006), and the number of hits is weighted by the
length of the n-gram search (such that longer se-
quences obtain higher weight). This may seem like
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a simplistic approach, especially when the candidate
words appear in long-distance dependency relations
to other parts of the sentence. However, it should be
noted that since the Web 1T corpus only consists of
n-grams with n ≤ 5, structures that contain longer
dependencies than this are in any case not consid-
ered, and hence do not interfere with local context.

4.2 Bag-of-Words Model

The limitations of performing queries on the Google
Web 1T are that n-grams hits must be in strict lin-
ear order of appearance. To overcome this diffi-
culty, we further mimic the functioning of a bag-
of-words model by taking all possible ordering of
words of a given n-gram sequence. This approach,
to some extent, gives the possibility of observing co-
occurrences of candidate and context words in vari-
ous orderings of appearance. This results in a num-
ber of inadequate query strings, but possibly a few
(as opposed to one in a linear n-gram search) good
word orderings with high hits as well.

As with the previous model, only n-grams with
2 ≤ n ≤ 5 are taken. For a given substitute the total
number of hits for all possible queries involving that
substitute are summed (with each hit being weighted
by the length of its corresponding query in words).
To obtain the final score, this sum is normalized by
the actual number of queries.

4.3 Psycholinguistic Feature Model

The MRC Psycholinguistic Database (Wilson, 1988)
and the Bristol Norms (Stadthagen-Gonzalez and
Davis, 2006) are knowledge repositories that asso-
ciate scores to words based on a number of psy-
cholinguistic features. The ones that we felt were
most pertinent to our study are:

1. Concreteness - the level of abstraction associ-
ated with the concept a word describes.

2. Imageability - the ability of a given word to
arouse mental images.

3. Familiarity - the frequency of exposure to a
word.

4. Age of Acquisition - the age at which a given
word is appropriated by a speaker.

We combined both databases and compiled a sin-
gle resource consisting of all the words from both
sources that list at least one of these features. It may
be noted that these attributes were compiled in simi-
lar fashion in both databases and were normalized to
the same scale of scores falling in the range of 100
to 700.

In spite of a combined compilation, the coverage
of the resource was poor, with more than half the
candidate substitutes on both trial and test sets sim-
ply not being listed in the databases. To overcome
this difficulty we introduced a fifth frequency feature
that essentially simulates the “Simple Frequency”
baseline, 2 but with scores that were normalized to
the same scale of the other psycholinguistic features.

This composite of features was used in a linear
weighted function with weights tuned to best perfor-
mance values on the trial dataset. This function sums
the weighted scores for each candidate, and normal-
izes this sum by the number of non-zero features (in
the worst-case scenario, – when no psycholinguistic
features are found – the scorer is equivalent to the
“Simple Frequency” baseline). It is interesting to
note that the frequency feature did not dominate the
linear combination; rather there was a nice interplay
of features with Concreteness, Imageability, Famil-
iarity, Age of Acquisition and Simple Frequency be-
ing weighted (on a scale of -1 to +1) as 0.72, -0.22,
0.87, 0.36 and 0.36, respectively.

4.4 Feature Combination

We combined the three standalone models using
the ranking function of the SVM-light package
(Joachims, 2006) for building SVM rankers. The pa-
rameters of the SVM were tuned on the trial dataset,
which consisted of only 300 example contexts. To
avoid overfitting, instead of taking the single best
parameters, we took parameter values that were the
average of the top 10 distinct runs.

It may be noted that the resulting model makes no
attempt to tie candidates, although actual ties may be
produced by chance. But since ties are rarely used
in the gold standard for the trial dataset, we reasoned
that this should not affect the system performance in
any significant way.

2The “Simple Frequency” baseline scores each substitute
based on the number of hits it produces in the Google Web 1T
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bline-SFreq w-ln n-syll psycho a-n-gram b-o-w pmi lsa SimpLex
Trial 0.398 0.176 0.118 0.388 0.397 0.395 0.340 0.089 –
Test 0.471 0.236 0.163 0.432 0.460 0.460 0.404 0.054 0.496

Table 1: Comparison of Models’ Scores

5 Results and Discussion

The results of the SimpLex system trained and tuned
on the trial set, in comparison with the Simple Fre-
quency baseline and the other stand-alone features
we experimented with are presented in Table 1. The
scores are computed through a version of the Kappa
index over pairwise rankings, and therefore repre-
sent the average agreement between the system and
the gold-standard annotation in the ranking of pairs
of candidate substitutes.

Table 1 shows that while in isolation the features
are unable to beat the Simple Frequency model, to-
gether they form a combination which outperforms
the baseline. The improvement of SimpLex over
the other models is statistically significant (statisti-
cal significance was established using a randomiza-
tion test with 1000 iterations and p-value ≤ 0.05).

We believe that the reason why the context aware
features were still unable to score better than the
context-independent baseline is the isolated focus
on simplifying a single target word. People tend
to produce language that contains words of roughly
equal levels of complexity. Hence in some cases
the surrounding context, instead of helping to dis-
ambiguate the target word, introduces further noise
to queries, especially when its individual component
words have skewed complexity factors. A simul-
taneous simplification of all the content words in a
context could be a possible solution to this problem.

As an additional experiment to assess the impor-
tance of the size of the training data in our simplifi-
cation system, we pooled together the trial and test
datasets, and ran several iterations of the combina-
tion algorithm with a regular increment of number of
training examples and noted the effects it produced
on eventual score. Three hundred examples were ap-
portioned consistently to a test set to maintain com-
parability between experiments. Note that this time,
no optimization of the SVM parameters was made.
The results were inconclusive, and contrary to ex-

pectation, revealed that there is no general improve-
ment with additional training data. This could be
because of the difficulty of the learning problem, for
which the scope of the combined dataset is still very
limited. A more detailed study with a corpus that is
orders of magnitude larger than the current one may
be necessary to establish conclusive evidence.

6 Conclusion

This paper presented our system SimpLex which
participated in the English Lexical Simplification
shared-task at SemEval-2012 and ranked first out of
9 participating systems.

Our findings showed that while a context agnostic
frequency approach to lexical simplification seems
to effectively model the problem of assessing word
complexity to a relatively decent level of accuracy,
as evidenced by the strong baseline of the shared
task, other elements, such as interplay of context
awareness with humanly perceived psycholinguistic
features can produce better results, in spite of very
limited training data.

Finally, a more global approach to lexical sim-
plification that concurrently addresses all the words
in a context to normalize simplicity levels, may be
a more realistic proposition for target applications,
and also help context aware features perform better.
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Abstract

In this paper, we describe the system we sub-
mitted to the SemEval-2012 Lexical Simplifi-
cation Task. Our system (mmSystem) com-
bines word frequency with decompositional
semantics criteria based on syntactic structure
in order to rank candidate substitutes of lexical
forms of arbitrary syntactic complexity (one-
word, multi-word, etc.) in descending order
of (cognitive) simplicity. We believe that the
proposed approach might help to shed light on
the interplay between linguistic features and
lexical complexity in general.

1 Introduction

Lexical simplification is a subtask of the more gen-
eral text simplification task which attempts at re-
ducing the cognitive complexity of a text so that
it can be (better) understood by a larger audience.
Text simplification has a wide range of applications
which includes applications for the elderly, learners
of a second language, children or people with cog-
nitive deficiencies, etc.

Works on text simplification mostly focus on re-
ducing the syntactic complexity of the text (Sid-
dharthan, 2011; Siddharthan, 2006) and only little
work has addressed the issue of lexical simplifica-
tion (Devlin, 1999; Carroll et al., 1999).

The Lexical Simplification Task (Specia et al.,
2012) proposed within the SemEval-2012 is the first
attempt to explore the nature of the lexical simpli-
fication more systematically. This task requires par-
ticipating systems, given a context and a target word,
to automatically generate a ranking of substitutes,

i.e. lexical forms conveying similar meanings to
the target word, such that cognitively simpler lexi-
cal forms are ranked higher than more difficult ones.

In this paper, we describe the system we sub-
mitted to the SemEval-2012 Lexical Simplification
Task. In order to rank the candidate substitutes of a
lexical form in descending order of simplicity, our
system (mmSystem) combines word frequency with
decompositional semantics criteria based on syntac-
tic structure. The mmSystem achieved an average
ranking if compared with the other participating sys-
tems and the baselines. We believe that the approach
proposed in this paper might help to shed light on
the interplay between linguistic features and cogni-
tive complexity in general.

2 The Lexical Simplification Task

The SemEval-2012 Lexical Simplification Task re-
quires participating systems to automatically gen-
erate a ranking of lexical forms conveying similar
meanings on cognitive simplicity criteria and can be
defined as follows. Given a short text C called the
context and which generally corresponds to a sen-
tence, a target word T and a list LS of candidate
substitutes for T , i.e. a list of quasi-synonyms of the
target word, the task for a system consists in pro-
viding a ranking on LS such that the original list of
substitutes is sorted over simplicity, from the cogni-
tively simplest to the cognitively most difficult lexi-
cal form.

As the examples from (1) to (3) show, the Lexical
Simplification Task includes substitutes of different
syntactic complexity which might vary from simple
one-word substitutes as in (1) (the lexical forms that
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can function as substitutes include content words,
i.e. nouns (n), verbs (v), adjectives (a) and adverbs
(r)) to collocations, negated forms as in (2) or even
definition-like paraphrases as for instance wind and
knock the breath out of in example (3).

(1)

C: He suggested building an experimental hy-
pertext ’web’ for the worldwide.a community
of physicists who used CERN and its publica-
tions.
T: worldwide.a
LS: worldwide, global, international

(2)

C: Go to hell! she remembers Paul yelling at
her shortly.r after their wedding.
T: shortly.r
LS: soon, a little, just, almost immediately,
shortly, not long

(3)

C: Now however she was falling through that
skylight, the strong dark figure that had ap-
peared out of nowhere falling through with her,
his arms tightly entwined about her, his shoul-
der having winded.v her.
T: winded.v
LS: knock her breathless, knock the wind out
of, choke, wind, knock the breath out of, knock
the air out of

The organizers of the Lexical Simplification Task
provide a corpus of 300 trial and 1710 test sentences
defining the context of the target word and the as-
sociated list of candidate substitutes. To produce a
gold standard, 5 human annotators manually ranked
the list of substitutes associated to each context. Fi-
nally, a scoring algorithm is provided for comput-
ing agreement between the output of the system and
the manually ranked gold standard. The scoring al-
gorithm is based on the Kappa measure for inter-
annotator agreement.

3 The mmSystem

Our aim by participating in the SemEval-2012 Lexi-
cal Simplification Task (Task 1) was to investigate

the nature of lexical simplicity/complexity and to
identify the linguistic features that are responsible
for it. The system we have developed is a first step
in this direction. The idea behind our framework
is the following. We build on previous work (De-
vlin, 1999; Carroll et al., 1999) that approximate
simplicity with word frequency, such that the cog-
nitively simpler lexical form is the one that is more
frequent in the language. While this definition might
easily apply to one-word substitutes or collocations,
it poses some problems in the case of multi-word-
expressions or of syntactically more complex lexi-
cal forms (e.g. definition like paraphrases) like those
proposed in the substitute lists in the SemEval-2012
Task 1.

Our approach builds on the baseline definition of
simplicity based on word frequency and integrates
it with (de)compositional semantics considerations.
Therefore, in order to operationalize the notion of
simplicity in our system we adopt different strategies
depending on the syntactic complexity of the lexical
form that forms the substitute.

• In the case of one-word substitutes or common
collocations we use the frequency associated by
WordNet (Fellbaum, 1998) to the lexical form
as a metric to rank the substitutes, i.e. the
substitute with the highest frequency is ranked
higher. For instance, the lexical item intelligent
is ranked lower than clever as it has a lower
frequency in the language (as defined in Word-
Net).

• In the case of multi-words or syntactic complex
substitutes, we apply so-called relevance rules.
Those are based on (de)compositional semantic
criteria and attempt to identify a unique content
word in the substitute that better approximates
the whole lexical form. Thus, we assign to the
whole lexical form the frequency associated to
this most relevant content word and use it for
ranking the whole substitute. For instance, rel-
evance rules assign to multi-word substitutes
such as most able or not able the same fre-
quency, and namely that associated with the
content word able.
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3.1 Implementation

In this section we describe in more details the im-
plementation of the mmSystem. The system design
can be summarized as follows.

Step 1: POS-Tagging In the first step, context and
the associated substitutes are parsed1 so to ob-
tain a flat representation of their syntax. Ba-
sically at this level, we collect Part-Of-Speech
information for all content words in the context
as well as in the substitute list.

Step 2: Relevance Rules In the second step, de-
pending on the syntactic representation of the
substitutes, the system selects a relevance rule
that identifies the one-word lexical form that
will be used for representing the meaning of the
whole substitute.

Step 3: Word Sense Tagging The system ap-
plies word sense tagging and assigns a Word-
Net sense to the target words and their can-
didate substitutes. In this step, we rely
on the SenseRelate::TargetWord package (Pat-
wardhan et al., 2005) and use the Lesk algo-
rithm (Lesk, 1986) for word sense disambigua-
tion.

Step 4: Substitute Ranking Following (Carroll et
al., 1999) that pointed out that rare words gen-
erally have only one sense, in order to associate
a frequency index to each candidate substitute
(wi), we use the number of senses associated
by WordNet to a lexical item of a given part
of speech, as an approximation of its frequency
(fi). Further, we extract from WordNet the fre-
quency of the word sense (fwnsi) associated to
the lexical item wi at step 3. Words not found in
WordNet it assigned a null frequency (fi = 0,
fwnsi = 0). Finally, we rank the substitute in
the following way:

• if f1 6= f2

w1 < w2, if f1 > f2 and
w2 < w1 otherwise,

• else if f1 = f2

w1 < w2, if fwns1 > fwns2 and
w2 < w1 otherwise.

Input:
Sentence 993: ”It is light.a and easy to use.”
Substitutes: portable;unheavy;not heavy;light
Step 1: POS-Tagging
portable#A; unheavy#A; not#Neg heavy#A; light#A
Step 2: Relevance Rules
portable#A; unheavy#A; heavy#A#; light#A
Step 3: WSD
portable#A#wns:2; unheavy#A#wns:?; heavy#A#wns:2;
light#A#wns:25
Step 4: Ranking
portable#f:2; unheavy#f:0; heavy#f:27; light#f:25
not heavy < light < portable < unheavy
Gold Ranking:
light < not heavy < portable < unheavy

Table 1: Example of mmSystem processing steps.

Table 1 shows an example of data processing.

3.2 Relevance Rules
Relying on previous work on compositional seman-
tics of multi-word-expression (Reddy et al., 2011;
Venkatapathy and Joshi, 2005; Baldwin et al., 2003)
we defined a set of hand-written rules to assign the
relevant meaning to a complex substitute. Relevance
rules are used to decompose the meaning of a com-
plex structure and identify the most relevant word
conveying the semantics of the whole, so that the
frequency associated to the whole lexical form is ap-
proximated by the frequency of this most relevant
form:

• a one-word lexical item is mapped to itself, e.g.
run.v → run.v

• a multi-word lexical form including only one
content word is mapped to this content word,
e.g. not.Neg nice.a→ nice.a or
be.Cop able.a→ able.a

• in the case of a multi-word lexical item includ-
ing more than one content word, we take into
account the syntactic structure of the lexical
item and apply heuristics to decide which con-
tent word is more relevant for the meaning of
the whole. The heuristics we used are based
on the empirical analysis of the trial data set
provided by the Task 1 organizers that contains

1We used the Stanford Parser (Klein and Manning, 2003).
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about 300 contexts. As an example consider a
lexical item including a verb construction with
structure V1 + to + V2 that is mapped by our
rules to the second verb form V2, e.g. try.V1 to
escape.V2 → escape.V2.

Table 2 shows some examples of relevance rules de-
fined in the mmSystem.

Syntax Example R Form
V + Prep engage for V
Cop + Adj be able Adj
Cop + V be worried V
Adv + V anxiously anticipate Adv
Adj+N adnormal growth Adj
N1 + N2 death penalty N1
N1 + PrepOf + N2 person of authority N2
V+N take notice N
V1+to+V2 try to escape V2

Table 2: Example of relevance rules.

These relevance rules allow for a preliminary in-
vestigation of the nature of lexical complexity. For
instance, we found that in many cases, it is the mod-
ifying element of a complex expression that is re-
sponsible for a shift in lexical complexity:

(4) a. lie<say falsely<say untruthfully

b. sample< typical sample < representative
sample

4 Results

The Task 1 overall result can be found in (Specia
et al., 2012). The mmSystem achieved an average
ranking (score=0.289) if compared with the other
participating systems and the baselines that corre-
sponds to an absolute inter-annotator agreement be-
tween system output and golden-standard around
66%. Interestingly none of the systems achieved
an absolute agreement higher than 75% in this task.
This confirms that lexical simplification still remains
a difficult task and that the nature of the phenomena
underlying it should be better explored.

Table 3 shows the performance of our system per
syntactic category. The values are a bit higher than
in the official results of Task 1 as the system version
used for submission was buggy, however the rank-
ing of our system with respect to the other partici-
pating systems remains the same. Interestingly, the

best score were achieved for adverbs (0.352) and ad-
jectives (0.342). This can be explained with the fact
that the decompositional semantics of these category
is better accounted for by our rules.

The relative low performance achieved by the
mmSystem can be explained by the fact that our
rules only select one content word and use its fre-
quency for ranking. This metric alone is clearly not
enough to explain all cases of lexical simplification.
As an example of the complexity of this issue, con-
sider the interplay of negation and compositional se-
mantics: The negation of a very frequent verb form
might not be so simple to understand as its antonym,
e.g. don’t, not remember/forget vs. omit to, fail to
remember/forget. We believe, that a more system-
atic analysis of the lexical semantics involved in lex-
ical simplicity might improve the performance of the
system.

Noun Verb Adj Adv TOT
cAgr: 0.5 0.5 0.5 0.5 0.5
aAgr: 0.658 0.658 0.671 0.676 0.665
Score: 0.316 0.315 0.342 0.352 0.329

Table 3: mmSystem scores per syntactic category. In the
table cAgr represents the agreement by chance, aAgr is
the absolute inter-annotator agreement between system
output and gold ranking and score is the normalized sys-
tem score. These values corresponds to P(A) and P(E)
observed in the data.

5 Conclusion

In this paper we presented the mmSystem for lexical
simplification we submitted to the SemEval-2012
Task 1. The system combines simplification strate-
gies based on word frequency with decompositional
semantic criteria. The mmSystem achieved an aver-
age performance. The aim of our work was in fact
a preliminary investigation of the interplay between
(de)compositional semantics and lexical or cognitive
simplicity in general. Doubtlessly much remain to
be done in order to provide a more efficient formal-
ization of such effects. In future work, we want to
perform a wider corpus analysis and study the im-
pact of other linguistic features such as lexical se-
mantics on lexical simplicity.
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Abstract

This paper presents the systems we developed
while participating in the first task (English
Lexical Simplification) of SemEval 2012. Our
first system relies on n-grams frequencies
computed from the Simple English Wikipedia
version, ranking each substitution term by de-
creasing frequency of use. We experimented
with several other systems, based on term fre-
quencies, or taking into account the context in
which each substitution term occurs. On the
evaluation corpus, we achieved a 0.465 score
with the first system.

1 Introduction

In this paper, we present the methods we used while
participating to the Lexical Simplification task at Se-
mEval 2012 (Specia et al., 2012). We experimented
with several methods:

• using word frequencies or other statistical fig-
ures from the BNC corpus, Google Books
NGrams, the Simple English Wikipedia, and
results from the Bing search engine (with/with-
out lemmatization);

• using association measures for a word and its
context based on language models (with/with-
out inflection);

• making a combination of previous methods
with SVMRank.

Depending on the results obtained on the training
corpus, we chose the methods that seemed to best fit
the data.

2 Task description

2.1 Presentation

The Lexical Simplification task aimed at determin-
ing the degree of simplicity of words. The inputs
given were a short text, in which a target word was
chosen, and several substitutes for the target word
that fit the context.

An example of a short text follows; the target
word is “outdoor”, and other words of this text will
be considered as the context of this target word.

< i n s t a n c e i d =” 270 ”>
<c o n t e x t>With t h e growing demand f o r

t h e s e f i n e g a r de n f u r n i s h i n g s ,
t h e y found i t n e c e s s a r y t o d e d i c a t e
a p o r t i o n o f t h e i r b u s i n e s s t o
<head>o u t d o o r< / head> l i v i n g and
p a t i o f u r n i s h i n g s .< / c o n t e x t>

< / i n s t a n c e>

The substitutes given for this target word were
the following: “alfresco;outside;open-air;outdoor;”.
The objective was to order these words by descend-
ing simplicity.

2.2 Corpora

Two corpora were provided: the trial corpus with
development examples, and the test corpus for eval-
uation.

In the trial corpus, a gold standard was also given.
For the previous example, it stated that the substi-
tutes had to be in the following order: “outdoor
open-air outside, alfresco”, “outdoor” being consid-
ered as the simplest substitute, and “outside” and
“alfresco” being considered as the less simple ones.
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Three baselines have been given by the organiz-
ers: the first one is a simple randomization of the
substitute list, the second one keeps the substitute
list as it is, and the third one (called “simple fre-
quency”) relies on the use of the Google Web 1T
corpus.

3 Preprocessing

3.1 Corpus constitution

In order to use machine-learning based approaches,
we produced two sub-corpora respectively for the
training and evaluation stages from the trial corpus.
The training sub-corpus is used to develop and tune
the systems we produced while the evaluation sub-
corpus is used to evaluate the results of these sys-
tems.

For each set from the SemEval trial corpus, if the
set is composed of at least eight lexical elements be-
longing to the same morpho-syntactic category (e.g.,
a set with at least eight instances of “bright” as an
adjective), we extracted three instances from this
set for the evaluation sub-corpus, the remaining in-
stances being part of the training sub-corpus. If the
set is composed of less than eight instances, all in-
stances are used in the training sub-corpus. We also
kept two complete sets of lexical elements for the
evaluation sub-corpus in order to test the robustness
of our methods on new lexical elements that have not
been studied yet. This distribution allows us to bene-
fit from a repartition between training and evaluation
sub-corpora where the instances ratio is of 66/33%.

3.2 Corpus cleaning

While studying the trial corpus, we noticed that the
texts were not always in plain text, and in particular
contained HTML entities. As some of our methods
used the context of target words, we decided to cre-
ate a cleaner version of the corpora. For the dash and
quote HTML entities (&#8211; &#8220; etc.), we
replaced each entity by its refering symbol. When
replacing the apostrophe HTML entity (&apos;), we
decided to link the abbreviated token with the previ-
ous one because all n-grams methods worked better
with abbreviated terms of one token-length (don’t)
than two token-length (do n’t) (see section 5).

3.3 Inflection
In some sentences, the target words are inflected, but
the substitutes are given in their lemmatized forms.
For example, one of the texts was the following :

<c o n t e x t>In f a c t , d u r i n g a t l e a s t s i x
d i s t i n c t p e r i o d s i n Army h i s t o r y
s i n c e World War I , l a c k o f t r u s t and
c o n f i d e n c e i n s e n i o r l e a d e r s c au se d
t h e so−c a l l e d b e s t and
<head>b r i g h t e s t< / head> t o l e a v e t h e
Army i n d r o v e s .< / c o n t e x t>

For this text and target word, the proposed sub-
stitutes were “capable; most able; motivated; in-
telligent; bright; clever; sharp; promising”, and if
we want to test the simplicity of the words in con-
text, for example with a 2-words left context, we
will obtain unlikely phrases such as “best and capa-
ble” (which should be ”best and most capable”). We
thus used several resources to get inflected forms of
words: we used the Lingua::EN::Conjugate and Lin-
gua::EN::Inflect Perl modules, which give inflected
forms of verbs and plural forms of nouns, as well as
the English dictionary of inflected forms DELA,1 to
validate the Perl modules outputs if necessary, and
get comparatives and superlatives of adjectives, and
a list of irregular English verbs, also to validate the
Perl modules outputs.

4 Simple English Wikipedia based system

Our best system, called ANNLOR-simple, is based
on Simple English Wikipedia frequencies. As the
challenge focused on substitutions performed by
non-native English speakers, we tried to use linguis-
tic resources that best fit this kind of data. In this
way, we made the hypothesis that training our sys-
tem on documents written by or written for non-
native English speakers would be useful.

The use of the Simple English version from
Wikipedia seems to be a good solution as it is tar-
geted at people who do not have English as their
mother tongue. Our hypothesis seems to be correct
due to the results we obtained. Morevover, the Sim-
ple English Wikipedia has been used previously in
work on automatic text simplification, e.g. (Zhu et
al., 2010).

1http://infolingu.univ-mlv.fr/
DonneesLinguistiques/Dictionnaires/
telechargement.html
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First, we produced a plain text version of the Sim-
ple English Wikipedia. We downloaded the dump
dated February 27, 2012 and extracted the textual
contents using the wikipedia2text tool.2 The
final plaintext file contains approximately 10 million
words.

We extracted word n-grams (n ranging from 1 to
3) and their frequencies from this corpus thanks to
the Text-NSP Perl module 3 and its count.pl pro-
gram, which produces the list of n-grams of a docu-
ment, with their frequencies. Table 1 gives the num-
ber of n-grams produced.

Table 1: Number of distinct n-grams extracted from the
Simple English Wikipedia

n #n-grams
1 301,718
2 2,517,394
3 6,680,906

1 to 3 9,500,018

Some of these n-grams are invalid, and result
from problems when extracting plain text from
Wikipedia, such as “27|ufc 1”, which corresponds
to wiki syntax. As we would not find these n-grams
in our substitution lists, we did not try to clean the
n-gram data.

Then, we ranked the possible substitutes of a lex-
ical item according to these frequencies, in descend-
ing order. For example, for the substitution list (in-
telligent, bright, clever, smart), the respective fre-
quencies in the Simple English Wikipedia are (206,
475, 141, 201), and the substitutes will be ranked in
descending frequencies: (bright, intelligent, smart,
clever).

Several tests were conducted, with varying pa-
rameters. We used the plain text version of the Sim-
ple English Wikipedia, but also tried to lemmatize it,
since substitutes are lemmatized. We used the Tree-
Tagger 4 (Schmid, 1994) and applied it on the whole

2See http://www.polishmywriting.com/
download/wikipedia2text\_rsm\_mods.tgz
and http://blog.afterthedeadline.com/
2009/12/04/generating-a-plain-text-corpus
-from-wikipedia

3http://search.cpan.org/˜tpederse/
Text-NSP-1.25/lib/Text/NSP.pm

4http://www.ims.uni-stuttgart.de/

corpus, before counting n-grams. Moreover, since
bigrams and trigrams increase a lot, the size of n-
gram data, we evaluated their influence on results.
These tests are summed up in table 2.

Table 2: Results obtained with the Simple English
Wikipedia based system, on the trial and test corpora

reference lemmas score on score on
n-grams trial corpus test corpus

1-grams only no 0.333 –
1 and 2-grams no 0.371 –
1 to 3-grams no 0.381 0.465
1 to 3-grams yes 0.380 0.462

Simple Frequency
0.398 0.471

baseline
WLV-SHEF-SimpLex
(best system – 0.496
@SemEval2012)

With unigrams only, 158 substitutes of the trial
corpus are absent of the reference dataset, 105 when
adding bigrams, and 91 when adding trigrams. Most
of the missing n-grams (when using 1 to 3-grams)
indeed seem to be very uncommon, such as “undo-
mesticated” or “telling untruths”.

The small difference between the lemmatized and
inflected versions of Wikipedia is due to two rea-
sons: some substitutes are found in the lemmatized
version because substitutes are given in the lemma-
tized form (for example “abnormal growth” is only
present in its plural form “abnormal growths” in
the inflected Wikipedia); and some other substitutes
are missing in the lemmatized version, mostly be-
cause of errors from the TreeTagger (for example
“be scared of” becomes “be scare of”).

We kept the system that obtained the best scores
on the trial corpus, that is with 1 to 3-grams and non-
lemmatized n-grams, with a score of 0.381. This
system obtained a score of 0.465 on the evalua-
tion corpus, thus ranking second ex-aequo at the Se-
mEval evaluation.

projekte/corplex/TreeTagger/
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5 Other frequency-based methods

We tried several other reference corpora, always
with the idea that the more frequent a word is, the
simpler it is. We used the BNC corpus,5 as well
as the Google Books NGrams.6 These NGrams
were calculated on the books digitized by Google,
and contain for each encountered n-gram, its num-
ber of occurrences for a given year. As the Google
Books NGrams are quite voluminous, we selected a
random year (2008), and kept only alphabetical n-
grams with potential hyphens, and used n-grams for
n ranging from 1 to 4. The dataset used contains
477,543,736 n-grams.

We also used the Microsoft Web N-gram Service
(more details on this service are given in the fol-
lowing section) to rank substitutes in descending or-
der. The results of these methods on the trial corpus
are given in table 3. The result of the simple fre-
quency baseline is also given: this baseline is also
frequency-based, but words are ranked according to
the number of hits found when querying the Google
Web 1T corpus with each substitute.

Table 3: Results obtained with frequency-based methods,
on the trial corpus

reference corpus score
BNC 0.347

Google Books NGrams 0.367
Microsoft NGrams 0.383

Simple Frequency baseline 0.398

This table shows that all frequency-based meth-
ods have lower scores than the Simple Frequency
baseline, although the score obtained with the Mi-
crosoft NGrams is quite close to the baseline. The
results from Microsoft Ngrams and the Simple En-
glish are very close. We decided to submit the Sim-
ple English Wikipedia-based system because it was
more different from the simple frequency baseline.

6 Contextual methods

We also wanted to use contextual information, since,
according to the contexts of the target word, dif-
ferent substitutes can be used, or ranked differ-

5http://www.natcorp.ox.ac.uk/
6http://books.google.com/ngrams/datasets

ently. In the following two examples, the same word
“film” is targetted, and the same substitutes are pro-
posed “film;picture;movie;”; yet, in the gold stan-
dard, “film” is placed before “movie” in instance 19,
and after it in instance 15.

< i n s t a n c e i d =” 15 ”>
<c o n t e x t>Film Music L i t e r a t u r e

C y b e r p l a c e − I n c l u d e s
<head>f i l m< / head> r e v i e w s , message
b o a r d s , c h a t room , and images
from v a r i o u s f i l m s .< / c o n t e x t>

< / i n s t a n c e>
( . . . )

< i n s t a n c e i d =” 19 ”>
<c o n t e x t>A f i n e s c o r e by George Fen ton

( THE CRUCIBLE ) and b e a u t i f u l
p h o t o g r a h y by Roger P r a t t add
g r e a t l y t o t h e e f f e c t i v e n e s s o f t h e
<head>f i l m< / head> .< / c o n t e x t>

< / i n s t a n c e>

Ranking substitutes thus depends on the context
of the target word. We implemented two systems
taking the context of target words into account.

6.1 Language model probabilities

The other system submitted (called ANNLOR-
lmbing) relies on language models, which was the
method used by the organizers in their Simple Fre-
quency baseline. While the organizers used Google
n-grams to rank terms to be substituted by decreas-
ing frequency of use, we used Microsoft Web n-
grams in the same way. Nevertheless, we also added
the contexts of each term to be substituted.

We used the Microsoft Web N-gram Service7 to
obtain joint probability for text units, and more
precisely its Python library.8 We used the bing-
body/apr10/ ) N-Gram model.

We considered a text unit composed of the lexi-
cal item and a contextual window of 4 words to the
left and 4 words to the right (words being separated
by spaces). For example, in the following sentence,
we tested “He brings an incredibly rich and diverse
background that”, and the same unit with the tar-
get word replaced by substitutes, for example “He
brings an incredibly lush and diverse background
that”.

7http://research.microsoft.com/en-us/
collaboration/focus/cs/web-ngram.aspx

8http://web-ngram.research.microsoft.
com/info/MicrosoftNgram-1.02.zip
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< i n s t a n c e i d =” 118 ”>
<c o n t e x t>He b r i n g s an i n c r e d i b l y

<head> r i c h< / head> and d i v e r s e
background t h a t i n c l u d e s e v e r y t h i n g
from e x e c u t i v e c o a c h i n g , l e a r n i n g
&amp ; deve lopmen t and management
c o n s u l t i n g , t o s e n i o r o p e r a t i o n s
r o l e s , mixed wi th a m a s t e r s i n
o r g a n i z a t i o n a l
deve lopmen t .< / c o n t e x t>

< / i n s t a n c e>

We performed several tests, with different N-
Gram models, and different context sizes. Some of
these results for the trial corpus are given in table 4.

Table 4: Results obtained with Microsoft Web N-gram
Service, on the trial corpus

Size of left context Size of right context Score
0 3 0.362
3 0 0.358
2 2 0.365
3 3 0.358
4 4 0.370

For the evaluation, this system was our second
run, with the parameters that obtained the best scores
on the training corpus (contexts of 4 words to the
left and to the right). This method obtained a 0.370
score on the trial corpus and a 0.396 score on the test
corpus.9

7 Combination of methods

As each method seemed to have its own benefits, we
tried to combine them using SVMRank 10(Joachims,
2006). The output of each system is converted into
a feature file. For example, the output of the Simple
English Wikipedia based system begins with:

1 bright 475 1
1 intelligent 206 2
1 smart 201 3
1 clever 141 4
2 light 3241 1
2 clear 707 2

9This result is different from the official one, because an
incorrect file was submitted at the time.

10http://www.cs.cornell.edu/people/tj/
svm_light/svm_rank.html

2 bright 475 3
2 luminous 14 4
2 well-lit 0 5

The first column represent the instance id, the sec-
ond one the considered substitute, the third one the
feature (in this case, the frequency of the substitute
in the Simple English Wikipedia), and the last one,
the substitute rank according to this method. Then,
we combined these files to include all features (after
basic query-wise feature scaling). For example, the
training file begins with:

1 qid:1 2:-0.00461061395325929
3:0.0345010535723618
#intelligent

2 qid:1 2:-0.00485010755325339
3:-0.0213467053270483 #clever

3 qid:1 2:-0.00462903653787422
3:0.092640777900771 #smart

4 qid:1 2:-0.00361947890097599
3:0.0489145618699556 #bright

1 qid:4 2:-0.00461061395325929
3:0.0345010535723618
#intelligent

The first column gives the gold standard rank for
the substitute (in training phase), the second one the
instance id, and then feature ids and values for each
substitute. Default parameters were used.

We used the division of the trial corpus into a
training corpus and a development corpus. Table 5
gives some examples of scores obtained by combin-
ing two methods. The scores are not exactly those
presented earlier, since they correspond to a part of
the trial corpus only. Even though some improve-
ment can be obtained by this combination, it was
quite small, and so we did not use it for the evalua-
tion.

Table 5: Results obtained with combination of methods
with SVMRank, on the trial corpus

Simple English Microsoft SVMWikipedia NGrams
0.352 0.352 0.354

491



8 Conclusion

In this paper, we present several systems developed
for the English Lexical Simplification task of Se-
mEval 2012. The best results are obtained using fre-
quencies from the Simple English Wikipedia. We
found the task quite hard to solve, since none of
our experiments significantly outperforms the Sim-
ple Frequency baseline. On the trial corpus, our
system based upon the Simple English Wikipedia
achieved a score of 0.381 (below the 0.399 base-
line score); on the test corpus, we achieved a score
of 0.465 with the Simple English Wikipedia system
while the baseline achieved a score of 0.471 score.
All our systems using contextual information did not
achieve high scores.
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Abstract

This paper presents three systems that took
part in the lexical simplification task at SE-
MEVAL 2012. Speculating on what the con-
cept of simplicity might mean for a word,
the systems apply different approaches to rank
the given candidate lists. One of the systems
performs second-best (statistically significant)
and another one performs third-best out of 9
systems and 3 baselines. Notably, the third-
best system is very close to the second-best,
and at the same time much more resource-light
in comparison.

1 Introduction

Lexical simplification (described in (Specia et al.,
2012)) is a newer problem that has arisen follow-
ing a recent surge in interest in the related task of
lexical substitution (McCarthy et al., 2007). While
lexical substitution aims at making systems generate
suitable paraphrases for a target word in an instance,
which do not necessarily have to be simpler versions
of the original, it has been speculated that one pos-
sible use of the task could be lexical simplification,
in particular in the realm of making educational text
more readable for non-native speakers.

The task of lexical simplification, which thus
derives from lexical substitution, uses the same
data set, and has been introduced at the 6th
International Workshop on Semantic Evaluation
(SEMEVAL 2012), in conjunction with the First Joint
Conference on Lexical and Computational Seman-
tics (*SEM 2012). Instead of asking systems to pro-
vide substitutes, the task provides the systems with

all substitutes and asks them to be ranked.

The task provides several instances of triplets of a
contextC, a target wordT , and a set of gold stan-
dard substitutesS. The systems are supposed to
rank the substitutessi ∈ S from the simplest to the
most difficult, and match their predictions against
the provided human annotations. The organizers de-
fine simpleloosely as words that can be understood
by a wide variety of people, regardless of their lit-
eracy and cognitive levels, age, and regional back-
grounds.

The task is novel in that so far most work has been
done on syntactic simplification and not on lexical
simplification. Carroll et. al. (Carroll et al., 1998)
seem to have pioneered some methodology and eval-
uation metrics in this field. Yatskar et. al. (Yatskar et
al., 2010) use an unsupervised learning method and
metadata from the Simple English Wikipedia.

2 Data

The data (trial and test, no training) have been
adopted from the original lexical substitution
task (McCarthy et al., 2007). The trial set has 300
examples, each with a context, a target word, and
a set of substitutions. The test set has 1710 exam-
ples. The organizers provide a scorer for the task,
the trial gold standard rankings, and three baselines.
The data is provided in XML format, with tags iden-
tifying the lemmas, parts of speech, instances, con-
texts and head words. The substitutions and gold
rankings are in plain text format.

493



3 Resources

Intuitively, a simple word is likely to have a high
frequency in a resource that is supposed to contain
simple words. Other factors that could intuitively in-
fluence simplicity would be the frequency in spoken
conversation, and whether the word is polysemous
or not. As such, the following resources have been
selected to contribute to the metric used in ranking
the substitutes.

3.1 Simple English Wikipedia

Simple English Wikipedia has been used before in
simplicity analysis, as described in (Yatskar et al.,
2010). It is a publicly available, smaller Wikipedia
(298MB decompressed), which claims to only con-
sist of words that are somehowsimple. For all the
substitute candidates, I count their frequencies of oc-
currence in this resource, and these counts serve as
a factor in computing the corresponding simplicity
scores (refer to Equation 1.)

3.2 Transcribed Spoken English Corpus

A set of spoken dialogues is also utilized in this
project to measure simplicity. Spoken language in-
tuitively contains more conversational words, and
has the same kind of resolution power as the Sim-
ple English Wikipedia when it comes to the relative
simplicity of a word. Frequency counts of all the
substitute candidates in a set of dialogue corpora is
computed, and used as another factor in the Equa-
tions 1 and 3.

3.3 WordNet

WordNet, as described in (Fellbaum, 1998), is a lex-
ical knowledge base that combines the properties of
a thesaurus with that of a semantic network. The ba-
sic entry in WordNet is asynset, which is defined as
a set of synonyms. I use WordNet 3.0, which has
over 150,000 unique words, over 110,000synsets,
and over 200,000 word-sense pairs. For each substi-
tute, I extract the raw number of senses (for all parts
of speech possible) for that word present in Word-
Net. This count serves as yet another factor in the
proposed simplicity measure, under the hypothesis
that a simple word is used very frequently, and is
therefore polysemous.

3.4 Web1T Google N-gram Corpus

The Google Web 1T corpus (Brants and Franz,
2006) is a collection of English N-grams, ranging
from one to five N-grams, and their respective fre-
quency counts observed on the Web. The corpus was
generated from approximately 1 trillion tokens of
words from the Web, predominantly English. This
corpus is also used in both SIMPRANK and SALSA
systems, with the intuition that simpler words will
have higher counts on the Web taken as a whole.

3.5 SaLSA

SALSA (Stand-alone Lexical Substitution Ana-
lyzer) is an in-house application which accepts as in-
puts sentences with target words marked distinctly,
and then builds all possible 3-grams by substitut-
ing the target word with synonyms (and inflections
thereof). It then queries the Web1T corpus using an
in-house quick lookup application and gathers the
counts for all 3-grams. Finally, it sums the counts,
and assigns the aggregated scores to each corre-
sponding synonym and outputs a reverse-ranked list
of the synonyms. More detail about this method-
ology can be found in (Sinha and Mihalcea, 2009).
SALSA uses the exact same methodology described
in the paper, except that it is a stand-alone tool.

4 Experimental Setup

Figure 1 shows the general higher-level picture of
how the experiments have been performed. SIM -
PRANK uses five resources, including the unigram
frequency data, while SIMPRANK L IGHT does not
use the unigram frequencies.

I hypothesize that the simplicity of a word could
be represented as the Equation 1 (herecword() rep-
resents the frequency count of the word in a given
resource).

simplicity(word) =

1

len(word)
+ cword(SimpleWiki)

+ cword(Discourse) + cword(WordNet)

+ cword(Unigrams) (1)

This formula is very empirical in nature, in that it
has been found based on extensive experimentation
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Figure 1: High-level schematic diagram of the experi-
ments

(Table 1). It intuitively makes sense that a simple
word is supposed to have high frequency counts in
lexical resources that are meant to be simple by de-
sign. Formally,

simplicity(word)

∝ frequency(SimpleResource)

∝
1

length
(2)

Here, SimpleResource could be any resource
that contains simple words. Apart from frequency
counts, we could possibly also leverage morphology
for finding simplicity. Intuitively, a 3-letter word or
a 4-letter word would most likely be simpler than a
word that has a longer length. This accounts for the
length factor in the equations.

As Table 1 depicts, a lot of experiments were per-
formed where the components (counts) were mul-
tiplied instead of being added, normalized instead
of adding without normalization1, and also experi-
ments where subsets of the resources were selected.
The scores obtained using the gold standard and the
trial data are also shown in the table. The best com-

1The normalization is done by dividing by the maximum
value obtained for that particular resource

bination found (experiment 8 in the table) is outlined
in Equation 1.

Note however, that the Google Web1T corpus is
expensive in terms of money, computation time and
storage space. Thus, another set of experiments was
performed (listed as experiments 1a in Table 1 leav-
ing the unigram counts out, and it was found to work
almost just as well. This system has been labeled
SIMPRANK L IGHT and uses the formula in Equa-
tion 3.

simplicity(word) =

1

len(word)
+ cword(SimpleWiki)

+ cword(Discourse) + cword(WordNet)

(3)

The substitutes can then be sorted in the decreas-
ing order of simplicity scores. The substitute with
the highest simplicity score is hypothesized to be the
simplest.

Table 1: Variants of the experiments performed

SN System components Method Remarks Score

baseline no-change 0.05
baseline random 0.01
baseline unigram count (Web1T) 0.39

1 len, simplewiki, discourse, wordnet add normalize 0.20
1a len, simplewiki, discourse, wordnet add don’t normalize 0.37
2 len, simplewiki, discourse, wordnet add normalize, inc sort -0.20
3 len, simplewiki, discourse, wordnet multiply don’t normalize 0.25
4 simplewiki, discourse, wordnet add don’t normalize 0.36
4a simplewiki, discourse, wordnet add normalize 0.22
4b simplewiki, discourse, wordnet multiply don’t normalize 0.26
5 len, simplewiki, wordnet add don’t normalize 0.36
5a len, simplewiki, wordnet add normalize 0.19
5b len, simplewiki, wordnet multiply don’t normalize 0.26
6 len, discourse, wordnet add don’t normalize 0.31
6a len, discourse, wordnet add normalize 0.20
6b len, discourse, wordnet multiply don’t normalize 0.25
7 len, simplewiki, discourse add don’t normalize 0.37
7a len, simplewiki, discourse add normalize 0.22
7b len, simplewiki, discourse multiply don’t normalize 0.32
8 len, simplewiki, discourse, word-

net, unigrams
add don’t normalize 0.39

8a len, simplewiki, discourse, word-
net, unigrams

add normalize 0.22

8b len, simplewiki, discourse, word-
net, unigrams

multiply don’t normalize 0.26

9 SaLSA 0.36

Experiment 2 in Table 1 shows what happens
when an increasing-order ranking of the simplicity
scores is used. A negative score here underscores
the correctness of both the simplicity score as well
as that of the reverse-ranking.

The third system, SALSA (Stand-alone Lexical
Substitution Analyzer) is the only system out of the
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three that takes advantage of the context provided
with the data set. It builds all possible 3-grams from
the context, replacing the target word one-by-one by
a substitute candidate (and inflections of the substi-
tute candidates). It then sums their frequency counts
in the Web1T corpus and assigns the sum to the sim-
plicity score of a particular synonym. The synonyms
can then be reverse-ranked.

5 System Standings and Discussion

For the test data, Table 2 depicts the system stand-
ings, separated by statistical significance.

Table 2: Test data system scores
Rank Team ID System ID Score

1 WLV-SHEF SimpLex 0.496
2 baseline Sim Freq 0.471
2 UNT SimpRank 0.471
2 annlor simple 0.465
3 UNT SimpRankL 0.449
4 EMNLPCPH ORD1 0.405
5 EMNLPCPH ORD2 0.393
6 SB mmSystem 0.289
7 annlor lmbing 0.199
8 baseline No Change 0.106
9 baseline Rand 0.013
10 UNT SaLSA -0.082

Surprisingly, the systems SIMPRANK and SIM -
PRANK L IGHT, which do not use the contexts pro-
vided, score much better than SALSA, which does
use the contexts. Apparently simplicity is rather a
statistical concept even for humans (the annotators
for the gold standard) and not a contextual one. Also
surprisingly, SIMPRANK L IGHT, which does not use
Google Web1T data, performs extremely well and
within 0.02 of the raw scores.

What is also surprising is the inability of all-but-
one systems to beat the baseline of using simple fre-
quency counts from Web1T, which is in turn based
entirely on statistical counts and does not take the
context into account.

A major contribution of this paper is the discovery
that other, lighter, free resources work just as well
as the expensive (in money, time and space) Web1T
data when it comes to identifying which word is sim-

ple and which one is not.

6 Future Work

I plan to extend this experiment by performing ab-
lation studies of all the individual features, play-
ing with new features, and also performing machine
learning experiments to see if supervised experi-
ments are a better way of solving the problem of
lexical simplicity ranking.
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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Duluth : Measuring Degrees of Relational Similarity
with the Gloss Vector Measure of Semantic Relatedness

Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN 55812 USA
tpederse@d.umn.edu

Abstract

This paper describes the Duluth systems that
participated in Task 2 of SemEval–2012.
These systems were unsupervised and relied
on variations of the Gloss Vector measure
found in the freely available software pack-
age WordNet::Similarity. This method was
moderately successful for the Class-Inclusion,
Similar, Contrast, and Non-Attribute cate-
gories of semantic relations, but mimicked a
random baseline for the other six categories.

1 Introduction

This paper describes the Duluth systems that par-
ticipated in Task 2 of SemEval–2012, Measuring
the Degree of Relational Similarity (Jurgens et al.,
2012). The goal of the task was to rank sets of
word pairs according to the degree to which they
represented an underlying category of semantic re-
lation. A highly ranked pair would be considered
a good or prototypical example of the relation. For
example, given the relationY functions as an Xthe
pairweapon:knife(X:Y) would likely be considered
more representative of that relation than would be
tool:spoon.

The task included word pairs from 10 different
categories of relational similarity, each with a num-
ber of subcategories. In total the evaluation data
consisted of 69 files, each containing a set of ap-
proximately 40 word pairs. While training examples
were also provided, these were not used by the Du-
luth systems. The system–generated rankings were
compared with gold standard data created via Ama-
zon Mechanical Turk.

The Duluth systems relied on the Gloss Vec-
tor measure of semantic relatedness (Patwardhan
and Pedersen, 2006) as implemented in Word-
Net::Similarity (Pedersen et al., 2004)1. This quanti-
fies the degree of semantic relatedness between two
word senses. It does not, however, discover or in-
dicate the nature of the relation between the words.
When given two words as input (as was the case in
this task), it measures the relatedness of all possi-
ble combinations of word senses associated with this
pair and reports the highest resulting score. Note
that throughout this paper we useword and word
sensesomewhat interchangeably. In general it may
be assumed that the termwordor examples of words
refers to a word sense.

A key characteristic of this task was that the word
pairs in each of the 69 sets were scored assuming
a particular specified underlying semantic relation.
Given this, the limitation that the Gloss Vector mea-
sure does not discover the nature of relations was
less of a concern, and led to the hypothesis that a
word pair that was highly related would also be a
prototypical example of the underlying category of
semantic relation. Unfortunately the results from
this task do not generally support this hypothesis,
although for a few categories at least it appears to
have some validity.

This paper continues with a review of the Gloss
Vector measure, and explains its connections to the
Adapted Lesk measure. The paper then summarizes
the results of the three Duluth systems in this task,
and concludes with some discussion and analysis of
where this method had both successes and failures.

1wn-similarity.sourceforge.net
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2 Semantic Relatedness

Semantic relatedness is a more general notion than
semantic similarity. We follow (Budanitsky and
Hirst, 2006) and limit semantic similarity to those
measures based on distances and perhaps depths in
a hierarchy made up ofis–a relations. For exam-
ple, car andmotorcycleare similar in that they are
connected via anis–arelation withvehicle. Seman-
tic similarity is most often applied to nouns, but can
also be used with verbs.

Two word senses can be related in many ways,
including similarity. car andfurnacemight be con-
sidered related because they are both made of steel,
andfirefighterandhosemight be considered related
because one uses the other, but neither pair is likely
to be considered similar. Measures of relatedness
generally do not specify the nature of the relation-
ship between two word senses, but rather indicate
that they are related to a certain degree in some un-
specified way. As a result, measures of relatedness
tend to be symmetric, so A is related to B to the same
degree that B is related to A. It should be noted that
some of the relations in Task 2 were not symmetric,
which was no doubt a complicating factor for the
Duluth systems.

3 Adapted Lesk Measure

The Gloss Vector measure was originally devel-
oped in an effort to generalize and improve upon
the Adapted Lesk measure (Banerjee and Pedersen,
2003).2 Both the Gloss Vector measure and the
Adapted Lesk measure start with the idea of asu-
pergloss. A supergloss is the definition (or gloss) of
a word sense that is expanded by concatenating it
with the glosses of other surrounding senses that are
connected to it via some WordNet relation. For ex-
ample, a supergloss forcar might consist of the def-
inition of car, the definition ofcar’s hypernym (e.g.,
vehicle), and the definitions of the meronyms (part-
of) of car (e.g.,wheel, brake, bumper, etc.) Other
relations as detailed later in this paper may also be
used to expand a supergloss.

In the Adapted Lesk measure, the relatedness be-
tween two word senses is a function of the number
and length of their matching overlaps in their super-
glosses. Consecutive words that match are scored

2WordNet::Similarity::lesk

more highly than single words, and a higher score
for a pair of words indicates a stronger relation. The
Adapted Lesk measure was developed to overcome
the fact that most dictionary definitions are rela-
tively short, which was a concern noted by (Lesk,
1986) when he introduced the idea of using defini-
tion overlaps for word sense disambiguation. While
the Adapted Lesk measure expands the size of the
definitions, there are still difficulties. In particular,
the matches between words in superglosses must be
exact, so morphological variants (run versusran),
synonyms (gas versuspetrol), and closely related
words (treeversusshrub) won’t be considered over-
laps and will be treated the same as words with no
apparent connection (e.g.,goatandvase).

4 Gloss Vector Measure

The Gloss Vector measure3 is inspired by a 2nd or-
der word sense discrimination approach (Schütze,
1998) which is in turn related to Latent Semantic
Indexing or Analysis (Deerwester et al., 1990). The
basic idea is to replace each word in a written con-
text with a vector of co-occurring words as observed
in some corpus. In this task, the contexts are def-
initions (and example text) from WordNet. A su-
pergloss is formed exactly as described for Adapted
Lesk, and then each word in the supergloss is re-
placed by a vector of co–occurring words. Then, all
the vectors in the supergloss are averaged together to
create a new high dimensional representation of that
word sense. The semantic relatedness between two
word senses is measured by taking the cosine be-
tween their two averaged vectors. The end result is
that rather than finding overlaps in definitions based
on exact matches, a word in a definition is matched
to whatever degree its co-occurrences match with
the co-occurrences of the words in the other super-
gloss. This results in a more subtle and fine grained
measure of relatedness than Adapted Lesk.

The three Duluth systems only differ in the re-
lations used to create the superglosses, otherwise
they are identical. The corpus used to collect co-
occurrence information was the complete collection
of glosses and examples from WordNet 3.0, which
consists of about 1.46 million word tokens and al-
most 118,000 glosses. Words that appeared in a

3WordNet::Similarity::vector

498



stop list of about 200 common words were excluded
as co-occurrences, as were words that occurred less
than 5 times or more than 50 times in the WordNet
corpus. Two words are considered to co-occur if
they occur in the same definition (including the ex-
ample) and are adjacent to each other. These are the
default settings as used in WordNet::Similarity.

5 Creating the Duluth Systems

There were three Duluth systems, V0, V1, and V2.
These all used the Gloss Vector measure, and differ
only in how their superglosses were created. The su-
pergloss is defined using a set of relations that indi-
cate which additional definitions should be included
in the definition for a sense. All systems start with
a gloss and example for each sense in a pair, which
is then augmented with definitions from additional
senses as defined for each system.

5.1 Duluth-V0

V0 is identical to the default configuration of the
Gloss Vector measure in WordNet::Similarity. This
consists of the following relations:

hypernym (hype) : class that includes a member,
e.g., a car is a kind of vehicle (hypernym).

hyponym (hypo) : the member of a class, e.g., a
car (hyponym) is a kind of vehicle.

holonym (holo) : whole that includes the part,
e.g., a ship (holonym) includes a mast.

meronym (mero) : part included in a whole, e.g.,
a mast (meronym) is a part of a ship.

see also (also) : related adjectives, e.g., egocentric
see also selfish.

similar to (sim) : similar adjectives, satanic is
similar to evil.

is attribute of (attr) : adjective related to a noun,
e.g., measurable is an attribute of magnitude.

synset words (syns) : synonyms of a word, e.g.,
car and auto are synonyms.4

For V0 the definition and example of a noun
is augmented with its synonyms and the defini-
tions and examples of any hypernyms, hyponyms,
meronyms, and holonyms to which it is directly con-
nected. If the word is a verb it is augmented with

4Since synonyms have the same definition, this relation aug-
ments the supergloss with the synonyms themselves.

its synonyms and any hypernyms/troponyms and hy-
ponyms to which it is directly connected. If the
word is an adjective then its definition and exam-
ple are augmented with those of adjectives directly
connected via see also, similar to, and is attribute of
relations.

5.2 Duluth-V1

V1 uses the relations in V0, plus the holonyms, hy-
pernyms, hyponyms, and meronyms (X) of the see
also, holonym, hypernym, hyponym, and meronym
relations (Y). This leads to an additional 20 relations
that bring in definitions “2 steps” away from the
original word. These take the form ofthe holonym
of the hypernym of the word sense, or more gener-
ally the X of the Yof the word sense, where X and Y
are as noted above.

5.3 Duluth-V2

V2 uses the relations in V0 and V1, and then adds
the holonym, hypernyms, hyponyms, and meronyms
of the 20 relations added for V1. This leads to an
additional 80 relations of the formthe hypernyms of
the meronym of the hyponym, or more generallythe
X of the X of the Yof the word.

For example, if the word isweapon, then a hyper-
nym of the meronym of the hyponym (ofweapon)
would add the definitions and example ofbow (hy-
ponym),bowstring(meronym of the hyponym), and
cord (hypernym of the meronym of the hyponym) to
the gloss ofweaponto create the supergloss.

6 Results

There were two evaluation scores reported for the
participating systems, Spearman’s Rank Correlation
Coefficient, and a score based on Maximum Differ-
ence Scaling. Since the Gloss Vector measure is
based on WordNet, there was a concern that a lack
of WordNet coverage might negatively impact the
results. However, of the 2,791 pairs used in the eval-
uation, there were only 3 that contained words un-
known to WordNet.

6.1 Spearman’s Rank Correlation

The ranking of word pairs in each of the 69 files
were evaluated relative to the gold standard using
Spearman’s Rank Correlation Coefficient. The av-
erage of these results over all 10 categories of se-
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Table 1: Selected Spearman’s Values

Category rand v0 v1 v2
SIMILAR .026 .183 .206 .198
CLASS-INCLUSION .057 .045 .178 .168
CONTRAST -.049 .142 .120 .198
average (of all 10) .018 .050 .039 .038

Table 2: Selected MaxDiff Values

Category rand v0 v1 v2
SIMILAR 31.5 37.1 39.2 37.4
CLASS-INCLUSION 31.0 29.2 35.6 33.1
CONTRAST 30.4 38.3 36.0 33.8
NON-ATTRIBUTE 28.9 36.0 33.0 33.5
average (of all 10) 31.2 32.4 31.5 31.1

mantic relations was quite low. Random guessing
achieved an averaged Spearman’s value 0.018, while
Duluth-V0 scored 0.050, Duluth-V1 scored 0.039,
and Duluth-V2 scored 0.038.

However, there were specific categories where the
Duluth systems fared somewhat better. In particular,
results for category 1 (CLASS-INCLUSION), cate-
gory 3 (SIMILAR) and category 4 (CONTRAST)
represent improvements on the random baseline
(shown in Table 1) and at least some modest agree-
ment with the gold standard.

The results from the other categories were gener-
ally equivalent to what would be obtained with ran-
dom selection.

6.2 Maximum Difference Scaling

Maximum Difference Scaling is based on identify-
ing the least and most prototypical pair for a given
relation from among a set of four pairs. A ran-
dom baseline scores 31.2%, meaning that it got ap-
proximately 1 in 3 of the MaxDiff questions correct.
None of the Duluth systems improved upon random
to any significant degree : Duluth-V0 scored 32.4,
Duluth-V1 scored 31.5, and Duluth-V2 scored 31.1.
However, the same categories that did well with
Spearman’s also did well with MaxDiff (see Table
2). In addition, there is some improvement in cat-
egory 6 (NON-ATTRIBUTE) at least with MaxDiff
scoring.

7 Discussion and Conclusions

The Gloss Vector measure was able to perform rea-
sonably well in measuring the degree of relatedness
for the following four categories (where the defini-
tions come from (Bejar et al., 1991)):

CLASS-INCLUSION : one word names a class
that includes the entity named by the other word

SIMILAR : one word represents a different de-
gree or form of the ... other

CONTRAST : one word names an opposite or
incompatible of the other word

NON-ATTRIBUTE : one word names a quality,
property or action that is characteristically not an at-
tribute of the other word

Of these, CLASS-INCLUSION and SIMILAR
are well represented by the hypernym/hyponym re-
lations present in WordNet and used by the Gloss
Vector measure. WordNet’s greatest strength lies
in its hypernym tree for nouns, and that was most
likely the basis for the success of the CLASS-
INCLUSION and SIMILAR categories. While the
success with CONTRAST may seem unrelated, in
fact it may be that pairs of opposites are often quite
similar, for examplehappyandsad are both emo-
tions and are similar except for their polarity.

A number of the relations used in Task 2 are
not well represented in WordNet. For example,
there was a CASE RELATION which could ben-
efit from information about selectional restrictions
or case frames that just isn’t available in WordNet.
The same is true of the CAUSE-PURPOSE relation
as there is relatively little information about casual
relations in WordNet. While there are part-of rela-
tions in WordNet (meronyms/holonyms), these did
not prove to be common enough to be a significant
benefit for the PART-WHOLE relations in the task.

For many of the relations in the task the Gloss
Vector measure was most likely relying primarily on
hypernym and hyponym relations, which explains
the bias towards categories that featured similarity-
based relations. We are however optimistic that
a Gloss Vector approach could be more successful
given a richer set of relations from which to draw
information for superglosses.
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Abstract

We describe a system proposed for measuring
the degree of relational similarity beetwen a
pair of words at the Task #2 of Semeval 2012.
The approach presented is based on a vec-
torial representation using the following fea-
tures: i) the context surrounding the words
with a windowssize = 3, ii) knowledge ex-
tracted from WordNet to discover several se-
mantic relationships, such as meronymy, hy-
ponymy, hypernymy, and part-whole between
pair of words,iii) the description of the pairs
with their POS tag, morphological informa-
tion (gender, person), andiv) the average num-
ber of words separating the two words in text.

1 Introduction

The Task # 2 of Semeval 2012 focuses on measuring
the degree of relational similarity between the ref-
erence words pairs (training) and the test pairs for a
given class (Jurgens et al., 2012).

The training data set consists of 10 classes and
the testing data set consists of the 69 classes. These
datasets as well as the particularities of the task are
better described at overview paper (Jurgens et al.,
2012). In this paper we report the approach submit-
ted to the competition, which is based on a vector
space model representation for each pair (Salton et
al., 1975). With respect to the type of features used,
we have observed that Fabio Celli (Celli, 2010) con-
siders that contextual information is useful, as well
the lexical and semantic information are in the ex-
traction of semantic relationships task. Additionally,
in (Chen et al., 2010) and (Negri and Kouylekov,

2010) are proposed WordNet based features with the
same purpose.

In the experiments carried out in this paper, we
use a set of lexical, semantic, WordNet-based and
contextual features which allows to construct the
vectors. Actually, we have tested a subset of the 20
contextual features proposed by Celli (Celli, 2010)
and some of those proposed by Chen (Chen et al.,
2010) and Negri (Negri and Kouylekov, 2010).

The cosine similarity measure is used for deter-
mining the degree of relational similarity (Frakes
and Baeza-Yates, 1992) among the vectors.

The rest of this paper is structured as follows.
Section 2 describes the system employed. Section
3 show the obtained results. Finally, in Section 4 the
final conclusions are given.

2 System description

The approach reported in this paper measures the
relational similarity of a set of word pairs that be-
long to the same semantic relationship. Those word
pairs are represented by means of the vector space
model (Salton et al., 1975). Each value of the vec-
tor represents the average value of the correspond-
ing feature. This average is calculated using 100
samples obtained from Internet by employing the
Google search engine. The search process is car-
ried out assuming that those words co-occurring in
the same context contain some kind of semantic re-
lationship.

Let (w1, w2) be a word pair, then the vectorial
representation of this pair (~x) using semantic, con-
textual, lexical, and WordNet-based features may be
expressed as it can be seen in Eq. (1).
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~x = (avg(f1), avg(f2), ..., avg(fn)) (1)

whereavg(fk) is the average value of the featurefk.
The cardinality of the vector is 42, because we

extracted 4 lexical features, 6 semantic features, 7
WordNet-based features and 25 contextual features
(n = 42). Each word pair is then represented by
a unique vector with values associated to each fea-
ture. In Figure 1, we show the vectorial represen-
tation of the word pair(transportation, bus) using
a unique text sample (s). In this example, the num-
ber and type of features described below is followed,
i.e., the first 4 values are lexical, the following 6 are
semantic and so on.

s =“The Toyama Chih Railway is atransporta-
tion company that operates railway, tram, and
bus lines in the eastern part of the prefecture.”

~x = (6, 1, 0, 0, 27, 4, 4, 4, 4, 5, 2, 4, 5, 25, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,

4, 0, 4, 4, 4, 4)

Figure 1: Example of a feature vector for a word pair and
its corresponding sentences.

The previous example is only illustrative, since
we have gathered 100 sentence per word pair. In
total, we collected a corpus containing 2,054,687 to-
kens, with a average class terms of 26,684 and with
an average class vocabulary of 4,006.

The features extracted are described as follows:

2.1 Lexical features

The lexical features describe morphologically and
syntactically the word pair(w1, w2). The lexical
features extracted are the following:

• Average number of words separating the two
words(w1, w2) in the text.

• The position ofw1 with respect tow2 in the
text. If w1 appears beforew2 then the feature
value is 1, otherwise, the value is 2.

• The Part of Speech Tag for each word in the
pair (two features). We use the FreeLing PoS-
tagger (Padŕo et al., 2010) for obtaining the

grammatical category. The possible values are
the following: adjective=1; adverb=2; arti-
cle=3; noun=4; verb=5; pronoun=6; conjunc-
tion=7; preposition=8

2.2 Semantic features

The following four semantic features are boolean
values (true or false) indicating:

• If w1 andw2 are named entities (two features)1.

• If w1 and w2 are entities defined (two fea-
tures)2.

The following two semantic features indicate:

• The type of prepositional phrase in case of
existing for w1 and w2. The feature val-
ues are nominal: about=1; after=2; at=3; be-
hind=4; between=5; by=6; except=7; from=8;
into=9; near=10; of=11; over=12; through=13;
until=14; under=15; upon=16; without=17;
above=18; among=19; before=20; below=21;
beside=22; but=23; down=24; for=25; in=26;
on=27; since=28; to=29; with=30.

2.3 WordNet-based features

The semantic features are boolean values (true or
false) indicating whether or notw2 is contained in:

• the synonym set ofw1

• the antonym set ofw1

• the meronymy set ofw1

• the hyponymy set ofw1

• the hypernymy set ofw1

• the part-whole set ofw1

• the gloss set ofw1

We used WordNet (Fellbaum, 1998) in order to de-
termine the relationship set for wordw1.

1A named entity is defined by a Proper Noun Phrase, which
was detected using the module NER-Named Entity Recognition
of the FreeLing 2.1 tool.

2A defined sentence is one that begins with a definite article.
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2.4 Contextual features

Contextual features considers values for the words
that occur in the context ofw1 andw2 (in a window
size of 3). The description of those features follows.

• Nominal values indicating the Part of Speech
Tag (adjective=1; adverb=2; article=3; noun=4;
verb=5; pronoun=6; conjunction=7; preposi-
tion=8) for the three words at:

– the left context ofw1 (three features).

– the right context ofw1 (three features).

– the left context ofw2 (three features).

– the right context ofw2 (three features).

• A Nominal value indicating number of the fol-
lowing grammatical categories betweenw1 and
w2: verbs, adjectives and nouns (three fea-
tures).

• Nominal values indicating the frequencies of
the verbs:be, do, have, locate, know, make, use,
become, include, take betweenw1 andw2 (ten
features).

2.5 Feature selection

We carried out a feature selection process with the
aim of discarding irrelevant features. In this step,
we apply the attribute selection filter reported in
(Hall, 1999), that evaluates the worth of a subset
of attributes by considering the individual predic-
tive ability of each feature along with the degree of
redundancy between them and an exhaustive search
method.

The following features were obtained as relevant:
the average number of words betweenw1 andw2;
Named Entity ofw1 andw2; phrase defined ofw1

andw2; prepositional phrase typew1 andw2; part
of speech tagw1 and w2; part of speech tag of
right context ofw1 with a windows size of 3; oc-
currences of verbs betweenw1 andw2; frequency of
verbsbe, do, make, locate, take; synonym, antonym,
meronymy, hyponymy, hypernymy, part-whole and
gloss relationships betweenw1 andw2.

After applying the aforementioned feature selec-
tion method, we removed 17 features, and the vec-
torial representation of each word pair will be done
with only 25 values (features).

2.6 Determining the degree of similarity

We have used the features mentioned before for con-
structing a prototype vector representing a given se-
mantic class. In order to do so, we have employed
the training corpus for gathering samples from Inter-
net and, thereafter, we average the feature values in
order to construct such prototype vector.

For each word pair in the test dataset, we ob-
tained a vector using the same process explained
before. We determined the similarity for each test
feature vector with respect to the prototype of the
given class by using the cosine similarity coefficient
(Frakes and Baeza-Yates, 1992), i.e., measuring the
cosine of the angle between the two vectors.

In this way, we obtain a similarity measure of each
test word pair with respect to its corresponding class.
Finally, we may output a ranking of all the word
pairs at the test dataset by sorting these similarity
values obtained.

3 Experimental results

The approach submitted to the Task #2 of SemEval
2012 obtained very poor results. The Spearman cor-
relation coefficient, which measured the correlation
of the approach with respect to the gold standard, it
is quite low (see Table 1).

Team-Algorithm Spearman MaxDiff
UTD-NB 0.23 39.4
UTD-SVM 0.12 34.7
DULUTH-V0 0.05 32.4
DULUTH-V1 0.04 31.5
DULUTH-V2 0.04 31.1
BUAP 0.01 31.7
Random 0.02 31.2

Table 1: Spearman and MaxDiff scores obtained at the
Task #2 of Semeval 2012

Actually, it shows that the run submitted does not
correlate with the gold standard. We consider that
this behavior is derived from the nature of the sup-
port corpus used for obtaining the features set. The
number of sentences (100) used for representing the
word pairs was not enough for constructing a real
prototype of both, the semantic class and the word
pairs. A further analysis will confirm this issue.
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Despite this limitation we note that the MaxDiff
score was 31.7% slightly above the baseline (31.2%)
and not far from the best score of the task (39.4%).
That is, we achieved an average of 31.7% of ques-
tions answered correctly.

4 Discussion and conclusion

In this paper we report the set of features used in
the approach submitted for measuring the degrees of
relational similarity between a given reference word
pair and a variety of other pairs. The results obtained
are not encouraging with a Spearman correlation co-
efficient close to zero, which mean that there are
not correlation between the run submitted and the
gold standard. A deeper analysis of the approach is
needed in order to determine if the limitation of the
system falls in the features used, the similarity mea-
sure, or the support corpus used for extracting the
features.
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Abstract 

We describe our SemEval2012 shared Task 5 
system in this paper. The system includes 
three cascaded components: the tagging se-
mantic role phrase, the identification of se-
mantic role phrase, phrase and frame semantic 
dependency parsing. In this paper, semantic 
role phrase is tagged automatically based on 
rules, and takes Conditional Random Fields 
(CRFs) as the statistical identification model 
of semantic role phrase. A projective graph-
based parser is used as our semantic depend-
ency parser. Finally, we gain Labeled At-
tachment Score (LAS) of 61.84%, which 
ranked the first position. At present, we gain 
the LAS of 62.08%, which is 0.24% higher 
than that ranked the first position in the task 5. 

1 System Architecture  

To solve the problem of low accuracy of long dis-
tance dependency parsing, this paper proposes a 
divide-and-conquer strategy for semantic depend-
ency parsing. Firstly, Semantic Role (SR) phrase in 
a sentence are identified; next, SR phrase can be 
replaced by their head or SR of head. Therefore, 
the original sentence is divided into two kinds of 
parts, which can be parsed separately. The first 
kind is SR phrase parsing; the second kind is  

parsing the sentence in which the SR phrases are 
replaced by their head or SR of head. Finally, the 
paper takes graph-based parser as the semantic de-
pendency parser for all parts. They are described in 
Section 2 and Section 4. Their experimental results 
are shown in Section5. Section 6 gives our conclu-
sion and future work. 

2 SR Phrase Tagging and Frame  

To identify SR phrase, SR phrase of train corpus 
are tagged. SR phrase is tagged automatically 
based on rules in this paper. A phrase of the sen-
tence is called Semantic Role phrase (SR phrase) 
when the parent of only one word of this phrase is 
out of this phrase. The word with the parent out of 
the phrase is called Head of Phrase (HP). The 
shortest SR phrase is one word, while the longest 
SR phrase is a part of the sentence. In this paper, 
the new sequence in which phrases are replaced by 
their head or SR of head is defined as the frame. In 
this paper, firstly, SR phrases of the sentence are 
identified; secondly, the whole sentence is divided 
into SR phrases and frame; thirdly, SR phrase and 
frame semantic dependency are parsed; finally, the 
dependency parsing results of all components are 
combined into the dependency parsing result of the 
whole sentence. 

SR of HP is used as the type of this phrase. Only 
parts of types of SR phrases are tagged. In this pa-
per, the tagged SR phrases are divided into two 
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types: Main Semantic Role (MSR) phrase and 
Preposition Semantic Role (PSR) phrase. 

2.1 MSR Phrase Tagging  

In this paper, MSR phrase includes: OfPart, agent, 
basis, concerning, content, contrast, cost, existent, 
experiencer, isa, partner, patient, possession, pos-
sessor, relevant, scope and whole. MSR phrase 
tagging rules are shown in figure1&2. 

  
Figure1: Tagging Rule of the Last Word of MSR Phrase 

Figure 1 shows the rule for identification of the 
last word of MSR phrase. If the SR of the current 
word is MSR and its POS is not VV, VE, VC or 
VA, it is the last word of phrase. 

As shown in the figure 2, the first word of 
phrase is found based on the last word of phrase. 
The child with the longest distance from the last 
word of phrase is used as the current word, and if 
the current word has no child, it is the first word of 
phrase; otherwise, the child of the current word is 
found recursively. If the first word of phrase POS 
is preposition and punctuation, and its parent is the 
last word, the word following the first word serves 
as the first word of phrase. 

 
Figure2: Tagging Rule of the First Word of MSR Phrase 

 

 
Figure3: Example of the Tagging MSR Phrase 

As shown in the figure 3, the first column is 
word ID and the seventh column is parent ID of 
word. SR of ID40 is content, so ID40 is the last 
word of phrase. Its children include ID39 and ID37, 
thus ID37 with the longest distance from ID40 is 
the current word. The child of ID37 is ID33, the 
child of ID33 is ID32, ID32 has no child, and ID32 
is the first word of SR phrase. 
The tagged result in the above figure 3 is as fol-
lows: 而/CC 是/VC 借鉴/VV content[ 发达/JJ 国
家 /NN 和 /CC 深圳 /NR 等 /ETC 特区 /NN 的
/DEG 经验/NN 教训/NN ]  

Input: wi: word index (ID) in a given sentence. 
           N: the number of words. 
          Mi: MSR list. 
          Vi: POS tags list 
Output: the last word ID of MSR phrase 
Function: Findmainsemanticword(wi): return word 

ID when wi of semantic belongs to Mi. 
Otherwise return 0. 

Function: FindPOSword(wi): return true when wi 
of POS tagging not belongs to Vi. Oth-
erwise return 0. 

Function Findlastword(wi) 
For i 1 to N do begin 

             If (Findmainsemanticword(wi)&& 
FindPOSword(wi)) 

               { 
                   return wi; 

} 
else { 

                          i++; 
} 

       end 
return 0; 

29  而  而  CC  CC  _  30  aux-depend  _  _ 
30  是  是  VC  VC  _  58 s-succession  _  _ 
31  借鉴  借鉴  VV  VV  _  54  s-succession _  _ 
32  发达  发达  JJ   JJ  _  33  d-attribute  _  _ 
33  国家  国家  NN  NN  _  37  s-coordinate  _  _ 
34  和  和  CC  CC  _  37  aux-depend  _  _ 
35  深圳  深圳  NR  NR  _  37  d-member  _  _ 
36  等  等  ETC  ETC  _  35  aux-depend  _  _ 
37  特区  特区  NN  NN  _  40  d-genetive  _  _ 
38  的  的  DEG  DEG  _  37  aux-depend  _  _ 
39  经验  经验  NN  NN  _  40  s-coordinate  _ _ 
40  教训 教训  NN  NN  _  31  content  _  _ 

Input: Lword: the last word ID of MSR phrase. 
Output: Fword: the first word ID of MSR phrase. 
Function: Findmaxlenchild (w): return child ID 

with the longest distance from w when w 
has child. Otherwise returns 0. 

Fuction: FindPOSword(w): return POS of w. 
Fuction:Findparent(w): return parent ID of w. 
Function Findfirstword(Lword) 
     If(Findmaxlenchild (Lword)= =0) 
      { 
         return Lword; 

} 
Else { 

Fword=Findmaxlenchildword(Lword); 
If(findPOSword(Fword)==P||  

findPOSword(Fword)= =PU) 
{ 
    If (findparent(Fword)= =Lword) 
        Return Fword +1; 
} 

Findfirstword(Fword); 
} 
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After phrases are tagged, a new sequence gener-
ated by replacing the phrase with HP is called 
MSR frame. 

MSR frame: 而/CC 是/VC 借鉴/VV 教训/NN  
Example of sentences with nested phrases: 
据/P 初步/JJ 统计/NN ，/PU 目前/NT exis-

tent[ 在 /P 中国 /NR 境内 /NN 承包 /VV con-
tent[ 工程/NN ] 的/DEC 国外/NN 承包商/NN ] 
已/AD 有/VE 一百三十七/CD 家/M  

After phrases are tagged, a new sequence gener-
ated by replacing the phrase with HP is called 
MSR frame. 

MSR frame: 据/P 初步/JJ 统计/NN ，/PU 目前

/NT 承包商/NN 已/AD 有/VE 一百三十七/CD 家
/M 

2.2 PSR Phrase Tagging  

In this paper, SR phrase containing preposition is 
defined as PSR phrase. If the POS tags of the cur-
rent word is Preposition (P), the first word and the 
last word of PSR phrase are found based on the 
current word. PSR phrase tagging rule as figure 4 
& 5. 

 
Figure 4: Tagging Rule of the First Word of PSR Phrase 
As shown in the figure 4, the child with the 

longest distance from the current word is the first 
word of phrase. If the prep has no child, then it is 
PSR phrase. 

As shown in the figure 5, firstly, the parent of 
the prep is found; next, the parent is taken as the 
current word, and the child with the longest dis-
tance from the current word is found recursively. If 
no child is found, the current word is the last word 
of PSR phrase. If preposition of SR is root or par-
ent of preposition is root, and proposition is PSR. 

If ID of preposition is larger than ID of parent of 
preposition, and preposition is PSR. 

 
Figure5: Tagging Rule of the Last Word of PSR Phrase 
 

 
Figure6: Example of the Tagging PSR Phrase 

As shown in the figure6, ID4 is prep, and it has 
no child, so the first word is ID4. The parent of 

Input: Pword: the word ID that word POS tags is P. 
Output: Fword: the first word ID of PSR phrase. 
Function: Findmaxlenchildword(w): return word ID 

with the longest distance from w when w 
has child. Otherwise returns 0. 

Function Findfirstword(Pword) 
        If(Findmaxlenchildword(Pword)= =0) 
          { 
             return Pword; 

} 
Else { 

return Fwrod= 
 Findmaxlenchildword(Pword); 

} 

Input: Pword: the word ID that word POS tags is P. 
Output: Lword: the last word ID of PSR phrase. 
Function: Findmaxchild (w): return word ID that 

length is max with w when w has child. 
Otherwise return 0. 

Function: Findparent (w): return word ID when w of 
parent is not root. Otherwise return 0.  

Function: Findroot(w): return 1 when w of semantic 
role is root. Other wise return 0. 

Function Findlastword(Pword) 
Var cword: parent ID 
     If(Findparentsword(Pword)= =0|| 

 findroot(Pword)= =1)  { 
             return Pword; 

} 
else { cword=Findparent (Pword) ) 

 If(Pword>cword){ 
return Pword; 

} 
else { 

                   if(Findmaxchild (cword)= =0) { 
                               return cword; 

} 
else{  

Lword= 
Findmaxchild (cword); 

Findlastword(Lword); 
} 

                           } 
}

1  外商  外商  NN  NN  _  2  j-agent  _  _ 
2  投资  投资  NN  NN  _  3  r-patient  _  _ 
3  企业  企业  NN  NN  _  11  agent  _  _ 
4  在  在  P P  _ 5  prep-depend  _ first word 
5  改善  改善  VV  VV  _  11 duration _ head_ 
6  中国 中国 NR  NR _ 8  d-genetive  _ _ 
7  出口 出口 NN  NN _  8 r-patient _ _ 
8  商品  商品 NN  NN _ 9 d-host _  _ 
9  结构  结构 NN  NN _ 5 patient  _  _ 
10  中  中 LC  LC  _ 5  aux-depend _ last word_ 
11  发挥  发挥 VV VV  _  0  ROOT _  _ 
12  了  了  AS  AS  _ 11 aspect  _  _ 
13 显著  显著 JJ  JJ  _ 14 d-attribute  _  _ 
14  作用 作用  NN NN  _  11 content  _  _ 
15  。  。  PU  PU  _ 11  PU  _  _ 
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ID4 is ID5, the child with the longest distance from 
ID5 is ID10, and ID10 with no child is the last 
word of phrase. 

The tagged result in the above figure 6 is as fol-
lows: 外商/NN 投资/NN 企业/NN duration[在/P 
改善/VV 中国/NR 出口/NN 商品/NN 中/LC] 发
挥/VV 了/AS 显著/JJ 作用/NN 。/PU 

The position of HP in PSR phrase is not fixed. 
After phrases are tagged, a new sequence gener-
ated by replacing the phrase with SR of HP is 
called PSR frame. 

PSR frame: 外商/NN 投资/NN 企业/NN dura-
tion/duration 发挥 /VV 了 /AS 显著 /JJ 作用

/NN 。/PU 
Examples of sentences with nested phrases: 
s-cause[ 由于/P 裕隆/NR s-purpose[ 为/P 因

应/VV Ｙ２Ｋ/NT ]  而/MSP 决定/VV 更新/VV 
整/DT 个/M 电脑/NN 架构/NN ],/PU 因此/AD 
资讯 /NN 部门 /NN 可 /VV 谓 /VV 人仰马翻

/VV 。/PU 
PSR frame: s-cause/s-cause ,/PU 因此/AD 资讯

/NN 部门/NN 可/VV 谓/VV 人仰马翻/VV 。/PU 

2.3 SR Phrase Tagging Performance 

If the parent of only one word of the tagged phrase 
is out of this phrase, this phrase is tagged correctly. 
If each word in the generated frame has one parent 
(i.e. words out of the phrase are dependent on HP 
instead of other words of the phrase), the frame is 
correct. 

 Phrase Frame 
MSR 99.99% 100% 
PSR 99.98% 99.70% 

Table 1. Tagging Performance (P-score) 
 
As shown in the table 1, tagging results were of 

very high accuracy. The wrong results were not 
contained in phrase and frame train corpus of de-
pendency parsing. 

3 SR Phrase Identification  

In this paper, we divide SR phrase into two classes: 
Max SR phrase and Base SR phrase. Max SR 
phrase refers to SR phrase is not included in any 
other SR phrase in a sentence. Base SR phrase re-
fers to SR phrase does not include any other SR 
phrase in a SR phrase. Therefore, MSR phrase is 
divided into two classes: Max MSR (MMSR) 

phrase and Base MSR (BMSR) phrase. PSR phrase 
was divided into two classes: Max PSR (MPSR) 
phrase and Base PSR (BPSR) phrase. 

3.1 MMSR Phrase Identification based on 
Cascaded Conditional Random Fields 

Reference (Qiaoli Zhou, 2010) is selected as our 
approach of MMSR phrase identification. The 
MMSR identifying process is conceptually very 
simple. The MMSR identification first performs 
identifying BMSR phrase, and converts the identi-
fied phrase to head. It then performs identifying for 
the updated sequence and converts the newly rec-
ognized phrases into head. The identification re-
peats this process until the whole sequence has no 
phrase, and the top-level phrase are the MMSR 
phrases. A common approach to the phrase identi-
fication problem is to convert the problem into a 
sequence tagging task by using the “BIEO” (B for 
beginning, I for inside, E for ending, and O for 
outside) representation. If the phrase has one word, 
the tag is E. This representation enables us to use 
the linear chain CRF model to perform identifying, 
since the task is simply assigning appropriate la-
bels to sequence. 

There are two differences between our feature 
set and Qiaoli (2010)’s: 

1) We use dependency direction of word as iden-
tification feature, while Qiaoli (2010) did not 
use. 

2) We do not use scoring algorithm which is used 
by Qiaoli (2010). 

Direction Unigrams D-3,D-2 ,D-1 , D0 , 
D+1 ,D+2 ,D+3

Direction Bigrams D-2D-1, D-1D0, D0D+1, 
D+1D+2,  

Word & Direction W0D0

Table 2. Feature Templates of MMSR Phrase 
 
Table 2 is additional new feature templates 

based on Qiaoli (2010). W represents a word, and 
D represents dependency direction of the word. 
With this approach, nested MSR phrases are identi-
fied, and the top-level MSR phrase is the MMSR 
that we obtained. 

corpus P R F 

dev 81.41% 75.40% 78.29% 

test 81.23% 73.04% 76.92% 
Table 3.  MMSR Identification Performance 
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3.2 BMSR Phrase Identification based on 
CRFs  

We use the tag set “BIEO” the same as that used 
for MMSR identification. 

Word Unigrams W-3, W-2, W-1, W0, W+1, W+2, W+3

Word Bigrams 
W-3W-2, W-2W-1, W-1W0, W0W+1, 
W+1W+2, W+2W+3

POS Unigrams P-3 , P-2, P-1, P0, P+1, P+2, P+3

POS Bigrams 
P-3P-2, P-2P-1, P-1P0, P0P+1,  
P+1P+2, P+2P+3

Word_X X0

Word_Y Y0

Word_D D0

Word_S S-3, S-2 , S-1 , S0, S+1, S+2, S+3

Word & POS W-1P-1, W0P0, W+1P+1

Word & Word_X W-3X0

Word & Word_D 
W0D0, W-3W-2D0, W-2W-1D0,  
W-1W0D0, W0W+1D0, W+1W+2D0, 
W+2W+3D0

Word & Word_S W-1S-1, W0S0, W+1S+1, W+2S+2

Word_X & Word_Y X0Y0

POS & Word_D 
P0D0, P-3P-2D0, P-2P-1D0, P-1P0D0, 
P0P+1D0, P+1P+2D0, P+2P+3D0

POS & Word_S 
P-1S-1, P-2S-2, P-3S-3, P0S0, 
 P+1S+1, P+2S+2, P+3S+3

Word_D & Word_S 
D-1S-1, D-2S-2, D-3S-3, D0S0, 
 D+1S+1, D+2S+2, D+3S+3

Word & POS & 
Word_D 

W-1P-1D0, W0P0D0, W+1P+1D0

Word & POS & 
Word_D & Word_S 

W-3P-3D-3S-3, W-2P-2D-2S-2,  
W-1P-1D-1S-1, W0P0D0S0, W1P1D1S1, 
W2P2D2S2, W3P3D3S3

Table 4. Feature Templates of BMSR Phrase 
 
In table 4, “W” represents a word, “P” repre-

sents the part-of-speech of the word, “X” repre-
sents the fourth word following the current word, 
“Y” represents the fifth word following the current 
word, “D” represents the dependency direction of 
the current word, and “S” represents the paired 
punctuation feature. “S” consists of “RLIO” (R for 
the right punctuation, L for the left punctuation, I 
for the part between the paired punctuation and O 
for outside). 
 

corpus P R F 

dev 79.32% 80.65% 79.98% 

test 79.22% 79.96% 79.59% 
Table 5.  BMSR Identification Performance (F-score) 

3.3 MPSR Phrase Identification Based on 
Collection  

Reference (Dongfeng, 2011) is selected as our ap-
proach of MPSR phrase identification. The posi-
tion of HP in PSR phrase is not fixed. Not only 
PSR phrase is identified, but also PSR phrase type 
is identified.  

There are two major differences between our 
feature set and Dongfeng (2011)’s: 

1) We take the PSR phrase type (the SR of HP) 
as tag.  

2)  We use “S-type” represents that the PSR 
phrase is the single preposition. “Type” represents 
SR of the preposition. 

For example: 工作者/NN location [在/P 甘肃

/NR 金川/NR] 发现/VV 

O|W POS
Dongfeng 

(2011) Tag 
Our Tag 

*|工作者 NN O O 

*|在 P O O 

在|甘肃 NR I I 

在|金川 NR E Location-E

在|发现 VV N N 
Table 6. Example of PSR Phrase Tag Set  

 
In table 6, Dongfeng(2011) takes ‘E’ as the tag 

of last word of PSR phrase, but we take ‘Location-
E’ as the tag of last word of PSR phrase  (Location 
is type of  PSR phrase). 

With this approach, nested PSR phrases are 
identified, and the top-level PSR phrase is the 
MPSR that we obtained. 

corpus MPSR phrase MPSR phrase & type

dev 84.00% 54.23% 

test 83.78% 51.60% 
Table 7. MPSR Identification Performance (F-score) 

3.4 Combined Identification of MSR Phrase 
and PSR Phrase 

Identification process: MSR phrase and PSR 
phrase are respectively identified in one sentence, 
and the results are combined in accordance with 
this rule: if phrases are nested, only the top-level 
phrase is tagged; if phrases are same, only the PSR 
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phrase is tagged; if phrases are overlapped, only 
PSR phrase is tagged. 

There are two combinations in this paper:  
1) MMSR phrase and MPSR phrase combined 

result is defined as MMMP phrase. For exam-
ple as follow (‘[ ]’represents MMSR, 
‘{}’represents MPSR): 

Example A: [ 建筑/NN ] 是/VC [ 开发/VV 浦
东/NR 的/DEC 一/CD 项/M 主要/JJ 经济/NN 活
动/NN ] ，/PU 这些/DT 年/M 有/VE [ 数百/CD 
家/M 建筑/NN 公司/NN 、/PU 四千余/CD 个/M 
建筑/NN 工地/NN ] 遍布/VV location{ 在/P 这
/DT 片/M 热土/NN 上/LC } 。/PU  

MMMP  frame: [ 建筑/NN ] 是/VC 活动/NN ，
/PU 这些/DT 年/M 有/VE 工地/NN 遍布/VV 
location/location 。/PU 
2) BMSR phrase and MPSR phrase combined 

result is defined as BMMP phrase. 
Example B: [ 建筑/NN ] 是/VC 开发/VV [ 浦东

/NR ] 的/DEC 一/CD 项/M 主要/JJ 经济/NN 活
动/NN ，/PU 这些/DT 年/M 有/VE [ 数百/CD 家
/M 建筑/NN 公司/NN 、/PU 四千余/CD 个/M 建
筑/NN 工地/NN ] 遍布/VV location{ 在/P 这/DT 
片/M 热土/NN 上/LC } 。/PU 

BMMP  frame: 建筑/NN 是/VC 开发/VV 浦东

/NR 的/DEC 一/CD 项/M 主要/JJ 经济/NN 活动

/NN ，/PU 这些/DT 年/M 有/VE 工地/NN 遍布

/VV location/location 。/PU 
corpus phrase P R F 

BMMP 79.48% 81.60% 80.53%
dev 

MMMP 80.00% 76.79% 78.36%

BMMP 80.14% 82.48% 81.30%
test 

MMMP 80.19% 78.53% 79.35%
Table 8.  Combination Phrase Identification 

Performance 

3.5 Phrase and Frame Length Distribution   

We count phrases, frame and Original Sentence 
(OS) length distribution in training set and dev set. 

 BMMP MMMP MMSR BMSR OS 
[0,5) 80.07% 71.36% 75.36% 85.74% 9.07%
[5,10) 16.15% 21.63% 18.93% 12.33% 8.30%
[10,20) 3.35% 6.13% 5.05% 1.80% 17.23%
20≤ 0.43% 0.88% 0.66% 0.13% 65.40%

Table 9.  Length Distribution of Phrases and OS 

 
Table 9 shows, about 95% of phrases have less 

than 10 words, but about 65% of OS has more than 
20 words. 

 BMMP MMMP MMSR BMSR OS 
[0,5) 16.00% 18.70% 16.43% 14.36% 9.07%
[5,10) 18.87% 24.91% 19.41% 14.11% 8.30%
[10,20) 34.26% 35.42% 33.94% 30.68% 17.23%
20≤ 30.87% 20.97% 30.22% 40.85% 65.40%

Table 10.  Length Distribution of Frames and OS 
 
Table 10 shows, about 70% of frames have less 

than 20 words, especially 80% of MMMP frame 
has less than 20 words, but about 65% of OS has 
more than 20 words. 

 BMMP MMMP BMSR MMSR OS 
phrase 3.07 3.83 2.53 3.44 30.07
frame 16.00 13.21 19.16 15.79 30.07

Table 11. Average Length 
 
We count phrases, frame and Original Sentence 

(OS) Average Length (AL) in training set and dev 
set. Table 11 shows phrase of AL accounted for 
10% of OS of AL, and frame of AL accounted for 
50% of OS of AL. The AL shows that the semantic 
dependency paring unit length of OS is greatly re-
duced after dividing an original sentence into SR 
phrases and frame.  

As shown in tables 9, 10 and 11, the length dis-
tribution indicates that the divide-and-conquer 
strategy reduces the complexity of sentences sig-
nificantly. 

4 Semantic Dependency Parsing  

Graph-based parser is selected as our basic seman-
tic dependency parser. It views the semantic de-
pendency parsing as problem of finding maximum 
spanning trees (McDonald, 2006) in directed 
graphs. In this paper, phrase and frame semantic 
dependency parsing result was obtained by Graph-
based parser. Training set of phrase comes from 
phrases, and training set of frame comes from 
frames. 

5 Experiments  

5.1 Direction of Identification  
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Dependency direction serves as feature of SR 
phrase identification, so we need to identify de-
pendency direction of word. We use tag set is {B, 
F}, B represents backward dependence, F repre-
sents forward dependence. The root’s dependency 
direction in sentence is B. Dependency direction 
identification p-score has reached 94.87%. 

Word Unigrams W-4, W-3, W-2, W-1, W0, W+1,  
W+ 2, W+ 3, W+ 4

Word Bigrams W-3W-2, W-2W-1, W-1W0, W0W+1, 
W+1W+2, W+2W+3

Word Trigrams W-1W 0W+1

Word Four-grams W-2W-1W0 W +1, W0W+1W+2W+3

Word Five-grams W- 4W-3W-2W-1W0,  
W0W+1W+2W+3W+ 4

POS Unigrams P-4, P-3, P-2, P-1, P0, P+1, P+2, P+3, P+ 4

POS Bigrams P-3P-2, P-2P-1, P-1P0, P0P+1, 
 P+1P+2, P +2P+3

POS Trigrams P-1P0P+1

POS Four-grams P-2P-1P0P+1, P0P+1P+2P+3

POS Five-grams P-4P-3P-2P-1P0, P0P+1P+2P+3P+4

Word & POS W-2 P-2, W-1P-1, W0P0, W+1P+1, 
W+2P+2

Table 12.  Feature Templates of Dependency Direction 
In table12, w represents word, p represents POS. 

5.2 System and Model  

For a sentence for which phrases has been identi-
fied, if phrases can be identified, then the whole 
sentence semantic dependency parsing result is 
obtained by phrase parsing model and frame pars-
ing model. Therefore, in this paper, the sentence is 
divided into the following types based on the 
phrase identification results: (1) SentMMMP indi-
cates MMSR phrase and MPSR phrase identified 
in a sentence; (2) SentBMMP indicates BMSR 
phrase and MPSR phrase identified in a sentence; 
(3) SentMMSR indicates only MMSR phrase iden-
tified in a sentence; (4) SentMPSR indicates only 
MPSR phrase identified in a sentence; (5) 
SentBMSR indicates only BMSR phrase identified 
in a sentence; (6) SentNone indicates no phrase 
identified in a sentence. 

Sentence type Phrase parsing 
Model 

Frame parsing
Model 

SentMMMP MMMP phrase MMMP frame
SentBMMP BMMP phrase BMMP frame
SentMMSR MMSR phrase MMSR frame
SentMPSR MPSR phrase MPSR frame 
SentBMSR BMSR phrase BMSR frame
SentNone Sentence model 

Table 13.  Type of Sentence and Parsing Model 

Table 13 shows types of sentence, and parsing 
models for every type of sentence. For example, 
parsing SentMMMP needs MMMP phrase parsing 
model and MMMP frame paring model 

The corpus contains the sentence type deter-
mined by the phrase identification strategy. 

Strategy of phrase 
identification Sentence type in the corpus

Strategy MMMP SentMMMP, SentMMSR, 
SentMPSR, SentNone 

Strategy BMMP SentBMMP, SentMPSR, 
SentBMSR, SentNone 

Strategy BMSR SentBMSR, SentNone 
Table 14.  Sentence Types in the Corpus 

 
As shown in table 14, Strategy MMMP indicates 

that MMMP phrase in the corpus was identified, 
and sentences in the corpus were divided into 
SentMMMP, SentMMSR, SentMPSR and Sent-
None. Strategy BMMP indicates that BMMP 
phrase in the corpus was identified, and sentences 
in the corpus were divided into SentBMMP, 
SentBMSR, SentMPSR and SentNone. Strategy 
BMSR indicates that BMSR phrase in the corpus 
was identified, and sentences in the corpus were 
divided into SentBMSR and SentNone. 

5.3 Comparative Experiments  

In this paper, we carry out comparative experi-
ments of parsing for the test set by 3 systems. 
1) System1 represents strategy MMMP in the 

table 14. 
2) System2 represents strategy BMMP in the ta-

ble 14. 
3) System3 represents strategy BMSR in the table 

14. 
 Dev Test 
G-parser 62.31% 61.68% 
System1(MMMP) 61.98% 61.84% 
System2(BMMP) 62.7% 62.08% 
System3(BMSR) 62.22% 61.15% 

Table 15.  Comparative Experiments 
 
As shown in the table 15, system2 result is more 

accurate than system1, because BMMP phrase 
identification is more accurate than MMMP as 
shown in the table 8. Although, BMSR phrase 
identification is more accurate than MMMP phrase 
as shown in the table 5 & 8, system 3 result is less 
accurate than systm1. Compared with BMSR iden-
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tification, MMMP identification reduces the com-
plexity of sentences significantly, because the table 
11 shows that the AL of MMMP frame is about 
30% less than that of BMSR frame. G-parser is 
graph-based parser (Wangxiang Che, 2008). 

6 Conclusion and Future Work  

To solve the problem of low accuracy of long dis-
tance dependency parsing, this paper proposes a 
divide-and-conquer strategy for semantic depend-
ency parsing. We present our SemEval2012 shared 
Task 5 system which is composed of three cas-
caded components: the tagging of SR phrase, the 
identification of Semantic-role- phrase and seman-
tic dependency parsing.  

Divide-and-conquer strategy is influenced by 
two factors: one is identifying the type of phrase 
will greatly reduce the sentence complexity; the 
other is phrase identifying precision results in cas-
caded errors. The topic of this evaluation is seman-
tic dependency parsing, and word and POS contain 
less semantic information. If we can make seman-
tic label on words, then it will be more helpful for 
semantic dependency parsing. In the future, we 
will study how to solve the long distance depend-
ency parsing problem. 
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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

ICT:A System Combination for Chinese Semantic Dependency Parsing

Hao Xiong and Qun Liu
Key Lab. of Intelligent Information Processing

Institute of Computing Technology
Chinese Academy of Sciences

P.O. Box 2704, Beijing 100190, China
{xionghao, liuqun}@ict.ac.cn

Abstract

The goal of semantic dependency parsing is to
build dependency structure and label seman-
tic relation between a head and its modifier.
To attain this goal, we concentrate on obtain-
ing better dependency structure to predict bet-
ter semantic relations, and propose a method
to combine the results of three state-of-the-art
dependency parsers. Unfortunately, we made
a mistake when we generate the final output
that results in a lower score of 56.31% in term
of Labeled Attachment Score (LAS), reported
by organizers. After giving golden testing set,
we fix the bug and rerun the evaluation script,
this time we obtain the score of 62.8% which
is consistent with the results on developing set.
We will report detailed experimental results
with correct program as a comparison stan-
dard for further research.

1 Introduction

In this year’s Semantic Evaluation Task, the organiz-
ers hold a task for Chinese Semantic Dependency
Parsing. The semantic dependency parsing (SDP)
is a kind of dependency parsing. It builds a depen-
dency structure for a sentence and labels the seman-
tic relation between a head and its modifier. The
semantic relations are different from syntactic rela-
tions. They are position independent, e.g., the pa-
tient can be before or behind a predicate. On the
other hand, their grains are finer than syntactic re-
lations, e.g., the syntactic subject can be agent or
experiencer. Readers can refer to (Wanxiang Che,
2012) for detailed introduction.

Figure 1: The pipeline of our system, where we com-
bine the results of three dependency parsers and use max-
entropy classifier to predict the semantic relations.

Different from most methods proposed in
CoNLL-2008 1 and 20092, in which some re-
searchers build a joint model to simultaneously gen-
erate dependency structure and its syntactic relations
(Surdeanu et al., 2008; Hajič et al., 2009), here,
we first employ several parsers to generate depen-
dency structure and then propose a method to com-
bine their outputs. After that, we label relation be-
tween each head and its modifier via the traversal
of this refined parse tree. The reason why we use
a pipeline model while not a joint model is that
the number of semantic relations annotated by or-
ganizers is more than 120 types, while in the for-
mer task is only 21 types. Compared to the former
task, the large number of types will obviously drop
the performance of classifier. On the other hand, the
performance of syntactic dependency parsing is ap-
proaching to perfect, intuitively, that better depen-
dency structure does help to semantic parsing, thus
we can concentrate on improving the accuracy of de-
pendency structure construction.

The overall framework of our system is illustrated

1http://www.yr-bcn.es/conll2008/
2http://ufal.mff.cuni.cz/conll2009-st/
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in figure 1, where three dependency parsers are em-
ployed to generate the dependency structure, and a
maximum entropy classifier is used to predict rela-
tion for head and its modifier over combined parse
tree. Final experimental results show that our sys-
tem achieves 80.45% in term of unlabeled attach-
ment score (UAS), and 62.8 % in term of LAS. Both
of them are higher than the baseline without using
system combinational techniques.

In the following of this paper, we will demonstrate
the detailed information of our system, and report
several experimental results.

2 System Description

As mentioned, we employ three single dependency
parsers to generate respect dependency structure. To
further improve the accuracy of dependency struc-
ture construction, we blend the syntactic outputs and
find a better dependency structure. In the followings,
we will first introduce the details of our strategy for
dependency structure construction.

2.1 Parsers

We implement three transition-based dependency
parsers with three different parsing algorithms:
Nivre’s arc standard, Nivre’s arc eager (see Nivre
(2004) for a comparison between the two Nivre al-
gorithms), and Liang’s dynamic algorithm(Huang
and Sagae, 2010). We use these algorithms for
several reasons: first, they are easy to implement
and their reported performance are approaching to
state-of-the-art. Second, their outputs are projective,
which is consistent with given corpus.

2.2 Parser Combination

We use the similar method presented in Hall et al.
(2011) to advance the accuracy of parses. The parses
of each sentence are combined into a weighted di-
rected graph. The left procedure is similar to tradi-
tional graph-based dependency parsing except that
the number of edges in our system is smaller since
we reserve best edges predicted by three single
parsers. We use the popular Chu-Liu-Edmonds al-
gorithm (Chu and Liu, 1965; Edmonds et al., 1968)
to find the maximum spanning tree (MST) of the
new constructed graph, which is considered as the
final parse of the sentence. Specifically, we use the
parsing accuracy on developing set to represent the

weight of graph edge. Formally, the weight of graph
edge is computed as follows,

we =
∑

p∈P

Accuracy(p) · I(e, p) (1)

where theAccuracy(p) is the parsing score of
parse treep whose value is the score of parsing accu-
racy on developing set, andI(e, p) is an indicator, if
there is such dependency in parse treep, it returns1,
otherwise returns 0. Since the value ofAccuracy(p)
ranges from0 to 1, we doesn’t need to normalize its
value.

Thus, the detailed procedure for dependency
structure construction is,

• Parsing each sentence using Nivre’s arc stan-
dard, Nivre’s arc eager and Liang’s dynamic al-
gorithm, respectively.

• Combining parses outputted by three parsers
into weighted directed graph, and representing
its weight using equation 1.

• Using Chu-Liu-Edmonds algorithm to search
final parse for each sentence.

2.3 Features for Labeling

After given dependency structure, for each relation
between head and its modifier, we extract 31 types
of features, which are typically exploited in syntac-
tic dependency parsing, as our basic features. Based
on these basic features, we also add a additional dis-
tance metric for each features and obtain 31 types of
distance incorporated features. Besides that, we use
greedy hill climbing approach to select additional 29
features to obtain better performance. Table 1 shows
the basic features used in our system,

And the table 2 gives the additional features. It
is worth mentioning, that the distance is calculated
as the difference between the head and its modifier,
which is different from the calculation reported by
most literatures.

2.4 Classifier

We use the classifier from Le Zhang’s Maximum
Entropy Modeling Toolkit3 and use the L-BFGS

3http://homepages.inf.ed.ac.uk/s0450736/maxenttoolkit
.html
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Features

Basic

mw:modifier’s word
mp:modifier’s POS tag
hw:head’s word
hp:head’s POS tag

Combination

hw|hp,mw|mp,hw|mw
hp|mp,hw|mp,hp|mw
hw|hp|mw
hw|hp|mp
hw|mw|mp
hp|mw|mp
hp|mp|mp-1
hp|mp|mp+1
hp|hp-1|mp
hp|hp+1|mp
hp|hp-1|mp-1
hp|hp-1|mp+1
hp|hp+1|mp-1
hp|hp+1|mp+1
hp-1|mp|mp-1
hp-1|mp|mp+1
hp+1|mp|mp-1
hp+1|mp|mp+1
hw|hp|mw|mp
hp|hp-1|mp|mp-1
hp|hp+1|mp|mp+1
hp|hp+1|mp|mp-1
hp|hp-1|mp|mp+1

Table 1: The basic features used in our system. -1 and
+1 indicate the one on the left and right of given word.

parameter estimation algorithm with gaussian prior
smoothing(Chen and Rosenfeld, 1999). We set the
gaussian prior to 2 and train the model in 1000 iter-
ations according to the previous experience.

3 Experiments

The given corpus consists of 8301 sentences
for training(TR), and 569 sentences for develop-
ing(DE). For tuning parameters, we just use TR por-
tion, while for testing, we combine two parts and
retrain the parser to obtain better results. Surely, we
also give results of testing set trained on TR portion
for comparison. In the following of this section, we
will report the detailed experimental results both on

Features

Distance dist:basic features with distance

Additional

lmw:leftmost word of modifier
rnw :rightnearest word of modifier
gfw:grandfather of modifier
lmp,rnp ,gfp
lmw|lmp,rnw|rnp,lmw|rnw
lmp|rnp,lmw|mw,lmp|mp
rnw|mw,rnp|mp,gfw|mw
gfp|mp,gfw|hw,gfp|hp
gfw|mw|gfp|mp
lmw|lmp|mw|mp
rnw|rnp|mw|mp
lmw|rnw|mw,lmp|rnp|mp
gfw|hw|gfp|hp
gfw|mw|hw,gfp|mp|hp
gfw|mw|hw|gfp|mp|hp
lmw|rnw|lmp|rnp|mw|mp
lmw|rnw|lmp|rnp

Table 2: The additional features used in our system.

developing and testing set.

3.1 Results on Developing Set

We first report the accuracy of dependency construc-
tion on developing set using different parsing al-
gorithms in table 3. Note that, the features used
in our system are similar to that used in their pub-
lished papers(Nivre, 2003; Nivre, 2004; Huang and
Sagae, 2010). From table 3 we find that although

Precision (%)
Nivre’s arc standard 78.86

Nivre’s arc eager 79.11
Liang’s dynamic 79.78

System Combination 80.85

Table 3: Syntactic precision of different parsers on devel-
oping set.

using simple method for combination over three sin-
gle parsers, the system combination technique still
achieves 1.1 points improvement over the highest
single system. Since the Liang’s algorithm is a dy-
namic algorithm, which enlarges the searching space
in decoding, while the former two Nivre’s arc al-
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gorithms actually still are simple beam search al-
gorithm, thus the Liang’s algorithm achieves better
performance than Nivre’s two algorithm, which is
consistent with the experiments in Liang’s paper.

To acknowledge that the better dependency struc-
ture does help to semantic relation labeling, we fur-
ther predict semantic relations on different depen-
dency structures. For comparison, we also report the
performance on golden structure. Since our combi-

Precision (%)
Nivre’s arc standard 60.84

Nivre’s arc eager 60.76
Liang’s dynamic 61.43

System Combination 62.92
Golden Tree 76.63

Table 4: LAS of semantic relations over different parses
on developing set.

national algorithm requires weight for each edges,
we use the developing parsing accuracy 0.7886,
0.7911, and 0.7978 as corresponding weights for
each single system. Table 4 shows, that the pre-
diction of semantic relation could benefit from the
improvement of dependency structure. We also no-
tice that even given the golden parse tree, the per-
formance of relation labeling is still far from per-
fect. Two reasons could be explained for that: first
is the small size of supplied corpus, second is that
the relation between head and its modifier is too
fine-grained to distinguish for a classifier. More-
over, here we use golden segmentation for parsing,
imagining that an automatic segmenter would fur-
ther drop the accuracy both on syntactic and seman-
tic parsing.

3.2 Results on Testing Set

Since there is a bug4 in our final results submitted
to organizers, here, in order to confirm the improve-
ment of our method and supply comparison standard
for further research, we reevaluate the correct output
and report its performance on different training set.
Table 5 and table 6 give the results trained on dif-
ferent corpus. We can see that when increasing the

4The bug is come from that when we converting the CoNLL-
styled outputs generated by our combination system into plain
text. While in developing stage, we directly used CoNLL-styled
outputs as our input, thus we didn’t realize this mistake.

training size, the performance is slightly improved.
Also, we find the results on testing set is consistent
with that on developing set, where best dependency
structure achieves the best performance.

LAS (%) UAS(%)
Nivre’s arc standard 60.38 78.19

Nivre’s arc eager 60.78 78.62
Liang’s dynamic 60.85 79.09

System Combination 62.76 80.23
Submitted Error Results 55.26 71.85

Table 5: LAS and UAS on testing set trained on TR.

LAS (%) UAS(%)
Nivre’s arc standard 60.49 78.25

Nivre’s arc eager 60.99 78.78
Liang’s dynamic 61.29 79.59

System Combination 62.80 80.45
Submitted Error Results 56.31 73.20

Table 6: LAS and UAS on testing set trained on TR and
DE.

4 Conclusion

In this paper, we demonstrate our system framework
for Chinese Semantic Dependency Parsing, and re-
port the experiments with different configurations.
We propose to use system combination to better the
dependency structure construction, and then label
semantic relations over refined parse tree. Final ex-
periments show that better syntactic parsing do help
to improve the accuracy of semantic relation predic-
tion.
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Abstract 

In this paper, we introduce our work on 

SemEval-2012 task 5: Chinese Semantic De-

pendency Parsing. Our system is based on 

MSTParser and two effective methods are 

proposed: splitting sentence by punctuations 

and extracting last character of word as lemma. 

The experiments show that, with a combina-

tion of the two proposed methods, our system 

can improve LAS about one percent and final-

ly get the second prize out of nine participat-

ing systems. We also try to handle the multi-

level labels, but with no improvement. 

1 Introduction 

Task 5 of SemEval-2012 tries to find approaches to 

improve Chinese sematic dependency parsing 

(SDP). SDP is a kind of dependency parsing. Cur-

rently, there are many dependency parsers availa-

ble, such as Eisner’s probabilistic dependency 

parser (Eisner, 1996), McDonald’s MSTParser 

(McDonald et al. 2005a; McDonald et al. 2005b) 

and Nivre’s MaltParser (Nivre, 2006). 

Despite of elaborate models, lots of problems 

still exist in dependency parsing. For example, sen-

tence length has been proved to show great impact 

on the parsing performance. (Li et al., 2010) used a 

two-stage approach based on sentence fragment for 

high-order graph-based dependency parsing. Lack-

ing of linguistic knowledge is also blamed. 

Three methods are promoted in this paper try-

ing to improve the performance: splitting sentence 

by commas and semicolons, extracting last charac-

ter of word as lemma and handling multi-level la-

bels. Improvements could be achieved through the 

first two methods while not for the third. 

2 Overview of Our System 

Our system is based on MSTParser which is one of 

the state-of-the-art parsers. MSTParser tries to ob-

tain the maximum spanning tree of a sentence. For 

projective parsing task, it takes Eisner’s algorithm 

(Eisner, 1996) to get the dependency tree in O(n
3
) 

time. Meanwhile, Chu-Liu-Edmond’s algorithm 

(Chu and Liu, 1965) is applied for non-projective 

task, which takes O(n
2
) time. 

Three methods are adopted to MSTParser in our 

system: 

1) Sentences are split into sub-sentences by 

commas and semicolons, for which there 

are two ways. Splitting sentences by all 

commas and semicolons is used in our 

primary system. In our contrast system, we 

use a classifier to determine whether a 

comma or semicolon can be used to split 

the sentence. In the primary and contrast 

system, the proto sentences and the sub-

sentences are trained and tested separately 

and the outputs are merged in the end. 

2) In a Chinese word, the last character usual-

ly contains main sense or semantic class. 

We treat the last character of the word as 

word lemma and find it gets a slightly im-

provement in the experiment. 

3) An experiment trying to solve the problem 

of multi-level labels was conducted by 

parsing different levels separately and con-

sequently merging the outputs together. 

The experiment results have shown that the first 

two methods could enhance the system perfor-

mance while further improvements could be ob-

tained through a combination of them in our sub-

submitted systems. 
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a) The proto sentence from train data 

                       
b) The first sub sentence of a)                         c) The second sub sentence of a) 

Figure 1. An example of the split procedure. 
 

3 Experiments 

3.1 Split sentences by commas and semicolons 

It is observed that the performance decreases as 

the length of the sentences increases. Table 1 

shows the statistical analysis on the data including 

SemEval-2012, Conll-07’s Chinese corpus and a 

subset extracted from CTB using Penn2Malt. Long 

sentence can be split into sub-sentences to get bet-

ter parsing result.  
 

Items 
SemEval

-2012 

Conll-

07 CN 
CTB

 

Postages count 35 13 33 

Dependency 

labels count 
122 69 12 

Average sentence 

length 
30.15 5.92 25.89 

Average 

dependency length 
4.80 1.71 4.36 

LAS 61.37 82.89 67.35 

UAS 80.18 87.64 79.90 

Table 1. Statistical analysis on the data. The CTB data is 

a subset extracted from CTB using Penn2Malt. 

 

Our work can be described as following steps: 

Step 1: Use MSTParser to parse the data. We 

name the result as “normal output”. 

Step 2: Split train and test data by all commas 

and semicolons. The delimiters are removed in the 

sub sentences. For train data, a word’s dependency 

relation is kept if the word’s head is under the cov-

er of the sub sentence. Otherwise, its head will be 

set to root and its label will be set to ROOT (ROOT 

is the default label of dependency arcs whose head 

is root). We define the word as “sentence head” if 

its head is root. “Sub-sentence head” indicates the 

sentence head of a sub-sentence. After splitting, 

there may be more than one sub-sentence heads in 

a sub-sentence. Figure 1 shows an example of the 

split procedure. 

Step 3: Use MSTParser to parse the data gener-

ated in step 2. We name the parsing result “split 

output”. In split output, there may be more than 

one sub-sentences corresponding to a single sen-

tence in normal output. 

Step 4: Merge the split output and the normal 

output. The outputs of sub-sentences are merged 

with delimiters restored. Dependency relations are 

recovered for all punctuations and sub-sentence 

heads in split output with relations in normal out-

put. The sentence head of normal output is kept in 

final output. The result is called “merged split out-

put”. This step need to be consummated because it 

may result in a dependency tree not well formed 

with several sentence heads or even circles. 

The results of experiments on develop data and 

test data are showed in table 2. For develop data, 

an improvement of 0.85 could be obtained while 

0.93 for test data, both on LAS. 

In step 2, there is an alternative to split the sen-

tences, i.e., using a classifier to determine which 

comma and semicolon can be split. This method is 

taken in the contrast system. When applying the 

classifier, all commas and semicolons in train data 
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are labeled with S-IN or S-STOP while other 

words with NULL. If the sub sentence before the 

comma or semicolon has only one sub-sentence 

head, it is labeled with S-STOP, otherwise with S-

IN. A model is built from train data with CRF++ 

and test data is evaluated with it. Features used are 

listed in table 3. Only commas and semicolons 

with label S-STOP can be used to split the sen-

tence in step 2. Other steps are the same as above. 

The result is also shown in table 2 as “merged split 

output with CRF++”. 
 

Data Methods LAS UAS 

Develop 

data 

normal output 61.37 80.18 

merged split output 62.22 80.56 

merged split output 

with CRF++ 
61.97 80.73 

lemma output 61.64 80.47 

primary system output 62.41 80.96 

contrast system output 62.05 80.90 

Test 

 data 

normal output 60.63 79.37 

merged split output 61.56 80.17 

merged split output 

with CRF++ 
61.42 80.20 

lemma output 60.88 79.42 

primary system output 61.63 80.35 

contrast system output 61.64 80.29 

Table 2. Results of the experiments. 

 
w-4,w-3,w-2,w-1,w,w+1,w+2,w+3,w+4 

p-4,p-3,p-2,p-1,p,p+1,p+2,p+3,p+4 

wp-4,wp-3,wp-2,wp-1,wp wp+1,wp+2,wp+3,wp+4 

w-4|w-3,w-3|w-2,w-2|w-1,w-1|w, 

w|w+1,w+1|w+2,w+2|w+3,w+3|w+4 

p-4|p-3,p-3|p-2,p-2|p-1,p-1|p, 

p|p+1,p+1|p+2,p+2|p+3,p+3|p+4 

first word of sub-sentence before the delimiter 

Table 3. Features used in CRF++. w represents for word 

and p for PosTag. +1 means the index after current 

while -1 means before. 

3.2 Extract last character of word as lemma 

In Chinese, the last character of a word usually 

contains main sense or semantic class, which indi-

cates that it may represent the whole word. For 

example, “ 国 ”(country) can represent “ 中

国 ”(China) and “恋 ”(love) can represent “热

恋”(crazy love).  

The last character is used as lemma in the ex-

periment, with an improvement of 0.27 for LAS on 

develop data and 0.24 on test data. Details of the 

scores are listed in table 2 as “lemma output”. 

3.3 Multi-level labels experiment 

A notable characteristic of SemEval-2012’s da-

ta is multi-level labels. It introduces four kinds of 

multi-level labels which are s-X, d-X, j-X and r-X. 

The first level represents the basic semantic rela-

tion of the dependency while the second level 

shows the second import, except that s-X repre-

sents sub-sentence relation.  

The r-X label means that a verb modifies a 

noun and the relation between them is reverse. For 

example, in phrase “贫户(poor) 出身(born) 的 明

星(star)”, “出身” is headed to “明星” with label r-

agent. It means that “明星” is the agent of “出身”. 

When a verbal noun is the head word and its 

child has indirect relation to it, the dependency is 

labeled with j-X. In phrase “学校(school) 建设

(construction)”, “建设” is the head of “学校” with 

label j-content. “学校” is the content of “建设”. 

The d-X label means that the child modifies the 

head with an additional relation. For example, in 

phrase “科技(technology) 企业(enterprise)”, “科

技” modifies “企业” and the domain of “企业” is 

“科技”. 

A heuristic method is tried in the experiment. 

The multi-level labels of d-X, j-X and r-X are sep-

arated into two parts for each level. For example, 

“d-content” will be separated to “d” and “content”. 

For each part, MSTParser is used to train and test. 

We call the outputs “first-level output” and “se-

cond-level output”. The outputs of each level and 

normal output are merged then. 

In our experiments, only the word satisfies the 

following conditions need to be merged: 

a) The dependency label in normal output is 

started with d-, j- or r-. 

b) The dependency label in first-level output is 

d, j or r. 

c) The heads in first-level output and second-

level output are of the same. 

Otherwise, the dependency relation in normal 

output will be kept. There are also three ways in 

merging outputs: 

a) Label in first-level output and label in se-

cond-level output are merged. 

b) First level label in normal output and label 

in second-level output are merged. 

c) Label in first-level output and second level 

label in normal output are merged. 
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Experiment has been done on develop data. In 

the experiment, 24% of the labels are merged and 

92% of the new merged labels are the same as 

original. The results of three ways are listed in ta-

ble 4. All of them get decline compared to normal 

output. 

 
outputs LAS UAS 

normal output 61.37 80.18 

way a) 61.18 80.18 

way b) 61.25 80.18 

way c) 61.25 80.18 

Table 4. Results of multi-level labels experiment on 

develop data. 

3.4 Combined experiment on split and lemma 

Improvements are achieved by first two meth-

ods in the experiment while a further enhancement 

is made with a combination of them in the submit-

ted systems. The split method and lemma method 

are combined as primary system. The split method 

with CRF++ and lemma method are combined as 

contrast system. When combining the two methods, 

last character of the word is firstly extracted as 

lemma for train data and test data. Then the split or 

split with CRF++ method is used. 

The outputs of the primary system and contrast 

system are listed in table 2.  

4 Analysis and Discussion 

The contrast system presented in this paper finally 

got the second prize among nine systems. The pri-

mary system gets the third. There is an improve-

ment of about one percent for both primary and 

contrast system. The following conclusions can be 

made from the experiments: 

1) Parsing is more effective and accurate on 

short sentences. A word prefers to depend 

on another near to it. A sentence can be 

split to several sub sentences by commas 

and semicolons to get better parsing output. 

Result may be improved with a classifier to 

determine whether a comma or semicolon 

can be used to split the sentence. 

2) Last character of word is a useful feature. 

In the experiment, the last character is 

coarsely used as lemma and a minor im-

provement is achieved. Much more lan-

guage knowledge can be used in parsing. 

3) The label set of the data is worthy to be re-

viewed. The meanings of the labels are not 

given in the task. Some of them are confus-

ing especially the multi-level labels. The 

trying of training and testing multi-level la-

bels separately by levels fails with a slight-

ly decline of the score. Multi-level also 

causes too many labels: any single-level la-

bel can be prefixed to form a new multi-

level label. It’s a great problem for current 

parsers. Whether the label set is suitable to 

Chinese semantic dependency parsing 

should be discussed. 

5 Conclusion and Future Work 

Three methods applied in NJU-Parser are de-

scribed in this paper: splitting sentences by com-

mas and semicolons, taking last character of word 

as lemma and handling multi-level labels. The first 

two get improvements in the experiments. Our 

primary system is a combination of the first two 

methods. The contrast system is the same as prima-

ry system except that it has a classifier implement-

ed in CRF++ to determine whether a comma or a 

semicolon should be used to split the sentence. 

Both of the systems get improvements for about 

one percent on LAS. 

In the future, a better classifier should be devel-

oped to split the sentence. New method should be 

applied in merging split outputs to get a well 

formed dependency tree. And we hope there will 

be a better label set which are more capable of de-

scribing semantic dependency relations for Chi-

nese. 
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Abstract 

This paper presents the work of the Hong 

Kong Polytechnic University (PolyUCOMP) 

team which has participated in the Semantic 

Textual Similarity task of SemEval-2012. The 

PolyUCOMP system combines semantic vec-

tors with skip bigrams to determine sentence 

similarity. The semantic vector is used to 

compute similarities between sentence pairs 

using the lexical database WordNet and the 

Wikipedia corpus. The use of skip bigram is 

to introduce the order of words in measuring 

sentence similarity.  

1 Introduction 

Sentence similarity computation plays an im-

portant role in text summarization, classification, 

question answering and social network applica-

tions (Lin and Pantel, 2001; Erkan and Radev, 

2004; Ko et al., 2004; Ou et al., 2011).  The 

SemEval 2012 competition includes a task targeted 

at Semantic Textual Similarity (STS) between sen-

tence pairs (Eneko et al., 2012). Given a set of sen-

tence pairs, participants are required to assign to 

each sentence pair a similarity score. 

Because a sentence has only a limited amount of 

content words, it is not easy to determine sentence 

similarities because of the sparseness issue. 

Hatzivassiloglou et al. (1999) proposed to use lin-

guistic features as indicators of text similarity to 

address the problem of sparse representation of 

sentences. Mihalcea et al. (2006) measured sen-

tence similarity using component words in sen-

tences. Li et al. (2006) proposed to incorporate the 

semantic vector and word order to calculate sen-

tence similarity.  

In our approach to the STS task, semantic vector 

is used and the semantic relatedness between 

words is derived from two sources: WordNet and 

Wikipedia. Because WordNet is limited in its cov-

erage, Wikipedia is used as a candidate for deter-

mining word similarity.  

Word order, however, is not considered in se-

mantic vector. As semantic information are coded 

in sentences according to its order of writing, and 

in our systems, content words may not be adjacent 

to each other, we proposed to use skip bigrams to 

represent the structure of sentences. Skip bigrams, 

generally speaking, are pairs of words in a sen-

tence order with arbitrary gap (Lin and Och, 

2004a). Different from the previous skip bigram 

statistics which compare sentence similarities 

through overlapping skip bigrams (Lin and Och, 

2004a), the skip bigrams we used are weighted by 

a decaying factor of the skipping gap in a sentence, 

giving higher scores to closer occurrences of skip 

bigrams. It is reasonable to assume that similar 

sentences should have more overlapping skip bi-

grams, and the gaps in their shared skip bigrams 

should also be similar.  

The rest of this paper is organized as followed. 

Section 2 describes sentence similarity using se-

mantic vectors and the order-sensitive skip bigrams. 

Section 3 gives the performance evaluation. Sec-

tion 4 is the conclusion.   

2 Similarity between Sentences 

Words are used to represent a sentence in the 

vector space model. Semantic vectors are con-

structed for sentence representations with each en-

try corresponding to a word. Since the semantic 

vector does not consider word order, we further 

proposed to use skip bigrams to represent sentence 

structure. Moreover, these skip bigrams are 
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weighted by a decaying factor based on the so 

called skip distance in the sentence.  

2.1 Sentence similarity using Semantic 

Vector 

Given a sentence pair, S1 and S2, for example, 

S1: Chairman Michael Powell and FCC colleagues at 

the Wednesday hearing. 

S2: FCC chief Michael Powell presides over hearing 

Monday. 

The term set of the vector space is first formed 

by taking only the content words in both sentences, 

T={chairman, chief, colleagues, fcc, hearing, michael, 

monday, powell, presides, wednesday } 

Each entry of the semantic vector corresponds to 

a word in the joint word set (Li et al., 2006). Then, 

the vector for each sentence is formed in two steps: 

For a word both in the term set T and in the sen-

tence, the value for this word entry is set to 1. If a 

word is not in the sentence, the most similar word 

in the sentence will then be identified, and the cor-

responding path similarity value will be assigned 

to this entry. Let T be the term set with a sorted list 

of content words, T=(t1, t2,…, tn). Without loss of 

generality, let a sentence S=(w1 w2…wm) where wj 

is a content word and wj is a word in T. Let the 

vector space of the sentence S be VSs = (v1, v2, …, 

vn). Then the value of vi is assigned as follows, 

 

where the similarity function SIM(ti, wj) is calcu-

lated according to the path measure (Pedersen et 

al., 2004) using the WordNet, formally defined as, 

),(
1),(

ji
ji wtdist

wtSIM   

where dist(ti, wj) is the shortest path from  ti, to 

wj by counting nodes in the WordNet taxonomy. 

Based on this, the semantic vectors for the two ex-

ample sentences will be,  

SVS1 = (1, 0.25, 1, 1, 1, 1, 0.33, 1, 0, 1) and 

SVS2 = (0.25, 1, 0, 1, 1, 1, 1, 1, 1, 0.33) 

Based on the two semantic vectors, the cosine 

metric is used to measure sentence similarity. In 

the WordNet, the entry chairman in the joint set is 

most similar to the word chief in sentence S2. In 

practice, however, this entry might be closer to the 

word presides than to the word chief. Therefore, 

we try to obtain the semantic relatedness using the 

Wikipedia for sentence T and find that the entry 

chairman is closest to the word presides. The Wik-

ipedia-based word relatedness utilizes the hyper-

link structure (Milne & Witten, 2008).  It first 

identifies the candidate articles, a and b, that dis-

cuss ti and wj respectively in this case and then 

compute relatedness between these articles, 

|))||,log(min(||)log(|

)log(|))||,log(max(|
),(

BAW

BABA
barel




  

where A and B are sets of articles that link to a 

and b. W is the set of all articles in the Wikipedia. 

Finally, two articles that represent ti and wj are se-

lected and their relatedness score is assigned to 

SIM(ti, wj).  

2.2 Sentence Similarity by Skip bigrams 

Skip bigrams are pairs of words in a sentence 

order with arbitrary gaps. They contain the order-

sensitive information between two words. The skip 

bigrams of a sentence are extracted as features 

which will be stacked in a vector space. Each skip 

bigram is weighted by a decaying factor with its 

skip distances in the sentence. To illustrate this, 

consider the following sentences S and T: 

S =  w1 w2 w1 w3 w4   and    T =  w2 w1 w4 w5 w4 

where w denotes a word. It can be used more 

than once in a sentence. Each sentence above has a 

C(5, 2)
 1
 = 10 skip bigrams. 

The sentence S has the following skip bigrams: 

“w1w2”, “w1w1”, “w1w3”, “w1w4”, “w2w1”, 

“w2w3” , “w2w4” , “w1w3”, “w1w4”, “w3w4” 

The sentence T has the following skip bigrams: 

“w2w1”, “w2w4”, “w2w5”, “w2w4”, “w1w4”, 

“w1w5” , “w1w4” , “w4w5”, “w4w4”, “w5w4” 

In the sentence S, we have two repeated skip bi-

grams “w1w4” and “w1w3”. In the sentence T, we 

have “w2w4” and “w1w4” repeated twice. In this 

case, the weight of the recurring skip bigrams will 

be increased. Hereafter, vectors for S and T will be 

                                                           
1 Combination: C(5,2)=5!/(2!*3!)=10. 
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formulated with each entry corresponding to a dis-

tinctive skip bigram.  

VS = (“w1w2”, “w1w1”, “w1w3”, “w1w4”, “w2w1, 

“w2w3”, “w2w4”, “w3w4”)’ 

VT = (“w2w1”, “w2w4”, “w2w5”, “w1w4”, “w1w5”, 

“w4w5”, “w4w4”, “w5w4”)’ 

Now, the question remains how to weight the 

skip bigrams. GivenΣ  as a finite word set, let 

S=w1w2…w|S| be a sentence, wi∈Σand 1≤i≤|S|. 

A skip bigram of S, denoted by u, is defined by an 

index set I=(i1, i2) of S (1≤i1<i2≤|S| and u=S[I]). 

The skip distance of S[I] , denoted by du (I), is the 

skip distance of the first word and the second word 

of u, calculated by i2-i1+1. For example, if S is the 

sentence of w1w2w1w3w4 and u = w1w4, then there 

are two index sets, I1=[3,5] and I2=[1,5] such that 

u=S[3,5] and u=S[1,5], and the skip distances of 

S[3,5] and S[1,5] are 3 and 5. The weight of a skip 

bigram u for a sentence S with all its possible oc-

currences, denoted by ( )u S , is defined as: 

( )

: [ ]

( ) ud I

u

I u S I

S 


   

where λ is the decay factor which penalizes the 

longer skip distance of a skip bigram. By doing so, 

for the sentence S, the complete word set is Σ={w1, 

w2, w3,w4}. The weights for the skip bigrams are 

listed in Table 1: 

u )(Su  u )(Su  

21ww   2  12ww  2  

11ww  3  32ww  3  

31ww  24    42ww  4  

41ww  35    43ww  2  

Table 1: Skip bigrams and their Weights in S 

In Table 1, if λ is set to 0.25, the weight of the 

skip bigram w1w2 in S is 0.25
2
=0.0625, and w1w3 is 

0.25
4
 +0.25

2
=0.064. Similarly, the skip bigrams 

and weights in the sentence T can be obtained. 

With the skip bigram-based vectors, cosine metric 

is then used to compute similarity between S and T. 

3 Experiments 

In the STS task, three training datasets are avail-

able: MSR-Paraphrase, MSR-Video and 

SMTeuroparl (Eneko et al., 2012). The number of 

sentence pairs for three dataset is 750, 750 and 734.  

In the following experiments, Let SWN, SWIKI
 
and 

SSKIP denote similarity measures of the vector space 

representation using WordNet, Wikipedia and skip 

bigrams, respectively. The three similarity 

measures are linearly combined as SCOMB: 

SKIPWIKIWNCOMB SSSS  )1(   

where α and β are weight factors for SWN and 

SWIKI in the range [0,1].  If α is set to 1, only the 

WordNet-based similarity measure is used; if α is 0, 

the Wikipedia and skip bigram measures are used.  

Because each dataset has a different representa-

tion for sentences, the parameter configurations for 

them are different. For the word similarity using 

the lexical resource WordNet, the path measure is 

used in experiments. To get word relatedness from 

the English Wikipedia, the Wikipedia Miner tool
2
 

is used. When computing sentence similarity based 

on the skip bigrams, the decaying factor (DF) must 

be specified beforehand. Hence, parameter config-

urations for the three datasets are listed in Table 2: 

 

Table 2: Parameter Configurations 

In the testing phase, five testing dataset are pro-

vided. In addition to three test datasets drawn from 

the publicly available datasets used in the training 

phase, two surprise datasets are given. They are 

SMTnews and OnWN (Eneko et al., 2012). 

SMTnews has 399 pairs of sentences and OnWN 

contains 750 sentence pairs. The parameter config-

urations for these two surprise datasets are the 

same as those for the dataset MSR-Paraphrase. 

The official scoring is based on Pearson correla-

tion. If the system gives the similarity scores close 

to the reference answers, the system will attain a 

high correlation value. Besides, three other evalua-

tion metrics (ALL, ALLnrm, Mean) based on the 

Pearson correlation are used (Eneko et al., 2012).  

Among the 89 submitted systems, the results of 

our system are given in Table 3: 

Run ALL Rank ALLnrm RankNrm Mean RankMean

PolyUCOMP 0.6528 31 0.7642 59 0.5492 51  

Table 3: Performance using Different Metrics 

                                                           
2 http://wikipedia-miner.cms.waikato.ac.nz/ 
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Using the ALL metric, our system ranks 31, but 

for ALLnrm and Mean metrics, our system ranking 

is decreased to 59 and 51. In terms of ALL metric, 

our system achieves a medium performance, im-

plying that our system correlates well with human 

assessments. In terms of ALLnrm and Mean met-

rics, our system performance degrades a lot, imply-

ing that our system is not well correlated with the 

reference answer when each dataset is normalized 

into the aggregated dataset using the least square 

error or the weighted mean across the datasets.  

To see how well each of the individual vector 

space models performed on the evaluation sets, we 

experiment on the five datasets using vectors based 

on WordNet, Wikipedia (Wiki), SkipBigram and 

PolyuCOMP (a combination of the three vectors). 

Table 4 gives detailed results of each dataset. 

 

Table 4: Pearson Correlation for each Dataset 

Table 4 shows that after combining three vector 

representations, each dataset obtains the best per-

formance. The WordNet-based approach gives a 

better performance than Wikipedia-based approach 

in MSRvid dataset. The two approaches, however, 

give similar performance in other four datasets. 

This is because the sentences in the MSRvid da-

taset are too short with limited amount of content 

words. It is difficult to capture the meaning of a 

sentence without distinguishing words in consecu-

tive positions. This is why the order-sensitive 

SkipBigram approach gives better performance 

than the other two approaches. For example, 

A woman is playing a game with a man. 

A man is playing piano. 

Using the semantic vectors, we will get high 

similarity scores, but the two sentences are dissimi-

lar. If the skip bigram approach is used, the simi-

larity score between sentences will be 0, which 

correlates with human judgment. In parameter con-

figurations for the MSRvid dataset, higher weight 

(1-0.123-0.01=0.867) is also given to skip bigrams. 

It is interesting to note that the decaying factor for 

this dataset is 1.4 and is not in the range from 0 to 

1 inclusive. This is because higher decaying factor 

helps to capture semantic meaning between words 

that span afar. For example, 

A man is playing a flute. 

A man is playing a bamboo flute. 

In this sentence pair, the second sentence is en-

tailed by the first one. The similarity can be cap-

tured by assigned larger decay factor to weigh the 

skip bigram “playing flute” in two sentences. 

Hence, if the value of the decay factor is greater 

than 1, the two sentences will become much more 

similar. After careful investigation, these two sen-

tences are similar to a large extent. In this sense, a 

higher decaying factor would help capture the 

meaning between sentence pairs. This is quite dif-

ferent from the other four datasets which focus on 

shared skip bigrams with smaller decaying factor. 

4 Conclusions and Future Work 

In the Semantic Textual Similarity task of 

SemEval-2012, we proposed to combine the se-

mantic vector with the order-sensitive skip bigrams 

to capture the meaning between sentences. First, a 

semantic vector is derived from either the 

WordNet or Wikipedia. The WordNet simulates 

the common human knowledge about word con-

cepts. However, WordNet is limited in its word 

coverage. To remedy this, Wikipedia is used to 

obtain the semantic relatedness between words. 

Second, the proposed approach also considers the 

impact of word order in sentence similarity by us-

ing skip bigrams. Finally, the overall sentence sim-

ilarity is defined as a linear combination of the 

three similarity metrics. However, our system is 

limited in its approaches. In future work, we would 

like to apply machine learning approach in deter-

mining sentence similarity. 
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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

ETS: Discriminative Edit Models for Paraphrase Scoring

Michael Heilman and Nitin Madnani
Educational Testing Service

660 Rosedale Road
Princeton, NJ 08541, USA

{mheilman,nmadnani}@ets.org

Abstract

Many problems in natural language process-
ing can be viewed as variations of the task of
measuring the semantic textual similarity be-
tween short texts. However, many systems
that address these tasks focus on a single task
and may or may not generalize well. In this
work, we extend an existing machine transla-
tion metric, TERp (Snover et al., 2009a), by
adding support for more detailed feature types
and by implementing a discriminative learning
algorithm. These additions facilitate applica-
tions of our system, called PERP, to similar-
ity tasks other than machine translation eval-
uation, such as paraphrase recognition. In
the SemEval 2012 Semantic Textual Similar-
ity task, PERP performed competitively, par-
ticularly at the two surprise subtasks revealed
shortly before the submission deadline.

1 Introduction

Techniques for measuring the similarity of two sen-
tences have various potential applications: auto-
mated short answer scoring (Nielsen et al., 2008;
Leacock and Chodorow, 2003), question answering
(Wang et al., 2007), machine translation evaluation
(Przybocki et al., 2009; Snover et al., 2009a), etc.

An important aspect of this problem is that sim-
ilarity is not binary. Sentences can be very seman-
tically similar, such that they might be called para-
phrases of each other. They might be completely
different. Or, they might be somewhere in between.
Indeed, it is arguable that all sentence pairs (except
exact duplicates) lie somewhere on a continuum of

similarity. Therefore, it is desirable to develop meth-
ods that model sentence pair similarity on a contin-
uous, or at least ordinal, scale.

In this paper, we describe a system for measuring
the semantic similarity of pairs of short texts. As a
starting point, we use the Translation Error Rate Plus
(Snover et al., 2009a), or TERp, system, which was
specifically developed for machine translation eval-
uation. TERp takes two sentences as input, finds a
set of weighted edits that convert one into the other
with low overall weight, and then produces a length-
normalized score. TERp also has a greedy, heuris-
tic learning algorithm for inducing weights from la-
beled sentence pairs in order to increase correlations
with human similarity scores.

Some features of the original TERp make adap-
tation to other semantic similarity tasks difficult, in-
cluding its largely one-to-one mapping of features
to edits and its heuristic, greedy learning algorithm.
For example, there is a single feature for lexical sub-
stitution, even though it is clear that different types
of substitutions have different effects on similarity
(e.g., substituting “43.6” with “17” versus substitut-
ing “a” for “an”). In addition, the heuristic learn-
ing algorithm, which involves perturbing the weight
vector by small amounts as in grid search, seems un-
scalable to larger sets of overlapping features.

Therefore, here, we use TERp’s inference algo-
rithms that find low cost edit sequences but use a dis-
criminative learning algorithm based on the Percep-
tron (Rosenblatt, 1958; Collins, 2002) to estimate
edit cost parameters, along with an expanded fea-
ture set for broader coverage of the phenomena that
are relevant to sentence-to-sentence similarity. We
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refer to this new approach as Paraphrase Edit Rate
with the Perceptron (PERP).

In addition to describing PERP, we discuss how it
was applied for the SemEval 2012 Semantic Textual
Similarity (STS) task.

2 Problem Definition

In this work, our goal is to create a system that can
take as input two sentences (or short texts) x1 and x2

and produce as output a prediction ŷ for how simi-
lar they are. Here, we use the 0 to 5 ordinal scale
from the STS task, where increasing values indicate
greater semantic similarity.

The STS task data includes five subtasks with text
pairs from different sources: the Microsoft Research
Paraphrase Corpus (Dolan et al., 2004) (MSRpar),
The Microsoft Research Video corpus (Chen and
Dolan, 2011) (MSRvid), statistical machine transla-
tion output of parliament proceedings (Koehn, 2005)
(SMT-eur). For each of these sources, approxi-
mately 750 sentence pairs x1 and x2 and gold stan-
dard similarity values y were provided for training
and development.

In addition, there were two surprise data sources
revealed shortly before the submission deadline:
pairs of sentences from Ontonotes (Pradhan and
Xue, 2009) and Wordnet (Fellbaum, 1998) (OnWN),
and machine translations of sentences from news
conversations (SMT-news). For all five sources,
the held-out test set contained several hundred text
pairs. See the task description (Agirre et al., 2012)
for additional details.

3 TER, TERp, and PERP

In this section, we briefly describe the TER and
TERp machine translation metrics, and how the
PERP system extends them in order to better model
semantic textual similarity.

TER (Snover et al., 2006) uses a greedy search al-
gorithm to find a set of edits to convert one of the
paired input sentences into the other. We can view
this set of edits as an alignment a between the two
input sentences x1 and x2, and when two words in
x1 and x2, respectively, are part of an edit operation,
we say that those words are aligned.1 Unlike tradi-

1For machine translation evaluation with TERp and PERP,
x1 is a system’s hypothesis and x2 is a reference translation. For

tional edit distance measures, TER allow for shifts—
that is, edits that change the positions of words or
phrases in the input sentence x1. Essentially, TER
searches among a set of possible shifts of the phrases
in x1 to find a set of shifts that result in the least
cost alignment, using edits of other types, between
x2 and the shifted version of x1. TER allows one to
specify costs for different edit types, but it does not
include a method for learning those costs from data.

TERp (Snover et al., 2009b; Snover et al., 2009a)
extends TER in two key ways. First, TERp in-
cludes new types of edits, including edits for substi-
tution of synonyms, word stems, and phrasal para-
phrases extracted from a pivot-based paraphrase ta-
ble (§3.1). Second, it includes a heuristic learning
algorithm for inferring cost parameters from labeled
data. TERp includes 8 types of edits: match (M), in-
sertion (I), deletion (D), substitution (S), stemming
(T), synonymy (Y), shift (Sh), and phrase substitu-
tion (P). The edits are mutually exclusive, such that
synonymy edits do not count as substitutions, for ex-
ample. TERp has 11 total parameters, with a single
parameter for each edit except for phrase substition,
which has four.

PERP has a general framework similar to that
of TERp. It extends TERp, however, by includ-
ing additional edit parameters, and by using a dis-
criminative learning algorithm (see §5) to learn pa-
rameters rather than the heuristic technique used by
TERp. Thus, PERP uses the same greedy algorithm
as TERp for finding the optimal sets of edits given
the cost parameters, but it allows the cost for an indi-
vidual edit to depend on multiple, overlapping fea-
tures of that edit. For example, costs for substitu-
tion edits depend on whether the aligned words are
pronouns, whether the aligned words represent num-
bers, the lengths of the aligned words, etc. See §4 for
the full list of features in PERP.

An alignment from the MSRpar portion of the
STS training data is illustrated in Figure 1.

3.1 Phrasal Paraphrases

PERP uses probabilistic phrasal substitutions to
align phrases in the hypothesis with phrases in the

all STS subtasks, we assigned sentences in the first and second
columns of the input files to x2 and x1, respectively, so that
the hypotheses and references in the SMT-eur subtask would be
assigned appropriately.
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the research firm earlier had forecast an increase of 4.9 percent .

the firm earlier had predicted increase this year a 4.9 percent .

the firm had predicted earlier this year a 4.9 percent increase .

synonymy

shift shift
insert

delete delete delete

insertinsert

x1

x2

Figure 1: An example of a PERP alignment for a sentence pair from the Microsoft Research Paraphrase Corpus.
The search algorithm first performs shifts on x1 and then performs other edits on x2. The zero cost edits that match
individual words are not shown.

reference. It does so by looking up—in a pre-
computed phrase table—paraphrases of phrases in
the reference and using its associated edit cost as
the cost of performing a match against the hypoth-
esis. The paraphrase table used in PERP was iden-
tical to the one used by Snover et al. (2009a). It
was extracted using the pivot-based method as de-
scribed by Bannard and Callison-Burch (2005) with
several additional filtering mechanisms to increase
the precision of the extracted pairs. The pivot-based
method utilizes the inherent monolingual semantic
knowledge from bilingual corpora: we first iden-
tify phrasal correspondences between English and a
given foreign language F , then map from English to
English by following translation units from English
to the other language and back. For example, if the
two English phrases e1 and e2 both correspond to
the same foreign phrase f , then they may be consid-
ered to be paraphrases of each other with the follow-
ing probability:

p(e1|e2) ≈ p(e1|f)p(f |e2)

If there are several pivot phrases that link the two
English phrases, then they are all used in computing
the probability:

p(e1|e2) ≈
∑
f ′

p(e1|f ′)p(f ′|e2)

We used the same phrasal paraphrase database as
in TERp (Snover et al., 2009a), which was extracted
from an Arabic-English newswire bitext containing
a million sentences. A few examples of the para-
phrase pairs used in the MSRpar portion of the STS
training data are shown below:

(commission→ panel)
(the spying→ espionage)
(suffered→ underwent)

(room to→ space for)
(per cent→ percent)

4 Features

As discussed in §3, PERP expands on TERp’s origi-
nal features in order to better model semantic textual
similarity.

PERP models a pair of sentences x1 and x2 us-
ing a feature function f(a) that extracts a vector of
real-valued features from an alignment a between
x1 and x2. This alignment is found with TERp’s
inference algorithm and consists of a set of edits
of various types along with information about the
words on which those edits operate. For example,
the alignment might contain an edit with the infor-
mation, “The token ‘the’ in x1 was substituted for
the token ‘an’ in x2.” This edit would increment the
features in f(a) for the number of substitutions and
the number of substitutions of stopwords, along with
other relevant substitution features.

The set of features encoded in f(a) are described
in Table 1.2 It includes general features that always
fire for edits of a particular type (e.g., the “Substi-
tution” feature) as well as specific features that fire
only in specific situations (e.g., the “Sub-Pronoun-
Both” edit, which fires only when one pronoun is
substituted for another).

The function f(a) is normalized for sentence

2All words were converted to lower-case. Word frequen-
cies were calculated from the NYT stories in the fifth edition
of the English Gigaword corpus. The stories were tokenized
using NLTK and words occurring fewer than 100 times were
excluded. Words occurring at least 100 times constituted the vo-
cabulary used for computing the OOV features. The OOV and
frequency features only fired for words that consisted only of
letters, and the frequency features did not fire for OOV words.
The set of negation words including the following: “no”, “not”,
“never”, and “n’t”. The stopword list contained 158 common
words and punctuation symbols.
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Edits Feature Name Description
- Intercept Always 1 (and not normalized by text lengths)
T Stemming The number of times that two words with the same stem, according to the Porter

(1980) stemmer, were aligned.
Y Synonymy The number of times that a pair of synonyms, according to WordNet (Fellbaum,

1998), were aligned.
Sh Shift The number of shifts.
P Paraphrase1 The number of phrasal paraphrasing operations.
P Paraphrase2 The sum of q log10(p), where p is the probability in the pivot-based paraphrase table

for a paraphrase edit and q is the number of edits for that paraphrase edit. See Snover
et al. (2009a) for further explanation.

P Paraphrase3 The sum of pq, where p and q are as above.
P Paraphrase4 The sum of q, where q is as above.
I Insertion The number of insertions.
D Deletion The number of deletions.
I, D Insert-Delete-

LogFreq
The sum of log10 freq(w) over all insertions and deletions, where w is the word
being inserted or deleted and freq(w) is the relative frequency of w.

I, D Insert-Delete-
LogWordLen

The sum of log10 length(w) over all insertions and deletions, where w is the word
being inserted or deleted.

I, D Insert-Delete-
X

The number of insertions and deletions of X in alignment, where X is: (a) punctu-
ation, (b) numbers, (c) personal pronouns, (d) negation words, (e) stop words, or (f)
out-of-vocabulary (OOV) words (6 features in all).

S Substitution The number of substitutions.
S Sub-X-Both The number of substitutions where both words are: (a) punctuation, (b) numbers, (c)

personal pronouns, (d) negation words, (e) stop words, or (f) OOV words (6 features
in all).

S Sub-X-1only The number of substitutions where only one word is: (a) punctuation, (b) a number,
(c) a personal pronoun, (d) a negation word, (e) a stop word, or (f) an OOV word (6
features in all).

S Sub-LogFreq-
Diff

The sum of | log10 freq(w1)− log10 freq(w2)| over all substitutions.

S Sub-Contain The number of substitutions where both words have more than 5 characters and one
is a proper substring of the other.

S Sub-Diff-By-
NonWord

The number of substitutions where the words differ only by non-alphanumeric char-
acters.

S Sub-Small-
LevDist

The number of substitutions where both words have more than 5 characters and the
Levenshtein distance between them is 1.

S Sub-Norm-
LevDist

The sum of the following over all substitutions: the Levenshtein distance between
the words normalized by the length of the longer word.

Table 1: The set of features in PERP. The first column lists which edits for which each feature is relevant.

lengths by dividing all the values in Table 1 by the
sum of the number of words in x1 and x2, except for
the intercept feature that models the base similarity
value in the training data and always has value 1.

There are 36 features and corresponding parame-
ters in all, compared to 11 for TERp.

It is worth pointing out that while the mutual ex-
clusivity between most of the original TERp edits
is preserved, PERP does have shared features be-
tween insert and delete edits (e.g., “Insert-Delete-

Number”), and could in principle share features be-
tween substitution, stemming, and synonymy edits.

5 Learning

Given a training set consisting of paired sentences
x1 and x2 and gold standard semantic similarity rat-
ings y, PERP uses Algorithm 1 to induce a good set
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Algorithm 1 learn(w, T , α, x1,x2,y):
An Averaged Perceptron algorithm for learning edit
cost parameters. T is the number of iterations
through the dataset. α is a learning rate. x1 and
x2 are paired lists of sentences, and y is a list of
similarities that correspond to those sentence pairs.

wsum = 0
for t = 1, 2, . . . , T do

x1,x2,y = shuffle(x1,x2,y)
for i = 1, 2, . . . , |y| do
a = TERpAlign(w, x1i, x2i)
ŷ = w · f(a)
w = w + α(yi − ŷ)f(a)
w = applyShiftConstraint(w)
wsum = wsum + w

end for
end for
return wsum

T |y|

of cost parameters for its various features.3 The al-
gorithm is a fairly straightforward application of the
Perceptron algorithm described by Collins (2002).4

The only notable difference is that the algorithm
constrains PERP’s shift parameter to be at least 0.01
in the step labeled “applyShiftConstraint.” We found
that TERp’s inference algorithm would fail if the
shift cost reached zero.5 In our experiments, we ini-
tialized all weights to 0, except for the following: the
“Substitution,” “Insertion,” and “Deletion” weights
were initialized to 1.0, and the “Shift” weight was
initialized to 0.1. Following Collins (2002), the al-
gorithm returns an averaged version of the weights,
though this did not appear to substantially impact
performance.

3The “shuffle” step shuffles the lists of sentence pairs and
scores together such that their orderings are randomized but that
they stay aligned with each other.

4There are a few hyperparameters in the learning algorithms.
For our experiments, we set the number of iterations through
the training data T to 200. We set the learning rate α to 0.01 to
avoid large oscillations in the parameters. We did not system-
atically tune the hyperparameters. Other values might lead to
better performance.

5With zero cost shifts, TERp would enter a loop and even-
tually exceed the amount of available memory. We also set the
same minimum cost of 0.01 for shifts in our experiments with
the original TERp.

6 Experiments

In this section, we report results for the STS shared
task. For a full description of the task, see Agirre et
al. (2012).

The task consisted of three known subtasks
(MSRpar, MSRvid, and SMT-eur) and two surprise
subtasks (On-WN, SMT-news). For the known sub-
tasks, we trained models with task-specific data
only. For the On-WN subtask, we used the model
trained for MSRpar. For SMT-news, we used the
model trained for SMT-eur.

Our submissions to the task included results from
two variations, one using the full system (PERP-
phrases) and one with the paraphrase substitution
edits disabled (PERP), in order to isolate the effect
of including phrasal paraphrases. In our original
submission, the PERPphrases system included a mi-
nor bug that affected the calculation of the phrasal
paraphrasing features. Here, we report both the orig-
inal results and a corrected version (“PERPphrases
(fix)”), though the correction only minimally af-
fected performance. We also tested two variations
of the original TERp system: one with the weights
set as reported by Snover et al. (2009a) (“TERp
(default)”), and one tuned in the same task-specific
manner as PERP (“TERp (tuned)”). We multiplied
TERp’s predictions by −1 since it produces costs
rather than similarities.

The results, in terms of Pearson correlations with
test set gold standard scores, are shown in Table 2.
In addition to correlations for each subtask, we in-
clude the three aggregated measures used for the
task. The “ALL” measure is the Pearson correlations
on the concatenation of all the data for all five sub-
tasks. It was the original measured used to aggregate
the results for the different subtasks. The second ag-
gregated measure is the “Allnrm” measure, which
we view as an oracle because it uses the gold stan-
dard similarity values from the test set to adjust sys-
tem predictions. The final aggregate measure is the
mean of the correlations for the subtasks, weighted
by the number of examples in each subtask’s test set
(“Mean”). See Agirre et al. (2012) for a full descrip-
tion of the metrics.

For comparison, the table also includes the re-
sults from the top-ranked submission according to
the “ALL” measure, the results for the word-overlap
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Aggregated Measures Subtask Measures
ALL ALLnrm Mean MSRpar MSRvid SMT-eur On-WN SMT-news

UKP (top-ranked) .8239 .8579 .6773 .6830 .8739 .5280 .6641 .4937
PERPphrases (fix) † .7837 — .6405 .6410 .7209 .4852 .7127 .5312
PERPphrases .7834 .8089 .6399 .6397 .7200 .4850 .7124 .5312
PERP .7808 .8064 .6305 .6211 .7210 .4722 .7080 .5149
TERp (tuned) † .5558 — .5582 .5400 .6099 .4967 .5862 .5135
TERp (default) .4477 .7291 .5253 .5049 .5217 .4748 .6169 .4566
baseline .3110 .6732 .4356 .4334 .2996 .4542 .5864 .3908
mean of submissions .5864 .7773 .5286 .4894 .7049 .3958 .5557 .3731

Table 2: Pearson correlations between predictions about the test data and gold standard scores. “†” marks experiments
that were not parts of the official SemEval task 6 evaluation. The highest correlation in each column is given in bold.
ALLnrm results are not included for all runs because we did not have an implementation of that measure.

baseline from the organizers (Agirre et al., 2012),
and the means across all 88 submissions (not includ-
ing the baseline).

Table 3 shows the rankings in the official results
of the PERPphrases submission, for each subtask
and overall, along with Pearson correlations from
PERP and the best submission for each subtask.

Aggregated Measure Rank ρ ρbest

ALL 6 .7834 .8239
ALLnrm 27 .8089 .8635
Mean 7 .6399 .6773
Subtask Measure Rank ρ ρbest

MSRpar 8 .6397 .7343
MSRvid 52 .7200 .8803
SMT-eur 21 .4850 .5666
On-WN 2 .7124 .7273
SMT-news 4 .5312 .6085

Table 3: The ranking and correlation (ρ) obtained by
PERPphrases for each of the five datasets as well for all
datasets combined. The STS task had a total of 88 sub-
missions. ρbest shows the correlation for the best submis-
sion, across all submissions, for each dataset.

7 Conclusion

From the results in §6, PERP appears to be com-
petitive at measuring semantic textual similarity. It
performed particularly well on the surprise subtasks,
indicating that it generalizes well to new data. Fi-
nally, with the exception of the SMT-eur machine
translation evaluation subtask, PERP outperformed
the TERp system for all of the STS subtasks.
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Abstract 

In this paper, we describe the system architec-
ture used in the Semantic Textual Similarity 
(STS) task 6 pilot challenge. The goal of this 
challenge is to accurately identify five levels 
of semantic similarity between two sentences: 
equivalent, mostly equivalent, roughly equiva-
lent, not equivalent but sharing the same topic 
and no equivalence. Our participations were 
two systems. The first system (rule-based) 
combines both semantic and syntax features to 
arrive at the overall similarity. The proposed 
rules enable the system to adequately handle 
domain knowledge gaps that are inherent 
when working with knowledge resources. As 
such one of its main goals, the system sug-
gests a set of domain-free rules to help the 
human annotator in scoring semantic equiva-
lence of two sentences. The second system is 
our baseline in which we use the Cosine Simi-
larity between the words in each sentence 
pair.       

1 Introduction 

Accurately establishing sentence semantic similari-
ty would provide one of the key ingredients for 
solutions to many text-related applications, such as 
automatic grading systems (Mohler and Mihalcea, 
2009), paraphrasing (Fernando and Stevenson, 
2008), text entailment (Corley et al., 2005) and 
summarization (Erkan and Radev, 2004). Current 
approaches for computing semantic similarity be-
tween a pair of sentences focus on analyzing their 
shared words (Salton, 1989), structures (Hu et al. 

2011;Mandreoli et al. 2002), semantics (Mihalcea 
et al. 2006; Le el al. 2006; Hatzivassiloglou, 1999) 
or any of their combinations (Liu et al. 2008; Foltz 
et al. 1998).  The goal is to arrive at a score which 
increases proportionally with the relatedness be-
tween the two sentences.  Yet, they are not con-
cerned with scoring the interpretations of such 
relatedness (Zhang et al. 2011; Jesus et al. 2011; 
Wenyin et al. 2010; Liu et al. 2008).  

Semantic Textual Similarity (STS), SEMEVAL-
12 Task 6 (Agirre et al. 2012), measures the degree 
of semantic equivalence between a pair of sentenc-
es by comparing meaningful contents within a sen-
tence. The assigned scores range from 0 to 5 for 
each sentence pair with the following interpreta-
tions: (5) completely equivalent, (4) mostly 
equivalent pair with missing unimportant infor-
mation, (3) roughly equivalent with missing im-
portant information, (2) not equivalent, but sharing 
some details, (1) not equivalent but sharing the 
same topic and (0) not equivalent and on different 
topics. The goal of developing our rule-based sys-
tem was to identify knowledge representations 
which have possibly all task human interpretations. 
Meanwhile, the system domain-free rules aim to 
help the human annotator in scoring semantic 
equivalence of sentence pair. 

The proposed rule-based solution exploits both 
sentence syntax and semantics. First, it uses Stan-
ford parser (Klein and Manning, 2002) to expose 
the sentence structure, part-of-speech (POS) word 
tags, parse tree and Subject-Verb-Object (S-V-O) 
dependencies. Second, Illinois Coreference Pack-
age (Bengtson and Roth, 2008) is used to extract 
sentence named entities resolving possible men-
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tions. Third, WordNet (Miller, 1995) and Adapted 
Lesk Algorithm for word sense disambiguation 
(Banerjee and Pedersen, 2010) are used to compute 
each sentence word semantic relatedness to the 
other sentence.  ReVerb (Etzioni et al. 2011) aug-
ments WordNet in case of uncovered words and 
helps us to discriminate the topics of sentences. 
We use (Blake, 2007) thought to compare the sen-
tence pair words with each other.  Finally, we 
evolve a rule-based module to present the human 
heuristics when he interprets the relatedness of the 
sentence pair meaningful contents. 

Throughout our training and testing experi-
ments, we used Task6 corpora (Agirre et al. 2012) 
namely MSRpar, MSRvid, SMTeuroparl, OnWN 
and SMTnews; where: 
- MSRpar is 1500 pairs of sentences of MSR-

Paraphrase, Microsoft Research Paraphrase Cor-
pus; 750 for training and 750 for testing. 

- MSRvid is 1500 pairs of sentences of MSR-
Video, Microsoft Research Video Description 
Corpus; 750 for training and 750 for testing. 

- SMTeuroparl is 918 pairs of sentences of 
WMT2008 development dataset (Europarl sec-
tion); 459 for training and 459 for testing. 

-  OnWn is 750 pairs of sentences pairs of sen-
tences where the first sentence comes from On-
tonotes and the second sentence from a WordNet 
definition; it is only a testing corpus. 

-  SMTnews is 399 pairs of sentences of news 
conversation sentence pairs from WMT; it is on-
ly a testing corpus. 
 
The reminder of this paper is organized as fol-

lows: Section 2 describes our two participations; 
Section 3 discusses their official results; Section 4 
draws our conclusion for both systems.   

2 The Proposed Systems  

In this section, we focus on the rule-based system, 
Sections 2.1, 2.2, 2.3 and 2.4, as our main task 
contribution. Further, the section describes our se-
cond run, Sections 2.5, to shed light on the role of 
cosine similarity for solving the task problem. To 
establish the task semantic textual similarity, we 
show how the rule-based system exploits the sen-
tence semantic, syntax and heuristics; also, we de-
scribe how our base-line system uses the sentence 
syntax only. 

2.1 Definitions 

We say the two sentences are on different topics, if 
all their verbs are mostly (> 50%) unrelated (Table 
1). Otherwise, they are on the same topic. For ex-
ample, the two sentences “A woman is putting on 
makeup.”, “A band is singing.” are on different 
topics as “putting” , “singing”  are not equivalent. 
However, the two sentences “A baby is talking.”, 
A boy is trying to say firetruck.” are on the same 
topics  as “talking”  and “trying to say” are seman-
tically equivalent.  

We define the sentence important information as 
its head nouns, named entities or main verbs; 
where the main verbs are all verbs except auxilia-
ry, model and infinitive ones.  Hence, we say that 
two sentences miss important information if either 
loses at least one of these mentions from the other. 
Otherwise, they are candidates to be semantically 
equivalent. For example, the sentence “Besides 
Hampton and Newport News, the grant funds wa-
ter testing in Yorktown, King George County, Nor-
folk and Virginia Beach.” misses “Hampton and 
Newport News” compared to the sentence “The 
grant also funds beach testing in King George 
County, Norfolk and Virginia Beach.” However, 
“on a table” is unimportant information which “A 
woman is tapping her fingers.” misses compared 
to “A woman is tapping her fingers on a table.” 

Finally, we deploy a list of stop words and non-
verbs as unimportant information. However, if any 
exists in both sentences, we match them with each 
other; otherwise we ignore any occurrences. 

2.2  The Syntactic Module  

This syntactic module is a preprocessing module in 
which the system calls Stanford parser, Version 
2.0.1, and the Illinois coreference package, Version 
1.3.2, to result in the sentence four type representa-
tions: 1) part of speech (POS) tags, 2) Subject-
Verb-Object (S-V-O), Subject-Verb (S-V) and 
Verb-Object (V-O) dependencies, 3) parse tree and 
4) coreference resolutions.  All sentences are lem-
matized based on their POSs. Also, verbs and CDs 
are utilized to determine topics/important infor-
mation and numbers respectively. All noun  and 
verb phrases are used to boost the sentence word 
semantic scores (Section 2.3). We consider all oc-
currences of S-V-O, S-V and V-O to distinguish 
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the topic compatibility between two comparable 
sentences (Section 2.3 and 2.4).  

The coreference package is used to match the 
equivalent discourse entities between two sentenc-
es which improve the matching steps. For example, 
in the pair of   “Mrs Hillary Clinton explains her 
plan towards the Middle East countries” and “Mrs 
Clinton meets their ambassadors”, “Mrs Hillary 
Clinton” , “her”  and “Mrs Clinton” refer to the 
same entity where “the Middle East countries” and 
“their”  are equivalent. Moreover, we consider the 
second sentence doesn’t lose “Hillary”  as missing 
important information since the related mentions 
are labeled equivalent.  

2.3 The Semantic Matching Module 

WordNet, Version 3.0, has approximately 5,947 
entries covering around 85% of training corpora 
words (Agirre et al. 2012). Most of the remaining 
15% words are abbreviations, named entities and 
incorrect POS tags. We use WordNet shortest path 
measure to compute the semantic similarity be-
tween two words. Also, we use Adapted Lesk algo-
rithm to obtain the best WordNet word sense. The 
disambiguation algorithm compares each pair of 
words through their contexts (windows) of words 
coupled with their all overlapping glosses of all 
WordNet relation types. 

The semantic matching module inputs are the 
sentence pair (S1, S2), their lemmatized words, 
parse trees, S-V-O/S-V/V-O dependencies and co-
reference mentions (Section 2.2). It matches syn-
tactically the words with each other. For any 
uncovered WordNet word, the module calls Re-
Verb (Section 2.4) and it assigns the returned value 
to the word score. All numbers, e.g. million, 
300,45.6, are mathematically compared with each 
other. This module compares the noun phrases 
with single words to handle the compound words, 
e.g. “shot gun” with “shotgun” or “part-of-
speech” with “part of speech”. For those words 
whose scores are not equal to 1, it compares each 
pair of words from the sentence pair within their 
Subject-VP (subject with its verb phrase) contexts 
using Adapted Lesk algorithm to find best sense 
for each included word. Then, it applies WordNet 
shortest path measure to score such words. In our 
disambiguation algorithm implementation, we 
found that the runtime requirement is directly pro-
portional to the input sentence length. So, we 

shortened the sentence length to Subject-VP which 
includes the underlying comparable words.   

 
Relatedness Score (S1, S2) 
unrelated  0 <= Ws <0.3 
weakly related 0.3 <= Ws <0.85 
strongly related Ws >= 0.85 

 

Table 1 – Mapping relatedness to wordnet similarity 
 

Table 1 describes the proposed system WordNet 
thresholds through our relatedness definitions. The 
thresholds were thoroughly selected depending on 
our analysis for the WordNet hierarchary and 
semantic similarity measures (Pedersen et al., 
2004). We obsereved that while most of the nearest 
tree sibilings and parent-child nodes scores have 
more than 0.85 Wordnet semantic scores, most of 
the fartherest ones have scores less than 0.3. In 
between these extremes, there is a group of 
scattered tree nodes which ranges from 0.3 to 0.85. 
The number of nodes per each mentioned group is 
related to the semantic simlarity measure 
technique.   

2.4 Semantics – Using ReVerb  

Our working hypothesis is that verbs that use the 
same arguments are more likely to be similar. To 
estimate verb usage, the system uses frequencies 
from the ReVerb (http://openie.cs.washington. 
edu/) online interface to count the number of times 
a verb is used with two arguments. For example, 
consider the sentence pair “The man fires rifle” 
and “The man cuts lemon”. The number of sen-
tences in ReVerb that contain the verb fires with 
the argument rifle is 538 and the number of sen-
tences for the verb cuts with the argument lemon is 
45, which tell us that you are more likely to find 
sentences that describe firing a rifle than cutting a 
lemon on the web. However, there a no ReVerb 
sentences for the verb fires with the argument lem-
on or the verb cuts with the argument rifle. Which 
tells us that people generally don’t fire lemons or 
cut rifles.  
     Reverb provides the system with information 
about the suitability of using argument in one sen-
tence with verbs from another. Specifically, fre-
quencies from Reverb are retrieved for each 
subject-verb-object triple in each sentence, e.g. 
“S1-V1-O1” and “S2-V2-O2”. The system then 
retrieves ReVerb frequencies for the verb-object in 
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each sentence of “V2-O1” and “V1-O2”. If at least 
one of all of these scores equals to 0, they are con-
sidered to be weakly similar.  

ReVerb is also called for any sentence word that 
WordNet doesn’t cover.  The system retrieves the 
Reverb frequency for is-a relation using the word 
missing from Wordnet, as Argument1, and each 
word from the other sentence as Argument2. The 
largest Reverb retrieved score is taken. Consider 
the pair of “A group of girls are exiting a taxi” and 
“A video clip of Rihanna leaving a taxi.”. Since 
“Rihanna” is not a WordNet word, our ReVerb 
interface hits the web for “Rihanna is-a girl”, “Ri-
hanna is-a group”, “Rihanna is-a taxi” and “Ri-
hanna is-a existing” and it returns “Rihanna is-a 
girl”  as the best candidate with strength score 
equals 0.2. 

We explored several relatedness scores which 
specifically equal to 0, 0.2, 0.4, 0.6, 0.8 or 1 if the 
frequencies are less than to 10, 50, 100, 500, 1000 
or 1000+ respectively. 

2.5 The Rule-Based Module  

Rule-based module aims at defining human-like 
rules to interpret how the pair similar or dissimilar 
from each other. Pair Similarity (P) is based on the 
strong relatedness values (Table 1) and the Dissim-
ilarity (D) is based on the other types of related-
ness values. As we believe that strong and not 
strong are proportional to the pair similarity and 
dissimilarity respectively 

Rule-based module input is sentence pair S1, S2 
word semantic scores, i.e. Ws1s and Ws2s (Table 
1). Then, it calculates: 1) their three types of aver-
ages for S1 and S2 semantic scores, i.e. all word 
semantic scores, weakly related only and unrelated 
values; 2) P as the minimum percentage of strong 
Wss in (S1 and S1); 3) D as, 100-P, the percentage 
of not strong Wss in S1 and S1  

This module outputs the semantic textual simi-
larity semantic (STS) score which ranges from 0 to 
5. Throughout this section, when we use “unrelat-
ed”, “weak” and strong terminologies, we use Ta-
ble 1 Relatedness definitions. Also, when we use 
“important” term, we refer to our definition (Sec-
tion 2.1) 

 Human judgments for computing STS score of 
the sentence pair are based on word similarities 
and dissimilarities. They consider that two sen-
tences are similar if most (> 50%) of their words 

are strongly related, otherwise the sentences are 
candidates to be dissimilar. Since all Wss range 
from 0 to 1, the average of strong scores is more 
than the average of weak scores. Likewise, the av-
erage of weak scores is more than the average of 
non-related scores.  

 
Score(Sentence Ws1s, Sentence Ws2s) 
AllAvg = (Ws1s+ Ws1s)/2 
WeakAvg= the averaged weakly related scores of 
Ws1s and Ws1s 
UnRElAvg=the average of unrelated scores of 
Ws1s and Ws1s 
P = minimum (% Ws1s strong scores, % Ws2s 
strong scores) 
D=100-P 
Value=0 
If 95 <= P <=100 then  Value = 5; 
If 80 <= P < 95 then Value = 4; 
If 50 <= P < 80  then Value = 3; 
If 20 <= P < 50  then Value = 2; 
If 0 <= P < 20 then  
    If all verbs are strongly related then Value=1 
    Else Value= 0.0001; 
If (Value in [4, 5]) then 
    If all Ds for important words then Value=   3 
If (Value ==3) then 
    If all Ds for not important words then Value= 2 
If (Value <> 5 AND Value <> 0) then 
    If all Ds for weakly related words 

Value= Value+ AllAvg 
    Else if at least half Ds for weakly related words 

Value= Value+ WeakAvg 
Otherwise 

Value = Value + UnRelAvg 
Return Value 

 
When we call Score(Ws1s,Ws2s), we take care 

of the following two special cases where it goes 
directly to Value 3: 1) if missing some words leads 
to missing the whole verb/noun phrases and 2) if 
one sentence has all past tense verbs and the other 
has present verbs. 

When we design P inequalities, we make them 
have relaxed boundaries conformed with human 
grading values. For example, we choose P between 
95 and 100 in Value (5); where 95 and 100 equal 
to grades 4.5 and 5 respectively. Value (3) interval 
are values between more than or equal 2.5 and less 
than 4. Then, we utilize the important information 
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and verb constraints to direct classifications 
through different groups.  

When we design range conditions between val-
ues, we select D to present the distance between 
the sentence pair. As D weak values increase, the 
two sentences become closer.  As D unrelated val-
ues increase, the two sentences become distant.   

We carefully analyzed the training corpora to 
assure that the above thresholds satisfy most of the 
training sentence pairs. Each threshold output was 
manually checked and adjusted to satisfy around 
55% to 75% of the training corpora.   

Applying the above module, the pair of “A man 
is playing football” and “The man plays football” 
STS score equals 5.00. The pair of “A man is sing-
ing and playing” and “The man plays” STS score 
equals 3.00 since the first one misses “singing” . 
The pair of “The cat is drinking milk.” and “A 
white cat is licking and drinking milk kept on a 
plate.” STS scores equals to 3.4 since they have 
P=0.66, “white”  as unimportant information but 
“licking” , “ kept” , “plate” as important infor-
mation words. 

2.6 Our Baseline System Description 

Our goal in the second run is to evaluate the relat-
edness of the two sentences using only the words 
in the sentence. Sentences are represented as a vec-
tor (i.e. based on the Vector Space Model) and the 
similarity between the two sentences S1 and S2 is 
(5* cosine similarity). We take into account all 
sentence words such that they are lower-case and 
non-stemmed.    

3 Results and Discussion 

3.1 Rule-based System Analysis 

Our system was implemented in Python and used 
the Natural Language Toolkit (NLTK, 
www.nltk.org/), WordNet and lemmatization mod-
ules. Table 2 provides in the official results of our 
system Pearson-Correlation measure.   
 

D Para Vid Europ OnWn News 
Tr 0.6011 0.7021 0.4528  
Te 0.5440 0.7335 0.3830 0.5860 0.2445 

 

Table 2. Run1 Official Person-Correlation measure  
 

In Table 2, the first row shows the proposed sys-
tem results namely 0.6011, 0.7021 and 0.4528 for 
MSRpar, MSRvid and SMTeuropel training corpo-
ra respectively. The second row shows the test re-
sults, namely 0.5440, 0.7335 and 0.3830, 0.5860 
and 0.2445 for MSRpar, MSRvid and SMTeuro-
pel, On-Wn and SMTnews testing corpora respec-
tively. 

In the Task-6 results (Agirre et al. 2012), our 
system was ranked 21th out of 85 participants with 
0.6663 Pearson-Correlation ALL competition rank.  
We tested two WordNet measures, namely the 
shortest path and WUP, the path length to the root 
node from the least common subsumer (LCS) of 
the two concepts, measures on the training corpora. 
In contrast to the shortest path measure, WUP 
measure increased the P versus the D scores on the 
three corpora.  This overestimated many training 
STS scores and negatively affected the correlation 
with the gold standard corpora. Using WUP meas-
ure, the correlations of MSRpar, MSRvid and 
SMTeuropel corpora were 0.5553, 0.3488 and 
0.4819 respectively. We decided to use WordNet 
shortest path measure due to its better correlation 
results. When we used WUP measure on testing 
corpora, the correlations were 0.5103, 0.4617, 
0.4810, 0.6422 and 0.4400 for MSRpar, MSRvid 
and SMTeuropel, On-Wn and SMTnews testing 
corpora respectively. We observed that when we 
used WUP measure on MSRvid corpora, the corre-
lations were degraded. This is because most of 
MSRvid corpus pair sentences talking about hu-
man genders which have high WUP scores when 
comparing with each other. Unfortunately, Word-
Net shortest path measure underestimated SMT-
news pair sentence similarities which affected 
dramatically the related correlation measure. 
Hence, the choice of the suitable WordNet metric 
for the whole corpora is still under our considera-
tion. 

Thresholds and Semantic Pattern: Our current 
efforts are directed towards statistical modeling of 
the system thresholds.  We intend also to use some 
web semantic patterns or phrases, such as ReVerb 
patterns, to boost the semantic scores of single 
words.       

3.2 Baseline System Analysis 

In Table 3, the first row shows the proposed sys-
tem results namely 0.4688, 0.4175 and 0.5349 for 
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MSRpar, MSRvid and SMTeuropel training corpo-
ra respectively. The second row shows the pro-
posed system results, namely 0.4617, 0.4489 and 
0.4719, 0.6353 and 0.4353 for MSRpar, MSRvid 
and SMTeuropel, On-Wn and SMTnews testing 
corpora respectively. 
 

D Para Vid Europ OnWn News 
Tr 0.4688 0.4175 0.5349  
Te 0.4617 0.4489 0.4719 0.6353 0.4353 

 

Table 3. Run 2 Official Person-Correlation measure  
 

In the Task-6 results (Agirre et al. 2012), Run2 
was ranked 72th out of 85 participants with 0.4169 
Pearson-Correlation ALL competition rank. As 
anticipated, Run2 released fair results. Its perfor-
mance is penalized or awarded proportionally to 
the number of exact matching pair words. Accord-
ingly, it may record considerable scores for pairs 
which have highly percentage exact matching 
words. For example, it provides competitive corre-
lation scores compared to other participants on On-
Wn and SMTnews testing corpora. Though, this 
doesn’t imply that it is an ideal solution for STS 
task.  It usually indicates that many corpus pairs 
may have some substantial exact matching words.   

4 Conclusions 

In this paper, we presented systems developed for 
SEMEVAL12- Task6. The first run used both se-
mantics and syntax. The second run, our baseline, 
uses only the words in the initial two sentences and 
defines similarity as the cosine similarity between 
the two sentences. The official task results suggest 
that semantics and syntax (Run1) supersedes the 
words alone (Run 2) with 0.2494 which indicates 
that the words alone are not sufficient to capture 
semantic similarity.  

Acknowledgment 

This material is based upon work supported by the 
National Science Foundation under Grant No. 
(1115774). Any opinions, findings, and conclu-
sions or recommendations expressed in this mate-
rial are those of the author(s) and do not 
necessarily reflect the views of the National Sci-
ence Foundation. 

 

References  

Catherine Blake. 2007. The Role of Sentence Structure 
in Recognizing Textual Entailment. RTE Proceedings 
of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing:101-106. 

Courtney Corley and Andras Csomai and Rada Mihal-
cea. 2005. Text Semantic Similarity, with Applica-
tions. Proceedings of the Conference on Recent 
Advances in Natural Language Processing (RANLP), 
Borovetz, Bulgaria.  

Dan Klein and Christopher D. Manning. 2002. Fast 
Exact Inference with a Factored Model for Natural 
Language Parsing. In Advances in Neural Infor-
mation Processing Systems 15 (NIPS), Cambridge, 
MA: MIT Press:3-10. 

Dong-bin Hu and  Jun Ding. 2011. Study on Similar 
Engineering Decision Problem Identification Based 
On Combination of Improved Edit-Distance and 
Skeletal Dependency Tree with POS. Systems Engi-
neering Procedia 1: 406–413. 

Eneko Agirre, Daniel Cer, Mona Diab and Aitor Gonza-
lez-Agirre. 2012. SemEval-2012 Task 6: A Pilot on 
Semantic Textual Similarity. In Proceedings of the 
6th International Workshop on Semantic Evaluation 
(SemEval 2012), in conjunction with the First Joint 
Conference on Lexical and Computational Semantics 
(*SEM 2012) 

Eric Bengtson and Dan Roth. 2008. Understanding the 
Value of Features for Coreference Resolution. 
EMNLP:294-303. 

Federica Mandreoli and Riccardo Martoglia and Paolo 
Tiberio. 2002 . A Syntactic Approach for Searching 
Similarities within Sentences. Proceeding of Interna-
tional Conference on Information and Knowledge 
Management:656–637. 

George A. Miller. 1995. WordNet: A Lexical Database 
for English. Communications of the ACM, 38(11): 39- 
41. 
Gerard Salton. 1989. Automatic Text Processing. The 

Transformation, Analysis, and Retrieval of Infor-
mation by Computer. Wokingham, Mass.Addison-
Wesley. 

Gunes Erkan and Dragomir R. Radev. 2004. LexRank: 
Graph-based Lexical Centrality as Salience in Text 
Summarization. Journal of Artificial Intelligence Re-
search 22:457-479. 

Junsheng Zhang, Yunchuan Sun, Huilin Wang, Yanqing 
He. 2011. Calculating Statistical Similarity between 
Sentences. Journal of Convergence Information 
Technology, Volume 6, Number 2: 22-34. 

Liu Wenyin and Xiaojun Quan and Min Feng and Bite 
Qiu. 2010. A Short Text Modeling Method Combin-
ing Semantic and Statistical Information. Information 
Sciences 180: 4031–4041. 

541



Michael Mohler and Rada Mihalcea. 2009. Text-to-text 
Semantic Similarity for Automatic Short Answer 
Grading. Proceedings of the European Chapter of the 
Association for Computational Linguistics (EACL). 

Oliva Jesus and Serrano I. Jose and María D. del Cas-
tillo and Ángel Iglesias .2011. SyMSS: A Syntax-
based Measure for Short-Text Semantic Similarity. 
Data and Knowledge Engineering 70: 390–405. 

Oren Etzioni, Anthony Fader, Janara Christensen, Ste-
phen Soderland, and Mausam.  2011. Open Infor-
mation Extraction: The Second Generation.  
Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence (IJCAI). 

Rada Mihalcea and Courtney Corley and Carlo Strap-
parava. 2006. Corpus-based and knowledge-based 
measures of text semantic similarity. Proceeding of 
the Twenty-First National Conference on Artificial 
Intelligence and the Eighteenth Innovative Applica-
tions of Artificial Intelligence Conference. 

Peter W. Foltz and Walter Kintsch and  Thomas K Lan-
dauer. 1998. The measurement of textual coherence 
with latent semantic analysis. Discourse Processes 
Vol. 25, No. 2-3: 285-307. 

Samuel Fernando and Mark Stevenson. 2008. A Seman-
tic Similarity Approach to Paraphrase Detection. 
Computational Linguistics (CLUK) 11th Annual Re-
search Colloquium, 2008. 

Satanjeev Banerjee and Ted Pedersen. 2010. An 
Adapted Lesk Algorithm for Word Sense Disambigu-
ation Using WordNet. CICLING:136-145. 

Ted Pedersen, Siddharth Patwardhan, and Jason 
Michelizzi. 2004. WordNet::Similarity-measuring the 
relatedness of concepts. In Proceedings of NAACL, 
2004. 

Vasileios Hatzivassiloglou , Judith L. Klavans , Eleazar 
Eskin.  1999. Detecting text similarity over short 
passages: Exploring linguistic feature combinations 
via machine learning. Proceeding of Empirical 
Methods in natural language processing and Very 
Large Corpora.  

Xiao-Ying Liu and Yi-Ming Zhou and Ruo-Shi Zheng. 
2008. Measuring Semantic Similarity within Sentenc-
es. Proceedings of the Seventh International Confer-
ence on Machine Learning and Cybernetics. 

Yuhua Li, David McLean, Zuhair A. Bandar, James D. 
O’Shea, and Keeley Crockett. Sentence Similarity 
based on Semantic Nets and Corpus statistics. 2006. 
IEEE Transactions on Knowledgeand Data Engineer-
ing Vol. 18, No. 8: 1138-1150. 

 

 

 
 

 

542



First Joint Conference on Lexical and Computational Semantics (*SEM), pages 543–546,
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Abstract

We propose a semantic similarity learning
method based on Random Indexing (RI) and
ranking with boosting. Unlike classical RI, we
use only those context vector features that are
informative for the semantics modeled. De-
spite ignoring text preprocessing and dispens-
ing with semantic resources, the approach was
ranked as high as 22nd among 89 participants
in the SemEval-2012 Task6: Semantic Textual
Similarity.

1 Introduction

One of the popular and flexible tools of semantics
modeling are vector distributional representations of
texts (also known as vector space models, seman-
tic word spaces or distributed representations). The
principle idea behind vector space models is to use
word usage statistics in different contexts to gen-
erate a high-dimensional vector representations for
each word. Words are represented by context vec-
tors whose closeness in the vector space is postu-
lated to reflect semantic similarity (Sahlgren, 2005).
The approach rests upon the distributional hypothe-
sis: words with similar meanings or functions tend
to appear in similar contexts. The prominent ex-
amples of vector space models are Latent Seman-
tic Analysis (or Indexing) (Landauer and Dutnais,
1997) and Random Indexing (Kanerva et al., 2000).

Because of the heuristic nature of distributional
methods, they are often designed with a specific
semantic relation in mind (synonymy, paraphrases,
contradiction, etc.). This complicates their adaption
to other application domains and tasks, requiring

manual trial-and-error feature redesigns and tailored
preprocessing steps to remove morphology/syntax
variations that are not supposed to contribute to the
semantics facet in question (e.g., stemming, stop-
words). Further, assessing closeness of semantic
vectors is usually based on a fixed simple similarity
function between distributed representations (often,
the cosine function). The cosine function implicitly
assigns equal weights to each component of the se-
mantic vectors regardless of its importance for the
particular semantic relation and task. Finally, dur-
ing production of training and evaluation sets, the
continuum of possible grades of semantic similar-
ity is usually substituted with several integer values,
although often only the relative grade order matters
and not their absolute values. Trying to reproduce
the same values or the same gaps between grades
when designing a semantic representation scheme
may introduce an unnecessary bias.

In this paper we address all of the above draw-
backs and present a semantic similarity learning
method based on Random Indexing. It does not re-
quire manual feature design, and is automatically
adapted to the specific semantic relations by select-
ing needed important features and/or learning neces-
sary feature transformations before calculating sim-
ilarity. In the proof-of-concept experiments on the
SemEval-2012 data we deliberately ignored all rou-
tine preprocessing steps, that are often considered
obligatory in semantic text processing, we did not
use any of the semantic resources (like WordNet)
nor trained different models for different data do-
mains/types. Despite such over-constrained setting,
the method showed very positive performance and
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was ranked as high as 22nd among 89 participants.

2 Random Indexing

Random Indexing (RI) is an alternative to LSA-
like models with large co-occurrence matrices and
separate matrix decomposition phase to reduce di-
mension. RI constructs context vectors on-the-fly
based on the occurrence of words in contexts. First,
each word is assigned a unique and randomly gener-
ated high-dimensional sparse ternary vector. Vec-
tors contain a small number (between 0.1-1%) of
randomly distributed +1s and -1s, with the rest of
the elements set to 0. Next, the final context vectors
for words are produced by scanning through the text
with a sliding window of fixed size, and each time
the word occurs in the text, the generated vectors of
all its neighbors in the sliding context window are
added to the context vector of this word1. Finally,
the obtained context vectors are normalized by the
occurrence count of the word.

RI is a practical variant of the well-known
dimension reduction technique of the Johnson-
Lindenstrauss (JL) lemma (Dasgupta and Gupta,
2003). An Euclidean space can be projected with a
random Gaussian matrix R onto smaller dimension
Euclidean space, such that with high probability the
distance between any pair of points in the new space
is within a distortion factor of 1 ± ε of their origi-
nal distance. Same or similar guarantees also hold
for a uniform {−1,+1}-valued or ternary (from a
certain distribution) randomR (Achlioptas, 2003) or
for even sparser matrices (Dasgupta et al., 2010)

Restating the JL-lemma in the RI-terminology,
one can think of the initial space of characteristic
vectors of word sets of all contexts (each compo-
nent counts corresponding words seen in the context
window over the corpus) embedded into a smaller
dimension space, and approximately preserving dis-
tances between characteristic vectors. Because
of the ternary generation scheme, each resulting
feature-vector dimension either rewards, penalizes
or “switches off” certain words for which the cor-
responding row of R contained, resp., +1, −1 or 0.

So far, RI has been a naı̈ve approach to feature

1Although decreasing discounts dampening contribution of
far-located context words may by beneficial, we do not use it
putting our method in more difficult conditions.

learning – although it produces low-dimensional
feature representations, it is unconscious of the
learning task behind. There is no guarantee that the
Euclidean distance (or cosine similarity) will cor-
rectly reflect the necessary semantic relation: for a
pair of vectors, not all word subsets are characteris-
tic of a particular semantic relation or specific to it,
as presence or absence of certain words may play no
role in assessing given similarity type. Implications
of RI in the context of learning textual similarity
are coming from the feature selection (equivalently,
word subset selection) method, based on boosting,
that selects only those features that are informative
for the semantic relation being learned (Section 4).
Thus, the supervision information on sentence simi-
larity guides the choose of word subsets (among all
randomly generated by the projection matrix) that
happen to be relevant to the semantic annotations.

3 Semantic Textual Similarity Task

Let {(si
1, s

i
2)} be the training set of N pairs of sen-

tences, provided along with similarity labels yi. The
higher the value of yi the more semantically similar
is the pair (si

1, s
i
2). Usually absolute values of yi are

chosen arbitrary; only their relative order matters.
We would learn semantic similarity between

(si
1, s

i
2) as a function H(x̄i), where x̄i is a sin-

gle vector combining sentence context vectors v(si
1)

and v(si
2). Context representation v(s) for a sen-

tence s is defined as an average of the word context
vectors v(w) contained in it, found using a large text
corpus with the RI approach, described in the pre-
vious section: v(s) =

∑
w∈s v(w)/ |s|. Possible

transformations into x̄i include a concatenation of
v(si

1) and v(si
2), concatenation of the sum and dif-

ference vectors or a vector composed of component-
wise symmetric functions (e.g., a product of cor-
responding components). In order to learn a sym-
metric H , one can either use each pair twice during
training, or symmetrize the construction of x̄.

4 Feature Selection with Boosting

We propose to exploit natural ordering of (si
1, s

i
2)

according to yi to learn a parameterized similarity
function H(x̄i). In this way we do not try learn-
ing the absolute values of similarity provided in the
training. Also, by using boosting approach we allow
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for gradual inclusion of features into similarity func-
tion H , implementing in this way feature selection.

For a given number of training steps T , a boost-
ing ranking algorithm learns a scoring function H ,
which is a linear combination of T simple, non-
linear functions ht called weak learners: H(x̄) =∑T

t=1 αtht(x̄),where each αt is the weight assigned
to ht at step t of the learning process.

Usually the weak learner is defined on only few
components of x̄. Having build H at step t, the next
in turn (t + 1)’s leaner is selected, optimized and
weighted with the corresponding coefficient αt+1.
In this way the learning process selects only those
features in x̄ (or, if viewed from the RI perspective,
random word subsets) that contribute most to learn-
ing the desired type input similarity.

As the first ranking method we applied the pair-
wise ranking algorithm RankBoost (Freund et al.,
2003), that learns H by minimizing a convex ap-
proximation to a weighted pair-wise loss:∑

(si
1,si

2),(sj
1,sj

2):yi<yj

P (i, j)[[H(x̄i) ≥ H(x̄j)]].

Operator [[A]] = 1 if the A = true and 0 other-
wise. Positive values of P weight pairs of x̄i and x̄j

– the higher is P (i, j), the more important it is to
preserve the relative ordering of x̄i and x̄j . We used
the simplest decision stumps that depend on one fea-
ture as weak learners: h(x; θ, k) = [[xk > θ]], where
k is a feature index and θ is a learned threshold.

The second ranking method we used was a point-
wise ranking algorithm, based on gradient boosting
regression for ranking (Zheng et al., 2007), called
RtRank and implemented by Mohan et al. (2011)2.
The loss optimized by RtRank is slightly different:∑

(si
1,si

2),(sj
1,sj

2):yi<yj

(max{0, H(x̄i)−H(x̄j)})2.

Another difference is in the method for selecting
weak learner at each boosting step, that relies on re-
gression loss and not scalar product as RankBoost.
Weak learners for RtRank were regression trees of
fixed depth (4 in our experiments).

5 Experiments

We learned context vectors on the GigaWord En-
glish corpus. The only preprocessing of the cor-

2http://sites.google.com/site/rtranking

learner transform correl. σ

ba
se

lin
e pure RI, cos - 0.264 0.005

logistic reg. - 0.508 0.041
logistic reg. concat 0.537 0.052

bo
os

tin
g RankBoost

sumdiff 0.685 0.027
product 0.663 0.018

crossprod 0.648 0.028
crossdiff 0.643 0.023
concat 0.625 0.025
absdiff 0.602 0.021

RtRank
sumdiff 0.730 0.020
product 0.721 0.023

Table 1: Mean performance of the transformation and
boosting methods for N = 100 on train data.

pus was stripping all tag data, removing punctuation
and lowercasing. Stop-words were not removed.
Context vectors were built with the JavaSDM pack-
age (Hassel, 2004)3 of dimensionality N = 100 and
N = 105, resp., for preliminary and final experi-
ments, with random degree 10 (five +1s and -1s in
each initial vector), right and left context window
size of 4 words4 and constant weighting scheme.

Training and test data provided in the SemEval-
2012 Task 6 contained 5 training and 5 testing text
sets each of different domains or types of sentences
(short video descriptions, pairs of outputs of a ma-
chine translation system, etc.). Although the 5 sets
had very different characteristics, we concatenated
all training files and trained a single model. The
principal evaluation metrics was Pearson correlation
coefficient, that we report here. Two related other
measures were also used (Agirre et al., 2012).

Obtained sentence vectors v(s) for were trans-
formed into vectors x̄ with several methods:

• ‘sumdiff’: x̄ = (v̄(s1) + v̄(s2), sgn(v1(s1) −
v1(s2))(v(s1)− v(s2)))

• ‘concat’: x̄ = (v(s1), v(s2)), and x̄′ =
(v(s2), v(s1))

• ‘product’: xi = vi(s1) · vi(s2)

• ‘crossprod’: xij = vi(s1) · vj(s2)

• ‘crossdiff’: xij = vi(s1)− vj(s2)

• ‘absdiff’: xi = |vi(s1)− vi(s2)|.
Methods ‘concat’ and ‘sumdiff’ were proposed
by Hertz et al. (2004) for distance learning for clus-

3http://www.csc.kth.se/∼xmartin/java
4Little sensitivity was found to the window sizes from 3 to 6.
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learner transform train±σ test rank MSRpar MSRvid SMTeur OnWN SMTnews

RankBoost
product 0.748±0.017 0.6392 32 0.3948 0.6597 0.0143 0.4157 0.2889
sumdiff 0.735±0.016 0.6196 45 0.4295 0.5724 0.2842 0.3989 0.2575

RtRank
product 0.784±0.017 0.6789 22 0.4848 0.6636 0.0934 0.3706 0.2455
sumdiff 0.763±0.014

Table 2: Mean performance of the best-performing two transformation and two boosting methods for N = 105.

tering. Comparison of mean performance of differ-
ent transformation and learning methods on the 5-
fold splitting of the training set is given in Table 1
for short context vectors (N = 100). The correlation
is given for the optimal algorithms’ parameters (T
for RankBoost and, additionally, tree depth and ran-
dom ratio for RtRank), found with cross-validation
on 5 folds. With these results for smallN , two trans-
formation methods were preselected (‘sumdiff’ and
‘product’) for testing and submission with N = 105

(Table 2), as increasing N usually increased perfor-
mance. Yet, only about 103 features were actually
selected by RankBoost, meaning that a relatively
few random word subsets were informative for ap-
proximating semantic textual similarity.

In result, RtRank showed better performance,
most likely because of more powerful learners, that
depend on several features (word subsets) simulta-
neously. Performance on machine translation test
sets was the lowest that can be explained by very
poor quality of the training data5: models for these
subsets should have been trained separately.

6 Conclusion

We presented a semantic similarity learning ap-
proach that learns a similarity function specific to
the semantic relation modeled and that selects only
those word subsets in RI, presence of which in the
compared sentences is indicative of their similarity,
by using only relative order of the labels and not
their absolute values. In spite of paying no atten-
tion to preprocessing, nor using semantic corpora,
and with no domain adaptation the method showed
promising results.

Acknowledgments
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5A reviewer suggested another reason: more varied or even
incorrect lexical choice that is sometimes found in MT output.
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Abstract 

This paper describes investigations into using 
syntactic chunk information as the basis for 
determining the similarity of candidate texts at 
the semantic level. Two approaches were con-
sidered. The first was a corpus-based method 
that extracted lexical and semantic features 
from pairs of chunks from each sentence that 
were associated through a chunk alignment 
algorithm. The features were used as input to 
a classifier trained on the same features ex-
tracted from a corpus of gold standard training 
data. The second approach involved breadth-
first chunk association and the application of a 
rule-based scoring algorithm. Both approaches 
were evaluated against the test data for the 
SemEval 2012 Semantic Text Similarity task. 
The results show that the rule-based chunk 
approach is superior. 

1 Introduction 

The task of determining whether two texts are sim-
ilar in some sense has important applications in the 
field of natural language processing, including but 
not limited to document summarization (Evans, et 
al., 2005), plagiarism detection (Barrón-Cedeño, et 
al., 2009) and large corpus document retrieval 
(Charikar, 2002).  

While textual similarity can be performed at the 
purely surface lexical level, as in the “simhash” 
clustering method described in (Moulton, 2010), 
similarity also applies at the semantic level, where 
conceptually similar texts may nevertheless be en-
tirely dissimilar at the surface lexical level. For 
example, the phrases “restrict or confine” and 
“place limits on (extent or access)” share no words 
or morphological roots, yet mean very nearly the 
same thing at the semantic level.  

The Semantic Textual Similarity (STS) task 
(Task #6) at SemEval-2012 (Agirre, et al., 2012) 
provided a forum for exploring these issues by fur-
nishing training and evaluation data, and also a 
common standard for describing degrees of simi-
larity, shown in Table 1. 
 

Score Description 

5 The two sentences are completely equiva-
lent, as they mean the same thing. 

4 The two sentences are mostly equivalent, 
but some unimportant details differ. 

3 
The two sentences are roughly equivalent, 
but some important information dif-
fers/missing. 

2 The two sentences are not equivalent, but 
share some details. 

1 The two sentences are not equivalent, but 
are on the same topic. 

0 The two sentences are on different topics. 
 

Table 1.  STS similarity scoring standard. 
 

Our corpus-based chunk similarity method par-
ticipated in the formal STS evaluation. Our rule-
based method was completed after the submittal 
date, but we report on it here because the method 
does not involve training on a corpus, nor any pa-
rameter tuning, and because it significantly outper-
formed the corpus-based method.  

The remainder of this paper is organized as fol-
lows. In the next section, we describe the common 
processing components for both methods. Section 
3 then presents the corpus-based chunk method, 
followed in Section 4 by a discussion of the rule-
based chunk similarity method. Section 5 con-
cludes with a presentation of how the two methods 
performed against the STS test set, and offers some 
observations on the viability of chunk-based simi-
larity determination.  
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2 Common Processing Components  

A common processing core supports both of the 
methods, comprising preprocessing components 
and also shared components for determining 
chunk-level similarity. The preprocessing compo-
nents make use of the U.S. National Library of 
Medicine’s Lexical Tools (NLM 2012) to perform 
ASCII conversion and tokenization. Candidate sen-
tence pairs are then tagged and chunked using our 
own tagger and separate chunker, which were both 
trained on CONLL 2000 data using the CRF++ 
conditional random field toolkit (Taku-ku 2012). 
We use chunk labels that augment the standard 
BIO tags with appropriate Penn-Treebank phrasal 
tags, for example, “B-NP” and “B-ADVP”.  

Once the candidate sentences are chunked, the 
two methods diverge in their approach to classifi-
cation. However, both approaches use the NLM 
Lexical Tools and WordNet (Fellbaum, 1998) for 
term expansion. The NLM’s normalization tool is 
used to reduce terms to lower case, strip them of 
punctuation, stop words, diacritical marks, etc., 
and to expand the terms with lexical variants. 
WordNet’s synonyms and hypernyms for the re-
maining terms are then added to expand the term 
lists for chunk-level comparisons. 

3 Corpus-based Chunk Method 

The corpus-based method employs a “chunk 
alignment” algorithm for selecting pairs of chunks 
for detailed comparison, one from each candidate 
sentence. The algorithm operates by initializing 
pointers to the first chunk in each sentence. Then, 
noting the chunk type for the indexed chunk in the 
shorter sentence, the algorithm marches down the 
longer sentence searching for the first chunk of the 
same type. Once it is found, the two chunks are 
marked for comparison and the index into the 
shorter sentence is incremented to the next chunk. 

The process repeats until no more chunk pairs can 
be associated. Figure 1 shows an example of chunk 
alignment.  

The method generates the set of features shown 
in Table 2 based on the chunk-level comparisons. 
Features 2 to 4 contain numerical values represent-
ing the sums of “matching scores” from the aligned 
chunks. A four-valued matching score is assigned 
for each chunk comparison depending on the de-
gree of chunk-level similarity. A value of  “3” rep-
resents an exact term match or a match on a 
synonym. The value “2” is given if the head term 
of one of the chunks is in the hypernym tree for the 
other chunk. And a value of “1” is given if the two 
chunk heads have a common hypernym ancestor. 
The default value “0” is given if none of the above 
conditions is found. The numbers in brackets in the 
table identify the unigram features that are associ-
ated to compose trigram and 4-gram features, re-
spectively. 
 

Unigrams 0 Total # chunks in Sentence A 
 1 Total # chunks in Sentence B 
 2 Sum of aligned VP matching scores 
 3 Sum of aligned NP matching scores 
 4 Sum of aligned PP matching scores 
 5 Number of VP chunks in A 
 6 Number of NP chunks in A 
 7 Number of PP chunks in A 
 8 Number of VP chunks in B 
 9 Number of NP chunks in B 
 10 Number of PP chunks in B 
Trigrams  [ 2, 5, 8 ], [ 3, 6, 9 ], [ 4, 7, 10 ] 
4-grams  [ 0, 5, 6, 7 ], [ 1, 8, 9, 10 ] 

 
Table 2. Similarity classifier features. 

 
Once the feature vector is, it is passed to the text 

similarity classifier, which generates the 0-5 simi-
larity score. The classifier was trained on the gold 

Micron’s num-
bers 

also marked the first quar-
terly profit 

in three years for the DRAM 
manufacturer 

NP ADVP VP NP PP PP 
      

Micron  has declared its first quarter-
ly profit 

in three years  

NP  VP NP PP  
 

Figure 1. Chunk Alignment Example 
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standard training data using the CRF++ toolkit us-
ing the same feature set described above.  
 

4 Rule-based Chunk Method 

The rule-based chunk similarity method employs a 
breadth-first search method for selecting candidate 
chunks for further comparison. The algorithm op-
erates by selecting the first chunk of the sentence 
with the larger number of chunks. It then marches 
down each chunk of the shorter sentence looking 
for an exact term match or head term synonym 
match. If a match is found, a chunk-level score 
value of 3 is assigned, and the next chunk in the 
longer sentence is considered. If a match is not 
found, then a new search is performed, this time 
searching for a hypernym match. If a match is 
found in this second pass, a chunk score of 2 is 
assigned, and the next index chunk is considered. 
If not, then a third and final pass is performed 
searching for a related term match. If a match is 
found after this third pass, a chunk score of 1 is 
assigned; otherwise, the chunks are deemed dis-
similar and receive a chunk score of zero. 

We describe this algorithm as “breadth-first” 
because it has the effect of conducting up to three 
passes across all of the chunks of the target (short-
er) sentence, looking for successively “looser” 
matches. For these purposes, we consider a hyper-
nym match to be looser than an exact or synynym 
match, and a common-ancestor (related) term 
match to be looser than a hypernym match. 

The chunk-level matching scores are accumulat-
ed in the above manner, just as for the corpus-
based method. However, in this case, the results 
are used directly by the rule-based scoring algo-
rithm. The scoring algorithm treats predicate and 

argument chunks separately and generates raw 
scores for each. It then combines them to compute 
the final similarity score. The predicate raw score 
is the accumulated score for all VP chunk compari-
sons, divided by three times the number of such 
comparisons. This results in a predicate raw score 
that is in the range [0,1], since the maximum 
chunk-level matching score is three.  The argument 
raw score is produced in the same manner and 
multiplied by 5.0, producing a value in the range 
[0,5].  

Where both predicate and argument raw scores 
exist, the total similarity score for the sentence pair 
is computed as the product of the two raw scores. 
This formulation has the benefit of permitting the 
degree of similarity for each score type to affect 
the overall score. For example, consider “Sarah 
bought the book,” and “Sarah read the book.” 
Here, the difference in predicate (“bought” versus 
“read”) will temper the otherwise exact match on 
the arguments. Similarly, for “Sarah bought the 
book,” and “Sarah bought the fish,” the inexact 
match on arguments will soften the perfect predi-
cate score. 

Table 3 illustrates how the basic rule-based al-
gorithm works. The table shows the associated 
chunks from each sentence, their chunk type for 
scoring purposes, and their chunk-level matching 
score values. Thus, for example, “The Korean Air 
deal” and “the final agreement” have a matching 
score value of 2 because “agreement” is a hyper-
nym of “deal”. Moreover, because there is no men-
tion of “Bob Saling” in the first sentence, the 
corresponding matching value is zero. 

Based on the chunk-level scores in the table, the 
similarity score is calculated as follows. The raw 
predicate score for the two predicate chunk pairs is 
6 (3 for each, from the table), divided by the max-

S1: Boeing said the final agreement is expected to be signed during the next few weeks. 
S2: The Korean Air deal is expected to be finalized “in the next several weeks,” Boeing spokesman Bob 
Saling said. 

S2 chunk phrase S1 chunk phrase Chunk type Matching score 
The Korean Air deal the final agreement argument 2 

is expected to be finalized is expected to be signed predicate 3 
in the next several weeks during the next several weeks argument 3 

Boeing spokesman Boeing argument 3 
Bob Saling  argument 0 

said said predicate 3 
 

Table 3. Chunk-level matching scores for rule-based scoring example from training data. 
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imum possible score, which is also 6, yielding a 
value of 1.000. The argument raw score is the sum 
of the scores for the argument pairs, 8 in this case, 
divided by the maximum possible (12 for the four 
argument chunks), scaled by 5, yielding a value of 
3.333. The final score is their product, 3.333, 
which compares favorably with the gold standard 
score value of 3.000 for this sentence pair. 

If there are no predicate chunk comparisons for 
the sentence pair, the rule-based scoring algorithm 
uses the raw argument score without modification. 
Similarly, where there are no argument chunk 
comparisons, the rule uses the raw predicate score 
multiplied by 5.0 to scale it to cover the range 
[0,5]. By being robust against zero values in this 
manner, the algorithm is able to handle compari-
sons of sentence fragments such as “Tunisia”, in 
the event it is the entirety of the input “sentence”. 

Additionally, the final score that is reported is 
the minimum of the combined score described 
above and an upper limit value that is initialized at 
5.0, but which can be reduced as each chunk-level 
comparison is performed. The upper limit value is 
reduced to 4.0 if there is a qualifier mismatch (e.g., 
“uncooked pizza” v. “pizza”). It is reduced to 3.0 if 
there is a number mismatch, for example, “Two 
men are playing chess” versus “Three men are 
playing chess.” 

5 Results and Discussion 

Table 4 shows the results for both algorithms 
against the STS test suite. The “Corpus-based” and 
“Rule-based” columns reports results for the two 
chunk-based similarity algorithm. The five lowest 
rows represent the five individual data sets in the 
suite. The values in the table represent Pearson 
correlation values, which range from -1 to +1, 
where the closer a value is to 1, the stronger the 
positive correlation.  

The three upper rows represent the three metrics 
that were used to compute global results across all 
of the data sets. “All” refers to the computation of 
a Pearson value where the five gold standards and 
corresponding results were concatenated. The 
“Allnrm” row reports correlation values obtained 
by scaling and translating system outputs in a 
manner that maintains the individual data set corre-
lation values, yet minimizes the combined data set 
error. Finally, the “Mean” reports the weighted 
average of the individual data set correlation val-

ues, where the weights used were the numbers of 
sentence pairs in each data set. There were 750 
sentence pairs in each of the MSRpar, MSRvid, 
and OnWN data sets, but only 459 in the SMT-eur 
data set and 399 in the SMT-news data set, for a 
total of 3108 sentence pairs. The characteristics of 
the different data sets and greater detail on the 
global scoring metrics are discussed further in the 
STS task description paper (Agirre, et al., 2012).  
 

Category Corpus-
based 

Rule-based Improve- 
ment (%) 

All .4976 .5306 6.63% 
Allnrm .7160 .7646 6.79% 
Mean .3215 .5069 57.67% 
MSRpar .2312 .4536 96.20% 
MSRvid .6595 .7079 7.33% 
SMT-eur .1504 .3996 165.68% 
On-WN .2735 .5149 88.26% 
SMT-news .1426 .3379 136.98% 

 
Table 4. Results against STS test suite.1 

 
As Table 4 shows, the rule-based method out-

performed the corpus-based method for all indi-
vidual data sets and for all combined measures. 
The percentage improvement is noted in the right-
most column in the figure. 

We believe the results for the rule-based method 
are sufficient to show that chunk-based methods 
may have a role to play in text similarity determi-
nations, particularly in high volume applications 
where high throughput is essential. Chunking is 
computationally cheap to perform. It is also robust 
against sentence fragments and against incomplete 
or ungrammatical sentence constructions, as may 
be found in emails, text messages, and blog posts.  

However, chunk-based methods may be restrict-
ed to such applications since, on an absolute scale, 
performance was in the bottom one-third of all sys-
tems that reported results against the STS data 
suite. Nevertheless, we recognize that our investi-
gations into chunk-based methods were limited in 
both time and scope. As a result, we do not believe 
we have yet encountered the upper limit on per-
formance for chunk-based text similarity systems.  

                                                             
1 The results for the corpus-based chunk method are reported 
under the name “demetrios_glinos/task6-ATA-CHNK” on the 
official STS results page, http://www.cs.york.ac.uk/semeval-
2012/task6/index.php?id=results-update. 
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Abstract

This paper describes the participation of the
IRIT team to SemEval 2012 Task 6 (Seman-
tic Textual Similarity). The method used con-
sists of a n-gram based comparison method
combined with a conceptual similarity mea-
sure that uses WordNet to calculate the sim-
ilarity between a pair of concepts.

1 Introduction

The system used for the participation of the IRIT
team (composed by members of the research groups
SIG and MELODI) to the Semantic Textual Similar-
ity (STS) task (Agirre et al., 2012) is based on two
sub-modules:

• a module that calculates the similarity between
sentences using n-gram based similarity;

• a module that calculates the similarity between
concepts in the two sentences, using a concept
similarity measure and WordNet (Miller, 1995)
as a resource.

In Figure 1, we show the structure of the sys-
tem and the connections between the main compo-
nents. The input phrases are passed on one hand
directly to the n-gram similarity module, and on the
other they are annoted with the Stanford POS Tag-
ger (Toutanova et al., 2003). All nouns and verbs are
extracted from the tagged phrases and WordNet is
searched for synsets corresponding to the extracted
nouns and nouns associated to the verbs by the de-
rived terms relationship. The synsets are the con-
cepts used by the conceptual similarity module to

Phrases 

N-gram similarity 
module 

POS Tagger 

Google 
Web 1T 

WordNet 

Concept 
similarity 
module 

Score 

Geometric Average 
and Normalisation 

Concept 
Extraction 

Figure 1: Schema of the system.

calculate the concept similarity. Each module cal-
culates a similarity score using its own method; the
final similarity value is calculated as the geometric
average between the two scores, multiplied by 5 in
order to comply with the task specifications.

The n-gram based similarity relies on the idea
that two sentences are semantically related if they
contain a long enough sub-sequence of non-empty
terms. Google Web 1T (Brants and Franz, 2006)
has been used to calculate term idf, which is used
as a measure of the importance of the terms. The
conceptual similarity is based on the idea that, given
an ontology, two concepts are semantically similar
if their distance from a common ancestor is small
enough. We used three different measures: the Wu-
Palmer similarity measure (Wu and Palmer, 1994)
and two “Proxigenea” measures (Dudognon et al.,
2010). In the following we will explain in detail how

552



each similarity module works.

2 N-Gram based Similarity

N-gram based similarity is based on the Clustered
Keywords Positional Distance (CKPD) model pro-
posed in (Buscaldi et al., 2009). This model was
originally proposed for passage retrieval in the field
of Question Answering (QA), and it has been im-
plemented in the JIRS system1. In (Buscaldi et al.,
2006), JIRS showed to be able to obtain a better an-
swer coverage in the Question Answering task than
other traditional passage retrieval models based on
Vector Space Model, such as Lucene2. The model
has been adapted for this task by calculating the idf
weights for each term using the frequency value pro-
vided by Google Web 1T.

The similarity between a text fragment (or pas-
sage) p and another text fragment q is calculated as:

Sim(p, q) =

∑
∀x∈Q

h(x, P )
1

d(x, xmax)∑n
i=1 wi

(1)

Where P is the set of n-grams with the highest
weight in p, where all terms are also contained in q;
Q is the set of all the possible j-grams in q and n
is the total number of terms in the longest passage.
The weights for each term and each n-gram are cal-
culated as:

• wi calculates the weight of the term tI as:

wi = 1− log(ni)

1 + log(N)
(2)

Where ni is the frequency of term ti in the
Google Web 1T collection, and N is the fre-
quency of the most frequent term in the Google
Web 1T collection.

• the function h(x, P ) measures the weight of
each n-gram and is defined as:

h(x, Pj) =

{ ∑j
k=1 wk if x ∈ Pj

0 otherwise
(3)

1http://sourceforge.net/projects/jirs/
2http://lucene.apache.org/

Where wk is the weight of the k-th term (see
Equation 2) and j is the number of terms that
compose the n-gram x;

• 1
d(x,xmax) is a distance factor which reduces the
weight of the n-grams that are far from the
heaviest n-gram. The function d(x, xmax) de-
termines numerically the value of the separa-
tion according to the number of words between
a n-gram and the heaviest one. That function is
defined as show in Equation 4 :

d(x, xmax) = 1 + k· ln(1 + L) (4)

Where k is a factor that determines the impor-
tance of the distance in the similarity calcula-
tion and L is the number of words between a
n-gram and the heaviest one (see Equation 3).
In our experiments, k was set to 0.1, a default
value used in JIRS.

For instance, given the following two sentences:
“Mr. President, enlargement is essential for the con-
struction of a strong and united European continent”
and “Mr. President, widening is essential for the
construction of a strong and plain continent of Eu-
rope”, the longest n-grams shared by the two sen-
tences are: “Mr. President”, “is essential for the
construction of a strong and”, “continent”.

term w(term)

Mr 0.340
President 0.312
is 0.159
essential 0.353
for 0.153
the 0.104
construction 0.332
of 0.120
a 0.139
strong 0.329
and 0.121
continent 0.427
of 0.120
Europe 0.308
widening 0.464

Table 1: Term weights (idf) calculated using the fre-
quency for each term in Google Web 1T unigrams set.
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Figure 2: Visualisation of depth calculation.

The weights have been calculated with Formula
2, using the frequencies from Google Web 1T. The
weights for each of the longest n-grams are 0.652,
1.809 and 0.427 respectively; their sum is 2.888
which divided by all the term weights contained
in the sentence gives 0.764 which is the similarity
score between the two sentences as calculated by the
n-gram based method.

3 Conceptual Similarity

Given Cp and Cq as the sets of concepts contained in
sentence p and q, respectively, with |Cp| ≥ |Cq|, the
conceptual similarity between p and q is calculated
as:

ss(p, q) =

∑
c1∈Cp

max
c2∈Cq

s(c1, c2)

|Cp|
(5)

where s(c1, c2) is a concept similarity measure.
Concept similarity can be calculated by different
ways. Wu and Palmer introduced in (Wu and
Palmer, 1994) a concept similarity measure defined
as:

s(c1, c2) =
2 · d(c0)

d(c1) + d(c2)
(6)

c0 is the most specific concept that is present both
in the synset path of c1 and c2 (see Figure 2 for de-
tails). The function returning the depth of a concept
is noted with d.

3.1 ProxiGenea
By making an analogy between a family tree and
the concept hierarchy in WordNet, (Dudognon et al.,
2010; Ralalason, 2010) proposed a concept similar-
ity measure based on the principle of evaluating the

proximity between two members of the same fam-
ily. The measure has been named “ProxiGenea”
(from the french Proximité Généalogique, genealog-
ical proximity). We took into account three versions
of the ProxiGenea measure:

pg1(c1, c2) =
d(c0)

2

d(c1) ∗ d(c2)
(7)

This measure is very similar to the Wu-Palmer sim-
ilarity measure, but it emphasizes the distances be-
tween concepts;

pg2(c1, c2) =
d(c0)

d(c1) + d(c2)− d(c0)
(8)

In this measure, the more are the elements which are
not shared between the paths of c1 and c2, the more
the score decreases. However, if the elements are
placed more deeply in the ontology, the decrease is
less important.

pg3(c1, c2) =
1

1 + d(c1) + d(c2)− 2 · d(c0)
(9)

In Table 2 we show the weights that have been
calculated for each concept, using all the above sim-
ilarity measures, and the concept that provided the
maximum weight. No Word Sense Disambiguation
process is carried out; therefore, the scores are cal-
culated taking into account all the possible senses
for the word. If the same concept is present in both
sentences, it obtains always a score of 1. In the other
cases, the maximum similarity value obtained with
any other concept is retained.

From the example in Table 2 we can see that Wu-
Palmer tends to give to the concepts a higher simi-
larity value than Proxigenea3.

The final score for the above example is cal-
culated as the geometric mean between the scores
obtained in Table 2 and 0.764 obtained from the
n-gram based similarity module, multiplied by 5.
Therefore, for each similarity measure, the final
scores of the example are, respectively: 4.029,
3.869, 3.921 and 3.703. The correct similarity value,
according to the gold standard, was 4.600.
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c1, c2 wp pg1 pg2 pg3

Mr
1.000 1.000 1.000 1.000

Mr
President

1.000 1.000 1.000 1.000
President
construction

1.000 1.000 1.000 1.000
construction
continent

1.000 1.000 1.000 1.000
continent
Europe

0.400 0.160 0.250 0.143
continent
widening

0.737 0.544 0.583 0.167
enlargement
score 0.850 0.784 0.805 0.718

Table 2: Maximum conceptual similarity weights using
the different formulae for the concepts in the example.
c1: first concept, c2: concept for which the maximum
similarity value was calculated. wp: Wu-Palmer similar-
ity; pgX : Proxigenea similarity. score is the result of (5).

4 Evaluation

Before the official runs we carried out an evalua-
tion to select the best similarity measures over the
training set provided by the organisers. The results
of this evaluation are shown in Table 3. The mea-
sure selected is the normalised Pearson correlation
(Agirre et al., 2012). We evaluated also the use of
the product instead of the geometric mean for the
combination of the two scores.

Geometric mean
MSRpar MSRvid SMT-Eur All

pg1 0.489 0.602 0.587 0.559
pg2 0.490 0.596 0.586 0.558
pg3 0.470 0.657 0.552 0.560
wp 0.494 0.572 0.592 0.552

Scalar product
MSRpar MSRvid SMT-Eur All

pg1 0.469 0.601 0.487 0.519
pg2 0.471 0.597 0.487 0.518
pg3 0.447 0.637 0.459 0.514
wp 0.476 0.577 0.492 0.515

Table 3: Results on training corpus, comparison of dif-
ferent conceptual similarity measures and combination
method. Top: geometric mean, bottom: product.

We used these results to select the final config-
urations for our participation to the STS task: we
selected to exclude Proxigenea 2 and to use the ge-
ometric mean to combine the scores of the n-gram
based similarity module and the conceptual similar-
ity module. Wu-Palmer similarity allowed to obtain
the best results on two train sets but Proxigenea 3
was the similarity measure that obtained the best av-
erage score thanks to the good result on MSRvid.

The official results obtained by our system are
shown in Table 4, with the ranking obtained for each
test set. We could observe that the system was well

r best pg3 pg1 wp
MSRPar 60 0.734 0.417 0.429 0.433
MSRvid 58 0.880 0.673 0.612 0.583
SMTeur 7 0.567 0.518 0.495 0.486
OnWN 64 0.727 0.553 0.539 0.532
SMTnews 55 0.608 0.369 0.361 0.348
All 58 0.677 0.520 0.501 0.490

Table 4: Results obtained on each test set, grouped by
conceptual similarity method. r indicates the ranking
among all the participants teams.

behind the best system in most test sets, except for
SMTeur. This was expected since our system does
not use a machine learning approach and is com-
pletely unsupervised, while the best systems used
supervised learning. We observed also that the be-
haviour of the concept similarity measures was dif-
ferent from the behaviour on the training sets. In the
competition, the best results were always obtained
with Proxigenea3 instead of Wu-Palmer, except for
the MSRpar test set.

In Table 4 we extrapolated the results for the com-
posing methods and compared them with the result
obtained after their combination. We used the pg3
configuration for the conceptual similarity measure.
From these results, we can observe that MSRvid
was a test set where the conceptual similarity alone
would have resulted better than the combination of
scores, while SMT-news was the test set where the
CKPD measure obtained the best results in compar-
ison to the result obtained by the conceptual simi-
larity alone. It was quite surprising to observe such
a good result for a method that does not take into
account any information about the structure of the
sentences, actually viewing them as “bags of con-

555



Combined pg3 CKPD
MSRPar 0.417 0.412 0.417
MSRvid 0.673 0.777 0.548
SMTeuroparl 0.518 0.486 0.467
OnWN 0.553 0.544 0.505
SMTnews 0.369 0.266 0.408

Table 5: Results obtained for each test set using only the
conceptual similarity measure (pg3) and only the struc-
tural similarity measure (CKPD), compared to the re-
sult obtained by the complete system (Combined).

cepts”. This is probably due to the fact that SMT-
news is a corpus composed of automatically trans-
lated sentences, where structural similarity is an im-
portant clue for determining overall semantic sim-
ilarity. On the other hand, MSRvid sentences are
very short, and CKPD is in most cases unable to cap-
ture the semantic similarity.

5 Conclusions

The proposed method combined a measure of struc-
tural similarity and a measure of conceptual simi-
larity based on WordNet. With the participation to
this task, we were interested in studying the differ-
ences between different conceptual similarity mea-
sures and in determining whether they can be used
to effectively measure the semantic similarity of text
fragments. The obtained results showed that Proxi-
genea 3 allowed us to obtain the best results, indicat-
ing that under the test conditions and with WordNet
as a resource it overperforms the Wu-Palmer mea-
sure. Further studies may be required in order to
determine if these results can be generalised to other
collections and in using different ontologies. We are
also interested in comparing the method to the Lin
concept similarity measure (Lin, 1998) which takes
into account also the importance of the local root
concept.
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Abstract

In this paper we present our systems for the
STS task. Our systems are all based on a
simple process of identifying the components
that correspond between two sentences. Cur-
rently we use words (that is word forms), lem-
mas, distributional similar words and gram-
matical relations identified with a dependency
parser. We submitted three systems. All sys-
tems only use open class words. Our first sys-
tem (alignheuristic) tries to obtain a map-
ping between every open class token using all
the above sources of information. Our second
system (wordsim) uses a different algorithm
and unlike alignheuristic, it does not use
the dependency information. The third sys-
tem (average) simply takes the average of
the scores for each item from the other two
systems to take advantage of the merits of
both systems. For this reason we only pro-
vide a brief description of that. The results
are promising, with Pearson’s coefficients on
each individual dataset ranging from .3765
to .7761 for our relatively simple heuristics
based systems that do not require training on
different datasets. We provide some analy-
sis of the results and also provide results for
our data using Spearman’s, which as a non-
parametric measure which we argue is better
able to reflect the merits of the different sys-
tems (average is ranked between the others).

1 Introduction

Our motivation for the systems entered in the STS
task (Agirre et al., 2012) was to model the contribu-

∗ The first author is a visiting scholar on the Erasmus
Mundus Masters Program in ‘Language and Communication
Technologies’ (LCT, 2007–0060).

tion of each linguistic component of both sentences
to the similarity of the texts by finding an align-
ment. Ultimately such a system could be exploited
for ranking candidate paraphrases of a chunk of text
of any length. We envisage a system as outlined in
the future work section. The systems reported are
simple baselines to such a system. We have two
main systems (alignheuristic and wordsim) and
also a system which simply uses the average score
for each item from the two main systems (average).
In our systems we:

• only deal with open class words as to-
kens i.e. nouns, verbs, adjectives, adverbs.
alignheuristic and average also use num-
bers

• assume that tokens have a 1:1 mapping

• match:

– word forms
– lemmas
– distributionally similar lemmas
– (alignheuristic and average only) ar-

gument or head in a matched grammatical
relation with a word that already has a lex-
ical mapping

• score the sentence pair based on the size of the
overlap. Different formulations of the score are
used by our methods

The paper is structured as follows. In the next
section we make a brief mention of related work
though of course there will be more pertinent related
work presented and published at SemEval 2012. In
section 3 we give a detailed account of the systems
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and in section 4 we provide the results obtained on
the training data on developing our systems. In sec-
tion 5 we present the results on the test data, along
with a little analysis using the gold standard data. In
section 6 we conclude our findings and discuss our
ideas for future work.

2 Related Work

Semantic textual similarity relates to textual entail-
ment (Dagan et al., 2005), lexical substitution (Mc-
Carthy and Navigli, 2009) and paraphrasing (Hirst,
2003). The key issue for semantic textual similarity
is that the task is to determine similarity, where sim-
ilarity is cast as meaning equivalence. 1 In textual
entailment the relation under question is the more
specific relation of entailment, where the meaning
of one sentence is entailed by another and a sys-
tem needs to determine the direction of the entail-
ment. Lexical substitution relates to semantic tex-
tual similarity though the task involves a lemma in
the context of a sentence, candidate substitutes are
not provided, and the relation at question in the task
is one of substitutability. 2 Paraphrase recognition
is a highly related task, for example using compa-
rable corpora (Barzilay and Elhadad, 2003), and it
is likely that semantic textual similarity measures
might be useful for ranking candidates in paraphrase
acquisition.

In addition to various works related to textual
entailment, lexical substitution and paraphrasing,
there has been some prior work explicitly on se-
mantic text similarity. Semantic textual similarity
has been explored in various works. Mihalcea et al.
(2006) extend earlier work on word similarity us-
ing various WordNet similarity measures (Patward-
han et al., 2003) and a couple of corpus-based dis-
tributional measures: PMI-IR (Turney, 2002) and
LSA (Berry, 1992). They use a measure which
takes a summation over all tokens in both sen-
tences. For each token they find the maximum sim-
ilarity (WordNet or distributional) weighted by the
inverse document frequency of that word. The dis-

1See the guidelines given to the annotators at
http://www.cs.columbia.edu/˜weiwei/workshop/

instructions.pdf
2This is more or less semantic equivalence since the an-

notators were instructed to focus on meaning http://www.
dianamccarthy.co.uk/files/instructions.pdf.

tributional similarity measures perform at a simi-
lar level to the knowledge-based measures that use
WordNet. Mohler and Mihalcea (2009) adapt this
work for automatic short answer grading, that is
matching a candidate answer to one supplied by
the tutor. Mohler et al. (2011) take this applica-
tion forward, combining lexical semantic similarity
measures with a graph-alignment which considers
dependency graphs using the Stanford dependency
parser (de Marneffe et al., 2006) in terms of lexical,
semantic and syntactic features. A score is then pro-
vided for each node in the graph. The features are
combined using machine learning.

The systems we propose likewise use lexical sim-
ilarity and dependency relations, but in a simple
heuristic formulation without a man-made thesaurus
such as WordNet and without machine learning.

3 Systems

We lemmatize and part-of-speech tag the data using
TreeTagger (Schmid, 1994). We process the tagged
data with default settings of the Malt Parser (Nivre
et al., 2007) to dependency parse the data. All sys-
tems make use of a distributional thesaurus which
lists distributionally similar lemmas (‘neighbours’)
for a given lemma. This is a thesaurus constructed
using log-dice (Rychlý, 2008) and UkWaC (Fer-
raresi et al., 2008). 3 Note that we use only the
top 20 neighbours for any word in all the methods
described below. We have not experimented with
varying this threshold.

In the following descriptions, we refer to our sen-
tences as s1 and s2 and these open classed tokens
within those sentences as ti ∈ s1 and t j ∈ s2 where
each token in either sentence is represented by a
word (w), lemma (l), part-of-speech (p) and gram-
matical relation (gr), identified by the Malt parser,
to its dependency head at a given position (hp) in
the same sentence.

3.1 alignheuristic

This method uses nouns, verbs, adjectives, adverbs
and numbers. The algorithm aligns words (w), or
lemmas (l) from left to right from s1 to s2 and vice

3This is the ukWaC distributional thesaurus avail-
able in Sketch Engine (Kilgarriff et al., 2004) at
http://the.sketchengine.co.uk/bonito/run.cgi/

first\_form?corpname=preloaded/ukwac2
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versa (wmtch). If there is no alignment for words or
lemmas then it does the same matching process (s1
given s2 and vice versa) for distributionally similar
neighbours using the distributional thesaurus men-
tioned above (tmtch) and also another matching pro-
cess looking for a corresponding grammatical rela-
tion identified with the Malt parser in the other sen-
tence where the head (or argument) already has a
match in both sentences (rmtch).

A fuller and more formal description of the algo-
rithm follows:

1. retain nouns, verbs (not be), adjectives, adverbs
and numbers in both sentences s1 and s2.

2. wmtch:

(a) look for word matches
• wi ∈ s1 to w j ∈ s2, left to right i.e. the

first matching w j ∈ s2 is selected as a
match for wi.
• w j ∈ s2 to wi ∈ s1, left to right i.e. the

first matching wi ∈ s1 is selected as a
match for w j

(b) and then lemma matches for any ti ∈ s1
and t j ∈ s1 not matched in steps 2a
• li ∈ s1 to l j ∈ s2 , left to right i.e. the

first matching l j ∈ s2 is selected as a
match for li.
• l j ∈ s2 to li ∈ s1 , left to right i.e. the

first matching li ∈ s1 is selected as a
match for l j

3. using only ti ∈ s1 and t j ∈ s2 not matched in
the above steps:

• tmtch: match lemma and PoS (l + p) with
the distributional thesaurus against the top
20 most similar lemma-pos entries. That
is:
(a) For l + pi ∈ s1, if not already matched

at step 2 above, find the most similar
words in the thesaurus, and match if
one of these is in l + p j ∈ s2, left to
right i.e. the first matching l + p j ∈ s2
to any of the most similar words to
l + pi according to the thesaurus is se-
lected as a match for l + pi ∈ s1.

(b) For l + p j ∈ s2, if not already matched
at step 2 above, find the most similar
words in the thesaurus, and match if
one of these is in l + pi ∈ s1, left to
right

• rmtch: match the tokens, if not already
matched at step 2 above, by looking for
a head or argument relation with a token
that has been matched at step 2 to a token
with the inverse relation. That is:

i For ti ∈ s1, if not already matched at
step 2 above, if hpi ∈ s1 (the pointer
to the head, i.e. parent, of ti) refers to
a token tx ∈ s1 which has wmtch at tk
in s2, and there exists a tq ∈ s2 with
grq = gri and hpq = tk, then match ti
with tq

ii For ti ∈ s1 , if not already matched
at step 2 or the preceding step (rmtch
3i) and if there exists another tx ∈ s1
with a hpx which refers to ti (i.e. ti is
the parent, or head, of tx) with a match
between tx and tk ∈ s2 from step 2, 4

and where tk has grk = grx with hpk

which refers to tq in s2, then match ti
with tq 5

iii we do likewise in reverse for s2 to s1
and then check all matches are recip-
rocated with the same 1:1 mapping

Finally, we calculate the score sim(s1, s2):

|wmtch| + (wt × |tmtch + rmtch|)
|s1| + |s2|

× 5 (1)

where wt is a weight of 0.5 or less (see below).
The sim score gives a score of 5 where two

sentences have the same open class tokens, since
matches in both directions are included and the de-
nominator is the number of open class tokens in both
sentences. The score is 0 if there are no matches.
The thesaurus and grammatical relation matches are
counted equally and are considered less important

4In the example illustrated in figure 1 and discussed below,
ti could be rose in the upper sentence (s1) and Nasdaq would be
tx and tk.

5So in our example, from figure 1, ti (rose) is matched with tq

(climb) as climb is the counterpart head to rose for the matched
arguments (Nasdaq).
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NasdaqThe tech−loaded composite rose 20.96 points to 1595.91, ending at its highest level for 12 months.

thesaurus

malt

malt

points, or 1.2 percent, to 1,615.02.The technology−laced climbed 19.11 Index <.IXIC>CompositeNasdaq

Figure 1: Example of matching with alignheuristic

for the score as the exact matches. We set wt to 0.4
for the official run, though we could improve perfor-
mance by perhaps setting a bit lower as shown below
in section 4.1.

Figure 1 shows an example pair of sentences from
the training data in MSRpar. The solid lines show
alignments between words. Composite and compos-
ite are not matched because the lemmatizer assumes
that the former is a proper noun and does not decap-
italise; we could decapitalise all proper nouns. The
dotted arcs show parallel dependency relations in the
sentences where the argument (Nasdaq) is matched
by wmtch. The rmtch process therefore assumes the
corresponding heads (rise and climb) align. In addi-
tion, tmtch finds a match from climb to rise as rise is
in the top 20 most similar words (neighbours) in the
distributional thesaurus. climb is not however in the
top 20 for rise and so a link is not found in the other
direction. We have not yet experimented with val-
idating the thesaurus and grammatical relation pro-
cesses together, though that would be worthwhile in
future.

3.2 wordsim

In this method, we first choose the shortest sentence
based on the number of open words. Let s1 and s2
be the shortest and longest sentences respectively.
For every lemma li ∈ s1, we find its best matching
lemma l j ∈ s2 using the following heuristics and
assigning an alignment score as follows:

1. if li=l j, then the alignment score of li
(algnscr(li)) is one.

2. else li ∈ s1 is matched with a lemma l j ∈ s2

with which it has the highest distributional sim-
ilarity. 6 The alignment score, algnscr(li) is
the distributional similarity between li and l j

(which is always less than one).

The final sentence similarity score between the
pair s1 and s2 is computed as

sim(s1, s2) =

∑
li∈s1 algnscr(li)
|s1|

(2)

3.3 average

This system simple uses the average score for each
item from alignheuristic and wordsim. This is
simply so we can make a compromise between the
merits of the two systems.

4 Experiments on the Training Data

Table 1 displays the results on training data for the
system settings as they were for the final test run. We
conducted further analysis for the alignheuristic
system and that is reported in the following subsec-
tion. We can see that while the alignheuristic
is better on the MSRpar and SMT-eur datasets, the
wordsim outperforms it on the MSRvid dataset,
which contains shorter, simpler sentences. One rea-
son might be that the wordsim credits alignments
in one direction only and this works well when sen-
tences are of a similar length but can loose out on the
longer paraphrase and SMT data. This behaviour is

6Provided this is within the top 20 most similar words in the
thesaurus.
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MSRpar MSRvid SMT-eur
alignheuristic 0.6015 0.6994 0.5222
wordsim 0.4134 0.7658 0.4479
average 0.5337 0.7535 0.5061

Table 1: Results on training data

confirmed by the results on the test data reported be-
low in section 5, though we cannot rule out that other
factors play a part.

4.1 alignheuristic

We developed the system on the training data for the
purpose of finding bugs, and setting the weight in
equation 1. During development we found the opti-
mal weight for wt to be 0.4. 7 Unfortunately we did
not leave ourselves sufficient time to set the weights
after resolving the bugs. In table 1 we report the
results on the training data for the system that we
uploaded, however in table 2 we report more recent
results for the final system but with different values
of wt. From table 2 it seems that results may have
been improved if we had determined the final value
of wt after debugging our system fully, however this
depends on the type of data as 0.4 was optimal for
the datasets with more complex sentences (MSRpar
and SMT-eur).

In table 3, we report results for alignheuristic
with and without the distributional similarity
thesaurus (tmtch) and the dependency relations
(rmtch). In table 4 we show the total number of to-
ken alignments made by the different matching pro-
cesses on the training data. We see, from table 4
that the MSRvid data relies on the thesaurus and de-
pendency relations to a far greater extent than the
other datasets, presumably because of the shorter
sentences where many have a few contrasting words
in similar syntactic relations, for example s1 Some-
one is drawing. s2 Someone is dancing. 8 We see
from table 3 that the use of these matching processes
is less accurate for MSRvid and that while tmtch
improves performance, rmtch seems to degrade per-
formance. From table 2 it would seem that on this
type of data we would get the best results by reduc-

7We have not yet attempted setting the weight on alignment
by relation and alignment by distributional similarity separately.

8Note that the alignheuristic algorithm is symmetrical
with respect to s1 and s2 so it does not matter which is which.

wt MSRpar MSRvid SMT-eur
0.5 0.5998 0.6518 0.5290
0.4 0.6015 0.6994 0.5222
0.3 0.6020 0.7352 0.5146
0.2 0.6016 0.7577 0.5059
0.1 0.6003 0.7673 0.4964
0 0.5981 0.7661 0.4863

Table 2: Results for the alignheuristic algorithm on
the training data: varying wt

MSR MSR SMT
par vid -eur

-tmtch+rmtch 0.6008 0.7245 0.5129
+tmtch-rmtch 0.5989 0.7699 0.4959
-tmtch-rmtch 0.5981 0.7661 0.4863
+tmtch+rmtch 0.6015 0.6994 0.5222

Table 3: Results for the alignheuristic algorithm on
the training data: with and without tmtch and rmtch

ing wt to a minimum, and perhaps it would make
sense to drop rmtch. Meanwhile, on the longer more
complex MSRpar and SMT-eur data, the less precise
rmtch and tmtch are used less frequently (relative to
the wmtch) but can be seen from table 3 to improve
performance on both training datasets. Moreover, as
we mention above, from table 2 the parameter set-
ting of 0.4 used for our final test run was optimal for
these datasets.

MSRpar MSRvid SMT-eur
wmtch 10960 2349 12155
tmtch 378 1221 964
rmtch 1008 965 1755

Table 4: Number of token alignments for the different
matching processes

561



run ALL MSRpar MSRvid SMT-eur On-WN SMT-news
alignheuristic .5253 (60) .5735 (24) .7123 (53) .4781 (25) .6984 (7) .4177 (38)
average .5490 (58) .5020 (48) .7645 (41) .4875 (16) .6677(14) .4324 (31)
wordsim .5130 (61) .3765 (75) .7761 (34) .4161 (58) .5728 (59) .3964 (48)

Table 5: Official results: Rank (out of 89) is shown in brackets

run ALL MSRpar MSRvid SMT-eur On-WN SMT-news average ρ
alignheuristic 0.5216 0.5539 0.7125 0.5404 0.6928 0.3655 0.5645
average 0.5087 0.4818 0.7653 0.5415 0.6302 0.3835 0.5518
wordsim 0.4279 0.3608 0.7799 0.4487 0.4976 0.3388 0.4756

Table 7: Spearman’s ρ for the 5 datasets, ’all’ and the average coefficient across the datasets

run mean Allnrm
alignheuristic 0.6030 (21) 0.7962 (42)
average 0.5943 (26) 0.8047 (35)
wordsim 0.5287 (55) 0.7895 (49)

Table 6: Official results: Further metrics suggested in dis-
cussion. Rank (out of 89) is shown in brackets

5 Results

Table 5 provides the official results for our submitted
systems, along with the rank on each dataset. The re-
sults in the ’all’ column which combine all datasets
together are at odds with our intuitions. Our sys-
tems were ranked higher in every individual dataset
compared to the ’all’ ranking, with the exception of
wordsim and the MSRpar dataset. This ’all’ met-
ric is anticipated to impact systems that have dif-
ferent settings for different types of data however
we did not train our systems to run differently on
different data. We used exactly the same parame-
ter settings for each system on every dataset. We
believe Pearson’s measure has a significant impact
on results because it is a parametric measure and
as such the shape of the distribution (the distribu-
tion of scores) is assumed to be normal. We present
the results in table 6 from new metrics proposed by
participants during the post-results discussion: All-
nrm (normalised) and mean (this score is weighted
by the number of sentence pairs in each dataset). 9

The Allnrm score, proposed by a participant during
the discussion phase to try and combat issues with

9Post-results discussion is archived at http://groups.
google.com/group/sts-semeval/topics

the ’all’ score, also does not accord with our intu-
ition given the ranks of our systems on the individ-
ual datasets. The mean score, proposed by another
participant, however does reflect performance on the
individual datasets. Our average system is ranked
between alignheuristic and wordsim which is
in line with our expectations given results on the
training data and individual datasets.

As mentioned above, an issue with the use of
Pearson’s correlation coefficient is that it is para-
metric and assumes that the scores are normally dis-
tributed. We calculated Spearman’s ρ which is the
non-parametric equivalent of Pearson’s and uses the
ranks of the scores, rather than the actual scores. 10

The results are presented in table 7. We cannot cal-
culate the results for other systems, and therefore the
ranks for our system, since we do not have the other
system’s outputs but we do see that the relative per-
formance of our system on ’all’ is more in line with
our expectations: average, which simply uses the
average of the other two systems for each item, is
usually ranked between the other two systems, de-
pending on the dataset. Spearman’s ’all’ gives a sim-
ilar ranking of our three systems as the mean score.
We also show average ρ. This is a macro average
of the Spearman’s value for the 5 datasets without
weighting by the number of sentence pairs. 11

10Note that Spearman’s ρ is often a little lower than Pear-
son’s (Mitchell and Lapata, 2008)

11We do recognise the difficulty in determining metrics on a
new pilot study. The task organisers are making every effort to
make it clear that this enterprise is a pilot, not a competition and
that they welcome feedback.
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6 Conclusions

The systems were developed in less than a week
including the time with the test data. There are
many trivial fixes that may improve the basic algo-
rithm, such as decapitalising proper nouns. There
are many things we would like to try, such as val-
idating the dependency matching process with the
thesaurus matching. We would like to match larger
units rather than tokens, with preferences towards
the longer matching blocks. In parallel to the devel-
opment of alignheuristic, we developed a sys-
tem which measures the similarity between a node
in the dependency tree of s1 and a node in the de-
pendency tree of s2 as the sum of the lexical sim-
ilarity of the lemmas at the nodes and the simi-
larity of its children nodes. We did not submit a
run for the system as it did not perform as well as
alignheuristic, probably because the score fo-
cused on structure too much. We hope to spend time
developing this system in future.

Ultimately, we envisage a system that:

• can have non 1:1 mappings between tokens, i.e.
a phrase may be paraphrased as a word for ex-
ample blow up may be paraphrased as explode

• can map between sequences of non-contiguous
words for example the words in the phrase blow
up may be separated but mapped to the word
explode as in the bomb exploded ↔ They blew
it up

• has categories (such as equivalence, entailment,
negation, omission . . . ) associated with each
mapping. Speculation, modality and sentiment
should be indicated on any relevant chunk so
that differences can be detected between candi-
date and referent

• scores the candidate using a function of the
scores of the mapped units (as in the systems
described above) but alters the score to reflect
the category as well as the source of the map-
ping, for example entailment without equiva-
lence should reduce the similarity score, in con-
trast to equivalence, and negation should re-
duce this still further

Crucially we would welcome a task where anno-
tators would also provide a score on sub chunks of

the sentences (or arbitrary blocks of text) that align
along with a category for the mapping (equivalence,
entailment, negation etc..). This would allow us to
look under the hood at the text similarity task and de-
termine the reason behind the similarity judgments.
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Rychlý, P. (2008). A lexicographer-friendly associ-
ation score. In Proceedings of 2nd Workshop on
Recent Advances in Slavonic Natural Languages
Processing, RASLAN 2008, Brno.

Schmid, H. (1994). Probabilistic Part-of-Speech
Tagging Using Decision Trees. In Proceedings of
the International Conference on New Methods in
Language Processing, pages 44–49, Manchester,
UK.

Turney, P. D. (2002). Mining the web for synonyms:
Pmi-ir versus lsa on toefl. CoRR, cs.LG/0212033.

564



First Joint Conference on Lexical and Computational Semantics (*SEM), pages 565–570,
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Abstract

We estimate the semantic similarity between
two sentences using regression models with
features: 1) n-gram hit rates (lexical matches)
between sentences, 2) lexical semantic sim-
ilarity between non-matching words, and 3)
sentence length. Lexical semantic similarity is
computed via co-occurrence counts on a cor-
pus harvested from the web using a modified
mutual information metric. State-of-the-art re-
sults are obtained for semantic similarity com-
putation at the word level, however, the fusion
of this information at the sentence level pro-
vides only moderate improvement on Task 6
of SemEval’12. Despite the simple features
used, regression models provide good perfor-
mance, especially for shorter sentences, reach-
ing correlation of 0.62 on the SemEval test set.

1 Introduction

Recently, there has been significant research activ-
ity on the area of semantic similarity estimation
motivated both by abundance of relevant web data
and linguistic resources for this task. Algorithms
for computing semantic textual similarity (STS) are
relevant for a variety of applications, including in-
formation extraction (Szpektor and Dagan, 2008),
question answering (Harabagiu and Hickl, 2006)
and machine translation (Mirkin et al., 2009). Word-
or term-level STS (a special case of sentence level
STS) has also been successfully applied to the prob-
lem of grammar induction (Meng and Siu, 2002)
and affective text categorization (Malandrakis et al.,
2011). In this work, we built on previous research

on word-level semantic similarity estimation to de-
sign and implement a system for sentence-level STS
for Task6 of the SemEval’12 campaign.

Semantic similarity between words can be re-
garded as the graded semantic equivalence at the
lexeme level and is tightly related with the tasks of
word sense discovery and disambiguation (Agirre
and Edmonds, 2007). Metrics of word semantic sim-
ilarity can be divided into: (i) knowledge-based met-
rics (Miller, 1990; Budanitsky and Hirst, 2006) and
(ii) corpus-based metrics (Baroni and Lenci, 2010;
Iosif and Potamianos, 2010).

When more complex structures, such as phrases
and sentences, are considered, it is much harder
to estimate semantic equivalence due to the non-
compositional nature of sentence-level semantics
and the exponential explosion of possible interpre-
tations. STS is closely related to the problems of
paraphrasing, which is bidirectional and based on
semantic equivalence (Madnani and Dorr, 2010) and
textual entailment, which is directional and based
on relations between semantics (Dagan et al., 2006).
Related methods incorporate measurements of sim-
ilarity at various levels: lexical (Malakasiotis and
Androutsopoulos, 2007), syntactic (Malakasiotis,
2009; Zanzotto et al., 2009), and semantic (Rinaldi
et al., 2003; Bos and Markert, 2005). Measures
from machine translation evaluation are often used
to evaluate lexical level approaches (Finch et al.,
2005; Perez and Alfonseca, 2005), including BLEU
(Papineni et al., 2002), a metric based on word n-
gram hit rates.

Motivated by BLEU, we use n-gram hit rates and
word-level semantic similarity scores as features in
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a linear regression model to estimate sentence level
semantic similarity. We also propose sigmoid scal-
ing of similarity scores and sentence-length depen-
dent modeling. The models are evaluated on the Se-
mEval’12 sentence similarity task.

2 Semantic similarity between words

In this section, two different metrics of word simi-
larity are presented. The first is a language-agnostic,
corpus-based metric requiring no knowledge re-
sources, while the second metric relies on WordNet.

Corpus-based metric: Given a corpus, the se-
mantic similarity between two words,wi and wj,
is estimated as their pointwise mutual information
(Church and Hanks, 1990):I(i, j) = log p̂(i,j)

p̂(i)p̂(j) ,
where p̂(i) and p̂(j) are the occurrence probabili-
ties ofwi andwj, respectively, while the probability
of their co-occurrence is denoted byp̂(i, j). These
probabilities are computed according to maximum
likelihood estimation. The assumption of this met-
ric is that co-occurrence implies semantic similarity.

During the past decade the web has been used for
estimating the required probabilities (Turney, 2001;
Bollegala et al., 2007), by querying web search en-
gines and retrieving the number of hits required
to estimate the frequency of individual words and
their co-occurrence. However, these approaches
have failed to obtain state-of-the-art results (Bolle-
gala et al., 2007), unless “expensive” conjunctive
AND queries are used for harvesting a corpus and
then using this corpus to estimate similarity scores
(Iosif and Potamianos, 2010).

Recently, a scalable approach1 for harvesting a
corpus has been proposed where web snippets are
downloaded using individual queries for each word
(Iosif and Potamianos, 2012b). Semantic similar-
ity can then be estimated using theI(i, j) metric
andwithin-snippet word co-occurrence frequencies.
Under the maximum sense similarity assumption
(Resnik, 1995), it is relatively easy to show that a
(more) lexically-balanced corpus2 (as the one cre-

1The scalability of this approach has been demonstrated in
(Iosif and Potamianos, 2012b) for a 10K vocabulary, here we
extend it to the full 60K WordNet vocabulary.

2According to this assumption the semantic similarity of two
words can be estimated as the minimum pairwise similarity of
their senses. The gist of the argument is that although words
often co-occur with their closest senses, word occurrencescor-

ated above) can significantly reduce the semantic
similarity estimation error of the mutual information
metricI(i, j). This is also experimentally verified in
(Iosif and Potamianos, 2012c).

In addition, one can modify the mutual informa-
tion metric to further reduce estimation error (for
the theoretical foundation behind this see (Iosif and
Potamianos, 2012a)). Specifically, one may intro-
duce exponential weightsα in order to reduce the
contribution ofp(i) andp(j) in the similarity met-
ric. The modified metricIa(i, j), is defined as:

Ia(i, j)=
1

2

[

log
p̂(i, j)

p̂α(i)p̂(j)
+ log

p̂(i, j)

p̂(i)p̂α(j)

]

. (1)

The weightα was estimated on the corpus of (Iosif
and Potamianos, 2012b) in order to maximize word
sense coverage in the semantic neighborhood of
each word. TheIa(i, j) metric using the estimated
value ofα = 0.8 was shown to significantly out-
performI(i, j) and to achieve state-of-the-art results
on standard semantic similarity datasets (Rubenstein
and Goodenough, 1965; Miller and Charles, 1998;
Finkelstein et al., 2002). For more details see (Iosif
and Potamianos, 2012a).

WordNet-based metrics: For comparison pur-
poses, we evaluated various similarity metrics on
the task of word similarity computation on three
standard datasets (same as above). The best re-
sults were obtained by the Vector metric (Patward-
han and Pedersen, 2006), which exploits the lexical
information that is included in the WordNet glosses.
This metric was incorporated to our proposed ap-
proach. All metrics were computed using the Word-
Net::Similarity module (Pedersen, 2005).

3 N-gram Regression Models

Inspired by BLEU (Papineni et al., 2002), we pro-
pose a simple regression model that combines evi-
dence from two sources: number of n-gram matches
and degree of similarity between non-matching
words between two sentences. In order to incorpo-
rate a word semantic similarity metric into BLEU,
we apply the following two-pass process: first lexi-
cal hits are identified and counted, and then the se-
mantic similarity between n-grams not matched dur-

respond to all senses, i.e., the denominator ofI(i, j) is overes-
timated causing large underestimation error for similarities be-
tween polysemous words.
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ing the first pass is estimated. All word similar-
ity metrics used are peak-to-peak normalized in the
[0,1] range, so they serve as a “degree-of-match”.
The semantic similarity scores from word pairs are
summed together (just like n-gram hits) to obtain
a BLEU-like semantic similarity score. The main
problem here is one of alignment, since we need
to compare each non-matched n-gram from the hy-
pothesis with an n-gram from the reference. We
use a simple approach: we iterate on the hypoth-
esis n-grams, left-to-right, and compare each with
the most similarnon-matched n-gram in the refer-
ence. This modification to BLEU is only applied
to 1-grams, since semantic similarity scores for bi-
grams (or higher) were not available.

Thus, our list of features are the hit rates obtained
by BLEU (for 1-, 2-, 3-, 4-grams) and the total se-
mantic similarity (SS) score for 1-grams3. These
features are then combined using a multiple linear
regression model:

D̂L = a0 +
4

∑

n=1

an Bn + a5 M1, (2)

where D̂L is the estimated similarity,Bn is the
BLEU hit rate forn-grams,M1 is the total semantic
similarity score (SS) for non-matching 1-grams and
an are the trainable parameters of the model.

Motivated by evidence of cognitive scaling of
semantic similarity scores (Iosif and Potamianos,
2010), we propose the use of a sigmoid function to
scaleDL sentence similarities. We have also ob-
served in the SemEval data that the way humans rate
sentence similarity is very much dependent on sen-
tence length4. To capture the effect of length and
cognitive scaling we propose next two modifications
to the linear regression model. The sigmoid fusion
scheme is described by the following equation:

D̂S = a6D̂L + a7D̂L

[

1 + exp

(

a8 − l

a9

)]

−1

, (3)

where we assume that sentence lengthl (average

3Note that the features are computed twice on each sentence
in a forward and backward fashion (where the word order is
reversed), and then averaged between the two runs.

4We speculate that shorter sentences are mostly compared at
the lexical level using the short-term memory language buffers,
while longer sentences tend to be compared at a higher cogni-
tive level, where the non-compositional nature of sentencese-
mantics dominate.

length for each sentence pair, in words) acts as a
scaling factor for the linearly estimated similarity.

The hierarchical fusion scheme is actually a col-
lection of (overlapping) linear regression models,
each matching a range of sentence lengths. For ex-
ample, the first modelDL1 is trained with sentences
with length up tol1, i.e., l ≤ l1, the second model
DL2 up to lengthl2 etc. During testing, sentences
with length l ∈ [1, l1] are decoded withDL1, sen-
tences with lengthl ∈ (l1, l2] with modelDL2 etc.
Each of these partial models is a linear fusion model
as shown in (2). In this work, we use four models
with l1 = 10, l2 = 20, l3 = 30, l4 =∞.

4 Experimental Procedure and Results

Initially all sentences are pre-processed by the
CoreNLP (Finkel et al., 2005; Toutanova et al.,
2003) suite of tools, a process that includes named
entity recognition, normalization, part of speech tag-
ging, lemmatization and stemming. The exact type
of pre-processing used depends on the metric used.
For the plain lexical BLEU, we use lemmatization,
stemming (of lemmas) and remove all non-content
words, keeping only nouns, adjectives, verbs and ad-
verbs. For computing semantic similarity scores, we
don’t use stemming and keep only noun words, since
we only have similarities between non-noun words.
For the computation of semantic similarity we have
created a dictionary containing all the single-word
nouns included in WordNet (approx.60K) and then
downloaded snippets of the500 top-ranked docu-
ments for each word by formulating single-word
queries and submitting them to the Yahoo! search
engine.

Next, results are reported in terms of correlation
between the automatically computed scores and the
ground truth, for each of the corpora in Task 6 of
SemEval’12 (paraphrase, video, europarl, WordNet,
news). Overall correlation (“Ovrl”) computed on the
join of the dataset, as well as, average (“Mean”) cor-
relation across all task is also reported. Training is
performed on a subset of the first three corpora and
testing on all five corpora.
Baseline BLEU: The first set of results in Ta-
ble 1, shows the correlation performance of the
plain BLEU hit rates (per training data set and over-
all/average). The best performing hit rate is the one
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calculated using unigrams.

Table 1: Correlation performance of BLEU hit rates.
par vid euro Mean Ovrl

BLEU 1-grams 0.62 0.67 0.49 0.59 0.57
BLEU 2-grams 0.40 0.39 0.37 0.39 0.34
BLEU 3-grams 0.32 0.36 0.30 0.33 0.33
BLEU 4-grams 0.26 0.25 0.24 0.25 0.28

Semantic Similarity BLEU (Purple): The perfor-
mance of the modified version of BLEU that in-
corporates various word-level similarity metrics is
shown in Table 2. Here the BLEU hits (exact
matches) are summed together with the normalized
similarity scores (approximate matches) to obtain a
singleB1+M1 (Purple) score5. As we can see, there
are definite benefits to using the modified version,
particularly with regards to mean correlation. Over-
all the best performers, when taking into account
both mean and overall correlation, are the WordNet-
based andIa metrics, with theIa metric winning by
a slight margin, earning a place in the final models.

Table 2: Correlation performance of 1-gram BLEU
scores with semantic similarity metrics (nouns-only).

par vid euro Mean Ovrl
BLEU 0.54 0.60 0.39 0.51 0.58
SS-BLEU WordNet 0.56 0.64 0.41 0.54 0.58
SS-BLEUI(i, j) 0.56 0.63 0.39 0.53 0.59
SS-BLEUIa(i, j) 0.57 0.64 0.40 0.54 0.58

Regression models (DeepPurple): Next, the per-
formance of the various regression models (fusion
schemes) is investigated. Each regression model is
evaluated by performing 10-fold cross-validation on
the SemEval training set. Correlation performance
is shown in Table 3 both with and without seman-
tic similarity. The baseline in this case is the Pur-
ple metric (corresponding to no fusion). Clearly
the use of regression models significantly improves
performance compared to the 1-gram BLEU and
Purple baselines for almost all datasets, and espe-
cially for the combined dataset (overall). Among
the fusion schemes, the hierarchical models perform
the best. Following fusion, the performance gain
from incorporating semantic similarity (SS) is much
smaller. Finally, in Table 4, correlation performance
of our submissions on the official SemEval test set is

5It should be stressed that the plain BLEU unigram scores
shown in this table are not comparable to those in Table 1, since
here scores are calculated over only the nouns of each sentence.

Table 3: Correlation performance of regression model
with (SS) and without semantic similarities on the train-
ing set (using 10-fold cross-validation).

par vid euro Mean Ovrl

None (SS-BLEUIa) 0.57 0.64 0.40 0.54 0.58

Linear (D̂L, a5=0) 0.62 0.72 0.47 0.60 0.66
Sigmoid (D̂S, a5=0) 0.64 0.73 0.42 0.60 0.73
Hierarchical 0.64 0.74 0.48 0.62 0.73

SS-Linear (̂DL) 0.64 0.73 0.47 0.61 0.66
SS-Sigmoid (̂DS) 0.65 0.74 0.42 0.60 0.74
SS-Hierarchical 0.65 0.74 0.48 0.62 0.73

shown. The overall correlation performance of the
Hierarchical model ranks somewhere in the middle
(43rd out of 89 systems), while the mean correla-
tion (weighted by number of samples per set) is no-
tably better: 23rd out of 89. Comparing the individ-
ual dataset results, our systems underperform for the
two datasets that originate from the machine transla-
tion (MT) literature (and contain longer sentences),
while we achieve good results for the rest (19th for
paraphrase, 37th for video and 29th for WN).

Table 4: Correlation performance on test set.
par vid euro WN news Mean Ovrl

None 0.50 0.71 0.44 0.49 0.24 0.51 0.49
Sigm. 0.60 0.76 0.26 0.60 0.34 0.56 0.55
Hier. 0.60 0.77 0.43 0.65 0.37 0.60 0.62

5 Conclusions

We have shown that: 1) a regression model that
combines counts of exact and approximate n-gram
matches provides good performance for sentence
similarity computation (especially for short and
medium length sentences), 2) the non-linear scal-
ing of hit-rates with respect to sentence length im-
proves performance, 3) incorporating word semantic
similarity scores (soft-match) into the model can im-
prove performance, and 4) web snippet corpus cre-
ation and the modified mutual information metric
is a language agnostic approach that can (at least)
match semantic similarity performance of the best
resource-based metrics for this task. Future work,
should involve the extension of this approach to
model larger lexical chunks, the incorporation of
compositional models of meaning, and in general
the phrase-level modeling of semantic similarity, in
order to compete with MT-based systems trained on
massive external parallel corpora.
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Abstract 

This article presents the experiments car-

ried out at Jadavpur University as part of 

the participation in Semantic Textual Si-

milarity (STS) of Task 6 @ Semantic 

Evaluation Exercises (SemEval-2012). 

Task-6 of SemEval- 2012 focused on se-

mantic relations of text pair. Task-6 pro-

vides five different text pair files to 

compare different semantic relations and 

judge these relations through a similarity 

and confidence score. Similarity score is 

one kind of multi way classification in the 

form of grade between 0 to 5. We have 

submitted one run for the STS task. Our 

system has two basic modules - one deals 

with lexical relations and another deals 

with dependency based syntactic relations 

of the text pair. Similarity score given to a 

pair is the average of the scores of the 

above-mentioned modules. The scores 

from each module are identified using rule 

based techniques. The Pearson Correlation 

of our system in the task is 0.3880. 

1 Introduction 

Task-6
1
 [1] of SemEval-2012 deals with seman-

tic similarity of text pairs. The task is to find the 

similarity between the sentences in the text pair 

(s1 and s2) and return a similarity score and an 

optional confidence score. There are five datasets 

                                                           
1 http://www.cs.york.ac.uk/semeval-2012/task6/ 

in the test data and with tab separated text pairs. 
The datasets are as follows: 

 

 MSR-Paraphrase, Microsoft Research Pa-

raphrase Corpus (750 pairs of sentences.) 

 MSR-Video, Microsoft Research Video De-

scription Corpus (750 pairs of sentences.) 

 SMTeuroparl: WMT2008 development data-

set (Europarl section) (459 pairs of sen-

tences.)  

 SMTnews: news conversation sentence pairs 

from WMT.(399 pairs of sentences.) 

 OnWN: pairs of sentences where the first 

comes from Ontonotes and the second from a 

WordNet definition. (750 pairs of sentences.) 

 

Similarity score ranges from 0 to 5 and confi-

dence score from 0 to 100. An s1-s2 pair gets a 

similarity score of 5 if they are completely 

equivalent. Similarity score 4 is allocated for 

mostly equivalent s1-s2 pair. Similarly, score 3 is 

allocated for roughly equivalent pair. Score 2, 1 

and 0 are allocated for non-equivalent details 

sharing, non-equivalent topic sharing and totally 

different pairs respectively. Major challenge of 

this task is to find the similarity score based simi-

larity for the text pair. Generally text entailment 

tasks refer whether sentence pairs are entailed or 

not: binary classification (YES, NO) [2] or multi-

classification (Forward, Backward, bidirectional 

or no entailment) [3][4]. But multi grade classifi-

cation of semantic similarity assigns a score to 

the sentence pair. Our system considers lexical 

and dependency based syntactic measures for 

semantic similarity. Similarity scores are the ba-

sic average of these module scores. A subsequent 
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section describes the system architecture. Section 

2 describes JU_NLP_CSE system for STS task. 

Section 3 describes evaluation and experimental 

results. Conclusions are drawn in Section 4.  

2 System Architecture  

The system of Semantic textual similarity task 

has two main modules: one is lexical module and 

another one is dependency parsing based syntac-

tic module. Both these module have some pre-

processing tasks such as stop word removal, co-

reference resolution and dependency parsing etc. 

Figure 1 displays the architecture of the system.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: System Architecture 

2.1 Pre-processing Module 

The system separates the s1-s2 sentence pairs 

contained in the different STS task datasets. 

These separated pairs are then passed through the 

following sub modules: 

i. Stop word Removal: Stop words are removed 

from s1 - s2 sentence pairs. 

ii. Co-reference: Co-reference resolutions are 

carried out on the datasets before passing through 

the TE module. The objective is to increase the 

score of the entailment percentage. A word or 

phrase in the sentence is used to refer to an entity 

introduced earlier or later in the discourse and 

both having same things then they have the same 

referent or co reference. When the reader must 

look back to the previous context, reference is 

called "Anaphoric Reference". When the reader 

must look forward, it is termed "Cataphoric Ref-

erence". To address this problem we used a tool 

called JavaRAP
2 

(A java based implementation 

of Anaphora Procedure (RAP) - an algorithm by 

Lappin and Leass (1994)). 

iii. Dependency Parsing: Separated s1 – s2 sen-

tences are parsed using Stanford dependency 

parser
3
 to produce the dependency relations in 

the texts. These dependency relations are used 

for WordNet based syntactic matching.     

2.2 Lexical Matching Module 

In this module the TE system calculates different 

matching scores such as N – Gram match, Text 

Similarity, Chunk match, Named Entity match 

and POS match.  

 

i. N-Gram Match module: The N-Gram match 

basically measures the percentage match of the 

unigram, bigram and trigram of hypothesis 

present in the corresponding text. These scores 

are simply combined to get an overall N – Gram 

matching score for a particular pair.  

 

ii. Chunk Match module: In this sub module 

our system evaluates the key NP-chunks of both 

text (s1) and hypothesis (s2) using NP Chunker 

v1.1
3
 (The University of Sheffield). The hypo-

thesis NP chunks are matched in the text NP 

chunks. System calculates an overall value for 

the chunk matching, i.e., number of text NP 

chunks that match the hypothesis NP chunks. If 

the chunks are not similar in their surface form 

then our system goes for wordnet synonyms 

matching for the words and if they match in 

wordnet synsets information, it will be encoun-

tered as a similar chunk. WordNet [5] is one of 

most important resource for lexical analysis. The 

WordNet 2.0 has been used for WordNet based 

chunk matching. The API for WordNet Search-

ing (JAWS)
4
 is an API that provides Java appli-

cations with the ability to retrieve data from the 

WordNet synsets. 

iii. Text Similarity Module: System takes into 

consideration several text similarities calculated 
                                                           
2 http://aye.comp.nus.edu.sg/~qiu/NLPTools/JavaRAP.html 
3 http://www.dcs.shef.ac.uk/~mark/phd/software/ 
4 http://lyle.smu.edu/~tspell/jaws/index.html 
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over the s1-s2 pair. These text similarity values 

are summed up to produce a total score for a par-

ticular s1-s2 pair. Major Text similarity measures 

that our system considers are: 
 

➢ Cosine Similarity 

➢ Lavenstine Distance 

➢ Euclidean Distance 

➢ MongeElkan Distance 

➢ NeedlemanWunch Distance 

➢ SmithWaterman Distance 

➢ Block Distance 

➢ Jaro Similarity 

➢ MatchingCoefficient Distance 

➢ Dice Similarity 

➢ OverlapCoefficient 

➢ QGrams Distance 

 

iv. Named Entity Matching: It is based on the 

detection and matching of Named Entities in the 

s1-s2 pair. Stanford Named Entity Recognizer
5
 is 

used to tag the named entities in both s1 and s2. 

System simply maps the number of hypothesis 

(s2) NEs present in the text (s1). A score is allo-

cated for the matching. 

 

NE_match = (Number of common NEs in Text 

and Hypothesis) / (Number of NE in Hypothesis). 

 

v. Part –of – Speech (POS) Matching: This 

module basically deals with matching the com-

mon POS tags between s1 and s2 sentences. 

Stanford POS tagger
6
 is used to tag the part of 

speech in both s1 and s2. System matches the 

verb and noun POS words in the hypothesis that 

match in the text. A score is allocated based on 

the number of POS matching. 

 

POS_match = (Number of common verb and 

noun POS in Text and Hypothesis) / (Total num-

ber of verb and noun POS in hypothesis). 

 

System calculates the sum of the entire sub mod-

ule (modules described in section 2.2) scores and 

forms a single percentage score for the lexical 

matching. This score is then compared with some 

predetermined threshold value to assign a final 

lexical score for each pair. If percentage value is 

                                                           
5 http://nlp.stanford.edu/software/CRF-NER.shtml 
6 http://nlp.stanford.edu/software/tagger.shtml 

above 0.80 then lexical score 5 is allocated. If the 

value is between 0.60 to 0.80 then lexical score 4 

is allocated. Similarly, lexical score 3 is allocated 

for percentage score of 0.40 to 0.60 and so on. 

One lexical score is finally generated for each 

text pair.     

2.3. Syntactic Matching Module: 

TE system considers the preprocessed dependen-

cy parsed text pairs (s1 – s2) and goes for word 

net based matching technique. After parsing the 

sentences, they have some attributes like subject, 

object, verb, auxiliaries and prepositions tagged 

by the dependency parser tag set. System uses 

these attributes for the matching procedure and 

depending on the nature of matching a score is 

allocated to the s1-s2 pair. Matching procedure is 

basically done through comparison of the follow-

ing features that are present in both the text and 

the hypothesis.    

• Subject – Subject comparison. 

• Verb – Verb Comparison. 

• Subject – Verbs Comparison. 

• Object – Object Comparison. 

• Cross Subject – Object Comparison. 

• Object – Verbs Comparison. 

• Prepositional phrase comparison. 

 

Each of these comparisons produces one match-

ing score for the s1-s2 pair that are finally com-

bined with previously generated lexical score to 

generate the final similarity score by taking sim-

ple average of lexical and syntactic matching 

scores. The basic heuristics are as follows: 

(i) If the feature of the text (s1) directly matches 

the same feature of the hypothesis (s2), matching 

score 5 is allocated for the text pair. 

(ii) If the feature of either text (s1) or hypothesis 

(s2) matches with the wordnet synsets of the cor-

responding text (s1) or hypothesis (s2), matching 

score 4 is allocated.     

(iii) If wordnet synsets of the feature of the text 

(s1) match with one of the synsets of the feature 

of the hypothesis (s2), matching score 3 is given 

to the pair. 

(iv) If wordnet synsets of the feature of either 

text (s1) or hypothesis (s2) match with the syn-

sets of the corresponding text (s1) or hypothesis 

(s2) then matching score 2 is allocated for the 

pair. 
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(v) Similarly if in both the cases match occurs in 

the second level of wordnet synsets, matching 

score 1is allocated. 

(vi) Matching score 0 is allocated for the pair 

having no match in their features. 

After execution of the module, system generates 

some scores. Lexical module generates one lexi-

cal score and wordnet based syntactic matching 

module generates seven matching scores. At the 

final stage of the system all these scores are 

combined and the mean is evaluated on this 

combined score. This mean gives the similarity 

score for a particular s1-s2 pair of different data-

sets of STS task. Optional confidence score is 

also allocated which is basically the similarity 

score multiplied by 10, i.e., if the similarity score 

is 5.22, the confidence score will be 52.2.     

3. Experiments on Dataset and Result  

We have submitted one run in SemEval-2012 

Task 6. The results for Run on STS Test set are 

shown in Table 1. 

 
task6-JU_CSE_NLP-

Semantic_Syntactic_Approach 

Correlations 

ALL    0.3880 

ALLnrm 0.6706 

Mean 0.4111 

MSRpar  0.3427 

MSRvid 0.3549 

SMT-eur 0.4271 

On-WN 0.5298 

SMT-news 0.4034 

Table 1: Results of Test Set 

ALL: Pearson correlation with the gold standard 

for the five datasets and the corresponding rank 

82. 

ALLnrm: Pearson correlation after the system 

outputs for each dataset are fitted to the gold 

standard using least squares and the correspond-

ing rank 86. 

Mean: Weighted mean across the 5 datasets, 

where the weight depends on the number of pairs 

in the dataset and the corresponding rank 76. 

The subsequent rows show the pearson correla-

tion scores for each of the individual datasets. 

 

4. Conclusion 

Our JU_CSE_NLP system for the STS task 

mainly focus on lexical and syntactic approaches. 

There are some limitations in the lexical match-

ing module that shows a correlation that is not 

higher in the range. In case of simple sentences 

lexical matching is helpful for entailment but for 

complex and compound sentences the lexical 

matching module loses its accuracy. Semantic 

graph matching or conceptual graph implementa-

tion can improve the system. That is not consi-

dered in our present work. Machine learning 

tools can be used to learn the system based on the 

features. It can also improve the correlation. In 

future work our system will include semantic 

graph matching and a machine-learning module.  
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Abstract

This paper briefly reports our submissions to
the Semantic Textual Similarity (STS) task
in the SemEval 2012 (Task 6). We first use
knowledge-based methods to compute word
semantic similarity as well as Word Sense Dis-
ambiguation (WSD). We also consider word
order similarity from the structure of the sen-
tence. Finally we sum up several aspects of
similarity with different coefficients and get
the sentence similarity score.

1 Introduction

The task of semantic textual similarity (STS) is to
measure the degree of semantic equivalence between
two sentences. It plays an increasingly important
role in several text-related research and applications,
such as text mining, Web page retrieval, automatic
question-answering, text summarization, and ma-
chine translation. The goal of the Semeval 2012 STS
task (task 6) is to build a unified framework for the
evaluation of semantic textual similarity modules for
different systems and to characterize their impact on
NLP applications.

Generally, there are two ways to measure sim-
ilarity of two sentences, i.e, corpus-based meth-
ods and knowledge-based methods. The corpus-
based method typically computes sentence similar-
ity based on the frequency of word occurrence or the
co-occurrence between collocated words. For ex-
ample, in (Islam and Inkpen, 2008) they proposed a
corpus-based sentence similarity measure as a func-
tion of string similarity, word similarity and com-
mon word order similarity (CWO). The knowledge-

based method computes sentence similarity based
on the semantic information collected from knowl-
edge bases. With the aid of a number of success-
ful computational linguistic projects, many seman-
tic knowledge bases are readily available, for ex-
ample, WordNet, Spatial Date Transfer Standard,
Gene Ontology, etc. Among them, the most widely
used one is WordNet, which is organized by mean-
ings and developed at Princeton University. Sev-
eral methods computed word similarity by using
WordNet, such as the Lesk method in (Banerjee and
Pedersen, 2003), the lch method in (Leacock and
Chodorow, 1998)and the wup method in (Wu and
Palmer, 1994). Generally, although the knowledge-
based methods heavily depend on the knowledge
bases, they performed much better than the corpus-
based methods in most cases. Therefore, in our STS
system, we use a knowledge-based method to com-
pute word similarity.

The rest of this paper is organized as follows. Sec-
tion 2 describes our system. Section 3 presents the
results of our system.

2 System Description

Usually, a sentence is composed of some nouns,
verbs, adjectives, adverbs and/or some stop words.
We found that these words carry a lot of informa-
tion, especially the nouns and verbs. Although the
adjectives and adverbs also make contribution to the
semantic meaning of the sentence, they are much
weaker than the nouns and verbs. So we consider
to measure the sentence semantic similarities from
three aspects. We define the following three types of
similarity from two compared sentences to measure
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the semantic similarity: (1) Noun Similarity to mea-
sure the similarity between the nouns from the two
compared sentences, (2) Verb Similarity to measure
the similarity between Verbs, (3) ADJ-ADV Simi-
larity to measure the similarity between the adjec-
tives and adverbs from each sentence. Besides the
semantic information similarity, we also found that
the structure of the sentences carry some informa-
tion which cannot be ignored. Therefore, we define
the last aspect of the sentence similarity as Word Or-
der Similarity. In the following we will introduce the
different components of our system.

2.1 POS

As a basic natural language processing technique,
part of speech tagging is to identify the part of
speech of individual words in the sentence. In or-
der to compute the three above semantic similari-
ties, we first identify the nouns, verbs, adjectives,
and adverbs in the sentence. Then we can calculate
the Noun Similarity, Verb Similarity and ADJ-ADV
Similarity from two sentences.

2.2 Semantic similarity between words

The word similarity measurement have important
impact on the performance of sentence similarity.
Currently, many lexical resources based approaches
perform comparatively well to compute semantic
word similarities. However, the exact resources they
are based are quite different. For example, some are
based on dictionary and/or thesaurus, and others are
based on WordNet.

WordNet is a machine-readable lexical database.
The words in Wordnet are classified into four cat-
egories, i.e., nouns, verbs, adjectives and adverbs.
WordNet groups these words into sets of syn-
onyms called synsets, provides short definitions, and
records the various semantic relations between these
synsets. The synsets are interlinked by means of
conceptual-semantic and lexical relations. Word-
Net also provides the most common relationships
include Hyponym/Hypernym (i.e., is-a relationships)
and Meronym/Holonym (i.e., part-of relationships).
Nouns and verbs are organized into hierarchies
based on the hyponymy/hypernym relation between
synsets while adjectives and adverbs are not.

In this paper, we adopt the wup method in (Wu
and Palmer, 1994) to estimate the semantic similar-

ity between two words, which estimates the seman-
tic similarity between two words based on the depth
of the two words in WordNet and the depth of their
least common subsumer (LCS), where LCS is de-
fined as the common ancestor deepest in the taxon-
omy.

For example, given two words, w1 and w2, the
semantic similarity s(w1,w2) is the function of their
depth in the taxonomy and the depth of their least
common subsumer. If d1 and d2 are the depth of
w1 and w2 in WordNet, and h is the depth of their
least common subsumer in WordNet, the semantic
similarity can be written as:

s(w1, w2) =
2.0 ∗ h

d1 + d2
(1)

2.3 Word Sense Disambiguation

Word Sense Disambiguation (WSD) is to identify
the actual meaning of a word according to the con-
text. In our word similarity method, we take the
nearest meaning of two words into consideration
rather than their actual meaning. More impor-
tantly, the nearest meaning does not always repre-
sent the actual meaning. In our system, we used
a WSD algorithm proposed by (Ted Pedersen et
al.,2005), which computes semantic relatedness of
word senses using extended gloss overlaps of their
dictionary definitions. We utilize this WSD algo-
rithm for each sentence to get the actual meaning of
each word before computing the word semantic sim-
ilarity.

2.4 Semantic Similarity

We adopt a similar way to compute the three types of
semantic similarities. Here we take Noun Similarity
as an example.

Suppose sentence s1 and s2 are the two sentences
to be compared, s1 has a nouns while s2 has b nouns.
Then we get a ∗ b noun pairs and use the word sim-
ilarity method mentioned in section 2.2 to compute
the Noun Similarity of each noun pair. After that,
for each noun, we choose its highest score in noun
pairs as its similarity score. Then we use the formula
below to compute the Noun Similarity.

SimNoun =
(
∑c

i=1 ni) ∗ (a + b)

2ab
(2)
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where c represents the number of noun words in
sequence a and sequence b, c = min(a, b); ni rep-
resents the highest matching similarity score of i-th
word in the shorter sequence with respect to one of
the words in the longer sequence; and

∑c
i=1 ni rep-

resents the sum of the highest matching similarity
score between the words in sequence a and sequence
b. Similarly, we can get SimV erb. Since there is no
Hyponym/Hypernym relation for adjectives and ad-
verbs in WordNet, we just compute ADJ-ADV Sim-
ilarity based on the frequency of overlap of simple
words.

2.5 Word Order Similarity
We believe that word order information also make
contributions to sentence similarity. In most cases,
the longer common sequence (LCS) the two sen-
tences have, the higher similarity score the sentences
get. For example the pair of sentences s1 and s2, we
remove all the punctuation from the sentences:

• s1: But other sources close to the sale said
Vivendi was keeping the door open to further
bids and hoped to see bidders interested in in-
dividual assets team up

• s2: But other sources close to the sale said
Vivendi was keeping the door open for further
bids in the next day or two

Since the length of the longest common sequence
is 14, we use the following formula to compute the
word order similarity.

SimWordOrder =
lengthofLCS

shorterlength
(3)

where the shorter length means the length of the
shorter sentence.

2.6 Overall Similarity
After we have the Noun Similarity, Verb Similar-
ity, ADJ-ADV Similarity and Word Order Similar-
ity, we calculate the Overall Similarity of two com-
pared sentences based on these four scores of simi-
larity. We combine them in the following way:

Simsent = aSimNoun + bSimV erb+

cSimADJ−ADV + dSimWordOrder

(4)

Where a, b, c and d are the coefficients which
denote the contribution of each aspect to the over-
all sentence similarity, For different data collections,
we empirically set different coefficients, for exam-
ple, for the MSR Paraphrase data, the four coeffi-
cients are set as 0.5, 0.3, 0.1, 0.1, because it is hard
to get the highest score 5 even when the two sen-
tences are almost the same meaning, We empirically
set a threshold, if the score exceeds the threshold we
set the score 5.

3 Experiment and Results on STS

Firstly, Stanford parser1 is used to parse each
sentence and to tag each word with a part of
speech(POS). Secondly, WordNet SenseRelate All-
Words2, a WSD tool from CPAN is used to disam-
biguate and to assign a sense for each word based on
the assigned POS.

We submitted three runs: run 1 with WSD, run 2
without WSD, run 3 removing stop words and with-
out WSD. The stoplist is available online3. Table 1
lists the performance of these three systems as well
as the baseline and the rank 1 results on STS task in
SemEval 2012.

We can see that run1 gets the best result, which
means WSD has improved the accuracy of sentence
similarity. Run3 gets better result than run2, which
proves that stop words do disturb the computation of
sentence similarity, removing them is a better choice
in our system.

4 Conclusion

In our work, we adopt a knowledge-based word sim-
ilarity method with WSD to measure the seman-
tic similarity between two sentences from four as-
pects: Noun Similarity, Verb Similarity, ADJ-ADV
Similarity and Word Order Similarity. The results
show that WSD improves the pearson coefficient at
some degree. However, our system did not get a
good rank. It indicates there still exists many prob-
lems such as wrong POS tag and wrong WSD which
might lead to wrong meaning of one word in a sen-
tence.

1http://nlp.stanford.edu/software/lex-parser.shtml
2http://search.cpan.org/Tedpederse/WordNet-SenseRelate-

AllWords-0.19
3http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-

smart-stop-list/english.stop
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Table 1: STS system configuration and results on STS task.

Run ALL ALLnrm Mean MSRpar MSRvid SMTeur OnWN SMTnews
rank 1 .7790 .8579 .6773 .6830 .8739 .5280 .6641 .4937

baseline .3110 .6732 .4356 .4334 .2996 .4542 .5864 .3908
1 .4533 .7134 .4192 .4184 .5630 .2083 .4822 .2745
2 .4157 .7099 .3960 .4260 .5628 .1546 .4552 .1923
3 .4446 .7097 .3740 .3411 .5946 .1868 .4029 .1823
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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

sranjans : Semantic Textual Similarity using Maximal Weighted
Bipartite Graph Matching

Sumit Bhagwani, Shrutiranjan Satapathy, Harish Karnick
Computer Science and Engineering
IIT Kanpur, Kanpur - 208016, India

{sumitb,sranjans,hk}@cse.iitk.ac.in

Abstract

The paper aims to come up with a sys-
tem that examines the degree of semantic
equivalence between two sentences. At the
core of the paper is the attempt to grade
the similarity of two sentences by find-
ing the maximal weighted bipartite match
between the tokens of the two sentences.
The tokens include single words, or multi-
words in case of Named Entitites, adjec-
tivally and numerically modified words.
Two token similarity measures are used for
the task - WordNet based similarity, and a
statistical word similarity measure which
overcomes the shortcomings of WordNet
based similarity. As part of three systems
created for the task, we explore a simple
bag of words tokenization scheme, a more
careful tokenization scheme which cap-
tures named entities, times, dates, mone-
tary entities etc., and finally try to capture
context around tokens using grammatical
dependencies.

1 Introduction

Semantic Textual Similarity (STS) measures
the degree of semantic equivalence between
texts. The goal of this task is to create a unified
framework for the evaluation of semantic textual
similarity modules and to characterize their im-
pact on NLP applications. The task is part of the
Semantic Evaluation 2012 Workshop (Agirre et
al., 2012).

STS is related to both Textual Entailment and
Paraphrase, but differs in a number of ways and

it is more directly applicable to a number of NLP
tasks. Also, STS is a graded similarity notion -
this graded bidirectional nature of STS is useful
for NLP tasks such as MT evaluation, informa-
tion extraction, question answering, and summa-
rization.

We propose a lexical similarity approach to
grade the similarity of two sentences, where a
maximal weighted bipartite match is found be-
tween the tokens of the two sentences. The ap-
proach is robust enough to apply across different
datasets. The results on the STS test datasets are
encouraging to say the least. The tokens are sin-
gle word tokens in case of the first system, while
in the second system, named and monetary en-
tities, percentages, dates and times are handled
too. A token-token similarity measure is integral
to the approach and we use both a statistical sim-
ilarity measure and a WordNet based word sim-
ilarity measure for the same. In the final run
of the task, apart from capturing the aforemen-
tioned entities, we heuristically extract adjecti-
vally and numerically modified words. Also, the
last run naively attempts to capture the context
around the tokens using grammatical dependen-
cies, which in turn is used to measure context
similarity.

Section 2 discusses the previous work done
in this area. Section 3 describes the datasets,
the baseline system and the evaluation measures
used by the task organizers. Section 4, 5 and 6
introduce the systems developed and discuss the
results of each system. Finally, section 7 con-
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cludes the work and section 8 offers suggestions
for future work.

2 Related Work

Various systems exist in literature for tex-
tual similarity measurement, be it bag of
words based models or complex semantic sys-
tems. (Achananuparp et al., 2008) enumerates a
few word overlap measures, like Jaccard Similar-
ity Coefficient, IDF Overlap measures, Phrasal
overlap measures etc, that have been used for
sentential similarity.

(Liu et al., 2008) proposed an approach to cal-
culate sentence similarity, which takes into ac-
count both semantic information and word order.
They define semantic similarity of sentence 1 rel-
ative to sentence 2 as the ratio of the sum of the
word similarity weighted by information content
of words in sentence 1 to the overall information
content included in both sentences. The syntactic
similarity is calculated as the correlation coeffi-
cient between word order vectors.

A similar semantic similarity measure, pro-
posed by (Li et al., 2006), uses a semantic-vector
approach to measure sentence similarity. Sen-
tences are transformed into feature vectors hav-
ing individual words from the sentence pair as
a feature set. Term weights are derived from
the maximum semantic similarity score between
words in the feature vector and words in the cor-
responding sentence. To utilize word order in the
similarity calculation, they define a word order
similarity measure as the normalized difference
of word order between the two sentences. They
have empirically proved that a sentence simi-
larity measure performs the best when semantic
measure is weighted more than syntactic measure
(ratio ∼ 4:1). This follows the conclusion from
a psychological experiment conducted by them
which emphasizes the role of semantic informa-
tion over syntactic information in passage under-
standing.

3 Task Evaluation

3.1 Datasets
The development datasets are drawn from the
following sources :

• MSR Paraphrase : This dataset consists
of pairs of sentences which have been ex-
tracted from news sources on the web.

• MSR Video : This dataset consists of
pairs of sentences where each sentence of a
pair tries to summarize the action in a short
video snippet.

• SMT Europarl : This dataset consists of
pairs sentences drawn from the proceedings
of the European Parliament, where each
sentence of a pair is a translation from a Eu-
ropean language to English.

In addition to the above sources, the test
datasets also contained the following sources :

• SMT News : This dataset consists of ma-
chine translated news conversation sentence
pairs.

• On WN : This dataset consists of pairs
of sentences where the first comes from
Ontonotes(Hovy et al., 2006) and the sec-
ond from a WordNet definition. Hence, the
sentences are rather phrases.

3.2 Baseline
The task organizers have used the following
baseline scoring scheme. Scores are produced
using a simple word overlap baseline system.
The input sentences are tokenised by splitting
at white spaces, and then each sentence is rep-
resented as a vector in the multidimensional to-
ken space. Each dimension has 1 if the token is
present in the sentence, 0 otherwise. Similarity
of vectors is computed using the cosine similar-
ity.

3.3 Evaluation Criteria
The scores obtained by the participating systems
are evaluated against the gold standard of the
datasets using a pearson correlation measure. In
order to evaluate the overall performance of the
systems on all the five datasets, the organizers
use three evaluation measures :

• ALL : This measure takes the union of all
the test datasets, and finds the Pearson cor-
relation of the system scores with the gold
standard of the union.
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• ALL Normalized : In this measure, a lin-
ear fit is found for the system scores on
each dataset using a least squared error cri-
terion, and then the union of the linearly fit-
ted scores is used to calculate the Pearson
correlation against the gold standard union.

• Weighted Mean : The average of the Pear-
son correlation scores of the systems on the
individual datasets is taken, weighted by the
number of test instances in each dataset.

4 SYSTEM 1

4.1 Tokenization Scheme

Each sentence is tokenized into words, filter-
ing out punctuations and stop-words. The stop-
words are taken from the stop-word list provided
by the NLTK Toolkit (Bird et al., 2009). All
the word tokens are reduced to their lemmatized
form using the Stanford CoreNLP Toolkit (Min-
nen et al., 2001). The tokenization is basic in
nature and doesn’t handle named entities, times,
dates, monetary entities or multi-word expres-
sions. The challenge with handling multi-word
tokens is in calculating multi-word token simi-
larity, which is not supported in a WordNet word-
similarity scheme or a statistical word similarity
measure.

4.2 Maximal Weighted Bipartite Match

A weighted bipartite graph is constructed
where the two sets of vertices are the word-
tokens extracted in the earlier subsection. The
bipartite graph is made complete by assigning an
edge weight to every pair of tokens from the two
sentences. The edge weight is based on a suitable
word similarity measure. We had two resources
at hand - WordNet based word similarity and a
statistical word similarity measure.

4.2.1 WordNet Based Word Similarity
The is-a hierarchy of WordNet is used in cal-

culating the word similarity of two words. Nouns
and verbs have separate is-a hierarchies. We use
the Lin word-sense similarity measure (Lin ,
1998a). Adjectives and adverbs do not have an
is-a hierarchy and hence do not figure in the Lin

similarity measure. To disambiguate the Word-
Net sense of a word in a sentence, a variant of
the Simplified Lesk Algorithm (Kilgarriff and
J. Rosenzweig , 2000) is used. WordNet based
word similarity has the following drawbacks :

• sparse in named entity content : similarity
of named entities with other words becomes
infeasible to calculate.

• doesn’t support cross-POS similarity.

• applicable only to nouns and verbs.

4.2.2 Statistical Word Similarity
We use DISCO (Kolb , 2008) as our statisti-

cal word similarity measure. DISCO is a tool for
retrieving the distributional similarity between
two given words. Pre-computed word spaces are
freely available for a number of languages. We
use the English Wikipedia word space. One pri-
mary reason for using a statistical word similarity
measure is because of the shortcomings of calcu-
lating cross-POS word similarity when using a
knowledge base like WordNet.

DISCO works as follows : a term-(term,
relative position) matrix is constructed with
weights being pointwise mutual information
scores. From this, a surface level word similar-
ity score is obtained by using Lin’s information
theoretic measure (Lin , 1998b) for word vector
similarity. This score is used as matrix weights
to get second order word vectors, which are used
to compute a second order word similarity mea-
sure . This measure tries to emulate an LSA like
similarity giving better performance, and hence
is used for the task.

A point to note here is that the precomputed
word spaces that DISCO uses are case sensitive,
which we think is a drawback. We preserve the
case of proper nouns, while all other words are
converted to lower case, prior to evaluating word
similarity scores.

4.3 Edge Weighting Scheme
Sentences in the MSR video dataset are simpler
and shorter than the remaining datasets, with a
high degree of POS correspondence between the
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Dataset DISCO WordNet DISCO + WordNet
MSR Video 0.61 0.71 0.73
MSR Paraphrase 0.62 0.43 0.57
SMT Europarl 0.58 0.44 0.54

Figure 1: Edge Weight Scheme Evaluation on Development Datasets

Category NE Normalized NE
DATE 26th November, November 26 XXXX-11-26
PERCENT 13 percent, 13% %13.0
MONEY 56 dollars, $56, 56$ $56.0
TIME 3 pm, 15:00 T15:00

Figure 2: Normalization performed by Stanford CoreNLP

tokens of two sentences, as can be observed in
the following example :

• A man is riding a bicycle. VS A man is rid-
ing a bike.

This allows for the use of a Knowledge-Base
Word Similarity measure like WordNet word
similarity. All the other datasets have length-
ier sentences, resulting in cross-POS correspon-
dence. Additionally, there is an abundance of
named entities in these datasets. The following
examples, which are drawn from the MSR Para-
phrase dataset, highlight these points :

• If convicted of the spying charges, he could
face the death penalty. VS The charges of
espionage and aiding the enemy can carry
the death penalty.

• Microsoft has identified the freely dis-
tributed Linux software as one of the biggest
threats to its sales. VS The company
has publicly identified Linux as one of its
biggest competitive threats.

Keeping this in mind, we use DISCO for edge-
weighting in all the datasets except MSR Video.
For MSR Video, we use the following edge
weighting scheme : for same-POS words, Word-
Net similarity is used, DISCO otherwise. This
choice is justified by the results obtained in fig-
ure 1 on the development datasets.

4.3.1 Scoring
A maximal weighted bipartite match is found

for the bipartite graph constructed, using the
Hungarian Algorithm (Kuhn , 1955) - the
intuition behind this being that every keyword
in a sentence matches injectively to a unique
keyword in the other sentence. The maximal
bipartite score is normalized by the sentences’
length for two reasons - normalization and
punishment for extra detailing in either sentence.
So the final sentence similarity score between
sentences s1 and s2 is:

sim(s1, s2) = MaximalBipartiteMatchSum(s1,s2)
max(tokens(s1),tokens(s2))

4.4 Results

The results are evaluated on the test datasets
provided for the STS task. Figure 3 compares
the performance of our systems with the top 3
systems for the task. The scores in the figure
are Pearson Correlation scores. Figure 4 shows
the performance and ranks of all our systems. A
total of 89 systems were submitted, including
the baseline. The results are taken from the
Semeval’12 Task 6 webpage1

As can be seen, System 1 suffers slightly
on the MSR Paraphrase and Video datasets,
while doing comparably well on the other three
datasets when compared with the top 3 submis-
sions. Our ALL score suffers because we use

1http://www.cs.york.ac.uk/semeval-
2012/task6/index.php?id=results-update
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System ALL MSR Para-
phrase

MSR Video SMT Eu-
roparl

OnWN SMT News

Rank 1 0.8239 0.6830 0.8739 0.5280 0.6641 0.4937
Rank 2 0.8138 0.6985 0.8620 0.3612 0.7049 0.4683
Rank 3 0.8133 0.7343 0.8803 0.4771 0.6797 0.3989
System 1 0.6529 0.6124 0.7240 0.5581 0.6703 0.4533
System 2 0.6651 0.6254 0.7538 0.5328 0.6649 0.5036
System 3 0.5045 0.6167 0.7061 0.5666 0.5664 0.3968
Li et al. 0.4981 0.6141 0.6084 0.5382 0.6055 0.3760
Baseline 0.3110 0.4334 0.2996 0.4542 0.5864 0.3908

Figure 3: Results of top 3 Systems and Our Systems

System ALL ALL Rank All Nor-
malized

All Nor-
malized
Rank

Weighted
Mean

Weighted
Mean
Rank

System 1 0.6529 30 0.8018 39 0.6249 12
System 2 0.6651 24 0.8128 22 0.6366 8
System 3 0.5045 62 0.7846 52 0.5905 30

Figure 4: Evaluation of our Systems on different criteria

a combination of WordNet and statistical word
similarity measure for the MSR Video dataset,
which affects the Pearson Correlation of all the
datasets combined. The correlation values for
the ALL Normalized criterion are high because
of the linear fitting it performs. We get the best
performance on the Weighted Mean evaluation
criterion.

5 SYSTEM 2

In System 2, in addition to System 1, we cap-
ture named entities, dates and times, percentages
and monetary entities and normalize them. The
tokens resulting from this can be multi-word be-
cause of named entities. This tokenization strat-
egy gives us the best results among all our three
runs. For capturing and normalizing the above
mentioned expressions, we make use of the Stan-
ford NER Toolkit (Finkel et al., 2005). Some
normalized samples are mentioned in figure 2.

When grading the similarity of multi-word
tokens, we use a second level maximal bipartite
match, which is normalized by the smaller of the
two multi-word token lengths. Thus, similarity
between two multi-word tokens t1 and t2 is

defined as:
sim(t1, t2) = MaximalBipartiteMatchSum(t1,t2)

min(words(t1),words(t2))

This was done to ensure that a complete
named entity in the first sentence matches ex-
actly with a partial named entity (indicating the
same entity as the first) in the second sentence.
For eg. John Doe vs John will be given a score
of 1. Such occurrences are frequent in the task
datasets. For the sentence similarity, the score
defined in System 1 is used, where the token
length of a sentence is the number of multi-word
tokens in it.

5.1 Results

Refer to figures 3 and 4 for results.

This system gives the best results among all
our systems. The credit for this improvement can
be attributed to recognition and normalization of
named entities, dates and times, percentages and
monetary entities, as the datasets provided con-
tain these in fairly large numbers.
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6 SYSTEM 3

In System 3, in addition to System 2, we heuris-
tically capture compound nouns, adjectivally
and numerically modified words like ’passenger
plane’, ’easy job’, ’10 years’ etc. using the POS
based regular expression

[JJ |NN |CD]∗NN

POS Tagging is done using the Stanford POS
Tagger Toolkit (Toutanova et al., 2003).

To make matching more context dependent,
rather than just a bag of words approach, we
naively attempt to capture the similarity of the
contexts of two tokens. We define the context
of a word in a sentence as all the words in the
sentence which are grammatically related to
it. The grammatical relations are all the col-
lapsed dependencies produced by the Stanford
Dependency parser (Marneffe et al., 2006). The
context of a multi-word token is defined as the
union of contexts of all the words in it. We
further filter the context by removing stop-words
and punctuations in it. The contexts of two
tokens are then used to obtain context/syntactic
similarity between tokens, which is defined
using the Jaccard Similarity Measure:

Jaccard(C1, C2) =
|C1 ∩ C2|
|C1 ∪ C2|

A linear combination of word similarity and
context similarity is taken as an edge weight in
the token-token similarity bipartite graph. Moti-
vated by (Li et al., 2006), we chose a ratio of 4:1
for lexical similarity to context similarity.

As in System 2, for multi-word token simi-
larity, we use a second level maximal bipartite
match, normalized by smaller of the two token
lengths. This helps in matching multi-word to-
kens expressing the same meaning with score
1, for e.g. passenger plane VS Cuban plane,
divided Supreme Court VS Supreme Court etc.
The sentence similarity score is the same as the
one defined in System 2.

6.1 Results
Refer to figures 3 and 4 for results.

This system gives a reduced performance
compared to our other systems. This could be
due to various factors. Capturing adjectivally and
numerically modified words could be done using
grammatical dependencies instead of a heuristic
POS-tag regular expression. Also, token-token
similarity should be handled in a more precise
way than a generic second level maximal bipar-
tite match. A better context capturing method
can further improve the system.

7 Conclusions

Among the three systems proposed for the task,
System 2 performs best on the test datasets, pri-
marily because it identifies named entities as sin-
gle entities, normalizes dates, times, percentages
and monetary figures. The results for System
3 suffer because of naive context capturing. A
better job can be done using syntacto-semantic
structured representations for the sentences. The
performance of our systems are compared with
(Li et al., 2006) on the test datasets in figure
3. This highlights the improvement of maximal
weighted bipartite matching over greedy match-
ing.

8 Future Work

Our objective is to group words together which
share a common meaning. This includes group-
ing adjectival, adverbial, numeric modifiers with
the modified word, group the words of a collo-
quial phrase together, capture multi-word expres-
sions, etc. These word-clusters will form the ver-
tices of the bipartite graph. The other challenge
then is to come up with a suitable cluster-cluster
similarity measure. NLP modules such as Lex-
ical Substitution can help when we are using a
word-word similarity measure at the core.
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Abstract

The Semantic Textual Similarity (STS) shared
task (Agirre et al., 2012) computes the degree
of semantic equivalence between two sen-
tences.1 We show that a simple unsupervised
latent semantics based approach, Weighted
Textual Matrix Factorization that only exploits
bag-of-words features, can outperform most
systems for this task. The key to the approach
is to carefully handle missing words that are
not in the sentence, and thus rendering it su-
perior to Latent Semantic Analysis (LSA) and
Latent Dirichlet Allocation (LDA). Our sys-
tem ranks 20 out of 89 systems according to
the official evaluation metric for the task, Pear-
son correlation, and it ranks 10/89 and 19/89
in the other two evaluation metrics employed
by the organizers.

1 Introduction
Identifying the degree of semantic similarity [SS]
between two sentences is helpful for many NLP top-
ics. In Machine Translation (Kauchak and Barzi-
lay, 2006) and Text Summarization (Zhou et al.,
2006), results are automatically evaluated based on
sentence comparison. In Text Coherence Detection
(Lapata and Barzilay, 2005), sentences are linked to-
gether by similar or related words. For Word Sense
Disambiguation, researchers (Banerjee and Peder-
sen, 2003; Guo and Diab, 2012a) construct a sense
similarity measure from the sentence similarity of
the sense definitions.

Almost all SS approaches decompose the task into
word pairwise similarity problems. For example, Is-

1Mona Diab, co-author of this paper, is one of the task orga-
nizers

lam and Inkpen (2008) create a matrix for each sen-
tence pair, where columns are the words in the first
sentence and rows are the words in the second sen-
tence, and each cell stores the distributional similar-
ity of the two words. Then they create an alignment
between words in two sentences, and sentence simi-
larity is calculated based on the sum of the similarity
of aligned word pairs. There are two disadvantages
with word similarity based approaches: 1. lexical
ambiguity as the word pairwise similarity ignores
the semantic interaction between the word and sen-
tence/context. 2. word co-occurrence information
is not as sufficiently exploited as they are in latent
variable models such as Latent Semantic Analysis
(LSA) (Landauer et al., 1998) and Latent Dirichilet
Allocation (LDA) (Blei et al., 2003). On the other
hand, latent variable models can solve the two issues
naturally by modeling the semantics of words and
sentences simultaneously in the low-dimensional la-
tent space.

However, attempts at addressing SS using LSA
perform significantly below word similarity based
models (Mihalcea et al., 2006; O’Shea et al., 2008).
We believe the reason is that the observed words
in a sentence are too few for latent variable mod-
els to learn robust semantics. For example, given
the two sentences of WordNet sense definitions for
bank#n#1 and stock#n#1:

bank#n#1: a financial institution that accepts de-
posits and channels the money into lending activities

stock#n#1: the capital raised by a corporation
through the issue of shares entitling holders to an
ownership interest (equity)

LDA can only find the dominant topic (the
financial topic) based on the observed words with-
out further discernibility. In this case, many sen-
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tences will share the same latent semantics profile,
as long as they are in the same topic/domain.

In our work (Guo and Diab, 2012b), we propose
to model the missing words (words that are not in
the sentence) to address the sparseness issue for the
SS task. Our intuition is since observed words in a
sentence are too few to tell us what the sentence is
about, missing words can be used to tell us what the
sentence is not about. We assume that the semantic
space of both the observed and missing words make
up the complete semantic profile of a sentence. We
implement our idea using a weighted matrix factor-
ization approach (Srebro and Jaakkola, 2003), which
allows us to treat observed words and missing words
differently.

It should be noted that our approach is very gen-
eral (similar to LSA/LDA) in that it can be applied to
any genre of short texts, in a manner different from
existing work that models short texts by using addi-
tional data, e.g., Ramage et al. (2010) model tweets
using their metadata (author, hashtag, etc). Also we
do not extract additional features such as multiwords
expression or syntax from sentences – all we use is
bag-of-words feature.

2 Related Work
Almost all current SS methods work in the high-
dimensional word space, and rely heavily on
word/sense similarity measures. The word/sense
similarity measure is either knowledge based (Li et
al., 2006; Feng et al., 2008; Ho et al., 2010; Tsatsa-
ronis et al., 2010), corpus-based (Islam and Inkpen,
2008) or hybrid (Mihalcea et al., 2006). Almost all
of them are evaluated on a data set introduced in (Li
et al., 2006). The LI06 data set consists of 65 pairs
of noun definitions selected from the Collin Cobuild
Dictionary. A subset of 30 pairs is further selected
by LI06 to render the similarity scores evenly dis-
tributed. Our approach has outperformed most of the
previous methods on LI06 achieving the second best
Pearson’s correlation and the best Spearman corre-
lation (Guo and Diab, 2012b).

3 Learning Latent Semantics of Sentences
3.1 Intuition

Given only a few observed words in a sentence, there
are many hypotheses of latent vectors that are highly
related to the observed words. Therefore, missing

Figure 1: Matrix Factorization

words can be used to prune the hypotheses that are
also highly related to the missing words.

Consider the hypotheses of latent vectors in Ta-
ble 1 for the sentence of the WordNet definition
of bank#n#1. Assume there are 3 dimensions in
our latent model: financial, sport, institution. We
use Rv

o to denote the sum of relatedness between
latent vector v and all observed words; similarly,
Rv

m is the sum of relatedness between the vector
v and all missing words. Hypothesis v1 is given
by topic models, where only the financial sen-
tence is found, and it has the maximum relatedness
to observed words in bank#n#1 sentence Rv1

o =20.
v2 is the ideal latent vector, since it also detects
that bank#n#1 is related to institution. It has a
slightly smaller Rv2

o =18, but more importantly, re-
latedness to missing words Rv2

m =300 is substantially
smaller than Rv1

m =600.
However, we cannot simply choose a hypothesis

with the maximum Ro −Rm value, since v3, which
is clearly not related to bank#n#1 but with a min-
imum Rm=100, will be our final answer. The so-
lution is straightforward: give a smaller weight to
missing words, e.g., so that the algorithm tries to
select a hypothesis with maximum value of Ro −
0.01 × Rm. To implement this idea, we model the
missing words in the weighted matrix factorization
framework [WMF] (Srebro and Jaakkola, 2003).

3.2 Modeling Missing Words by Weighted
Matrix Factorization

Given a corpus we represent the corpus as an
M × N matrix X . The row entries of the matrix
are the unique N words in the corpus, and the M
columns are the sentence ids of all the sentences.
The yielded N ×M co-occurrence matrix X com-
prises the TF-IDF values in each Xij cell, namely
that TF-IDF value of word wi in sentence sj .

In WMF, the original matrix X is factorized into
two matrices such thatX ≈ P>Q, where P is aK×
M matrix, and Q is a K × N matrix (Figure 1). In
this scenario, the latent semantics of each wordwi or
sentence sj is represented as a K-dimension vector
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financial sport institution Ro Rm Ro −Rm Ro − 0.01Rm

v1 1 0 0 20 600 -580 14
v2 0.6 0 0.1 18 300 -282 15
v3 0.2 0.3 0.2 5 100 -95 4

Table 1: Three possible hypotheses of latent vectors for definition of bank#n#1

P·,i or Q·,j . Note that the inner product of P·,i and
Q·,j is used to approximate the semantic relatedness
of word wi and sentence sj : Xij ≈ P·,i ·Q·,j , as the
shaded parts in Figure 1.

In WMF each cell is associated with a weight, so
missing words cells (Xij=0) can have a much less
contribution than observed words. Assume wm is
the weight for missing words cells. The latent vec-
tors of words P and sentences Q are estimated by
minimizing the objective function:

∑
i

∑
j

Wij (P·,i ·Q·,j −Xij)
2 + λ||P ||22 + λ||Q||22

where Wi,j =

{
1, if Xij 6= 0
wm, if Xij = 0

(1)

Equation 1 explicitly requires the latent vector of
sentence Q·,j to be not related to missing words
(P·,i · Q·,j should be close to 0 for missing words
Xij = 0). Also weight wm for missing words is
very small to make sure latent vectors such as v3 in
Table 1 will not be chosen. In experiments we set
wm = 0.01. We refer to our approach as Weighted
Textual Matrix Factorization (WTMF).

After we run WTMF on the sentence corpus, the
similarity of the two sentences sj and sk can be com-
puted by the inner product of Q·,j and Q·,k.

3.3 Inference

The latent vectors in P and Q are first randomly
initialized, then can be computed iteratively by the
following equations (derivation is omitted due to
limited space, but can be found in (Srebro and
Jaakkola, 2003)):

P·,i =
(
QW̃ (i)Q> + λI

)−1

QW̃ (i)X>i,·

Q·,j =
(
PW̃ (j)P> + λI

)−1

PW̃ (i)X·,j

(2)

where W̃ (i) = diag(W·,i) is an M × M diagonal
matrix containing ith row of weight matrixW . Sim-
ilarly, W̃ (j) = diag(W·,j) is an N × N diagonal
matrix containing jth column of W .

Since most of the cells have the same value of 0,
the inference can be further optimized to save com-
putation, which has been described in (Steck, 2010).

4 Data Preprocessing

The data sets for WTMF comprises two dictionar-
ies WordNet (Fellbaum, 1998), Wiktionary,2 and
the Brown corpus. We did not link the senses be-
tween WordNet and Wiktionary, therefore the defini-
tion sentences are simply treated as individual docu-
ments. We crawl Wiktionary and remove the entries
that are not tagged as noun, verb, adjective, or ad-
verb, resulting in 220,000 entries. For both WordNet
and Wiktionary, target words are added to the defini-
tion (e.g. the word bank is added into the definition
sentence of bank#n#1). Also usage examples are
appended to definition sentences (hence sentences
become short texts). For the Brown corpus, each
sentence is treated as a document in order to create
more co-occurrence. The importance of words in a
sentence is estimated by the TF-IDF schema.

All data is tokenized, pos-tagged3, and lemma-
tized4. To reduce word sparsity issue, we take
an additional preprocessing step: for each lemma-
tized word, we find all its possible lemmas, and
choose the most frequent lemma according to Word-
Net::QueryData. For example, the word thinkings is
first lemmatized as thinking, then we discover think-
ing has possible lemmas thinking and think, finally
we choose think as targeted lemma. The STS data is
also preprocessed using the same pipeline.

5 Experiments

5.1 Setting

STS data: The sentence pair data in the STS
task is collected from five sources: 1. MSR Para-
phrase corpus (Dolan et al., 2004), 2. MSR video
data (Chen and Dolan, 2011), 3. SMT europarl data,

2http://en.wiktionary.org/wiki/Wiktionary:Main Page
3http://nlp.stanford.edu/software/tagger.shtml
4http://wn-similarity.sourceforge.net, WordNet::QueryData
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models MSRpar MSRvid SMT-eur ON-WN SMT-news
LDA 0.274 0.7682 0.452 0.619 0.366

WTMF 0.411(67/89) 0.835(11/89) 0.513(10/89) 0.727(1/89) 0.438(28/89)

Table 2: Performance of LDA and WTMF on each individual test set of Task 6 STS data

ALL ALLnrm Mean
0.695(20/89) 0.830(10/89) 0.608(19/89)

Table 3: Performance of WTMF on all test sets

4. OntoNotes-WordNet data (Hovy et al., 2006), 5.
SMT news data.
Evaluation Metrics: Since the systems are re-
quired to assigned a similarity score to each sentence
pair, Pearson’s correlation is used to measure the
performance of systems on each of the 5 data sets.
However, measuring the overall performance on the
concatenation of 5 data sets is rarely discussed in
previous work. Accordingly the organizers of STS
task provide three evaluation metrics: 1. ALL: Pear-
son correlation with the gold standard for the com-
bined 5 data sets. 2. ALLnrm: Pearson correlation
after the system outputs for each data set are fitted
to the gold standard using least squares. 3. Mean:
Weighted mean across the 5 data sets, where the
weight depends on the number of pairs in the dataset.
WTMF Model: Our model is built on Word-
Net+Wiktionary+Brown+training data of STS. Each
sentence of STS test data is transformed into a latent
vector using Equation 2. Then sentence pair similar-
ity is computed by the cosine similarity of the two
latent vectors. We employ the parameters used in
(Guo and Diab, 2012b) (λ = 20, wm = 0.01).

5.2 Results
Table 3 summarizes the overall performance of

WTMF on the concatenation of 5 data sets followed
by the corresponding rank among all participating
systems.5 There are 88 submitted results in total and
1 baseline which is simply the cosine similarity of
surface word vectors.

Table 2 compares the individual performance of
LDA (trained on the same corpus) and WTMF on
each data set. WTMF outperforms LDA by a large
margin. This is because LDA only uses 10 observed
words to infer a 100 dimension vector, while WTMF
takes advantage of much more missing words to

5http://www.cs.york.ac.uk/semeval-2012/
task6/index.php?id=results-update

learn more robust latent semantic vectors.
WTMF model achieves great overall perfor-

mance, with ranks 20, 10, 19 out of 89 reported re-
sults in three evaluation metrics respectively. It is
worth noting that WTMF is unsupervised in that it
does not use the training data similarity values, also
the only feature WTMF uses is bag-of-words fea-
tures without other information such as syntax, sen-
timent, etc. indicating that these additional features
could lead to even more improvement.

Observing the individual performance on each of
the 5 data set, we find WTMF ranks relatively high
in the four data sets: MSRvid (11/89), SMT-eur
(11/89), ON-WN (1/89), SMT-news (28/89). How-
ever, WTMF is outperformed by most of the systems
on MSRpar data set (67/89). We analyze the data set
and find that different from the other four data sets,
MSRpar is related to a lot of other NLP topics such
as textual entailment or sentiment coherence. There-
fore, our feature set (bag of words) is too shallow for
this data set indicating that using syntax and more
semantically oriented features could be helpful.

6 Conclusions
We introduce a new latent variable model WTMF
that is competitive with high dimensional ap-
proaches to the STS task. In WTMF model, we ex-
plicitly model missing words to alleviate the sparsity
problem in modeling short texts. For future work,
we would like to combine our methods with existing
word similarity based approaches and add more nu-
anced features incorporating syntax and semantics
in the latent model.
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Abstract

We report the results of UNIBA participation
in the first SemEval-2012 Semantic Textual
Similarity task. Our systems rely on distribu-
tional models of words automatically inferred
from a large corpus. We exploit three differ-
ent semantic word spaces: Random Indexing
(RI), Latent Semantic Analysis (LSA) over RI,
and vector permutations in RI. Runs based on
these spaces consistently outperform the base-
line on the proposed datasets.

1 Background and Related Research

SemEval-2012 Semantic Textual Similarity (STS)
task (Agirre et al., 2012) aims at providing a gen-
eral framework to “examine the degree of semantic
equivalence between two sentences.”

We propose an approach to Semantic Textual
Similarity based on distributional models of words,
where the geometrical metaphor of meaning is ex-
ploited. Distributional models are grounded on the
distributional hypothesis (Harris, 1968), according
to which the meaning of a word is determined by
the set of textual contexts in which it appears. These
models represent words as vectors in a high dimen-
sional vector space. Word vectors are built from a
large corpus in such a way that vector dimensions
reflect the different uses (or contexts) of a word in
the corpus. Hence, the meaning of a word is de-
fined by its use, and words used in similar contexts
are represented by vectors near in the space. In this
way, semantically related words like “basketball”
and “volleyball”, which occur frequently in similar
contexts, say with words “court, play, player”, will

be represented by near points. Different definitions
of contexts give rise to different (semantic) spaces.
A context can be a document, a sentence or a fixed
window of surrounding words. Contexts and words
can be stored through a co-occurrence matrix, whose
columns correspond to contexts, and rows to words.
Therefore, the strength of the semantic association
between words can be computed as the cosine simi-
larity of their vector representations.

Latent Semantic Analysis (Deerwester et al.,
1990), BEAGLE (Jones and Mewhort, 2007),
Random Indexing (Kanerva, 1988), Hyperspace
Analogue to Language (Burgess et al., 1998),
WordSpace (Schütze and Pedersen, 1995) are all
techniques conceived to build up semantic spaces.
However, all of them intend to represent semantics at
a word scale. Although vectors addition and multi-
plication are two well defined operations suitable for
composing words in semantic spaces, they miss tak-
ing into account the underlying syntax, which regu-
lates the compositionality of words. Some efforts to-
ward this direction are emerging (Clark and Pulman,
2007; Clark et al., 2008; Mitchell and Lapata, 2010;
Coecke et al., 2010; Basile et al., 2011; Clarke,
2012), which resulted in theoretical work corrob-
orated by empirical evaluation on how small frag-
ments of text compose (e.g. noun-noun, adjective-
noun, and verb-noun pairs).

2 Methodology

Our approach to STS is inspired by the latest devel-
opments about semantic compositionality and distri-
butional models. The general methodology is based
on the construction of a semantic space endowed
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with a vector addition operator. The vector addition
sums the word vectors of each pair of sentences in-
volved in the evaluation. The result consists of two
vectors whose similarity can be computed by co-
sine similarity. However, this simple methodology
translates a text into a mere bag-of-word representa-
tion, depriving the text of its syntactic construction,
which also influences the overall meaning of the sen-
tence. In order to deal with this limit, we experi-
ment two classical methods for building a semantic
space, namely Random Indexing and Latent Seman-
tic Analysis, along with a new method based on vec-
tor permutations, which tries to encompass syntactic
information directly into the resulting space.

2.1 Random Indexing

Our first method is based on Random Indexing (RI),
introduced by Kanerva (Kanerva, 1988). This tech-
nique allows us to build a semantic space with no
need for (either term-document or term-term) ma-
trix factorization, because vectors are inferred by
using an incremental strategy. Moreover, it allows
us to solve efficiently the problem of reducing di-
mensions, which is one of the key features used to
uncover the “latent semantic dimensions” of a word
distribution.

RI1 (Widdows and Ferraro, 2008) is based on
the concept of Random Projection according to
which high dimensional vectors chosen randomly
are “nearly orthogonal”.

Formally, given an n × m matrix A and an m ×
k matrix R made up of k m-dimensional random
vectors, we define a new n× k matrix B as follows:

Bn,k = An,m·Rm,k k << m (1)

The new matrix B has the property to preserve the
distance between points scaled by a multiplicative
factor (Johnson and Lindenstrauss, 1984).

Specifically, RI creates the semantic space Bn,k

in two steps (we consider a fixed window w of terms
as context):

1. A context vector is assigned to each term. This
vector is sparse, high-dimensional and ternary,
which means that its elements can take values

1An implementation of RI can be found at:
http://code.google.com/p/semanticvectors/

in {-1, 0, 1}. A context vector contains a small
number of randomly distributed non-zero ele-
ments, and the structure of this vector follows
the hypothesis behind the concept of Random
Projection;

2. Context vectors are accumulated by analyzing
co-occurring terms in a window w. The seman-
tic vector for a term is computed as the sum of
the context vectors for terms which co-occur in
w.

2.2 Latent Semantic Analysis
Latent Semantic Analysis (Deerwester et al., 1990)
relies on the Singular Value Decomposition (SVD)
of a term-document co-occurrence matrix. Given
a matrix M, it can be decomposed in the product
of three matrices UΣV>, where U and V are the
orthonormal matrices and Σ is the diagonal matrix
of singular values of M placed in decreasing order.
Computing the LSA on the co-occurrence matrix M
can be a computationally expensive task, as a corpus
can contain thousands of terms. Hence, we decided
to apply LSA to the reduced approximation gener-
ated by RI. It is important to point out that no trun-
cation of singular values is performed. Since com-
puting the similarity between any two words is equal
to taking the corresponding entry in the MM> ma-
trix, we can exploit the relation

MM> = UΣV>VΣ>U> = UΣΣ>U> =

(UΣ)(UΣ)>

Hence, the application of LSA to RI makes possible
to represent each word in the UΣ space.

A similar approach was investigated by Sellberg
and Jönsson (2008) for retrieval of similar FAQs in
a Question Answering system. Authors showed that
halving the matrix dimension by applying the RI re-
sulted in a drastic reduction of LSA computation
time. Certainly there was also a performance price
to be paid, however general performance was bet-
ter than VSM and RI respectively. We also experi-
mented LSA computed on RI versus LSA applied to
the original matrix during the tuning of our systems.
Surprisingly, we found that LSA applied on the re-
duced matrix gives better results than LSA. How-
ever, these results are not reported as they are not
the focus of this evaluation.

592



2.3 Vector Permutations in RI

The classical distributional models can handle only
one definition of context at a time, such as the whole
document or the window w. A method to add infor-
mation about context in RI is proposed in (Sahlgren
et al., 2008). The authors describe a strategy to en-
code word order in RI by the permutation of coor-
dinates in context vector. When the coordinates are
shuffled using a random permutation, the resulting
vector is nearly orthogonal to the original one. That
operation corresponds to the generation of a new
random vector. Moreover, by applying a predeter-
mined mechanism to obtain random permutations,
such as elements rotation, it is always possible to
reconstruct the original vector using the reverse per-
mutations. By exploiting this strategy it is possible
to obtain different random vectors for each context
in which the term occurs.

Our idea is to encode syntactic dependen-
cies using vector permutations. A syntactic
dependency between two words is defined as
dep(head, dependent), where dep is the syntac-
tic link which connects the dependent word to the
head word. Generally speaking, dependent is the
modifier, object or complement, while head plays a
key role in determining the behavior of the link. For
example, subj(eat, cat) means that “cat” is the sub-
ject of “eat”. In that case the head word is “eat”,
which plays the role of verb.

The key idea is to encode in the semantic space in-
formation about syntactic dependencies which link
words together. Rather than representing the kind
of dependency, our focus is to encompass informa-
tion about the existence of such a relation between
words in the construction of the space. The method
adopted to construct a semantic space that takes into
account both syntactic dependencies and Random
Indexing can be defined as follows:

1. a context vector is assigned to each term, as de-
scribed in Section 2.1 (Random Indexing);

2. context vectors are accumulated by analyzing
terms which are linked by a dependency. In
particular the semantic vector for each term ti
is computed as the sum of the inverse-permuted
context vectors for the terms tj which are de-
pendents of ti, and the permuted vectors for

the terms tj which are heads of ti. Moreover,
the context vector of ti, and those of tj terms
which appears in a dependency relation with
it, are sum to the final semantic vector in or-
der to provide distributional evidence of co-
occurrence. Each permutation is computed as
a forward/backward rotation of one element. If
Π1 is a permutation of one element, the inverse-
permutation is defined as Π−1: the elements
rotation is performed by one left-shifting step.
Formally, denoting with x the context vector
for a term, we compute the semantic vector for
the term ti as follows:

si = xi +
∑

j

∀dep(ti,tj)

(
Π−1xj + xj

)
+

∑
k

∀dep(tk,ti)

(
Π1xk + xk

)

Adding permuted vectors to the head word and
inverse-permuted vectors to the corresponding de-
pendent word allows to encode the information
about both heads and dependents into the space.
This approach is similar to the one investigated by
(Cohen et al., 2010) to encode relations between
medical terms.

3 Evaluation

Dataset Description. SemEval-2012 STS is a first
attempt to provide a “unified framework for the eval-
uation of modular semantic components.” The task
consists in computing the similarity between pair
of texts, returning a similarity score. Sentences
are extracted from five publicly available datasets:
MSR (Paraphrase Microsoft Research Paraphrase
Corpus, 750 pairs), MSR (Video Microsoft Research
Video Description Corpus, 750 pairs), SMTeuroparl
(WMT2008 development dataset, Europarl section,
459 pairs), SMTnews (news conversation sentence
pairs from WMT, 399 pairs), and OnWN (pairs of
sentences from Ontonotes and WordNet definition,
750 pairs). Humans rated each pair with values from
0 to 5. The evaluation is performed by comparing
humans scores against systems performance through
Pearson’s correlation. The organizers propose three
different ways to aggregate values from the datasets:
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ALL Rank-ALL ALLnrm Rank-ALLNrm Mean Rank-Mean
baseline .3110 87 .6732 85 .4356 70
UNIBA-RI .6285 41 .7951 43 .5651 45
UNIBA-LSARI .6221 44 .8079 30 .5728 40
UNIBA-DEPRI .6141 46 .8027 38 .5891 31

Table 1: Evaluation results of Pearson’s correlation.

MSRpar MSRvid SMT-eur On-WN SMT-news
baseline .4334 .2996 .4542 .5864 .3908
UNIBA- RI .4128 .7612 .4531 .6306 .4887
UNIBA- LSARI .3886 .7908 .4679 .6826 .4238
UNIBA- DEPRI .4542 .7673 .5126 .6593 .4636

Table 2: Evaluation results of Pearson’s correlation for individual datasets.

ALL Pearson correlation with the gold standard for
the five datasets.

ALLnrm Pearson correlation after the system out-
puts for each dataset are fitted to the gold stan-
dard using least squares.

Mean Weighted mean across the five datasets,
where the weight depends on the number of
pairs in the dataset.

Experimental Setting. For the evaluation, we
built Distributional Spaces using the WaCkype-
dia_EN corpus2. WaCkypedia_EN is based on a
2009 dump of the English Wikipedia (about 800 mil-
lion tokens) and includes information about: part-of-
speech, lemma and a full dependency parsing per-
formed by MaltParser (Nivre et al., 2007). The three
spaces described in Section 2 are built exploiting
information about term windows and dependency
parsing supplied by WaCkypedia. The total number
of dependencies amounts to about 200 million.

The RI system is implemented in Java and re-
lies on some portions of code publicly available in
the Semantic Vectors package (Widdows and Fer-
raro, 2008), while for LSA we exploited the publicly
available C library SVDLIBC3.

We restricted the vocabulary to the 50,000 most
frequent terms, with stop words removal and forc-
ing the system to include terms which occur in the
dataset. Hence, the dimension of the original matrix
would have been 50,000×50,000.

2http://wacky.sslmit.unibo.it/doku.php?id=corpora
3http://tedlab.mit.edu/ dr/SVDLIBC/

Our approach involves some parameters. In par-
ticular, each semantic space needs to set up the di-
mension k of the space. All spaces use a dimen-
sion of 500 (resulting in a 50,000×500 matrix). The
number of non-zero elements in the random vector
is set to 10. When we apply LSA to the output space
generated by the Random Indexing we hold all the
500 dimensions since during the tuning we observed
a drop in performance when a lower dimension was
set. The co-occurrence distance w between terms
was set up to 4.

In order to compute the similarity between the
vector representations of sentences we used the co-
sine similarity, and then we multiplied by 5 the ob-
tained value.

Results. Table 1 shows the overall results obtained
exploiting the different semantic spaces. We re-
port the three proposed evaluation measures with the
corresponding overall ranks with respect to the 89
runs submitted by participants. We submitted three
different runs, each exploring a different semantic
space: UNIBA-RI (based on Random Indexing),
UNIBA-LSARI (based on LSA performed over RI
outcome), and UNIBA-DEPRI (based on Random
Indexing and vector permutations). Each proposed
measure stresses different aspects. ALL is the Pear-
son’s correlation computed over the concatenated
dataset. As a consequence this measure ranks higher
systems which obtain consistent better results. Con-
versely, ALLNrm normalizes results by scaling val-
ues obtained from each dataset, in this way it tries
to give emphasis to systems trained on each dataset.
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The result of these different perspective is that our
three spaces rank differently according to each mea-
sure. It seems that UNIBA-RI is able to work better
across all datasets, while UNIBA-LSARI gives the
best results on specific datasets, even though all our
methods are unsupervised and do not need training
steps. A deeper analysis on each dataset is reported
on Table 2. Here results seem to be at odds with
Table 1.

Considering individual datasets, UNIBA-RI gives
only once the best result, while UNIBA-LSARI and
UNIBA-DEPRI are able to provide the best results
twice. Generally, all results outperform the base-
line, based on a simple keyword overlap. Lower re-
sults are obtained in MSRpar, we ascribe this result
to the notably long sentences here involved. In par-
ticular, UNIBA-LSARI gives a result lower than the
baseline, and in line with the one obtained by LSA
during the tuning. Hence, we ascribe this low per-
formance to the application of LSA method to this
specific dataset. Only UNIBA-DEPRI was able to
outperform the baseline in this dataset. This shows
the usefulness of encoding syntactic features in se-
mantic word space where longer sentences are in-
volved. Generally, it is interesting to be noticed that
our spaces perform rather well on short and similarly
structured sentences, such as MSRvid and On-WN.

4 Conclusion

We reported evaluation results of our participation in
Semantic Textual Similarity task. Our systems ex-
ploit distributional models to represent the seman-
tics of words. Two of such spaces are based on a
classical definition of context, such as a fixed win-
dow of surrounding words. A third spaces tries to
encompass more definitions of context at once, as
the syntactic structure that relates words in a cor-
pus. Although simple, our methods have achieved
generally good results, outperforming the baseline
provided by the organizers.
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Abstract

This paper presents the UNITOR system that
participated to the SemEval 2012 Task 6: Se-
mantic Textual Similarity (STS). The task is
here modeled as a Support Vector (SV) regres-
sion problem, where a similarity scoring func-
tion between text pairs is acquired from exam-
ples. The semantic relatedness between sen-
tences is modeled in an unsupervised fashion
through different similarity functions, each
capturing a specific semantic aspect of the
STS, e.g. syntactic vs. lexical or topical vs.
paradigmatic similarity. The SV regressor ef-
fectively combines the different models, learn-
ing a scoring function that weights individual
scores in a unique resulting STS. It provides a
highly portable method as it does not depend
on any manually built resource (e.g. WordNet)
nor controlled, e.g. aligned, corpus.

1 Introduction

Semantic Textual Similarity (STS) measures the de-
gree of semantic equivalence between two phrases
or texts. An effective method to compute similar-
ity between short texts or sentences has many appli-
cations in Natural Language Processing (Mihalcea
et al., 2006) and related areas such as Information
Retrieval, e.g. to improve the effectiveness of a se-
mantic search engine (Sahami and Heilman, 2006),
or databases, where text similarity can be used in
schema matching to solve semantic heterogeneity
(Islam and Inkpen, 2008).

STS is here modeled as a Support Vector (SV) re-
gression problem, where a SV regressor learns the
similarity function over text pairs. Regression learn-
ing has been already applied to different NLP tasks.

In (Pang and Lee, 2005) it is applied to Opinion
Mining, in particular to the rating-inference prob-
lem, wherein one must determine an author evalua-
tion with respect to a multi-point scale. In (Albrecht
and Hwa, 2007) a method is proposed for develop-
ing sentence-level MT evaluation metrics using re-
gression learning without directly relying on human
reference translations. In (Biadsy et al., 2008) it has
been used to rank candidate sentences for the task
of producing biographies from Wikipedia. Finally,
in (Becker et al., 2011) SV regressor has been used
to rank questions within their context in the multi-
modal tutorial dialogue problem.

In this paper, the semantic relatedness between
two sentences is modeled as a combination of dif-
ferent similarity functions, each describing the anal-
ogy between the two texts according to a specific
semantic perspective: in this way, we aim at captur-
ing syntactic and lexical equivalences between sen-
tences and exploiting either topical relatedness or
paradigmatic similarity between individual words.
The variety of semantic evidences that a system can
employ here grows quickly, according to the genre
and complexity of the targeted sentences. We thus
propose to combine such a body of evidence to learn
a comprehensive scoring function y = f(~x) over in-
dividual measures from labeled data through SV re-
gression: y is the gold similarity score (provided by
human annotators), while ~x is the vector of the dif-
ferent individual scores, provided by the chosen sim-
ilarity functions. The regressor objective is to learn
the proper combination of different functions redun-
dantly applied in an unsupervised fashion, without
involving any in-depth description of the target do-
main or prior knowledge. The resulting function se-
lects and filters the most useful information and it
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is a highly portable method. In fact, it does not de-
pend on manually built resources (e.g. WordNet),
but mainly exploits distributional analysis of unla-
beled corpora.

In Section 2, the employed similarity functions
are described and the application of SV regression
is presented. Finally, Section 3 discusses results on
the SemEval 2012 - Task 6.

2 Combining different similarity function
through SV regression

This section describes the UNITOR systems partic-
ipating to the SemEval 2012 Task 6: in Section 2.1
the different similarity functions between sentence
pairs are discussed, while Section 2.2 describes how
the SV regression learning is applied.

2.1 STS functions

Each STS depends on a variety of linguistic aspects
in data, e.g. syntactic or lexical information. While
their supervised combination can be derived through
SV regression, different unsupervised estimators of
STS exist.
Lexical Overlap (LO). A basic similarity function
is first employed as the lexical overlap between sen-
tences, i.e. the cardinality of the set of words occur-
ring in both sentences.
Document-oriented similarity based on Latent
Semantic Analysis (LSA). This function captures
latent semantic topics through LSA. The adjacency
terms-by-documents matrix is first acquired through
the distributional analysis of a corpus and reduced
through the application of Singular Value Decom-
position (SVD), as described in (Landauer and Du-
mais, 1997). In this work, the individual sentences
are assumed as pseudo documents and represented
by vectors in the lower dimensional LSA space. The
cosine similarity between vectors of a sentence pair
is the metric hereafter referred to as topical similar-
ity.
Compositional Distributional Semantics (CDS).
Lexical similarity can also be extended to account
for syntactic compositions between words. This
makes sentence similarity to depend on the set of in-
dividual compounds, e.g. subject-verb relationship
instances. While basic lexical information can still
be obtained by distributional analysis, phrase level

Figure 1: Example of dependency graph

similarity can be here modeled as a specific func-
tion of the co-occurring words, i.e. a complex alge-
braic composition of their corresponding word vec-
tors. Differently from the document-oriented case
used in the LSA function, base lexical vectors are
here derived from co-occurrence counts in a word
space, built according to the method discussed in
(Sahlgren, 2006; Croce and Previtali, 2010). In or-
der to keep dimensionality as low as possible, SVD
is also applied here (Annesi et al., 2012). The result
is that every noun, verb, adjective and adverb is then
projected in the reduced word space and then dif-
ferent composition functions can be applied as dis-
cussed in (Mitchell and Lapata, 2010) or (Annesi et
al., 2012).

Convolution kernel-based similarity. The similar-
ity function is here the Smoothed Partial Tree Ker-
nel (SPTK) proposed in (Croce et al., 2011). This
convolution kernel estimates the similarity between
sentences, according to the syntactic and lexical in-
formation in both sentences. Syntactic representa-
tion of a sentence like “A man is riding a bicycle” is
derived from the dependency parse tree, as shown
in Fig. 1. It allows to define different tree struc-
tures over which the SPTK operates. First, a tree
including only lexemes, where edges encode their
dependencies, is generated and called Lexical Only
Centered Tree (LOCT), see Fig. 2. Then, we add
to each lexical node two leftmost children, encod-
ing the grammatical function and the POS-Tag re-
spectively: it is the so-called Lexical Centered Tree
(LCT), see Fig. 3. Finally, we generate the Gram-
matical Relation Centered Tree (GRCT), see Fig.
4, by setting grammatical relation as non-terminal
nodes, while PoS-Tags are pre-terminals and fathers
of their associated lexemes. Each tree representation
provides a different kernel function so that three dif-
ferent SPTK similarity scores, i.e. LOCT, LCT and
GRCT, are here obtained.
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Figure 2: Lexical Only Centered Tree (LOCT)
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Figure 3: Lexical Centered Tree (LCT)
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Figure 4: Grammatical Relation Centered Tree (GRCT)

2.2 Combining STSs with SV Regression

The similarity functions described above provide
scores capturing different linguistic aspects and an
effective way to combine such information is made
available by Support Vector (SV) regression, de-
scribed in (Smola and Schölkopf, 2004). The idea
is to learn a higher level model by weighting scores
according to specific needs implicit in training data.
Given similarity scores ~xi for the i-th sentence pair,
the regressor learns a function yi = f(~xi), where yi

is the score provided by human annotators.
The ε-SV regression (Vapnik, 1995) algorithm al-

lows to define the best f approximating the train-
ing data, i.e. the function that has at most ε de-
viation from the actually obtained targets yi for
all the training data. Given a training dataset
{(~x1, y1), . . . , (~xl, yl)} ∈ X × R, where X is the
space of the input patterns, i.e. the original similar-
ity scores, we can acquire a linear function

f(~x) = 〈~w, ~x〉+ b with ~w ∈ X, b ∈ R

by solving the following optimization problem:

minimize
1

2
||~w||2

subject to

{
yi − 〈~w, ~xi〉 − b ≤ ε
〈~w, ~xi〉+ b− yi ≤ ε

Since the function f approximating all pairs
(~xi, yi) with ε precision, may not exist, i.e. the con-
vex optimization problem is infeasible, slack vari-
ables ξi, ξ∗i are introduced:

minimize
1

2
||~w||2 + C

l∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈~w, ~xi〉 − b ≤ ε+ ξi

〈~w, ~xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

where ξi, ξ∗i measure the error introduced by training
data with a deviation higher than ε and the constant
C > 0 determines the trade-off between the norm
‖~w‖ and the amount up to which deviations larger
than ε are tolerated.

3 Experimental Evaluation

This section describes results obtained in the Se-
mEval 2012 Task 6: STS. First, the experimental
setup of different similarity functions is described.
Then, results obtained over training datasets are re-
ported. Finally, results achieved in the competition
are discussed.

3.1 Experimental setup

In order to estimate the Latent Semantic Analysis
(LSA) based similarity function, the distributional
analysis of the English version of the Europarl Cor-
pus (Koehn, 2002) has been carried out. It is the
same source corpus of the SMTeuroparl dataset and
it allows to acquire a semantic space capturing the
same topics characterizing this dataset. A word-by-
sentence matrix models the sentence representation
space. The entire corpus has been split so that each
vector represents a sentence: the number of different
sentences is about 1.8 million and the matrix cells
contain tf-idf scores between words and sentences.
The SVD is applied and the space dimensionality
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is reduced to k = 250. Novel sentences are im-
mersed in the reduced space, as described in (Lan-
dauer and Dumais, 1997) and the LSA-based simi-
larity between two sentences is estimated according
the cosine similarity.

To estimate the Compositional Distributional Se-
mantics (CDS) based function, a co-occurrence
Word Space is first acquired through the distribu-
tional analysis of the UKWaC corpus (Baroni et al.,
2009), i.e. a Web document collection made of
about 2 billion tokens. UKWaC is larger than the
Europarl corpus and we expect it makes available
a more general lexical representation suited for all
datasets. An approach similar to the one described in
(Croce and Previtali, 2010) has been adopted for the
acquisition of the word space. First, all words occur-
ring more than 200 times (i.e. the targets) are rep-
resented through vectors. The original space dimen-
sions are generated from the set of the 20,000 most
frequent words (i.e. features) in the UKWaC cor-
pus. One dimension describes the Pointwise Mutual
Information score between one feature as it occurs
on a left or right window of 3 tokens around a target.
Left contexts of targets are treated differently from
the right ones, in order to also capture asymmetric
syntactic behaviors (e.g., useful for verbs): 40,000
dimensional vectors are thus derived for each target.
The particularly small window size allows to better
capture paradigmatic relations between targets, e.g.
hyponymy or synonymy. Again, the SVD reduction
is applied to the original matrix with a k = 250.
Once lexical vectors are available, a compositional
similarity measure can be obtained by combining
the word vectors according to a CDS operator, e.g.
(Mitchell and Lapata, 2010) or (Annesi et al., 2012).
In this work, the adopted compositional representa-
tion is the additive operator between lexical vectors,
as described in (Mitchell and Lapata, 2010) and the
similarity function between two sentences is the co-
sine similarity between their corresponding compo-
sitional vectors. Moreover, two additive operators
that only sum over nouns and verbs are also adopted,
denoted by CDSV and CDSN , respectively.

The estimation of the semantically Smoothed Par-
tial Tree Kernel (SPTK) is made available by an ex-
tended version of SVM-LightTK software1 (Mos-

1http://disi.unitn.it/moschitti/Tree-Kernel.htm

chitti, 2006) implementing the smooth matching be-
tween tree nodes. The tree representation described
in Sec. 2.1 allows to define 3 different kernels, i.e.
SPTKLOCT , SPTKLCT and SPTKGRCT . Similarity
between lexical nodes is estimated as the cosine sim-
ilarity in the co-occurrence Word Space described
above, as in (Croce et al., 2011).

In all corpus analysis and experiments, sentences
are processed with the LTH dependency parser, de-
scribed in (Johansson and Nugues, 2007), for Part-
of-speech tagging and lemmatization. Dependency
parsing of datasets is required for the SPTK appli-
cation. Finally, SVM-LightTK is employed for the
SV regression learning to combine specific similar-
ity functions.

3.2 Evaluating the impact of unsupervised
models

Table 1 compares the Pearson Correlation of differ-
ent similarity functions described in Section 2.1, i.e.
mainly the results of the unsupervised approaches,
against the challenge training data. Regarding to
MSRvid dataset, the topical similarity (LSA func-
tion) achieves the best result, i.e. 0.748. Paradig-
matic lexical information as in CDS, CDSN and LO
provides also good results, confirming the impact of
lexical generalization. However, only nouns seem
to contribute significantly, as for the poor results of
CDSV suggest. As the dataset is characterized by
short sentences with negligible syntactic differences,
SPTK-based kernels are not discriminant. On the
contrary, the SPTKLCT achieves the best result in
the MSRpar dataset, where paraphrasing phenom-
ena are peculiar. Notice that the other SPTK kernels
are not equivalently performant, in line with previ-
ous results on question classification and semantic
role labeling (Croce et al., 2011). Lexical informa-
tion provides a crucial contribution also for LO, al-
though the contribution of topical or paradigmatic
generalization seems negligible over MSRpar. Fi-
nally, in the SMTeuroparl, longer sentences are the
norm and length seems to compromise the perfor-
mance of LO. The best results seem to require the
lexical and syntactic information provided by CDS
and SPTK.
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Models
Dataset

MSRvid MSRpar SMTeuroparl

CDS .652 .393 .681
CDSN .630 .234 .485
CDSV .219 .317 .264
LSA .748 .344 .477
SPTKLOCT .300 .251 .611
SPTKLCT .297 .464 .622
SPTKGRCT .278 .255 .626
LO .560 .446 .248

Table 1: Unsupervised results over the training dataset

3.3 Evaluating the role of SV regression

The SV regressors have been trained over a feature
space that enumerates the different similarity func-
tions: one feature is provided by the LSA function,
three by the CDS, i.e. CDS, CDSN and CDSV ,
three by SPTK, i.e. SPTKLOCT , SPTKLCT and
SPTKGRCT and one by LO, i.e. the number of
words in common. Two more features are obtained
by the sentence lengths of a pair, i.e. the number
of words in the first and second sentence, respec-
tively. Table 2 shows Pearson Correlation results
when the regressor is trained according a 10-fold
cross validation schema. First, all possible feature
combinations are attempted for the SV regression,
so that every subset of the 10 features is evaluated.
Results of the best feature combination are shown in
column bestfeat: for MSRvid, the best performance
is achieved when all 10 features are considered; in
MSRpar, SPTK combined with LO is sufficient; fi-
nally, in the SMTeuroparl the combination is LO,
CDS and SPTK. In column allfeat results achieved
by considering all features are reported. Last col-
umn specifies the performance increase with respect
to the corresponding best results in the unsupervised
settings.

Results of the regressors are always higher with
respect to the unsupervised settings, with up to a
35% improvement for the MSRpar, i.e. the most
complex domain. Moreover, differences when best
and all features are employed are negligible. It
means that SV regressor allows to automatically
combine and select the most informative similarity
aspects, confirming the applicability of the proposed
redundant approach to STS.

Dataset
Experiments

Gain
bestfeat allfeat

MSRvid .789 .789 5,0%
MSRpar .615 .612 32,4%
SMTeuroparl .692 .691 1,6%

Table 2: SV regressor results over the training dataset

3.4 Results over the SemEval Task 6

According to the above evidence, we participated to
the SemEval challenge with three different systems.
Sys1 - Best Features. Scores between pairs from a
specific dataset are obtained by applying a regressor
trained over pairs from the same dataset. It means
that, for example, the test pairs from the MSRvid
dataset are processed with a regressor trained over
the MSRvid training data. Moreover, the most rep-
resentative similarity function estimated for the col-
lection is employed: the feature combination provid-
ing the best correlation results over training pairs is
adopted for the test. The same is applied to MSRpar
and SMTeuroparl. No selection is adopted for the
Surprise data and training data for all the domains
are used, as described in Sys3.
Sys2 - All Features. Relatedness scores between
pairs from a specific dataset are obtained using a re-
gressor trained using pairs from the same dataset.
Differently from the Sys1, the similarity function
here is employed within the SV regressors trained
over all 10 similarity functions (i.e. all features).
Sys3 - All features and All domains. The SV re-
gressor is trained using training pairs from all col-
lections and over all 10 features. It means that one
single model is trained and employed to score all
test data. This approach is also used for the Surprise
data, i.e. the OnWN and SMTnews datasets.

Table 3 reports the general outcome for the UN-
ITOR systems. Rank of the individual scores with
respect to the other systems participating to the chal-
lenge is reported in parenthesis. This allows to draw
some conclusions. First, the proposed system ranks
around the 12 and 13 system positions (out of 89
systems), and the 6th group. The adoption of all pro-
posed features suggests that more evidence is better,
as it can be properly modeled by regression. It seems
generally better suited for the variety of semantic
phenomena observed in the tests. Regressors seem
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Dataset
Results

BL Sys1 Sys2 Sys3

MSRvid .299 .821 .821 .802
MSRpar .433 .569 .576 .468
SMTeuroparl .454 .516 .510 .457
surp.OnWN .586 .659
surp.SMTnews .390 .471
ALL .311 .747 (13) .747 (12) .628 (40)
ALLnrm .673 .829 (12) .830 (11) .815 (21)
Mean .436 .632 (10) .632 ( 9) .594 (28)

Table 3: Results over the challenge test dataset

to be robust enough to select the proper features and
make the feature selection step (through collection
specific cross-validation) useless. Collection spe-
cific training seems useful, as Sys3 achieves lower
results, basically due to the significant stylistic dif-
ferences across the collections. However, the good
level of accuracy achieved over the surprise data sets
(between 11% and 17% performance gain with re-
spect to the baselines) confirms the large applica-
bility of the overall technique: our system in fact
does not depend on any manually coded resource
(e.g. WordNet) nor on any controlled (e.g. parallel
or aligned) corpus. Future work includes the study
of the learning rate and its correlation with differ-
ent and richer similarity functions, e.g. CDS as in
(Annesi et al., 2012).
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Abstract

This paper describes our system for the Se-
meval 2012 Sentence Textual Similarity task.
The system is based on a combination of few
simple vector space-based methods for word
meaning similarity. Evaluation results show
that a simple combination of these unsuper-
vised data-driven methods can be quite suc-
cessful. The simple vector space components
achieve high performance on short sentences;
on longer, more complex sentences, they are
outperformed by a surprisingly competitive
word overlap baseline, but they still bring im-
provements over this baseline when incorpo-
rated into a mixture model.

1 Introduction

Vector space models are widely-used methods for
word meaning similarity which exploit the so-called
distributional hypothesis, stating that semantically
similar words tend to occur in similar contexts. Word
meaning is represented by the contexts in which a
word occurs, and similarity is computed by compar-
ing these contexts in a high-dimensional vector space
(Turney and Pantel, 2010). Distributional models of
word meaning are attractive because they are sim-
ple, have wide coverage, and can be easily acquired
at virtually no cost in an unsupervised way. Fur-
thermore, recent research has shown that, at least
to some extent, these models can be generalized to
capture similarity beyond the (isolated) word level,
either as lexical meaning modulated by context, or
as vectorial meaning representations for phrases and
sentences. In this paper we evaluate the use of some
of these models for the Semantic Textual Similarity
(STS) task, which measures the degree of semantic
equivalence between two sentences.

In recent work Mitchell and Lapata (2008) has
drawn the attention to the question of building vecto-
rial meaning representations for sentences by combin-
ing individual word vectors. They propose a family of
simple “compositional” models that compute a vector
for a phrase or a sentence by combining vectors of
the constituent words, using different operations such
as vector addition or component-wise multiplication.
More refined models have been proposed recently by
Baroni and Zamparelli (2010) and Grefenstette and
Sadrzadeh (2011).

Thater et al. (2011) and others take a slightly dif-
ferent perspective on the problem: Instead of com-
puting a vector representation for a complete phrase
or sentence, they focus on the problem of “disam-
biguating” the vector representation of a target word
based on distributional information about the words
in the target’s context. While this approach is not
“compositional” in the sense described above, it still
captures some meaning of the complete phrase in
which a target word occurs.

In this paper, we report on the system we used in
the Semeval 2012 Sentence Textual Similarity shared
task and describe an approach that uses a combina-
tion of few simple vector-based components. We
extend the model of Thater et al. (2011), which has
been shown to perform well on a closely related para-
phrase ranking task, with an additive composition op-
eration along the lines of Mitchell and Lapata (2008),
and compare it with a simple alignment-based ap-
proach which in turn uses vector-based similarity
scores. Results show that in particular the alignment-
based approach can achieve good performance on
the Microsoft Research Video Description dataset.
On the other datasets, all vector-based components
are outperformed by a surprisingly competitive word
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overlap baseline, but they still bring improvements
over this baseline when incorporated into a mixture
model. On the test dataset, the mixture model ranks
10th and 13th on the Microsoft Research Paraphrase
and Video Description datasets, respectively, which
we take this to be a quite promising result given that
we use only few relatively simple vector based com-
ponents to compute similarity scores for sentences.

The rest of the paper is structured as follows: Sec-
tion 2 presents the individual vector-based compo-
nents used by our system. In Section 3 we present
detailed evaluation results on the training set, as well
as results for our system on the test set, while Sec-
tion 4 concludes the paper.

2 Systems for Sentence Similarity

Our system is based on four different components:
We use two different vector space models to repre-
sent word meaning—a basic bag-of-words model
and a slightly simplified variant of the contextual-
ization model of Thater et al. (2011)—and two dif-
ferent methods to compute similarity scores for sen-
tences based on these two vector space models—one
“compositional” method that computes vectors for
sentences by summing over the vectors of the con-
stituent words, and one alignment-based method that
uses vector-based similarity scores for word pairs to
compute an alignment between the words in the two
sentences.

2.1 Vector Space Models

For the basic vector-space model, we assume a set
W of words, and represent the meaning of a word
w ∈W by a vector in the vector space V spanned by
the set of basis vectors {~ew′ | w′ ∈W} as follows:

vbasic(w) = ∑
w′∈W

f (w,w′)~ew′

where f is a function that assigns a co-occurrence
value to the word pair (w,w′). In the experiments
reported below, we use pointwise mutual information
estimated on co-occurrence frequencies for words
within a 5-word window around the target word on
either side.1

1We use a 5-word window here as this setting has been shown
to give best results on a closely related task in the literature
(Mitchell and Lapata, 2008)

This basic “bag of words” vector space model rep-
resents word meaning by summing over all contexts
in which the target word occurs. Since words are of-
ten ambiguous, this means that context words pertain-
ing to different senses of the target word are mixed
within a single vector representation, which can lead
to “noisy” similarity scores. The vector for the noun
coach, for instance, contains context words like teach
and tell (person sense) as well as derail and crash
(vehicle sense).

To address this problem, Thater et al. (2011) pro-
pose a “contextualization” model in which the indi-
vidual components of the target word’s vector are re-
weighted, based on distributional information about
the words in the target’s context. Let us assume that
the context consist of a single word c. The vector for
a target w in context c is then defined as:

v(w,c) = ∑
w′∈W

α(c,w′) f (w,w′)~ew′

where α is some similarity score that quantifies to
what extent the vector dimension that corresponds
to w′ is compatible with the observed context c. In
the experiments reported below, we take α to be the
cosine similarity of c and w′; see Section 3 for details.

In the experiments reported below, we use all
words in the syntactic context of the target word to
contextualize the target:

vctx(w) = ∑
c∈C(w)

v(w,c)

where C(w) is the context in which w occurs, i.e. all
words related to w by a dependency relation such as
subject or object, including inverse relations.

Remark. The contextualization model presented
above is a slightly simplified version of the original
model of Thater et al. (2011): it uses standard bag-of-
words vectors instead of syntax-based vectors. This
simplified version performs better on the training
dataset. Furthermore, the simplified model has been
shown to be equivalent to the models of Erk and
Padó (2008) and Thater et al. (2010) by Dinu and
Thater (2012), so the results reported below carry
over directly to these other models as well.

2.2 Vector Composition and Alignment
The two vector space models sketched above repre-
sent the meaning of words, and thus cannot be applied
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directly to model similarity of phrases or sentences.
One obvious and straightforward way to extend these
models to the sentence level is to follow Mitchell and
Lapata (2008) and represent sentences by vectors
obtained by summing over the individual vectors of
the constituent words. These “compositional” mod-
els can then be used to compute similarity scores
between sentence pairs in a straightforward way, sim-
ply by computing the cosine of the angle between
vectors (or some other similarity score) for the two
sentences:

simadd(S,S′) = cos
(

∑
w∈S

v(w), ∑
w′∈S′

v(w′)
)

(1)

where v(w) can be instantiated either with basic or
with ctx vectors.

In addition to the compositional models, we also
experimented with an alignment-based approach: In-
stead of computing vectors for complete sentences,
we compute an alignment between the words in the
two sentences. To be more precise, we compute
cosine similarity scores between all possible pairs
of words (tokens) of the two sentences; based on
these similarity scores, we then compute a one-to-one
alignment between the words in the two sentences2,
using a greedy search strategy (see Fig. 1). We assign
a weight to each link in the alignment which is simply
the cosine similarity score of the corresponding word
pair and take the sum of the link weights, normalized
by the maximal length of the two sentences to be the
corresponding similarity score for the two sentences.
The final score is then:

simalign(S,S′) =
∑(w,w′)∈ALIGN(S,S′) cos(v(w),v(w′))

max(|S|, |S′|)

where v(w) is the vector for w, which again can be
either the basic or the contextualized vector.

3 Evaluation

In this section we present our experimental results.
In addition to the models described in Section 2, we
define a baseline model which simply computes the
word overlap between two sentences as:

simoverlap(S,S′) =
|S∩S′|
|S∪S′|

(2)

2Note that this can result in some words not being aligned

function ALIGN(S1,S2)
alignment← /0
marked← /0
pairs←{〈w,w′〉 | w ∈ S1,w′ ∈ S2}
while pairs not empty do
〈w,w′〉 ← highest cosine pair in pairs
if w /∈ marked and w′ /∈ marked then

alignment← 〈w,w′〉 ∪ alignment
marked←{w,w′} ∪marked

end if
pairs← pairs \ {〈w,w′〉}

end while
return alignment

end function

Figure 1: The alignment algorithm

The score assigned by this method is simply the num-
ber of words that the two sentences have in common
divided by their total number of words. Finally, we
also propose a straightforward mixture model which
combines all of the above methods. We use the train-
ing data to fit a degree two polynomial over these
individual predictors using least squares regression.
We report cross-validation scores.

3.1 Evaluation setup
The vector space used in all experiments is a bag-of-
words space containing word co-occurrence counts.
We use the GigaWord (1.7 billion tokens) as input
corpus and extract word co-occurrences within a
symmetric 5-word context window. Co-occurrence
counts smaller than three are set to 0 and we further
apply (positive) pmi weighting.

3.2 Training results
The training data results are shown in Figure 2. The
best performance on the video dataset is achieved
by the alignment method using a basic vector rep-
resentation to compute word-level similarity. All
vector-space methods perform considerably better
than the simple word overlap baseline on this dataset,
the alignment method achieving almost 20% gain
over this baseline. This indicates that information
about the meaning of the words is very beneficial for
this type of data, consisting of small, well-structured
sentences.

Using the alignment method with contextualized
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Component MSRvid MSRpar SMTeur

basic/add 70.9 33.3 31.8
ctx/add 65.7 23.0 30.4

basic/align 74.6 40.5 32.1
overlap 56.8 59.5 50.0

mixture 78.1 61.8 54.1

Figure 2: Results on the training set.

vector representations (omitted in the table) does not
bring any improvement and it performs similarly to
the ctx/add method. This suggests that aligning sim-
ilar words in the two sentences does not benefit from
further meaning disambiguation through contextual-
ized vectors and that some level of disambiguation
may be implicitly performed.

On the paraphrase and europarl datasets, the over-
lap baseline outperforms, by a large margin, the vec-
tor space models. This is not surprising, as it is
known that word overlap baselines can be very com-
petitive on Recognizing Textual Entailment datasets,
to which these two datasets bare a large resemblance.
In particular this indicates that the methods proposed
for combining vector representations of words do
not provide, in the current state, accurate models for
modeling the meaning of larger sentences.

We also report 10-fold cross-validation scores ob-
tained with the mixture model. On all datasets, this
outperforms the individual methods, improving by
a margin of 2%-4% the best single methods. In par-
ticular, on the paraphrase and europarl datasets, this
shows that despite the considerably inferior perfor-
mance of the vector-based methods, these can still
help improve the overall performance.

This is also reflected in Table 3, where we evaluate
the performance of the mixture method when, in
turn, one of the individual components is excluded:
with few exceptions, all components contribute to the
performance of the mixtures.

3.3 Test results

We have submitted as our official runs the best sin-
gle vector space model, performing alignment with
basic vector similarity, as well as the mixture meth-
ods. The mixture method uses weights individually
learned for each of the datasets made available during

Component MSRvid MSRpar SMTeur

basic/add −2.1 −0.1 −1.5
ctx/add −0.6 +1.3 +0.4

basic/align −4.1 −1.9 −2.6
overlap −0.1 −17.0 −23.0

Figure 3: Results on the training set when removing indi-
vidual components from the mixture model.

training. For the two surprise datasets we carry over
the weights of what we have considered to be the
most similar training-available sets: video weights of
ontonotes and paraphrase weights for news.

The test data results are given in 4. We report
the results for the individual datasets as well as the
mean Pearson correlation, weighted by the sizes of
the datasets. The table also shows the performance
of the official task baseline as well as the top three
runs accoring to the overall weighted mean score.

As expected, the mixture method outperforms by
a large margin the alignment model, achieving rank
10 and rank 13 on the video and paraphrase datasets.
Overall the mixture method ranks 43 according to the
weighted mean measure (rank 22 if correcting our of-
ficial submission which contained the wrong output
file for the europarl dataset). The other more con-
troversial measures rank our official, not corrected,
submission at position 13 (RankNrm) and 71 (Rank),
overall. This is an encouraging result, as the individ-
ual components we have used are all unsupervised,
obtained solely from large amounts of unlabeled data,
and with no other additional resources. The training
data made available has only been used to learn a
set of weights for combining these individual compo-
nents.

4 Conclusions

This paper describes an approach that combines few
simple vector space-based components to model sen-
tence similarity. We have extended the state-of-the-
art model for contextualized meaning representations
of Thater et al. (2011) with an additive composi-
tion operation along the lines of Mitchell and Lap-
ata (2008). We have combined this with a simple
alignment-based method and a word overlap baseline
into a mixture model.

Our system achieves promising results in particular
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Dataset basic/align mixture baseline Run1 Run2 Run3

MSRvid 77.1 83.1 30.0 87.3 88.0 85.6
MSRpar 40.4 63.1 43.3 68.3 73.4 64.0
SMTeur 26.8 13.9 (37.1∗) 45.4 52.8 47.7 51.5
OnWN 57.2 59.6 58.6 66.4 67.9 71.0

SMTnews 35.0 38.0 39.1 49.3 39.8 48.3

ALL 49.5 45.4 31.1 82.3 81.3 73.3
Rank 65 71 87 1 3 15

ALLNrm 78.7 82.5 67.3 85.7 86.3 85.2
RankNrm 50 13 85 2 1 5

Mean 50.6 56.6 (60.0∗) 43.5 67.7 67.5 67.0
RankMean 60 43 (22∗) 70 1 2 3

Figure 4: Results on the test set. ∗ – corrected score (official results score wrong prediction file we have submitted for
the europarl dataset). Official baseline and top three runs according to the weighted mean measure.

on the Microsoft Research Paraphrase and Video
Description datasets, on which it ranks 13th and 10th,
respectively. We take this to be a promising result,
given that our focus has not been the development
of a highly-competitive complex system, but rather
on investigating what performance can be achieved
when using only vector space methods.

An interesting observation is that the methods for
combining word vector representations (the vector
addition, or the meaning contextualization) can be
beneficial for modeling the similarity of the small,
well-structured sentences of the video dataset, how-
ever they do not perform well on comparing longer,
more complex sentences. In future work we plan to
further investigate methods for composition in vector
space models using the STS datasets, in addition to
the small, controlled datasets that have been typically
used in this line of research.
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Abstract 

This paper describes the specifications and 
results of UMCC_DLSI system, which 
participated in the first Semantic Textual 
Similarity task (STS) of SemEval-2012. Our 
supervised system uses different kinds of 
semantic and lexical features to train classifiers 
and it uses a voting process to select the correct 
option. Related to the different features we can 
highlight the resource ISR-WN1 used to extract 
semantic relations among words and the use of 
different algorithms to establish semantic and 
lexical similarities. In order to establish which 
features are the most appropriate to improve 
STS results we participated with three runs 
using different set of features. Our best 
approach reached the position 18 of 89 runs, 
obtaining a general correlation coefficient up to 
0.72. 

1. Introduction 

SemEval 2012 competition for evaluating Natural 
Language Processing (NLP) systems presents a 
new task called Semantic Textual Similarity (STS) 
(Agirre et al., 2012). In STS the participating 
systems must examine the degree of semantic 
equivalence between two sentences. The goal of 
this task is to create a unified framework for the 
evaluation of semantic textual similarity modules 
and to characterize their impact on NLP 
applications. 

STS is related to Textual Entailment (TE) and 
Paraphrase tasks. The main difference is that STS 

                                                   
1
 Integration of Semantic Resource based on WordNet. 

assumes bidirectional graded equivalence between 
the pair of textual snippets. In the case of TE the 
equivalence is directional (e.g. a student is a 
person, but a person is not necessarily a student). 
In addition, STS differs from TE and Paraphrase in 
that, rather than being a binary yes/no decision, 
STS is a similarity-graded notion (e.g. a student 
and a person are more similar than a dog and a 
person). This bidirectional gradation is useful for 
NLP tasks such as Machine Translation, 
Information Extraction, Question Answering, and 
Summarization. Several semantic tasks could be 
added as modules in the STS framework, “such as 
Word Sense Disambiguation and Induction, 
Lexical Substitution, Semantic Role Labeling, 
Multiword Expression detection and handling, 
Anaphora and Co-reference resolution, Time and 
Date resolution and Named Entity Recognition, 
among others”2  

1.1. Description of 2012 pilot task 

In STS, all systems were provided with a set of 
sentence pairs obtained from a segmented corpus. 
For each sentence pair, s1 and s2, all participants 
had to quantify how similar s1 and s2 were, 
providing a similarity score. The output of 
different systems was compared to the manual 
scores provided by SemEval-2012 gold standard 
file, which range from 5 to 0 according to the next 
criterions3:  
• (5) “The two sentences are equivalent, as they 

mean the same thing”. 

                                                   
2 http://www.cs.york.ac.uk/semeval-2012/task6/ 
3 http://www.cs.york.ac.uk/semeval-
2012/task6/data/uploads/datasets/train-readme.txt 
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• (4) “The two sentences are mostly equivalent, 
but some unimportant details differ”. 

• (3) “The two sentences are roughly equivalent, 
but some important information 
differs/missing”. 

• (2) “The two sentences are not equivalent, but 
share some details”. 

• (1) “The two sentences are not equivalent, but 
are on the same topic”. 

• (0) “The two sentences are on different topics”. 
After this introduction, the rest of the paper is 

organized as follows. Section 2 shows the 
architecture of our system and a description of the 
different runs. In section 3 we describe the 
algorithms and methods used to obtain the features 
for our system, and Section 4 describe the training 
phase. The obtained results and a discussion are 
provided in Section 5, and finally the conclusions 
and future works in Section 6. 

2. System architecture and description of 
the runs 

As we can see in Figure 1 our three runs begin 
with the pre-processing of SemEval 2012’s 
training set. Every sentence pair is tokenized, 
lemmatized and POS tagged using Freeling tool 
(Atserias et al., 2006). Afterwards, several 
methods and algorithms are applied in order to 
extract all features for our Machine Learning 
System (MLS). Each run uses a particular group of 
features. 

The Run 1 (MultiSemLex) is our main run. 
This takes into account all extracted features and 
trains a model with a Voting classifier composed 
by the following techniques: Bagging (using M5P), 
Bagging (using REPTree), Random SubSpace 
(using REPTree) and MP5. The training corpus has 
been provided by SemEval-2012 competition, in 
concrete by the Semantic Textual Similarity task.  

The Runs 2 and 3 use the same classifier, but 
including different features. Run 2 (MultiLex) uses 
(see Figure 1) features extracted from Lexical-
Semantic Metrics (LS-M) described in section 3.1, 
Lexical-Semantic Alignment (LS-A) described in 
section 3.2 and Sentiment Polarity (SP) described 
in section 3.3.  

On the other hand, the Run 3 (MultiSem) uses 
features extracted only from Semantic Alignment 
(SA) described in section 3.4 and the textual edit 
distances named QGram-Distances. 

 
Figure 1. System Architecture. 

As a result, we obtain three trained models 
capable to estimate the similarity value between 
two sentences. 

Finally, we test our system with the SemEval 
2012 test set (see Table 7 with the results of our 
three runs). The following section describes the 
features extraction process. 

      Run 1 
      Voting  
      Classifier 

Training set from 
SemEval 2012 

Pre-Processing (using Freeling) 
 

Run 3 
Voting classifier 

Run 2 
Voting classifier 

Similarity Scores 

Feature extraction 

Lexical-Semantic Metrics 
 

Lexical-semantic 
alignment 

Semantic 
alignment 

Sentiment 
Polarity 

Jaro QGram Rel. Concept . . . 

Tokenizing Lemmatizing POS tagging 

SemEval 2012 
Test set 

     Training Process (using Weka) 
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3. Description of the features used in the 
Machine Learning System 

Sometimes, when two sentences are very similar, 
one sentence is in a high degree lexically 
overlapped by the other. Inspired by this fact we 
developed various algorithms, which measure the 
level of overlapping by computing a quantity of 
matching words (the quantity of lemmas that 
correspond exactly by its morphology) in a pair of 
sentences. In our system, we used lexical and 
semantic similarity measures as features for a 
MLS. Other features were extracted from a lexical-
semantic sentences alignment and a variant using 
only a semantic alignment.  

3.1. Similarity measures 

We have used well-known string based similarity 
measures like: Needleman-Wunch (NW) (sequence 
alignment), Smith-Waterman (SW) (sequence 
alignment), Jaro, Jaro-Winkler (JaroW), Chapman-
Mean-Length (CMLength), QGram-Distance 
(QGramD), Block-Distance (BD), Jaccard 
Similarity (JaccardS), Monge-Elkan (ME) and 
Overlap-Coefficient (OC). These algorithms have 
been obtained from an API (Application Program 
Interface) SimMetrics library v1.54 for .NET 2.0. 
Copyright (c) 2006 by Chris Parkinson. We 
obtained 10 features for our MLS from these 
similarity measures. 

Using Levenshtein’s edit distance (LED), we 
computed also two different algorithms in order to 
obtain the alignment of the phrases. In the first 
one, we considered a value of the alignment as the 
LED between two sentences and the normalized 
variant named NomLED. Contrary to (Tatu et al., 
2006), we do not remove the punctuation or stop 
words from the sentences, neither consider 
different cost for transformation operation, and we 
used all the operations (deletion, insertion and 
substitution). The second one is a variant that we 
named Double Levenshtein’s Edit Distance 
(DLED). For this algorithm, we used LED to 
measure the distance between the sentences, but to 
compare the similarity between the words, we used 
LED again. Another feature is the normalized 
variant of DLED named NomDLED. 

The unique difference between classic LED 
algorithm and DLED is the comparison of 

                                                   
4 http://sourceforge.net/projects/simmetrics/ 

similitude between two words. With LED should 
be: �[�] = �[�], whereas for our DLED we 
calculate words similarity also with LED (e.g. ��	�(�[�], �[�]) <= 2). Values above a decision 
threshold (experimentally 2) mean unequal words. 
We obtain as result two new different features 
from these algorithms. 

Another distance we used is an extension of 
LED named Extended Distance (EDx) (see 
(Fernández Orquín et al., 2009) for details). This 
algorithm is an extension of the Levenshtein’s 
algorithm, with which penalties are applied by 
considering what kind of operation or 
transformation is carried out (insertion, deletion, 
substitution, or non-operation) in what position, 
along with the character involved in the operation. 
In addition to the cost matrixes used by 
Levenshtein’s algorithm, EDx also obtains the 
Longest Common Subsequence (LCS) 
(Hirschberg, 1977) and other helpful attributes for 
determining similarity between strings in a single 
iteration. It is worth noting that the inclusion of all 
these penalizations makes the EDx algorithm a 
good candidate for our approach. In our previous 
work (Fernández Orquín et al., 2009), EDx 
demonstrated excellent results when it was 
compared with other distances as (Levenshtein, 
1965), (Needleman and Wunsch, 1970), (Winkler, 
1999). How to calculate EDx is briefly described 
as follows (we refer reader to (Fernández Orquín et 
al., 2009) for a further description): 

EDx = �∑  �����∗����� !,���"#�$(%&'()*+),-�.-��/0
1

2
; 

(1) 

 

 

Where: 3 - Transformations accomplished on the words (4, 5, �, 6). 4 - Not operations at all, 5 - Insertion, � - Deletion, 6 - Substitution.  
We formalize 3 as a vector: 

3 =
89:
9;(0,0)(1,0) :: ?�(0,1)(1,1) :: @�A9B

9C
 

D1 and D2 - The examined words D1j - The j-th character of the word D1 
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D2k - The k-th character of the word D2 E - The weight of each character 
We can vary all this weights in order to make a 

flexible penalization to the interchangeable 
characters.  ED1j - The weight of characters at D1j ED2k - The weight of characters at D2k 

F = GF + 1 �� 4i ≠ 5F �� 4i = 5 J ; K = LK + 1 �� 4i ≠ �K �� 4i = � M 

� - The biggest word length of the language N - Edit operations length 4i - Operation at (�) position OPQR - Greatest value of E ranking 

S =  T 2OUVW(2OUVW + 1)XYZ+
X[\  (2) 

As we can see in the equation (1), the term 3(]^) ∗ �E�_+`�, E(_%a)! is the Cartesian product that 

analyzes the importance of doing i-th operation 
between the characters at j-th and k-th position 
The term (2Rcde + 1)fZg in equation (1) penalizes 
the position of the operations. The most to the left 
hand the operation is the highest the penalization 
is. The term S (see equation (2) normalizes the 
EDx into [0,1] interval. This measure is also used 
as a feature for the system. 

We also used as a feature the Minimal 
Semantic Distances (Breadth First Search (BFS)) 
obtained between the most relevant concepts of 
both sentences. The relevant concepts pertain to 
semantic resources ISR-WN (Gutiérrez et al., 
2011a; 2010b), as WordNet (Miller et al., 1990), 
WordNet Affect (Strapparava and Valitutti, 2004), 
SUMO (Niles and Pease, 2001) and Semantic 
Classes (Izquierdo et al., 2007). Those concepts 
were obtained after having applied the Association 
Ratio (AR) measure between concepts and words 
over each sentence. The obtained distances for 
each resource SUMO, WordNet Affect, WordNet 
and Semantic Classes are named SDist, AffDist, 
WNDist and SCDist respectively. 

ISR-WN, takes into account different kind of 
labels linked to WN: Level Upper Concepts 
(SUMO), Domains and Emotion labels. In this 
work, our purpose is to use a semantic network, 
which links different semantic resources aligned to 
WN. After several tests, we decided to apply ISR-
WN. Although others resources provide different 
semantic relations, ISR-WN has the highest 

quantity of semantic dimensions aligned, so it is a 
suitable resource to run our algorithm.  

Using ISR-WN we are able to extract 
important information from the interrelations of 
four ontological resources: WN, WND, WNA and 
SUMO. ISR-WN resource is based on WN1.6 or 
WN2.0 versions. In the last updated version, 
Semantic Classes and SentiWordNet were also 
included. Furthermore, ISR-WN provides a tool 
that allows the navigation across internal links. At 
this point, we can discover the multidimensionality 
of concepts that exists in each sentence. In order to 
establish the concepts associated to each sentence 
we apply Relevant Semantic Trees (Gutiérrez et 
al., 2010a; Gutiérrez et al., 2011b) approach using 
the provided links of ISR-WN. We refer reader to 
(Gutiérrez et al., 2010a) for a further description. 

3.2. Lexical-Semantic alignment 

Another algorithm that we created is the Lexical-
Semantic Alignment. In this algorithm, we tried to 
align the sentences by its lemmas. If the lemmas 
coincide we look for coincidences among parts of 
speech, and then the phrase is realigned using both. 
If the words do not share the same part of speech, 
they will not be aligned. Until here, we only have 
taken into account a lexical alignment. From now 
on, we are going to apply a semantic variant. After 
all the process, the non-aligned words will be 
analyzed taking into account its WorldNet’s 
relations (synonymy, hyponymy, hyperonymy, 
derivationally – related – form, similar-to, verbal 
group, entailment and cause-to relation); and a set 
of equivalencies like abbreviations of months, 
countries, capitals, days and coins. In the case of 
the relation of hyperonymy and hyponymy, the 
words will be aligned if there is a word in the first 
sentence that is in the same relation (hyperonymy 
or hyponymy) of another one in the second 
sentence. For the relations of “cause-to” and 
“implication” the words will be aligned if there is a 
word in the first sentence that causes or implicates 
another one of the second sentence. All the other 
types of relations will be carried out in 
bidirectional way, that is, there is an alignment if a 
word of the first sentence is a synonymous of 
another one belonging to the second one or vice 
versa. Finally, we obtain a value we called 
alignment relation. This value is calculated as hi3 =  Sij / Sj6E. Where hi3 is the final 
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alignment value, Sij is the number of aligned 
word and Sj6E is the number of words of the 
shorter phrase. This value is also another feature 
for our system. 

3.3. Sentiment Polarity Feature 

Another feature is obtained calculating 
SentiWordNet Polarities matches of the analyzed 
sentences (see (Gutiérrez et al., 2011c) for detail). 
This analysis has been applied from several 
dimensions (WordNet, WordNet Domains, 
WordNet Affect, SUMO, and Semantic Classes) 
where the words with sentimental polarity offer to 
the relevant concepts (for each conceptual resource 
from ISR-WN (e.g. WordNet, WordNet Domains, 
WordNet Affect, SUMO, and Semantic Classes)) 
its polarity values. Other analysis were the 
integration of all results of polarity in a measure 
and further a voting process where all polarities 
output are involved (for more details see 
(Fernández et al., 2012)). 

The final measure corresponds to E3 =E?N6+ + E?N6%, where E?N61 is a polarity value of 
the sentence 61 and E?N6% is a polarity value of the 
sentence 62. The negative, neutral, and positive 
values of polarities are represented as -1, 0 and 1 
respectively. 

3.4. Semantic Alignment 

This alignment method depends on calculating the 
semantic similarity between sentences based on an 
analysis of the relations, in ISR-WN, of the words 
that fix them. 

First, the two sentences are pre-processed with 
Freeling and the words are classified according to 
their parts of speech (noun, verb, adjective, and 
adverbs.).  

We take 30% of the most probable senses of 
every word and we treat them as a group. The 
distance between two groups will be the minimal 
distance between senses of any pair of words 
belonging to the group. For example: 

 
Figure 2. Minimal Distance between “Run” and 

“Chase”. 

In the example of Figure 2 the ���� = 2 is 
selected for the pair “Run-Chase”, because this 
pair has the minimal cost=2.  

For nouns and the words that are not found in 
WordNet like common nouns or Christian names, 
the distance is calculated in a different way. In this 
case, we used LED. 

Let's see the following example: 
We could take the pair 99 of corpus MSRvid 

(from training set) with a litter of transformation in 
order to a better explanation of our method. 
Original pair 
A:  A polar bear is running towards a group of 
walruses. 
B: A polar bear is chasing a group of walruses. 
Transformed pair: 
A1: A polar bear runs towards a group of cats. 
B1: A wale chases a group of dogs. 

Later on, using the algorithm showed in the 
example of Figure 2, a matrix with the distances 
between all groups of both sentences is created 
(see Table 1). 

GROUPS polar bear runs towards group cats 
wale Dist:=3 Dist:=2 Dist:=3 Dist:=5  Dist:=2 
chases Dist:=4 Dist:=3 Dist:=2 Dist:=4  Dist:=3 
group     Dist:=0  
dogs Dist:=3 Dist:=1 Dist:=4 Dist:=4  Dist:=1 

Table 1. Distances between the groups. 

Using the Hungarian Algorithm (Kuhn, 1955) 
for Minimum Cost Assignment, each group of the 
smaller sentence is checked with an element of the 
biggest sentence and the rest is marked as words 
that were not aligned. 

In the previous example the words “toward” 
and “polar” are the words that were not aligned, so 
the number of non-aligned words is 2. There is 
only one perfect match: “group-group” (match 
with D?�� = 0). The length of the shortest sentence 
is 4. The Table 2 shows the results of this analysis. 

Number of 
exact 

coincidences 
(Same) 

Total Distances 
of optimal 
Matching 

(Cost) 

Number of 
non-

aligned 
Words 
(Dif) 

Number of 
lemmas of 

shorter 
sentence 

(Min) 
1 5 2 4 

Table 2. Features extracted from the analyzed sentences. 

This process has to be repeated for the verbs, 
nouns (see Table 3), adjectives, and adverbs. On 
the contrary, the tables have to be created only 
with the similar groups of the sentences. Table 3 

Lemma: Chase 
 
 
 
 

Lemma: Run 
 

 
 
 

Dist=2 

2 

3 

5 
Sense 1 

Sense 2 

Sense 1 

Sense 2 

4 
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shows features extracted from the analysis of 
nouns. 

GROUPS bear group cats 
wale Dist := 2  Dist := 2 
group  Dist := 0  
dogs Dist := 1  Dist := 1 

Table 3. Distances between the groups of nouns. 

Number of 
exact 

coincidences 
(SameN) 

Total 
Distances of 

optimal 
Matching 
(CostN) 

Number of 
non-aligned 

Words 
(DifN) 

Number of 
lemmas of 

shorter 
sentence 
(MinN) 

1 3 0 3 

Table 4. Feature extracted the analysis of nouns. 

Several attributes are extracted from the pair of 
sentences. Four attributes from the entire 
sentences, four attributes considering only verbs, 
only nouns, only adjectives, and only adverbs. 
These attributes are:  
• Number of exact coincidences (Same) 
• Total distance of optimal matching (Cost). 
• Number of words that do not match (Dif). 
• Number of lemmas of the shortest sentence 

(Min). 
As a result, we finally obtain 20 attributes from 

this alignment method. For each part-of-speech, 

the attributes are represented adding to its names 
the characters N, V, A and R to represent features 
for nouns, verbs, adjectives, and adverbs 
respectively. 

It is important to remark that this alignment 
process searches to solve, for each word from the 
rows (see Table 3) its respectively word from the 
columns. 

4. Description of the training phase 

For the training process, we used a supervised 
learning framework, including all the training set 
(MSRpar, MSRvid and SMTeuroparl) as a training 
corpus. Using 10 fold cross validation with the 
classifier mentioned in section 2 (experimentally 
selected). 

As we can see in Table 5, the features: FAV, 
EDx, CMLength, QGramD, BD, Same, SameN, 
obtain values over 0.50 of correlation. The more 
relevant are EDx and QGramD, which were 
selected as a lexical base for the experiment in Run 
3. It is important to remark that feature SameN and 
Same only using number of exact coincidences 
obtain an encourage value of correlation. 

 

Feature Correlation Feature Correlation Feature Correlation 
Correlation using all 

features 
(correspond to Run 1) 

FAV 0.5064 ME 0.4971 CostV 0.1517 

0.8519 

LED 0.4572 OC 0.4983 SameN 0.5307 
DLED 0.4782 SDist 0.4037 MinN 0.4149 

NormLED 0.4349 AffDist  0.4043 DifN 0.1132 
NormDLED 0.4457 WNDist 0.2098 CostN 0.1984 

EDx 0.596 SCDist  0.1532 SameA 0.4182 
NW 0.2431 PV 0.0342 MinA 0.4261 
SW 0.2803 Same 0.5753 DifA 0.3818 
Jaro 0.3611 Min 0.5398 CostA 0.3794 

JaroW 0.2366 Dif 0.2588 SameR 0.3586 
CMLength 0.5588 Cost 0.2568 MinR 0.362 
QGramD 0.5749 SameV 0.3004 DifR 0.3678 

BD 0.5259 MinV 0.4227 CostR 0.3461 
JaccardS 0.4849 DifV 0.2634 

  
 

Table 5. Correlation of individual features over all training sets. 

 
We decide to include the Sentiment Polarity as 

a feature, because our previous results on Textual 
Entailment task in (Fernández et al., 2012). But, 
contrary to what we obtain in this paper, the 
influence of the polarity (PV) for this task is very 
low, its contribution working together with other 

features is not remarkable, but neither negative 
(Table 6), So we decide remaining in our system. 

In oder to select the lexical base for Run 3 
(MultiSem, features marked in bold) we compared 
the individual influences of the best lexical 
features (EDx, QGramD, CMLength), obtaining 
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the 0.82, 0.83, 0.81 respectively (Table 6). Finally, 
we decided to use QGramD. 

The conceptual features SDist, AffDist, 
WNDist, SCDist do not increase the similarity 
score, this is due to the generality of the obtained 
concept, losing the essential characteristic between 
both sentences. Just like with PV we decide to 
keep them in our system. 

As we can see in Table 5, when all features are 
taking into account the system obtain the best 
score. 
Feature Pearson (MSRpar, MSRvid and SMTeuroparl) 

SDist         

0.8509 

AffDist         
WNDist         
SCDist         
EDx        

0.8507 

PV     
 

  
QGramD      

0.8491 

CMLength   

0.8075 

   
Same 

0.7043 

0.795 0.829 0.8302 0.8228 

Min  
Dif 

Cost 
SameV 

0.576 
MinV 
DifV  

CostV 
SameN 

0.5975 
MinN 
DifN 

CostN 
SameA 

0.4285 
MinA 
DifA 

CostA 
SameR 

0.3778 
MinR 
DifR 

CostR 

Table 6. Features influence.  

Note: Gray cells mean features that are not taking into 
account. 

5. Result and discussion 

Semantic Textual Similarity task of SemEval-2012 
offered three official measures to rank the 
systems5: 
1. ALL: Pearson correlation with the gold 

standard for the five datasets, and 
corresponding rank. 

2. ALLnrm: Pearson correlation after the system 
outputs for each dataset are fitted to the gold 

                                                   
5 http://www.cs.york.ac.uk/semeval-
2012/task6/index.php?id=results-update 

standard using least squares, and 
corresponding rank. 

3. Mean: Weighted mean across the five datasets, 
where the weight depends on the number of 
pairs in the dataset. 

4. Pearson for individual datasets. 

Using these measures, our main run (Run 1) 
obtained the best results (see Table 7). This 
demonstrates the importance of tackling this 
problem from a multidimensional lexical-semantic 
point of view. 

Run MSRpar MSRvid SMT-eur On-WN SMT-
news 

1 0.6205 0.8104 0.4325 0.6256 0.4340 
2 0.6022 0.7709 0.4435 0.4327 0.4264 
3 0.5269 0.7756 0.4688 0.6539 0.5470 

Table 7. Official SemEval 2012 results. 

Run ALL Rank  ALLnrm  RankNrm Mean RankMean 
1 0.7213 18 0.8239 14 0.6158 15 
2 0.6630 26 0.7922 46 0.5560 49 
3 0.6529 29 0.8115 23 0.6116 16 

Table 8. Ranking position of our runs in SemEval 2012. 

The Run 2 uses a lot of lexical analysis and not 
much of semantic analysis. For this reason, the 
results for Run 2 is poorer (in comparison to the 
Run 3) (see Table 7) for the test sets: SMT-eur, 
On-WN and SMT-news. Of course, these tests 
have more complex semantic structures than the 
others. However, for test MSRpar it function better 
and for test MSRvid it functions very similar to 
Run 3. 

Otherwise, the Run 3 uses more semantic 
analysis that Run 2 (it uses all features mentioned 
except feature marked in bold on Table 6) and only 
one lexical similarity measure (QGram-Distance). 
This makes it to work better for test sets SMT-eur, 
On-WN and SMT-news (see Table 7). It is 
important to remark that this run obtains important 
results for the test SMT-news, positioning this 
variant in the fifth place of 89 runs. Moreover, it is 
interesting to notice (Table 7) that when mixing the 
semantic features with the lexical one (creating 
Run 1) it makes the system to improve its general 
results, except for the test: SMT-eur, On-WN and 
SMT-news in comparison with Run 3. For these 
test sets seem to be necessary more semantic 
analysis than lexical in order to improve similarity 
estimation. We assume that Run 1 is non-balance 
according to the quantity of lexical and semantic 
features, because this run has a high quantity of 
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lexical and a few of semantic analysis. For that 
reason, Run 3 has a better performance than Run 1 
for these test sets. 

Even when the semantic measures demonstrate 
significant results, we do not discard the lexical 
help on Run 3. After doing experimental 
evaluations on the training phase, when lexical 
feature from QGram-Distance is not taken into 
account, the Run 3 scores decrease. This 
demonstrates that at least a lexical base is 
necessary for the Semantic Textual Similarity 
systems. 

6. Conclusion and future works 

This paper introduced a new framework for 
recognizing Semantic Textual Similarity, which 
depends on the extraction of several features that 
can be inferred from a conventional interpretation 
of a text. 

As mentioned in section 2 we have conducted 
three different runs, these runs only differ in the 
type of attributes used. We can see in Table 7 that 
all runs obtained encouraging results. Our best run 
was placed between the first 18th positions of the 
ranking of Semeval 2012 (from 89 Runs) in all 
cases. Table 8 shows the reached positions for the 
three different runs and the ranking according to 
the rest of the teams.  

In our participation, we used a MLS that works 
with features extracted from five different 
strategies: String Based Similarity Measures, 
Semantic Similarity Measures, Lexical-Semantic 
Alignment, Semantic Alignment, and Sentiment 
Polarity Cross-checking. 

We have conducted the semantic features 
extraction in a multidimensional context using the 
resource ISR-WN, the one that allowed us to 
navigate across several semantic resources 
(WordNet, WordNet Domains, WordNet Affect, 
SUMO, SentiWorNet and Semantic Classes). 

Finally, we can conclude that our system 
performs quite well. In our current work, we show 
that this approach can be used to correctly classify 
several examples from the STS task of SemEval-
2012. Comparing with the best run (UKP_Run2 
(see Table 9)) of the ranking our main run has very 
closed results. In two times we increased the best 
UKP’s run (UKP_Run 2), for MSRvid test set in 
0.2824 points and for On-WN test set in 0.1319 
points (see Table 10).  

Run ALL  Rank ALLnrm  RankNrm Mean RankMean 
(UKP) 
Run 2 

0.8239 1 0.8579 2 0.6773 1 

Table 9. The best run of SemEval 2012. 

It is important to remark that we do not expand 
any corpus to train the classifier of our system. 
This fact locates us at disadvantage according to 
other teams that do it. 

Run ALL  MSRpar MSRvid SMT-
eur 

On-
WN 

SMT-
news 

(UKP) 
Run 2 

0.8239 0.8739 0.528 0.6641 0.4937 0.4937 

(Our) 
Run 1 

0.721 0.6205 0.8104 0.4325 0.6256 0.434 

Table 10. Comparison of our distance with the best. 

As future work we are planning to enrich our 
semantic alignment method with Extended 
WordNet (Moldovan and Rus, 2001), we think that 
with this improvement we can increase the results 
obtained with texts like those in On-WN test set. 
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Abstract

We describe the systems submitted by SRI In-
ternational and the University of the Basque
Country for the Semantic Textual Similarity
(STS) SemEval-2012 task. Our systems fo-
cused on using a simple set of features, fea-
turing a mix of semantic similarity resources,
lexical match heuristics, and part of speech
(POS) information. We also incorporate pre-
cision focused scores over lexical and POS in-
formation derived from the BLEU measure,
and lexical and POS features computed over
split-bigrams from the ROUGE-S measure.
These were used to train support vector re-
gressors over the pairs in the training data.
From the three systems we submitted, two per-
formed well in the overall ranking, with split-
bigrams improving performance over pairs
drawn from the MSR Research Video De-
scription Corpus. Our third system maintained
three separate regressors, each trained specif-
ically for the STS dataset they were drawn
from. It used a multinomial classifier to pre-
dict which dataset regressor would be most ap-
propriate to score a given pair, and used it to
score that pair. This system underperformed,
primarily due to errors in the dataset predictor.

1 Introduction

Previous semantic similarity tasks, such as para-
phrase identification or recognizing textual entail-
ment, have focused on performing binary decisions.
These problems are usually framed in terms of iden-
tifying whether a pair of texts exhibit the needed
similarity or entailment relationship or not. In many
cases, such as producing a ranking over similarity

scores, a soft measure of similarity between a pair
of texts would be more desirable.

We contributed three systems for the 2012 Se-
mantic Textual Similarity (STS) task (Agirre et al.,
2012). These are:

1. System 1, which used a combination of seman-
tic similarity, lexical similarity, and precision
focused part-of-speech (POS) features.

2. System 2, which used features from System
1, with the addition of skip-bigram features
derived from the ROUGE-S (Lin, 2004) mea-
sure. POS variants of skip-bigrams were incor-
porated as well.

3. System 3, used the features from above to first
classify the dataset the pair was drawn from,
and then applied regressors trained for that
dataset.

Our systems characterize sentence pairs as feature
vectors, populated by a variety of scorers that will be
described below. During training, we used support
vector regression (SVR) to train regressors against
these vectors and their associated similarity scores.

The STS training data is divided into three
datasets, reflecting their origin: Microsoft Research
Paraphrase Corpus (MSRpar), MSR Research Video
Description Corpus (MSRvid), and WMT2008 De-
velopment dataset (SMTeuroparl). We trained indi-
vidual regressors for each of these datasets, and ap-
plied them to their counterparts in the testing set.

Both Systems 1 and 2 used the following types of
features:
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1. Resource based word to word semantic similar-
ities.

2. Cosine-based lexical similarity measure.

3. Bilingual Evaluation Understudy (BLEU) (Pa-
pineni et al., 2002) lexical overlap.

4. Precision focused Part of Speech (POS) fea-
tures.

System 2 added the following features:

1. Lexically motivated skip-bigram overlap.

2. Precision focused skip-bigram POS features.

One of the primary motivations for our the choice
of features was to use relatively simple and fast fea-
tures, which can be scaled up to large datasets, given
appropriate caching and pre-generated lookups. As
the test phase included surprise datasets, whose ori-
gin was not disclosed, we also trained a fourth model
using all of the training data from all three datasets.
Systems 1 and 2 employed this strategy for the sur-
prise data.

Since the statistics for each of the training datasets
varied, directly pooling them together may not be
the best strategy when scoring the surprise data,
whose origins were unknown. To account for this,
System 3 treated this as a gated regression problem,
where pairs are considered to originate strictly from
one dataset, and to score using a model specifically
tailored for that dataset. We first trained regressors
on each of the datasets separately. Then we trained
a classifier to predict which dataset a given pair is
likeliest to have been drawn from, and then applied
the matching trained regressor to obtain its score.

This team included one of the organizers. We
want to stress that we took all measures to make our
participation on the same conditions as the rest of
participants. In particular, the organizer did not al-
low the other member of the team to access any data
or information which was not already available for
the rest of participants.

For the rest of this system description, we first
outline the scorers used to populate the feature vec-
tors used for Systems 1 and 2. We then describe
the setup for performing the regression. We follow
with an explanation of our strategies for dealing with

the surprise data, including a description of System
3. We then summarize performance over the the
datasets, and discuss future avenues of investigation.

2 Resource Based Similarity

Our system uses several resources for assessing the
word to word similarity between a pair of sentences.
In order to pool together the similarity scores for a
given pair, we employed the Semantic Matrix (Fer-
nando and Stevenson, 2008) framework. To gen-
erate the scores, we used several resources, princi-
pally those derived from the relation graph of Word-
Net (Fellbaum, 1998), and those derived from distri-
butional resources, namely Explicit Semantic Anal-
ysis (Gabrilovich and Markovitch, 2009), and the
Dekang Lin Proximity-based Thesaurus 1. We now
describe the Semantic Matrix method, and follow
with descriptions of each of the resources used.

2.1 Semantic Matrix

The Semantic Matrix is a method for pooling all
of the pairwise similarity scores between the to-
kens found in two input strings. In order to score
the similarity between a pair of strings s1 and s2
we first identify all of the unique vocabulary words
from these strings to derive their corresponding oc-
currence vectors v1 and v2. Each dimension of
these vectors corresponds to a unique vocabulary
word, and binary values were used, corresponding
to whether that word was observed. The similarity
score for pair, sim(s1, s2), is given by Formula 1.

sim(s1, s2) =
vT

1 Wv2

‖v1‖ ‖v2‖
(1)

with W being the symmetric matrix marking the
similarity between pairs of words in the vocabulary.
We note that this is similar to the Mahalanobis dis-
tance, except adjusted to produce a similarity. For
this experiment, we normalized matrix entries so all
values lay in the 0-1 range.

As named entities and other words encountered
may not appear in one or more of the resources used,
we applied the identity to W. This is equivalent to
adding a strict lexical match fallback on top of the
similarity measure.

1http://webdocs.cs.ualberta.ca/ lindek/downloads.htm
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Per (Fernando and Stevenson, 2008), a filter was
applied over the values of W. Any entries that fell
below a given threshold value were flattened to zero,
in order to prevent low scoring similarities from
overwhelming the score. From previous studies over
MSRpar, we applied a threshold of 0.9.

For our experiments, each of the word to word
similarity scorers described below were used to gen-
erate a corresponding word similarity matrix W,
with scores generated using the Semantic Matrix.

2.2 WordNet Similarity
We used several methods to obtain word to word
similarities from WordNet. WordNet is a lexical-
semantic resource that describes typed relationships
between synsets, semantic categories a word may
belong to. Similarity scoring methods identify the
synsets associated with a pair of words, and then use
this relationship graph to generate a score.

The first set of scorers were generated from the
Leacock-Chodorow, Lin, and Wu-Palmer measures
from the WordNet Similarity package (Pedersen et
al., 2004). For each of these measures, we averaged
across all of the possible synsets between a given
pair of words.

Another scorer we used was Personalized PageR-
ank (PPR) (Agirre et al., 2010), a topic sensitive
variant of the PageRank algorithm (Page et al.,
1999) that uses a random walk process to identify
the significant nodes of a graph given its link struc-
ture. We first derived a graph G from WordNet,
treating synsets as the vertices and the relationships
between synsets as the edges. To obtain a signature
for a given word, we apply topic sensitive PageRank
(Haveliwala, 2002) over G, using the synsets asso-
ciated with the word as the initial distribution. At
convergence, we convert the stationary distribution
into a vector. The similarity between two words is
the cosine similarity between their vectors.

2.3 Distributional Resources
In contrast with the structure based WordNet based
methods, distributional methods use statistical prop-
erties of corpora to derive similarity scores. We gen-
erated two scorers, one based on Explicit Seman-
tic Analysis (ESA), and the other on the Dekang
Lin Proximity-based Thesaurus. For a given word,
ESA generates a concept vector, where the con-

cepts are Wikipedia articles, and the score measures
how closely associated that word is with the textual
content of the article. To score the similarity be-
tween two words, we computed the cosine similar-
ity of their concept vectors. This method proved to
give state-of-the-art performance on the WordSim-
353 word pair relatedness dataset (Finkelstein et al.,
2002).

The Lin Proximity-based Thesaurus identifies
the neighborhood around words encountered in the
Reuters and Text Retrieval Conference (TREC). For
a given word, the Thesaurus identifies the top 200
words with the most similar neighborhoods, listing
the score based on these matches. For our experi-
ments, we treated these as feature vectors, with the
intuition being similar words should share similar
neighbors. Again, the similarity score between two
words was scored using the cosine similarity of their
vectors.

3 Cosine Similarity

Another scorer we used was the cosine similarity
over the lemmas found in the sentences in a pair.
For generating the vectors used in the cosine simi-
larity computation, we used the term frequency of
the lemmas.

4 BLEU Features

BLEU is a measure developed to automatically as-
sess how closely sentences generated by machine
translation systems match reference human gener-
ated texts. BLEU is a directional measurement, and
works on the assumption that the more lexically sim-
ilar a system generated sentence is to a reference sen-
tence, a human generated translation, the better the
system sentence is. This can also be seen as a stand-
in for the semantic similarity of the pairs, as was
shown when BLEU was applied to the paraphrase
identification identification problem in (Finch et al.,
2005).

The BLEU score for a given system sentence and
reference sentence of order N is computed using
Formula 2.

BLEU(sys, ref) = B · exp
N∑

n=1

1

N
log(pn) (2)
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B is a brevity penalty used to prevent degenerate
translations. Given this has little bearing on our ex-
periments, we set its value to 1 for our experiments.
Following (Papineni et al., 2002), we give each order
n equal weight in the geometric mean. The proba-
bility of an order n-gram from the system sentence
being found in the reference, pn, is given in Formula
3.

pn =

∑
ngram∈sys countsys∧ref (ngram)∑

ngram∈sys countsys(ngram)
(3)

countsys(ngram) is frequency of oc-
currence for the given n-gram in the sys-
tem sentence. The numerator term is
computed as countsys∧ref (ngram) =
min(countsys(ngram), countref (ngram)) where
countref (ngram) is the frequency of occurrence
of that n-gram in the reference sentence. This
is equivalent to having each n-gram have a 1-1
mapping with a matching n-gram in the reference
(if any), and counting the number of mappings.

As there is a risk of higher order system n-grams
having no matches in the reference, we apply Lapla-
cian smoothing to the n-gram counts.

BLEU is considered to be a precision focused
measure, as it only measures how much of the sys-
tem sentence matches a reference sentence. Follow-
ing (Finch et al., 2005), we obtain a modified BLEU
score for strings s1 and s2 of a pair by averaging the
BLEU scores where each takes a turn as the system
sentence, as given in Formula 4.

Score(s1, s2) =
1

2
BLEU(s1, s2) · BLEU(s2, s1)

(4)
For our experiments, we used BLEU scores of or-

der N = 1..4, over n-grams formed over the sen-
tence lemmas, and used these as features for charac-
terizing a given pair.

4.1 Precision Focused POS Features

From past experiments with paraphrase identifica-
tion over the MSR Paraphrase Corpus, we have
found including POS information to be beneficial.
To this capture this kind of information, we gen-
erated precision focused POS features, which mea-

sures the following between the sentences in a prob-
lem pair:

1. The overlap in POS tags.

2. The mismatch in POS tags.

We follow the formulation for POS vectors given
in (Finch et al., 2005). For a given sentence pair,
we identify the set of words whose lemmas were
matched in both the system and reference sentences,
Wmatch and those with no matches, Wmiss. Using
the directional notion of system and reference sen-
tences from BLEU, for each word w ∈Wmatch,

POSMatch(t, sys, ref) =

∑
w∈Wmatch

countt(w)

|sys|
(5)

where countt is 1 if wordw has the matching POS
tag, and 0 otherwise. |sys| is the token count of the
system sentence. This is deemed to be precision-
focused, as this computation is done over candidates
found in the system sentence.

To generate the score for missing POS tags, we
perform a similar computation,

POSMiss(t, sys, ref) =

∑
w∈Wmiss

countt(w)

|sys|
(6)

To score the POS match and misses between a
pair, we follow Formula 4 and average the scores
for each POS tag, where the sentences in a given
pair swap positions as the system and reference sen-
tences.

5 Split-Bigram Features

System 2 added split-bigram features, which were
derived from the ROUGE-S measure. Like bigrams,
split-bigrams consist of an ordered pair of distinct
tokens drawn from a source sentence. Unlike bi-
grams, split-bigrams allow for a number of inter-
vening tokens to appear between the split-bigram to-
kens. For example, “The cat ate fish.” would gen-
erate the following split-bigrams the→cat, the→ate,
the→fish, cat→ate, cat→fish, and ate→fish. The in-
tent of split-bigrams is to quickly capture long range
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dependencies, without requiring a parse of the sen-
tence.

Similar to ROUGE-S, we used lexical overlap
of the split-bigrams as an approximation of seman-
tic similarity. As our pairs are bidirectional, we
used the same framework (Formula 2) for obtain-
ing BLEU scores to generate split-bigram overlap
scores for our pairs. Here, counts are obtained over
split-bigrams found in the system and reference sen-
tences, and the order was set to 1.

For generating the skip-bigram overlap score for
a pair, we used a maximum distance of three.

5.1 Skip-Bigram POS Features

In the same vein as the precision focused POS
features, we used the POS tags of matched split-
bigrams as features, where the frequency of the
POS tags in split-bigrams, t → t′, were used.
Here, Bmatch represents the split-bigrams which
were found in both the system and reference sen-
tences, matched on lexical content.

SBMatch(t→ t′, sys, ref) =

∑
b∈Bmatch

countt→t′(b)

|sys|
(7)

Due to sparsity, we only considered scores from
split-bigram matches between the system and ref-
erence sentences, and do not model split-bigram
misses. As before, we generate scores for each split-
bigram tag sequence by averaging the scores where
both sentences in a pair have swapped positions. For
our experiments, we only considered split-bigram
POS features of up to distance 3. In our initial exper-
iments we found split-bigram POS features helped
only in the case of shorter sentence pairs, so we only
generated features if both the sentences in a given
pair contained ten tokens or less.

6 Experimental Setup

For all three systems, we used the Stanford
CoreNLP (Toutanova et al., 2003) package to per-
form lemmatization and POS tagging of the in-
put sentences. For regressors, we used LibSVM’s
(Chang and Lin, 2011) support vector regression ca-
pability, using radial basis kernels. Based off of tun-
ing on the training set, we set γ = 1 and the default

Dataset Mean Std.Dev
MSRpar 3.322 0.9294
MSRvid 2.135 1.595
SMTeur 4.307 0.7114

Table 1: Means and standard deviations of similarity
scores for each of the training datasets.

slack value.
From previous experience with paraphrase iden-

tification over the MSR Paraphrase Corpus, we re-
tained stop words in all of our experiments.

7 Dealing with Surprise Data

As the STS training data was broken into three sep-
arate datasets, each with their own distinct statistics,
we developed three regressors trained individually
on each of these datasets. This presented a problem
when dealing with surprise datasets, whose statistics
were not known.

The approach taken by Systems 1 and 2 was sim-
ply to pool together all three training datasets into a
single dataset and train a single regressor on that uni-
fied model. We then applied that regressor against
the two surprise datasets, OnWN and SMTnews.

Analysis of the similarity score statistics showed
that they varied greatly between each of the train-
ing sets, as given in Table 1. Thus combining the
datasets blindly, as with Systems 1 and 2, may prove
to be a suboptimal strategy. The approach taken by
System 3 was to consider the feature vectors them-
selves as capturing information about which dataset
they were drawn from, and to use a classifier to pre-
dict that dataset. We then emit the score from the
regressor trained on just that matching dataset. We
used the Stanford Classifier’s (Manning and Klein,
2003) multinomial logistic regression as our dataset
predictor, using the feature vectors from System 2.

Five-fold cross validation over the training data
showed the dataset predictor to have an overall ac-
curacy of 91.75%.

In order to assess performance over the known
datasets at test time, System 3 also applied the same
strategy for the MSRpar, MSRvid, and SMTeuroparl
test sets.
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Sys All Allnorm Mean MSRpar MSRvid SMTeur OnWN SMTnews
1 0.7513 / 11 0.8017 / 40 0.5997 / 22 0.6084 0.7458 0.4688 0.6315 0.3994
2 0.7562 / 10 0.8111 / 24 0.5858 / 33 0.6050 0.7939 0.4294 0.5871 0.3366
3 0.6876 / 21 0.7812 / 54 0.4668 / 68 0.4791 0.7901 0.2159 0.3843 0.2801

Table 2: Pearson correlation of described systems against test data, by dataset. Overall measures are All indicates the
combined Pearson, Allnorm the normalized variant, and Mean the macro average of Pearson correlations. Rank for
the system in the overall measure is given after the slash.

Guess/Gold MSRpar MSRvid SMTeur
MSRpar 664 7 75
MSRvid 7 737 10
SMTeur 79 6 649

Table 3: Confusion for the dataset predictor, used to pre-
dict which dataset a pair was drawn from. This was
ddrawn using five-fold cross validation over the training
set, with columns representing golds and guesses as rows.

8 Results and Discussion

Results on the test data for each of the systems
against the individual datasets, are given in Table
2, given in Pearson linear correlation with the gold
standard scores. Overall measures for the systems
are given, along with their overall ranking.

The split-bigram features in System 2 contributed
primarily to performance over the MSRvid dataset,
while degrading performance on the other datasets
slightly. This is likely a result of increasing spar-
sity in the feature space, but overall this system per-
formed well. System 3 underperformed on most
datasets, asides from its performance on MSRvid.
The confusion generated over five-fold cross vali-
dation over the training set is given in Table 3, and
precision, recall, and F1 scores by dataset label from
five-fold cross validation over the training set are
given in Table 4. As these show, predictor errors lay
primarily in confusing MSRpar for SMTeuroparl,
and vice versa. This error was significant enough to
reduce performance on both the MSRpar and SM-
Teuroparl test sets. This proved to be enough to re-
duce the scores between these two datasets.

9 Conclusion and Future Work

Our STS systems have shown that relatively sim-
ple syntax free methods can be employed to the
STS task. Future avenues of investigation would

Dataset Prec Rec F1
MSRpar 0.8901 0.8853 0.8877
MSRvid 0.9775 0.9827 0.9801
SMTeur 0.8842 0.8842 0.8842

Table 4: Results on classifying pairs by source dataset,
using five-fold cross validation over training data.

be to include the use of syntactic information, in
order to obtain better predicate-argument informa-
tion. Syntactic information has proven useful for
the paraphrase identification task over MSRpar, as
demonstrated in studies such as (Das and Smith,
2009) and (Socher et al., 2011). Furthermore, a
qualitative assessment of the pairs across different
datasets showed relatively significant differences,
which would strengthen the argument for develop-
ing features and methods specific to each dataset.
Another improvement would be to develop a bet-
ter dataset predictor for System 3. Also recognizing
there may be ways to normalize and rescale scores
across datasets so the regression models used do not
have to account for differing means and standard de-
viations.

Finally, there are other bodies of source data that
may be adapted for use with the STS task, such as
the paraphrasing pairs of the Recognizing Textual
Entailment challenges, human generated reference
translations for machine translation evaluation, and
human generated summaries used for summariza-
tion evaluations. Although these are gold decisions,
at the very least they could provide a source of high
similarity pairs, from which one could manufacture
lower scoring variants.
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Abstract

This paper describes the participation of FBK
in the Semantic Textual Similarity (STS) task
organized within Semeval 2012. Our ap-
proach explores lexical, syntactic and se-
mantic machine translation evaluation metrics
combined with distributional and knowledge-
based word similarity metrics. Our best
model achieves 60.77% correlation with hu-
man judgements (Mean score) and ranked 20
out of 88 submitted runs in the Mean rank-
ing, where the average correlation across all
the sub-portions of the test set is considered.

1 Introduction

The Semantic Textual Similarity (STS) task pro-
posed at SemEval 2012 consists of examining the
degree of semantic equivalence between two sen-
tences and assigning a score to quantify such sim-
ilarity ranging from 0 (the two texts are about dif-
ferent topics) to 5 (the two texts are semantically
equivalent). The complete description of the task,
the datasets and the evaluation methodology adopted
can be found in (Agirre et al., 2012).

Typical approaches to measure semantic textual
similarity exploit information at the lexical level.
The proposed solutions range from calculating the
overlap of common words between the two text seg-
ments (Salton et al., 1997) to the application of
knowledge-based and corpus-based word similarity
metrics to cope with the low recall achieved by on
simple lexical matching (Mihalcea et al., 2006).

Our participation in the STS task is inspired by
previous work on paraphrase recognition, in which
machine translation (MT) evaluation metrics are
used to identify whether a pair of sentences are

semantically equivalent or not (Finch and Hwang,
2005; Wan et al., 2006). Our approach to semantic
textual similarity makes use of not only lexical in-
formation but also syntactic and semantic informa-
tion. To this aim, our metrics are based on different
natural language processing tools that provide syn-
tactic and semantic annotation. These include shal-
low parsing, constituency parsing, dependency pars-
ing, semantic roles labeling, discourse representa-
tion analyzer, and named entities recognition. In ad-
dition, we employed distributional and knowledge-
based word similarity metrics in an attempt to im-
prove the results given by the MT metrics. The com-
puted scores are used as features to train a regression
model in a supervised learning framework.

Our best run model achieves 60.77% correlation
with human judgements when evaluating the seman-
tic similarity of texts from the entire test set and
was ranked in the 20th position (out of 88 submit-
ted runs) in the Mean ranking.

2 System Description

The system has been designed following a ma-
chine learning based approach in which a regres-
sion model is induced using different shallow and
deep linguistic features extracted from the datasets.
The STS training corpora are first preprocessed us-
ing different tools that annotate the texts at different
levels. Using the preprocessed data, the features are
extracted for each pair and used to train a model that
will be applied to unseen test pairs. The training
set is composed by three datasets (MSRpar, MSRvid
and SMTeuroparl) which combined contain a total
of 2234 instances. The test data is composed by a
different sample of the same three datasets plus in-
stances derived from two additional corpora (OnWN
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and SMTnews). The datasets construction and anno-
tation are described in (Agirre et al., 2012).

Our system exploits two sets of features which re-
spectively build on MT evaluation metrics (2.1) and
word similarity metrics (2.2). The whole feature set
is summarized in figure 1.

2.1 Machine Translation Evaluation Metrics
MT evaluation metrics are designed to assess
whether the output of a MT system is semantically
equivalent to a set of reference translations. The
MT evaluation metrics described in this section, im-
plemented in the Asiya Open Toolkit for Automatic
Machine Translation (Meta-) Evaluation1 (Giménez
and Màrquez, 2010) are used to extract features at
different linguistic levels: lexical, syntactic and se-
mantic. For the syntactic and semantic levels, Asiya
calculates similarity measures based on the linguis-
tic elements provided by each kind of annotation.
Linguistic elements are defined as “the linguistic
units, structures, or relationships” (Giménez, 2008)
(e.g. dependency relations, discourse relations,
named entities, part-of-speech tags, among others).
(Giménez, 2008) defines two simple measures us-
ing the linguistic elements of a given linguistic level:
overlapping and matching. Overlapping is a
measure of the proportion of items inside the lin-
guistic elements of a certain type shared by both
texts. Matching is defined in the same way with
the difference that the order between the items inside
a linguistic element is taken into consideration. That
is, the items of a linguistic element are concatenated
in a single unit from left to right.

2.1.1 Lexical Level
At the lexical level we explored different n-gram

and edit distance based metrics. The difference
among them is in the way each algorithm calcu-
lates the lexical similarity, which yields to differ-
ent results. We used the following n-gram-based
metrics: BLEU (Papineni et al., 2002), NIST (Dod-
dington, 2002), ROUGE (Lin and Och, 2004), GTM
(Melamed et al., 2003), METEOR (Banerjee and
Lavie, 2005). Besides those, we also used metrics
based on edit distance. Such metrics calculate the
number of edit operations (e.g. insertions, deletions,
and substitutions) necessary to transform one text

1http://nlp.lsi.upc.edu/asiya/

into the other (the lower the number of edit oper-
ations, the higher the similarity score). The edit-
distance-based metrics used were: WER (Nieß en et
al., 2000), PER (Tillmann et al., 1997), TER (Snover
et al., 2006) and TER-Plus (Snover et al., 2009). The
lexical metrics form a group of metrics that we here-
after call lex.

2.1.2 Syntactic Level
The syntactic level was explored by running con-

stituency parsing (cp), dependency parsing (dp),
and shallow parsing (sp). Constituency trees were
produced by the Max-Ent reranking parser (Char-
niak, 2005). The constituency parse trees were
exploited by using three different classes of met-
rics that were designed to calculate the similarities
between the trees of two texts: overlapping in
function of a given part-of-speech; matching in
function of a given constituency type; and syntactic
tree matching (STM) metric proposed by (Liu and
Gildea, 2005).

Dependency trees were obtained using MINI-
PAR (Lin, 2003). Two types of metrics were used
to calculate the similarity between two texts using
dependency trees. In the first, different similarity
measures were calculated taking into consideration
three different perspectives: overlap of words that
hang in the same level or in a deeper level of the
dependency tree; overlap between words that hang
directly from terminal nodes given a specified part-
of-speech; and overlap between words that are ruled
by non-terminal nodes given a specified grammat-
ical relation (subject, object, relative clause, among
others). The second type is an implementation of the
head-word chain matching introduced in (Liu and
Gildea, 2005).

The shallow syntax approach proposed by
(Giménez, 2008) uses three different tools to ex-
plore the parts-of-speech, word lemmas and base
phrases chunks, respectively: SVMTool (Giménez
and Màrquez, 2004), Freeling (Carreras et al., 2004)
and Phreco (Carreras et al., 2005). In this type of
metrics the idea is to measure the similarity between
the two texts using parts-of-speech and chunk types.
The following metrics were used: overlapping
according to the part-of-speech; overlapping ac-
cording to the chunk type; the accumulated NIST
metric (Doddington, 2002) scores over different
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Figure 1: A summary of the class of features explored.

sequences (lemmas, parts-of-speech, base phrase
chunks and chunk IOB labels).

2.1.3 Semantic Level
At the semantic level we aplored three different

types of information, namely: discourse represen-
tations, named entities and semantic roles. Here-
after they are respectively referred to as dr, ne, and
sr features. The discourse relations are automat-
ically annotated using the C&C Tools (Clark and
Curran, 2004). The following metrics using seman-
tic tree representations were proposed by (Giménez,
2008). A metric similar to the STM in which se-
mantic trees are used instead of constituency trees;
the overlapping between discourse representa-
tion structures according to their type; and the mor-
phosyntactic overlapping of discourse represen-
tation structures that share the same type.

Named entities metrics are calculated by com-
paring the entities that appear in each text. The
named entities were annotated using the BIOS pack-
age (Surdeanu et al., 2005). Two types of metrics
were used: the overlapping between the named
entities in each sentence according to their type and
the matching between the named entities in func-
tion of their type.

Semantic roles were automatically annotated us-

ing the SwiRL package (Surdeanu and Turmo,
2005). The arguments and adjuncts annotated in
each sentence are compared according to three dif-
ferent metrics: overlapping between the seman-
tic roles according to their type; the matching be-
tween the semantic roles according to their type; and
the overlapping of the roles without taking into
consideration their lexical realization.

2.2 Word Similarity Metrics

Besides the MT evaluation metrics, we experi-
mented with lexical semantics by calculating word
similarity metrics. For that, we followed a distri-
butional and a knowledge-based word similarity ap-
proach.

2.2.1 Distributional Word Similarity
As some previous work on semantic textual tex-

tual similarity (Mihalcea et al., 2006) and textual
entailment (Kouylekov et al., 2010; Mehdad et al.,
2010) have shown, distributional word similarity
measures can improve the performance of both tasks
by allowing matches between terms that are lexically
different. We measure the word similarity comput-
ing a set of Latent Semantic Analysis (LSA) metrics
over Wikipedia. The 200,000 most visited articles
of Wikipedia were extracted and cleaned to build the
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term-by-document matrix using the jLSI tool2.
Using this model we designed three different sim-

ilarity metrics that compute the similarity between
all elements in one text with all elements in the other
text. For two metrics we calculate the similarities
between different parts-of-speech: (i) similarity over
nouns and adjectives, and (ii) similarity over verbs.
The third metric computes the similarity between
all words in the two sentences. The similarity is
computed by averaging the pairwise similarity using
the LSA model between the elements of each text.
These metrics are hereafter called lsa.

2.2.2 Knowledge-based Word Similarity
In order to incorporate world knowledge informa-

tion about entities (persons, organizations, locations,
among others) into our model we experimented with
knowledge-based (thesaurus-based) word similarity
metrics. Usually such approaches have a very lim-
ited coverage of concepts due to the reduced size of
the available thesauri. In order to increase the cov-
erage we extracted concepts from the YAGO2 se-
mantic knowledge base (Hoffart et al., 2011) derived
from Wikipedia, Wordnet (Miller, 1995) and Geon-
ames3. YAGO2 contains knowledge about 10 mil-
lion entities and more than 120 million facts about
these entities.

In order to link the entities in the text to the enti-
ties in YAGO2 we have used “The Wiki Machine”
(TWM) tool4. The tool solves the linking problem
by disambiguating each entity mention in the text
(excluding pronouns) using Wikipedia to provide the
sense inventory and the training data (Giuliano et
al., 2009). After preprocessing the datasets with
TWM the entities are annotated with their respective
Wikipedia entries represented by their URLs. Using
the entity’s URL it is possible to retrieve the Word-
net synsets related to the entity’s entry in YAGO2
and explore different knowledge-based metrics to
compute word similarity between entities.

In our experiments we selected three differ-
ent algorithms to calculate word similarity using
YAGO2: Wu-Palmer (Zhibiao and Palmer, 1994),
the Leacock-Chodorow (Leacock et al., 1998) and

2http://hlt.fbk.eu/en/technology/jlsi
3http://www.geonames.org/
4http://thewikimachine.fbk.eu/html/

index.html

the path distance (score based on the shortest path
that connects the senses in the Wordnet hyper-
nym/hyponym taxonomy). Two classes of metrics
were designed: (i) the average of the similarity be-
tween all the entities in each sentence and (ii) the
similarity of the pair of elements which have the
shortest path in the Wordnet taxonomy among all
possible pairs. There are six different metrics using
the three algorithms in total. An extra metric was
designed using only TWM. The metric is calculated
by taking the number of common entities in the two
sentences divided by the total number of entities an-
notated in the two sentences. The metrics described
in this section are part of the yago group.

3 Experiments and Discussion

In this section we present our experiments settings,
the configuration of the runs submitted and discuss
the results obtained. All our experiments were made
using half of the training set for training and half
for testing (development). Ten different random-
izations were run over the training data in order
to obtain ten different pairs of train/development
sets and reduce overfitting. We tried several differ-
ent regression algorithms and the best performance
was achieved with the implementation of Support
Vector Machines (SVM) of the SVMLight package
(Joachims, 1998). We used the radial basis function
kernel with default parameters without any special
tuning for the different datasets.

3.1 Submitted Runs and Results
Based on the results achieved with different feature
sets over training data we have selected the best
combinations for our submission. The feature sets
for each run are:

Run 1: lex, lsa, yago, and a selection of
features in the cp, dp, sp, dr, ne and sr
groups, forming a total of 286 features.

Run 2: lex, lsa, and yago, in a total of 50
features.

Run 3: lex and lsa, forming a total of 43
features.

The results obtained by our three submitted runs
are summarized in table 1. The table reports the
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Runs submitted
Run 1 Run 2 Run 3 Base PE

Development 0.885 0.863 0.859 - -

Test

MSp 0.249 0.512 0.516 0.433 0.577
MSv 0.611 0.780 0.777 0.299 0.818
SMTe 0.149 0.379 0.441 0.454 0.450
Wn 0.421 0.622 0.629 0.586 0.629

SMTn 0.243 0.547 0.608 0.390 0.608
All 0.563 0.643 0.651 0.310 0.789

Allnrm 0.712 0.808 0.810 0.673 0.633
Mean 0.362 0.588 0.607 0.435 0.829

Table 1: Results of each run for each dataset (MSRpar,
MSRvid, SMTeuroparl, OnWn, SMTnews) calculated
with the Pearson correlation between the system’s out-
puts and the gold standard annotation. Official scores ob-
tained using the three evaluation scores All, Allnrm and
Mean. Development row presents the average results for
each run in the whole training dataset. Base is the of-
ficial baseline system. Post Evaluation is the experiment
ran after the evaluation period with models trained for the
specific datasets.

Pearson correlation between the system output and
the gold standard annotation provided by the task or-
ganizers. The table also presents the official scores
used to rank the systems and described in (Agirre et
al., 2012). Our best model, Run 3, was ranked 20th
according to the Mean score, 25th according to the
RankNrm score and 32th according to the All score
among 88 submitted runs.

The “Development” row reports the results of our
three best models in the development phase. The
results obtained for the three training datasets are
higher than the results obtained for the testing. One
hypothesis that might explain this behavior is over-
fitting during the training phase due to the way we
divided the training set and carried out the experi-
ments. A different experiment setting to carry out
the development should be tried to evaluate this hy-
pothesis.

To our surprise, in the test datasets the results of
Run 1 and Run 3 swapped positions: in the train-
ing setting Run 1 was the best model and Run 3 the
third best. The performance of Run 3 was relatively
stable across the five datasets ranging from about
the 30th to the 48th position the exception being
the SMTnews dataset. In this dataset Run 3 was the
best performing run of the evaluation exercise (and
Run 2 the second). One possible explanation for this
behavior is the fact that Run 3 is based on lexical
features that do not take into consideration the syn-

tactic structure of the two texts and therefore is not
penalized by the noise introduced by the texts gen-
erated by MT systems. This hypothesis, however,
does not explain why Run 3 score for the SMTeu-
roparl dataset was below the baseline score. Error
analysis of the effects of different group of features
in the test datasets is required to better understand
such behaviors.

3.2 Post-evaluation Experiments

After the evaluation period, as a first step towards
the required error analysis and a better comprehen-
sion of the potential of our approach, we performed
an experiment to assess the impact of having mod-
els trained for specific datasets. In this experiment,
each training dataset (MSRpar, MSRvid and SMTeu-
roparl) was used to train a model. Each dataset’s
model was tested on its respective test dataset. The
model for the surprise datasets (OnWn and SMT-
news) were trained using the whole training dataset.
We used the Run 3 feature set (the best run in the
official evaluation). The results of the experiment
are reported in the column “Exp” of table 1. The
impact of having specific models for each dataset
is high. The Mean score goes from .607 to .829
and improvements are also observed in the All score
(0.789). These scores would rank our system at the
7th position in the Mean rank. However, it is impor-
tant to notice that in a real-world setting, knowledge
about the source of data is not always available. We
consider that having a general model that does not
rely on this kind of information represents a more re-
alistic way to confront with real-world applications.

4 Final Remarks

In this paper we described FBK’s participation in
the STS Semeval 2012 task. Our approach is based
on a combination of MT evaluation metrics, distri-
butional, and knowledge-based word similarity met-
rics. Our best run achieved the 20th position among
88 runs in the Mean overall ranking. An error analy-
sis of the problematic test pairs is required to under-
stand the potential of our feature sets and improve
the overall performance of our approach. Along this
direction, a first experiment with our best features
and a different strategy already led to significant im-
provements in the Mean and All scores (from .651 to
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.789 and from .607 to .829, respectively).
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Abstract

In this paper we describe the three approaches
we submitted to the Semantic Textual Similar-
ity task of SemEval 2012. The first approach
considers to calculate the semantic similar-
ity by using the Jaccard coefficient with term
expansion using synonyms. The second ap-
proach uses the semantic similarity reported
by Mihalcea in (Mihalcea et al., 2006). The
third approach employs Random Indexing and
Bag of Concepts based on context vectors. We
consider that the first and third approaches ob-
tained a comparable performance, meanwhile
the second approach got a very poor behav-
ior. The best ALL result was obtained with
the third approach, with a Pearson correlation
equal to 0.663.

1 Introduction

Finding the semantic similarity between two sen-
tences is very important in applications of natural
language processing such as information retrieval
and related areas. The problem is complex due to the
small number of terms involved in sentences which
are tipically less than 10 or 15. Additionally, it is re-
quired to “understand” the meaning of the sentences
in order to determine the “semantic” similarity of
texts, which is quite different of finding the lexical
similarity.

There exist different works at literature dealing
with semantic similarity, but the problem is far to
be solved because of the aforementioned issues.
In (Mihalcea et al., 2006), for instance, it is pre-
sented a method for measuring the semantic simi-

larity of texts, using corpus-based and knowledge-
based measures of similarity. The approaches pre-
sented in (Shrestha, 2011) are based on the Vector
Space Model, with the aim to capture the contex-
tual behavior, senses and correlation, of terms. The
performance of the method is better than the base-
line method that uses vector based cosine similarity
measure.

In this paper, we present three different ap-
proaches for the Textual Semantic Similarity task of
Semeval 2012 (Agirre et al., 2012). The task is de-
scribed as follows: Given two sentencess1 ands2,
the aim is to compute how similars1 and s2 are,
returning a similarity score, and an optional confi-
dence score. The approaches should provide values
between 0 and 5 for each pair of sentences. These
values roughly correspond to the following consid-
erations, even when the system should output real
values:

5: The two sentences are completely equivalent,
as they mean the same thing.

4: The two sentences are mostly equivalent, but
some unimportant details differ.

3: The two sentences are roughly equivalent, but
some important information differs/missing.

2: The two sentences are not equivalent, but share
some details.

1: The two sentences are not equivalent, but are
on the same topic.

0: The two sentences are on different topics.
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The description of the runs submitted to the com-
petition follows.

2 Experimentation setup

The three runs submitted to the competition use
completely different mechanisms to find the degree
of semantic similarity between two sentences. The
approaches are described as follows:

2.1 Approach BUAP-RUN-1: Term expansion
with synonyms

Let s1 = w1,1w1,2...w1,|s1| and s2 =
w2,1w2,2...w2,|s2| be two sentences. The synonyms
of a given wordwi,k, expressed assynonyms(wi,k),
are obtained from online dictionaries by extracting
the synonyms ofwi,k. A better matching between
the terms contained in the text fragments and the
terms at the dictionary are obtained by stemming all
the terms (using the Porter stemmer).

In order to determine the semantic similarity be-
tween any pair of terms of the two sentences (w1,i

andw2,j) we use Eq. (1).

sim(w1,i, w2,j) =



















1 if (w1,i == w2,j) ||
w1,i ∈ synonyms(w2,j) ||
w2,j ∈ synonyms(w1,i)

0 otherwise
(1)

The similarity between sentencess1 ands2 is cal-
culated as shown in Eq. (2).

similarity(s1, s2) =
5 ∗

∑n
i=1

∑n
j=1

sim(w1i, w2j)

|s1 ∪ s2|
(2)

2.2 Approach BUAP-RUN-2

In this approach, the similarity ofs1 ands2 is calcu-
lated as shown in Eq. (3) (Mihalcea et al., 2006).

similarity(s1, s2) = 1
2 (

∑

w∈{s1}
(maxSim(w,s2)∗idf(w))

∑

w∈{s1}
idf(w)

+

∑

w∈{s2}
(maxSim(w,s1)∗idf(w))

∑

w∈{s2}
idf(w)

)

(3)
whereidf(w) is the inverse document frequency of

the wordw, andmaxSim(w, s2) is the maximum
lexical similarity between the wordw in sentences2

and all the words in sentences2 calculated by means
of the Eq. (4) reported by (Wu and Palmer, 1994).
The sentence terms are assumed to be concepts, LCS
is the depth of the least common subsumer, and the
equation is calculated using the NLTK libraries1.

Simwup =
2 ∗ depth(LCS)

depth(concept1) + depth(concept2)
(4)

2.3 Approach BUAP-RUN-3: Random
Indexing and Bag of Concepts

The vector space model (VSM) for document rep-
resentation supporting search is probably the most
well-known IR model. The VSM assumes that term
vectors are pair-wise orthogonal. This assumption
is very restrictive because words are not indepen-
dent. There have been various attempts to build
representations for documents that are semantically
richer than only vectors based on the frequency of
terms occurrence. One example is Latent Seman-
tic Indexing (LSI), a method of word co-occurrence
analysis to compute semantic vectors (context vec-
tors) for words. LSI applies singular-value decom-
position (SVD) to the term-document matrix in or-
der to construct context vectors. As a result the di-
mension of the produced vector space will be signif-
icantly smaller; consequently the vectors that repre-
sent terms cannot be orthogonal. However, dimen-
sion reduction techniques such as SVD are expen-
sive in terms of memory and processing time. Per-
forming the SVD takes timeO (nmz), wheren is
the vocabulary size,m is the number of documents,
andz is the number of nonzero elements per column
in the words-by-documents matrix. As an alterna-
tive, there is a vector space methodology called Ran-
dom Indexing (RI) (Sahlgren, 2005), which presents
an efficient, scalable, and incremental method for
building context vectors. Its computational com-
plexity is O (nr) wheren is as previously described
andr is the vector dimension. Particularly, we apply
RI to capture the inherent semantic structure using
Bag of Concepts representation (BoC) as proposed
by Sahlgren and C̈oster (Sahlgren and C̈oster, 2004),
where the meaning of a term is considered as the
sum of contexts in which it occurs.

1http://www.nltk.org/
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2.3.1 Random Indexing

Random Indexing (RI) is a vector space method-
ology that accumulates context vectors for words
based on co-occurrence data. The technique can be
described as:

• First a unique random representation known as
index vector is assigned to each context (docu-
ment). Index vectors are binary vectors with a
small number of non-zero elements, which are
either +1 or -1, with equal amounts of both.
For example, if the index vectors have twenty
non-zero elements in a 1024-dimensional vec-
tor space, they have ten +1s and ten -1s. Index
vectors serve as indices or labels for documents

• Index vectors are used to produce context vec-
tors by scanning through the text and every
time a target word occurs in a context, the in-
dex vector of the context is added to the con-
text vector of the target word. Thus, at each
encounters of the target wordt with a contextc
the context vector oft is updated as follows:ct
+ = ic wherect is the context vector oft andic
is the index vector ofc. In this way, the context
vector of a word keeps track of the contexts in
which it occurred.

RI methodology is similar to latent semantic in-
dexing (LSI) (Deerwester et al., 1990). However,
to reduce the co-occurrence matrix no dimension re-
duction technique such as SVD is needed, since the
dimensionalityd of the random index vectors is pre-
established as a parameter (implicit dimension re-
duction). Consequentlyd does not change once it
has been set; as a result, the dimensionality of con-
text vectors will never change with the addition of
new data.

2.3.2 Bag of Concepts

Bag of Concepts (BoC) is a recent representa-
tion scheme proposed by Sahlgren and Cöster in
(Sahlgren and C̈oster, 2004), which is based on the
perception that the meaning of a document can be
considered as the union of the meanings of its terms.
This is accomplished by generating term context
vectors from each term within the document, and
generating a document vector as the weighted sum
of the term context vectors contained within that

document. Therefore, we use RI to represent the
meaning of a word as the sum of contexts (entire
documents) in which it occurs. Illustrating this tech-
nique, suppose you have two documents:D1: A man
with a hard hat is dancing, andD2: A man wearing
a hard hat is dancing. Let us suppose that they have
index vectorsID1 andID2, respectively: the context
vector forhat will be the ID1 + ID2, because this
word appears in both documents. Once the context
vectors have been built by RI, they are used to repre-
sent the document as BoC. For instance, supposing
CV1, CV2, CV3, . . . andCV8, are the context vec-
tors of each word inD1, then documentD1 will be
represented as the weighted sum of these eight con-
text vectors.

2.3.3 Implementation

The sentences of each file were processed to gen-
erate the BoC representations of them. BoC rep-
resentations were generated by first stemming all
words in the sentences. We then used random index-
ing to produce context vectors for each word in the
files (i.e. STS.input.MSRpar, STS.input.MSRvid,
etc.), each file was considered a different corpus and
documents were the sentences in them. The dimen-
sion of the context vectors was fixed at 2048, de-
termined by experimentation using the training set.
These context vectors were thentf × idf -weighted,
according to the corpus, and added up for each sen-
tence, to produce BoC representations. Therefore
the similarity values were calculated by the cosine
function. Finally cosine values were multiplied by 5
to produce values between 0 and 5.

3 Experimental results

In Table 1 we show the results obtained by the
three approaches submitted to the competition. The
columns of Table 1 stand for:

• ALL : Pearson correlation with the gold stan-
dard for the five datasets, and corresponding
rank.

• ALLnrm : Pearson correlation after the system
outputs for each dataset are fitted to the gold
standard using least squares, and corresponding
rank.
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Run ALL Rank ALL
nrm

Rank
Nrm

Mean Rank
Mean

MSR
par

MSR
vid

SMT
eur

On -
WN

SMT-
news

BUAP-
RUN-1

0.4997 63 0.7568 62 0.4892 57 0.4037 0.6532 0.4521 0.605 0.4537

BUAP-
RUN-2

-0.026 89 0.5933 89 0.0669 89 0.1109 0.0057 0.0348 0.1788 0.1964

BUAP-
RUN-3

0.663 25 0.7474 64 0.488 59 0.4018 0.6378 0.4758 0.5691 0.4057

Table 1: Results of approaches of BUAP in Task 6.

• Mean: Weighted mean across the 5 datasets,
where the weight depends on the number of
pairs in the dataset.

Followed by Pearson for individual datasets.
At this moment, we are not aware of the reasons

because the second approach obtained a very poor
performance. The way in which theidf(w) is calcu-
lated could be one of the reasons, because the corpus
used is relatively small and also from a different do-
main. With respect to the other two approaches, we
consider that they (first and third) obtained a com-
parable performance, even when the third approach
obtained the best ALL result with a Pearson correla-
tion equal to 0.663.

4 Discussion and conclusion

We have presented three different approaches for
tackling the problem of Semantic Textual Similarity.
The use of term expansion by synonyms performed
well in general and obtained a comparable behavior
than the third approach which used random index-
ing and bag of concepts. It is interesting to observe
that these two approaches performed similar when
the two term expansion mechanism are totally dif-
ferent. As further, it is important to analyze the poor
behavior of the second approach. We would like also
to introduce semantic relationships other than syn-
onyms in the process of term expansion.
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Abstract
This paper presents the systems that we par-
ticipated with in the Semantic Text Similar-
ity task at SEMEVAL 2012. Based on prior
research in semantic similarity and related-
ness, we combine various methods in a ma-
chine learning framework. The three varia-
tions submitted during the task evaluation pe-
riod ranked number 5, 9 and 14 among the 89
participating systems. Our evaluations show
that corpus-based methods display a more ro-
bust behavior on the training data, yet com-
bining a variety of methods allows a learning
algorithm to achieve a superior decision than
that achievable by any of the individual parts.

1 Introduction

Measures of text similarity have been used for a
long time in applications in natural language pro-
cessing and related areas. One of the earliest ap-
plications of text similarity is perhaps the vector-
space model used in information retrieval, where the
document most relevant to an input query is deter-
mined by ranking documents in a collection in re-
versed order of their similarity to the given query
(Salton and Lesk, 1971). Text similarity has also
been used for relevance feedback and text classifi-
cation (Rocchio, 1971), word sense disambiguation
(Lesk, 1986; Schutze, 1998), and more recently for
extractive summarization (Salton et al., 1997), and
methods for automatic evaluation of machine trans-
lation (Papineni et al., 2002) or text summarization
(Lin and Hovy, 2003). Measures of text similarity
were also found useful for the evaluation of text co-
herence (Lapata and Barzilay, 2005).

Earlier work on this task has primarily focused on
simple lexical matching methods, which produce a
similarity score based on the number of lexical units
that occur in both input segments. Improvements
to this simple method have considered stemming,
stop-word removal, part-of-speech tagging, longest
subsequence matching, as well as various weight-
ing and normalization factors (Salton and Buckley,
1997). While successful to a certain degree, these
lexical similarity methods cannot always identify the
semantic similarity of texts. For instance, there is
an obvious similarity between the text segments I
own a dog and I have an animal, but most of the
current text similarity metrics will fail in identifying
any kind of connection between these texts.

More recently, researchers have started to con-
sider the possibility of combining the large number
of word-to-word semantic similarity measures (e.g.,
(Jiang and Conrath, 1997; Leacock and Chodorow,
1998; Lin, 1998; Resnik, 1995)) within a semantic
similarity method that works for entire texts. The
methods proposed to date in this direction mainly
consist of either bipartite-graph matching strate-
gies that aggregate word-to-word similarity into a
text similarity score (Mihalcea et al., 2006; Islam
and Inkpen, 2009; Hassan and Mihalcea, 2011;
Mohler et al., 2011), or data-driven methods that
perform component-wise additions of semantic vec-
tor representations as obtained with corpus measures
such as Latent Semantic Analysis (Landauer et al.,
1997), Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007), or Salient Semantic Analysis
(Hassan and Mihalcea, 2011).

In this paper, we describe the system with which
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we participated in the SEMEVAL 2012 task on se-
mantic text similarity (Agirre et al., 2012). The sys-
tem builds upon our earlier work on corpus-based
and knowledge-based methods of text semantic sim-
ilarity (Mihalcea et al., 2006; Hassan and Mihal-
cea, 2011; Mohler et al., 2011), and combines all
these previous methods into a meta-system by us-
ing machine learning. The framework provided by
the task organizers also enabled us to perform an in-
depth analysis of the various components used in our
system, and draw conclusions concerning the role
played by the different resources, features, and al-
gorithms in building a state-of-the-art semantic text
similarity system.

2 Related Work

Over the past years, the research community has
focused on computing semantic relatedness using
methods that are either knowledge-based or corpus-
based. Knowledge-based methods derive a measure
of relatedness by utilizing lexical resources and on-
tologies such as WordNet (Miller, 1995) to measure
definitional overlap, term distance within a graph-
ical taxonomy, or term depth in the taxonomy as
a measure of specificity. We explore several of
these measures in depth in Section 3.3.1. On the
other side, corpus-based measures such as Latent
Semantic Analysis (LSA) (Landauer et al., 1997),
Explicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007), Salient Semantic Analysis
(SSA) (Hassan and Mihalcea, 2011), Pointwise Mu-
tual Information (PMI) (Church and Hanks, 1990),
PMI-IR (Turney, 2001), Second Order PMI (Islam
and Inkpen, 2006), Hyperspace Analogues to Lan-
guage (Burgess et al., 1998) and distributional simi-
larity (Lin, 1998) employ probabilistic approaches
to decode the semantics of words. They consist
of unsupervised methods that utilize the contextual
information and patterns observed in raw text to
build semantic profiles of words. Unlike knowledge-
based methods, which suffer from limited coverage,
corpus-based measures are able to induce a similar-
ity between any given two words, as long as they
appear in the very large corpus used as training.

3 Semantic Textual Similarity System

The system we proposed for the SEMEVAL 2012
Semantic Textual Similarity task builds upon both
knowledge- and corpus-based methods previously
described in (Mihalcea et al., 2006; Hassan and Mi-
halcea, 2011; Mohler et al., 2011). The predictions
of these independent systems, paired with additional
salient features, are leveraged by a meta-system that
employs machine learning. In this section, we will
elaborate further on the resources we use, our fea-
tures, and the components of our machine learning
system. We will start by describing the task setup.

3.1 Task Setup
The training data released by the task organiz-
ers consists of three datasets showcasing two sen-
tences per line and a manually assigned similarity
score ranging from 0 (no relation) to 5 (semanti-
cally equivalent). The datasets1 provided are taken
from the Microsoft Research Paraphrase Corpus
(MSRpar), the Microsoft Research Video Descrip-
tion Corpus (MSRvid), and the WMT2008 devel-
opment dataset (Europarl section)(SMTeuroparl);
they each consist of about 750 sentence pairs with
the class distribution varying with each dataset. The
testing data contains additional sentences from the
same collections as the training data as well as
from two additional unknown sets (OnWN and
SMTnews); they range from 399 to 750 sentence
pairs. The reader may refer to (Agirre et al., 2012)
for additional information regarding this task.

3.2 Resources
Wikipedia2 is a free on-line encyclopedia, represent-
ing the outcome of a continuous collaborative effort
of a large number of volunteer contributors. Virtu-
ally any Internet user can create or edit a Wikipedia
web page, and this “freedom of contribution” has a
positive impact on both the quantity (fast-growing
number of articles) and the quality (potential mis-
takes are quickly corrected within the collaborative
environment) of this on-line resource. The basic en-
try in Wikipedia is an article which describes an en-
tity or an event, and which, in addition to untagged

1http://www.cs.york.ac.uk/semeval-2012/
task6/data/uploads/datasets/train-readme.
txt

2www.wikipedia.org
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content, also consists of hyperlinked text to other
pages within or outside of Wikipedia. These hyper-
links are meant to guide the reader to pages that pro-
vide additional information / clarifications, so that
a better understanding of the primary concept can
be achieved. The structure of Wikipedia in terms of
pages and hyperlinks is exploited directly by seman-
tic similarity methods such as ESA (Gabrilovich and
Markovitch, 2007), or SSA (Hassan and Mihalcea,
2011).

WordNet (Miller, 1995) is a manually crafted lex-
ical resource that maintains semantic relationships
between basic units of meaning, or synsets. A synset
groups together senses of different words that share
a very similar meaning, which act in a particu-
lar context as synonyms. Each synset is accompa-
nied by a gloss or definition, and one or two ex-
amples illustrating usage in the given context. Un-
like a traditional thesaurus, the structure of Word-
Net is able to encode additional relationships be-
side synonymy, such as antonymy, hypernymy, hy-
ponymy, meronymy, entailment, etc., which vari-
ous knowledge-based methods use to derive seman-
tic similarity.

3.3 Features

Our meta-system uses several features, which can
be grouped into knowledge-based, corpus-based,
and bipartite graph matching, as described below.
The abbreviations appearing between parentheses
by each method allow for easy cross-referencing
with the evaluations provided in Table 1.

3.3.1 Knowledge-based Semantic Similarity
Features

Following prior work from our group (Mihalcea
et al., 2006; Mohler and Mihalcea, 2009), we em-
ploy several WordNet-based similarity metrics for
the task of sentence-level similarity. Briefly, for
each open-class word in one of the input texts, we
compute the maximum semantic similarity (using
the WordNet::Similarity package (Pedersen et al.,
2004)) that can be obtained by pairing it with any
open-class word in the other input text. All the
word-to-word similarity scores obtained in this way
are summed and normalized to the length of the two
input texts. We provide below a short description
for each of the similarity metrics employed by this

system3.

The shortest path (Path) similarity is determined
as:

Simpath =
1

length
(1)

where length is the length of the shortest path be-
tween two concepts using node-counting (including
the end nodes).

The Leacock & Chodorow (Leacock and
Chodorow, 1998) (LCH) similarity is determined
as:

Simlch = − log
length

2 ∗D
(2)

where length is the length of the shortest path be-
tween two concepts using node-counting, and D is
the maximum depth of the taxonomy.

The Lesk (Lesk) similarity of two concepts is de-
fined as a function of the overlap between the cor-
responding definitions, as provided by a dictionary.
It is based on an algorithm proposed by Lesk (1986)
as a solution for word sense disambiguation.

The Wu & Palmer (Wu and Palmer, 1994) (WUP )
similarity metric measures the depth of two given
concepts in the WordNet taxonomy, and the depth
of the least common subsumer (LCS), and combines
these figures into a similarity score:

Simwup =
2 ∗ depth(LCS)

depth(concept1) + depth(concept2)
(3)

The measure introduced by Resnik (Resnik, 1995)
(RES) returns the information content (IC) of the
LCS of two concepts:

Simres = IC(LCS) (4)

where IC is defined as:

IC(c) = − log P (c) (5)

and P (c) is the probability of encountering an in-
stance of concept c in a large corpus.

The measure introduced by Lin (Lin, 1998) (Lin)
builds on Resnik’s measure of similarity, and adds
a normalization factor consisting of the information
content of the two input concepts:

Simlin =
2 ∗ IC(LCS)

IC(concept1) + IC(concept2)
(6)

3We point out that the similarity metric proposed by Hirst &
St. Onge was not considered due to the time constraints associ-
ated with the STS task.
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We also consider the Jiang & Conrath (Jiang and
Conrath, 1997) (JCN ) measure of similarity:

Simjnc =
1

IC(concept1) + IC(concept2)− 2 ∗ IC(LCS)
(7)

Each of the measures listed above is used as a fea-
ture by our meta-system.

3.3.2 Corpus-based Semantic Similarity
Features

While most of the corpus-based methods induce
semantic profiles in a word-space, where the seman-
tic profile of a word is expressed in terms of its co-
occurrence with other words, LSA, ESA and SSA
stand out as different, since they rely on a concept-
space representation. In these methods, the semantic
profile of a word is expressed in terms of the im-
plicit (LSA), explicit (ESA), or salient (SSA) con-
cepts. This departure from the sparse word-space to
a denser, richer, and unambiguous concept-space re-
solves one of the fundamental problems in semantic
relatedness, namely the vocabulary mismatch. In the
experiments reported in this paper, all the corpus-
based methods are trained on the English Wikipedia
download from October 2008, with approximately
6 million articles, and more than 9.5 million hyper-
links.

Latent Semantic Analysis (LSA) (Landauer et al.,
1997). In LSA, term-context associations are cap-
tured by means of a dimensionality reduction op-
erated by a singular value decomposition (SVD)
on the term-by-context matrix T, where the ma-
trix is induced from a large corpus. This reduc-
tion entails the abstraction of meaning by collaps-
ing similar contexts and discounting noisy and ir-
relevant ones, hence transforming the real world
term-context space into a word-latent-concept space
which achieves a much deeper and concrete seman-
tic representation of words.

Explicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007). ESA uses encyclopedic
knowledge in an information retrieval framework to
generate a semantic interpretation of words. Since
encyclopedic knowledge is typically organized into
concepts (or topics), each concept is further de-
scribed using definitions and examples. ESA relies
on the distribution of words inside the encyclopedic
descriptions. It builds semantic representations for

a given word using a word-document association,
where the document represents a Wikipedia article
(concept). ESA is in effect a Vector Space Model
(VSM) built using Wikipedia corpus, where vectors
represents word-articles association.

Salient Semantic Analysis (SSA) (Hassan and Mi-
halcea, 2011). SSA incorporates a similar seman-
tic abstraction and interpretation of words as ESA,
yet it uses salient concepts gathered from encyclo-
pedic knowledge, where a “concept” represents an
unambiguous word or phrase with a concrete mean-
ing, and which affords an encyclopedic definition.
Saliency in this case is determined based on the
word being hyperlinked (either trough manual or au-
tomatic annotations) in context, implying that they
are highly relevant to the given text. SSA is an ex-
ample of Generalized Vector Space Model (GVSM),
where vectors represent word-concepts associations.

In order to determine the similarity of two text
fragments , we employ two variations: the typical
cosine similarity (cos) and a best alignment strat-
egy (align), which we explain in more detail below.
Both variations were paired with the LSA, ESA,
and SSA systems resulting in six similarity scores
that were used as features by our meta-system,
namely LSAcos, LSAalign, ESAcos, ESAalign,
SSAcos, and SSAalign.

Best Alignment Strategy (align). Let Ta and Tb be
two text fragments of size a and b respectively. After
removing all stopwords, we first determine the num-
ber of shared terms (ω) between Ta and Tb. Second,
we calculate the semantic relatedness of all possible
pairings between non-shared terms in Ta and Tb. We
further filter these possible combinations by creating
a list ϕ which holds the strongest semantic pairings
between the fragments’ terms, such that each term
can only belong to one and only one pair.

Sim(Ta, Tb) =
(ω +

∑|ϕ|
i=1 ϕi)× (2ab)

a + b
(8)

where ω is the number of shared terms between the
text fragments and ϕi is the similarity score for the
ith pairing.

3.3.3 Bipartite Graph Matching
In an attempt to move beyond the bag-of-words

paradigm described thus far, we attempt to compute
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a set of dependency graph alignment scores based
on previous work in automatic short-answer grading
(Mohler et al., 2011). This score, computed in two
stages, is used as a feature by our meta-system.

In the first stage, the system is provided with the
dependency graphs for each pair of sentences4. For
each node in one dependency graph, we compute a
similarity score for each node in the other depen-
dency graph based upon a set of lexical, semantic,
and syntactic features applied to both the pair of
nodes and their corresponding subgraphs (i.e. the set
of nodes reachable from a given node by following
directional governor-to-dependant links). The scor-
ing function is trained on a small set of manually
aligned graphs using the averaged perceptron algo-
rithm.

We define a total of 64 features5 to be used to train
a machine learning system to compute subgraph-
subgraph similarity. Of these, 32 are based upon the
bag-of-words semantic similarity of the subgraphs
using the metrics described in Section 3.3.1 as well
as a Wikipedia-trained LSA model. The remaining
32 features are lexico-syntactic features associated
with the parent nodes of the subgraphs and are de-
scribed in more detail in our earlier paper.

We then calculate weights associated with these
features using an averaged version of the percep-
tron algorithm (Freund and Schapire, 1999; Collins,
2002) trained on a set of 32 manually annotated
instructor/student answer pairs selected from the
short-answer grading corpus (MM2011). These
pairs contain 7303 node pairs (656 matches, 6647
non-matches). Once the weights are calculated, a
similarity score for each pair of nodes can be com-
puted by taking the dot product of the feature vector
with the weights.

In the second stage, the node similarity scores cal-
culated in the previous step are used to find an op-
timal alignment for the pair of dependency graphs.
We begin with a bipartite graph where each node
in one graph is represented by a node on the left
side of the bipartite graph and each node in the other

4We here use the output of the Stanford Dependency Parser
in collapse/propagate mode with some modifications as de-
scribed in our earlier work.

5With the exception of the four features based upon the Hirst
& St.Onge similarity metric, these are equivalent to the features
used in previous work.

graph is represented by a node on the right side. The
weight associated with each edge is the score com-
puted for each node-node pair in the previous stage.
The bipartite graph is then augmented by adding
dummy nodes to both sides which are allowed to
match any node with a score of zero. An optimal
alignment between the two graphs is then computed
efficiently using the Hungarian algorithm. Note that
this results in an optimal matching, not a mapping,
so that an individual node is associated with at most
one node in the other answer. After finding the opti-
mal match, we produce four alignment-based scores
by optionally normalizing by the number of nodes
and/or weighting the node-alignments according to
the idf scores of the words.6 This results in four
alignment scores listed as graphnone, graphnorm,
graphidf , graphidfnorm.

3.3.4 Baselines

As a baseline, we also utilize several lexical bag-
of-words approaches where each sentence is repre-
sented by a vector of tokens and the similarity of the
two sentences can be computed by finding the co-
sine of the angle between their representative vectors
using term frequency (tf ) or term frequency mul-
tiplied by inverse document frequency (tf.idf )6, or
by using simple overlap between the vectors’ dimen-
sions (overlap).

3.4 Machine Learning

3.4.1 Algorithms

All the systems described above are used to gen-
erate a score for each training and test sample (see
Section 3.1). These scores are then aggregated per
sample, and used in a supervised learning frame-
work. We decided to use a regression model, instead
of classification, since the requirements for the task
specify that we should provide a score in the range of
0 to 5. We could have used classification paired with
bucketed ranges, yet classification does not take into
consideration the underlying ordinality of the scores
(i.e. a score of 4.5 is closer to either 4 or 5, but
farther away from 0), which is a noticeable handi-
cap in this scenario. We tried both linear and sup-

6The document frequency scores were taken from the British
National Corpus (BNC).
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port vector regression7 by performing 10 fold cross-
validation on the train data, yet the latter algorithm
consistently performs better, no matter what kernel
was chosen. Thus we decided to use support vec-
tor regression (Smola and Schoelkopf, 1998) with a
Pearson VII function-based kernel.

Due to its different learning methodology, and
since it is suited for predicting continuous classes,
our second system uses the M5P decision tree al-
gorithm (Quinlan, 1992; Wang and Witten, 1997),
which outperforms support vector regression on the
10 fold cross-validation performed on the SMTeu-
roparl train set, while providing competitive results
on the other train sets (within .01 Pearson correla-
tion).

3.4.2 Setup
We submitted three system variations, namely

IndividualRegression, IndividualDecTree,
and CombinedRegression. The first word de-
scribes the training data; for individual, for the
known test sets we trained on the corresponding
train sets, while for the unknown test sets we trained
on all the train sets combined; for combined,
for each test set we trained on all the train sets
combined. The second word refers to the learning
methodology, where Regression stands for support
vector regression, and DecTree stands for M5P
decision tree.

4 Results and Discussion

We include in Table 1 the Pearson correlations ob-
tained by comparing the predictions of each fea-
ture to the gold standard for the three train datasets.
We notice that the corpus based metrics display a
consistent performance across the three train sets,
when compared to the other methods, including
knowledge-based. Furthermore, the best alignment
strategy (align) for corpus based models outper-
forms similarity scores based on traditional cosine
similarity. It is interesting to note that simple base-
lines such as tf , tf.idf and overlap offer signifi-
cant correlations with all the train sets without ac-
cess to additional knowledge inferred by knowledge
or corpus-based methods. In the case of the bipar-

7Implementations provided through the Weka framework
(Hall et al., 2009).

System MSRpar MSRvid SMTeuroparl
Path 0.49 0.62 0.50
LCH 0.48 0.49 0.45
Lesk 0.48 0.59 0.50
WUP 0.46 0.38 0.42
RES 0.47 0.55 0.48
Lin 0.49 0.54 0.48
JCN 0.49 0.63 0.51
LSAalign 0.44 0.57 0.61
LSAcos 0.37 0.74 0.56
ESAalign 0.52 0.70 0.62
ESAcos 0.30 0.71 0.53
SSAalign 0.46 0.61 0.65
SSAcos 0.22 0.63 0.39
graphnone 0.42 0.50 0.21
graphnorm 0.48 0.43 0.59
graphidf 0.16 0.67 0.16
graphidfnorm 0.08 0.60 0.19
tf.idf 0.45 0.63 0.41
tf 0.45 0.69 0.51
overlap 0.44 0.69 0.27

Table 1: Correlation of individual features for the training
sets with the gold standards

tite graph matching, the graphnorm variation pro-
vides the strongest correlation results across all the
datasets.

We include the evaluation results provided by the
task organizers in Table 2. They indicate that our in-
tuition in using a support vector regression strategy
was correct. While the IndividualRegression was
our strongest system on the training data, the same
ranking applies to the test data (including the addi-
tional two surprise datasets) as well, earning it the
fifth place among the 89 participating systems, with
a Pearson correlation of 0.7846.

Regarding the decision tree based learning
(IndividualDecTree), despite its more robust be-
havior on the train sets, it achieved slightly lower
outcome on the test data, at 0.7677 correlation. We
believe this happened because decision trees have a
tendency to overfit training data, as they generate a
rigid structure which is unforgiving to minor devia-
tions in the test data. Nonetheless, this second vari-
ation still ranks in the top 10% of the submitted sys-
tems.

As an alternative approach to handle unknown test
data (e.g. different distributions, genres), we opted
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Run ALL Rank Mean RankMean MSRpar MSRvid SMTeuroparl OnWN SMTnews
IndividualRegression 0.7846 5 0.6162 13 0.5353 0.8750 0.4203 0.6715 0.4033
IndividualDecTree 0.7677 9 0.5947 25 0.5693 0.8688 0.4203 0.6491 0.2256
CombinedRegression 0.7418 14 0.6159 14 0.5032 0.8695 0.4797 0.6715 0.4033

Table 2: Evaluation results and ranking published by the task organizers

to also include the CombinedRegression strategy
as our third variation. This seems to have been fruit-
ful for MSRvid, SMTeuroparl, and the two sur-
prise datasets (ONWn and SMTnews). In the
case of SMTeuroparl, this expanded training set
achieves a better performance than learning from
the corresponding training set alone, gaining an im-
provement of 0.0776 correlation points. Unfortu-
nately, the variation has some losses, particularly for
the MSRpar dataset (0.0321), yet it is able to con-
sistently model and handle a wider variety of text
types.

5 Conclusion

This paper describes the three system variations our
team participated with in the Semantic Text Similar-
ity task in SEMEVAL 2012. Our focus has been to
produce a synergistic approach, striving to achieve a
superior result than attainable by each system indi-
vidually. We have considered a variety of methods
for inferring semantic similarity, including knowl-
edge and corpus-based methods. These were lever-
aged in a machine-learning framework, where our
preferred learning algorithm is support vector re-
gression, due to its ability to deal with continuous
classes and to dampen the effect of noisy features,
while augmenting more robust ones. While it is al-
ways preferable to use similar test and train sets,
when information regarding the test dataset is un-
available, we show that a robust performance can
be achieved by combining all train data from dif-
ferent sources into a single set and allowing a ma-
chine learner to make predictions. Overall, it was
interesting to note that corpus-based methods main-
tain strong results on all train datasets in compari-
son to knowledge-based methods. Our three systems
ranked number 5, 9 and 14 among the 89 systems
participating in the task.
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Abstract

In this paper, we describe our system submit-
ted for the semantic textual similarity (STS)
task at SemEval 2012. We implemented two
approaches to calculate the degree of simi-
larity between two sentences. First approach
combines corpus-based semantic relatedness
measure over the whole sentence with the
knowledge-based semantic similarity scores
obtained for the words falling under the same
syntactic roles in both the sentences. We fed
all these scores as features to machine learn-
ing models to obtain a single score giving the
degree of similarity of the sentences. Lin-
ear Regression and Bagging models were used
for this purpose. We used Explicit Semantic
Analysis (ESA) as the corpus-based seman-
tic relatedness measure. For the knowledge-
based semantic similarity between words, a
modified WordNet based Lin measure was
used. Second approach uses a bipartite based
method over the WordNet based Lin measure,
without any modification. This paper shows
a significant improvement in calculating the
semantic similarity between sentences by the
fusion of the knowledge-based similarity mea-
sure and the corpus-based relatedness measure
against corpus based measure taken alone.

1 Introduction

Similarity between sentences is a central concept
of text analysis, however previous studies about
semantic similarities have mainly focused either
on single word similarity or complete document
similarity. Sentence similarity can be defined by the

degree of semantic equivalence of two given sen-
tences, where sentences are typically 10-20 words
long. The role of sentence semantic similarity mea-
sures in text-related research is increasing due to
potential number of applications such as document
summarization, question answering, information
extraction & retrieval and machine translation.

One plausible limitation of existing methods for
sentence similarity is their adaptation from long text
(e.g. documents) similarity methods, where word
co-occurrence plays a significant role. However,
sentences are too short, thats why taking syntac-
tic role of each word with its narrow semantic
meaning into account, can be highly relevant to
reflect the semantic equivalence of two sentences.
These narrow semantics can be reflected from any
existing large lexicons [(Wu and Palmer, 1994)
and (Lin, 1998)]; nevertheless, these lexicons can
not provide the semantics of words which are out
of lexicon (e.g. guy) or multiword expressions.
These semantics can be represented by a large
distributed semantic space such as Wikipedia and
similarity can be reflected by relatedness of these
extracted semantics. However, relatedness covers
broader space than similarity, which forced us to
tune the Wikipedia based relatedness with lexical
structure (e.g. WordNet) based similarities driven
by linguistic syntactic structure, in reflecting more
sophisticated similarity of two given sentences.

In this work, we present a sentence similarity using
ESA and syntactic similarities. The rest of this
paper is organized as follows. Section 2 explores the
related work. Section 3 describes our approaches
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in detail. Section 4 explains our three different
submitted runs for STS task. Section 5 shows the
results and finally we conclude in section 6.

2 Related Work

In recent years, there have been a variety of efforts
in improving semantic similarity measures, however
most of these approaches address this problem from
the viewpoint of large document similarity based on
word co-occurrence using string pattern or corpus
statistics. Corpus based approaches such as Latent
Semantic Analysis (LSA) [(Landauer et. al, 1998)
and (Foltz et. al, 1998)] and ESA (Gabrilovich and
Markovitch, 2007) use corpus statistics information
about all words and reflect their semantics in
distributional high semantic space. However, these
approaches perform quite well for long texts as they
use word co-occurrence and relying on the principle
that words which are used in the same contexts
tend to have related meanings. In case of short text
similarities, syntactic role of each word with its
meaning plays an important role.

There are several linguistic measures [( Achananu-
parp et. al, 2008) and (Islam and Inkpen, 2008)],
which can account for pseudo-syntactic information
by analyzing their word order using n-gram. To do
this, Islam and Inkpen defined a syntactic measure,
which considers the word order between two
strings by computing the maximal ordered word
overlapping. (Oliva et. al, 2011) present a similarity
measure for sentences and short text that takes
syntactic information, such as morphology and
parsing tree, into account and calculate similarities
between words with same syntactic role, by using
WordNet.

Our work takes inspiration from existing approaches
that exploit a combination of Wikipedia based re-
latedness with lexical structure based similarities
driven by linguistic syntactic structure.

3 Methodology

We implemented two approaches for the STS
task [(Agirre et. al, 2012)]. First approach is a
fusion of corpus-based semantic relatedness and
knowledge-based semantic similarity measures.
The core of this combination is the corpus-based

measure because the combination includes the
corpus-based semantic relatedness score over the
whole sentences and the knowledge-based semantic
similarity scores for the words falling under the
same syntactic roles in both the sentences. Machine
learning models are trained by taking all these
scores as different features. For the submission,
we used Linear regression and Bagging models.
Also, the equation obtained after training the linear
regression model shows more weightage to the score
obtained by the corpus-based relatedness measure
as this is the only score (feature), which reflects the
semantic relatedness/similarity score over the full
sentences, out of all the considered features for the
model. We used ESA as the corpus based semantic
relatedness measure and modified WordNet-based
Lin measure as the knowledge-based similarity.
The WordNet-based Lin relatedness measure was
modified to reflect better the similarity between
the words. For the knowledge-based similarity,
currently we considered only the words lying in the
three major syntactic role categories i.e. subjects,
actions and the objects. We see the first approach
as the corpus-based measure ESA tuned with the
knowledge-based measure. Thus, it is referred as
TunedESA later in the paper.

Our second approach is based on the bipartite
method over the WordNet based semantic relat-
edness measures. WordNet-based Lin measure
(without any modification) was used for calcu-
lating the relatedness scores for all the possible
corresponding pair of words appearing in both the
sentences. Then, the similarity/relatedness score
for the sentences is calculated by perceiving the
problem as the computation of a maximum total
matching weight of a bipartite graph having the
words as nodes and the relatedness scores as the
weight of the edges between the nodes. To solve
this, we used Hungarian method. Later, we refer
this method as WordNet-Bipartite.

3.1 TunedESA

In this approach, the ESA based relatedness score
for the full sentences is combined with the modified
WordNet-based Lin similarity scores calculated for
the words falling under the corresponding syntactic
role category in both the sentences.
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ALL Rank-ALL ALLnrm RankNrm Mean RankMean
Baseline 0.3110 87 0.6732 85 0.4356 70

Run1 0.5777 52 0.8158 20 0.5466 52
Run2 0.5833 51 0.8183 17 0.5683 42
Run3 0.4911 67 0.7696 57 0.5377 53

Table 1: Overall Rank and Pearson Correlation of all runs

MSRpar MSRvid SMTeuro OnWN SMTnews
Baseline 0.4334 0.2996 0.4542 0.5864 0.3908

ESA∗ 0.2778 0.8178 0.3914 0.6541 0.4366
Run1 0.3675 0.8427 0.3534 0.6030 0.4430
Run2 0.3720 0.8330 0.4238 0.6513 0.4489
Run3 0.5320 0.6874 0.4514 0.5827 0.2818

Table 2: Pearson Correlation of all runs with all five STS test datasets

TunedESA could be summarized as these four
basic steps:

• Calculate the ESA relatedness score between
the sentences.

• Find the words corresponding to the linguistic
syntactical categories like subject, action and
object of both the sentences.

• Calculate the semantic similarity between the
words falling in the corresponding subjects, ac-
tions and objects in both the sentences using
modified WordNet-based measure Lin.

• Combine these four scores for ESA, Subject,
Action and Object to get the final similarity
score on the basis of an already learned ma-
chine learning model with the training data.

ESA is a promising technique to find the relatedness
between documents. The texts which need to be
compared are represented as high dimensional vec-
tors containing the TF-IDF weight between the term
and the Wikipedia article. The semantic relatedness
measure is calculated by taking the cosine measure
between these vectors. In this implementation of
ESA 1, the score was calculated by considering the

1ESA∗ considering full sentence at a time to make the vector
i.e. different from standard ESA

full sentence at a time for making the Wikipedia
article vector while in the standard ESA, vectors
are made for each word of the text followed by the
addition of all these vectors to represent the final
vector for the text/sentence. It was done just to
reduce the time complexity.

To calculate the lexical similarity between the
words, we implemented WordNet-based semantic
relatedness measure Lin. This score was modified to
reflect a better similarity between the words. In the
current system, basic linguistic syntactic categories
i.e. subjects, actions and objects were used. For
instance, below is a sentences pair from the training
MSRvid dataset with the gold standard score and
the syntactic roles.

Sentence 1: A man is playing a guitar.
Subject: Man, Action: play, Object: guitar

Sentence 2: A man is playing a flute.
Subject: Man, Action: play, Object: flute

Gold Standard Score (0-5): 2.2

As the modification, the scores given by Lin
measure were used only for the cases where sub-
sumption relation or hypernymy/hyponymy exists
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between the words. This modification was done
only for the words falling under the category of
subjects and objects.

3.2 WordNet Bipartite
WordNet-based semantic relatedness measure was
used for the second approach.

Following steps are performed :

• Each sentence is tokenized to obtain the words.

• Semantic relatedness between every possible
pair of words in both the sentences is calculated
using WordNet-based measure e.g. Lin.

• Using the scores obtained in the second step,
the semantic similarity/relatedness between the
sentences is calculated by transforming the
problem as that of computing the maximum to-
tal matching weight of a bipartite graph, which
can be done by using Hungarian method.

4 System Description

We submitted three runs in the semantic textual
similarity task. The first two runs are based on the
first approach i.e. TunedESA and they differ only in
the machine learning algorithm used for obtaining
the final similarity score based on all the considered
scores/features.

ESA was implemented on the current Wikipedia
dump. WordNet based relatedness measure Lin
was modified to give a better semantic similarity
degree. Stanford Core-NLP library was used for
obtaining the words with their syntactic roles.
All the required scores/feature i.e. ESA based
relatedness for the complete sentences and mod-
ified WordNet-based Lin similarity scores were
calculated for the corresponding words lying in
the same syntactic categories. Bagging and Linear
Regression models were built using the training data
for the first and second runs respectively. Based on
the category of the test dataset, model was trained
on the corresponding training dataset.

For the surprise test datasets, we trained our
model with the training dataset of the MSRvid data
based on the fact that we obtained good results with

this category. Then the built models were used for
calculating the similarity scores for the test data.

For the third run, WordNet Bipartite method
was used to calculate the similarity scores. It didn’t
require any training.

5 Results and Discussion

All above described runs are evaluated on STS
test dataset. Table 1 shows the overall results2 of
our three runs against the baseline system which
follows the bag of words approach. Table 2 shows
the Pearson correlation on different test datasets for
all the three runs. It provides a comparison between
corpus based relatedness measure ESA and our
system TunedESA (Run 1 & Run 2).

The results show significant improvement against
ESA. Although, it can be seen that the baseline
results are even better than of the ESA in the cases
of MSRpar and SMTeuro. It may be because this
implementation of ESA is not the standard one.

6 Conclusion

We presented a method to calculate the degree of
sentence similarity based on tuning the corpus based
relatedness measure with the knowledge-based sim-
ilarity measure over the syntactic roles. The results
show a definite improvement by the fusion. As
future work, we plan to improve the syntactic role
handling and considering more syntactical cate-
gories. Also, experimentation3 with standard ESA
and other semantic similarity/relatedness measures
needs to be performed.
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Abstract

This paper describes Stanford University’s
submission to SemEval 2012 Semantic Tex-
tual Similarity (STS) shared evaluation task.
Our proposed metric computes probabilistic
edit distance as predictions of semantic sim-
ilarity. We learn weighted edit distance in
a probabilistic finite state machine (pFSM)
model, where state transitions correspond to
edit operations. While standard edit dis-
tance models cannot capture long-distance
word swapping or cross alignments, we rectify
these shortcomings using a novel pushdown
automaton extension of the pFSM model. Our
models are trained in a regression framework,
and can easily incorporate a rich set of lin-
guistic features. The performance of our edit
distance based models is contrasted with an
adaptation of the Stanford textual entailment
system to the STS task. Our results show that
the most advanced edit distance model, pPDA,
outperforms our entailment system on all but
one of the genres included in the STS task.

1 Introduction

We describe a probabilistic edit distance based met-
ric, which was originally designed for evaluating
machine translation quality, for computing seman-
tic textual similarity (STS). This metric models
weighted edit distance in a probabilistic finite state
machine (pFSM), where state transitions correspond
to edit operations. The weights of the edit op-
erations are automatically learned in a regression
framework. One of the major contributions of this

∗ Daniel Cer is one of the organizers for the STS task. The
STS test set data was not used in any way for the development
or training of the systems described in this paper.

paper is a novel extension of the pFSM model into a
probabilistic Pushdown Automaton (pPDA), which
enhances traditional edit-distance models with the
ability to model phrase shift and word swapping.
Furthermore, we give a new log-linear parameteri-
zation to the pFSM model, which allows it to easily
incorporate rich linguistic features. We contrast the
performance of our probabilistic edit distance metric
with an adaptation of the Stanford textual entailment
system to the STS task.

2 pFSMs for Semantic Textual Similarity

We start off by framing the problem of semantic tex-
tual similarity in terms of weighted edit distance cal-
culated using probabilistic finite state machines (pF-
SMs). A FSM defines a language by accepting a
string of input tokens in the language, and reject-
ing those that are not. A probabilistic FSM defines
the probability that a string is in a language, extend-
ing on the concept of a FSM. Commonly used mod-
els such as HMMs, n-gram models, Markov Chains
and probabilistic finite state transducers all fall in
the broad family of pFSMs (Knight and Al-Onaizan,
1998; Eisner, 2002; Kumar and Byrne, 2003; Vi-
dal et al., 2005). Unlike all the other applications
of FSMs where tokens in the language are words, in
our language tokens are edit operations. A string of
tokens that our FSM accepts is an edit sequence that
transforms one side of the sentence pair (denoted as
s1) into the other side (s2).

Our pFSM has a unique start and stop state, and
one state per edit operation (i.e., Insert, Delete, Sub-
stitution). The probability of an edit sequence e is
generated by the model is the product of the state
transition probabilities in the pFSM, formally de-
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Figure 1: This diagram illustrates an example sentence pair from the statistical machine translation subtask of STS.
The three rows below are the best state transition (edit) sequences that transforms REF to SYS, according to the basic
pFSM model, the extended pPDA model, and pPDA model with synonym and paraphrase linguistic features. The
corresponding alignments generated by the models (pFSM, pPDA, pPDA+f ) are shown with different styled lines,
with later models in the order generating strictly more alignments than earlier ones. The gold human evaluation score
is 6.5, and model predictions are: pPDA+f 5.5, pPDA 4.3, pFSM 3.1.

scribed as:

w(e | s1,s2) =
∏|e|

i=1 exp θ · f(ei−1,ei,s1,s2)

Z
(1)

We featurize each of the state changes with a log-
linear parameterization; f is a set of binary feature
functions defined over pairs of neighboring states
(by the Markov assumption) and the input sentences,
and θ are the associated feature weights; Z is a parti-
tion function. In this basic pFSM model, the feature
functions are simply identity functions that emit the
current state, and the state transition sequence of the
previous state and the current state.

The feature weights are then automatically
learned by training a global regression model where
the human judgment score for each sentence pair is
the regression target (ŷ). Since the “gold” edit se-
quence are not given at training or prediction time,
we treat the edit sequences as hidden variables and
sum over them in our model. We introduce a new
regression variable y ∈ R which is the log-sum of
the unnormalized weights (Eqn. (1)) of all edit se-
quences, formally expressed as:

y = log ∑
e′⊆e∗

|e′ |

∏
i=1

exp θ · f(ei−1,ei,s1,s2) (2)

e∗ is the set of all possible alignments. The sum

over an exponential number of edit sequences in e∗
is solved efficiently using a forward-backward style
dynamic program. Any edit sequence that does not
lead to a complete transformation of the sentence
pair has a probability of zero in our model. Our
regression target then seeks to minimize the least
squares error with respect to ŷ, plus a L2-norm regu-
larizer term parameterized by λ :

θ ∗ = min
θ

{∑
s1

i ,s
2
i

[ŷi − (
y

|s1
i |+ |s2

i |
+α)]2 +λ∥θ∥2}

(3)
The |s1

i |+ |s2
i | is a length normalization term for

the ith training instance, and α is a scaling con-
stant whose value is to be learned. At test time,
y/(|s1|+ |s2|) + α is computed as the predicted
score.

We replaced the standard substitution edit oper-
ation with three new operations: Sword for same
word substitution, Slemma for same lemma substitu-
tion, and Spunc for same punctuation substitution. In
other words, all but the three matching-based substi-
tutions are disallowed. The start state can transition
into any of the edit states with a constant unit cost,
and each edit state can transition into any other edit
state if and only if the edit operation involved is valid
at the current edit position (e.g., the model cannot
transition into Delete state if it is already at the end
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of s1; similarly it cannot transition into Slemma unless
the lemma of the two words under edit in s1 and s2

match). When the end of both sentences are reached,
the model transitions into the stop state and ends
the edit sequence. The first row in Figure 1 start-
ing with pFSM shows a state transition sequence for
an example sentence pair. 1 There exists a one-to-
one correspondence between substitution edits and
word alignments. Therefore this example state tran-
sition sequence correctly generates an alignment for
the word 43 and people.

2.1 pPDA Extension

A shortcoming of edit distance models is that they
cannot handle long-distance word swapping — a
pervasive phenomenon found in most natural lan-
guages. 2 Edit operations in standard edit distance
models need to obey strict incremental order in
their edit position, in order to admit efficient dy-
namic programming solutions. The same limitation
is shared by our pFSM model, where the Markov
assumption is made based on the incremental or-
der of edit positions. Although there is no known
solution to the general problem of computing edit
distance where long-distance swapping is permit-
ted (Dombb et al., 2010), approximate algorithms do
exist. We present a simple but novel extension of the
pFSM model to a probabilistic pushdown automa-
ton (pPDA), to capture non-nested word swapping
within limited distance, which covers a majority of
word swapping in observed in real data (Wu, 2010).

A pPDA, in its simplest form, is a pFSM where
each control state is equipped with a stack (Esparza
and Kucera, 2005). The addition of stacks for each
transition state endows the machine with memory,
extending its expressiveness beyond that of context-
free formalisms. By construction, at any stage in a
normal edit sequence, the pPDA model can “jump”
forward within a fixed distance (controlled by a max
distance parameter) to a new edit position on either
side of the sentence pair, and start a new edit subse-
quence from there. Assuming the jump was made on

1It is safe to ignore the second and third row in Figure 1 for
now, their explanations are forthcoming in Section 2.1.

2The edit distance algorithm described in Cormen et
al. (2001) can only handle adjacent word swapping (transpo-
sition), but not long-distance swapping.

the s2 side, 3 the machine remembers its current edit
position in s2 as Jstart , and the destination position
on s2 after the jump as Jlanding.

We constrain our model so that the only edit op-
erations that are allowed immediately following a
“jump” are from the set of substitution operations
(e.g., Sword). And after at least one substitution
has been made, the device can now “jump” back to
Jstart , remembering the current edit position as Jend .
Another constraint here is that after the backward
“jump”, all edit operations are permitted except for
Delete, which cannot take place until at least one
substitution has been made. When the edit sequence
advances to position Jlanding, the only operation al-
lowed at that point is another “jump” forward opera-
tion to position Jend , at which point we also clear all
memory about jump positions and reset.

An intuitive explanation is that when pPDA
makes the first forward jump, a gap is left in s2 that
has not been edited yet. It remembers where it left
off, and comes back to it after some substitutions
have been made to complete the edit sequence. The
second row in Figure 1 (starting with pPDA) illus-
trates an edit sequence in a pPDA model that in-
volves three “jump” operations, which are annotated
and indexed by number 1-3 in the example. “Jump
1” creates an un-edited gap between word 43 and
western, after two substitutions, the model makes
“jump 2” to go back and edit the gap. The only edit
permitted immediately after “jump 2” is deleting the
comma in s1, since inserting the word 43 in s2 before
any substitution is disallowed. Once the gap is com-
pleted, the model resumes at position Jend by making
“jump 3”, and completes the jump sequence.

The “jumps” allowed the model to align words
such as western India, in addition to the alignments
of 43 people found by the pFSM. In practice, we
found that our extension gives a big boost to model
performance (cf. Section 4), with only a modest in-
crease in computation time. 4

3Recall that we transform s1 into s2, and thus on the s2 side,
we can only insert but not delete. The argument applies equally
to the case where the jump was made on the other side.

4The length of the longest edit sequence with jumps only
increased by 0.5 ∗max(|s1|, |s2|) in the worst case, and by and
large swapping is rare in comparison to basic edits.
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Figure 2: Stanford Entailment Recognizer: The pipelined approach used by the Stanford entailment recognizer to
analyze sentence pairs and determine whether or not an entailment relationship is present. The entailment recognizer
first obtains dependency parses for both the passage and the hypothesis. These parses are then aligned based upon
lexical and structural similarity between the two dependency graphs. From the aligned graphs, features are extracted
that suggest the presence or absence of an entailment relationship. Figure courtesy of (Pado et al., 2009).

2.2 Parameter Estimation

Since the least squares operator preserves convexity,
and the inner log-sum-exponential function is con-
vex, the resulting objective function is also convex.
For parameter learning, we used the limited mem-
ory quasi-newton method (Liu and Nocedal, 1989)
to find the optimal feature weights and scaling con-
stant for the objective. We initialized θ = 0⃗, α = 0,
and λ = 5. We also threw away features occurring
fewer than five times in training corpus. Gradient
calculation was similar to other pFSM models, such
as HMMs, we omitted the details here, for brevity.

2.3 Rich Linguistic Features

We add new substitution operations beyond those
introduced in Section 2, to capture synonyms and
paraphrase in the sentence pair. Synonym rela-
tions are defined according to WordNet (Miller et
al., 1990), and paraphrase matches are given by a
lookup table. To better take advantage of paraphrase
information at the multi-word phrase level, we ex-

tended our substitution operations to match longer
phrases by adding one-to-many and many-to-many
bigram block substitutions. In our experiments on
machine translation evaluation task, which our met-
ric was originally developed for, we found that most
of the gain came from unigrams and bigrams, with
little to no additional gains from trigrams. There-
fore, we limited our experiments to bigram pFSM
and pPDA models, and pruned the paraphrase table
adopted from TERplus 5 to unigrams and bigrams,
resulting in 2.5 million paraphrase pairs. Trained on
all available training data, the resulting pPDA model
has a total of 218 features.

2.4 Model Configuration
We evaluate both the pFSM and pPDA models with
the addition of rich linguistic features, as described
in the previous section. For pPDA model, the jump
distance is set to five. For each model, we experi-
mented with two different training schemes. In the

5Available from www.umiacs.umd.edu/~snover/terp.
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HYP: Virus was infected.

REF: No one was infected by the virus.

no entailment no entailment

HYP: The virus did not infect anybody.

REF: No one was infected by the virus.

entailment entailment

Figure 3: Semantic similarity as determined by mutual textual entailment. Figure courtesy of (Pado et al., 2009).

first scheme, we train a separate model for each sec-
tion of the training dataset (i.e., MSRpar, MSRvid,
and SMTeuroparl), and use that model to test on
their respective test set. For the two unseen test
sets (SMTnews and OnWN), we used a joint model
trained on all of the available training data. We re-
fer to this scheme as Indi henceforth. In the second
scheme, we used the joint model trained on all train-
ing data to make preditions for all test sets (we refer
to this scheme as All). Our official submission con-
tains two runs – pFSM with scheme Indi, and pPDA
with scheme All.

3 Textual Entailment for STS

We contrast the performance of the probabilistic edit
distance metrics with an adaptation of the Stanford
Entailment Recognizer to the STS task. In this sec-
tion, we review the textual entailment task, the op-
eration of the Stanford Entailment Recognizer, and
describe how we adapted our entailment system to
the STS task.

3.1 Recognizing Textual Entailment
The Recognizing Textual Entailment (RTE) task
(Dagan et al., 2005) involves determining whether
the meaning of one text can be inferred from an-
other. The text providing the ground truth for the
evaluation is known as the passage while the text
being tested for entailment is known as the the hy-
pothesis. A passage entails a hypothesis if a casual
speaker would consider the inference to be correct.
This intentionally side-steps strict logical entailment
and implicitly brings in all of the world knowledge
speakers use to interpret language.

The STS task and RTE differ in two significant
ways. First, the RTE task is one directional. If a
hypothesis sentence is implied by a passage, the in-
verse does not necessarily hold (e.g., “John is out-
side in the snow without a coat.” casually implies
“John is cold”, but not vice versa). Second, the RTE
task forces systems to make a boolean choice about

entailment, rather than the graded scale of semantic
relatedness implied by STS.

3.2 Textual Entailment System Description

Shown in Figure 2, the Stanford entailment sys-
tem uses a linguistically rich multi-stage annotation
pipeline. Incoming sentence pairs are first depen-
dency parsed. The dependency parse trees are then
transformed into semantic graphs containing addi-
tional annotations such as named entities and coref-
erence. The two semantic graphs are then aligned
based upon structural overlap and lexical semantic
similarity using a variety of word similarity metrics
based on WordNet, vector space distributional sim-
ilarity as calculated by InfoMap, and a specialized
module for matching ordinal values. The system
then supplies the aligned semantic graphs as input to
a number of feature producing modules. Some mod-
ules produce gross aggregate scores, such as return-
ing the alignment quality between the two sentences.
Others look for specific phenomena that suggest the
presence or absence of an entailment relationship,
such as a match or mismatch in polarity (e.g., “died”
vs. “didn’t die”), tense, quantification, and argument
structure. The resulting features are then passed on
to a down stream classifier to predict whether or not
an entailment relationship exists.

3.3 Adapting RTE to STS

In order to adapt our entailment recognition sys-
tem to STS, we follow the same approach Pado
et al. (2009) used to successfully adapt the entail-
ment system to machine translation evaluation. As
shown in Figure 3, for each pair of sentences pre-
sented to the system, we run the entailment system
in both directions and extract features that describe
whether the first sentence entails the second and vice
versa for the opposite direction. This setup effec-
tively treats the STS task as a bidirectional variant
of the RTE task. The extracted bidirectional entail-
ment features are then passed on to a support vec-
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Models All MSRpar MSRvid SMTeuro OnWn SMTnews
pFSMIndi 0.6354(38) 0.3795 0.5350 0.4377 - -
pFSMAll 0.3727 0.3769 0.4569 0.4256 0.6052 0.4164
pPDAIndi 0.6808 0.4244 0.5051 0.4554 - -
pPDAAll 0.4229(77) 0.4409 0.4698 0.4558 0.6468 0.4769
Entailment 0.5589(55) 0.4374 0.8037 0.3533 0.3077 0.3235

Table 1: Absolute score prediction results on STS12 test set. Numbers in this table are Pearson correlation scores. Best
result on each test set is highlighted in bold. Numbers in All column that has superscript are the official submissions.
Their relative rank among 89 systems in shown in parentheses.

tor machine regression (SVR) model, which predicts
the STS score for the sentence pair. As in Pado et
al. (2009), we augment the bidirectional entailment
features with sentence level BLEU scores, in order
to improve robustness over noisy non-grammatical
data. We trained the SVR model using libSVM over
all of the sentence pairs in the STS training set. The
model uses a Gaussian kernel with γ = 0.125, an
SVR ε-loss of 0.25, and margin violation cost, C, of
2.0. These hyperparameters were selected by cross
validation over the training set.

4 Results

From Table 1, we can see that the pPDA model
performed better than the pFSM model on all test
sets except the MSRvid section. This result clearly
demonstrates the power of the pPDA extension
in modeling long-distance word swapping. The
MSRvid test set has the shortest overall sentence
length (13, versus 35 for MSRpar), and therefore it is
not too surprising that long distance word swapping
did not help much here. Furthermore, the pPDA
model shows a much more pronounced performance
gain than pFSM when tested on unseen datasets
(OnWn and SMTnews), suggesting that the pPDA
model is more robust across domain. A second ob-
servation is that the Indi training scheme seems to
work better than the All approach, which shows hav-
ing more training data does not compensate the dif-
ferent characteristics of each training portion. Our
best metric on all test set is the pPDAIndi model,
with a Pearson’s correlation score of 0.6808. If
interpolated into the official submitted runs rank-
ing, it would be placed at the 22nd place among
89 runs. Among the three official runs submitted
to the shared task (pPDAAll, pFSMIndi and En-
tailment), pFSMIndi performs the best, placed at

38th place among 89 runs. Since our metrics were
originally designed for statistical machine transla-
tion (MT) evaluation, we found that on the unseen
SMTNews test set, which consists of news conversa-
tion sentence pairs from the MT domain, our pPDA
model placed at a much higher position (13 among
89 runs).

In comparison to results on MT evaluation
task (Wang and Manning, 2012), we found that the
pPDA and pFSM models work less well on STS.
Whereas in MT evaluation it is common to have
access to thousands of training examples, there is
an order of magnitude less available training data
in STS. Therefore, learning hundreds of feature pa-
rameters in our models from such few examples are
likely to be ill-posed.

Overall, the RTE system did not perform as well
as the regression based models except for MSRvid
domain , which has the shortest overall sentence
length. Our qualitative evaluation suggests that
MSRvid domain seems to exhibit the least degree of
lexical divergence between the sentence pairs, thus
making this task easier than other domains (the me-
dian score of all 89 official systems for MSRvid
is 0.7538, while the median for MSRpar and SM-
Teuroparl is 0.5128 and 0.4437, respectively). The
relative rank of RTE for MSRvid is 21 among 89,
whereas the pFSM and pPDA systems ranked 80 and
83, respectively. The low performance of pFSM and
pPDA on this task significantly affected the ranking
of these two systems on the ALL evaluation measure.
We do not have a clear explanation why RTE system
thrives on this easier task while pPDA and pFSM
suffers. In the future, we aim to gain a better under-
standing of the characteristics of the two different
systems, and explore combination techniques.
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5 Conclusion

We describe a metric for computing sentence level
semantic textual similarity, which is based on a
probabilistic finite state machine model that com-
putes weighted edit distance. Our model admits a
rich set of linguistic features, and can be trained to
learn feature weights automatically by optimizing
a regression objective. A novel pushdown automa-
ton extension was also presented for capturing long-
distance word swapping. Our models outperformed
Stanford textual entailment system on all but one of
the genres on the STS task.

Acknowledgements
We gratefully acknowledge the support of the
Defense Advanced Research Projects Agency
(DARPA) Machine Reading Program under Air
Force Research Laboratory (AFRL) prime contract
no. FA8750-09-C-0181 and the support of the
DARPA Broad Operational Language Translation
(BOLT) program through IBM. Any opinions, find-
ings, and conclusion or recommendations expressed
in this material are those of the author(s) and do not
necessarily reflect the view of the DARPA, AFRL,
or the US government.

References

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
2001. Introduction to Algorithms, Second Edition.
MIT Press.

I. Dagan, O. Glickman, and B. Magnini. 2005. The
PASCAL recognising textual entailment challenge. In
Proceedings of the PASCAL Challenges Workshop on
Recognising Textual Entailment.

Y. Dombb, O. Lipsky, B. Porat, E. Porat, and A. Tsur.
2010. The approximate swap and mismatch edit dis-
tance. Theoretical Computer Science, 411(43).

J. Eisner. 2002. Parameter estimation for probabilistic
finite-state transducers. In Proceedings of ACL.

J. Esparza and A. Kucera. 2005. Quantitative analysis
of probabilistic pushdown automata: Expectations and
variances. In Proceedings of the 20th Annual IEEE
Symposium on Logic in Computer Science.

K. Knight and Y. Al-Onaizan. 1998. Translation with
finite-state devices. In Proceedings of AMTA.

S. Kumar and W. Byrne. 2003. A weighted finite state
transducer implementation of the alignment template
model for statistical machine translation. In Proceed-
ings of HLT/NAACL.

D. C. Liu and J. Nocedal. 1989. On the limited mem-
ory BFGS method for large scale optimization. Math.
Programming, 45:503–528.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. J. Miller. 1990. WordNet: an on-line lexical
database. International Journal of Lexicography, 3(4).

S. Pado, D. Cer, M. Galley, D. Jurafsky, and C. Man-
ning. 2009. Measuring machine translation quality as
semantic equivalence: A metric based on entailment
features. Machine Translation, 23:181–193.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta,
and R. C. Carrasco. 2005. Probabilistic finite-state
machines part I. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 27(7):1013–1025.

M. Wang and C. Manning. 2012. SPEDE: Probabilistic
edit distance metrics for sentence level MT evaluation.
In Proceedings of WMT.

D. Wu, 2010. CRC Handbook of Natural Language Pro-
cessing, chapter How to Select an Answer String?,
pages 367–408. CRC Press.

654



First Joint Conference on Lexical and Computational Semantics (*SEM), pages 655–661,
Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

University Of Sheffield: Two Approaches to Semantic Text Similarity

Sam Biggins, Shaabi Mohammed, Sam Oakley,
Luke Stringer, Mark Stevenson and Judita Priess

Department of Computer Science
University of Sheffield

Sheffield
S1 4DP, UK

{aca08sb, aca08sm, coa07so, aca08ls,
r.m.stevenson, j.preiss}@shef.ac.uk

Abstract

This paper describes the University of
Sheffield’s submission to SemEval-2012 Task
6: Semantic Text Similarity. Two approaches
were developed. The first is an unsupervised
technique based on the widely used vector
space model and information from WordNet.
The second method relies on supervised ma-
chine learning and represents each sentence as
a set of n-grams. This approach also makes
use of information from WordNet. Results
from the formal evaluation show that both ap-
proaches are useful for determining the simi-
larity in meaning between pairs of sentences
with the best performance being obtained by
the supervised approach. Incorporating infor-
mation from WordNet also improves perfor-
mance for both approaches.

1 Introduction

This paper describes the University of Sheffield’s
submission to SemEval-2012 Task 6: Semantic Text
Similarity (Agirre et al., 2012). The task is con-
cerned with determining the degree of semantic
equivalence between a pair of sentences.

Measuring the similarity between sentences is an
important problem that is relevant to many areas
of language processing, including the identification
of text reuse (Seo and Croft, 2008; Bendersky and
Croft, 2009), textual entailment (Szpektor et al.,
2004; Zanzotto et al., 2009), paraphrase detection
(Barzilay and Lee, 2003; Dolan et al., 2004), In-
formation Extraction/Question Answering (Lin and
Pantel, 2001; Stevenson and Greenwood, 2005), In-
formation Retrieval (Baeza-Yates and Ribeiro-Neto,

1999), short answer grading (Pulman and Sukkarieh,
2005; Mohler and Mihalcea, 2009), recommenda-
tion (Tintarev and Masthoff, 2006) and evaluation
(Papineni et al., 2002; Lin, 2004).

Many of the previous approaches to measuring the
similarity between texts have relied purely on lexi-
cal matching techniques, for example (Baeza-Yates
and Ribeiro-Neto, 1999; Papineni et al., 2002; Lin,
2004). In these approaches the similarity of texts is
computed as a function of the number of matching
tokens, or sequences of tokens, they contain. How-
ever, this approach fails to identify similarities when
the same meaning is conveyed using synonymous
terms or phrases (for example, “The dog sat on the
mat” and “The hound sat on the mat”) or when the
meanings of the texts are similar but not identical
(for example, “The cat sat on the mat” and “A dog
sat on the chair”).

Significant amounts of previous work on text
similarity have focussed on comparing the mean-
ings of texts longer than a single sentence, such as
paragraphs or documents (Baeza-Yates and Ribeiro-
Neto, 1999; Seo and Croft, 2008; Bendersky and
Croft, 2009). The size of these texts means that
there is a reasonable amount of lexical items in each
document that can be used to determine similarity
and failing to identify connections between related
terms may not be problematic. The situation is dif-
ferent for the problem of semantic text similarity
where the texts are short (single sentences). There
are fewer lexical items to match in this case, making
it more important that connections between related
terms are identified. One way in which this infor-
mation has been incorporated in NLP systems has
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been to make use of WordNet to provide informa-
tion about similarity between word meanings, and
this approach has been shown to be useful for com-
puting text similarity (Mihalcea and Corley, 2006;
Mohler and Mihalcea, 2009).

This paper describes two approaches to the se-
mantic text similarity problem that use WordNet
(Miller et al., 1990) to provide information about
relations between word meanings. The two ap-
proaches are based on commonly used techniques
for computing semantic similarity based on lexical
matching. The first is unsupervised while the other
requires annotated data to train a learning algorithm.
Results of the SemEval evaluation show that the su-
pervised approach produces the best overall results
and that using the information provided by WordNet
leads to an improvement in performance.

The remainder of this paper is organised as fol-
lows. The next section describes the two approaches
for computing semantic similarity between pairs of
sentences that were developed. The system submit-
ted for the task is described in Section 3 and its per-
formance in the official evaluation in Section 4. Sec-
tion 5 contains the conclusions and suggestions for
future work.

2 Computing Semantic Text Similarity

Two approaches for computing semantic similar-
ity between sentences were developed. The first
method, described in Section 2.1, is unsupervised. It
uses an enhanced version of the vector space model
by calculating the similarity between word senses,
and then finding the distances between vectors con-
structed using these distances. The second method,
described in Section 2.2, is based on supervised ma-
chine learning and compares sentences based on the
overlap of the n-grams they contain.

2.1 Vector Space Model

The first approach is inspired by the vector space
model (Salton et al., 1975) commonly used to com-
pare texts in Information Retrieval and Natural Lan-
guage Processing (Baeza-Yates and Ribeiro-Neto,
1999; Manning and Schütze, 1999; Jurafsky and
Martin, 2009).

2.1.1 Creating vectors
Each sentence is tokenised, stop words removed

and the remaining words lemmatised using NLTK
(Bird et al., 2009). (The WordPunctTokenizer
and WordNetLemmatizer are applied.) Binary
vectors are then created for each sentence.

The similarity between sentences can be com-
puted by comparing these vectors using the cosine
metric. However, this does not take account of
words with similar meanings, such as “dog” and
“hound” in the sentences “The dog sat on the mat”
and “The hound sat on the mat”. To take account
of these similarities WordNet-based similarity mea-
sures are used (Patwardhan and Pedersen, 2006).

Any terms that occur in only one of the sentences
do not contribute to the similarity score since they
will have a 0 value in the binary vector. Any words
with a 0 value in one of the binary vectors are com-
pared with all of the words in the other sentence and
the similarity values computed. The highest similar-
ity value is selected and use to replace the 0 value
in that vector, see Figure 1. (If the similarity score
is below the set threshold of 0.5 then the similarity
value is not used and in these cases the 0 value re-
mains unaltered.) This substitution of 0 values in the
vectors ensures that similarity between words can be
taken account of when computing sentence similar-
ity.

Figure 1: Determining word similarity values for
vectors

Various techniques were explored for determining
the similarity values between words. These are de-
scribed and evaluated in Section 2.1.3.

2.1.2 Computing Sentence Similarity
The similarity between two sentences is com-

puted using the cosine metric. Since the cosine met-
ric is a distance measure, which returns a score of 0
for identical vectors, its complement is used to pro-
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duce the similarity score. This score is multiplied by
5 in order to generate a score in the range required
for the task.

2.1.3 Computing Word Similarity
The similarity values for the vectors are computed

by first disambiguating each sentence and then ap-
plying a similarity measure. Various approaches for
carrying out these tasks were explored.

Word Sense Disambiguation Two simple and
commonly used techniques for Word Sense
Disambiguation were applied.

Most Frequent Sense (MFS) simply selects
the first sense in WordNet, i.e., the most
common occurring sense for the word.
This approach is commonly used as a
baseline for word sense disambiguation
(McCarthy et al., 2004).

Lesk (1986) chooses a synset by comparing its
definition against the sentence and select-
ing the one with the highest number of
words in common.

Similarity measures WordNet-based similarity
measures have been found to perform well
when used in combination with text similarity
measures (Mihalcea and Corley, 2006) and
several of these were compared. Implementa-
tions of these measures from the NLTK (Bird
et al., 2009) were used.

Path Distance uses the length of the shortest
path between two senses to determine the
similarity between them.

Leacock and Chodorow (1998) expand upon
the path distance similarity measure by
scaling the path length by the maximum
depth of the WordNet taxonomy.

Resnik (1995) makes use of techniques from
Information Theory. The measure of re-
latedness between two concepts is based
on the Information Content of the Least
Common Subsumer.

Jiang and Conrath (1997) also uses the In-
formation Content of the two input
synsets.

Lin (1998) uses the same values as Jiang and
Conrath (1997) but takes the ratio of the
shared information content to that of the
individual concepts.

Results produced by the various combinations of
word sense disambiguation strategy and similarity
measures are shown in Table 1. This table shows
the Pearson correlation of the system output with the
gold standard over all of the SemEval training data.
The row labelled ‘Binary’ shows the results using
binary vectors which are not augmented with any
similarity values. The remainder of the table shows
the performance of each of the similarity measures
when the senses are selected using the two word
sense disambiguation algorithms.

Metric MFS Lesk
Binary 0.657

Path Distance 0.675 0.669
Leacock and Chodorow (1998) 0.087 0.138

Resnik (1995) 0.158 0.153
Jiang and Conrath (1997) 0.435 0.474

Lin (1998) 0.521 0.631

Table 1: Performance of Vector Space Model us-
ing various disambiguation strategies and similarity
measures

The results in this table show that the only simi-
larity measure that leads to improvement above the
baseline is the path measure. When this is applied
there is a modest improvement over the baseline for
each of the word sense disambiguation algorithms.
However, all other similarity measures lead to a drop
in performance. Overall there seems to be little dif-
ference between the performance of the two word
sense disambiguation algorithms. The best perfor-
mance is obtained using the paths distance and MFS
disambiguation.

Table 2 shows the results of the highest scoring
method broken down by the individual corpora used
for the evaluation. There is a wide range between the
highest (0.726) and lowest (0.485) correlation scores
with the best performance being obtained for the
MSRvid corpus which contains short, simple sen-
tences.
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Metric Correlation
MSRpar 0.591
MSRvid 0.726
SMTeuroparl 0.485

Table 2: Correlation scores across individual cor-
pora using Path Distance and Most Frequent Sense.

2.2 Supervised Machine Learning

For the second approach the sentences are repre-
sented as sets of n-grams of varying length, a com-
mon approach in text comparison applications which
preserves some information about the structure of
the document. However, like the standard vector
space model (Section 2.1) this technique also fails to
identify similarity between texts when an alternative
choice of lexical item is used to express the same,
or similar, meaning. To avoid this problem Word-
Net is used to generate sets of alternative n-grams.
After the n-grams have been generated for each sen-
tence they are augmented with semantic alternatives
created using WordNet (Section 2.2.1). The overlap
scores between the n-grams from the two sentences
are used as features for a supervised learning algo-
rithm (Section 2.2.2).

2.2.1 Generating n-grams

Preprocessing is carried out using NLTK. Each
sentence is tokenised, lemmatised and stop words
removed. A set of n-grams are then extracted from
each sentence. The set of n-grams for the sentence
S is referred to as So.

For every n-gram in So a list of alternative n-
grams is generated using WordNet. Each item in
the n-gram is considered in turn and checked to de-
termine whether it occurs in WordNet. If it does
then a set of alternative lexical items is constructed
by combining all terms that are found in all synsets
containing that item as well as their immediate hy-
pernyms and hyponyms of the terms. An additional
n-gram is created for each item in this set of alterna-
tive lexical items by substituting each for the origi-
nal term. This set of expanded n-grams is referred to
as Sa.

2.2.2 Sentence Comparison
Overlap metrics to determine the similarity be-

tween the sets of n-grams are used to create features
for the learning algorithm. For two sentences, S1
and S2, four sets of n-grams are compared: S1o,
S2o, S1a and S2a (i.e., the n-grams extracted di-
rectly from sentences S1 and S2 as well as the mod-
ified versions created using WordNet).

The n-grams that are generated using WordNet
(Sa) are not as important as the original n-grams
(So) for determining the similarity between sen-
tences and this is accounted for by generating three
different scores reflecting the overlap between the
two sets of n-grams for each sentence. These scores
can be expressed using the following equations:

|S1o ∩ S2o|√
|S1o| × |S2o|

(1)

|(S1o ∩ S2a)∩( S2o ∩ S1a)|√
|(S1o ∩ S2a)| × |(S2o ∩ S1a)|

(2)

|S1a ∩ S2a|√
|S1a| × |S2a|

(3)

Equation 1 is the cosine measure applied to the
two sets of original n-grams, equation 2 compares
the original n-grams in each sentence with the alter-
native n-grams in the other while equation 3 com-
pares the alternative n-grams with each other.

Other features are used in addition to these sim-
ilarity scores: the mean length of S1 and S2, the
difference between the lengths of S1 and S2 and the
corpus label (indicating which part of the SemEval
training data the sentence pair was drawn from). We
found that these additional features substantially in-
crease the performance of our system, particularly
the corpus label.

3 University of Sheffield’s entry for Task 6

Our entry for this task consisted of three runs using
the two approaches described in Section 2.

Run 1: Vector Space Model (VS) The first run
used the unsupervised vector space approach (Sec-
tion 2.1). Comparison of word sense disambiguation
strategies and semantic similarity measures on the
training data showed that the best results were ob-
tained using the Path Distance Measure combined
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with the Most Frequent Sense approach (see Ta-
bles 1 and 2) and these were used for the official
run. Post evaluation analysis also showed that this
strategy produced the best performance on the test
data.

Run 2: Machine Learning (NG) The second
run used the supervised machine learning approach
(Section 2.2.2). The various parameters used by
this approach were explored using 10-fold cross-
validation applied to the SemEval training data. We
varied the lengths of the n-grams generated, exper-
imented with various pre-processing strategies and
machine learning algorithms. The best performance
was obtained using short n-grams, unigrams and bi-
grams, and these were used for the official run. In-
cluding longer n-grams did not lead to any improve-
ment in performance but created significant com-
putational cost due to the number of alternative n-
grams that were created using WordNet. When
the pre-processing strategies were compared it was
found that the best performance was obtained by ap-
plying both stemming and stop word removal before
creating n-grams and this approach was used in the
official run. The Weka1 LinearRegression al-
gorithm was used for the official run and a single
model was created by training on all of the data pro-
vided for the task.

Run 3: Hybrid (VS + NG) The third run is a
hybrid combination of the two methods. The su-
pervised approach (NG) was used for the three data
sets that had been made available in the training data
(MSRpar, MSRvid and SMT-eur) while the vector
space model (VS) was used for the other two data
sets. This strategy was based on analysis of perfor-
mance of the two approaches on the training data.
The NG approach was found to provide the best
performance. However it was sensitive to the data
set from which the training data was obtained from
while VS, which does not require training data, is
more robust.

A diagram depicting the various components of
the submitted entry is shown in Figure 2.

4 Evaluation

The overall performance (ALLnrm) of NG, VG and
the hybrid systems is significantly higher than the

1http://www.cs.waikato.ac.nz/ml/weka/

Figure 2: System Digram for entry

official baseline (see Table 3). The table also in-
cludes separate results for each of the evaluation
corpora (rows three to seven): the unsupervised VS
model performance is significantly higher than the
baseline (p-value of 0.06) over all corpus types, as is
that of the hybrid model.

However, the performance of the supervised NG
model is below the baseline for the (unseen in train-
ing data) SMT-news corpus. Given a pair of sen-
tences from an unknown source, the algorithm em-
ploys a model trained on all data combined (i.e.,
omits the corpus information), which may resemble
the input (On-WN) or it may not (SMT-news).

After stoplist removal, the average sentence
length within MSRvid is 4.5, whereas it is 6.0 and
6.9 in MSRpar and SMT-eur respectively, and thus
the last two corpora are expected to form better train-
ing data for each other. The overall performance on
the MSRvid data is higher than for the other cor-
pora, which may be due to the small number of ad-
jectives and the simpler structure of the shorter sen-
tences within the corpus.

The hybrid system, which selects the supervised
system (NG)’s output when the test sentence pair
is drawn from a corpus within the training data
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Corpus Baseline Vector Space (VS) Machine Learning (NG) Hybrid (NG+VS)
ALL .3110 .6054 .7241 .6485
ALLnrm .6732 .7946 .8169 .8238
MSRpar .4334 .5460 .5166 .5166
MSRvid .2996 .7241 .8187 .8187
SMT-eur .4542 .4858 .4859 .4859
On-WN .5864 .6676 .6390 .6676
SMT-news .3908 .4280 .2089 .4280

Table 3: Correlation scores from official SemEval results

Rank (/89) Rank Ranknrm RankMean
Baseline 87 85 70
Vector Space (VS) 48 44 29
Machine Learning (NG) 17 18 37
Hybrid 34 15 20

Table 4: Ranks from official SemEval results

and selects the unsupervised system (VS)’s answer
otherwise, outperforms both systems in combina-
tion. Contrary to expectations, the supervised sys-
tem did not always outperform VS on phrases based
on training data – the performance of VS on MSR-
par, with its long and complex sentences, proved
to be slightly higher than that of NG. However, the
unsupervised system was clearly the correct choice
when the source was unknown.

5 Conclusion and Future Work

Two approaches for computing semantic similarity
between sentences were explored. The first, unsu-
pervised approach, uses a vector space model and
computes similarity between sentences by compar-
ing vectors while the second is supervised and rep-
resents the sentences as sets of n-grams. Both
approaches used WordNet to provide information
about similarity between lexical items. Results from
evaluation show that the supervised approach pro-
vides the best results on average but also that per-
formance of the unsupervised approach is better for
some data sets. The best overall results for the Se-
mEval evaluation were obtained using a hybrid sys-
tem that attempts to choose the most suitable ap-
proach for each data set.

The results reported here show that the semantic
text similarity task can be successfully approached

using lexical overlap techniques augmented with
limited semantic information derived from Word-
Net. In future, we would like to explore whether
performance can be improved by applying deeper
analysis to provide information about the structure
and semantics of the sentences being compared. For
example, parsing the input sentences would provide
more information about their structure than can be
obtained by representing them as a bag of words or
set of n-grams. We would also like to explore meth-
ods for improving performance of the n-gram over-
lap approach and making it more robust to different
data sets.
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Abstract

Sentences that are syntactically quite different
can often have similar or same meaning. The
SemEval 2012 task of Semantic Textual Sim-
ilarity aims at finding the semantic similarity
between two sentences. The semantic repre-
sentation of Universal Networking Language
(UNL), represents only the inherent meaning
in a sentence without any syntactic details.
Thus, comparing the UNL graphs of two sen-
tences can give an insight into how semanti-
cally similar the two sentences are. This paper
presents the UNL graph matching method for
the Semantic Textual Similarity(STS) task.

1 Introduction

Universal Networking language (UNL) gives the
semantic representation of sentences in a graphi-
cal form. By comparing the similarity of these
graphs, we inherently compare only the semantic
content of the two sentences, rather than compar-
ing the similarities in the syntax. Thus, the UNL
graph matching strategy is a natural choice for the
Semantic Textual Similarity(STS) task of SemEval
2012. UNL graphs are also used in textual en-
tailment and interlingua based machine translation
tasks. We use the UNL enconverter system at:
http://www.cfilt.iitb.ac.in
/UNL enco
to generate the UNL graphs of the sentences. For the
two graphs, generated from the two sentences, we
give a similarity score by matching the two graphs.

In the following sections we describe UNL
matching strategy. section 2 describes the UNL sys-

Figure 1: UNL graph for “John eats rice”

tem and why this approach is useful, section 3 de-
scribes the matching algorithm, section 4 describes
the challenges faced in this approach, section 5 gives
the results and finally section 6 gives the conclusion
and the future scope.

2 Universal Networking Language

The Universal Networking Language gives a graph-
ical representation of the semantics of a text in the
form of hypergraphs. The representation is at the
semantic level which allows mapping of the simi-
lar meaning sentences having different syntax to the
same representation. To exemplify this point, con-
sider the UNL graphs generated for the following
sentences:

Sentence 1: John ate rice.

Sentence 2: Rice was eaten by John.

The UNL graph generated from the system are
given in figures 1 and 2 respectively.

The UNL graph consists of three components:
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Figure 2: UNL graph for “Rice was eaten by John”

• Universal Words

• Relations

• Attributes

2.1 Universal Words
The Universal Words (UWs) form the vocabulary of
the Universal Networking Language. They form the
nodes of the UNL graph. The words are normalized
to their basic lemma, for example, eats becomes eat.
The Universal Word is, usually, followed by a dis-
ambiguating constraint list which is mainly used for
disambiguating the sense of the Universal Word. For
example, John (iof > person), here the word John is
disambiguated as an instance of (iof) a person and
rice is disambiguated to be in the class of (icl) proper
noun. The UNL generation system, uses a Universal
word dictionary created using the wordnet.

2.2 Relations
The UNL manual describes 46 binary semantic re-
lations among the Universal Words as given in UNL
manual. These form the labelled arcs of the UNL
graph. In the example of figures 1 and 2, the rela-
tions agent (agt) and object (obj) are shown. John is
the agent of the action eat and rice is the object of
the action eat. The UNL generation system gener-
ated these relations using complex rules based on the
dependency and constituency parser outputs, Word-
net features and Named Entity recognizer output.

2.3 Attributes
Attributes are attached to the Universal Words to
show the speakers perspective for some subjective
information in the text. For the given example, with
respect to the speaker of the text, the action of eat
happened in the past with respect to the speaker.

This is represented by the attribute @past.
The detailed description of the UNL standard can
be found in the UNL manual available online at
http://www.undl.org/unlsys/unl
/unl2005/.

The two sentences listed above, have the same
semantic content, although their syntax is different.
One sentence is in the active voice, while the other
sentence is in the passive. But if we compare the
UNL graphs of the two sentences, they are almost
identical, with an extra attribute @passive on the
main verb eat in the second graph. The graph match-
ing of the two sentences results in a high score near
to 5. Like voice, most of the syntactic variations are
dropped when we move from syntactic to semantic
representation. Thus, comparing the semantic rep-
resentation of the sentences, is useful, to identify
their semantic similarity. The UNL generation sys-
tem generates the attributes using similar features to
those for relation generation.

3 UNL matching

The UNL system available online at:
http://www.cfilt.iitb.ac.in
/UNL enco
produces graphs for the sentences by listing the
binary relations present in the graph. An example
of such a listing is :

Sentence 3: A man is eating a banana by a tree.

[unl:1]
agt ( eat(icl>eat>do, agt>thing,
obj>thing):4.@present.@progress
.@entry,
man(icl>male>thing,
equ>adult_male):2.@indef )
ins ( eat(icl>eat>do, agt>thing,
obj>thing):4.@present.@progress
.@entry,
tree(icl>woody_plant>thing)
:9.@indef )
obj ( eat(icl>eat>do, agt>thing,
obj>thing):4.@present.@progress
.@entry,
banana(icl>herb>thing,
equ>banana_tree):6.@indef )
[\unl]
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Sentence 4 : A man is eating a banana.

[unl:1]
agt ( eat(icl>eat>do, agt>thing,
obj>thing):4.@present.@progress
.@entry,
man(icl>male>thing,
equ>adult_male):2.@indef )
obj ( eat(icl>eat>do, agt>thing,
obj>thing):4.@present.@progress
.@entry,
banana(icl>herb>thing,
equ>banana_tree):6.@indef )
[\unl]

We treat the UNL graph of one sentence as goldunl
and the other as testunl. The matching score
between the two is found using the following
formulation (Mohanty, 2008):

score(testunl, goldunl)

= (2∗precision∗recall)
(precision+recall) (1)

precision

=
∑

relation∈testunl relation score(relation)

(count(relations∈testunl)) (2)

recall

=
∑

relation∈testunl relation score(relation)

(count(relations∈goldunl)) (3)

relation score(relation)

= avg(rel match, uw1score, uw2score) (4)

rel match

=

{
1 if relation name matches
0 otherwise

(5)

uwscore

= avg(word score, attribute score) (6)

word score

=

{
1 if universal word matches
0 otherwise

(7)

attribute score

= F1score(testunl attr, goldunl attr) (8)

The matching scheme is based on the idea of the
F1 score. The two UNL graphs are a list of UNL
relations each. Considering, one as the gold UNL
graph and the other as the test UNL graph, we can
find the precision and recall of the total relations that
have matched. For the example given in section 2.4,
the sentence 3 has three relations while sentence 4
has two relations. A correspondence between the
relations agt of the two graphs and also the relation
obj of the two graphs can be established based on
the universal words that they connect. Each such re-
lation match is given a score, explained later, which
is used in the calculation of the precision and recall.
From the precision and recall the F1 score can be
easily calculated which becomes the total matching
score of the two graphs.

The relation score is obtained by averaging the
scores of relation match, and the score of the two
universal word matches. The universal word match
score has a component of the attributes that match
between the corresponding universal words. This
attribute matching is again the F1 score calculation
similar to relation matching. Matching the attributes
of the universal words, contributes to the score of the
matched universal word, which in turn contributes
to the score of the matched relation. Thus, matching
of the semantic relations has more weight than the
matching of the attributes.

The score obtained by this formulation is between
0 and 1. Another score between 0 and 1 is obtained
by flipping the goldunl graph to testunl and testunl
to goldunl. Average of these two scores is then mul-
tiplied by 5 to give the final score.

By this formulation, the score obtained by match-
ing graphs for sentences 3 and 4 is 4.0

4 Challenges in the approach

In the UNL graph matching startegy we faced the
following challenges:

4.1 Sentences with grammatical errors
Many of the sentences, especially, from the MSRpar
dataset, had minor grammatical errors. The UNL
generation requires grammatical correctness. Some
of the examples of such sentences are:

• The no-shows were Sens. John Kerry of Mas-
sachusetts and Bob Graham of Florida.
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• She countersued for $125 million, saying G+J
broke its contract with her by cutting her out
of key editorial decisions and manipulated the
magazine’s financial figures.

• “She was crying and scared,’ said Isa Yasin, the
owner of the store.

Here, terms like G+J and punctuation errors as in
the third example lead to the generation of improper
UNL graphs. To handle such cases, the UNL gener-
ation needs to get robust.

4.2 Scoping errors

UNL graphs are hypergraphs, in which, a node can
in itself be a UNL graph. Scopes are given iden-
tity numbers like :01,:02 and so on. While matching
two different UNL graphs, this matching of scope
identity numbers cannot be directly achieved. Also,
one graph may have different number of scopes as
compared to the other. Hence, eventhough the UNL
graphs are generated correctly, due to scoping mis-
matches the matching score goes down. To tackle
this problem, the UNL graphs generated are con-
verted into scopeless form before the matching is
performed. Every UNL graph has an entry node,
which is the starting node of the graph. This is de-
noed by an @entry attribute on the node. Every
scope, too, has an entry node. The idea for convert-
ing the UNL graphs into scopeless form is to replace
the scope nodes by the graphs that these nodes repre-
sent, with the connection to the original scope node
going to the entry node of the replacing graph.

4.3 Incomplete or no graph generation

It was observed that for some of the sentences,
the UNL generation system did not produce UNL
graphs or the generation was incomplete. Some of
these sentences are:

• The Metropolitan Transportation Authority
was given two weeks to restore the $1.50 fare
and the old commuter railroad rates, York de-
clared.

• Long lines formed outside gas stations and peo-
ple rushed to get money from cash machines
Sunday as Israelis prepared to weather a strike
that threatened to paralyze the country.

These, are due to some internal system errors of
the UNL generation system. To improve on this, the
UNL generation system itself has to improve.

5 Results

By adopting the methodology described in section 3,
the following results were obtained on the different
datasets.

MSRpar 0.1936
MSRvid 0.5504
SMT-eur 0.3755
On-WN 0.2888

SMT-news 0.3387

As observed, the performance is good for the
MSRvid dataset. This dataset consists of small and
simple sentences which are grammatically correct.
The performance on this dataset should further im-
prove by capturing the synonyms of the Univer-
sal words while matching the UNL relations. The
performance for MSRpar dataset is low. The sen-
tences in this dataset are long and sometimes with
minor grammatical errors resulting in incomplete or
no UNL graphs. As the UNL generation system
becomes more robust, the performance is expected
to improve quickly. The overall result over all the
datasets is given in the following table.

ALL ALLnrm Mean
0.3431 0.6878 0.3481

6 Conclusion and Future Scope

The UNL graph matching approach works well with
grammatically correct sentences. The approach de-
pends on the accuracy of the UNL generation sys-
tem itself. With the increase in the robustness of the
UNL generation system, this approach seems natu-
ral. Since, the approach is unsupervised, it does not
require any training data. The matching algorithm
can be extended to include the synonyms of the Uni-
versal Words while matching relations.
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Abstract 

In this paper we report the results obtained 

in the Semantic Textual Similarity (STS) 
task, with a system primarily developed for 

textual entailment. Our results are quite 

promising, getting a run ranked 39 in the 
official results with overall Pearson, and 

ranking 29 with the Mean metric. 

 

1 Introduction 

For the last couple of years the research com-

munity has focused on a deeper analysis of natural 
languages, seeking to capture the meaning of the 

text in different contexts: in machine translation 

preserving the meaning of the translations is cru-
cial to determine whether a translation is useful or 

not, in question-answering understanding the ques-

tion leads to the desired answers (while the oppo-

site case makes a system rather frustrating to the 
user) and the examples could continue. In this 

newly defined task, Semantic Textual Similarity, 

there is hope that efforts in different areas will be 
shared and united towards the goal of identifying 

meaning and recognizing equivalent, similar or 

unrelated texts. Our contribution to the task, is 
from a textual entailment point of view, as will be 

described below. 

The paper is organized as follows: Section 2 de-

scribes the relevant tasks, Section 3 describes the 

architecture of the system, then Section 4 shows 

the experiments carried out and the results ob-
tained, and Section 5 presents some conclusions 

and future work. 

2 Related work  

In this section we briefly describe two different 

tasks that are closely related and in which our sys-

tem has participated with very promising results. 
 

2.1 Textual Entailment 

 

Textual Entailment (TE) is defined as a generic 
framework for applied semantic inference, where 

the core task is to determine whether the meaning 

of a target textual assertion (hypothesis, H) can be 
inferred from a given text (T). For example, given 

the pair (T,H): 

T: Fire bombs were thrown at the Tunisian embas-

sy in Bern 
H: The Tunisian embassy in Switzerland was at-

tacked 

we can conclude that T entails H. 
 

The recently created challenge “Recognising 

Textual Entailment” (RTE) started in 2005 with 

the goal of providing a binary answer for each pair 
(H,T), namely whether there is entailment or not 

(Dagan et al., 2006). The RTE challenge has mu-

tated over the years, aiming at accomplishing more 
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accurate and specific solutions; for example, in 

2008 a three-way decision was proposed (instead 
of the original binary decision) consisting of “en-

tailment”, “contradiction” and “unknown”; in 2009 

the organizers proposed a pilot task, the Textual 

Entailment Search (Bentivogli et al, 2009), consist-
ing in finding all the sentences in a set of docu-

ments that entail a given Hypothesis and since 

2010 there is a Novelty Detection Task, which 
means that RTE systems are required to judge 

whether the information contained in each H is 

novel with respect to (i.e., not entailed by) the in-
formation contained in the corpus. 

2.2 Semantic Textual Similarity 

The pilot task STS was recently defined in 

Semeval 2012 (Aguirre et al., 2012) and has as 
main objective measuring the degree of semantic 

equivalence between two text fragments. STS is 

related to both Recognizing Textual Entailment 
(RTE) and Paraphrase Recognition, but has the 

advantage of being a more suitable model for mul-

tiple NLP applications.  

As mentioned before, the goal of the RTE task 
(Bentivogli et al, 2009) is determining whether the 

meaning of a hypothesis H can be inferred from a 

text T. Thus, TE is a directional task and we say 
that T entails H, if a person reading T would infer 

that H is most likely true.  The difference with STS 

is that STS consists in determining how similar 

two text fragments are, in a range from 5 (total 
semantic equivalence) to 0 (no relation). Thus, 

STS mainly differs from TE in that the classifica-

tion is graded instead of binary. In this manner, 
STS is filling the gap between several tasks. 

3 System architecture  

Sagan is a RTE system (Castillo and Cardenas, 

2010) which has taken part of several challenges, 
including the Textual Analysis Conference 2009 

and TAC 2010, and the Semantic Textual Similari-

ty and Cross Lingual Textual Entailment for con-
tent synchronization as part of the Semeval 2012. 

 The system is based on a machine learning ap-

proach and it utilizes eight WordNet-based 

(Fellbaum, 1998) similarity measures, as explained 
in (Castillo, 2011), with the purpose of obtaining 

the maximum similarity between two WordNet 

concepts. A concept is a cluster of synonymous 

terms that is called a synset in WordNet. These 

text-to-text similarity measures are based on the 
following word-to-word similarity metrics: 

(Resnik, 1995), (Lin, 1997), (Jiang and Conrath, 

1997), (Pirrò and Seco, 2008), (Wu & Palmer, 

1994), Path Metric, (Leacock & Chodorow, 1998), 
and a semantic similarity to sentence level named 

SemSim (Castillo and Cardenas,2010).  

 

Pre-Processing

Similarity Score

MSR

Word Level Semantic Metrics

Extraction Features 

SVM with 

Regression

Test Set:  MSR, 

MSRvid,Europarl, 

SMT-news, WN

RUN 1 

Normalizer Stemmer Parser

Resnik SemSimW&PLin ...

Sentence Level Semantic Metric

MSR+MSRvid

RUN 2RUN 3 

MSR+MSRvid
+Europarl

Training sets:

...

Fig.1. System architecture  

 

The system construct a model of the semantic 

similarity of two texts (T,H) as a function of the 

semantic similarity of the constituent words of 

both phrases. In order to reach this objective, we 
used a text to text similarity measure which is 

based on word to word similarity. Thus, we expect 

that combining word to word similarity metrics to 
text level would be a good indicator of text to text 

similarity.  

Additional information about how to produce 
feature vectors as well as each word- and sentence-

level metric can be found in (Castillo, 2011). The 

architecture of the system is shown in Figure 1. 

The training set used for the submitted runs are 
those provided by the organizers of the STS. How-

ever we also experimented with RTE datasets as 

described in the next Section.  
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4 Experiments and Results 

For preliminary experiments before the STS Chal-

lenge, we used the training set provided by the 

organizers, denoted with "_train", and consisting of 
750 pairs of sentences from the MSR Paraphrase 

Corpus (MSRpar), 750 pairs of sentences from the 

MSRvid Corpus (MSRvid), 459 pairs of sentences 
of the Europarl WMT2008 development set (SMT-

eur). We also used the RTE datasets from Pascal 

RTE Challenge (Dagan et al., 2006) as part of our 
training sets. Additionally, at the testing stage, we 

used the 399 pairs of  news conversation (SMT-

news) and 750 pairs of sentences where the first 

one comes from Ontonotes and the second one 
from a WordNet definition (On-WN).   

In STS Challenge it was required that participat-

ing systems do not use the test set of MSR-
Paraphrase, the text of the videos in MSR-Video, 

and the data from the evaluation tasks at any WMT 

to develop or train their systems. Additionally, we 

also assumed that the dataset to be processed was 
unknown in the testing phase, in order to avoid any 

kind of tuning of the system. 

4.1 Preliminary Experiments 

In a preliminary study performed before the final 

submission, we experimented with three machine 

learning algorithms Support Vector Machine 

(SVM) with regression and polynomial kernel, 
Multilayer perceptron (MLP), and Linear Regres-

sion (LR). Table 1 shows the results obtained with 

10-fold cross validation technique and Table 2 
shows the results of testing them with two datasets 

and 3 classifiers over MSR_train. 
 

Classifier Pearson c.c 

SVM with regression 0.54 

MLP 0.51 

LinearRegression 0.54 

Table 1. Results obtained using MSR training set 

(MSRpar + MSRvid) with 10 fold-cross validation. 

 
Training set & ML algorithm Pearson c.c 

Europarl + SVM w/ regression 0.61 

Europarl + MLP 0.44 

Europarl + linear regression 0.61 

MSRvid + SVM w/ regression 0.70 

MSRvid + MLP 0.52 

MSRvid + linear regression 0.69 

Table 2. Results obtained using MSR training set  

Results reported in Table 1 show that we 

achieved the best performance with SVM with 
regression and Linear Regression classifiers and 

using MLP we obtained the worst results to predict 

each dataset. To our surprise, a linear regression 

classifier reports better accuracy that MLP, it may 
be mainly due to the correlation coefficient used, 

namely Pearson, which is a measure of a linear 

dependence between two variables and linear re-
gression builds a model assuming linear influence 

of independent features. We believe that using 

Spearman correlation should be better than using 
the Pearson coefficient given that Spearman as-

sumes non-linear correlation among variables. 

However, it is not clear how it behaves when sev-

eral dataset are combined to obtain a global score. 
Indeed, further discussion is needed in order to 

find the best metric to the STS pilot task. Given 

these results, in our submission for the STS pilot 
task we used a combination of STS datasets as 

training set and the SVM with regression classifier. 

Because our approach is mainly based on ma-
chine learning the quality and quantity of dataset is 

a key factor to determine the performance of the 

system, thus we decided to experiment with RTE 

datasets too (Bentivogli et el., 2009) with the aim 
of increasing the size of the training set.  

To achieve this goal, first we chose the RTE3 

dataset because it is simpler than subsequent da-
tasets and it was proved to provide a high accuracy 

predicting other datasets (Castillo, 2011). Second, 

taking into account that RTE datasets are binary 

classified as YES or NO entailment, we assumed 
that a non entailment can be treated as a value of 

2.0 in the STS pilot task and an entailment can be 

thought of as a value of 3.0 in STS. Of course, 
many pairs classified as 3.0 could be mostly equiv-

alent (4.0) or completely equivalent (5.0) but we 

ignored this fact in the following experiment.  
 

Training set Test set Pearson 

c.c. 

RTE3 MSR_train 0.4817 

RTE3 MSRvid_train 0.5738 

RTE3 Europarl_train 0.4746 

MSR_train+RTE3 MSRvid_train 0.5652 

MSR_train+RTE3 Europarl_train 0.5498 

MSRvid_train+RTE3 MSR_train 0.4559 

MSRvid_train+RTE3 Europarl_train 0.4964 

Table 3. Results obtained using RTE in the training sets 

and SVM w/regression as classifier 
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From these experiments we conclude that RTE3 

alone is not enough to adequately predict neither of 
the STS datasets, and it is understandable if we 

note that only one pair with 2.0 and 3.0 scores are 

present in this dataset.  

On the other hand, by combining RTE3 with a 
STS corpus we always obtain a slight decrease in 

performance in comparison to using STS alone. It 

is likely due to an unbalanced set and possible 
contradictory pairs (e.g: a par in RTE3 classified as 

3.0 when it should be classified 4.3). Thus, we 

conclude that in order to use the RTE datasets our 
system needs a manual annotation of the degree of 

semantic similarity of every pair <T,H> of RTE 

dataset. 

Having into account that in our training phase 
we obtained a decrease in performance using RTE 

datasets we decided not to submit any run using 

the RTE datasets. 

4.2 Submission to the STS shared task  

Our participation in the shared task consisted of 

three different runs using a SVM classifier with 

regression; the runs were set up as follows: 
- Run 1: system trained on a subset of the Mi-

crosoft Research Paraphrase Corpus (Dolan and 

Brockett, 2005), named MSR and consisting of 
750 pairs of sentences marked with a degree of 

similarity from 5 to 0.  

- Run 2: in addition to the MSR corpus we incor-

porated another 750 sentences extracted from the 
Microsoft Research Video Description Corpus 

(MSRvid), annotated in the same way as MSR. 

- Run 3: to the 1500 sentences from the MSR and 
MSRvid corpus we incorporated 734 pairs of sen-

tences from the Europarl corpus used as develop-

ment set in the WMT 2008; all sentences are 
annotated with the degree of similarity from 5 to 0. 

It is very interesting to note that we used the 

same system configurations for every dataset of 

each RUN. In this manner, we did not perform any 
kind of tuning to a particular dataset before our 

submission. We decided to ignore the "name" of 

each dataset and apply our system regardless of the 
particular dataset. Surely, if we take into account 

where each dataset came from we can develop a 

particular strategy for every one of them, but we 

assumed that this kind of information is unknown 
to our system.  

The official scores of the STS pilot task is the 

Pearson correlation coefficient, and other varia-
tions of Pearson which were proposed by the or-

ganizers with the aim of better understanding the 

behavior of the competing systems among the dif-

ferent scenarios. 
These metric are named ALL (overall Pearson), 

ALLnrm (normalized Pearson) and Mean 

(weighted mean), briefly described below: 
- ALL: To compute this metric, first a new dataset 

with the union of the five gold datasets is created 

and then the Pearson correlation is calculated over 
this new dataset. 

- ALLnrm: In this metric, the Pearson correlation 

is computed after the system outputs for each da-

taset are fitted to the gold standard using least 
squares. 

- Mean: This metric is a weighted mean across the 

five datasets, where the weight is given by the 
quantity of pairs in each dataset. 

Table 5 report the results achieved with these 

metrics followed by an individual Pearson correla-
tion for each dataset. 

Interestingly, if we analyze the size of data sets, 

we see that the larger the training set used, the 

greater the efficiency gains with ALL metric. In 
effect, RUN3 used 2234 pairs, RUN2 used 1500 

pairs and RUN1 was composed by 750 pairs. This 

highlights the need for larger datasets for the pur-
pose of building more accurate models.  

With ALLnrm our system achieved better re-

sults but since this metric is based on normalized 

Pearson correlation which assumes a linear correla-
tion, we believe that this metric is not representa-

tive of the underlying phenomenon. For example, 

conducting manual observation we can see that 
pairs from SMT-news are much harder to classify 

than MSRvid pairs. This results can also be evi-

denced from others participating teams who almost 
always achieved better results with MSRvid than 

SMT-news dataset.  

The last metric proposed is the Mean and we are 

ranked 29 among participating teams. It is proba-
bly due to the weight of SMT-news (399 pairs) is 

smaller than MSR or MSRvid. 

Mean metrics seems to be more suitable for this 
task but lack an important issue, do not have into 

account the different "complexity" of the datasets. 

It is also a issue for all metrics proposed. We be-
lieve that incorporating to Mean metric a complex-

ity factor weighting for each dataset based on a 
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human judge assignment could be more suitable 

for the STS evaluation. We think in complexity as 
an underlying concept referring to the difficulty of 

determine how semantically related two sentences 

are to one another. Thus, two sentences with high 

lexical overlap should have a low complexity and 
instead two sentences that requires deep inference 

to determine similarity should have a high com-

plexity. This should be heighted by human annota-
tors and could be a method for a more precise 

evaluation of STS systems. 

 

Finally, we suggested measuring this new chal-

lenging task using a weighted Mean of the 
Spearman's rho correlation coefficient by incorpo-

rating a factor to weigh the difficulty of each da-

taset. 
 

 

 

 

 

 

Run ALL Rank ALLnrm 
Rank

Nrm 
Mean 

Rank

Mean 

MSR

par 

MSR

vid 

SMT-

eur 

On-

WN 

SMT-

news 

Best Run ,8239 1 ,8579 2 ,6773 1 ,6830 ,8739 ,5280 ,6641 ,4937 

Worst Run -,0260 89 ,5933 89 ,1016 89 ,1109 ,0057 ,0348 ,1788 ,1964 

Sagan-RUN1 ,5522 57 ,7904 47 ,5906 29 ,5659 ,7113 ,4739 ,6542 ,4253 

Sagan-RUN2 ,6272 42 ,8032 37 ,5838 34 ,5538 ,7706 ,4480 ,6135 ,3894 

Sagan-RUN3 ,6311 39 ,7943 45 ,5649 46 ,5394 ,7560 ,4181 ,5904 ,3746 

Table 5. Official results of the STS challenge 

 

5 Conclusions and future work 

In this paper we present Sagan, an RTE system 
applied to the task of Semantic Textual Similarity. 

After a preliminary study of the classifiers perfor-

mance for the task, we decided to use a combina-
tion of STS datasets for training and the classifier 

SVM with regression. With this setup the system 

was ranked 39 in the best run with overall Pearson, 
and ranked 29 with Mean metric. However, both 

rankings are based on the Pearson correlation coef-

ficient and we believe that this coefficient is not 

the best suited for this task, thus we proposed a 
Mean Spearman's rho correlation coefficient 

weighted by complexity, instead. Therefore, fur-

ther application of other metrics should be one in 
order to find the most representative and fair eval-

uation metric for this task. Finally, while promis-

ing results were obtained with our system, it still 

needs to be tested on a diversity of settings. This is 
work in progress, as the system is being tested as a 

metric for the evaluation of machine translation, as 

reported in (Castillo and Estrella, 2012). 
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Abstract

The UOW submissions to the Semantic Tex-
tual Similarity task at SemEval-2012 use a
supervised machine learning algorithm along
with features based on lexical, syntactic and
semantic similarity metrics to predict the se-
mantic equivalence between a pair of sen-
tences. The lexical metrics are based on word-
overlap. A shallow syntactic metric is based
on the overlap of base-phrase labels. The
semantically informed metrics are based on
the preservation of named entities and on the
alignment of verb predicates and the overlap
of argument roles using inexact matching. Our
submissions outperformed the official base-
line, with our best system ranked above aver-
age, but the contribution of the semantic met-
rics was not conclusive.

1 Introduction

We describe the UOW submissions to the Semantic
Textual Similarity (STS) task at SemEval-2012. Our
systems are based on combining similarity scores as
features using a regression algorithm to predict the
degree of semantic equivalence between a pair of
sentences. We train the regression algorithm with
different classes of similarity metrics: i) lexical,
ii) syntactic and iii) semantic. The lexical similar-
ity metrics are: i) cosine similarity using a bag-of-
words representation, and ii) precision, recall and
F-measure of content words. The syntactic metric
computes BLEU (Papineni et al., 2002), a machine
translation evaluation metric, over a labels of base-
phrases (chunks). Two semantic metrics are used: a

metric based on the preservation of Named Entities
and TINE (Rios et al., 2011). Named entities are
matched by type and content: while the type has to
match exactly, the content is compared with the as-
sistance of a distributional thesaurus. TINE is a met-
ric proposed to measure adequacy in machine trans-
lation and favors similar semantic frames. TINE
attempts to align verb predicates, assuming a one-
to-one correspondence between semantic roles, and
considering ontologies for inexact alignment. The
surface realization of the arguments is compared us-
ing a distributional thesaurus and the cosine similar-
ity metric. Finally, we use METEOR (Denkowski
and Lavie, 2010), also a common metric for ma-
chine translation evaluation, that also computes in-
exact word overlap as at way of measuring the im-
pact of our semantic metrics.

The lexical and syntactic metrics complement the
semantic metrics in dealing with the phenomena ob-
served in the task’s dataset. For instance, from the
MSRvid dataset:

S1 Two men are playing football.

S2 Two men are practicing football.

In this case, as typical of paraphrasing, the situa-
tion and participants are the same while the surface
realization differs, but playing can be considered
similar to practicing. From the SMT-eur dataset:

S3 The Council of Europe, along with the Court of
Human Rights, has a wealth of experience of
such forms of supervision, and we can build on
these.
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S4 Just as the European Court of Human Rights, the
Council of Europe has also considerable expe-
rience with regard to these forms of control; we
can take as a basis.

Similarly, here although with different realiza-
tions, the Court of Human Rights and the European
Court of Human Rights represent the same entity.

Semantic metrics based on predicate-argument
structure can play a role in cases when different re-
alization have similar semantic roles:

S5 The right of a government arbitrarily to set aside
its own constitution is the defining characteris-
tic of a tyranny.

S6 The right for a government to draw aside its con-
stitution arbitrarily is the definition character-
istic of a tyranny.

In this work we attempt to exploit the fact that su-
perficial variations such the ones in these examples
should still render very similarity scores.

In Section 2 we describe the similarity metrics in
more detail. In Section 3 we show the results of our
three systems. In Section 4 we discuss these results
and in Section 5 we present some conclusions.

2 Similarity Metrics

The metrics used in this work are as follows:

2.1 Lexical metrics

All our lexical metrics use the same surface repre-
sentation: words. However, the cosine metric uses
bag-of-words, while all the other metrics use only
content words. We thus first represent the sentences
as bag-of-words. For example, given the pair of sen-
tences S7 and S8:

S7 A man is riding a bicycle.

S8 A man is riding a bike.

the bag-of-words are S7 = {A, man, is, riding, a,
bicycle,.} and S8 = {A, man, is, riding, a, bike, .},
and the bag-of-content-words are S7 = {man, riding,
bicycle} and S8 = {man, riding, bike}.

We compute similarity scores using the following
metrics between a pair of sentencesA andB: cosine

distance (Equation 1), precision (Equation 2), recall
(Equation 3) and F-measure (Equation 4).

cosine(A,B) =
|A

⋂
B|√

|A| × |B|
(1)

precision(A,B) =
|A

⋂
B|

|B|
(2)

recall(A,B) =
|A

⋂
B|

|A|
(3)

F (A,B) = 2 · precision(A,B) · recall(A,B)

precision(A,B) + recall(A,B)
(4)

2.2 BLEU over base-phrases

The BLEU metric is used for the automatic evalua-
tion of Machine Translation. The metric computes
the precision of exact matching of n-grams between
a hypothesis and reference translations. This sim-
ple procedure has limitations such as: the matching
of non-content words mixed with the counts of con-
tent words affects in a perfect matching that can hap-
pen even if the order of sequences of n-grams in the
hypothesis and reference translation are very differ-
ent, changing completely the meaning of the trans-
lation. To account for similarity in word order we
use BLEU over base-phrase labels instead of words,
leaving the lexical matching for other lexical and se-
mantic metrics. We compute the matchings of 1-
4-grams of base-phrase labels. This metric favors
similar syntactic order.

2.3 Named Entities metric

The goal of the metric is to deal with synonym enti-
ties. First, named entities are grouped by class (e.g.
Organization), and then the content of the named en-
tities within the same classes is compared through
cosine similarity. If the surface realization is differ-
ent, we retrieve words that share the same context
with the named entity using Dekang Lin’s distribu-
tional thesaurus (Lin, 1998). Therefore, the cosine
similarity will have more information than just the
named entities themselves. For example, from the
sentence pair S9 and S10:

S9 Companies include IBM Corp. ...
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S10 Companies include International Business Ma-
chines ...

The entity from S9: IBM Corp. and the entity
from S10: International Business Machines have
the same tag Organization. The metric groups
them and adds words from the thesaurus result-
ing in the following bag-of-words. S9: {IBM
Corp.,... Microsoft, Intel, Sun Microsystems, Mo-
torola/Motorola, Hewlett-Packard/Hewlett-Packard,
Novell, Apple Computer...} and S10: {International
Business Machines,... Apple Computer, Yahoo, Mi-
crosoft, Alcoa...}. The metric then computes the co-
sine similarity between this expanded pair of bag-of-
words.

2.4 METEOR

This metric is also a lexical metric based on uni-
gram matching between two sentences. However,
matches can be exact, using stems, synonyms, or
paraphrases of unigrams. The synonym matching is
computed using WordNet (Fellbaum, 1998) and the
paraphrase matching is computed using paraphrase
tables (Callison-Burch et al., 2010). The structure of
the sentences is not not directly considered, but sim-
ilar word orders are rewarded through higher scores
for the matching of longer fragments.

2.5 Semantic Role Label metric

Rios et al. (2011) propose TINE, an automatic met-
ric based on the use semantic roles to align predi-
cates and their respective arguments in a pair of sen-
tences. The metric complements lexical matching
with a shallow semantic component to better address
adequacy in machine translation evaluation. The
main contribution of such a metric is to provide a
more flexible way of measuring the overlap between
shallow semantic representations (semantic role la-
bels) that considers both the semantic structure of
the sentence and the content of the semantic compo-
nents.

This metric allows to match synonym predicates
by using verb ontologies such as VerbNet (Schuler,
2006) and VerbOcean (Chklovski and Pantel, 2004)
and distributional semantics similarity metrics, such
as Dekang Lin’s thesaurus (Lin, 1998), where pre-
vious semantic metrics only perform exact match of
predicate structures and arguments. For example, in

VerbNet the verbs spook and terrify share the same
class amuse-31.1, and in VerbOcean the verb dress
is related to the verb wear, so these are considered
matches in TINE.

The main sources of errors in this metric are the
matching of unrelated verbs and the lack of coverage
of the ontologies. For example, for S11 and S12,
remain and say are (incorrectly) related as given by
VerbOcean.

S11 If snow falls on the slopes this week, Christmas
will sell out too, says Schiefert.

S12 If the roads remain snowfall during the week,
the dates of Christmas will dry up, said
Schiefert.

For this work the matching of unrelated verbs is
a particularly crucial issue, since the sentences to be
compared are not necessarily similar, as it is the gen-
eral case in machine translation. We have thus mod-
ified the metric with a preliminary optimization step
which aligns the verb predicates by measuring two
degrees of similarity: i) how similar their arguments
are, and ii) how related the predicates’ realizations
are. Both scores are combined as shown in Equation
5 to score the similarity between the two predicates
(Av, Bv) from a pair of sentences (A,B).

sim(Av,Bv) = (wlex × lexScore(Av, Bv))

+(warg × argScore(Aarg, Barg))
(5)

where wlex and warg are the weights for each
component, argScore(Aarg, Barg) is the similarity,
which is computed as in Equation 7, of the argu-
ments between the predicates being compared and
lexScore(Av, Bv) is the similarity score extracted
from the Dekang Lin’s thesaurus between the predi-
cates being compared. The Dekang Lin’s thesaurus
is an automatically built thesaurus, and for each
word it has an entry with the most similar words and
their similarity scores. If the verbs are related in the
thesaurus we use their similarity score as lexScore
otherwise lexScore = 0. The pair of predicates
with the maximum sim score is aligned. The align-
ment is an optimization problem where predicates
are aligned 1-1: we search for all 1-1 alignments that
lead to the maximum average sim for the pair of sen-
tences. For example, S13 and S14 have the follow-
ing list of predicates: S13 = {loaded, rose, ending}
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and S14 = {laced, climbed}. The metric compares
each pair of predicates and it aligns the predicates
rose and climbed because they are related in the the-
saurus with a similarity score lexScore = 0.796
and a argScore = 0.185 given that the weights are
set to 0.5 and sum up to 1 the predicates reach the
maximum sim = 0.429 score. The output of this
step results in a set of aligned verbs between a pair
of sentences.

S13 The tech - loaded Nasdaq composite rose 0
points to 0 , ending at its highest level for 0
months.

S14 The technology - laced Nasdaq Composite In-
dex IXIC climbed 0 points , or 0 percent , to
0.

The SRL similarity metric semanticRole be-
tween two sentences A and B is then defined as:

semanticRole(A,B) =

∑
v∈V verbScore(Av, Bv)

|VB |
(6)

The verbScore in Equation 6 is computed over
the set of aligned predicates from the previous opti-
mization step and for each aligned predicate the ar-
gument similarity is computed by Equation 7.

verbScore(Av, Bv) =∑
arg∈ArgA∩ArgB

argScore(Aarg, Barg)

|ArgB |
(7)

In Equation 6, V is the set of verbs aligned between
the two sentences A and B, and |VB| is the num-
ber of verbs in one of the sentences.1 The similar-
ity between the arguments of a verb pair (Av, Bv)
in V is measured as defined in Equation 7, where
ArgA and ArgB are the sets of labeled arguments
of the first and the second sentences and |ArgB| is
the number of arguments of the verb in B.2 The
argScore(Aarg, Barg) computation is based on the
cosine similarity as in Equation 1. We treat the to-
kens in the argument as a bag-of-words.

1This is inherited from the use of the metric focusing on re-
call in machine translation, where the B is the reference trans-
lation. In this work a better approach could be to compute this
metric twice, in both directions.

2Again, from the analogy of a recall metric for machine
translation.

3 Experiments and Results

We use the following state-of-the-art tools to pre-
process the data for feature extraction: i) Tree-
Tagger3 for lemmas and ii) SENNA (Collobert et
al., 2011)4 for Part-of-Speech tagging, Chunking,
Named Entity Recognition and Semantic Role La-
beling. SENNA has been reported to achieve an F-
measure of 75.79% for tagging semantic roles on the
CoNLL-2005 2 benchmark. The final feature set in-
cludes:

• Lexical metrics

– Cosine metric over bag-of-words
– Precision over content words
– Recall over content words
– F-measure over content words

• BLEU metric over chunks

• METEOR metric over words (with stems, syn-
onyms and paraphrases)

• Named Entity metric

• Semantic Role Labeling metric

The Machine Learning algorithm used for re-
gression is the LIBSVM5 Support Vector Machine
(SVM) implementation using the radial basis kernel
function. We used a simple genetic algorithm (Back
et al., 1999) to tune the parameters of the SVM. The
configuration of the genetic algorithm is as follows:

• Fitness function: minimize the mean squared
error found by cross-validation

• Chromosome: real numbers for SVM parame-
ters γ, cost and ε

• Number of individuals: 80

• Number of generations: 100

• Selection method: roulette

• Crossover probability: 0.9
3http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
4http://ml.nec-labs.com/senna/
2http://www.lsi.upc.edu/ srlconll/
5http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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• Mutation probability: 0.01

We submitted three system runs, each is a varia-
tion of the above feature set. For the official submis-
sion we used the systems with optimized SVM pa-
rameters. We trained SVM models with each of the
following task datasets: MSRpar, MSRvid, SMT-
eur and the combination of MSRpar+MSRvid. For
each test dataset we applied their respective training
models, except for the new test sets, not covered by
any training set: for On-WN we used the combina-
tion MSRpar+MSRvid, and for SMT-news we used
SMT-eur.

Tables 1 to 3 focus on the Pearson correlation
of our three systems/runs for individual datasets of
the predicted scores against human annotation, com-
pared against the official baseline, which uses a sim-
ple word overlap metric. Table 4 shows the aver-
age results over all five datasets, where ALL stands
for the Pearson correlation with the gold standard
for the five dataset, Rank is the absolute rank among
all submissions, ALLnrm is the Pearson correlation
when each dataset is fitted to the gold standard us-
ing least squares, RankNrm is the corresponding
rank and Mean is the weighted mean across the five
datasets, where the weight depends on the number
of sentence pairs in the dataset.

3.1 Run 1: All except SRL features
Our first run uses the lexical, BLEU, METEOR and
Named Entities features, without the SRL feature.
Table 1 shows the results over the test set, where
Run 1-A is the version without SVM parameter op-
timization and Run 1-B are the official results with
optimized parameters for SVM.

Task Run 1-A Run 1-B Baseline
MSRpar 0.455 0.455 0.433
MSRvid 0.706 0.362 0.300
SMT-eur 0.461 0.307 0.454
On-WN 0.514 0.281 0.586

SMT-news 0.386 0.208 0.390

Table 1: Results for Run 1 using lexical, chunking,
named entities and METEOR as features. A is the non-
optimized version, B are the official results

3.2 Run 2: SRL feature
In this run we use only the SRL feature in order to
analyze whether this feature on its own could be suf-

ficient or lexical and other simpler features are im-
portant. Table 2 shows the results over the test set
without parameter optimization (Run 2-A) and the
official results with optimized parameters for SVM
(Run 2-B).

Task Run 2-A Run 2-B Baseline
MSRpar 0.335 0.300 0.433
MSRvid 0.264 0.291 0.300
SMT-eur 0.264 0.161 0.454
On-WN 0.281 0.257 0.586

SMT-news 0.189 0.221 0.390

Table 2: Results for Run 2 using the SRL feature only. A
is the non-optimized version, B are the official results

3.3 Run 3: All features
In the last run we use all features. Table 3 shows
the results over the test set without parameter opti-
mization (Run 3-A) and the official results with op-
timized parameters for SVM (Run 3-B).

Task Run 3-A Run 3-B Baseline
MSRpar 0.472 0.353 0.433
MSRvid 0.705 0.572 0.300
SMT-eur 0.471 0.307 0.454
On-WN 0.511 0.264 0.586

SMT-news 0.410 0.116 0.390

Table 3: Results for Run 3 using all features. A is the
non-optimized version, B are the official results

4 Discussion

Table 4 shows the ranking and normalized offi-
cial scores of our submissions compared against the
baseline. Our submissions outperform the official
baseline but significantly underperform the top sys-
tems in the shared task. The best system (Run 1)
achieved an above average ranking, but disappoint-
ingly the performance of our most complete system
(Run 3) using the semantic metric is poorer. Sur-
prisingly, the results of the non-optimized versions
outperform the optimized versions used in our offi-
cial submission. One possible reason for that is the
overfitting of the optimized models to the training
sets.

Run 1 and Run 3 have very similar results: the
overall correlation between all datasets of these two
systems is 0.98. One of the reasons for these results
is that the SRL metric is compromised by the length
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System ALL Rank ALLnrm RankNrm Mean RankMean
Run 1 0.640 36 0.719 71 0.382 80
Run 2 0.536 59 0.629 88 0.257 88
Run 3 0.598 49 0.696 82 0.347 84

Baseline 0.311 87 0.673 85 0.436 70

Table 4: Official results and ranking over the test set for Runs 1-3 with SVM parameters optimized

of the sentences. In the MSRvid dataset, where the
sentences are simple such as “Someone is drawing”,
resulting in a good semantic parsing, a high per-
formance for this metric is achieved. However, in
the SMT datasets, sentences are much longer (and
often ungrammatical, since they are produced by a
machine translation system) and the performance of
the metric drops. In addition, the SRL metric makes
mistakes such as judging as highly similar sentences
such as “A man is peeling a potato” and “A man is
slicing a potato”, where the arguments are the same
but the situations are different.

5 Conclusions

We have presented our systems based on similar-
ity scores as features to train a regression algorithm
to predict the semantic similarity between a pair
of sentences. Our official submissions outperform
the baseline method, but have lower performance
than most participants, and a simpler version of the
systems without any parameter optimization proved
more robust. Disappointingly, our main contribu-
tion, the addition of a metric based on Semantic Role
Labels shows no improvement as compared to sim-
pler metrics.
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Abstract

We present the Penn system for SemEval-
2012 Task 6, computing the degree of seman-
tic equivalence between two sentences. We
explore the contributions of different vector
models for computing sentence and word sim-
ilarity: Collobert and Weston embeddings as
well as two novel approaches, namely eigen-
words and selectors. These embeddings pro-
vide different measures of distributional simi-
larity between words, and their contexts. We
used regression to combine the different simi-
larity measures, and found that each provides
partially independent predictive signal above
baseline models.

1 Introduction

We compute the semantic similarity between pairs
of sentences by combining a set of similarity met-
rics at various levels of depth, from surface word
similarity to similarities derived from vector mod-
els of word or sentence meaning. Regression is then
used to determine optimal weightings of the differ-
ent similarity measures. We use this setting to as-
sess the contributions from several different word
embeddings.

Our system is based on similarities computed us-
ing multiple sets of features: (a) naive lexical fea-
tures, (b) similarity between vector representations
of sentences, and (c) similarity between constituent
words computed using WordNet, using the eigen-
word vector representations of words , and using se-
lectors, which generalize words to a set of words that
appear in the same context.

2 System Description

This section briefly describes the feature sets used to
arrive at a similarity measure between sentences. We
compare the use of word similarities based on three
different embeddings for words neural embeddings
using recursive autoencoders, eigenwords and selec-
tors.

2.1 Neural Models of Word Representation

An increasingly popular approach is to learn repre-
sentational embeddings for words from a large col-
lection of unlabeled data (typically using a genera-
tive model), and to use these embeddings to augment
the feature set of a supervised learner. These models
are based on the distributional hypothesis in linguis-
tics that words that occur in similar contexts tend
to have similar meanings. The similarities between
these vectors indicate similarity in the meanings of
corresponding words.

The state of the art model in paraphrase detection
uses an unsupervised recursive autoencoder (RAE)
model based on an unfolding objective that learn
feature vectors for phrases in syntactic parse trees
(Socher et al., 2011). The idea of neural language
models is to jointly learn an embedding of words
into an n-dimensional vector space that capture dis-
tributional syntactic and semantic information via
the words co-occurrence statistics. Further details
and evaluations of these embeddings are discussed
in Turian et al. (2010).

Once the distributional syntactic and semantic
matrix is learned on an unlabeled corpus, one can
use it for subsequent tasks by using each words vec-
tor to represent that word. For initial word embed-
dings, we used the 100-dimensional vectors com-
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puted via the unsupervised method of Collobert and
Weston (2008). These word embeddings are matri-
ces of size |V | × n where |V | is the size of the vo-
cabulary and n is the dimensionality of the semantic
space. This matrix usually captures co-occurrence
statistics and its values are learned. We used the
embeddings provided by Socher et al. (2011). Al-
though the original paper employed a dynamic pool-
ing layer in addition to the RAE that captures the
global structure of the similarity matrix, we found
the resulting sentence-level RAE itself was useful.
In turn, we use these vector representations at the
sentence level where the cosine similarity between
the sentence vectors serves as a measure of sentence
similarity. All parameters for the RAE layer are kept
same as described by Socher et al. (2011).

2.2 Eigenword Similarity

Recent spectral methods use large amounts of un-
labeled data to learn word representations, which
can then be used as features in supervised learners
for linguistic tasks. Eigenwords, a spectral method
for computing word embeddings based on context
words that characterize the meanings of words, can
be efficiently computed by a set of methods based on
singular value decomposition (Dhillon et al., 2011).

Such representations are dense, low dimensional
and real-valued like the vector representations in the
previous section except that they are induced us-
ing eigen-decomposition of the word co-occurrence
matrix instead of neural networks. This method
uses Canonical Correlation Analysis (CCA) be-
tween words and their immediate contexts to es-
timate word representations from unlabeled data.
CCA is the analog to Principal Component Analysis
(PCA) for pairs of matrices. It computes the direc-
tions of maximal correlation between a pair of matri-
ces. CCAs invariance to linear data transformations
enables proofs showing that keeping the dominant
singular vectors faithfully captures any state infor-
mation. (For this work, we used the Google n-gram
collection of web three-grams as the unlabeled data.)
Each dimension of these representations captures la-
tent information about a combination of syntactic
and semantic word properties. In the original paper,
the word embeddings are context-specific. For this
task, we only use context-oblivious embeddings i.e.
one embedding per word type for this task, based

on their model. Word similarity can then be cal-
culated as cosine similarity between the eigenword
representation vectors for any two words.

To move from word-level similarity to sentence-
level a few more steps are necessary. We adapted
the method of matrix similarity given by Stevenson
and Greenwood (2005). One calculates similarity
between all pairs of words, and each sentence is rep-
resented as a binary vector (with elements equal to 1
if a word is present and 0 otherwise). The similarity
between these sentences vectors ~a and~b is given by:

s(~a,~b) =
~aW~b

|~a||~b|
(1)

where W is a semantic similarity matrix contain-
ing information about the similarity of word pairs.
Each element in matrix W represents the similarity
of words according to some lexical or spectral simi-
larity measure.

2.3 Selector Similarity

Another novel method to account for the similarity
between words is via comparison of Web selectors
(Schwartz and Gomez, 2008). Selectors are words
that take the place of an instance of a target word
within its local context. For example, in “he ad-
dressed the strikers at the rally”, selectors for ‘strik-
ers’ might be ‘crowd’, ‘audience’, ‘workers’, or ‘stu-
dents’ words which can realize the same constituent
position as the target word. Since selectors are de-
termined based on the context, a set of selectors is an
abstraction for the context of a word instance. Thus,
comparing selector sets produces a measure of word
instance similarity. A key difference between selec-
tors and the eigenwords used in this paper are that
selectors are instance specific. This has the benefit
that selectors can distinguish word senses, but the
drawback that each word instance requires its own
set of selectors to be acquired.

Although selectors have previously only been
used for worse sense disambiguation, one can also
use them to compute similarity between two word
instances by taking the cosine similarity of vectors
containing selectors for each instance. In our case,
we compute the cosine similarity for each pair of
noun instances and populate the semantic similarity
matrix in formula (1) to generate a sentence-level
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similarity estimate. Combining web selector- based
word similarity features with the word embeddings
from the neural model gave us the best overall per-
formance on the aggregated view of the data sets.

2.4 Other Similarity Metrics
Knowledge-Based. We use WordNet to calculate
semantic distances between all open-class words in
the sentence pairs. There are three classifications
of similarity metrics over WordNet: path-based,
information- content based, and gloss-based (Ped-
erson et al., 2004). We chose to incorporate those
measures performing best in the Schwartz & Gomez
(2011) application-oriented evaluation: (a) the path-
based measure of Schwartz & Gomez (2008); (b)
the information-content measure of Jiang & Conrath
(1997) utilizing the difference in information con-
tent between concepts and their point of intersection;
(c) the gloss-based measure of Patwardhan & Peder-
sen (2006). By including metrics utilizing different
sources of information, we suspect they will each
have something novel to contribute.

Because WordNet provides similarity between
concepts (word senses), we take the maximum simi-
larity between all senses of each word to be the sim-
ilarity between the two words. Such similarity can
then be computed between multiple pairs of words
to populate the semantic similarity matrix W in for-
mula (1) and generate sentence-level similarity esti-
mates as described above. The information-content
and path-based measures are restricted to compar-
ing nouns and verbs and only across the same part
of speech. On the other hand, the gloss-based mea-
sure, which relies on connections through concept
definitions, is more general and can compare words
across parts of speech.

Surface Metrics. We added the following set of
lexical features to incorporate some surface infor-
mation lost in the vector-based representations.

• difference in the lengths of the two sentences
• average length of the sentences
• number of common words based on exact

string match
• number of content words in common
• number of common words in base form
• number of similar numerals in the sentences

3 Evaluation and Results

We combine the similarity metrics discussed previ-
ously via regression (Pedregosa et al., 2011). We
included the following sets of features:

• System-baseline: surface metrics, knowledge-
based metrics. (discussed in section 2.4).

• Neu: Neural Model similarity (section 2.1)

• Ew: Eigenword similarity (section 2.2)

• Sel: Selector similarity (section 2.3)

To capture possible non-linear relations, we added
a squared and square-rooted column corresponding
to each feature in the feature matrix. We also tried
to combine all the features to form composite mea-
sures by defining multiple interaction terms. Both
these sets of additional features improved the per-
formance of our regression model. We used all fea-
tures to train both a linear regression model and a
regularized model based on ridge regression. The
regularization parameter for ridge regression was set
via cross-validation over the training set. All pre-
dictions of similarity values were capped within the
range [0,1]. Our systems were trained on the follow-
ing data sets:

• MSR-Paraphrase, Microsoft Research Para-
phrase Corpus-750 pairs of sentences.

• MSR-Video, Microsoft Research Video De-
scription Corpus-750 pairs of sentences.

• SMT-Europarl, WMT2008 development data
set (Europarl section)-734 pairs of sentences.

Our performance in the official submission for the
SemEval task can be seen in Table 1. LReg indi-
cates the run with linear regression, ELReg adds
the eigenwords feature and ERReg also uses eigen-
words but with ridge regression. At the time of sub-
mission, we were not ready to test with the selector
features yet. Ridge regression consistently outper-
formed linear regression for every run of our sys-
tem, but overall Pearson score for our system using
linear regression scored the highest. Table 2 presents
a more thorough examination of results.
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MSRpar MSRvid SMT-eur On-WN SMT-news ALLnrm Mean ALL
task-baseline .4334 .2996 .4542 .5864 .3908 .6732 (85) .4356 (70) .3110 (87)

LReg .5460 .7818 .3547 .5969 .4137 .8043 (36) .5699 (41) .6497 (33)
ELReg .5480 .7844 .3513 .6040 .3607 .8048 (34) .5654 (44) .6622 (27)
ERReg .5610 .7857 .3568 .6214 .3732 .8083 (28) .5755 (37) .6573 (28)

Table 1: Pearson’s r scores for the official submission. ALLnrm: Pearson correlation after the system outputs for each
dataset are fitted to the gold standard using least squares, and corresponding rank. Mean: Weighted mean across the
5 datasets, where the weight depends on the number of pairs in the dataset. ALL: Pearson correlation with the gold
standard for the five datasets, and corresponding rank. Parentheses indicate official rank out of 87 systems.

MSRpar MSRvid SMT-eur On-WN SMT-news Mean ALL
system-baseline .5143 .7736 .3574 .5017 .3867 .5343 .6542

+Neu .5243 .7811 .3772 .4860 .3410 .5318 .6643
+Ew .5267 .7787 .3853 .5237 .4495 .5560 .6724
+Sel .4973 .7684 .3129 .4812 .4016 .5306 .6492

+Neu, +Ew .5481 .7831 .2751 .5576 .3424 .5404 .6647
+Neu, +Sel .5230 .7775 .3724 .5327 .3787 .5684 .6818
+Ew, +Sel .5239 .7728 .2842 .5191 .4038 .5320 .6554

+Neu, +Ew, +Sel .5441 .7835 .2644 .5877 .3578 .5472 .6645

Table 2: Pearson’s r scores for runs based on various combinations of features. Mean: Weighted mean across the 5
datasets, where the weight depends on the number of pairs in the dataset. ALL: Pearson correlation with the gold
standard for the five datasets, and corresponding rank.

Discussion. In the aggregate, we see that each of
the similarity metrics has the ability to improve re-
sults when used with the right combination of other
features. For example, while selector similarity by
itself does not seem to help overall, using this met-
ric in conjunction with the neural model of similar-
ity gives us our best results. Interestingly, the oppo-
site is true of eigenword similarity, where the best
results are seen when they are independent of selec-
tors or the neural models. The decreased correla-
tions can be accounted for by the new features intro-
ducing over fitting, and one should note that no such
reductions in performance are significant compared
to the baseline, where as our best performance is a
significant (p < 0.05) improvement.

There are a few potential directions for future im-
provements. We did not tune our system differently
for different data sets although there is evidence of
specific features favoring certain data sets. In the
case of the neural model of similarity we expect
that deriving phrase level representations from the
sentences and utilizing the dynamic pooling layer
should give us a more thorough measure of simi-
larity beyond the sentence-level vectors we used in

this work. For eigenwords, we would like to experi-
ment with context-aware vectors as was described in
(Dhillon et. al, 2011). Lastly, we were only able to
acquire selectors for nouns, but we believe introduc-
ing selectors for other parts of speech will increase
the power of the selector similarity metric.

4 Conclusion

In this paper, we described two novel word-level
similarity metrics, namely eigenword similarity and
selector similarity, that leverage Web-scale corpora
in order to build word-level vector representations.
Additionally, we explored the use of a vector-model
at the sentence-level by unfolding a neural model of
semantics. We utilized these metrics in addition to
knowledge-based similarity, and surface-level simi-
larity metrics in a regression system to estimate sim-
ilarity at the sentence level. The performance of the
features varies significantly across corpora but at the
aggregate, eigenword similarity, selector similarity,
and the neural model of similarity all are shown to be
capable of improving performance beyond standard
surface-level and WordNet similarity metrics alone.
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Abstract

This paper presents a novel approach for building
adaptive similarity functions based on cardinality us-
ing machine learning. Unlike current approaches
that build feature sets using similarity scores, we
have developed these feature sets with the cardinal-
ities of the commonalities and differences between
pairs of objects being compared. This approach al-
lows the machine-learning algorithm to obtain an
asymmetric similarity function suitable for direc-
tional judgments. Besides using the classic set cardi-
nality, we used soft cardinality to allow flexibility in
the comparison between words. Our approach used
only the information from the surface of the text,
a stop-word remover and a stemmer to address the
cross-lingual textual entailment task 8 at SEMEVAL
2012. We have the third best result among the 29
systems submitted by 10 teams. Additionally, this
paper presents better results compared with the best
official score.

1 Introduction

Adaptive similarity functions are those functions that, be-
yond using the information of two objects being com-
pared, use information from a broader set of objects
(Bilenko and Mooney, 2003). Therefore, the same sim-
ilarity function may return different results for the same
pair of objects, depending on the context of where the
objects are. Adaptability is intended to improve the per-
formance of the similarity function in relation to the task
in question associated with the entire set of objects. For
example, adaptiveness improves relevance of documents
retrieved for a query in an information retrieval task for a
particular document collection.

In text applications there are mainly three methods
to provide adaptiveness to similarity functions: term
weighting, adjustment or learning the parameters of the
similarity function, and machine learning. Term weight-

ing is a common practice that assigns a degree of im-
portance to each occurrence of a term in a text collec-
tion (Salton and Buckley, 1988; Lan et al., 2005). Sec-
ondly, if a similarity function has parameters, these can
be adjusted or learned to adapt to a particular data set.
Depending on the size of the search space defined by
these parameters, they can be adjusted either manually
or using a technique of AI. For instance, Jimenez et
al. manually adjusted a single parameter in the gener-
alized measure of Monge-Elkan (1996) (Jimenez et al.,
2009) and Ristrad and Yanilios (1998) learned the costs
of editing operations between particular characters for
the Levenshtein distance (1966) using HMMs. Thirdly,
the machine-learning approach aims to learn a similar-
ity function based on a vector representation of texts us-
ing a subset of texts for training and a learning func-
tion (Bilenko and Mooney, 2003). The three methods
of adaptability can also be used in a variety of combina-
tions, e.g. term weighting in combination with machine
learning (Debole and Sebastiani, 2003; Lan et al., 2005).
Finally, to achieve adaptability, other approaches use data
sets considerably larger, such as large corpora or the Web,
e.g. distributional similarity (Lee, 1999).

In the machine-learning approach, a vector representa-
tion of texts is used in conjunction with an algorithm of
classification or regression (Alpaydin, 2004). Each vec-
tor of features 〈f1, f2, . . . , fm〉 is associated to each pair
〈Ti, Tj〉 of texts. Thus, Bilenko et al. (2003) proposed a
set of features indexed by the data set vocabulary, simi-
lar to Zanzotto et al., (2009) who used fragments of parse
trees. However, a more common approach is to select as
features the scores of different similarity functions. Using
these features, the machine-learning algorithm discovers
the relative importance of each feature and a combina-
tion mechanism that maximizes the alignment of the final
result with a gold standard for the particular task.

In this paper, we propose a novel approach to extract
feature sets for a machine-learning algorithm using car-
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dinalities rather than scores of similarity functions. For
instance, instead of using as a feature the score obtained
by the Dice’s coefficient (i.e. 2×|Ti∩Tj |/|Ti|+|Tj |), we use
|Ti|, |Tj | and |Ti ∩ Tj | as features. The rationale behind
this idea is that despite the similarity scores being suitable
for learning a combined function of similarity, they hide
the information imbalance between the original pair of
texts. Our hypothesis is that the information coded in this
imbalance could provide the machine-learning algorithm
with better information to generate a combined similar-
ity score. For instance, consider these pairs of texts: 〈
“The beach house is white.”, “The house was completely
empty.” 〉 and 〈 “The house”, “The beach house was com-
pletely empty and isolated” 〉. Both pairs have the same
similarity score using the Dice coefficient, but it is evi-
dent that the latter has an imbalance of information lost in
that single score. This imbalance of information is even
more important if the task requires to identify directional
similarities, such as “T1 is more similar to T2, than T2 is
to T1”.

However, unlike the similarity functions, which are
numerous, there is only one set cardinality. This issue
can be addressed using the soft cardinality proposed by
Jimenez et al. (2010), which uses an auxiliary function of
similarity between elements to make a soft count of the
elements in a set. For instance, the classic cardinality of
the set A = { “Sunday”, “Saturday” } is |A| = 2; and the
soft cardinality of the same set, using a normalized edit-
distance as auxiliary similarity function, is |A|′sim = 1.23
because of the commonalities between both words. Fur-
thermore, soft cardinality allows weighting of elements
giving it additional capacity to adapt.

We used the proposed approach to participate in the
cross-lingual textual-entailment task 8 at SEMEVAL
2012. The task was to recognize bidirectional, forward,
backward or lack of entailment in pairs of texts written
in five languages. We built a system based on the pro-
posed method and the use of surface information of the
text, a stop-word remover and a stemmer. Our system
achieved the third best result in official classification and,
after some debugging, we are reporting better results than
the best official scores.

This paper is structured as follows. Section 2 briefly
describes soft cardinality and other cardinalities for text
applications. Section 3 presents the proposed method.
Experimental validation is presented in Section 4. A brief
discussion is presented in Section 5. Finally, conclusions
are drawn in Section 6.

2 Cardinalities for text
Cardinality is a measure of counting the number of el-
ements in a set. The cardinality of classical set theory
represents the number of non-repeated elements in a set.
However, this cardinality is rigid because it counts in the

same manner very similar or highly differentiated ele-
ments. In text applications, text can be modeled as a
set of words and a desirable cardinality function should
take into account the similarities between words. In this
section, we present some methods to soften the classical
concept of cardinality.

2.1 Lemmatizer Cardinality

The simplest approach is to use a stemmer that collapses
words with common roots in a single lemma. Consider
the sentence: “I loved, I am loving and I will love you”.
The plain word counting of this sentence is 10 words. The
classical cardinality collapses the three occurrences of the
pronoun “I” giving a count of 8. However, a lemmatizer
such as Porter’s stemmer (1980) also collapses the words
“loved”, “loving” and “love” in a single lemma “love” for
a count of 6. Thus, when a text is lemmatized, it induces
a relaxation of the classical cardinality of a text. In ad-
dition, to provide corpus adaptability, a weighted version
of this cardinality can add weights associated with each
word occurrence instead of adding 1 for each word (e.g.
tf-idf).

2.2 LCS cardinality

Longest common subsequence (LCS) length is a measure
of the commonalities between two texts, unlike set in-
tersection, taking into account the order. Therefore, a
cardinality function of a pair of texts A and B could
be |A ∩ B| = len(LCS(A, B)), |A| = len(A) and
|B| = len(B). Functions len(∗) and LCS(∗, ∗) calcu-
late length and LCS respectively, either in character or
word granularity.

2.3 Soft Cardinality

Soft cardinality is a function that uses an auxiliary simi-
larity function to make a soft count of the elements (i.e.
words) in a set (i.e. text) (Jimenez et al., 2010). The aux-
iliary similarity function can be any measure or metric
that returns scores in the interval [0, 1], with 0 being the
lowest degree of similarity and 1 the highest (i.e. identi-
cal words). Clearly, if the auxiliary similarity function is
a rigid comparator that returns 1 for identical words and
0 otherwise, the soft cardinality becomes the classic set
cardinality.

The soft cardinality of a set A = {a1, a2, . . . , a|A|}
can be calculated by the following expression: |A|′sim '∑|A|

i wai

(∑|A|
j sim(ai, aj)

p
)−1

. Where sim(∗, ∗) is
the auxiliary similarity function for approximate word
comparison, wai

are weights associated with each word
ai, and p is a tuning parameter that controls the degree
of smoothness of the cardinality, i.e. if 0 ← p all ele-
ments in a set are considered identical and if p→∞ soft
cardinality becomes classic cardinality.
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2.4 Dot-product VSM “Cardinality”

Resemblance coefficients are cardinality-based simi-
larity functions. For instance, the Dice coefficient
is the ratio between the cardinality of the intersec-
tion divided by the arithmetic mean of individual
cardinalities:2×|A∩B|/|A|+|B|. The cosine coefficient is
similar but instead of using the arithmetic mean it uses
the geometric mean: |A∩B|/

√
|A|×
√
|B|. Furthermore, the

cosine similarity is a well known metric used in the vec-
tor space model (VSM) proposed by Salton et al. (1975)
cosine(A, B) =

∑
wai
×wbi√∑

w2
ai
×
√∑

w2
bi

. Clearly, this expres-

sion can be compared with the cosine coefficient inter-
preting the dot-product operation in the cosine similar-
ity as a cardinality. Thus, the obtained cardinalities are:
|A ∩ B|vsm =

∑
wp

ai
× wp

bi
, |A|vsm =

∑
w2p

ai
and

|B|vsm =
∑

w2p
bi

. The exponent p controls the effect
of weighting providing no effect if 0← p or emphasising
the weights if p > 0. In a similar application, Gonza-
lez and Caicedo (2011) used p = 0.5 and normalization
justified by the quantum information retrieval theory.

3 Learning Similarity Functions from
Cardinalities

Different similarity measures use different knowledge,
identify different types of commonalities, and compare
objects with different granularity. In many of the auto-
matic text-processing applications, the qualities of sev-
eral similarity functions may be required to achieve the
final task. The combination of similarity scores with a
machine-learning algorithm to obtain a unified effect for
a particular task is a common practice (Bilenko et al.,
2003; Malakasiotis and Androutsopoulos, 2007; Malaka-
siotis, 2009). For each pair of texts for comparison, there
is provided a vector representation based on multiple sim-
ilarity scores as a set of features. In addition, a class at-
tribute is associated with each vector which contains the
objective of the task or the gold standard to be learned by
the machine-learning algorithm.

However, the similarity scores conceal important in-
formation when the task requires dealing with directional
problems, i.e. whenever the order of comparing each pair
of texts is related with the class attribute. For instance,
textual entailment is a directional task since it is neces-
sary to recognize whether the first text entails the second
text or vice versa. This problem can be addressed us-
ing asymmetric similarity functions and including scores
for sim(A, B) and sim(B, A) in the resulting vector for
each pair 〈A, B〉. Nevertheless, the similarity measures
that are more commonly used are symmetric, e.g. edit-
distance (Levenshtein, 1966), LCS (Hirschberg, 1977),
cosine similarity, and many of the current semantic re-
latedness measures (Pedersen et al., 2004). Although,

there are asymmetric measures such as the Monge-Elkan
measure (1996) and the measure proposed by Corley and
Mihalcea (Corley and Mihalcea, 2005), they are outnum-
bered by the symmetric measures. Clearly, this situation
restricts the use of the machine learning as a method of
combination for directional problems.

Alternatively, we propose the construction of a vector
for each pair of texts using cardinalities instead of sim-
ilarity scores. Moreover, using cardinalities rather than
similarity scores allows the machine-learning algorithm
to discover patterns to cope with directional tasks.

Basically, we propose to use a set with six features for
each cardinality function: |A|, |B|, |A ∩ B|, |A ∪ B|,
|A−B| and |B −A|.

4 Experimental Setup

4.1 Cross-lingual Textual Entailment (CLTE) Task

This task consist of recognizing in a pair of topically re-
lated text fragments T1 and T2 in different languages, one
of the following possible entailment relations: i) bidi-
rectional T1 ⇒ T2 ∧ T1 ⇐ T2, i.e. semantic equiv-
alence; ii) forward T1 ⇒ T2 ∧ T1 : T2; iii) back-
ward T1 ; T2 ∧ T1 ⇐ T2; and iv) no entailment
T1 ; T2 ∧ T1 : T2. Besides, both T1 and T2 are as-
sumed to be true statements; hence contradictory pairs
are not allowed.

Data sets consist of a collection of 1,000 text pairs
(500 for training and 500 for testing) each one labeled
with one of the possible entailment types. Four balanced
data sets were provided using the following language
pairs: German-English (deu-eng), French-English (fra-
eng), Italian-English (ita-eng) and Spanish-English (spa-
eng). The evaluation measure for experiments was accu-
racy, i.e. the ratio of correctly predicted pairs by the total
number of predictions. For a comprehensive description
of the task see (Negri et al., 2012).

4.2 Experiments

Given that each pair of texts 〈T1, T2〉 are in different lan-
guages, a pair of translations 〈T t

1 , T t
2〉 were provided us-

ing Google Translate service. Thus, each one of the text
pairs 〈T1, T

t
2〉 and 〈T t

1 , T2〉 were in the same language.
Then, all produced pairs were pre-processed by remov-
ing stop-words in their respective languages. Finally, all
texts were lemmatized using Porter’s stemmer (1980) for
English and Snowball stemmers for other languages us-
ing an implementation provided by the NLTK (Loper and
Bird, 2002).

Then, different set of features were generated using
similarity scores or cardinalities. While each symmet-
ric similarity function generates 2 features i)sim(T1, T

t
2)

and ii)sim(T t
1 , T2), asymmetric functions generate two

additional features iii)sim(T t
2 , T1) and iv)sim(T2, T

t
1).
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On the other hand, each cardinality function generates
12 features: i) |T1|, ii) |T t

2 |, iii) |T1 ∩ T t
2 |, iv) |T1 ∪ T t

2 |,
v) |T1 − T t

2 |, vi) |T t
2 − T1|, vii) |T t

1 |, viii) |T2|, ix)
|T t

1 ∩ T2|, x) |T t
1 ∪ T2|, xi) |T t

1 − T2|, and xii) |T2 − T t
1 |.

Various combinations of cardinalities, symmetric and
asymmetric functions were used to generate the follow-
ing feature sets:

Sym.simScores: scores of the following symmetric
similarity functions: Jaccard, Dice, and cosine coef-
ficients using classical cardinality and soft cardinality
(edit-distance as auxiliar sim. function). In addition, co-
sine similarity, softTFIDF (Cohen et al., 2003) and edit-
distance (total 18 features).

Asym.LCS.sim: scores of the following asymmetric
similarity functions: sim(T1, T2) = lcs(T1,T2)/len(T1)

and sim(T1, T2) = lcs(T1,T2)/len(T2) at character level (4
features).

Classic.card: cardinalities using classical set cardinal-
ity (12 features).

Dot.card.w: dot-product cardinality using idf weights
as described in Section 2.4, using p = 1 (12 features).

LCS.card: LCS cardinality at word-level using idf
weights as described in Section 2.1 (12 features).

SimScores: combined features sets from
Sym.SimScores, Asym.LCS.sim and the general-
ized Monge-Elkan measure (Jimenez et al., 2009) using
p = 1, 2, 3 (30 features).

Dot.card.w.0.5: same as Dot.card.w using p = 0.5.
Classic.card.w: classical cardinality using idf weights

(12 features).
Soft.card.w: soft cardinality using idf weights as de-

scribed in Section 2.3 using p = 1, 2, 3, 4, 5 (60 features).
The machine-learning classification algorithm for all

feature sets was SVM (Cortes and Vapnik, 1995) with the
complexity parameter C = 1.5 and a linear polynomial
kernel. All experiments were conducted using WEKA
(Hall et al., 2009).

4.3 Results
In Semeval 2012 exercise, participants were given a par-
ticular subdivision into training and test subsets for each
data set. For official results, participants received only the
gold-standard labels for the subset of training, and accu-
racies of each system in the test subset was measured by
the organizers. In Table 1, the results for that particular
division are shown. At the bottom of that table, the of-
ficial results for the first three systems are shown. Our
system, “3rd.Softcard” was configured using soft cardi-
nality with edit-distance as auxiliary similarity function
and p = 2. Erroneously, at the time of the submission,
all texts in the 5 languages were lemmatized using an En-
glish stemmer and stop-words in all languages were ag-
gregated into a single set before the withdrawal. In spite
of these bugs, our system was the third best score.

FEATURES SPA ITA FRA DEU avg.

Sym.simScores 0.404 0.410 0.410 0.410 0.409
Asym.LCS.sim 0.490 0.492 0.482 0.474 0.485
Classic.card 0.560 0.534 0.570 0.542 0.552
Dot.card.w 0.562 0.568 0.550 0.548 0.557
LCS.card 0.606 0.566 0.568 0.558 0.575
SimScores 0.600 0.562 0.568 0.572 0.576
Dot.card.w.0.5 0.584 0.574 0.586 0.572 0.579
Classic.card.w 0.584 0.576 0.588 0.590 0.585
Soft.card.w 0.598 0.602 0.624 0.604 0.607

SEMEVAL 2012 OFFICIAL RESULTS
1st.HDU.run2 0.632 0.562 0.570 0.552 0.579
2nd.HDU.run1 0.630 0.554 0.564 0.558 0.577
3rd.Softcard 0.552 0.566 0.570 0.550 0.560

Table 1: Accuracy results for Semeval2012 task 8

Soft.card.w 60.174(1.917)% imprv. Sign.
Sym.simScore 39.802(1.783)% 51.2% <0.001
Asym.LCS.sim 48.669(1.820)% 23.6% <0.001
Classic.card 55.278(2.422)% 8.9% 0.010
Dot.card.w 54.906(2.024)% 9.6% 0.004
LCS.card 55.131(2.471) % 9.1% 0.015
SimScores 56.889(2.412) % 5.8% 0.124
Dot.card.w.0.5 57.114(2.141)% 5.4% 0.059
Classic.card.w 56.708(2.008)% 6.1% 0.017

Table 2: Average accuracy comparison vs. Soft.card.w in 100
runs

To compare our approach of using feature sets based
on soft cardinality versus other approaches, we gener-
ated 100 random training-test subdivisions (50%-50%) of
each data set. The average results were compared and
tested statistically with the paired T-tested corrected test.
Results, deviations, the percentage of improvement, and
its significance in comparison with the Soft.card.w sys-
tem are shown in Table2.

5 Discusion

Results in Table 2 show that our hypothesis that fea-
ture sets obtained from cardinalities should outperform
features sets obtained from similarity scores was de-
mostrated when compared versus similarity functions al-
ternatively symmetrical or asymetrical. However, when
our approach is compared with a feature set obtained by
combining symmetric and asymmetric functions, we ob-
tained an improvement of 5.8% but only with a signif-
icance of 0.124. Regarding soft cardinality compared
to alternative cardinalities, soft cardinality outperformed
others in all cases with significance <0.059.
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6 Conclusions
We have proposed a new method to compose feature sets
using cardinalities rather than similarity scores. Our ap-
proach proved to be effective for directional text compar-
ison tasks such as textual entailment. Furthermore, the
soft cardinality function proved to be the best for obtain-
ing such sets of features.
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Abstract 

This article presents the experiments car-

ried out at Jadavpur University as part of 

the participation in Cross-lingual Textual 

Entailment for Content Synchronization 

(CLTE) of task 8 @ Semantic Evaluation 

Exercises (SemEval-2012). The work ex-

plores cross-lingual textual entailment as a 

relation between two texts in different lan-

guages and proposes different measures 

for entailment decision in a four way clas-

sification tasks (forward, backward, bidi-

rectional and no-entailment). We set up 

different heuristics and measures for eva-

luating the entailment between two texts 

based on lexical relations. Experiments 

have been carried out with both the text 

and hypothesis converted to the same lan-

guage using the Microsoft Bing translation 

system. The entailment system considers 

Named Entity, Noun Chunks, Part of 

speech, N-Gram and some text similarity 

measures of the text pair to decide the en-

tailment judgments. Rules have been de-

veloped to encounter the multi way 

entailment issue. Our system decides on 

the entailment judgment after comparing 

the entailment scores for the text pairs. 

Four different rules have been developed 

for the four different classes of entailment. 

The best run is submitted for Italian – 
English language with accuracy 0.326. 

1 Introduction 

Textual Entailment (TE) (Dagan and Glick-

man, 2004) is one of the recent challenges of 

Natural Language Processing (NLP). The Task 

8 of SemEval-2012
1
 [1] defines a textual en-

tailment system that specifies two major as-

pects: the task is based on cross-lingual 

corpora and the entailment decision must be 

four ways. Given a pair of topically related text 

fragments (T1 and T2) in different languages, 

the CLTE task consists of automatically anno-

tating it with one of the following entailment 

judgments: 

i. Bidirectional (T1 ->T2 & T1 <- T2): the two 

fragments entail each other (semantic equiva-

lence)  

ii. Forward (T1 -> T2 & T1!<- T2): unidirec-

tional  entailment from T1 to T2 . 

iii. Backward (T1! -> T2 & T1 <- T2): unidirec-

tional entailment from T2 to T1.  

iv. No Entailment (T1! -> T2 & T1! <- T2): 

there is no entailment between T1 and T2. 

CLTE (Cross Lingual Textual Entailment) task 

consists of 1,000 CLTE dataset pairs (500 for 

                                                           
1http://www.cs.york.ac.uk/semeval2012/index.php?id=tasks 
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training and 500 for test) available for the fol-
lowing language combinations: 

     - Spanish/English (spa-eng)  

     - German/English (deu-eng). 

     - Italian/English (ita-eng)  

     - French/English (fra-eng) 

 

Seven Recognizing Textual Entailment (RTE) 

evaluation tracks have already been held: RTE-1 

in 2005 [2], RTE-2 [3] in 2006, RTE-3 [4] in 

2007, RTE-4 [5] in 2008, RTE-5 [6] in 2009, 

RTE-6 [7] in 2010 and RTE-7 [8] in 2011. RTE 

task produces a generic framework for entail-

ment task across NLP applications. The RTE 

challenges have moved from 2 – way entailment 

task (YES, NO) to 3 – way task (YES, NO, 

UNKNOWN). EVALITA/IRTE [9] task is simi-

lar to the RTE challenge for the Italian language. 

So far, TE has been applied only in a monolin-

gual setting. Cross-lingual Textual Entailment 

(CLTE) has been proposed ([10], [11], [12]) as 

an extension of Textual Entailment. In 2010, 

Parser Training and Evaluation using Textual 

Entailment [13] was organized by SemEval-2. 

Recognizing Inference in Text (RITE)
2
 orga-

nized by NTCIR-9 in 2011 is the first to expand 

TE as a 5-way entailment task (forward, back-

ward, bi-directional, contradiction and indepen-

dent) in a monolingual scenario [14].  

We have participated in RTE-5 [15], RTE-6 

[16], RTE-7 [17], SemEval-2 Parser Training 

and Evaluation using Textual Entailment Task 

and RITE [18]. 

Section 2 describes our Cross-lingual Textual 

Entailment system. The various experiments 

carried out on the development and test data sets 

are described in Section 3 along with the results. 

The conclusions are drawn in Section 4. 

2 System Architecture  

Our system for CLTE task is based on a set of 

heuristics that assigns entailment scores to a text 

pair based on lexical relations. The text and the 

hypothesis in a text pair are translated to the 

same language using the Microsoft Bing ma-

chine translation system. The system separates 

the text pairs (T1 and T2) available in different 

languages and preprocesses them. After prepro-

                                                           
2 http://artigas.lti.cs.cmu.edu/rite/Main_Page 

cessing we have used several techniques such as 

Word Overlaps, Named Entity matching, Chunk 

matching, POS matching to evaluate the sepa-

rated text pairs. These modules return a set of 

score statistics, which helps the system to go for 

multi-class entailment decision based on the 

predefined rules. We have submitted 3 runs for 

each language pair for the CLTE task and there 

are some minor differences in the architectures 

that constitute the 3 runs. The three system ar-

chitectures are described in section 2.1, section 

2.2 and section 2.3. 

2.1 System Architecture 1: CLTE Task 

with  Translated English Text  

The system architecture of Cross-lingual textual 

entailment consists of various components such 

as Preprocessing Module, Lexical Similarity 

Module, Text Similarity Module. Lexical Simi-

larity module again is divided into subsequent 

modules like POS matching, Chunk matching 

and Named Entity matching. Our system calcu-

lates these measures twice once considering T1 

as text and T2 as hypothesis and once T2 as text 

and T1 as hypothesis. The mapping is done in 

both directions T1-to-T2 and T2-to-T1 to arrive 

at the appropriate four way entailment decision 

using a set of rules. Each of these modules is 

now being described in subsequent subsections. 

Figure 1 shows our system architecture where 

the text sentence is translated to English. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: System Architecture 
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2.1.1 Preprocessing Module 

The system separates the T1 and T2 pair from 

the CLTE task data. T1 sentences are in differ-

ent languages (In French, Italian, German and 

Spanish) where as T2 sentences are in English. 

Microsoft Bing translator
3
 API for Bing transla-

tor (microsoft-translator-java-api-0.4-jar-with-

dependencies.jar) is being used to translate the 

T1 text sentences into English. The translated 

T1 and T2 sentences are passed through the two 

sub modules. 

i. Stop word Removal: Stop words are removed 

from the T1 and T2 sentences. 

ii. Co-reference: Co–reference chains are eva-

luated for the datasets before passing them to the 

TE module. The objective is to increase the en-

tailment score after substituting the anaphors 

with their antecedents. A word or phrase in the 

sentence is used to refer to an entity introduced 

earlier or later in the discourse and both having 

same things then they have the same referent or 

co-reference. When the reader must look back to 

the previous context, co-reference is called 

"Anaphoric Reference". When the reader must 

look forward, it is termed "Cataphoric Refer-

ence". To address this problem we used a tool 

called JavaRAP
4
 (A java based implementation 

of Anaphora Procedure (RAP) - an algorithm by 

Lappin and Leass (1994)). It has been observed 

that the presence of co – referential expressions 

are very small in sentence based paradigm.   

2.1.2 Lexical Based Textual Entailment 

(TE) Module 

T1 - T2 pairs are the inputs to the system. The 

TE module is executed once by considering T1 

as text and T2 as hypothesis and again by consi-

dering T2 as text and T1 as hypothesis. The 

overall TE module is a collection of several lex-

ical based sub modules.  

i. N-Gram Match module: The N-Gram match 

basically measures the percentage match of the 

unigram, bigram and trigram of hypothesis 

present in the corresponding text. These scores 

are simply combined to get an overall N – Gram 

matching score for a particular pair. By running 

                                                           
3 http://code.google.com/p/microsoft-translator-java-api/ 
4 http://aye.comp.nus.edu.sg/~qiu/NLPTools/JavaRAP.html 

the module we get two scores, one for T1-T2 

pair and another for T2-T1 pair. 
       

ii. Chunk Similarity module: In this sub mod-

ule our system evaluates the key NP-chunks of 

both text and hypothesis identified using NP 

Chunker v1.1
5
. Then our system checks the 

presence of NP-Chunks of hypothesis in the cor-

responding text. System calculates the overall 

value for the chunk matching, i.e., number of 

text NP-chunks that match with hypothesis NP-

chunks. If the chunks are not similar in their sur-

face form then our system goes for WordNet 

matching for the words and if they match in 

WordNet synsets information, the chunks are 

considered as similar. 

WordNet [19] is one of most important resource 

for lexical analysis. The WordNet 2.0 has been 

used for WordNet based chunk matching. The 

API for WordNet Searching (JAWS)
6
 is an API 

that provides Java applications with the ability 

to retrieve data from the WordNet database. Let 

us consider the following example taken from 

training data: 

 

T1: Due/JJ to/TO [an/DT error/NN of/IN com-

munication/NN] between/IN [the/DT police/NN] 

… 

T2: On/IN [Tuesday/NNP] [a/DT failed/VBN 

communication/NN] between/IN… 

 

The chunk in T1 [error communication] matches 

with T2 [failed communication] via WordNet 

based synsets information. A weight is assigned 

to the score depending upon the nature of chunk 

matching. 

 
 

 

                   M[i] = Wm[i] * ρ / Wc[i] 

Where N= Total number of chunk containing 

hypothesis. 

M[i] = Match Score of the i
th
  Chunk. 

Wm[i] = Number of words matched in the i
th
 

chunk. 

Wc[i] = Total words in the i
th
 chunk. 

                    1 if surface word matches. 

and ρ = 

                ½ if matche via WordNet 

                                                           
5 http://www.dcs.shef.ac.uk/~mark/phd/software/ 
6 http://lyle.smu.edu/~tspell/jaws/index.html 
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System takes into consideration several text si-

milarity measures calculated over the T1-T2 

pair. These text similarity measures are summed 

up to produce a total score for a particular text 

pair. Similar to the Lexical module, text simi-

larity module is also executed for both T1-T2 

and T2-T1 pairs.   

iii. Text Distance Module: The following major 

text similarity measures have been considered 

by our system. The text similarity measure 

scores are added to generate the final text dis-

tance score. 

 

•   Cosine Similarity 

•   Levenshtein Distance 

•   Euclidean Distance 

•   MongeElkan Distance 

•   NeedlemanWunch Distance 

•   SmithWaterman Distance 

•   Block Distance 

•   Jaro Similarity 

•   MatchingCoefficient Similarity 

•   Dice Similarity 

•   OverlapCoefficient 

•   QGrams Distance 
 

iv. Named Entity Matching: It is based on the 

detection and matching of Named Entities in the 

T1-T2 pair. Stanford Named Entity Recognizer
7
 

(NER) is used to tag the Named Entities in both 

T1 and T2. System simply matches the number 

of hypothesis NEs present in the text. A score is 

allocated for the matching. 

NE_match = (Number of common NEs in Text 

and Hypothesis)/(Number of NEs in Hypothe-

sis). 

v. Part-of-Speech (POS) Matching: This mod-

ule basically deals with matching the common 

POS tags between T1 and T2 pair. Stanford POS 

tagger
8
 is used to tag the part of speech in both 

T1 and T2. System matches the verb and noun 

POS words in the hypothesis that match in the 

text. A score is allocated based on the number of 

POS matching.  

 

POS_match = (Number of verb and noun                            

POS in Text and Hypothesis)/(Total number of 

verb and noun POS in hypothesis).    

                                                           
7 http://nlp.stanford.edu/software/CRF-NER.shtml 
8 http://nlp.stanford.edu/software/tagger.shtml 

System adds all the lexical matching scores to 

evaluate the total score for a particular T1- T2 

pair, i.e.,  

    Pair1:  (T1 – Text and T2 – Hypothesis) 

    Pair2:   (T1 – Hypothesis and T2 - Text). 

Total lexical score for each pair can be mathe-

matically represented by: 

 

 
where S1 represents the score for the pair with 

T1 as text and T2 as hypothesis while S2 

represents the score from T1 to T2. The figure 2 

shows the sample output values of the TE mod-

ule. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: output values of this module 

 

The system finally compares the above two val-

ues S1 and S2 as obtained from the lexical mod-

ule to go for four-class entailment decision. If 

score S1, i.e., the mapping score with T1 as text 

and T2 as hypothesis is greater than the score 

S2, i.e., mapping score with T2 as text and T1 as 

hypothesis, then the entailment class will be 

“forward”. Similarly if S1 is less than S2, i.e., 

T2 now acts as the text and T1 acts as the hypo-

thesis then the entailment class will be “back-

ward”. Similarly if both the scores S1 and S2 are 

equal the entailment class will be “bidirectional” 

(entails in both directions). Measuring “bidirec-

tional” entailment is much more difficult than 

any other entailment decision due to combina-

tions of different lexical scores. As our system 

produces a final score (S1 and S2) that is basi-

cally the sum over different similarity measures, 
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the tendency of identical S1 – S2 will be quite 

small. As a result we establish another heuristic 

for “bidirectional” class. If the absolute value 

difference between S1 and S2 is below the thre-

shold value, our system recognizes the pair as 

“bidirectional” (abs (S1 – S2) < threshold). This 

threshold has been set as 5 based on observation 

from the training file. If the individual scores S1 

and S2 are below a certain threshold, again set 

based on the observation in the training file, then 

system concludes the entailment class as 

“no_entailment”. This threshold has been set as 

20 based on observation from the training file. 

2.2 System Architecture 2: CLTE Task 

with translated hypothesis  

System Architecture 2 is based on lexical match-

ing between the text pairs (T1, T2) and basically 

measures the same attributes as in the architec-

ture 1. In this architecture, the English hypothe-

sis sentences are translated to the language of 

the text sentence (French, Italian, Spanish and 

German) using the Microsoft Bing Translator. 

The CLTE dataset is preprocessed after separat-

ing the (T1, T2) pairs. Preprocessing module 

includes stop word removal and co-referencing. 

After preprocessing, the system executes the TE 

module for lexical matching between the text 

pairs. This module comprises N-Gram matching, 

Text Similarity, Named Entity Matching, POS 

matching and Chunking. The TE module is ex-

ecuted once with T1 as text and T2 as hypothe-

sis and again with T1 as hypothesis and T2 as 

text. But in this architecture N-Gram matching 

and text similarity modules differ from the pre-

vious architecture. In system architecture 1, the 

N-Gram matching and text similarity values are 

calculated on the English text translated from T1 

(i.e., Text in Spanish, German, French and Ital-

ian languages). In system architecture 2, the Mi-

crosoft Bing translator is used to translate T2 

texts (in English) to different languages (i.e. in 

Spanish, German, French and Italian) and calcu-

late N – Gram matching and Text Similarity 

values on these (T1 – newly translated T2) pairs. 

Other lexical sub modules are executed as be-

fore. These lexical matching scores are stored 

and compared according to the heuristic defined 

in section 2.1.    

2.3 System Architecture 3: CLTE task 

using Voting 

The system considers the output of the previous 

two systems (Run 1 from System architecture 1 

and Run 2 from System architecture 2) as input. 

If the entailment decision of both the runs agrees 

then this is output as the final entailment label. 

Otherwise, if they do not agree, the final entail-

ment label will be “no_entailment”. The voting 

rule can be defined as the ANDing rule where 

logical AND operation of the two inputs are 

considered to arrive at the final evaluation class. 

3 Experiments on Datasets and Results   

Three runs (Run 1, Run 2 and Run 3) for each 

language were submitted for the SemEval-3 

Task 8. The descriptions of submissions for the 

CLTE task are as follows: 

 

• Run1: Lexical matching between text pairs 

(Based on system Architecture – 1). 

• Run2: Lexical matching between text pairs  

    (Based on System Architecture – 2). 

• Run3: ANDing Module between Run1 and  

          Run2. (Based on System Architecture –3). 

 

The CLTE dataset consists of 500 training 

CLTE pairs and 500 test CLTE pairs. The re-

sults for Run 1, Run 2 and Run 3 for each lan-

guage on CLTE Development set are shown in 

Table 1.  

 

Run Name Accuracy 

JU-CSE-NLP_deu-eng_run1 0.284 

JU-CSE-NLP_deu-eng_run2 0.268 

JU-CSE-NLP_deu-eng_run3 0.270 

JU-CSE-NLP_fra-eng_run1 0.290 

JU-CSE-NLP_fra-eng_run2 0.320 

JU-CSE-NLP_fra-eng_run3 0.278 

JU-CSE-NLP_ita-eng_run1 0.302 

JU-CSE-NLP_ita-eng_run2 0.298 

JU-CSE-NLP_ita-eng_run3 0.298 

JU-CSE-NLP_spa-eng_run1 0.270 

JU-CSE-NLP_spa-eng_run2 0.262 

JU-CSE-NLP_spa-eng_run3 0.262 

 

Table 1: Results on Development set 
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The comparison of the runs for different lan-

guages shows that in case of deu-eng language 

pair system architecture – 1 is useful for devel-

opment data whereas system architecture – 2 is 

more accurate for test data. For fra-eng language 

pair, system architecture - 2 is more accurate for 

development data whereas voting helps to get 

more accurate results for test data. Similar to the 

deu-eng language pair, ita-eng language pair 

shows same trends, i.e., system architecture – 1 

is more helpful for development data and system 

architecture – 2 is more accurate for test data. In 

case of spa-eng language pair system architec-

ture – 1 is helpful for both development and test 

data. 
 

The results for Run 1, Run 2 and Run 3 for each 

language on CLTE Test set are shown in Table 

2. 

 

Run Name Accuracy 

JU-CSE-NLP_deu-eng_run1 0.262 

JU-CSE-NLP_deu-eng_run2 0.296 

JU-CSE-NLP_deu-eng_run3 0.264 

JU-CSE-NLP_fra-eng_run1 0.288 

JU-CSE-NLP_fra-eng_run2 0.294 

JU-CSE-NLP_fra-eng_run3 0.296 

JU-CSE-NLP_ita-eng_run1 0.316 

JU-CSE-NLP_ita-eng_run2 0.326 

JU-CSE-NLP_ita-eng_run3 0.314 

JU-CSE-NLP_spa-eng_run1 0.274 

JU-CSE-NLP_spa-eng_run2 0.266 

JU-CSE-NLP_spa-eng_run3 0.272 

 

Table 2: Results on Test Set 

4 Conclusions and Future Works 

We have participated in Task 8 of Semeval-2012 

named Cross Lingual Textual Entailment mainly 

based on lexical matching and translation of text 

and hypothesis sentences in the cross lingual 

corpora. Both lexical matching and translation 

have their limitations. Lexical matching is useful 

for simple sentences but fails to retain high ac-

curacy for complex sentences with number of 

clauses. Semantic graph matching or conceptual 

graph is a good substitution to overcome these 

limitations. Machine learning technique is 

another important tool for multi-class entailment 

task. Features can be trained by some machine 

learning tools (such as SVM, Naïve Bayes or 

Decision tree etc.) with multi-way entailment 

(forward, backward, bi-directional, no-

entailment) as its class. Works have been started 

in these directions. 
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Abstract

This paper presents CELI’s participation in the
SemEval Cross-lingual Textual Entailment for
Content Synchronization task.

1 Introduction

The Cross-Lingual Textual Entailment task (CLTE)
is a new task that addresses textual entailment (TE)
(Bentivogli et. al., 2011), targeting the cross-
lingual content synchronization scenario proposed
in (Mehdad et. al., 2011) and (Negri et. al., 2011).
The task has interesting application scenarios that
can be investigated. Some of them are content syn-
chronization and cross language query alignment.
The task is defined by the organizers as follows:
Given a pair of topically related text fragments (T1
and T2) in different languages, the CLTE task con-
sists of automatically annotating it with one of the
following entailment judgments:

• Bidirectional: the two fragments entail each
other (semantic equivalence)

• Forward: unidirectional entailment from T1 to
T2

• Backward: unidirectional entailment from T2
to T1

• No Entailment: there is no entailment between
T1 and T2

In this task, both T1 and T2 are assumed to be
TRUE statements; hence in the dataset there are no
contradictory pairs.

Example for Spanish English pairs:

• bidirectional
Mozart naci en la ciudad de Salzburgo
Mozart was born in Salzburg.

• forward
Mozart naci en la ciudad de Salzburgo
Mozart was born on the 27th January 1756 in
Salzburg.

• backward
Mozart naci el 27 de enero de 1756 en
Salzburgo
Mozart was born in 1756 in the city of Salzburg

• no entailment
Mozart naci el 27 de enero de 1756 en
Salzburgo
Mozart was born to Leopold and Anna Maria
Pertl Mozart.

2 Our Approach to CLTE

In our participation in the 2012 SemEval Cross-
lingual Textual Entailment for Content Synchroniza-
tion task (Negri et. al., 2012) we have developed
an approach based on cross-language text similarity.
We have modified our cross-language query similar-
ity system TLike to handle longer texts.

Our approach is based on four main resources:

• A system for Natural Language Processing able
to perform for each relevant language basic
tasks such as part of speech disambiguation,
lemmatization and named entity recognition.

• A set of word based bilingual translation mod-
ules.
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• A semantic component able to associate a se-
mantic vectorial representation to words.

• We use Wikipedia as multilingual corpus.

NLP modules are described in (Bosca and Dini,
2008), and will be no further detailed here.

Word-based translation modules are composed by
a bilingual lexicon look-up component coupled with
a vector based translation filter, such as the one de-
scribed in (Curtoni and Dini, 2008). In the context of
the present experiments, such a filters has been de-
activated, which means that for any input word the
component will return the set of all possible transla-
tions. For unavailable pairs, we make use of trian-
gular translation (Kraaij, 2003).

As for the semantic component we experimented
with a corpus-based distributional approach capable
of detecting the interrelation between different terms
in a corpus; the strategy we adopted is similar to La-
tent Semantic Analysis (Deerwester et. al., 1990)
although it uses a less expensive computational solu-
tion based on the Random Projection algorithm (Lin
et. al., 2003) and (Bingham et. al., 2001). Different
works debate on similar issues: (Turney, 2001) uses
LSA in order to solve synonymy detection questions
from the well-known TOEFL test while the method
presented by (Inkpen, 2001) or by (Baroni and Bisi,
2001) proposes the use of the Web as a corpus to
compute mutual information scores between candi-
date terms.

More technically, Random Indexing exploits an
algebraic model in order to represent the seman-
tics of terms in a Nth dimensional space (a vector
of length N); approaches falling into this category,
actually create a Terms By Contexts matrix where
each cell represents the degree of memberships of a
given term to the different contexts. The algorithm
assigns a random signature to each context (a highly
sparse vector of length N , with few, randomly cho-
sen, non-zero elements) and then generates the vec-
tor space model by performing a statistical analysis
of the documents in the domain corpus and by ac-
cumulating on terms rows all the signatures of the
contexts where terms appear.

According to this approach if two different terms
have a similar meaning they should appear in similar
contexts (within the same documents or surrounded

by the same words), resulting into close coordinates
in the so generated semantic space.

In our case study semantic vectors have been gen-
erated taking as corpus the set of metadata available
via the CACAO project (Cacao Project, 2007) fed-
eration (about 6 millions records). After processing
for each word in the corpus we have:

• A vector of float from 0 to 1 representing its
contextual meaning;

• A set of neighbors terms selected among the
terms with a higher semantic similarity, calcu-
lated as cosine distance among vectors.

We use Wikipedia as a corpus for calculating
word statistics in different languages. We have in-
dexed using Lucene1 the English, Italian, French,
German, Spanish distributions of the resource.

The basic idea behind our algorithm is to detect
the probability for two texts to be one a translation
of the other. In the simple case we expect that if all
the words in text TS have a translation in text TT and
if TS and TT have the same number of terms, then
TS and TT are entailed. Things are of course more
complex than this, due to the following facts:

• The presence of compound words make the
constraints on cardinality of search terms not
feasible (e.g. the Italian Carta di Credito vs.
the German KreditCarte).

• One or more words in TS could be absent from
translation dictionaries.

• One or more words in TS could be present
in the translation dictionaries, but contextually
correct translation might be missing.

• There might be items which do not need to be
translated, notably Named Entities.

The first point, compounding, is only partially
an obstacle. NLP technology developed during
CACAO Project, which adopted translation dictio-
naries, deals with compound words both in terms
of identification and translation. Thus the Italian
”Carta di Credito” would be recognized and cor-
rectly translated into ”KreditCarte”. So, in an ideal

1http://lucene.apache.org
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word, the cardinality principle could be considered
strict. In reality, however, there are many com-
pounding phenomena which are not covered by our
dictionaries, and this forces us to consider that a mis-
match in text term cardinality decrease the probabil-
ity that the two translations are translation of each
other, without necessarily setting it to zero.

Concerning the second aspect, the absence of
source (T1) words in translation dictionaries, it is
dealt with by accessing the semantic repository de-
scribed in the previous section. We first obtain the
list of neighbor terms for the untranslatable source
word. This list is likely to contain many words that
have one or more translations. For each translation,
again, we consult our semantic repository and we
obtain its semantic vector.

Finally, we compose all vectors of all available
translations and we search in the target text (T2) for
the word whose semantic vector best matches the
composed one (cosine distance). Of course we can-
not assume that the best matching vector is a transla-
tion of the original word, but we can use the distance
between the two vectors as a further weight for de-
ciding whether the two texts are translations one of
the other.

There are of course cases when the source word
is correctly missing in the source dictionary. This
is typically the case of most named entities, such
as geographical and person names. These entities
should be appropriately recognized and searched as
exact matches in the target text, thus by-passing any
dictionary look-up and any semantic based match-
ing. Notice that the recognition of named entities
it is not just a matter of generalizing the statement
according to which ”if something is not in the dic-
tionaries, it is a named entity”. Indeed there are well
known cases where the named entity is homograph
with common words (e.g. the French author ”La
Fontaine”), and in these cases we must detect them
in order to avoid the rejection of likely translation
pairs. In other words we must avoid that the two
texts ”La fontaine fables” and ”La Fontaine fav-
ole” are rejected as translation pairs, just by virtue
of the fact that ”La fontaine” is treated as a com-
mon word, thus generating the Italian translation”La
fontana”. Fortunately CACAO disposes of a quite
accurate subsystem for recognizing named entities
in texts, mixing standard NLP technologies with sta-

tistical processing and other corpus-oriented heuris-
tics.

We concentrated our work on handling cases
where two texts are candidates to be mutual trans-
lations, but one or more words receive a translation
which is not contained in the target text. Typically
these cases are a symptom of a non-optimal quality
in translation dictionaries: the lexicographer prob-
ably did not consider some translation candidate.
To address this problem we have created a solution
based on a weighting scheme. For each word of the
source language we assign a weight that reflects its
importance to the semantic interpretation of the text.
We define a matchweight of a word using the for-
mula represented in Figure 2.In this formula wis is
a word from the source text, wkt is a word from the
target text, w is a word in the source language and
trans is a boolean function that searches in the dic-
tionary for translations between two words.

The matchweight is relevant to the matching of a
translation of a word from the source with one of
the words of the target. If the system finds a direct
correspondence the weight is 0. If the match was
made using random indexing the weight is inverse
to the cosine similarity between the vectors.

In order to make an approximation of the signif-
icance of the word to the meaning of the phrase we
have used as its cost the inverse document frequency
(IDF) of the word calculated using Wikipedia as a
corpus. IDF is a most popular measure (a measure
commonly used in Information Retrieval) for calcu-
lating the importance of a word to a text. If N is the
number of documents in a text collection and Nw is
the number of documents of the collection that con-
tain w then the IDF of w is given by the formula:

weight(wis) = idf(w) = log(
N

Nw
) (2)

Using the matchweight and weight we define the
matchscore of a source target pair as:

matchscore(Ts, Tt) =

∑
matchweigth(wis)∑

weight(wis)
(3)

If all the words of the source text have a transla-
tion in the target text the score is 0. If none is found
the score is 1. We have calculated the scores for each
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matchweight(wis) =


0 ∃wkt trans(wis) = wkt

w ∗ (wis) ∗ (1− d) ∃w &wkt distance(wis, w) = d&trans(w) = wkt

w ∗ (wis) otherwise
(1)

Figure 1: Match Weight of a Word

pair taking t1 as a source and t2 as a target and vice
versa.

3 Systems

We have submitted four runs in the SemEval CLTE
challenge. We used the NaiveBayse algorithm im-
plemented in Mallet2 to create a classifier that will
produce the output for each of the four categories
Forward , Backward , Bidirectional and No Entail-
ment.

System 1 As our first system we have created a
binary classifier in the classical RTE (Bentivogli et.
al., 2011) classification (YES & NO) for each direc-
tion Forward and Backward. We assigned the Bidi-
rectional category if both classifiers returned YES.
As features the classifiers used only the match scores
obtained for the corresponding direction as one and
only numeric feature.

System 2 For the second system we trained a clas-
sifier using all four categories as output. Apart of the
scores obtained matching the texts in both directions
we have included also a set of eight simple surface
measures. Some of these are:

• The length of the two texts.

• The number of common words without transla-
tions.

• The cosine similarity between the tokens of the
two texts without translation.

• Levenshtein distance between the texts.

System 3 For the third system we trained a classi-
fier using all four categories as output. We used as
features scores obtained matching the texts in both
directions without the surface features used in the
System 2.

2http://mallet.cs.umass.edu/

System 4 In the last system we trained a classifier
using all four categories as output. We used as fea-
tures the simple surface measures used in System 2.

The results obtained are shown in Table 1.

4 Analysis

Analyzing the results of our participation we have
reached several important conclusions.

The dataset provided by the organizers presented
a significant challenge for our system which was
adapted from a query similarity approach. The re-
sults obtained demonstrate that only a similarity
based approach will not provide good results for this
task. This fact is also confirmed by the poor perfor-
mance of the simple similarity measures by them-
selves (System 4) and by their contribution to the
combined run (System 2).

The poor performance of our system can be par-
tially explained also by the small dimensions of the
cross-language dictionaries we used. Expanding
them with more words and phrases can potentially
increase our results.

The classifier with four categories clearly outper-
forms the two directional one (System 1 vs. System
3).

Overall we are not satisfied with our experi-
ment. A radically new approach is needed to address
the problem of Cross-Language Textual Entailment,
which our similarity based system could not model
correctly.

In the future we intend to integrate our approach
in our RTE open source system EDITS (Kouylekov
et. al., 2011) (Kouylekov and Negri, 2010) available
at http://edits.sf.net.

Acknowledgments
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SPA-ENG ITA-ENG FRA-ENG DEU-ENG
System 1 0.276 0.278 0.278 0.280
System 2 0.336 0.336 0.300 0.352
System 3 0.322 0.334 0.298 0.350
System 4 0.268 0.280 0.280 0.274

Table 1: Results obtained.
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Abstract

This paper overviews FBK’s participation
in the Cross-Lingual Textual Entailment
for Content Synchronization task organized
within SemEval-2012. Our participation is
characterized by using cross-lingual matching
features extracted from lexical and semantic
phrase tables and dependency relations. The
features are used for multi-class and binary
classification using SVMs. Using a combi-
nation of lexical, syntactic, and semantic fea-
tures to create a cross-lingual textual entail-
ment system, we report on experiments over
the provided dataset. Our best run achieved
an accuracy of 50.4% on the Spanish-English
dataset (with the average score and the me-
dian system respectively achieving 40.7% and
34.6%), demonstrating the effectiveness of a
“pure” cross-lingual approach that avoids in-
termediate translations.

1 Introduction

So far, cross-lingual textual entailment (CLTE)
(Mehdad et al., 2010) has been applied to: i)
available TE datasets (“YES”/“NO” uni-directional
relations between monolingual pairs) transformed
into their cross-lingual counterpart by translating
the hypotheses into other languages (Negri and
Mehdad, 2010), and ii) machine translation evalu-
ation datasets (Mehdad et al., 2012b). The content
synchronization task represents a challenging appli-
cation scenario to test the capabilities of CLTE sys-
tems, by proposing a richer inventory of phenomena
(i.e. “Bidirectional”/“Forward”/“Backward”/“No
entailment” multi-directional entailment relations).

Multi-directional CLTE recognition can be seen
as the identification of semantic equivalence and in-
formation disparity between two topically related
sentences, at the cross-lingual level. This is a core
aspect of the multilingual content synchronization
task, which represents a challenging application sce-
nario for a variety of NLP technologies, and a shared
research framework for the integration of semantics
and MT technology.

The CLTE methods proposed so far adopt either
a “pivoting approach” (translation of the two in-
put texts into the same language, as in (Mehdad et
al., 2010)), or an “integrated solution” that exploits
bilingual phrase tables to capture lexical relations
and contextual information (Mehdad et al., 2011).
The promising results achieved with the integrated
approach still rely on phrasal matching techniques
that disregard relevant semantic aspects of the prob-
lem. By filling this gap integrating linguistically
motivated features, in our participation, we propose
an approach that combines lexical, syntactic and se-
mantic features within a machine learning frame-
work (Mehdad et al., 2012a).

Our submitted runs have been produced by train-
ing and optimizing multiclass and binary SVM clas-
sifiers, over the Spanish-English (Spa-Eng) devel-
opment set. In both cases, our results were posi-
tive, showing significant improvements over the me-
dian systems and average scores obtained by partic-
ipants. The overall results confirm the difficulty of
the task, and the potential of our approach in com-
bining linguistically motivated features in a “pure”
cross-lingual approach that avoids the recourse to
external MT components.
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2 Experiments

In our experiment we used the Spa-Eng portion of
the dataset described in (Negri et al., 2012; Negri
et al., 2011), consisting of 500 multi-directional en-
tailment pairs which was provided to train the sys-
tems and 500 pairs for the submission. Each pair in
the dataset is annotated with “Bidirectional”, “For-
ward”, “Backward” or “No entailment” judgements.

2.1 Approach

Our system builds on the integration of lexical,
syntactic and semantic features in a supervised
learning framework. Our model builds on three
main feature sets, respectively derived from: i)
phrase tables, ii) dependency relations, and iii)
semantic phrase tables.

1. Phrase Table (PT) matching: through
these features, a semantic judgement about entail-
ment is made exclusively on the basis of lexical
evidence. The matching features are calculated
with a phrase-to-phrase matching process. A phrase
in our approach is an n-gram composed of one
or more (up to 5) consecutive words, excluding
punctuation. Entailment decisions are assigned
combining phrasal matching scores calculated for
each level of n-grams (i.e. considering the number
of 1-grams, 2-grams,..., 5-grams extracted from H
that match with n-grams in T). Phrasal matches,
performed either at the level of tokens, lemmas, or
stems, can be of two types:

1. Exact: in the case that two phrases are identical
at one of the three levels (token, lemma, stem).

2. Lexical: in the case that two different phrases
can be mapped through entries of the resources
used to bridge T and H (i.e. phrase tables).

For each phrase in H, we first search for exact
matches at the level of token with phrases in T. If
no match is found at a token level, the other levels
(lemma and stem) are attempted. Then, in case of
failure with exact matching, lexical matching is per-
formed at the same three levels. To reduce redun-
dant matches, the lexical matches between pairs of
phrases which have already been identified as exact
matches are not considered.

Once the matching phase for each n-gram
level has been concluded, the number of matches
Matchn and the number of phrases in the hypoth-
esis H(n) is used to estimate the portion of phrases
in H that are matched at each level n (Equation 1).1

Since languages can express the same meaning with
different amounts of words, a phrase with length n
in H can match a phrase with any length in T.

Matchn =
Matchn

|H(n)|
(1)

In order to build English-Spanish phrase tables
for our experiments, we used the freely available
Europarl V.4, News Commentary and United
Nations Spanish-English parallel corpora released
for the WMT10 Shared Translation Task.2 We
run the TreeTagger (Schmid, 1995) and Snowball
stemmer (Porter, 2001) for preprocessing, and used
the Giza++ (Och and Ney, 2000) toolkit to align the
tokenized corpora at the word level. Subsequently,
we extracted the bi-lingual phrase table from the
aligned corpora using the Moses toolkit (Koehn et
al., 2007).

2. Dependency Relation (DR) matching tar-
gets the increase of CLTE precision. By adding
syntactic constraints to the matching process,
DR features aim to reduce wrong matches often
occurring at the lexical level. For instance, the con-
tradiction between “Yahoo acquired Overture” and
“Overture compró Yahoo” is evident when syntax
(in this case subject-object inversion) is taken into
account, but can not be caught by bag-of-words
methods.

We define a dependency relation as a triple that
connects pairs of words through a grammatical rela-
tion. For example, “nsubj (loves, John)” is a depen-
dency relation with head loves and dependent John
connected by the relation nsubj, which means that
“John” is the subject of “loves”. DR matching cap-
tures similarities between dependency relations, by
combining the syntactic and lexical level. In a valid
match, while the relation has to be the same (“exact”

1When checking for entailment from H to T, the normaliza-
tion is carried out dividing the number of n-grams in H by the
number of n-grams in T. The same holds for dependency rela-
tion and semantic phrase table matching.

2http://www.statmt.org/wmt10/
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match), the connected words must be either the same
or semantically equivalent in the two languages. For
example, “nsubj (loves, John)” can match “nsubj
(ama, John)” and “nsubj (quiere, John)” but not
“dobj (quiere, John)”.

Given the dependency tree representations of T
and H, for each grammatical relation (r) we calcu-
late a DR matching score (Matchr, see Equation 2)
as the number of matching occurrences of r in T and
H (respectively DRr(T ) and DRr(H)), divided by
the number of occurrences of r in H.

matchr =
|match(DRr(T ), DRr(H))|

|DRr(H)|
(2)

In our experiments, in order to extract de-
pendency relation (DR) matching features, the
dependency tree representations of English and
Spanish texts have been produced with DepPattern
(Otero and Lopez, 2011). We then mapped the
sets of dependency relation labels for the English-
Spanish parser output into: Adjunct, Determiner,
Object, Subject and Preposition. The dictionary,
containing about 9M bilingual word pairs, created
during the alignment of the English-Spanish parallel
corpora provided the lexical knowledge to perform
matches when the connected words are different.

3. Semantic Phrase Table (SPT) matching:
represents a novel way to leverage the integration
of semantics and MT-derived techniques. To this
aim, SPT improves CLTE methods relying on pure
lexical match, by means of “generalized” phrase
tables annotated with shallow semantic labels.
Semantically enhanced phrase tables, with entries in
the form “[LABEL] word1...wordn [LABEL]” (e.g.
“[ORG] acquired [ORG]”), are used as a recall-
oriented complement to the lexical phrase tables
used in machine translation (token-based entries like
“Yahoo acquired Overture”). The main motivation
for this augmentation is that word replacement with
semantic tags allows to match T-H tokens that do
not occur in the original bilingual parallel corpora
used for phrase table extraction. Our hypothesis
is that the increase in recall obtained from relaxed
matches through semantic tags in place of “out of
vocabulary” terms (e.g. unseen person, location, or
organization names) is an effective way to improve

CLTE performance, even at the cost of some loss in
precision. Semantic phrase tables, however, have
two additional advantages. The first is related to
their smaller size and, in turn, its positive impact
on system’s efficiency, due to the considerable
search space reduction. Semantic tags allow to
merge different sequences of tokens into a single tag
and, consequently, different phrase entries can be
unified to one semantic phrase entry. As a result, for
instance, the SPT used in our experiments is more
than 30% smaller than the original token-based one.
The second advantage relates to their potential im-
pact on the confidence of CLTE judgements. Since
a semantic tag might cover more than one token
in the original entry phrase, SPT entries are often
short generalizations of longer original phrases.
Consequently, the matching process can benefit
from the increased probability of mapping higher
order n-grams (i.e. those providing more contextual
information) from H into T and vice-versa.

Like lexical phrase tables, SPTs are extracted
from parallel corpora. As a first step, we annotate
the corpora with named-entity taggers (FreeLing in
our case (Carreras et al., 2004)) for the source and
target languages, replacing named entities with gen-
eral semantic labels chosen from a coarse-grained
taxonomy including the categories: person, location,
organization, date and numeric expression. Then,
we combine the sequences of unique labels into one
single token of the same label, and we run Giza++
(Och and Ney, 2000) to align the resulting seman-
tically augmented corpora. Finally, we extract the
semantic phrase table from the augmented aligned
corpora using the Moses toolkit (Koehn et al., 2007).

For the matching phase, we first annotate T and
H in the same way we labeled our parallel corpora.
Then, for each n-gram order (n=1 to 5, excluding
punctuation), we use the SPT to calculate a matching
score (SPT matchn, see Equation 3), as the num-
ber of n-grams in H that match with phrases in T
divided by the number of n-grams in H. The match-
ing algorithm is same as the phrase table matching
one.

SPT matchn =
|SPTn(H) ∩ SPT (T )|

|SPTn(H)|
(3)
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Run Features Classification Parameter selection Result
1 PT+SPT+DR Multiclass Entire training set 0.502
2 PT+SPT+DR Multiclass 2-fold cross validation 0.490
3 PT+SPT+DR Binary Entire training set 0.504
4 PT+SPT+DR Binary 2-fold cross validation 0.500

Table 1: Summary of the submitted runs and results for Spa-Eng dataset.

Forward Backward No entailment Bidirectional
P R F1 P R F1 P R F1 P R F1

0.515 0.704 0.595 0.546 0.568 0.557 0.447 0.304 0.362 0.482 0.440 0.460

Table 2: Best run’s Precision/Recall/F1 scores.

In our supervised learning framework, the com-
puted PT, SPT and DR scores are used as sepa-
rate features, giving to an SVM classifier, LIBSVM
(Chang and Lin, 2011), the possibility to learn opti-
mal feature weights from training data.

2.2 Submitted runs

In order to test our models under different condi-
tions, we set the CLTE problem both as two-way and
multiclass classification tasks.

Two-way classification casts multidirectional en-
tailment as a unidirectional problem, where each
pair is analyzed checking for entailment both from
left to right and from right to left. In this condi-
tion, each original test example is correctly clas-
sified if both pairs originated from it are correctly
judged (“YES-YES” for bidirectional, “YES-NO”
for forward, “NO-YES” for backward entailment,
and “NO-NO” for no entailment). Two-way clas-
sification represents an intuitive solution to capture
multidirectional entailment relations but, at the same
time, a suboptimal approach in terms of efficiency
since two checks are performed for each pair.

Multiclass classification is more efficient, but at
the same time more challenging due to the higher
difficulty of multiclass learning, especially with
small datasets. We also tried to use the parameter se-
lection tool for C-SVM classification using the RBF
(radial basis function) kernel, available in LIBSVM
package. Our submitted runs and results have been
obtained with the settings summarized in table 1.

As can be seen from the table, our best result has
been achieved by Run 3 (50.4% accuracy), which
is significantly higher than the average and median
score over the best runs obtained by participants

(44.0% and 40.7% respectively). The detailed re-
sults achieved by the best run are reported in Table
2. We can observe that our system is performing
well for recognizing the unidirectional entailment
(i.e. forward and backward), while the performance
drops over no entailment pairs. The low results for
bidirectional cases also reflect the difficulty of dis-
criminating the no entailment pairs from the bidi-
rectional ones. Looking at the detailed results, we
can observe a high recall in the forward and back-
ward entailment cases, which could be explained by
the effectiveness of the semantic phrase table match-
ing features aiming at coverage increase over lexi-
cal methods. Adding more linguistically motivated
features and weighting the non-matched phrases can
be a starting point to improve the overall results for
other cases (bidirectional and no entailment).

3 Conclusion

In this paper we described our participation to the
cross-lingual textual entailment for content synchro-
nization task at SemEval-2012. We approached this
task by combining lexical, syntactic and semantic
features, at the cross-lingual level without recourse
to intermediate translation steps. In spite of the
difficulty and novelty of the task, our results on
the Spanish-English dataset (0.504) prove the effec-
tiveness of the approach with significant improve-
ments over the reported average and median accu-
racy scores for the 29 submitted runs (respectively
40.7% and 34.6%).
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Abstract

In this paper we present a report of the two di-
fferent runs submitted to the task 8 of Semeval
2012 for the evaluation of Cross-lingual Tex-
tual Entailment in the framework of Content
Synchronization. Both approaches are based
on textual similarity, and the entailment judg-
ment (bidirectional, forward, backward or no
entailment) is given based on a set of decision
rules. The first approach uses textual simi-
larity on the translated and original versions
of the texts, whereas the second approach ex-
pands the terms by means of synonyms. The
evaluation of both approaches show a similar
behavior which is still close to the average and
median.

1 Introduction

Cross-lingual Textual Entailment (CLTE) has been
recently proposed by (Mehdad et al., 2010; Mehdad
et al., 2011) as an extension of the Textual Entail-
ment task (Dagan and Glickman, 2004). Given a text
(T ) and an hypothesis (H) in different languages,
the CLTE task consists of determining if the mea-
ning of H can be inferred from the meaning ofT .
In this paper we present a report of the obtained
results after submitting two different runs for the
Task 8 of Semeval 2012, named “Cross-lingual Tex-
tual Entailment for Content Synchronization” (Negri
et al., 2012). In this task, the Cross-Lingual Tex-
tual Entailment addresses textual entailment recog-
nition under a new dimension (cross-linguality), and
within a new challenging application scenario (con-
tent synchronization). The task 8 of Semeval 2012
may be formally defined as follows:

Given a pair of topically related text fragments
(T1 andT2) in different languages, the task consists
of automatically annotating it with one of the follo-
wing entailment judgments:

• Bidirectional (T1 → T2 & T1 ← T2): the two
fragments entail each other (semantic equiva-
lence)

• Forward (T1 → T2 & T1 ! ← T2): unidirec-
tional entailment fromT1 to T2

• Backward (T1 ! → T2 & T1 ← T2): unidirec-
tional entailment fromT2 to T1

• No Entailment (T1 ! → T2 & T1 ! ← T2): there
is no entailment betweenT1 andT2

In this task, bothT1 and T2 are assumed to be
TRUE statements; hence in the dataset there are no
contradictory pairs. Cross-lingual datasets are avai-
lable for the following language combinations:

• Spanish/English (SPA-ENG)

• German/English (DEU-ENG)

• Italian/English (ITA-ENG)

• French/English (FRA-ENG)

The remaining of this paper is structured as fo-
llows: Section 2 describes the two different approa-
ches presented in the competition. The obtained re-
sults are shown and dicussed in Section 3. Finally,
the findings of this work are given in Section 4.
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2 Experimental setup

For this experiment we have considered to tackle the
CLTE task by means of textual similarity and textual
length. In particular, the textual similarity is used to
determine whether some kind of entailment exists or
not. We have established the threshold of0.5 for the
similarity function as evidence of textual entailment.
Since the two sentences to be evaluated are written
in two different languages, we have translated each
sentence to the other language, so that, we have two
sentences in English, and two sentences in the origi-
nal language (Spanish, German, Italian and French).
We have used the Google translate for this purpose
1.

The corpora used in the experiments comes from
a cross-lingual Textual Entailment dataset presented
in (Negri et al., 2011), and provided by the task orga-
nizers. We have employed the training dataset only
for adjust some parameters of the system, but the
approach is knowledge-based and, therefore, it does
not need a training corpus. Both, the training and
test corpus contain 500 sentences for each language.

The textual length is used to determine the entail-
ment judgment (bidirectional, forward, backward,
no entailment). We have basically, assumed that the
length of a text may give some evidence of the type
of entailment. The decision rules used for determi-
ning the entailment judgment are described in Sec-
tion 2.3.

In this competition we have submitted two diffe-
rent runs which differ with respect to the type of tex-
tual similarity used (lexical vs semantic). The first
one, calculates the similarity using only the trans-
lated version of the original sentences, whereas the
second approach uses text expansion by means of
synonyms and, thereafter, it calculates the similarity
between the pair of sentences.

Let T1 be the sentence in the original language,
T2 theT1 topically related text fragment (written in
English). LetT3 be the English translation ofT1,
andT4 the translation ofT2 to the original language
(Spanish, German, Italian and French). The formal
description of these two approaches are given as fo-
llows.

1http://translate.google.com.mx/

2.1 Approach 1: Lexical similarity

The evidence of textual entailment betweenT1 and
T2 is calculated using two formulae of lexical si-
milarity. Firstly, we determine the similarity bet-
ween the two texts written in the source language
(SimS). Additionally, we calculate the lexical simi-
larity between the two sentences written in the target
language (SimT ), in this case English.

Given the limited text length of the text fragments,
we have used the Jaccard coefficient as similarity
measure. Eq. (1) shows the lexical similarity for the
two texts written in the original language, whereas,
Eq. (2) presents the Jaccard coefficient for the texts
written in English.

simS = simJaccard(T1, T4) =
|T1 ∪ T4|

|T1 ∩ T4|
(1)

simT = simJaccard(T2, T3) =
|T2 ∪ T3|

|T2 ∩ T3|
(2)

2.2 Approach 2: Semantic similarity

In this case we calculate the semantic similarity bet-
ween the two texts written in the original language
(simS), and the semantic similarity between the two
text fragments written in English (simT ). The se-
mantic level of similarity is given by considering
the synonyms of each term for each sentence (in
the original and target language). For this purpose,
we have employed five dictionaries containing syno-
nyms for the five different languages considered in
the competition (English, Spanish, German, Italian,
and French)2. In Table 1 we show the number of
terms, so as the number of synonyms in average by
term considered for each language.

Let T1 = w1,1w1,2...w1,|T1|, T2 =
w2,1w2,2...w2,|T2| be the source and target
sentences, and letT3 = w3,1w3,2...w3,|T3|,
T4 = w4,1w4,2...w4,|T4| be translated version of the
original source and target sentences, respectively.
The synonyms of a given wordwi,k, expressed as
synset(wi,k), are obtained from the aforementioned
dictionaries by extracting the synonyms ofwi,k. In
order to obtain a better matching between the terms
contained in the text fragments and the terms in the

2http://extensions.services.openoffice.org/en/dictionaries
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Table 1: Dictionaries of synonyms used for term expan-
sion

Language Terms synonyms per term
(average)

English 2,764 60
Spanish 9,887 45
German 21,958 115
Italian 25,724 56
French 36,207 93

dictionary, we have stemmed all the terms using the
Porter stemmer.

In order to determine the semantic similarity bet-
ween two terms of sentences written in the source
language (w1,i and w4,j) we use Eq. (3). The se-
mantic similariy between two terms of the English
sentences are calculated as shown in Eq. (4).

sim(w1,i, w4,j) =



















1 if (w1,i == w4,j) ||
w1,i ∈ synset(w4,j) ||
w4,j ∈ synset(w1,i)

0 otherwise
(3)

sim(w2,i, w3,j) =



















1 if (w2,i == w3,j) ||
w2,i ∈ synset(w3,j) ||
w3,j ∈ synset(w2,i)

0 otherwise
(4)

Both equations consider the existence of semantic
similarity when the two words are identical, or when
the some of the two words appear in the synonym set
of the other word.

The semantic similarity of the complete text frag-
mentsT1 andT4 (simS) is calculated as shown in
Eq. (5). Whereas, the semantic similarity of the
complete text fragmentsT2 andT3 (simT ) is cal-
culated as shown in Eq. (6).

simS(T1, T4) =

∑|T1|

i=1

∑|T4|

j=1
sim(w1,i,w4,j)

|T1∪T4|
(5)

simT (T2, T3) =

∑|T2|

i=1

∑|T3|

j=1
sim(w2,i,w3,j)

|T2∪T3|
(6)

2.3 Decision rules

Both approches used the same decision rules in or-
der to determine the entailment judgment for a given
pair of text fragments (T1 andT2). The following al-
gorithm shows the decision rules used.
Algorithm 1.

If |T2| < |T3| then
If (simT > 0.5 andsimS > 0.5)
thenforward

ElseIf |T2| > |T3| then
If (simT > 0.5 andsimS > 0.5)
thenbackward

ElseIf (|T1| == |T4| and|T2| == |T3|) then
If (simT > 0.5 andsimS > 0.5)
thenbidirectional

Else no entailment
As mentioned above, the rules employed the le-

xical or semantic textual similarity, and the textual
length for determining the textual entailment.

3 Results

In Table 2 we show the overall results obtained by
the two approaches submitted to the competition.
We also show the highest, lowest, average and me-
dian overall results obtained in the competition.

SPA-
ENG

ITA-
ENG

FRA-
ENG

DEU-
ENG

Highest 0.632 0.566 0.57 0.558
Average 0.407 0.362 0.366 0.357
Median 0.346 0.336 0.336 0.336
Lowest 0.266 0.278 0.278 0.262
BUAP run1 0.35 0.336 0.334 0.33
BUAP run2 0.366 0.344 0.342 0.268

Table 2: Overall statistics obtained in the Task 8 of Se-
meval 2012

The runs submitted perform similar, but the se-
mantic approach obtained a slightly better perfor-
mance. The two results are above the median but
below the average. We consider that better results
may be obtained if the two features used (textual si-
milarity and textual length) were introduced into a
supervised classifier, so that, the decision rules were
approximated on the basis of a training dataset, ins-
tead of the empirical setting done in this work. Fu-
ture experiments will be carried out in this direction.

708



4 Discussion and conclusion

Two different approaches for the Cross-lingual Tex-
tual Entailment for Content Synchronization task of
Semeval 2012 are reported in this paper. We used
two features for determining the textual entailment
judgment between two textsT1 andT2 (written in
two different languages). The first approach pro-
posed used lexical similarity, meanwhile the second
used semantic similarity by means of term expan-
sion with synonyms.

Even if the performance of both approaches is
above the median and slighly below the average,
we consider that we may easily improve this perfor-
mance by using syntactic features of the text frag-
ments. Additionally, we are planning to integrate
some supervised techniques based on decision rules
which may be trained in a supervised dataset. Future
experiments will be executed in this direction.
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Abstract

There are relatively few entailment heuristics
that exploit the directional nature of the entail-
ment relation. Cross-Lingual Text Entailment
(CLTE), besides introducing the extra dimen-
sion of cross-linguality, also requires to de-
termine the exact direction of the entailment
relation, to provide content synchronization
(Negri et al., 2012). Our system uses sim-
ple dictionary lookup combined with heuris-
tic conditions to determine the possible di-
rections of entailment between the two texts
written in different languages. The key mem-
bers of the conditions were derived from (Cor-
ley and Mihalcea, 2005) formula initially for
text similarity, while the entailment condition
used as a starting point was that from (Tatar
et al., 2009). We show the results obtained
by our implementation of this simple and fast
approach at the CLTE task from the SemEval-
2012 challenge.

1 Introduction

Recognizing textual entailment (TE) is a key task
for many natural language processing (NLP) prob-
lems. It consists in determining if an entailment re-
lation exists between two texts: the text (T) and the
hypothesis (H). The notation T → H says that the
meaning of H can be inferred from T, in order words,
H does not introduce any novel information with re-
spect to T.

Even though RTE challenges lead to many ap-
proaches for finding textual entailment, fewer au-
thors exploited the directional character of the en-
tailment relation. Due to the fact that the entailment

relation, unlike the equivalence relation, is not sym-
metric, if T → H , it is less likely that the reverse
H → T can also hold (Tatar et al., 2009).

The novel Cross-Lingual Text Entailment (CLTE)
approach increases the complexity of the traditional
TE task in two way, both of which have been only
partially researched and have promise for great po-
tential (Negri et al., 2012):

• the two texts are no longer written in the same
language (cross-linguality);

• the entailment needs to be queried in both di-
rections (content synchronization).

Mehdad et al. (2010) presented initial research di-
rections and experiments for the cross-lingual con-
text and explored possible application scenarios.

2 Theoretical Background

The semantic similarity formula from (Corley and
Mihalcea, 2005) defines the similarity of a pair of
documents differently depending on with respect to
which text it is computed. The formula involves only
the set of open-class words (nouns, verbs, adjectives
and adverbs) from each text.

Based on this text-to-text similarity metric, Tatar
et al. (2009) have derived a textual entailment recog-
nition system. The paper demonstrated that in the
case when T → H holds, the following relation will
take place:

sim(T,H)H > sim(T,H)T (1)

however, the opposite of this statement is not always
true, nevertheless it is likely. In (Tatar et al., 2007)
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a simpler version for the calculus of sim(T,H)T is
used: namely the only case of similarity is the iden-
tity (a symmetric relation) and/or the occurrence of a
word from a text in the synset of a word in the other
text (not symmetric relation).

Perini and Tatar (2009) used the earlier seman-
tic similarity formula (Corley and Mihalcea, 2005)
to derive a formula for directional text relatedness
score as follows:

rel(T,H)T =∑
pos

∑
Ti∈WST

pos
(maxRel(Ti)× idf(Ti))∑

pos

∑
Ti∈WST

pos
idf(Ti)

(2)

A mathematically similar formula could be given
for rel(T,H)H (by swapping T for H in the RHS
of (2)) which would normally produce a different
score. In (2), maxRel(Ti) was defined as the high-
est relatedness between (in this order) word Ti and
words from H having the same part of speech as
Ti. The relatedness between a pair of words was
computed by taking the weight of the highest-ranked
WordNet relation that takes place between them. It
should be noted that the word order in the pair was
strict and that most of the WordNet relations in-
volved in the calculus were not symmetric.

After defining the relatedness of two texts, which
depends on the direction, Perini and Tatar (2009) in-
troduced a new directional entailment condition, de-
rived from the one in (Tatar et al., 2009):

rel(T,H)T +σ > rel(T,H)H > rel(T,H)T > θ .
(3)

3 The DirRelCond3 System

After having presented the necessary theoretical
background, in this section we give an overview of
our system for CLTE.

The application was implemented in the Java
programming language. XML input and output
was performed using the DocumentBuilder and the
DOM parser from Java.

The first step was to tag both the English and
the foreign language sentence using the TreeTagger
(Schmid, 1995), which had the advantage that it was
fast and it supported all the languages required by

this task by providing it with the necessary parame-
ter file, and also had a nice Java wrapper for it (an-
nolab, 2011). The output of the tagger was used to
obtain the necessary POS information needed to dis-
tinguish the set of open-class words for each sen-
tence. Because the tagset used for each language
was different, it was necessary to adapt all the differ-
ent variants to the four generic classes: noun, verb,
adjective and adverb.

The translation step followed for the foreign lan-
guage sentence, which took words only from these
classes and translated them using two dictionaries
in some cases. The base dictionary used for word
lookup was the FreeDict (FreeDictProject, 2012),
for which it was possible to download the language
files and use them locally with the help of a server
(ktulu, 2006) and a Java client (SourceForge, 2001).
The disadvantage of this dictionary was that it had
rather few headwords mainly for the Italian and
Spanish languages. A later improvement was to
use an additional online dictionary as a fall-back,
WordReference.com (WordReference.com, 2012),
which had a very good headword count for the Ital-
ian and French languages, it also provided a very
nice JSON API to access it and there was a ready-
to-use Java API (SourceForge, 2011) for it that sup-
ported caching the results. Although the number of
queries per hour was limited, it was very helpful that
they approved the caching of the results for the dura-
tion of the development. The dictionary lookup pro-
cess attached to each foreign word that was found
the set of English meanings, corresponding to each
sense that was found.

The penultimate step was to compute the text
relatedness scores with respect to each sentence,
rel(T,H)T and rel(T,H)H , by applying (2). The
only modification compared to the original formula
was that in the case of the translated word, all the
obtained meanings were used and the one producing
the maximum relatedness was kept. We have used
the following weights (assigned intuitively) for the
different WordNet relations in the final word relat-
edness score:

• equals: 1.0;

• same synset: 0.9;

• similar to: 0.85
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• hypernyms: 0.8;

• hyponyms: 0.7;

• entailment: 0.7;

• meronyms: 0.5;

• holonyms: 0.5;

• not in WordNet or dictionaries: 0.01.

The final step was to devise a condition based on
these two text relatedness scores, similar to (3), but
one that would be able to report the entailment vote
for both directions:

noentail, if rel(T,H)T or rel(T,H)H < θ

bidir, if abs(rel(T,H)T , rel(T,H)H) < δ

forward, if rel(T,H)H > rel(T,H)T + σ

backwd, otherwise
(4)

4 Experimental Results

The CLTE task provided researchers with training
sets of 500 sentence pairs (one English, one foreign)
already annotated with the type of entailment that
exists between them (’Forward’, ’Backward’, ’Bidi-
rectional’, ’No entailment’). There was one train-
ing set for each French-English, German-English,
Italian-English, Spanish-English language combina-
tion (Negri et al., 2011). The test set consisted in a
similarly structured 500 pairs for each language pair
but without annotations. The mentioned entailment
judgment types were uniformly distributed, both in
the case of the development and the test dataset.

The DirRelCond3 system participated at the
CLTE task with four runs for each of the above lan-
guage combinations. Regarding the results, the ac-
curacies obtained are summarized in table 1 as per-
centages.

Figures 1, 2, 3, 4 show the precision, recall and F-
measure for the ‘Forward’, ‘Backward’, ‘No entail-
ment’ and ‘Bidirectional’ judgments for each of the
language pair combinations in the case of the best
run that the DirRelCond3 system has obtained:

The earlier figures pointed out that generally
the unidirectional ‘Forward’ and ‘Backward’ judge-
ments produced better results than the remaining

System Spa-En Ita-En Fra-En Deu-En
Run 1 30.0 28.0 36.2 33.6
Run 2 30.0 28.4 36.0 33.6
Run 3 30.0 33.8 38.4 36.4
Run 4 34.4 31.6 38.4 37.4

Table 1: DirRelCond3 accuracies obtained for CLTE
task. Best results are with italic.

Figure 1: DirRelCond3 German-English pair precision,
recall and F-measure values for the different judgments.

Figure 2: DirRelCond3 French-English pair precision,
recall and F-measure values for the different judgments.

ones that involved bi-directionality. This is some-
what expected because in this case it is more difficult
to correctly judge since there could more possibility
for error.

Regarding the individual runs, run 2 added
slightly improved dictionary search in addition to
run 1, by attempting to look for the lemma form of
the word as well, that was available thanks to the
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Figure 3: DirRelCond3 Italian-English pair precision, re-
call and F-measure values for the different judgments.

Figure 4: DirRelCond3 Spanish-English pair precision,
recall and F-measure values of the different judgments.

TreeTagger tool (Schmid, 1995). In case the word
was still not found, but the language was French or
Italian and the word contained apostrophe, a lookup
was attempted for the part following it.

Run 3 added another slight improvement for Ger-
man, in case there was still no match for the word,
tried to see if the word was a composite containing
two parts found in the dictionary, and if so, used the
first one.

The first two runs were only using the FreeD-
ict (FreeDictProject, 2012) dictionary, while start-
ing with run 3, Italian and French language words,
in case not found, could also be searched in the Wor-
dReference (WordReference.com, 2012) online dic-
tionary.

The first three runs were using entailment condi-
tions common to all language combinations. The

values of the parameters were chosen based on the
CLTE development dataset (Negri et al., 2011) and
were as follows:
θ = 0.5, δ = 0.03, σ = 0.0.
The final run used empirically-tuned conditions for
each language pair in the dataset. The θ threshold
needed to be lowered for Spanish since many words
were not found in FreeDict, which was the only one
we had available for use, so the relatedness scores
were rather smaller. The values are summarized in
table 2 below:

Param Spa-En Ita-En Fra-En Deu-En
θ 0.25 0.55 0.5 0.45
δ 0.03 0.025 0.03 0.04
σ 0.0 0.2 0.0 0.0

Table 2: DirRelCond3 – Run 4 condition parameters.

5 Conclusions and Future Work

In this paper we have presented the DirRelCond3
systems that participated at the CLTE task (Negri et
al., 2012) from SemEval-2012. The system was a
good example of how an approach for mono-lingual
text entailment can be adapted to the new dimen-
sion of cross-linguality. It would have been possible
to use a MT tool and then do the entailment detec-
tion steps all in English as was the original approach,
however we expected that that would introduce more
possibility for error than translating and comparing
words with the same POS.

The overall best result for each language that we
have obtained was around the median of all the sys-
tem runs that were submitted to the CLTE task. The
best accuracy obtained by our system was for the
French-English pair with 38.4%, but well below the
accuracy of the best systems. Generally the results
involving German and French were somewhat better
than the other two languages. In the case of Span-
ish this could easily be caused by the significantly
smaller dictionary that was available, while for Ital-
ian, after relying also on WordReference.com this
was no longer the case. A possiblity is that some lan-
guage particularities were affecting the results (e.g.
high usage of apostrophe) but perhaps the entailment
heuristic thresholds were not the best either.

Finally, there are several possible improvements.
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Firstly, in case the dictionary provides POS infor-
mation for the translation, that could be used to re-
tain only those senses that have the same POS as
the original word. For some languages, particularly
for Spanish, it would be helpful to rely on dictio-
naries with more headwords. Secondly, we can use
the inverse document frequency counts for words,
obtained either from the CLTE development cor-
pus or from web searches, because currently that
was simply one. Thirdly, both the empirically ob-
tained conditions can be further tuned, manually or
by means of learning, separately for each language
pair. Fourthly, when computing the word relatedness
scores, the weights of the WordNet relations could
be further adjusted for each language, empirically,
or again by learning.
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Abstract 

In this paper, we present our system descrip-
tion in task of Cross-lingual Textual Entail-
ment. The goal of this task is to detect 
entailment relations between two sentences 
written in different languages. To accomplish 
this goal, we first translate sentences written 
in foreign languages into English. Then, we 
use EDITS1, an open source package, to rec-
ognize entailment relations. Since EDITS only 
draws monodirectional relations while the task 
requires bidirectional prediction, thus we ex-
change the hypothesis and test to detect en-
tailment in another direction. Experimental 
results show that our method achieves promis-
ing results but not perfect results compared to 
other participants. 

1 Introduction 

In Cross-Lingual Textual Entailment task (CLTE) 
of 2012, the organizers hold a task for Cross-
Lingual Textual Entailment. The Cross-Lingual 
Textual Entailment task addresses textual entail-
ment (TE) recognition under a new dimension 
(cross-linguality), and within a new challenging 
application scenario (content synchronization) 

Readers can refer to M. Negri et al. 2012.s., for 
more detailed introduction. 1 

Textual entailment, on the other hand, recog-
nize, generate, or extract pairs of natural language 
expressions, and infer that if one element is true, 
whether the other element is also true. Several 
methods are proposed by previous researchers. 
There have been some workshops on textual en-
tailment in recent years. The recognizing textual 
entailment challenges (Bar-Haim et al. 2006; 
Giampiccolo, Magnini, Dagan, & Dolan, 2007; 
Giampiccolo, Dang, Magnini, Dagan, & Dolan, 
2008), currently in the 7th year, provide additional 
significant thrust. Consequently, there are a large 
number of published articles, proposed methods, 
and resources related to textual entailment. A spe-
cial issue on textual entailment was also recently 
published, and its editorial provides a brief over-
view of textual entailment methods (Dagan, Dolan, 
Magnini, & Roth, 2009).  

Textual entailment recognizers judge whether 
or not two given language expressions constitute a 
correct textual entailment pair. Different methods 
may operate at different levels of representation of 
the input expressions. For example, they may treat 
the input expressions simply as surface strings, 
they may operate on syntactic or semantic repre-
sentations of the input expressions, or on represen-
tations combining information from different 

                                                           
1http://edits.fbk.eu/ 
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levels. Logic-based approach is to map the lan-
guage expressions to logical meaning representa-
tions, and then rely on logical entailment checks, 
possibly by invoking theorem provers (Rinaldi et 
al., 2003; Bos & Markert, 2005; Tatu & Moldovan, 
2005, 2007). An alternative to use logical meaning 
representations is to start by mapping each word of 
the input language expressions to a vector that 
shows how strongly the word co-occurs with par-
ticular other words in corpora (Lin, 1998b), possi-
bly also taking into account syntactic information, 
for example requiring that the co-occurring words 
participate in particular syntactic dependencies 
(Pad´o & Lapata, 2007). Several textual entailment 
recognizing methods operate directly on the input 
surface strings. For example, they compute the 
string edit distance (Levenshtein, 1966) of the two 
input strings, the number of their common words, 
or combinations of several string similarity 
measures (Malakasiotis & Androutsopoulos, 2007). 
Dependency grammar parsers (Melcuk, 1987; Ku-
bler, McDonald, & Nivre, 2009) are popular in 
textual entailment research. However, cross-lingual 
textual entailment brings some problems on past 
algorithms. On the other hand, many methods can’t 
be applied to it directly.  

In this paper, we propose a translation based 
method for cross-lingual textual entailment, which 
has been described in Mehdad et al. 2010. First, we 
translate one part of the text, which termed as “t1” 
and written in one language, into English, which 
termed as “t2”. Then, we use EDITS, an open 
source package, to recognize entailment relations 
between two parts. Large-scale experiments are 
conducted on four language pairs, French-English, 
Spanish-English, Italian-English and German-
English. Although our method achieves promising 
results reported by organizers, it is still far from 
perfect compared to other participants. 

The remainder of this paper is organized as 
follows. We describe our system framework in 
section 2. We report experimental results in section 
3 and draw our conclusions in the last section. 

2 System Description 

Figure 1 illustrates the overall framework of our 
system, where a machine translation model is em-
ployed to translate foreign language into English, 
since original EDITS could only deal with the text 
in the same language pairs.  

   In the following of this section, we will de-
scribe the translation module and configuration of 
EDITS in details. 

 
Figure 1:  The framework of our system. 

 

2.1 Machine Translation 

Recently, machine translation has attracted inten-
sive attention and has been well studied in natural 
language community. Effective models, such as 
Phrase-Based model (Koehn et al., 2003), Hierar-
chical Phrase-Based model (HPB) (Chiang, 2005), 
and Syntax-Based (Liu et al., 2006) model have 
been proposed to improve the translation quality. 
However, since current translation models require 
parallel corpus to extract translation rules, while 
parallel corpus on some language pairs such as 
Italian-English and Spanish-English are hard to 
obtain, therefore, we could use Google Translation 
Toolkit (GTT) to generate translation. 

Specifically, WMT 2 released some bilingual 
corpus for training, thus we use some portion to 
train a French-English translation engine using 
hierarchical phrase-based model. We also exploit 
system combination technique (A Rosti et al., 2007) 
to improve translation quality via blending the 
translation of our models and GTT’s. It is worth 
noting that GTT only gives 1-best translation, thus 
we duplicate 50 times to generate 50-best for sys-
tem combination.  

                                                           
2  http://www.statmt.org/wmt12/ 
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2.2 Textual Entailment 

Many methods have been proposed to recognize 
textual entailment relations between two expres-
sions written in the same language. Since edit dis-
tance algorithms are effective on this task, we 
choose this method. And we use popular toolkit, 
EDITS, to accomplish the textual entailment task. 

EDITS is an open source software, which is 
used for recognizing entailment relations between 
two parts of text, termed as “T” and “H”. The sys-
tem is based on the edit distance algorithms, and 
computes the “T”-“H” distance as the cost of the 
edit operations (i.e. insertion, deletion and substitu-
tion) that are necessary to transform “T” into “H”. 
EDITS requires that three modules are defined: an 
edit distance algorithm, a cost scheme for the three 
edit operations, and a set of rules expressing either 
entailment or contradiction. Each module can be 
easily configured by the user as well as the system 
parameters. EDITS can work at different levels of 
complexity, depending on the linguistic analysis 
carried on over “T” and “H”. Both linguistic pro-
cessors and semantic resources that are available to 
the user can be integrated within EDITS, resulting 
in a flexible, modular and extensible approach to 
textual entailment. 

 

 
Figure 2: An Example of two expressions 
EDITS can recognize.  
 
Figure 2 shows an example of two expressions 

that EDITS can recognize. EDITS will give an an-
swer that whether expression “H” is true given that 
expression “T” is true. The result is a Boolean val-
ue. If “H” is true given “T” is true, then the result 
is “YES”, otherwise “NO”. 

EDITS implements a distance-based frame-
work which assumes that the probability of an en-
tailment relation between a given “T”-“H” pair is 
inversely proportional to the distance between “T” 
and “H” (i.e. the higher the distance, the lower is 
the probability of entailment). Within this frame-
work the system implements and harmonizes dif-
ferent approaches to distance computation, 
providing both edit distance algorithms, and simi-
larity algorithms. Each algorithm returns a normal-

ized distance score (a number between 0 and 1). At 
a training stage, distance scores calculated over 
annotated “T”-“H” pairs are used to estimate a 
threshold that best separates positive from negative 
examples. The threshold, which is stored in a 
Model, is used at a test stage to assign an entail-
ment judgment and a confidence score to each test 
pair. 

 

 
Figure 3: Our configured file for training 
 
Figure 3 shows our configuration file for train-

ing models, we choose “distance” algorithm in 
EDITS, and “default_matcher”, and “ignore_case” , 
and some other default but effective configured 
parameters. 

 

 
Figure 4: The overall training and decoding 

procedure in our system. 
 
Figure 4 shows our training and decoding 

procedure. As EDITS can only recognize textual 
entailment from one part to the other, we manually 
change the tag “H” with “T”, and generate the re-
sults again, and then compute two parts’ entailment 
relations. For example, if “T”-“H” is “YES”, and 
“H”-“T” is “NO”, then the entailment result be-
tween them is “forward”; if “T”-“H” is “NO”, and 
“H”-“T” is “YES”, then the entailment result be-
tween them is “backward”; if both  “T”-“H” and 
“H”-“T” are “YES”, the result is “bidirectional”; 
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otherwise “no_entailment”. 

3 Experiments and Results 

Since organizers of SemEval 2012 task 8 supply a 
piece of data for training, we thus exploit it to op-
timize parameters for EDITS. Table 1 shows the F-
measure score of training set analyzed by EDITS, 
where “FE” represents French-English, “SE” rep-
resents Spanish-English, “IE” represents Italian-
English and “GE” represents Italian-English.  

 
Judgment  FE SE IE GE 
forward 

backward 
no_entailment 
bidirectional 

Overall 

0.339 
0.611 
0.533 
0.515 
0.516 

0.373 
0.574 
0.535 
0.502 
0.506 

0.440 
0.493 
0.494 
0.506 
0.488 

0.327 
0.552 
0.494 
0.495 
0.482 

Table 1:  Results on training set. 
 

From Table 1, we can see that the perfor-
mance of “forward” prediction is lower than others. 
One explanation is that the “T” is translated from 
foreign language, which is error unavoidable. Thus 
some rules used for checking “T”, such as stop-
word list will be disabled. Then it is possible to 
induce a “NO” relation between “T” and “H” that 
results in lower recall of “forward”. 

Since for French-English, we build a system 
combination for improving the quality of transla-
tion. Table 2 shows the results of BLEU score of 
translation quality, and F-score of entailment 
judgment.  

 
System  BLEU4 F-score 

HPB 
GTT 

COMB 

28.74 
30.08 
30.57 

0.496 
0.508 
0.516 

Table 2:  Performance of different translation 
model, where COMB represents system com-
bination. 

 
From table 2, we find that the translation qual-

ity slightly affect the correctness of entailment 
judgment. However, the difference of performance 
in entailment judgment is smaller than that in 
translation quality. We explain that the translation 
models exploit phrase-based rules to direct the 
translation, and the translation errors mainly come 
from the disorder between each phrases.  While a 
distance based entailment model generally consid-

ers the similarity of phrases between test and hy-
pothesis, thus the disorder of phrases influences the 
judgment slightly.   

Using the given training data for tuning pa-
rameters, table 3 to table 6 shows the detailed ex-
perimental results on testing data, where P 
represents precision and R indicates recall, and 
both of them are calculated by given evaluation 
script. 
  

French -- English 
Judgment P R F-measure 

forward 
backward 

no_entailment 
bidirectional 

Overall 
Best System 

0.750 
0.517 
0.385 
0.444 

0.192 
0.496 
0.656 
0.480 

0.306 
0.506 
0.485 
0.462 

0.456 
0.570 

 Table 3: Test results on French-English 
 

Spanish -- English 
Judgment  P R F-measure 

forward 
backward 

no_entailment 
bidirectional 

Overall 
Best System 

0.750 
0.440 
0.395 
0.436 

0.240 
0.472 
0.560 
0.520 

0.364 
0.456 
0.464 
0.474 

0.448 
0.632 

Table 4: Test results on Spanish-English 
  

Italian – English 
Judgment  P R F-measure 

forward 
backward 

no_entailment 
bidirectional 

Overall 
Best System 

0.661 
0.554 
0.427 
0.383 

0.296 
0.368 
0.448 
0.704 

0.409 
0.442 
0.438 
0.496 

0.454 
0.566 

 Table 5: Test results on Italian-English 
 

German – English 
Judgment  P R F-measure 

forward 
backward 

no_entailment 
bidirectional 

Overall 
Best System 

0.718 
0.493 
0.390 
0.439 

0.224 
0.552 
0.512 
0.552 

0.341 
0.521 
0.443 
0.489 

0.460 
0.558 

Table 6: Test results on German-English 
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After given golden testing reference, we also 

investigate the effect of training set to testing set. 
We choose testing set from RTE1 and RTE2, both 
are English text, as our training set for optimiza-
tion of EDITS, and the overall results are shown in 
table 7 to table 10, where CLTE is training set giv-
en by this year’s organizers. 

 
French -- English 

Judgment  CLTE RTE1 RTE2 
forward 

backward 
no_entailment 
bidirectional 

Overall 

0.306 
0.506 
0.485 
0.462 
0.456 

0.248 
0.425 
0.481 
0.472 
0.430 

0.289 
0.440 
0.485 
0.485 
0.444 

Table 7: Test results on French-English 
given different training set. 
 

Spanish – English 
Judgment  CLTE RTE1 RTE2 

forward 
backward 

no_entailment 
bidirectional 

Overall 

0.364 
0.456 
0.464 
0.474 
0.448 

0.293 
0.332 
0.386 
0.484 
0.400 

0.297 
0.372 
0.427 
0.503 
0.424 

Table 8: Test results on Spanish-English 
given different training set. 

 
Italian -- English 

Judgment  CLTE RTE1 RTE2 
forward 

backward 
no_entailment 
bidirectional 

Overall 

0.409 
0.442 
0.438 
0.496 
0.454 

0.333 
0.394 
0.410 
0.474 
0.420 

0.335 
0.436 
0.421 
0.480 
0.432 

Table 9: Test results on Italian-English 
given different training set. 

 
German – English 

Judgment  CLTE RTE1 RTE2 
forward 

backward 
no_entailment 
bidirectional 

Overall 

0.341 
0.521 
0.443 
0.489 
0.460 

0.377 
0.372 
0.437 
0.487 
0.434 

0.425 
0.460 
0.457 
0.508 
0.470 

Table 10: Test results on German-English 
given different training set. 

 

Results in table 7 and table 8 shows that mod-
els trained on “CLTE” have better performance 
than those trained on RTE1 and RTE2, except “bi-
directional” judgment type. In Table 9, all results 
decoding by models trained on “CLTE” are the 
best. And in Table 10, only a few results decoding 
by models trained on “RTE1” and “RTE2” have 
higher score. The reason may be that, the test cor-
pora are bilingual, there are some errors in the ma-
chine translation procedure when translate one part 
of the test from its language into the other. When 
training on these bilingual text and decoding these 
bilingual text, these two procedure have error con-
sistency. Some errors may be counteracted. If we 
train on RTE, a standard monolingual text, and 
decode a bilingual text, more errors may exist be-
tween the two procedures. So we believe that, if 
we use translation based strategy (machine transla-
tion and monolingual textual entailment) to gener-
ate cross-lingual textual entailment, we should use 
translation based strategy to train models, rather 
than use standard monolingual texts. 

4 Conclusion 

In this paper, we demonstrate our system frame-
work for this year’s cross-lingual textual entail-
ment task. We propose a translation based model 
to address cross-lingual entailment. We first trans-
late all foreign languages into English, and then 
employ EDITS to induce entailment relations. Ex-
periments show that our method achieves promis-
ing results but not perfect results compared to other 
participants. 
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Abstract 

This paper describes our participation in the 

task denominated Cross-Lingual Textual En-

tailment (CLTE) for content synchronization. 

We represent an approach to CLTE  using 

machine translation to tackle the problem of 

multilinguality. Our system resides on ma-

chine learning and in the use of WordNet as 

semantic source knowledge. Results are very 

promising always achieving results above 

mean score.  

1 Introduction 

 
This paper describes the participation of Sagan, a 

TE and CLTE system, in the new task of Cross 

Lingual Textual Entailment for Content Synchro-
nization. 

 The objective of the Recognizing Textual En-

tailment (RTE) task (Dagan et al., 2006) is deter-

mining whether the meaning of a text fragment that 
we call hypothesis H can be inferred from another 

text fragment T. In this manner, we say that T en-

tails H, if a person reading T would infer that H is 
most likely true. Thus, this definition assumes 

common human understanding of language and 

common background knowledge. 

In that context, Cross-Lingual Textual Entail-
ment addresses textual entailment recognition in 

the challenging application scenario of content 

synchronization. Thus, CLTE constitutes a gener-
alization of Textual Entailment task (also Mono-

lingual Textual Entailment) , but envisioning a 

larger number of application areas in NLP, includ-

ing question answering, information retrieval, in-

formation extraction, and document summariza-
tion, across different languages. 

Content synchronization could be used to keep 

consistence among documents written in different 
languages. For example, a CLTE system can be 

used in Wikipedia articles to inform lectors which 

information is absent or inconsistent in comparison 

to other page in a different language. 
This new task has to face more additional issues 

than monolingual TE. Among them, we emphasize 

the ambiguity, polysemy, and coverage of the re-
sources. Another additional problem is the necessi-

ty for semantic inference across languages, and the 

limited availability of multilingual knowledge 
resources.  

The CLTE for content synchronization specifi-

cally consist on determining the entailment rela-

tionship between two text fragment T1 and T2 
which are assumed belong a related topic. 

Four alternatives are possible in this relation-

ship: 
- Bidirectional : It is a semantic equivalence be-

tween T1 and T2. 

- Forward : It is an unidirectional entailment 
from T1 to T2. 

- Backward: It is an unidirectional entailment 

from T2 to T1. 

- No Entailment: It means that there is no en-
tailment between T1 and T2. 

The paper is organized as follows: Section 2 de-

scribes the relevant work done on cross-lingual 
textual entailment and related tasks, Section 3 de-

scribes the architecture of the system, then Section 

4 shows experiments and results; and finally Sec-
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tion 5 summarize some conclusions and future 

work. 

2 Related work  

In this section we briefly describe two tasks that 

are closely related to CLTE. 
 

2.1 Textual Entailment 
 

The objective of the recognizing textual entail-
ment (RTE) task (Dagan et al., 2006) is determin-

ing whether or not the meaning of a ‘‘hypothesis’’ 

(H) can be inferred from a ‘‘text’’ (T).  

The two-way RTE task consists of deciding 
whether: T entails H, in which case the pair will be 

marked as ‘‘Entailment’’, otherwise the pair will 

be marked as ‘‘No Entailment’’. This definition of 
entailment is based on (and assumes) average hu-

man understanding of language as well as average 

background knowledge. 
Recently the RTE4 Challenge has changed to a 

three-way task (Bentivogli et al, 2009) that consists 

in distinguishing among ‘‘Entailment’’, ‘‘Contra-

diction’’ and ‘‘Unknown’’ when there is no infor-
mation to accept or reject the hypothesis. 

 The RTE challenge has mutated over the years, 

aiming at accomplishing more accurate and specif-
ic solutions; in 2009 the organizers proposed a 

pilot task, the Textual Entailment Search 

(Bentivogli et al, 2009), consisting in finding all 

the sentences in a set of documents that entail a 
given Hypothesis and since 2010 there is a Novelty 

Detection Task, which means that RTE systems are 

required to judge whether the information con-
tained in each H is novel with respect to (i.e., not 

entailed by) the information contained in the cor-

pus. 
Thus, the new CLTE task can be thought as a 

generalized problem of RTE, which has to face 

new challenges as scarcity of resources to multi-

lingual scenario, among others issues. 

2.2 Semantic Textual Similarity 

The pilot task STS was recently defined in 

Semeval 2012 (Aguirre et al., 2012) and has as 

main objective measuring the degree of semantic 
equivalence between two text fragments. STS is 

related to both Recognizing Textual Entailment 

(RTE) and Paraphrase Recognition, but has the 

advantage of being a more suitable model for mul-

tiple NLP applications.  
As mentioned before, the goal of the RTE task 

(Bentivogli et al, 2009) is determining whether the 

meaning of a hypothesis H can be inferred from a 

text T. The main difference with STS is that STS 
consists in determining how similar two text frag-

ments are, in a range from 5 (total semantic 

equivalence) to 0 (no relation). Thus, STS mainly 
differs from TE and Paraphrasing in that the classi-

fication is graded instead of binary and also STS 

assumes bidirectional equivalence but in TE the 
equivalence is only directional. In this manner, 

STS is filling the gap between TE and Paraphrase. 

2.3 Cross-Lingual Textual Entailment 

There are a few previous works on CLTE, the 
first one was the definition of this new task 

(Mehdad et al., 2010). Afterwards, the creation of 

CLTE corpus by using Mechanical Turk is de-
scribed on (Negri et al., 2011) and a corpus freely 

available for CLTE is published (Castillo, 2011). 

To our knowledge, two approach are proposed 

to address this new challenging task, one consist of 
using machine translation to move on towards 

monolingual textual entailment scenario and then 

apply classic techniques for RTE (Mehdad et al., 
2010;  Castillo and Cardenas, 2011), and the other 

is based on exploit databases of paraphrases 

(Mehdad et al., 2011). Both techniques obtained 

similar results and the accuracy achieved by them 
is not a statically significant difference. 

In previous work (Castillo, 2010; Castillo and 

Cardenas, 2011) we addressed the CLTE focusing 
on English-Spanish language pair and released a 

bilingual textual entailment corpus. This paper is 

based on that work in order to tackling the problem 
across different language pairs Spanish-English 

(SPA-ENG), Italian-English (ITA-ENG), French-

English (FRA-ENG) and German-English (GER-

ENG) and we also used an approach based on ma-
chine translation.  
 

3 System architecture  

Sagan is a CLTE system (Castillo and Cardenas, 
2010) which has taken part of several challenges, 

including the Textual Analysis Conference 2009 

and TAC 2010, and the Semantic Textual Similari-
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ty Semeval 2012 (Aguirre et al., 2012; Castillo and 

Estrella, 2012) and Cross Lingual Textual Entail-
ment for content synchronization as part of the 

Semeval 2012 (Negri et al., 2012). 

 The system is based on a machine learning ap-

proach and it utilizes eight WordNet-based 
(Fellbaum, 1998) similarity measures with the 

purpose of obtaining the maximum similarity be-

tween two concepts. We used SVM as classifier 
with polynomial kernel. The system determines the 

entailment based on the semantic similarity of two 

texts (T,H) viewed as a function of the semantic 
similarity of the constituent words of both phrases. 

Thereby, we expect that combining word to word 

similarity metrics to text level would be a good 

indicator of text to text similarity.  
These text-to-text similarity measures are based 

on the following word-to-word similarity metrics: 

(Resnik, 1995), (Lin, 1997), (Jiang and Conrath, 
1997), (Pirrò and Seco, 2008), (Wu and Palmer, 

1994), Path Metric, (Leacock and Chodorow, 

1998), and a semantic similarity to sentence level 
named SemSim (Castillo and Cardenas, 2010).  

Additional information about how to produce 

feature vectors as well as each word- and sentence-

level metric can be found in (Castillo, 2011). The 
architecture of the system is shown in Figure 1. 

WordNet

* CLTE_DEU-ENG, 

* CLTE_FRA-ENG, 

* CLTE_SPA-ENG, 

*CLTE_ITA-ENG, 

* CLTE_DEU+FRA+SPA+ITA-

ENG, 

*CLTE_DEU+FRA+SPA+ITA-

ENG+RTE3-TS-CL

* CLTE_DEU-ENG, 

* CLTE_FRA-ENG, 

* CLTE_SPA-ENG, 

*CLTE_ITA-ENG

CLTE
Adaptation Layer

TE 

engine

Entailment 

Result

Bidirectional Backward

Google 

Traslate

Forward

Knowledge Resources

Web Resources

Training Sets

Test Sets

RTE3-4C+RTE4-4C

RTE3-4C

Training Sets

No 

Entailment

Pre-Processing

Fig.1. System architecture  

In the preprocessing module we performed 

string normalization across different languages by 
using a lookup table for lexical entries, and then 

date and time normalization is carried out. 

CLTE adaption layer is composed by four ma-

chine translation sub-modules that bring back each 
<Ti ,H> pair into the monolingual case ENG-ENG. 

Where Ti can be given in Spanish, German, Italian 

or French. 
The training set used to the submitted runs are 

whose provided by the organizers of the CLTE for 

Content Synchronization Task and a combination 
of RTE datasets, such as it is described in the Sec-

tion Experiments and Results.  

4 Experiments and Results 

The dataset provided by the organizers consists of 
500 CLTE pairs translated to four languages fol-

lowing the crowdsourcing-based methodology 

proposed in (Negri et al., 2011). Also, for test pur-
pose additional 500 pairs are provided. Both da-

tasets are balanced with respect to the four 

entailment judgments (bidirectional, forward, 

backward, and no entailment). 
We also performed experiments using traditional 

RTE datasets. Because of the RTE datasets are 

binary classified as NO (no-entailment) and YES 
(entailment), then we assumed that NO class is 

"no-entailment" and YES class is "forward" in the 

CLTE task. Certainly, the corpus tagged in this 

way will have contradictory information, since 
several pairs classified as forward should be classi-

fied as bidirectional, and also several pairs classi-

fied as no-entailment could be backwards, but the 
objective is experimenting  whether we can gain 

accuracy in our RTE system despite of these (few) 

contradictory cases.  
Additionally, in our experiments we used an al-

gorithm (Castillo,2010) to generate additional 

training data, in other words to expand a data set. It 

is based on a Double Translation Process (dtp) or 
round-trip translation. Double translation process 

can be defined as the process of starting with an S 

(String in English), translating it to a foreign lan-
guage F(S), for example Spanish, and finally back 

into the English source language F-1(S).  

We applied the algorithm starting with RTE3 

and RTE4 datasets. Thus, the augmented corpus is 
denoted RTE3-4C which is tagged according to the 

three-way task composed of: 340 pairs Contradic-
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tion, 1520 pairs Yes, and 1114 pairs Unknown. In 

the case of the two-way task, it is composed by 
1454 pairs No, and 1520 pairs Yes. 

The other dataset augmented is denoted RTE4-

4C, and has the following composition: 546 pairs 

Contradiction, 1812 pairs Entailment, and 1272 
pairs Unknown. Therefore, in the two-way task, 

there are 1818 pairs No (No Entailment), and 1812 

pairs Yes (Entailment) in this data set. 
The idea behind using RTE3-4C and RTE3-4C 

is providing to our system an increased dataset 

aiming to acquire more semantic variability. 
In our system submission we report the experi-

ments performed with the test sets provided by 

CLTE organizers which is composed by four da-

tasets of 500 pairs each one.  

4.1 Submission to the CLTE shared task  

With the aims of applying the monolingual textual 

entailment techniques, in the CLTE domain, we 
utilized the Google translate as MT system to bring 

back the <T,H> pairs into the monolingual case. 

Then we generated a feature vector for every 

<T,H> pair with both training and test sets, and 
used monolingual textual entailment engine to 

classify the pairs. First we described the dataset 

used and then explain each submitted run. 
The datasets used are listed below: 

 

 - CLTE_Esp+Fra+Ita+Ger: dataset composed 

by all language pairs. 
 - RTE3-TS-CL: a ENG-SPA cross lingual tex-

tual entailment corpus (Castillo,2011) composed 

by 200 pairs (108 Entailment, 32 Contradiction, 60 
Unknown). 

- RTE3-4C: an augmented dataset based on 

RTE3. 
- RTE4-4C: an augmented dataset based on 

RTE4. 

 

Our participation in the shared task consisted of 
four different runs produced with the same feature 

set, and the main differences rely on the amount 

and type of training data. Each run is described 
below: 

 

 - RUN1: system trained on CLTE_Esp+ 

Fra+Ger+Ita corpus in addition to the RTE3-TS-
CL dataset. 

- RUN2: system trained on CLTE_Esp, 

CLTE_Fra, CLTE_Ger and CLTE_Ita corpus. At 
testing phase, the system chooses the right dataset 

according to the language that it is processing. 

-  RUN3: system trained using all training data 

that came from different language pairs.  
We remark that we can combine the training da-

ta because of we used a machine translation sub-

module that bring back each <T,H> pair into the 
monolingual case ENG-ENG. 

-  RUN4: In RUN4 the training set is com-

posed by all pairs of CLTE_Esp+Fra+Ita+Ger and 
RTE3-4C+ RTE4-4C datasets. 

Ten teams participated in this CLTE task, eight 

submitting runs to all language pairs. For Spanish 

28 runs were submitted and 20 runs were submit-
ted for the other languages. The results achieved 

by our system is showed in Table 1. 

 

Team id 

Team 

system 
id 

Score (Accuracy) Run Rank  

SPA-
ENG 

ITA-
ENG 

FRA-
ENG 

DEU-
ENG 

SPA ITA FRA DEU 

Sagan run1 0.342 0.352 0.346 0.342 16 6 9 9 

Sagan run2 0.328 0.352 0.336 0.310 19 7 11 13 

Sagan run3 0.346 0.356 0.330 0.332 14 5 12 12 

Sagan run4 0.340 0.330 0.310 0.310 17 12 13 14 

System 

Rank 
 7 4 5 6 

    

 

The results reported show that our best run is 
ranking above the average for all languages. The 

same situation occurs when ranking the systems, 

except for Spanish where the system is placed on 

7th among 10 teams. 
We achieved the highest result of 0.356 with 

RUN3 in the pair ITA-ENG which is placed fourth 

among participating systems. 
We also note that, in general, training the system 

with the pairs of all datasets achieved better results 

than training separately for each dataset. Further-
more, if we analyze RUN4 vs. RUN3 we can con-

clude that incorporating additional RTE dataset 

produces a very unbalanced dataset resulting in a 

decrease in performance. In (Castillo, 2011) we 
experimented with these expanded datasets over 

monolingual RTE and CLTE tasks and we showed 

gain in performance, thus we suspect that the de-
crease is more due to unbalanced dataset than to 

noise introduced by the double translation process. 

Interesting, the Corpus RTE3-TS-CL dataset uti-
lized in the RUN1 helps to improve the results in 

FRA-ENG and DEU-ENG language pairs. 
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The Table 2 shows that our system predict with 

high F-measure to bidirectional and no-entailment 
entailment judgments in all language pairs, but has 

problems to distinguish the forward and backward 

entailment judgments.  

 

 It is probably due to our systems is based on 

semantic overlap between T and H, resulting the 
backwards particularly difficult to predict to our 

system.  
 

Run 
id 

Language 
pair 

Precision 
Recall 

 

F-measure Score 

(Accuracy) 

Mean Score- 

all runs  

F B NE BI F B NE BI F B NE BI 

Run3 SPA-ENG 0.23 0.27 0.42 0.42 0.20 0.22 0.45 0.51 0.21 0.25 0.43 0.46 0.346 0.346 

Run3 ITA-ENG 0.31 0.25 0.40 0.46 0.30 0.22 0.51 0.40 0.30 0.23 0.45 0.43 0.356 0.336 

Run1 FRA-ENG 0.24 0.30 0.39   0.43 0.17 0.34 0.57 0.30 0.20 0.32 0.47 0.36 0.346 0.336 

Run1 DEU-ENG 0.25 0.23 0.41 0.44 0.17 0.26 0.60 0.34 0.20 0.25 0.49 0.39 0.342 0.336 

Table 2. Official results for Precision, Recall and F-measure 

 

5 Conclusions and future work 

In this paper we explained our participation in the 

new challenging task of Cross-Lingual Textual 

Entailment (CLTE) for Content Synchronization. 
This task also could presents benefit as a metric for 

machine translation evaluation, as reported in 

(Castillo and Estrella, 2012). 

  This work focuses on CLTE based on Machine 
translation to bring back the problem into the mon-

olingual Textual Entailment (TE) scenario. This 

decoupled approach between Textual Entailment 
and Machine Translation has several advantages, 

such as taking benefits of the most recent advances 

in machine translation, the ability to test the effi-

ciency of different MT systems, as well as the abil-
ity to scale the system easily to any language pair.  

Results achieved are promising and additional 

work is needed in order to address the problem of 
distinguish among forward, backward and bidirec-

tional entailment judgments.  

Future work will be oriented to tackle the prob-
lem with backwards. Finally, we remark the neces-

sity of bigger corpus tagged in four-way 

classification, for all language pairs. 

References  

Ido Dagan, Oren Glickman and Bernardo Magnini. 

2006. The PASCAL Recognising Textual Entailment 

Challenge. In Quiñonero-Candela, J.; Dagan, I.; 

Magnini, B.; d'Alché-Buc, F. (Eds.) Machine Learn-

ing Challenges. Lecture Notes in Computer Science , 

Vol. 3944, pp. 177-190, Springer. 

M. Negri, A. Marchetti, Y. Mehdad, L. Bentivogli, and 
D. Giampiccolo. 2012. Semeval-2012 Task 8: Cross-

lingual Textual Entailment for Content Synchroniza-

tion. In Proceedings of the 6th International Work-
shop on Semantic Evaluation (SemEval 2012). 

L. Bentivogli, P. Clark, I. Dagan, H. T. Dang, and D. 

Giampiccolo. 2010. The Sixth PASCAL Recognizing 

Textual Entailment Challenge. In TAC 2010 Work-

shop Proceedings, NIST, Gaithersburg, MD, USA. 

Y. Mehdad, M. Negri, and M. Federico. 2010. Towards 

Cross-Lingual Textual Entailment. In Proceedings of 

NAACL-HLT 2010. 

Eneko Agirre, Daniel Cer, Mona Diab and Aitor Gonza-

lez-Agirre. 2012. SemEval-2012 Task 6: A Pilot on 

Semantic Textual Similarity. In Proceedings of the 
6th International Workshop on Semantic Evalua-tion 

(SemEval 2012), in conjunction with the First Joint 

Conference on Lexical and Computational Semantics 

(*SEM 2012).  

Bentivogli, Luisa, Dagan Ido, Dang Hoa, Giampiccolo, 

Danilo, Magnini Bernardo.2009.The Fifth PASCAL 

RTE Challenge. In: Proceedings of the Text Analysis 

Conference.  

Fellbaum C. 1998. WordNet: An Electronic Lexical 

Database, volume 1. MIT Press.  

Castillo Julio. 2011. A WordNet-based semantic ap-

proach to textual entailment and cross-lingual textu-
al entailment. International Journal of Machine 

Learning and Cybernetics - Springer, Volume 2, 

Number 3. 

Castillo Julio and Cardenas Marina. 2010. Using sen-

tence semantic similarity based onWordNet in recog-

nizing textual entailment. Iberamia 2010. In LNCS, 

vol 6433. Springer, Heidelberg, pp 366–375. 

Castillo Julio. 2010. A semantic oriented approach to 

textual entailment using WordNet-based measures. 

MICAI 2010. LNCS, vol 6437. Springer, Heidelberg, 

pp 44–55. 
Castillo Julio. 2010. Using machine translation systems 

to expand a corpus in textual entailment. In: Proceed-

ings of the Icetal 2010. LNCS, vol 6233, pp 97–102. 

M. Negri, L. Bentivogli, Y. Mehdad, D. Giampiccolo, 

and A. Marchetti. 2011. Divide and Conquer: 

Crowdsourcing the Creation of Cross-Lingual Textu-

725



al Entailment Corpora. In Proceedings of the Con-

ference on Empirical Methods in Natural. EMNLP 

2011. 

Resnik P. 1995. Information content to evaluate seman-

tic similarity in a taxonomy. In: Proceedings of IJCAI 

1995, pp 448–453. 
Castillo Julio, Cardenas Marina. 2011. An Approach to 

Cross-Lingual Textual Entailment using Online Ma-

chine Translation Systems. Polibits Journal. Vol 44. 

Castillo Julio and Estrella Paula. 2012. Semantic Textu-

al Similarity for MT evaluation. NAACL 2012 Sev-

enth Workshop on Statistical Machine Translation. 

WMT 2012, Montreal, Canada.  

Lin D. 1997.An information-theoretic definition of simi-

larity. In: Proceedings of Conference on Machine 

Learning, pp 296–304. 

Jiang J, Conrath D.1997. Semantic similarity based on 

corpus statistics and lexical taxonomy. In: Proceed-
ings of the ROCLINGX. 

Pirro G., Seco N. 2008. Design, implementation and 

evaluation of a new similarity metric combining fea-

ture and intrinsic information content. In: ODBASE 

2008, Springer LNCS. 

Wu Z, Palmer M. 1994. Verb semantics and lexical 

selection. In: Proceedings of the 32nd ACL 916. 

Leacock C, Chodorow M. 1998. Combining local con-

text and WordNet similarity for word sense identifi-

cation. MIT Press, pp 265–283. 

Hirst G, St-Onge D . 1998. Lexical chains as represen-
tations of context for the detection and correction of 

malapropisms. MIT Press, pp 305–332. 

Banerjee S, Pedersen T. 2002. An adapted lesk algo-

rithm for word sense disambiguation using WordNet. 

In: Proceeding of CICLING-02. 

William B. Dolan and Chris Brockett.2005. Automati-

cally Constructing a Corpus of Sentential Para-

phrases. Third International Workshop on 

Paraphrasing (IWP2005). Asia Federation of Natural 

Language Processing. 

Castillo Julio and Estrella Paula. 2012. SAGAN: An 

approach to Semantic Textual Similarity based on 
Textual Entailment. In Proceedings of the 6th Inter-

national Workshop on Semantic Evaluation 

(SemEval 2012), in conjunction with the First Joint 

Conference on Lexical and Computational Semantics 

(*SEM 2012).  

Mehdad Y., M. Negri, and M. Federico. 2011. Using 

Parallel Corpora for Cross-lingual Textual Entail-

ment. In Proceedings of ACL-HLT 2011. 

 

 

726



Author Index

A. Schwartz, Hansen, 679
AbdelRahman, Samir, 536
Abramson, Martha, 44
Abu Jbara, Amjad, 328
Aggarwal, Nitish, 643
Agirre, Eneko, 385, 617
Allen, James, 142
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Padó, Sebastian, 151
Pakray, Partha, 571, 689
Pedersen, Ted, 497
Perini, Alpar, 710
Pinto, David, 502, 631, 706
Plaza, Laura, 282, 288
Potamianos, Alexandros, 565
Preiss, Judita, 655
Pulman, Stephen, 70, 132

Qadir, Ashequl, 199
qiaoli, zhou, 506

Radev, Dragomir, 328
Rambow, Owen, 180
Read, Jonathon, 310, 319
Reddy, Siva, 557
Reyes, J. Alejandro, 502
Riloff, Ellen, 199
Rink, Bryan, 413, 461

Rios, Miguel, 673
Roberts, Kirk, 419, 461
Roemmele, Melissa, 394
Romanelli, Massimo, 482
Rosenberg, Sabine, 294
Roth, Dan, 65
Roth, Michael, 218

Sánchez-Martı́nez, Felipe, 472
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