The 52nd Annual Meeting of the
Association for Computational Linguistics

Proceedings of the Conference
Volume 1: Long Papers

ACL 2014
June 22-27
Baltimore



Platinum Level Sponsor:

@
Baizb.'ﬁrﬁ

BE—T ReAE

Gold Level Sponsors:

amazoncom
"

Bloomberg

=0 JOHNS HOPKINS

UNIVERSITY

=

NUANCE

Silver Level Sponsors:

A{Q; T Al @S]

Bronze Level Sponsors:

Supporters:

IBM Research

Google

vy

@ B\ Watson

B Microsoft

YAHOOQ!

LABS

Xerox é')@

Vandex

W

UNIVERSITY of
WASHINGTON



(©2014 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-937284-72-5

il






Preface: General Chair

I remember with great fondness the first ACL Conference I attended 20 years ago in Las Cruces,
New Mexico. Some things have changed: papers presented there that I considered interesting or
inconsequential have switched positions in my personal ranking as I learned more and more about our
field; single sessions have long been replaced by parallel sessions to accommodate an ever increasing
number of research contributions; the number of associated workshops and posters has mushroomed
beyond anyone’s dream. Almost without noticing, we transitioned from small conferences of a few
hundred to conferences that bring together 1000 plus participants from all over the world. Our field
has matured significantly attracting the attention of not only a handful of academics, but successful
industries and Research Labs as well. Some things have stayed the same though: ACL continues to be
the pre-eminent conference in our field and the best place to meet and make like-minded friends, discuss
tantalizing tricks that you can learn about only in face-to-face communication settings, and celebrate the
results we get.

ACL Conferences are never possible without the dedication and hard work of many people. Because
ACL’ 2014 is no exception to this, I would like to thank each and every person who has volunteered their
time to make the event possible.

Priscilla Rasmussen, the ACL Business Manager, and the ACL Executive Committee (Haifeng Wang,
Gertjan van Noord, Graeme Hirst, Dragomir Radev, Renata Vieira, Jian Su, Min-Yen Kan, Stephen
Clark, and Hal Daumé III) have been instrumental in setting ACL’2014 in motion and in guiding the
ACL’2014 committee along the path from concept to execution. Without the collective memory and
hands-on guidance of the committee, an ACL conference will never happen.

The ACL’2014 Committee did a fantastic job making this conference possible. The committee covered
a lot of ground from logistics to paper selection, to co-located event selection and publishing. The
masterminds of all these intertwining tasks were: Kristina Toutanova and Hua Wu (Program Committee
Chairs); David Yarowsky (Local Arrangements Chair); Jill Burstein and Lluis Marquez (Workshop
Chairs); Alex Fraser and Yang Liu (Tutorial Chairs), Alexander Koller and Miyao Yusuke (Publication
Chairs); Ekaterina Kochmar, Annie Louis, and Svitlana Volkova (Student Research Workshop Chairs);
Bill Byrne and Jordan Boyd-Graber (Faculty Advisors for the Student Workshop Chairs); Kalina
Bontcheva and Zhu Jingbo (Demonstration Chairs); and Jason Riesa (Publicity Chair). The Program
Chairs were also instrumental in selecting our outstanding invited speakers: Corinna Cortez (Google)
and Zoran Popovic (University of Washington).

I am also grateful to our sponsors for their generous contributions, without which the conference
would become prohibitively expensive for the next generation of computational linguistic researchers:
Baidu (Platinum Sponsor); Bloomberg, Google, Microsoft, Nuance, and Yahoo Labs (Gold Sponsors);
Information Sciences Institute and Xerox Research Center Europe (Silver Sponsors); Brandeis
University, Facebook, and Yandex (Bronze Sponsors); and IBM Research and the University of
Washington (Supporters).

Finally, I would like to express my appreciation to the area chairs, workshop organizers, tutorial
presenters, and reviewers. And to all the ACL’2014 attendees. This is your conference; make the most
of it!

Welcome to ACL’2014!

The ACL’2014 General Chair
Daniel Marcu, Information Sciences Institute, USC



Preface: Program Committee Co-Chairs

Welcome to the 2014 Conference of the Association for Computational Linguistics! This year ACL
received 572 long paper submissions and 551 short paper submissions. Of the long papers, 146 were
accepted for presentation at ACL — 95 as oral, and 51 as poster presentations. 139 short papers were
accepted — 51 as oral, and 88 as poster presentations.

The submissions were reviewed under different categories and using different review forms for
empirical/data-driven, theoretical, applications/tools, resources/evaluation, and survey papers. For the
short papers we additionally used a negative results category and were glad to see that the community is
becoming more open to enabling the publication of useful negative results.

Based on feedback from prior years, this year we organized the posters in two large poster sessions to
accommodate the growing number of high-quality submissions accepted in poster presentation format.
We hope attendees and authors will benefit from this additional time to present and discuss ideas. Another
innovation we are experimenting with this year is to optimize the conference schedule based on feedback
from attendees on the talks they would like to see. We collected attendee responses using a scheduling
survey developed with the help of David Yarowsky and Svitlana Volkova (thanks to the 338 volunteers
who completed the survey!), and we optimized the conference schedule to assign popular sessions to
large conference rooms, and to reduce the chance that two talks that an attendee is interested in are
scheduled at the same time. Additionally, as in NAACL 2013, all talks will be recorded and made
available for future viewing.

ACL 2014 will have two distinguished invited speakers. Corinna Cortes (Head of Google Research, NY)
and Zoran Popovi¢ (Director of Center for Game Science, University of Washington).

There are many individuals to thank for their contributions to ACL 2014. We would like to thank the
thirty three area chairs for their hard work on recruiting reviewers, leading the discussion process, and
carefully ranking the submissions. We would like to thank Mark Dredze for developing and sharing a
reviewer assignment tool, that was used at ACL this year. It was applied to ACL reviewing with the
help of Jiang Guo and the area chairs who provided feedback at several stages of the process. We would
also like to thank the seven hundred and seventy nine reviewers and seventy two secondary reviewers
on whose efforts we depend to select high-quality and timely scientific work. This year we specifically
acknowledged around 14% of the reviewers who went the extra mile and provided extremely helpful
to the area chairs and authors reviews (their names are marked with a * in the organization section
of the proceedings). The ACL coordinating committee members, including Dragomir Radev, Jian Su,
Graeme Hirst, Hal Daumé III, Chris Callison-Burch, and Haifeng Wang were very helpful on various
issues relating to the organization. We would like to thank the prior conference chairs Jason Eisner,
Hal Daumé, Lucy Vanderwende, Jian Su, Rada Mihalcea, Marius Pasca, Pascale Fung, and Massimo
Poesio for their advice. We are very grateful for the guidance and support of the general chair Daniel
Marcu, to the ACL Business Manager Priscilla Rasmussen who knew practically everything, to the local
chair David Yarowsky, the publication chairs Yusuke Miyao and Alexander Koller, and to Matt Post who
stepped in to handle the conference handbook. We would also like to thank Jiang Guo who helped with
reviewer assignment and numerous other tasks. Rich Gerber from Softconf was extremely responsive to
all of our requests, and we are grateful for that.

We hope you will enjoy ACL 2014 in Baltimore!

ACL 2014 Program Co-Chairs
Kristina Toutanova, Microsoft Research
Hua Wu, Baidu
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Organizing Committee

General Conference Chair
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Loic Barrault, Anabela Barreiro, Regina Barzilay, Roberto Basili, John Bateman, Frederic Bechet,
Steve Beet, Nuria Bel, Kedar Bellare, Anja Belz*, Jose Miguel Benedi, Jonathan Berant*, Tay-
lor Berg-Kirkpatrick, Sabine Bergler, Shane Bergsma*, Nicole Beringer, Laurent Besacier, Steven
Bethard*, Chandra Bhagavatula, Suma Bhat, Pushpak Bhattacharyya, Chris Biemann*, Ann Bies,
Graeme Blackwood, Phil Blunsom, Gemma Boleda, Danushka Bollegala, Francis Bond, Kalina
Bontcheva, Stefano Borgo, Antal van den Bosch, Alexandre Bouchard, Jordan Boyd-Graber, Jo-
han Boye, S.R.K. Branavan, Anténio Branco*, Chris Brew, Ted Briscoe, Chris Brockett, Julian
Brooke, Paul Buitelaar, Razvan Bunescu, Wray Buntine, David Burkett, Stephan Busemann, Bill
Byrne

Elena Cabrio, Chris Callison-Burch, Marie Candito, Cornelia Caragea, Sandra Carberry, Jesus
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Chakrabarti, Nathanael Chambers, Yee Seng Chan, Kai-Wei Chang, Wanxiang Che, Ciprian Chelba,
Boxing Chen, Hsin-Hsi Chen, John Chen, Chen Chen, Zheng Chen, Xueqi Cheng, Jackie Chi Kit
Cheung, David Chiang, Laura Chiticariu*, Yejin Choi*, Monojit Choudhury, Grzegorz Chrupata,
Jennifer Chu-Carroll*, Cindy Chung, Philipp Cimiano, Stephen Clark*, Ann Clifton, Shay B.
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Invited Talk: Learning Ensembles of Structured Prediction Rules
Corinna Cortes
Google Research, New York

Abstract

We present a series of algorithms with theoretical guarantees for learning accurate ensembles of several
structured prediction rules for which no prior knowledge is assumed. This includes a number of
randomized and deterministic algorithms devised by converting on-line learning algorithms to batch
ones, and a boosting-style algorithm applicable in the context of structured prediction with a large number
of labels. We also report the results of extensive experiments with these algorithms.

This is joint work with Vitaly Kuznetsov, NYU, and Mehryar Mohri, NYU/Google Research.

Biography

Corinna Cortes is the Head of Google Research, N'Y, where she is working on a broad range of theoretical
and applied large-scale machine learning problems. Prior to Google, Corinna spent more than ten years
at AT&T Labs - Research, formerly AT&T Bell Labs, where she held a distinguished research position.
Corinna’s research work is well-known in particular for her contributions to the theoretical foundations
of support vector machines (SVMs), for which she jointly with Vladimir Vapnik received the 2008 Paris
Kanellakis Theory and Practice Award, and her work on data-mining in very large data sets for which
she was awarded the AT&T Science and Technology Medal in the year 2000. Corinna received her MS
degree in Physics from University of Copenhagen and joined AT&T Bell Labs as a researcher in 1989.
She received her Ph.D. in computer science from the University of Rochester in 1993. Corinna is also a
competitive runner.
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Invited Talk: Text Generation for Infinitely Adaptable Curricula
Zoran Popovié
Center for Game Science, Computer Science & Engineering, University of Washington

Abstract

Recent studies show that to achieve mastery of a topic by 95% of the student population, some students
need ten times more learning content than is available in current curricula. At issue is not just increased
volume, but the need for a highly differentiated content specialized to promote optimal learning for each
unique learner. To address this synthesis problem we have developed a generative platform capable of
dynamically varying content based on the individual student needs. This approach recently achieved 93%
mastery of a key algebra concept even for primary school students in three state-wide challenges. In this
talk I will describe our work on extending the platform to enable students to solve all word problems in
high-school within their preferred context (e.g. sci-fi, medieval, Harry Potter), as well as to automatically
generate adaptive learning progressions for reading comprehension curricula in middle school.

Biography

Zoran Popovi¢ is a Director of Center for Game Science at University of Washington and founder of
Engaged Learning. Trained as a computer scientist his research focus is on creating interactive engaging
environments for learning and scientific discovery. His laboratory created Foldit, a biochemistry game
that produced three Nature publications in just two years, an award-winning math learning games played
by over five million learners worldwide. He is currently focusing on engaging methods that can rapidly
develop experts in arbitrary domains with particular focus on revolutionizing K-12 math education. He
has recently founded Engaged Learning to apply his work on generative adaptation to any curricula
towards the goal of achieving school mastery by 95% of students. His contributions to the field of
interactive computer graphics have been recognized by a number of awards including the NSF CAREER
Award, Alfred P. Sloan Fellowship and ACM SIGGRAPH Significant New Researcher Award.
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Abstract

We present a series of algorithms with the-
oretical guarantees for learning accurate
ensembles of several structured prediction
rules for which no prior knowledge is as-
sumed. This includes a number of ran-
domized and deterministic algorithms de-
vised by converting on-line learning al-
gorithms to batch ones, and a boosting-
style algorithm applicable in the context of
structured prediction with a large number
of labels. We also report the results of ex-
tensive experiments with these algorithms.

1 Introduction

We study the problem of learning accurate en-
sembles of structured prediction experts. Ensem-
ble methods are widely used in machine learn-
ing and have been shown to be often very effec-
tive (Breiman, 1996; Freund and Schapire, 1997;
Smyth and Wolpert, 1999; MacKay, 1991; Fre-
und et al., 2004). However, ensemble methods and
their theory have been developed primarily for bi-
nary classification or regression tasks. Their tech-
niques do not readily apply to structured predic-
tion problems. While it is straightforward to com-
bine scalar outputs for a classification or regres-
sion problem, it is less clear how to combine struc-
tured predictions such as phonemic pronuncia-
tion hypotheses, speech recognition lattices, parse
trees, or alternative machine translations.

Consider for example the problem of devising
an ensemble method for pronunciation, a crit-
ical component of modern speech recognition
(Ghoshal et al., 2009). Often, several pronunci-
ation models or experts are available for transcrib-
ing words into sequences of phonemes. These
models may have been derived using other ma-
chine learning algorithms or they may be based on

Vitaly Kuznetsov
Courant Institute
251 Mercer Street,
New York, NY 10012

vitaly@cims.nyu.edu

1

Mehryar Mohri
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New York, NY 10012
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carefully hand-crafted rules. In general, none of
these pronunciation experts is fully accurate and
each expert may be making mistakes at different
positions along the output sequence. One can hope
that a model that patches together the pronuncia-
tion of different experts could achieve a superior
performance.

Similar ensemble structured prediction problems
arise in other tasks, including machine translation,
part-of-speech tagging, optical character recogni-
tion and computer vision, with structures or sub-
structures varying with each task. We seek to
tackle all of these problems simultaneously and
consider the general setting where the label or out-
put associated to an input x € X’ is a structure
y € Y that can be decomposed and represented
by [ substructures ', ..., y'. For the pronuncia-
tion example just discussed, x is a specific word
or word sequence and y its phonemic transcrip-
tion. A natural choice for the substructures 3" is
then the individual phonemes forming y. Other
possible choices include n-grams of consecutive
phonemes or more general subsequences.

We will assume that the loss function considered
admits an additive decomposition over the sub-
structures, as is common in structured prediction.
We also assume access to a set of structured pre-
diction experts hi,...,h, that we treat as black
boxes. Given an input x € X, each expert pre-
dicts a structure h;(x) = (hj1 (x),..., hé- (x)). The
hypotheses h; may be the output of a structured
prediction algorithm such as Conditional Random
Fields (Lafferty et al., 2001), Averaged Perceptron
(Collins, 2002), StructSVM (Tsochantaridis et al.,
2005), Max Margin Markov Networks (Taskar et
al., 2004) or the Regression Technique for Learn-
ing Transductions (Cortes et al., 2005), or some
other algorithmic or human expert. Given a la-
beled training sample (X1,y1), - - ., (Xm, Ym), our
objective is to use the predictions of these experts

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 1-12,
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Courant Institute and Google Research



to form an accurate ensemble.

Variants of the ensemble problem just formulated
have been studied in the past in the natural lan-
guage processing and machine learning literature.
One of the most recent, and possibly most rele-
vant studies for sequence data is that of (Nguyen
and Guo, 2007), which is based on the forward
stepwise selection introduced by (Caruana et al.,
2004). However, one disadvantage of this greedy
approach is that it can be proven to fail to select
an optimal ensemble of experts even in favorable
cases where a specialized expert is available for
each local prediction (Cortes et al., 2014a). En-
semble methods for structured prediction based on
bagging, random forests and random subspaces
have also been proposed in (Kocev et al., 2013).
One of the limitations of this work is that it is
applicable only to a very specific class of tree-
based experts introduced in that paper. Similarly, a
boosting approach was developed in (Wang et al.,
2007) but it applies only to local experts. In the
context of natural language processing, a variety
of different re-ranking techniques have been pro-
posed for somewhat related problems (Collins and
Koo, 2005; Zeman and Zabokrtsk}’/, 2005; Sagae
and Lavie, 2006; Zhang et al., 2009). But, re-
ranking methods do not combine predictions at
the level of substructures, thus the final predic-
tion of the ensemble coincides with the prediction
made by one of the experts, which can be shown to
be suboptimal in many cases. Furthermore, these
methods typically assume the use of probabilistic
models, which is not a requirement in our learning
scenario. Other ensembles of probabilistic mod-
els have also been considered in text and speech
processing by forming a product of probabilis-
tic models via the intersection of lattices (Mohri
et al., 2008), or a straightforward combination of
the posteriors from probabilistic grammars trained
using EM with different starting points (Petrov,
2010), or some other rather intricate techniques
in speech recognition (Fiscus, 1997). Finally, an
algorithm of (MacKay, 1997) is another example
of an ensemble method for structured prediction
though it is not addressing directly the problem we
are considering.

Most of the references just mentioned do not give a
rigorous theoretical justification for the techniques
proposed. We are not aware of any prior theoret-
ical analysis for the ensemble structured predic-

tion problem we consider. Here, we present two
families of algorithms for learning ensembles of
structured prediction rules that both perform well
in practice and enjoy strong theoretical guaran-
tees. In Section 3, we develop ensemble methods
based on on-line algorithms. To do so, we extend
existing on-line-to-batch conversions to our more
general setting. In Section 4, we present a new
boosting-style algorithm which is applicable even
with a large set of classes as in the problem we
consider, and for which we present margin-based
learning guarantees. Section 5 reports the results
of our extensive experiments.'

2 Learning scenario

As in standard supervised learning problems, we
assume that the learner receives a training sample
S = ((x1,¥1)s- s XmyYym)) € X x Y of m
labeled points drawn i.i.d. according to the some
distribution D used both for training and testing.
We also assume that the learner has access to a set
of p predictors A1, ..., h, mapping X" to ) to de-
vise an accurate ensemble prediction. Thus, for
any input x € X, he can use the prediction of
the p experts h(x),...,hy(x). No other infor-
mation is available to the learner about these p ex-
perts, in particular the way they have been trained
or derived is not known to the learner. But, we
will assume that the training sample S is distinct
from what may have been used for training the al-
gorithms that generated h;(x), ..., hy(x).

To simplify our analysis, we assume that the num-
ber of substructures [ > 1 is fixed. This does not
cause any loss of generality so long as the maxi-
mum number of substructures is bounded, which
is the case in all the applications we consider.
The quality of the predictions is measured by a
loss function L: Y x Y — R, that can be de-
composed as a sum of loss functions fx: Vi —
R over the substructure sets )y, that is, for all
y = (y'...,9") € Ywithy? € Yy and y' =

(y1,...,y") € Y withy'* € Yy,

l
Liy,y') = (*y™). (1)
k=1

We will assume in all that follows that the loss
function L is bounded: L(y,y’) < M for all
"This paper is a modified version of (Cortes et al., 2014a)

to which we refer the reader for the proofs of the theorems
stated and a more detailed discussion of our algorithms.



(y,y’) for some M > 0. A prototypical example
of such loss functions is the normalized Hamming
loss Lyam, Which is the fraction of substructures
for which two labels y and y’ disagree, thus in that
case (1, (y*, y'*) = %ka;ﬁy/k and M = 1.

3 On-line learning approach

In this section, we present an on-line learning so-
lution to the ensemble structured prediction prob-
lem just discussed. We first give a new formula-
tion of the problem as that of on-line learning with
expert advice, where the experts correspond to the
paths of an acyclic automaton. The on-line algo-
rithm generates at each iteration a distribution over
the path-experts. A critical component of our ap-
proach consists of using these distributions to de-
fine a prediction algorithm with favorable gener-
alization guarantees. This requires an extension
of the existing on-line-to-batch conversion tech-
niques to the more general case of combining dis-
tributions over path-experts, as opposed to com-
bining single hypotheses.

3.1 Path experts

Each expert h; induces a set of substructure hy-
potheses hjl, cee hé-. As already discussed, one
particular expert may be better at predicting the
kth substructure while some other expert may be
more accurate at predicting another substructure.
Therefore, it is desirable to combine the substruc-
ture predictions of all experts to derive a more ac-
curate prediction. This leads us to considering an
acyclic finite automaton G such as that of Figure 1
which admits all possible sequences of substruc-
ture hypotheses, or, more generally, a finite au-
tomaton such as that of Figure 2 which only allows
a subset of these sequences.

An automaton such as G compactly represents a
set of path experts: each path from the initial
vertex ( to the final vertex [ is labeled with a
sequence of substructure hypotheses hjl-l, e ,hé-l
and defines a hypothesis which associates to input
x the output hjl-l (x)--- hé-l (x). We will denote by
H the set of all path experts. We also denote by
h each path expert defined by hjl.l, N hél, with
jx € {1,...,p}, and denote by h* its kth sub-
structure hypothesis hfk. Our ensemble structure
prediction problem can then be formulated as that

of selecting the best path expert (or collection of

hiq Pz e e h
o= o= Q0

Figure 1: Finite automaton G of path experts.

path experts) in G. Note that, in general, the path
expert selected does not coincide with any of the
original experts 1, ..., hy,.

3.2 On-line algorithm

Using an automaton G, the size of the pool of ex-
perts H we consider can be very large. For ex-
ample, in the case of the automaton of Figure 1,
the size of the pool of experts is p!, and thus is
exponentially large with respect to p. But, since
learning guarantees in on-line learning admit only
a logarithmic dependence on that size, they re-
main informative in this context. Nevertheless,
the computational complexity of most on-line al-
gorithms also directly depends on that size, which
could make them impractical in this context. But,
there exist several on-line solutions precisely de-
signed to address this issue by exploiting the struc-
ture of the experts as in the case of our path ex-
perts. These include the algorithm of (Takimoto
and Warmuth, 2003) denoted by WMWP, which
is an extension of the (randomized) weighted-
majority (WM) algorithm of (Littlestone and War-
muth, 1994) to more general bounded loss func-
tions combined with the Weight Pushing (WP) al-
gorithm of (Mohri, 1997); and the Follow the Per-
turbed Leader (FPL) algorithm of (Kalai and Vem-
pala, 2005). The WMWP algorithm admits a more
favorable regret guarantee than the FPL algorithm
in our context and our discussion will focus on
the use of WMWP for the design of our batch al-
gorithm. However, we have also fully analyzed
and implemented a batch algorithm based on FPL
(Cortes et al., 2014a).

As in the standard WM algorithm (Littlestone and
Warmuth, 1994), WMWP maintains at each round
t € [1,T)], a distribution p; over the set of all ex-
perts, which in this context are the path experts
h € H. At each round ¢t € [1,7], the algo-
rithm receives an input sequence Xy, incurs the loss
Envpi [L(h(x:). ¥0)] = ¥ pr(h)L(h(x;). y1) and
multiplicatively updates the distribution weight
per expert:

pu () 300030

Vh € H,pir1(h) = Zh'EH pt(h/)ﬁL(h/(xt)’Yt

e



Figure 2: Alternative experts automaton.

Qv

where 5 € (0,1) is some fixed parameter. The
number of paths is exponentially large in p and the
cost of updating all paths is therefore prohibitive.
However, since the loss function is additive in the
substructures and the updates are multiplicative,
it suffices to maintain instead a weight wy(e) per
transition e, following the update

wt<e)ﬁ€e(Xt,yz)

orig(e")=orig(e) Wt (/) Bler Xy

1,Ut+1(€) = Z ) (3)

where /.(x¢,y:) denotes the loss incurred by the
substructure predictor labeling e for the input x;
and output y;, and orig(e’) denotes the origin
state of a transition e’ (Takimoto and Warmuth,
2003). Thus, the cost of the update is then linear
in the size of the automaton. To use the result-
ing weighted automaton for sampling, the weight
pushing algorithm is used, whose complexity is
also linear in the size of the automaton (Mohri,
1997).

3.3 On-line-to-batch conversion

The WMWP algorithm does not produce a se-
quence of path experts, rather, a sequence of dis-
tributions py, ..., pr over path experts. Thus, the
on-line-to-batch conversion techniques described
in (Littlestone, 1989; Cesa-Bianchi et al., 2004;
Dekel and Singer, 2005) do not readily apply. In-
stead, we propose a generalization of the tech-
niques of (Dekel and Singer, 2005). The conver-
sion consists of two steps: extract a good collec-
tion of distributions P C {py,...,pr}; next use
P to define an accurate hypothesis for prediction.
For a subset P C {p1,...,pr}, we define

1 log%
pt€PheH
1 logé
:mz Zwt(e)ee(xt)aYt)"i’M IR
pteP e

where § > 0 is a fixed parameter. With this defini-
tion, we choose Ps as a minimizer of I'(P) over

some collection P of subsets of {pi,...,pr}:
Ps € argmingcp I'(P). The choice of P is re-
stricted by computational considerations. One nat-
ural option is to let P be the union of the suf-
fix sets {ps,...,pr}t, t = 1,...,T. We will
assume in what follows that P includes the set

{pb B PT}

Next, we define a randomized algorithm based on
Ps. Given an input x, the algorithm consists of
randomly selecting a path h according to

p(h) = |ﬂ}5, S pih), 4

p+E€Ps

and returning the prediction h(x). Note that com-
puting and storing p directly is not efficient. To
sample from p, we first choose p; € Ps uniformly
at random and then sample a path h according to
that p;. Sampling a path according to p; can be
done efficiently using the weight pushing algo-
rithm. Note that once an input x is received, the
distribution p over the path experts h induces a
probability distribution px over the output space
Y. It is not hard to see that sampling a predic-
tion y according to px is statistically equivalent to
first sampling h according to p and then predicting
h(x). We will denote by Hrana the randomized
hypothesis thereby generated.

An inherent drawback of randomized solutions
such as the one just described is that for the same
input x the user can receive different predictions
over time. Randomized solutions are also typi-
cally more costly to store. A collection of distri-
butions P can also be used to define a determin-
istic prediction rule based on the scoring function
approach. The majority vote scoring function is
defined by

EMVote (X7 Y) =

l 1 p
11 (@Z Zwt,kjlh;?(w:yk)- )

k=1 pt€Ps j=1

The majority vote algorithm denoted by Hyrvote
is then defined for all x € X, by Hmvore(X) =
argmaxycy hyvote (X, y). For an expert automa-
ton accepting all path experts such as that of Fig-
ure 1, the maximizer of hyvote can be found very
efficiently by choosing y such that y/* has the max-
imum weight in position k.

In the next section, we present learning guarantees
for Hrang and Hyrvore. For a more extensive dis-



cussion of alternative prediction rules, see (Cortes
et al., 2014a).

3.4 Batch learning guarantees

We first present learning bounds for the random-
ized prediction rule Hgang. Next, we upper bound
the generalization error of Hyyoe in terms of that
of g{Rand-

Theorem 1. For any 6 > 0, with probabil-
ity at least 1 — § over the choice of the sample
((x1,¥1),- -+, (X, y7)) drawn i.i.d. according to
D, the following inequalities hold:

E[L(%Rand(x)a Y)} < égaE[L(h(X)a y)]

llogp log 5

2M 2MA | —2.
+ T + T
For the normalized Hamming loss Lyam, the
bound of Theorem 1 holds with M = 1.

We now upper bound the generalization error of
the majority-vote algorithm Hyryore in terms of
that of the randomized algorithm JHg,ng, Which,
combined with Theorem 1, immediately yields
generalization bounds for the majority-vote algo-
rithm Hyvore.

Proposition 2. The following inequality relates
the generalization error of the majority-vote algo-
rithm to that of the randomized one:

IE:[LHam(j_CMVote (X)aY)] <2 E[LHam(g{Rand (X) 7}’)]7

where the expectations are taken over (X,y) ~ D
and h~p.

Proposition 2 suggests that the price to pay for
derandomization is a factor of 2. More refined
and more favorable guarantees can be proven
for the majority-vote algorithm (Cortes et al.,
2014a).

4 Boosting-style algorithm

In this section, we devise a boosting-style al-
gorithm for our ensemble structured prediction
problem. The variants of AdaBoost for multi-
class classification such as AdaBoost.MH or Ad-
aBoost. MR (Freund and Schapire, 1997; Schapire
and Singer, 1999; Schapire and Singer, 2000) can-
not be readily applied in this context. First, the
number of classes to consider here is quite large,

as in all structured prediction problems, since it is
exponential in the number of substructures {. For
example, in the case of the pronunciation prob-
lem where the number of phonemes for English
is in the order of 50, the number of classes is 50'.
But, the objective function for AdaBoost.MH or
AdaBoost.MR as well as the main steps of the al-
gorithms include a sum over all possible labels,
whose computational cost in this context would be
prohibitive. Second, the loss function we consider
is the normalized Hamming loss over the substruc-
tures predictions, which does not match the multi-
class losses for the variants of AdaBoost.? Finally,
the natural base hypotheses for this problem admit
a structure that can be exploited to devise a more
efficient solution, which of course was not part of
the original considerations for the design of these
variants of AdaBoost.

4.1 Hypothesis sets

The predictor Hpoos returned by our booiting al-
gorithm is based on a scoring function h: & x
Y — R, which, as for standard ensemble algo-
rithms such as AdaBoost, is a convex combination
of base scoring functions hy: h = Zthl ahy, with
ay > 0. The base scoring functions used in our al-
gorithm have the form

l

V(x,y) €X XY, h(x,y) = hf(xy).
k=1

In particular, these can be derived from the path
experts in H by letting hf(x,y) = Ly )=y
Thus, the score assigned to y by the base scoring
function h; is the number of positions at which y
matches the prediction of path expert h given in-
put x. Hpeogt 18 defined as follows in terms of h or
hys:

Vx € X, Hpoosi(x) = argmax h(x,y)
yey

We remark that the analysis and algorithm pre-
sented in this section are also applicable with a
scoring function that is the product of the scores

%(Schapire and Singer, 1999) also present an algorithm
using the Hamming loss for multi-class classification, but that
is a Hamming loss over the set of classes and differs from
the loss function relevant to our problem. Additionally, the
main steps of that algorithm are also based on a sum over all
classes.



at each substructure k£ as opposed to a sum, that

18,
l T
X ,Y) H ( Oét Y)>
k=1 \ t=1

This can be used for example in the case where
the experts are derived from probabilistic mod-
els.

4.2 ESPBoost algorithm

To simplify our exposition, the algorithm that
we now present uses base learners of the form
hi(x,y) = Lk (x)=y- The general case can be
handled in the same fashion with the only dif-
ference being the definition of the direction and
step of the optimization procedure described be-
low. Forany i € [1,m] and k& € [1,]], w
define the margm of h* for point (3<Z,yZ by
(h s Xiy Yi) = h* (Xzayz) MAaX, Lty k h (Xuyk)-
We first derive an upper bound on the empirical
normahzed Hammlng loss of a hypothesis Hpoost,
with h = Zt 1 ahy.
Lemma 3. The following upper bound holds for
the empirical normalized Hamming loss of the hy-
pothesis Hpoost-

E  [Liam(HBoost (%), ¥)]
(x,y)~S

1
TR
< mi El = eXp( § atp ht>X27Y2)>
1=

The proof of this lemma as well as that of sev-
eral other theorems related to this algorithm can
be found in (Cortes et al., 2014a).

In view of this upper bound, we consider the ob-
jective function F': RN — R defined for all o =

(ai,...,ay) € RN by
1 m l N _
Oﬁ) = ﬁ Zzexp (_ Za]p(h§€7xl7yl))a
i=1 k=1 j=1
where hy,...,hy denote the set of all path ex-

perts in H. F'is a convex and differentiable func-
tion of c. Our algorithm, ESPBoost (Ensemble
Structured Prediction Boosting), is defined by the
application of coordinate descent to the objective
F. Algorithm 1 shows the pseudocode of the ESP-
Boost.

Algorithm 1 ESPBoost Algorithm
Inputs: S = ((x1,¥1),---, (Xm,¥m)); set of
experts {hi,...,hp}
fori =1tomand k =1to!ldo
Di(i k) — 4
end for
fort =1to 7 do
hy — argming ey E; ) op, [Th ;)25
« —Eq. B~ [Lhf (i) 0]

let

o — 5 log

ool =)
fori=1tomand k =1to!ldo
Dt+1(la k‘) exp(— atp(htvz’? i) De (i,k)
end for
end for N
Return h = ST ahy

Let a;—; € RY denote the vector obtained after
t — 1 iterations and e; the tth unit vector in RY.
We denote by D; the distribution over [1, m|x [1,]
defined by

Lo (= X0 aunlhl,xi 1))

Dt(l7k) = At—l

where A;_qis a normalizatlon factor, A;—1 =
ml > i Zk 1 €XP ( Z =1 Oéup(hk XiaYi))'
The direction e; selected at the tth round is the
one minimizing the directional derivative, that
is
dF(o—1 + net)
dn

n=0
m 1
Zzpht7xi>yi)pt(i,k)At,1
i=1 k=1
=[2 Z Dy(i, k) — 1] Ay

=(2€t — 1A,

where ¢; is the average error of h; given by

The remaining steps of our algorithm can be de-
termined as in the case of AdaBoost. In particu-

lar, given the direction e;, the best step ay is ob-
dF(oy—1+azet) _

tained by solving the equation Tos



0, which admits the closed-form solution «; =
1 log 1= “ The distribution Dyy; can be ex-
pressed in terms of D; with the normalization fac-
tor Zt =2 Et(]. — 6t).

Our weak learning assumption in this context is
that there exists v > 0 such that at each round,
€; verifies ¢; < % — 7. Note that, at each round,
the path expert h; with the smallest error €; can be
determined easily and efficiently by first finding
for each substructure k, the h¥ that is the best with
respect to the distribution weights Dy (i, k).

Observe that, while the steps of our algorithm are
syntactically close to those of AdaBoost and its
multi-class variants, our algorithm is distinct and
does not require sums over the exponential number
of all possible labelings of the substructures and is
quite efficient.

4.3 Learning guarantees

We have derived both a margin-based generaliza-
tion bound in support of the ESPBoost algorithm
and a bound on the empirical margin loss.

For any p > 0, define the empirical margin loss of
HBoost by the following:

E 1 m l
Bo(falk) = i 2o 2 oot

where h is the corresponding scoring function.
The following theorem can be proven using the
multi-class classification bounds of (Koltchinskii
and Panchenko, 2002; Mohri et al., 2012) as can
be shown in (Cortes et al., 2014a).

Theorem 4. Let F denote the set of func-
tions Hpoost With h = Zt 1 atht for some
al,...,oq > 0andhy € Hforallt € [1,T]. Fix
p > 0. Then, for any § > 0, with probability at
least 1 — 0, the following holds for all Hpeost € F:

-
E L Hioos < R
L [Dtan(Fns(.¥)] < (||a||1>
9 ! log%
172 yk| R )+ om
k=1

where R, (H*) denotes the Rademacher com-
plexity of the class of functions

H* = {x—hF:je1,p,y € W}

Table 1:

Tsrr = 100, 6 = 0.05.

Average Normalized Hamming Loss,
ADS1 and ADS2. Baps1 = 0.95, Baps2 = 0.95,

ADSI1, m = 200 ADS2, m = 200
FHmvore 0.0197 £ 0.00002  0.2172 + 0.00983
HepL 0.0228 £ 0.00947  0.2517 &£ 0.05322
Hev 0.0197 £ 0.00002  0.2385 =+ 0.00002
Hrecv  0.0741 £0.04087  0.4001 £ 0.00028
HEspBoost ~ 0.0197 £ 0.00002  0.2267 + 0.00834
Hsre 0.5641 £ 0.00044  0.2500 £ 0.05003
Hrand 0.1112 £ 0.00540  0.4000 £ 0.00018
Best h; 0.5635 £ 0.00004 0.4000

This theorem provides a margin-based guarantee
for convex ensembles such as those returned by
ESPBoost. The following theorem further pro-
vides an upper bound on the empirical margin loss
for ESPBoost.

Theorem 5. Let h denote the scoring function re-
turned by ESPBoost after T' > 1 rounds. Then, for
any p > 0, the following inequality holds:

~/ h X
R,[—— ) <2T
p(Ha!h) =211

t=1

Gi_p(l - €t>1+ﬂ_

As in the case of AdaBoost (Schapire et al., 1997),
it can be shown that for p < 7, ¢, 7(1 — ;)17 <
(1 —29)7P(1 + 27)1*? < 1 and the right-hand
side of this bound decreases exponentially with
T.

5 Experiments

We used a number of artificial and real-world
data sets for our experiments. For each data set,
we performed 10-fold cross-validation with dis-
joint training sets.> We report the average error
for each task. In addition to the Hyvotre, HRrand
and Hgsppoost hypotheses, we experimented with
two algorithms discussed in more detail in (Cortes
et al., 2014a): a cross-validation on-line-to-
batch conversion of the WMWP algorithm, Hcv,
a majority-vote on-line-to-batch conversion with
FPL, Hgpr, and a cross-validation on-line-to-
batch conversion with FPL, Hpp .cy. Finally, we
compare with the Hg g algorithm of (Nguyen and
Guo, 2007).

5.1 Artificial data sets

Our artificial data set, ADS1 and ADS2 simulate
the scenarios described in Section 1. In ADS1 the

3For the OCR data set, these subsets are predefined.



kth expert has a high accuracy on the kth position,
in ADS2 an expert has low accuracy in a fixed set
of positions.

For the first artificial data set, ADS1, we used lo-
cal experts hi,...,h, with p = 5. To generate
the data we chose an arbitrary Markov chain over
the English alphabet and sampled 40,000 random
sequences each consisting of 10 symbols. Each
of the five experts was designed to have a certain
probability of making a mistake at each position in
the sequence. Expert h; correctly predicted posi-
tions 25 — 1 and 25 with probability 0.97 and other
positions with probability 0.5. We forced experts
to make similar mistakes by making them select an
adjacent alphabet symbol in case of an error. For
example, when a mistake was made on a symbol b,
the expert prediction was forced to be either a or c.
The second artificial data set, ADS2, modeled the
case of rather poor experts. ADS2 was generated
in the same way as ADS1, but the expert predic-
tions were different. This time each expert made
mistakes at four out of the ten distinct random po-
sitions in each sequence.

Table 1 reports the results of our experiments.
For all experiments with the algorithms Hgand,
Hmvote, and Hey, we ran the WMWP algorithm
for T = m rounds with the § values listed in
the caption of Table 1, generating distributions
P C {p1,...,pr}. For P we used the collection
of all suffix sets {p;,...,pr} and 6 = 0.05. For
the algorithms based on FPL, we used € = 0.5/pl.
The same parameter choices were used for the
subsequent experiments.

As can be seen from Table 1, in both cases,
Havote, OUr majority-vote algorithm based on our
on-line-to-batch conversion using the WMWP al-
gorithm (together with most of the other on-line
based algorithms), yields a significant improve-
ment over the best expert. It also outperforms
Hsrg, which in the case of ADS1 even fails to
outperform the best hj;. After 100 iterations on
ADS]1, the ensemble learned by Hgr g consists of
a single expert, which is why it leads to such a
poor performance.

It is also worth pointing out that Hgpy.cv and
HRang fail to outperform the best model on ADS2
set. This is in total agreement with our theoreti-
cal analysis since, in this case, any path expert has
exactly the same performance and the error of the

Table 2: Average Normalized Hamming Loss for
ADS3. Baps1 = 0.95, Baps2 = 0.95, Tspp =
100, 6 = 0.05.

FHmvote 0.1788 + 0.00004
HepL 0.2189 + 0.04097
Hey 0.1788 £ 0.00004
Hrprcv  0.3148 £ 0.00387
HespBoost  0.1831 £ 0.00240
Hsie 0.1954 £ 0.00185
Hrand 0.3196 +£ 0.00018
Best h; 0.2957 £ 0.00005

Table 3: Average Normalized Hamming Loss,
PDS1 and PDS2. ﬁpD51 = 0.85, /BPDSQ = 0.97,
Tsrp = 100, 6 = 0.05.

PDS1, m = 130 PDS2, m = 400
FHmvote 0.2225 £ 0.00301  0.2323 £ 0.00069
FHrpL 0.2657 £ 0.07947  0.2337 £ 0.00229
Hev 0.2316 £ 0.00189  0.2364 + 0.00080
Heprcv  0.4451 £0.02743  0.4090 £ 0.01388
HEspBoost  0.3625 £ 0.01054  0.3499 £ 0.00509
Hsr 0.3130 £ 0.05137  0.3308 £ 0.03182
HRrand 0.4713 £0.00360  0.4607 £ 0.00131
Best h; 0.3449 £ 0.00368  0.3413 +£ 0.00067

best path expert is an asymptotic upper bound on
the errors of these algorithms. The superior perfor-
mance of the majority-vote-based algorithms sug-
gests that these algorithms may have an advantage
over other prediction rules beyond what is sug-
gested by our learning bounds.

We also synthesized a third data set, ADS3. Here,
we simulated the case where each expert special-
ized in predicting some subset of the labels. In
particular, we generated 40,000 random sequences
over the English alphabet in the same way as for
ADS1 and ADS2. To generate expert predictions,
we partitioned the alphabet into 5 disjoint subsets
Aj. Expert j always correctly predicted the label
in A; and the probability of correctly predicting
the label not in A; was set to 0.7. To train the en-
semble algorithms, we used a training set of size
m = 200.

The results are presented in Table 2. Hyrvote, Hev
and Hgspeoost achieve the best performance on
this data set with a considerable improvement in
accuracy over the best expert hj. We also ob-
serve as for the ADS2 experiment that Hgang and
Herprcv fail to outperform the best model and ap-
proach the accuracy of the best path expert only
asymptotically.



Table 4: Average edit distance, PDS1 and PDS2.

Bppsi = 0.85, Bpps2 = 0.97, Tspp = 100,
d = 0.05.

Table 5: Average Normalized Hamming Loss,
TR1 and TR2. 6TR1 = 0.95, 6TR2 = 0.98,
Tsrr = 100, 6 = 0.05.

PDS1, m = 130 PDS2, m = 400
Hmvote 0.8395 £ 0.01076  0.9626 £ 0.00341
HrpL 1.0158 £ 0.34379  0.9744 + 0.01277
Hev 0.8668 £ 0.00553  0.9840 + 0.00364
HreL-cv 1.8044 £ 0.09315  1.8625 £ 0.06016
Hespoost  1.3977 £0.06017  1.4092 £ 0.04352
Hsie 1.1762 £ 0.12530  1.2477 £ 0.12267
Hrand 1.8962 £ 0.01064  2.0838 £ 0.00518
Best h; 1.2163 £ 0.00619  1.2883 £ 0.00219

TR1, m = 800 TR2, m = 1000
FHmvore 0.0850 £ 0.00096 0.0746 £ 0.00014
HepL 0.0859 £ 0.00110  0.0769 -+ 0.00218
Hev 0.0843 £ 0.00006 0.0741 -+ 0.00011
Hrecv  0.1093 £0.00129  0.1550 £ 0.00182
HEspBoost  0.1041 £ 0.00056  0.1414 £ 0.00233
HsLe 0.0778 £ 0.00934  0.0814 + 0.02558
HrRrand 0.1128 £ 0.00048  0.1652 +£ 0.00077
Best h; 0.1032 £ 0.00007  0.1415 £ 0.00005

5.2 Pronunciation data sets

We had access to two proprietary pronunciation
data sets, PDS1 and PDS2. In both sets, each
example is an English word, typically a proper
name. For each word, 20 possible phonemic se-
quences are available, ranked by some pronuncia-
tion model. Since the true pronunciation was not
available, we set the top sequence to be the tar-
get label and used the remaining as the predictions
made by the experts. The only difference between
PDS1 and PDS2 is their size: 1,313 words for
PDS1 and 6,354 for PDS2.

In both cases, on-line based algorithms, specif-
ically Hmvote, significantly outperform the best
model as well as Hgp g, see Table 3. The poor
performance of Hgsppoost is due to the fact that the
weak learning assumption is violated after 5-8 iter-
ations and hence the algorithm terminates.

It can be argued that for this task the edit-distance
is a more suitable measure of performance than
the average Hamming loss. Thus, we also re-
port the results of our experiments in terms of the
edit-distance in Table 4. Remarkably, our on-line
based algorithms achieve a comparable improve-
ment over the performance of the best model in
the case of edit-distance as well.

5.3 OCR data set

Rob Kassel’s OCR data set is available for down-
load from http://ai.stanford.edu/ btaskar/
ocr/. It contains 6,877 word instances with a to-
tal of 52,152 characters. Each character is rep-
resented by 16 x 8 = 128 binary pixels. The
task is to predict a word given its sequence of
pixel vectors. To generate experts, we used several
software packages: CRFsuite (Okazaki, 2007) and
SVMstruet - gyprmulticlass (Joachims, 2008), and

the Stanford Classifier (Rafferty et al., 2014). We
trained these algorithms on each of the predefined
folds of the data set and generated predictions on
the test fold using the resulting models.

Our results (see (Cortes et al., 2014a)) show that
ensemble methods lead only to a small improve-
ment in performance over the best h;. This is be-
cause here the best model h; dominates all other
experts and ensemble methods cannot benefit from
patching together different outputs.

5.4 Penn Treebank data set

The part-of-speech task, POS, consists of label-
ing each word of a sentence with its correct
part-of-speech tag. The Penn Treebank 2 data
set is available through LDC license at http:
//www.cis.upenn.edu/ treebank/ and contains
251,854 sentences with a total of 6,080,493 tokens
and 45 different parts-of-speech.

For the first experiment, TR1, we used 4 disjoint
training sets to produce 4 SVM™Multiclass mod-
els and 4 maximum entropy models using the
Stanford Classifier. We also used the union of
these training sets to devise one CRFsuite model.
For the second experiment, TR2, we trained 5
SVMstruet models. The same features were used
for both experiments. For the SVM algorithms, we
generated 267,214 bag-of-word binary features.
The Stanford Classifier and CRFsuite packages
use internal routines to generate features.

The results of the experiments are summarized in
Table 5. For TR1, our on-line ensemble meth-
ods improve over the best model. Note that Hgp g
has the best average loss over 10 runs for this ex-
periment. This comes at a price of much higher
standard deviation which does not allow us to con-
clude that the difference in performance between
our methods and JHg g is statistically significant.



Table 6: Average Normalized Hamming Loss,

SDS.1>4,3=0.97,§ = 0.05, Tsr,r = 100.

p =5, m = 1500

p =10, m = 1200

Hmvote 0.2465 £ 0.00248  0.2606 + 0.00320
FHrpL 0.2500 £+ 0.00248  0.2622 + 0.00316
Hev 0.2504 £ 0.00576  0.2755 £+ 0.00212
Hrecv  0.2726 £ 0.00839  0.3219 +£0.01176
Hespoost ~ 0.2572 £0.00062  0.2864 £+ 0.00103
Hsie 0.2572 £0.00061  0.2864 £+ 0.00102
Hrand 0.2877 £ 0.00480  0.3430 £ 0.00468
Best h; 0.2573 £ 0.00060  0.2865 4 0.00101

In fact, on two runs, Hs g chooses an ensemble
consisting of a single expert and fails to outper-
form the best model.

5.5 Speech recognition data set

For our last set of experiments, we used another
proprietary speech recognition data set, SDS. Each
example in this data set is represented by a se-
quence of length [ € [2,15]. Therefore, for train-
ing we padded the true labels and the expert pre-
dictions to normalize the sequence lengths. For
each of the 22,298 examples, there are between
2 and 251 expert predictions available. Since the
ensemble methods we presented assume that the
predictions of all p experts are available for each
example in the training and test sets, we needed to
restrict ourselves to the subsets of the data where
at least some fixed number of expert predictions
were available. In particular, we considered p =
5,10, 20 and 50. For each value of p we used only
the top p experts in our ensembles.

Our initial experiments showed that, as in the case
of OCR data set, ensemble methods offer only a
modest increase in performance over the best ;.
This is again largely due to the dominant perfor-
mance of the best expert h;. However, it was ob-
served that the accuracy of the best model is a de-
creasing function of [, suggesting that ensemble
algorithm may be used to improve performance
for longer sequences. Subsequent experiments
show that this is indeed the case: when training
and testing with [ > 4, ensemble algorithms out-
perform the best model. Table 6 and Table 7 sum-
marize these results for p = 5, 10, 20, 50.

Our results suggest that the following simple
scheme can be used: for short sequences use the
best expert model and for longer sequences, use
the ensemble model. A more elaborate variant of
this algorithm can be derived based on the obser-
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Table 7: Average Normalized Hamming Loss,

SDS.1 > 4,3 =0.97,0 = 0.05, Ts.p = 100.

p = 20, m = 900

p = 50,m = 700

FHmvote 0.2773 £ 0.00139  0.3217 £ 0.00375
HrrL 0.2797 £ 0.00154  0.3189 + 0.00344
Hev 0.2986 £ 0.00075  0.3401 £ 0.00054
Hrecv 03816 £ 0.01457  0.4451 £ 0.01360
Hespoost  0.3115 £ 0.00089  0.3426 £ 0.00071
Hsie 0.3114 £ 0.00087  0.3425 +£ 0.00076
Hrand 0.3977 £ 0.00302  0.4608 +£ 0.00303
Best h; 0.3116 £ 0.00087  0.3427 £ 0.00077

vation that the improvement in accuracy of the en-
semble model over the best expert increases with
the number of experts available.

6 Conclusion

We presented a broad analysis of the problem of
ensemble structured prediction, including a series
of algorithms with learning guarantees and exten-
sive experiments. Our results show that our al-
gorithms, most notably Hypvote, can result in sig-
nificant benefits in several tasks, which can be of
a critical practical importance. We also reported
very favorable results for Hyryore When used with
the edit-distance, which is the standard loss used
in many applications. A natural extension of this
work consists of devising new algorithms and pro-
viding learning guarantees specific to other loss
functions such as the edit-distance. While we
aimed for an exhaustive study, including multi-
ple on-learning algorithms, different conversions
to batch and derandomizations, we are aware that
the problem we studied is very rich and admits
many more facets and scenarios that we plan to in-
vestigate in the future. Finally, the boosting-style
algorithm we presented can be enhanced using re-
cent theoretical and algorithmic results on deep
boosting (Cortes et al., 2014b).
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Abstract

Text-level discourse parsing is notoriously
difficult, as distinctions between discourse
relations require subtle semantic judg-
ments that are not easily captured using
standard features. In this paper, we present
a representation learning approach, in
which we transform surface features into
a latent space that facilitates RST dis-
course parsing. By combining the machin-
ery of large-margin transition-based struc-
tured prediction with representation learn-
ing, our method jointly learns to parse dis-
course while at the same time learning a
discourse-driven projection of surface fea-
tures. The resulting shift-reduce discourse
parser obtains substantial improvements
over the previous state-of-the-art in pre-
dicting relations and nuclearity on the RST
Treebank.

1 Introduction

Discourse structure describes the high-level or-
ganization of text or speech. It is central to
a number of high-impact applications, such as
text summarization (Louis et al., 2010), senti-
ment analysis (Voll and Taboada, 2007; Somasun-
daran et al., 2009), question answering (Ferrucci
et al., 2010), and automatic evaluation of student
writing (Miltsakaki and Kukich, 2004; Burstein
et al., 2013). Hierarchical discourse representa-
tions such as Rhetorical Structure Theory (RST)
are particularly useful because of the computa-
tional applicability of tree-shaped discourse struc-
tures (Taboada and Mann, 2006), as shown in Fig-
ure 1.

Unfortunately, the performance of discourse
parsing is still relatively weak: the state-of-the-art
F-measure for text-level relation detection in the
RST Treebank is only slightly above 55% (Joty
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Figure 1: An example of RST discourse structure.

et al., 2013). While recent work has introduced
increasingly powerful features (Feng and Hirst,
2012) and inference techniques (Joty et al., 2013),
discourse relations remain hard to detect, due in
part to a long tail of “alternative lexicalizations”
that can be used to realize each relation (Prasad et
al., 2010). Surface and syntactic features are not
capable of capturing what are fundamentally se-
mantic distinctions, particularly in the face of rel-
atively small annotated training sets.

In this paper, we present a representation learn-
ing approach to discourse parsing. The core idea
of our work is to learn a transformation from a
bag-of-words surface representation into a latent
space in which discourse relations are easily iden-
tifiable. The latent representation for each dis-
course unit can be viewed as a discriminatively-
trained vector-space representation of its meaning.
Alternatively, our approach can be seen as a non-
linear learning algorithm for incremental struc-
ture prediction, which overcomes feature sparsity
through effective parameter tying. We consider
several alternative methods for transforming the
original features, corresponding to different ideas
of the meaning and role of the latent representa-
tion.

Our method is implemented as a shift-reduce
discourse parser (Marcu, 1999; Sagae, 2009).
Learning is performed as large-margin transition-
based structure prediction (Taskar et al., 2003),
while at the same time jointly learning to project
the surface representation into latent space. The

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 13-24,
Baltimore, Maryland, USA, June 23-25 2014. (©2014 Association for Computational Linguistics



resulting system strongly outperforms the prior
state-of-the-art at labeled F-measure, obtaining
raw improvements of roughly 6% on relation la-
bels and 2.5% on nuclearity. In addition, we show
that the latent representation coheres well with the
characterization of discourse connectives in the
Penn Discourse Treebank (Prasad et al., 2008).

2 Model

The core idea of this paper is to project lexical fea-
tures into a latent space that facilitates discourse
parsing. In this way, we can capture the meaning
of each discourse unit, without suffering from the
very high dimensionality of a lexical representa-
tion. While such feature learning approaches have
proven to increase robustness for parsing, POS
tagging, and NER (Miller et al., 2004; Koo et al.,
2008; Turian et al., 2010), they would seem to
have an especially promising role for discourse,
where training data is relatively sparse and ambi-
guity is considerable. Prasad et al. (2010) show
that there is a long tail of alternative lexicalizations
for discourse relations in the Penn Discourse Tree-
bank, posing obvious challenges for approaches
based on directly matching lexical features ob-
served in the training data.

Based on this observation, our goal is to learn
a function that transforms lexical features into
a much lower-dimensional latent representation,
while simultaneously learning to predict discourse
structure based on this latent representation. In
this paper, we consider a simple transformation
function, linear projection. Thus, we name the ap-
proach DPLP: Discourse Parsing from Linear Pro-
jection. We apply transition-based (incremental)
structured prediction to obtain a discourse parse,
training a predictor to make the correct incremen-
tal moves to match the annotations of training data
in the RST Treebank. This supervision signal is
then used to learn both the weights and the projec-
tion matrix in a large-margin framework.

2.1 Shift-reduce discourse parsing

We construct RST Trees using shift-reduce pars-
ing, as first proposed by Marcu (1999). At each
point in the parsing process, we maintain a stack
and a queue; initially the stack is empty and the
first elementary discourse unit (EDU) in the docu-
ment is at the front of the queue.! The parser can

"We do not address segmentation of text into elemen-
tary discourse units in this paper. Standard classification-
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Notation  Explanation

% Vocabulary for surface features

Vv Size of V

K Dimension of latent space

Wi Classification weights for class m

C Total number of classes, which correspond to
possible shift-reduce operations

A Parameter of the representation function (also
the projection matrix in the linear representa-
tion function)

v; Word count vector of discourse unit ¢

v Vertical concatenation of word count vectors
for the three discourse units currently being
considered by the parser

A Regularization for classification weights

T Regularization for projection matrix

& Slack variable for sample ¢

Ni,m Dual variable for sample ¢ and class m

o Learning rate at iteration ¢

Table 1: Summary of mathematical notation

then choose either to shift the front of the queue
onto the top of the stack, or to reduce the top two
elements on the stack in a discourse relation. The
reduction operation must choose both the type of
relation and which element will be the nucleus.
So, overall there are multiple reduce operations
with specific relation types and nucleus positions.
Shift-reduce parsing can be learned as a classifi-
cation task, where the classifier uses features of
the elements in the stack and queue to decide what
move to take. Previous work has employed deci-
sion trees (Marcu, 1999) and the averaged percep-
tron (Collins and Roark, 2004; Sagae, 2009) for
this purpose. Instead, we employ a large-margin
classifier, because we can compute derivatives of
the margin-based objective function with respect
to both the classifier weights as well as the projec-
tion matrix.

2.2 Discourse parsing with projected features

More formally, we denote the surface feature vo-
cabulary V, and represent each EDU as the nu-
meric vector v € NV, where V = #|V| and the n-
th element of v is the count of the n-th surface fea-
ture in this EDU (see Table 1 for a summary of no-
tation). During shift-reduce parsing, we consider
features of three EDUs:? the top two elements on

based approaches can achieve a segmentation F-measure
of 94% (Hernault et al., 2010); a more complex rerank-
ing model does slightly better, at 95% F-Measure with
automatically-generated parse trees, and 96.6% with gold an-
notated trees (Xuan Bach et al., 2012). Human agreement
reaches 98% F-Measure.

2 After applying a reduce operation, the stack will include
a span that contains multiple EDUs. We follow the strong



the stack (v; and v2), and the front of the queue
(vs). The vertical concatenation of these vectors
is denoted v = [v1;vo;vs]. In general, we can
formulate the decision function for the multi-class
shift-reduce classifier as

m = argmax w;rnf(v;A) (D
me{l,...,C}

where w,, is the weight for the m-th class
and f(v;A) is the representation function
parametrized by A. The score for class m (in
our case, the value of taking the m-th shift-
reduce operation) is computed by the inner prod-
uct w,. f(v; A). The specific shift-reduce opera-
tion is chosen by maximizing the decision value in
Equation 1.

The representation function f(v; A) can be de-
fined in any form; for example, it could be a non-
linear function defined by a neural network model
parametrized by A. We focus on the linear projec-
tion,

f(v;A) = Av, 2)

where A € RE*3V s projects the surface repre-
sentation v of three EDUs into a latent space of
size K < V.

Note that by setting w,! = w,| A, the decision
scoring function can be rewritten as W, v, which
is linear in the original surface features. Therefore,
the expressiveness of DPLP is identical to a linear
separator in the original feature space. However,
the learning problem is considerably different. If
there are C' total classes (possible shift-reduce op-
erations), then a linear classifier must learn 3V C
parameters, while DPLP must learn (3V + C)K
parameters, which will be smaller under the as-
sumption that K < C' < V. This can be seen
as a form of parameter tying on the linear weights
W, wWhich allows statistical strength to be shared
across training instances. We will consider special
cases of A that reduce the parameter space still
further.

2.3 Special forms of the projection matrix

We consider three different constructions for the
projection matrix A.

e General form: In the general case, we place

compositionality criterion of Marcu (1996) and consider only
the nuclear EDU of the span. Later work may explore the
composition of features between the nucleus and satellite.
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no special constraint on the form of A.

Vi
Vo
V3

f(viA)= A 3)

This form is shown in Figure 2(a).

Concatenation form: In the concatenation
form, we choose a block structure for A, in
which a single projection matrix B is applied

to each EDU:
B 0 0 Vi
f(v;A)=| 0 B 0 Vo 4)

In this form, we transform the representa-
tion of each EDU separately, but do not at-
tempt to represent interrelationships between
the EDUs in the latent space. The number
of parameters in A is %K V. Then, the total
number of parameters, including the decision
weights {w, }, in this form is (% +O)K.

Difference form. In the difference form, we
explicitly represent the differences between
adjacent EDUs, by constructing A as a block
difference matrix,

C -C 0 Vi
f(viA)=|C 0 —C||v |, ©
V3

The result of this projection is that the la-
tent representation has the form [C(v; —
vy); C(vy — v3)], representing the difference
between the top two EDUs on the stack, and
between the top EDU on the stack and the
first EDU in the queue. This is intended
to capture semantic similarity, so that reduc-
tions between related EDUs will be preferred.
Similarly, the total number of parameters to
estimate in this form is (V' + 20)%.

3 Large-Margin Learning Framework

We apply a large margin structure prediction ap-
proach to train the model. There are two pa-
rameters that need to be learned: the classifica-
tion weights {w,, }, and the projection matrix A.
As we will see, it is possible to learn {w,,} us-
ing standard support vector machine (SVM) train-
ing (holding A fixed), and then make a simple
gradient-based update to A (holding {w, } fixed).
By interleaving these two operations, we arrive at
a saddle point of the objective function.



f66 0666 boow Héos

v, from stack v, from stack V;from queue v, from stack

(a) General form

RN -
DOOS: BO0008

v, from stack

(b) Concatenation form

|
A= TZ
P N
OO S 000¢

N
D 9006

v, from stack

V3 from queue v, from stack V5 from queue

(c) Difference form

Figure 2: Decision problem with different representation functions

Specifically, we formulate the following con-
strained optimization problem,

< l
1 A 2 T 2

min - o Wn|2 + i+ SlIA
{WI:CY§1;[,A}2 'm,Z:IH ||2 zzzlg 2” ||F

s.t. (wyifwm)Tf(vi;A) >1—0y,=m — &,

Vi,m

(6)

where m € {1,...,C} is the index of the
shift-reduce decision taken by the classifier (e.g.,
SHIFT, REDUCE-CONTRAST-RIGHT, etc), i €
{1,--- 1} is the index of the training sample, and
W, is the vector of classification weights for class
m. The slack variables &; permit the margin con-
straint to be violated in exchange for a penalty, and
the delta function d,,—p, is unity if y; = m, and
zero otherwise.

As is standard in the multi-class linear
SVM (Crammer and Singer, 2001), we can solve
the problem defined in Equation 6 via Lagrangian
optimization:

ﬁ({WkC,fl:l,A,771:1,1:0}) =
Py ! T
23 Iwald+ Y6+ LAl
m=1 =1
+ Zm,m{(w; —wy )E(Vis A) + 1 — 8y e — &}

s.t. Nim > 0Vi,m

(7
Then, to optimize £, we need to find a saddle
point, which would be the minimum for the vari-
ables {w1.c,&1,} and the projection matrix A,
and the maximum for the dual variables {7;.; 1.c'}.
If A is fixed, then the optimization problem is
equivalent to a standard multi-class SVM, in the
transformed feature space f(v;; A). We can obtain
the weights {w1.c} and dual variables {71, 1.c}
from a standard dual-form SVM solver. We then
update A, recompute {wi.c'} and {7, 1.c}, and
iterate until convergence. This iterative procedure
is similar to the latent variable structural SVM (Yu
and Joachims, 2009), although the specific details

of our learning algorithm are different.
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3.1 Learning Projection Matrix A

We update A while holding fixed the weights and
dual variables. The derivative of £ with respect to
Ais

oL

=T7A + Zm,m(wm - Wyri)ViT
i,m

T 8f(vi; A)
~ )T 5A
@®)

Setting g—ﬁ = 0, we have the closed-form solution,

1
A== o (W — Wy )vi|
. )

Z(Wyi - Z Ui,me)ViT7
43

because the dual variables for each instance must
sum to one, » . 7im = L.

Note that for a given 4, the matrix (w,, —
Yom m,me)ViT is of (at most) rank-1. There-
fore, the solution of A can be viewed as the lin-
ear combination of a sequence of rank-1 matrices,
where each rank-1 matrix is defined by distribu-
tional representation v, and the weight difference
between the weight of true label w,, and the “ex-
pected” weight > 1 1 Wi,.

One property of the dual variables is that
f(v;; A) is a support vector only if the dual vari-
able 7; ,, < 1. Since the dual variables for each
instance are guaranteed to sum to one, we have
Wy, — 2 NimWm = 01if n;,, = 1. In other
words, the contribution from non support vectors
to the projection matrix A is 0. Then, we can fur-
ther simplify the updating equation as

L Z (Wyi - Zni,mwm)vi—r
m

A==
v, eS8V

T

(10)

This is computationally advantageous since many
instances are not support vectors, and it shows that
the discriminatively-trained projection matrix only
incorporates information from each instance to the
extent that the correct classification receives low
confidence.



Algorithm 1 Mini-batch learning algorithm
Input: Training set D, Regularization parame-
ters A and 7, Number of iteration 7, Initializa-
tion matrix A, and Threshold ¢
whilet =1,...,T do

Randomly choose a subset of training sam-
ples D; from D

Train SVM with A;_; to obtain {w,(fl)} and
()

Update A; using Equation 11 with ay =

1
t

if w < ¢ then
Return
end if
end while

Re-train SVM with D and the final A
Output: Projection matrix A, SVM classifier
with weights w

3.2 Gradient-based Learning for A

Solving the quadratic programming defined by the
dual form of the SVM is time-consuming, espe-
cially on a large-scale dataset. But if we focus on
learning the projection matrix A, we can speed up
learning by sampling only a small proportion of
the training data to compute an approximate op-
timum for {w.c, 71.,1.c }, before each update of
A. This idea is similar to the mini-batch learning,
which has been used in large-scale SVM problem
(Nelakanti et al., 2013) and deep learning models
(Le etal., 2011).

Specifically, in iteration ¢, the algorithm ran-
domly chooses a subset of training samples D; to
train the model. We cannot make a closed-form
update to A based on this small sample, but we
can take an approximate gradient step,

A= (1—ou7)As1+

Z ()

at{ <Wyi
v, ESV(Dy)

=) ) A

where oy is a learning rate. In iteration ¢, we
choose o = % After convergence, we obtain the
weights w by applying the SVM over the entire
dataset, using the final A. The algorithm is sum-
marized in Algorithm 1 and more details about im-
plementation will be clarified in Section 4. While
minibatch learning requires more iterations, the
SVM training is much faster in each batch, and the
overall algorithm is several times faster than using
the entire training set for each update.
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4 Implementation

The learning algorithm is applied in a shift-reduce
parser, where the training data consists of the
(unique) list of shift and reduce operations re-
quired to produce the gold RST parses. On test
data, we choose parsing operations in an online
fashion — at each step, the parsing algorithm
changes the status of the stack and the queue ac-
cording the selected transition, then creates the
next sample with the updated status.

4.1 Parameters and Initialization

There are three free parameters in our approach:
the latent dimension K, and regularization pa-
rameters A and 7. We consider the values K €
{30,60,90,150}, A € {1,10,50,100} and 7 €
{1.0,0.1,0.01,0.001}, and search over this space
using a development set of thirty document ran-
domly selected from within the RST Treebank
training data. We initialize each element of A
to a uniform random value in the range [0, 1]. For
mini-batch learning, we fixed the batch size to be
500 training samples (shift-reduce operations) in
each iteration.

4.2 Additional features

As described thus far, our model considers only
the projected representation of each EDU in its
parsing decisions. But prior work has shown that
other, structural features can provide useful in-
formation (Joty et al., 2013). We therefore aug-
ment our classifier with a set of simple feature
templates. These templates are applied to individ-
ual EDUs, as well as pairs of EDUs: (1) the two
EDUs on top of the stack, and (2) the EDU on top
of the stack and the EDU in front of the queue.
The features are shown in Table 2. In computing
these features, all tokens are downcased, and nu-
merical features are not binned. The dependency
structure and POS tags are obtained from MALT-
Parser (Nivre et al., 2007).

5 Experiments

We evaluate DPLP on the RST Discourse Tree-
bank (Carlson et al., 2001), comparing against
state-of-the-art results. We also investigate the in-
formation encoded by the projection matrix.

5.1 Experimental Setup

Dataset The RST Discourse Treebank (RST-
DT) consists of 385 documents, with 347 for train-



Feature

Examples

Words at beginning and end of the EDU

POS tag at beginning and end of the EDU

Head word set from each EDU. The set includes words
whose parent in the depenency graph is ROOT or is not
within the EDU (Sagae, 2009).

Length of EDU in tokens

Distance between EDUs

Distance from the EDU to the beginning of the document
Distance from the EDU to the end of the document
Whether two EDUs are in the same sentence

(BEGIN-WORD-STACK1 = bur)
BEGIN-WORD-STACK1-QUEUE] = but, the)
BEGIN-TAG-STACK 1 = CC)
BEGIN-TAG-STACK1-QUEUEL = CC, DT)

HEAD-WORDS-STACK?2 = working)

o~ o~

LEN-STACK1-STACK2 = (7, 8))
DIST-STACK1-QUEUE] = 2)
DIST-FROM-START-QUEUE] = 3)
DIST-FROM-END-STACKI = 1)
SAME-SENT-STACK 1 -QUEUE! = True)

(
(
(
(
(

Table 2: Additional features for RST parsing

ing and 38 for testing in the standard split. As
we focus on relational discourse parsing, we fol-
low prior work (Feng and Hirst, 2012; Joty et al.,
2013), and use gold EDU segmentations. The
strongest automated RST segmentation methods
currently attain 95% accuracy (Xuan Bach et al.,
2012).

Preprocessing In the RST-DT, most nodes have
exactly two children, one nucleus and one satellite.
For non-binary relations, we use right-branching
to binarize the tree structure. For multi-nuclear
relations, we choose the left EDU as ‘“head”
EDU. The vocabulary V includes all unigrams af-
ter down-casing. No other preprocessing is per-
formed. In total, there are 16250 unique unigrams
in V.

Fixed projection matrix baselines Instead of
learning from data, a simple way to obtain a pro-
jection matrix is to use matrix factorization. Re-
cent work has demonstrated the effectiveness of
non-negative matrix factorization (NMF) for mea-
suring distributional similarity (Dinu and Lapata,
2010; Van de Cruys and Apidianaki, 2011). We
can construct B,,,,; in the concatenation form
of the projection matrix by applying NMF to the
EDU-feature matrix, M ~ WH. As a result, W
describes each EDU with a K -dimensional vector,
and H describes each word with a K-dimensional
vector. We can then construct B,,,,s by taking
the pseudo-inverse of H, which then projects from
word-count vectors into the latent space.

Another way to construct B is to use neural
word embeddings (Collobert and Weston, 2008).
In this case, we can view the product Bv as a com-
position of the word embeddings, using the simple
additive composition model proposed by Mitchell
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and Lapata (2010). We used the word embeddings
from Collobert and Weston (2008) with dimension
{25,50,100}. Grid search over heldout training
data was used to select the optimum latent dimen-
sion for both the NMF and word embedding base-
lines. Note that the size K of the resulting projec-
tion matrix is three times the size of the embed-
ding (or NMF representation) due to the concate-
nate construction.

We also consider the special case where A = 1.

Competitive systems We compare our approach
with HILDA (Hernault et al., 2010) and TSP (Joty
et al., 2013). Joty et al. (2013) proposed two dif-
ferent approaches to combine sentence-level pars-
ing models: sliding windows (TSP SW) and [
sentence-1 subtree (TSP 1-1). In the comparison,
we report the results of both approaches. All re-
sults are based on the same gold standard EDU
segmentation. We cannot compare with the re-
sults of Feng and Hirst (2012), because they do
not evaluate on the overall discourse structure, but
rather treat each relation as an individual classifi-
cation problem.

Metrics To evaluate the parsing performance,
we use the three standard ways to measure the per-
formance: unlabeled (i.e., hierarchical spans) and
labeled (i.e., nuclearity and relation) F-score, as
defined by Black et al. (1991). The application
of this approach to RST parsing is described by
Marcu (2000b).?> To compare with previous works
on RST-DT, we use the 18 coarse-grained relations
defined in (Carlson et al., 2001).

3We implemented the evaluation metrics by ourselves.
Together with the DPLP system, all codes are published on
https://github.com/jiyfeng/DPLP



Method Matrix Form +Features K Span  Nuclearity  Relation
Prior work

1. HILDA (Hernault et al., 2010) 83.0 68.4 54.8
2. TSP 1-1 (Joty et al., 2013) 82.47 6843 55.73
3. TSP SW (Joty et al., 2013) 82.74 68.40 55.71
Our work

4. Basic features A=0 Yes 7943 67.98 52.96
5. Word embeddings Concatenation  No 75 7528 67.14 53.79
6. NMF Concatenation  No 150 78.57 67.66 54.80
7. Bag-of-words A=1 Yes 79.85 69.01 60.21
8. DPLP Concatenation  No 60 8091 69.39 58.96
9. DpLP Difference No 60 80.47 68.61 58.27
10. DpPLP Concatenation  Yes 60 82.08 71.13 61.63
11. DpLP General Yes 30 81.60 70.95 61.75
Human annotation 88.70  77.72 65.75

Table 3: Parsing results of different models on the RST-DT test set. The results of TSP and HILDA are
reprinted from prior work (Joty et al., 2013; Hernault et al., 2010).

5.2 Experimental Results

Table 3 presents RST parsing results for DPLP and
some alternative systems. All versions
of DPLP outperform the prior state-of-the-art
on nuclearity and relation detection. This includes
relatively simple systems whose features are
simply a projection of the word count vectors
for each EDU (lines 7 and 8). The addition of
the features from Table 2 improves performance
further, leading to absolute F-score improvement
of around 2.5% in nuclearity and 6% in relation
prediction (lines 9 and 10).

On span detection, DPLP performs slightly
worse than the prior state-of-the-art. These sys-
tems employ richer syntactic and contextual fea-
tures, which might be especially helpful for span
identification. As shown by line 4 of the re-
sults table, the basic features from Table 2 pro-
vide most of the predictive power for spans; how-
ever, these features are inadequate at the more
semantically-oriented tasks of nuclearity and re-
lation prediction, which benefit substantially from
the projected features. Since correctly identifying
spans is a precondition for nuclearity and relation
prediction, we might obtain still better results by
combining features from HILDA and TSP with the
representation learning approach described here.

Lines 5 and 6 show that discriminative learning
of the projection matrix is crucial, as fixed projec-
tions obtained from NMF or neural word embed-
dings perform substantially worse. Line 7 shows
that the original bag-of-words representation to-
gether with basic features could give us some ben-
efit on discourse parsing, but still not as good as
results from DPLP. From lines 8 and 9, we see

that the concatenation construction is superior to
the difference construction, but the comparison
between lines 10 and 11 is inconclusive on the
merits of the general form of A. This suggests
that using the projection matrix to model interre-
lationships between EDUs does not substantially
improve performance, and the simpler concatena-
tion construction may be preferred.

Figure 3 shows how performance changes for
different latent dimensions K. At each value of
K, we employ grid search over a development set
to identify the optimal regularizers A and 7. For
the concatenation construction, performance is not
overly sensitive to K. For the general form of A,
performance decreases with large K. Recall from
Section 2.3 that this construction has nine times as
many parameters as the concatenation form; with
large values of K, it is likely to overfit.

5.3 Analysis of Projection Matrix

Why does projection of the surface features im-
prove discourse parsing? To answer this question,
we examine what information the projection ma-
trix is learning to encoded. We take the projec-
tion matrix from the concatenation construction
and K = 60 as an example for case study. Re-
calling the definition in equation 4, the projection
matrix A will be composed of three identical sub-
matrices B € R?2°*V. The columns of the B ma-
trix can be viewed as 20-dimensional descriptors
of the words in the vocabulary.

For the purpose of visualization, we further re-
duce the dimension of latent representation from
K = 20 to 2 dimensions using t-SNE (van der
Maaten and Hinton, 2008). One further simpli-
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Figure 3: The performance of our parser over different latent dimension K. Results for DPLP include

the additional features from Table 3

fication for visualization is we consider only the
top 1000 frequent unigrams in the RST-DT train-
ing set. For comparison, we also apply t-SNE to
the projection matrix B,,,, s recovered from non-
negative matrix factorization.

Figure 4 highlights words that are related to dis-
course analysis. Among the top 1000 words, we
highlight the words from 5 major discourse con-
nective categories provided in Appendix B of the
PDTB annotation manual (Prasad et al., 2008):
CONJUNCTION, CONTRAST, PRECEDENCE, RE-
SULT, and SUCCESSION. In addition, we also
highlighted two verb categories from the top 1000
words: modal verbs and reporting verbs, with their
inflections (Krestel et al., 2008).

From the figure, it is clear DPLP has learned a
projection matrix that successfully groups several
major discourse-related word classes: particularly
modal and reporting verbs; it has also grouped
succession and precedence connectives with some
success. In contrast, while NMF does obtain com-
pact clusters of words, these clusters appear to be
completely unrelated to discourse function of the
words that they include. This demonstrates the
value of using discriminative training to obtain the
transformed representation of the discourse units.

6 Related Work

Early work on document-level discourse parsing
applied hand-crafted rules and heuristics to build
trees in the framework of Rhetorical Structure
Theory (Sumita et al., 1992; Corston-Oliver, 1998;
Marcu, 2000a). An early data-driven approach
was offered by Schilder (2002), who used distribu-
tional techniques to rate the topicality of each dis-
course unit, and then chose among underspecified
discourse structures by placing more topical sen-
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tences near the root. Learning-based approaches
were first applied to identify within-sentence dis-
course relations (Soricut and Marcu, 2003), and
only later to cross-sentence relations at the docu-
ment level (Baldridge and Lascarides, 2005). Of
particular relevance to our inference technique are
incremental discourse parsing approaches, such
as shift-reduce (Sagae, 2009) and A* (Muller et
al., 2012). Prior learning-based work has largely
focused on lexical, syntactic, and structural fea-
tures, but the close relationship between discourse
structure and semantics (Forbes-Riley et al., 2006)
suggests that shallow feature sets may struggle
to capture the long tail of alternative lexicaliza-
tions that can be used to realize discourse rela-
tions (Prasad et al., 2010; Marcu and Echihabi,
2002). Only Subba and Di Eugenio (2009) incor-
porate rich compositional semantics into discourse
parsing, but due to the ambiguity of their seman-
tic parser, they must manually select the correct
semantic parse from a forest of possiblities.

Recent work has succeeded in pushing the state-
of-the-art in RST parsing by innovating on sev-
eral fronts. Feng and Hirst (2012) explore rich
linguistic linguistic features, including lexical se-
mantics and discourse production rules suggested
by Lin et al. (2009) in the context of the Penn Dis-
course Treebank (Prasad et al., 2008). Muller et
al. (2012) show that A* decoding can outperform
both greedy and graph-based decoding algorithms.
Joty et al. (2013) achieve the best prior results
on RST relation detection by (i) jointly perform-
ing relation detection and classification, (ii) per-
forming bottom-up rather than greedy decoding,
and (iii) distinguishing between intra-sentence and
inter-sentence relations. Our approach is largely
orthogonal to this prior work: we focus on trans-
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Figure 4: t-SNE Visualization on latent representations of words.

forming the lexical representation of discourse
units into a latent space to facilitate learning. As
shown in Figure 4(a), this projection succeeds
at grouping words with similar discourse func-
tions. We might expect to obtain further improve-
ments by augmenting this representation learning
approach with rich syntactic features (particularly
for span identification), more accurate decoding,
and special treatment of intra-sentence relations;
this is a direction for future research.

Discriminative learning of latent features for
discourse processing can be viewed as a form
of representation learning (Bengio et al., 2013).
Also called Deep Learning, such approaches
have recently been applied in a number of NLP
tasks (Collobert et al., 2011; Socher et al., 2012).
Of particular relevance are applications to the de-
tection of semantic or discourse relations, such
as paraphrase, by comparing sentences in an in-
duced latent space (Socher et al., 2011; Guo and
Diab, 2012; Ji and Eisenstein, 2013). In this work,
we show how discourse structure annotations can
function as a supervision signal to discriminatively
learn a transformation from lexical features to a la-
tent space that is well-suited for discourse parsing.
Unlike much of the prior work on representation
learning, we induce a simple linear transforma-
tion. Extension of our approach by incorporating
a non-linear activation function is a natural topic
for future research.

7 Conclusion

We have presented a framework to perform dis-
course parsing while jointly learning to project to
a low-dimensional representation of the discourse
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units. Using the vector-space representation of
EDUs, our shift-reduce parsing system substan-
tially outperforms existing systems on nuclearity
detection and discourse relation identification. By
adding some additional surface features, we ob-
tain further improvements. The low dimensional
representation also captures basic intuitions about
discourse connectives and verbs, as shown in Fig-
ure 4(a).

Deep learning approaches typically apply a
non-linear transformation such as the sigmoid
function (Bengio et al., 2013). We have con-
ducted a few unsuccessful experiments with the
“hard tanh” function proposed by Collobert and
Weston (2008), but a more complete exploration
of non-linear transformations must wait for future
work. Another direction would be more sophis-
ticated composition of the surface features within
each elementary discourse unit, such as the hierar-
chical convolutional neural network (Kalchbren-
ner and Blunsom, 2013) or the recursive tensor
network (Socher et al., 2013). It seems likely that
a better accounting for syntax could improve the
latent representations that our method induces.

Acknowledgments

We thank the reviewers for their helpful feedback,
particularly for the connection to multitask learn-
ing. We also want to thank Kenji Sagae and
Vanessa Wei Feng for the helpful discussion via
email communication. This research was sup-
ported by Google Faculty Research Awards to the
second author.



References

Jason Baldridge and Alex Lascarides. 2005. Proba-
bilistic head-driven parsing for discourse structure.
In Proceedings of the Ninth Conference on Compu-
tational Natural Language Learning, pages 96—103.

Yoshua Bengio, Aaron Courville, and Pascal Vincent.
2013. Representation Learning: A Review and New
Perspectives. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 35(8):1798—-1828.

Ezra Black, Steve Abney, Dan Flickinger, Claudia
Gdaniec, Ralph Grishman, Phil Harrison, Don Hin-
dle, Robert Ingria, Fred Jelinek, Judith Klavans,
Mark Liberman, Mitchell Marcus, Salim Roukos,
Beatrice Santorini, and Tomek Strzalkowski. 1991.
A Procedure for Quantitatively Comparing the Syn-
tactic Coverage of English Grammars. In Speech
and Natural Language: Proceedings of a Workshop
Held at Pacific Grove, California, February 19-22,
1991, pages 306-311.

Jill Burstein, Joel Tetreault, and Martin Chodorow.
2013. Holistic discourse coherence annotation
for noisy essay writing. Dialogue & Discourse,
4(2):34-52.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2001. Building a Discourse-tagged
Corpus in the Framework of Rhetorical Structure
Theory. In Proceedings of Second SIGdial Work-
shop on Discourse and Dialogue.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceed-
ings of ACL, page 111. Association for Computa-
tional Linguistics.

R. Collobert and J. Weston. 2008. A Unified Architec-
ture for Natural Language Processing: Deep Neural
Networks with Multitask Learning. In ICML.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural Lan-
guage Processing (Almost) from Scratch. Journal of
Machine Learning Research, 12:2493-2537.

Simon Corston-Oliver. 1998. Beyond string matching
and cue phrases: Improving efficiency and coverage
in discourse analysis. In The AAAI Spring Sympo-
sium on Intelligent Text Summarization, pages 9—15.

Koby Crammer and Yoram Singer. 2001. On the Algo-
rithmic Implementation of Multiclass Kernel-based
Vector Machines. Journal of Machine Learning Re-
search, 2:265-292.

Georgiana Dinu and Mirella Lapata. 2010. Measur-
ing Distributional Similarity in Context. In EMNLP,
pages 1162-1172.

Vanessa Wei Feng and Graeme Hirst. 2012. Text-level
Discourse Parsing with Rich Linguistic Features. In
Proceedings of ACL.

22

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A Kalyanpur,
Adam Lally, J William Murdock, Eric Nyberg, John
Prager, et al. 2010. Building Watson: An overview
of the DeepQA project. Al magazine, 31(3):59-79.

Katherine Forbes-Riley, Bonnie Webber, and Aravind
Joshi. 2006. Computing discourse semantics: The
predicate-argument semantics of discourse connec-
tives in D-LTAG. Journal of Semantics, 23(1):55—
106.

Weiwei Guo and Mona Diab. 2012. Modeling Sen-
tences in the Latent Space. In Proceedings of ACL,
pages 864—872, Jeju Island, Korea, July. Association
for Computational Linguistics.

Hugo Hernault, Helmut Prendinger, David A. duVerle,
and Mitsuru Ishizuka. 2010. HILDA: A Discourse
Parser Using Support Vector Machine Classification.
Dialogue and Discourse, 1(3):1-33.

Yangfeng Ji and Jacob Eisenstein. 2013. Discrimina-
tive Improvements to Distributional Sentence Simi-
larity. In EMNLP, pages 891-896, Seattle, Washing-
ton, USA, October. Association for Computational
Linguistics.

Shafiq Joty, Giuseppe Carenini, Raymond Ng, and
Yashar Mehdad. 2013. Combining Intra- and
Multi-sentential Rhetorical Parsing for Document-
level Discourse Analysis. In Proceedings of ACL.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
convolutional neural networks for discourse compo-
sitionality. In Proceedings of the Workshop on Con-
tinuous Vector Space Models and their Composition-
ality, pages 119-126, Sofia, Bulgaria, August. Asso-
ciation for Computational Linguistics.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple Semi-supervised Dependency Pars-
ing. In Proceedings of ACL-HLT, pages 595-603,
Columbus, Ohio, June. Association for Computa-
tional Linguistics.

Ralf Krestel, Sabine Bergler, and René Witte. 2008.
Minding the Source: Automatic Tagging of Re-
ported Speech in Newspaper Articles. In LREC,
Marrakech, Morocco, May. European Language Re-
sources Association (ELRA).

Quoc V. Le, Jiquan Ngiam, Adam Coates, Abhik
Lahiri, Bobby Prochnow, and Andrew Y. Ng. 2011.
On Optimization Methods for Deep Learning. In
ICML.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing Implicit Discourse Relations in the
Penn Discourse Treebank. In EMNLP.

Annie Louis, Aravind Joshi, and Ani Nenkova. 2010.
Discourse indicators for content selection in summa-
rization. In Proceedings of the 11th Annual Meeting
of the Special Interest Group on Discourse and Di-
alogue, pages 147-156. Association for Computa-
tional Linguistics.



Daniel Marcu and Abdessamad Echihabi. 2002. An
Unsupervised Approach to Recognizing Discourse
Relations. In Proceedings of ACL, pages 368-375,
Philadelphia, Pennsylvania, USA, July. Association
for Computational Linguistics.

Daniel Marcu. 1996. Building Up Rhetorical Structure
Trees. In Proceedings of AAAI

Daniel Marcu. 1999. A Decision-Based Approach to
Rhetorical Parsing. In Proceedings of ACL, pages
365-372, College Park, Maryland, USA, June. As-
sociation for Computational Linguistics.

Daniel Marcu. 2000a. The Rhetorical Parsing of Un-
restricted Texts: A Surface-based Approach. Com-
putational Linguistics, 26:395-448.

Daniel Marcu. 2000b. The Theory and Practice of Dis-
course Parsing and Summarization. MIT Press.

Scott Miller, Jethran Guinness, and Alex Zamanian.
2004. Name Tagging with Word Clusters and Dis-
criminative Training. In Daniel Marcu Susan Du-
mais and Salim Roukos, editors, HLT-NAACL, pages
337-342, Boston, Massachusetts, USA, May 2 -
May 7. Association for Computational Linguistics.

Eleni Miltsakaki and Karen Kukich. 2004. Evaluation
of text coherence for electronic essay scoring sys-
tems. Natural Language Engineering, 10(1):25-55.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive Sci-
ence, 34(8):1388-1429.

Philippe Muller, Stergos Afantenos, Pascal Denis, and
Nicholas Asher. 2012. Constrained Decoding for
Text-Level Discourse Parsing. In Coling, pages
1883—1900, Mumbai, India, December. The COL-
ING 2012 Organizing Committee.

Anil Kumar Nelakanti, Cedric Archambeau, Julien
Mairal, Francis Bach, and Guillaume Bouchard.
2013. Structured Penalties for Log-Linear Lan-
guage Models. In EMNLP, pages 233-243, Seattle,
Washington, USA, October. Association for Com-
putational Linguistics.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Giilsen Eryigit, Sandra Kiibler, Svetoslav
Marinov, and Erwin Marsi. 2007. MaltParser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2):95-135.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The penn discourse treebank 2.0. In
LREC.

Rashmi Prasad, Aravind Joshi, and Bonnie Webber.
2010. Realization of discourse relations by other
means: alternative lexicalizations. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics: Posters, pages 1023—-1031. Asso-
ciation for Computational Linguistics.

23

Kenji Sagae. 2009. Analysis of Discourse Structure
with Syntactic Dependencies and Data-Driven Shift-
Reduce Parsing. In Proceedings of the 11th Interna-
tional Conference on Parsing Technologies (IWPT),
pages 81-84, Paris, France, October. Association for
Computational Linguistics.

Frank Schilder. 2002. Robust discourse parsing via
discourse markers, topicality and position. Natural
Language Engineering, 8(3):235-255.

Richard Socher, Eric H. Huang, Jeffrey Pennington,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Dynamic Pooling and Unfolding Recursive Autoen-
coders for Paraphrase Detection. In NIPS.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic Composi-
tionality Through Recursive Matrix-Vector Spaces.
In EMNLP.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Swapna Somasundaran, Galileo Namata, Janyce
Wiebe, and Lise Getoor. 2009. Supervised and
unsupervised methods in employing discourse rela-
tions for improving opinion polarity classification.
In Proceedings of EMNLP.

Radu Soricut and Daniel Marcu. 2003. Sentence Level
Discourse Parsing using Syntactic and Lexical Infor-
mation. In NAACL.

Rajen Subba and Barbara Di Eugenio. 2009. An effec-
tive Discourse Parser that uses Rich Linguistic In-
formation. In NAACL-HLT, pages 566-574, Boul-
der, Colorado, June. Association for Computational
Linguistics.

K. Sumita, K. Ono, T. Chino, T. Ukita, and S. Amano.
1992. A discourse structure analyzer for Japanese
text. In Proceedings International Conference on
Fifth Generation Computer Systems, pages 1133—
1140.

Maite Taboada and William C Mann. 2006. Applica-
tions of rhetorical structure theory. Discourse stud-
ies, 8(4):567-588.

Benjamin Taskar, Carlos Guestrin, and Daphne Koller.
2003. Max-margin markov networks. In NIPS.

Joseph Turian, Lev Ratinov, and Yoshua Bengio.
2010. Word Representation: A Simple and General
Method for Semi-Supervised Learning. In Proceed-
ings of ACL, pages 384-394.

Tim Van de Cruys and Marianna Apidianaki. 2011.
Latent Semantic Word Sense Induction and Disam-
biguation. In Proceedings of ACL, pages 1476—
1485, Portland, Oregon, USA, June. Association for
Computational Linguistics.



Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9:2759-2605, November.

Kimberly Voll and Maite Taboada. 2007. Not all
words are created equal: Extracting semantic orien-
tation as a function of adjective relevance. In Pro-
ceedings of Australian Conference on Artificial In-
telligence.

Ngo Xuan Bach, Nguyen Le Minh, and Akira Shimazu.
2012. A Reranking Model for Discourse Segmenta-
tion using Subtree Features. In Proceedings of the
13th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 160—168.

Chun-Nam John Yu and Thorsten Joachims. 2009.
Learning structural SVMs with latent variables. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, pages 1169-1176.
ACM.

24



Text-level Discourse Dependency Parsing

Sujian Li* Liang Wang"

Zigiang Cao® Wenijie Li?

! Key Laboratory of Computational Linguistics, Peking University, MOE, China
2 Department of Computing, The Hong Kong Polytechnic University, HongKong
{lisujian,intfloat, zigiangyeah}@pku.edu.cn
cswjli@comp.polyu.edu.hk

Abstract

Previous researches on Text-level discourse
parsing mainly made use of constituency
structure to parse the whole document into
one discourse tree. In this paper, we present
the limitations of constituency based dis-
course parsing and first propose to use de-
pendency structure to directly represent the
relations between elementary discourse
units (EDUs). The state-of-the-art depend-
ency parsing techniques, the Eisner algo-
rithm and maximum spanning tree (MST)
algorithm, are adopted to parse an optimal
discourse dependency tree based on the arc-
factored model and the large-margin learn-
ing techniques. Experiments show that our
discourse dependency parsers achieve a
competitive performance on text-level dis-
course parsing.

1 Introduction

It is widely agreed that no units of the text can be
understood in isolation, but in relation to their
context. Researches in discourse parsing aim to
acquire such relations in text, which is funda-
mental to many natural language processing ap-
plications such as question answering, automatic
summarization and so on.

One important issue behind discourse parsing
is the representation of discourse structure. Rhe-
torical Structure Theory (RST) (Mann and
Thompson, 1988), one of the most influential
discourse theories, posits a hierarchical genera-
tive tree representation, as illustrated in Figure 1.
The leaves of a tree correspond to contiguous
text spans called Elementary Discourse Units
(EDUs)". The adjacent EDUs are combined into

1 EDU segmentation is a relatively trivial step in discourse
parsing. Since our work focus here is not EDU segmenta-
tion but discourse parsing. We assume EDUSs are already
known.
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the larger text spans by rhetorical relations (e.g.,
Contrast and Elaboration) and the larger text
spans continue to be combined until the whole
text constitutes a parse tree. The text spans
linked by rhetorical relations are annotated as
either nucleus or satellite depending on how sali-
ent they are for interpretation. It is attractive and
challenging to parse the whole text into one tree.

Since such a hierarchical discourse tree is
analogous to a constituency based syntactic tree
except that the constituents in the discourse trees
are text spans, previous researches have explored
different constituency based syntactic parsing
techniques (eg. CKY and chart parsing) and var-
ious features (eg. length, position et al.) for dis-
course parsing (Soricut and Marcu, 2003; Joty et
al., 2012; Reitter, 2003; LeThanh et al., 2004;
Baldridge and Lascarides, 2005; Subba and Di
Eugenio, 2009; Sagae, 2009; Hernault et al.,
2010b; Feng and Hirst, 2012). However, the ex-
isting approaches suffer from at least one of the
following three problems. First, it is difficult to
design a set of production rules as in syntactic
parsing, since there are no determinate genera-
tive rules for the interior text spans. Second, the
different levels of discourse units (e.g. EDUs or
larger text spans) occurring in the generative
process are better represented with different fea-
tures, and thus a uniform framework for dis-
course analysis is hard to develop. Third, to
reduce the time complexity of the state-of-the-art
constituency based parsing techniques, the ap-
proximate parsing approaches are prone to trap
in local maximum.

In this paper, we propose to adopt the depend-
ency structure in discourse representation to
overcome the limitations mentioned above. Here
is the basic idea: the discourse structure consists
of EDUs which are linked by the binary, asym-
metrical relations called dependency relations. A
dependency relation holds between a subordinate
EDU called the dependent, and another EDU on
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which it depends called the head, as illustrated in
Figure 2. Each EDU has one head. So, the de-
pendency structure can be seen as a set of head-
dependent links, which are labeled by functional
relations. Now, we can analyze the relations be-
tween EDUs directly, without worrying about
any interior text spans. Since dependency trees
contain much fewer nodes and on average they
are simpler than constituency based trees, the
current dependency parsers can have a relatively
low computational complexity. Moreover, con-
cerning linearization, it is well known that de-
pendency structures can deal with non-projective
relations, while constituency-based models need
the addition of complex mechanisms like trans-
formations, movements and so on. In our work,
we adopt the graph based dependency parsing
techniques learned from large sets of annotated
dependency trees. The Eisner (1996) algorithm
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e—ey* \ e;—ey* \
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e e — €3 el ez €3
1 2
e;—ey—es* er*—ez—e;3
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and maximum spanning tree (MST) algorithm
are used respectively to parse the optimal projec-
tive and non-projective dependency trees with
the large-margin learning technique (Crammer
and Singer, 2003). To the best of our knowledge,
we are the first to apply the dependency structure
and introduce the dependency parsing techniques
into discourse analysis.

The rest of this paper is organized as follows.
Section 2 formally defines discourse dependency
structure and introduces how to build a discourse
dependency treebank from the existing RST cor-
pus. Section 3 presents the discourse parsing ap-
proach based on the Eisner and MST algorithms.
Section 4 elaborates on the large-margin learning
technique as well as the features we use. Section
5 discusses the experimental results. Section 6
introduces the related work and Section 7 con-
cludes the paper.

er*—es—es e1—ezx—es”
SING \ AN \
e ] €3 e ez €3
3 4
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N
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Figure 1: Headed Constituency based Discourse Tree Structure (e,e, and e; denote three EDUS,
and * denotes the NUCLEUS constituent)
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Figure 2: Discourse Dependency Tree Structures (e;,e, and e; denote three EDUS, and the directed
arcs denote one dependency relations. The artificial eq is also displayed here.)

2 Discourse Dependency Structure and
Tree Bank

2.1 Discourse Dependency Structure

Similar to the syntactic dependency structure
defined by McDonald (2005a, 2005b), we insert
an artificial EDU e, in the beginning for each
document and label the dependency relation link-
ing from e, as ROOT. This treatment will sim-
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plify both formal definitions and computational
implementations. Normally, we assume that each
EDU should have one and only one head except
for e,. A labeled directed arc is used to represent
the dependency relation from one head to its de-
pendent. Then, discourse dependency structure
can be formalized as the labeled directed graph,
where nodes correspond to EDUs and labeled
arcs correspond to labeled dependency relations.



We assume that the text’ T is composed of
n+1 EDUs including the artificial e,. That is
T=eqg €1 € ... €. Let R={ry,ry, ... ,rn} denote a
finite set of functional relations that hold be-
tween two EDUs. Then a discourse dependency
graph can be denoted by G=<V, A> where V de-
notes a set of nodes and A denotes a set of la-
beled directed arcs, such that for the text T=¢, e,
€, ... e, and the label set R the following holds:
(1) V={ey eq, €, ..6,}

(2) Ac VxR xV, where <e,, r, e><A represents
an arc from the head e; to the dependent g;
labeled with the relation r.

(3) If<ej, r, e>cAthen <ey, r’, ez A for all ki

(4) If<e;, r,e>cAthen<e;, r’, e>¢A for all r'zr

The third condition assures that each EDU has
one and only one head and the fourth tells that
only one kind of dependency relation holds be-
tween two EDUs. According to the definition,
we illustrate all the 9 possible unlabeled depend-
ency trees for a text containing three EDUs in
Figure 2. The dependency trees 1’ to 7’ are pro-
jective while 8’ and 9’ are non-projective with
crossing arcs.

2.2 Our Discourse Dependency Treebank

To automatically conduct discourse dependency
parsing, constructing a discourse dependency
treebank is fundamental. It is costly to manually
construct such a treebank from scratch. Fortu-
nately, RST Discourse Treebank (RST-DT)
(Carlson et al., 2001) is an available resource to
help with.

A RST tree constitutes a hierarchical structure
for one document through rhetorical relations. A
total of 110 fine-grained relations (e.g. Elabora-
tion-part-whole and List) were used for tagging
RST-DT. They can be categorized into 18 classes
(e.g. Elaboration and Joint). All these relations
can be hypotactic (“mononuclear””) or paratactic
(“multi-nuclear”). A hypotactic relation holds
between a nucleus span and an adjacent satellite
span, while a paratactic relation connects two or
more equally important adjacent nucleus spans.
For convenience of computation, we convert the
n-ary (n>2) RST trees® to binary trees through
adding a new node for the latter n-1 nodes and
assume each relation is connected to only one
nucleus®. This departure from the original theory

2 The two terms “text” and “document” are used inter-
changeably and represent the same meaning.

® According to our statistics, there are totally 381 n-ary rela-
tions in RST-DT.

* We set the first nucleus as the only nucleus.
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is not such a major step as it may appear, since
any nucleus is known to contribute to the essen-
tial meaning. Now, each RST tree can be seen as
a headed constituency based binary tree where
the nuclei are heads and the children of each
node are linearly ordered. Given three EDUs”,
Figure 1 shows the possible 8 headed constituen-
cy based trees where the superscript * denotes
the heads (nuclei). We use dependency trees to
simulate the headed constituency based trees.

Contrasting Figure 1 with Figure 2, we use
dependency tree 1’ to simulate binary trees 1 and
8, and dependency tress 2°- 7’ to simulate binary
trees 2-7 correspondingly. The rhetorical rela-
tions in RST trees are kept as the functional rela-
tions which link the two EDUs in dependency
trees. With this kind of conversion, we can get
our discourse dependency treebank. It is worth
noting that the non-projective trees like 8’ and 9’
do not exist in our dependency treebank, though
they are eligible according to the definition of
discourse dependency graph.

3 Discourse Dependency Parsing

3.1 System Overview

As stated above, T=eg e, ...e, represents an input
text (document) where e; denotes the i EDU of
T. We use V to denote all the EDU nodes and
VxRxV,4 (Vo =V-{e}) denote all the possible
discourse dependency arcs. The goal of discourse
dependency parsing is to parse an optimal span-
ning tree from VxRxV.,. Here we follow the arc
factored method and define the score of a de-
pendency tree as the sum of the scores of all the
arcs in the tree. Thus, the optimal dependency
tree for T is a spanning tree with the highest
score and obtained through the function DT(T,w):

DT(T,w) =argmaxg _y,z., score(T,G;)
= argmax > Mere)

<g;,r.e;>eGy

> w-f(e.r.e)
<g;,r.e;>eGp
where Gy means a possible spanning tree with
score(T,G;) and A(e;, 7, ¢;) denotes the score of

the arc <e;, r, &> which is calculated according to
its feature representation f(e;,r,e;) and a weight
vector w.

Next, two basic problems need to be solved:
how to find the dependency tree with the highest

Gr cVxRxV_,

=arg ma-Xc;T SV xRxV o

% We can easily get all possible headed binary trees for one
more complex text containing more than three EDUs, by
extending the 8 possible situations for three EDUs.



score for T given all the arc scores (i.e. a parsing
problem), and how to learn and compute the
scores of arcs according to a set of arc features
(i.e. a learning problem).

The following of this section addresses the
first problem. Given the text T, we first reduce
the multi-digraph composed of all possible arcs
to the digraph. The digraph keeps only one arc
<ej, I, &> between two nodes which satisfies
l(ei,r, ej) = max.A(e;, 7', e;) . Thus, we can
proceed with a reduction from labeled parsing to
unlabeled parsing. Next, two algorithms, i.e. the
Eisner algorithm and MST algorithm, are pre-
sented to parse the projective and non-projective
unlabeled dependency trees respectively.

3.2 Eisner Algorithm

It is well known that projective dependency pars-
ing can be handled with the Eisner algorithm
(1996) which is based on the bottom-up dynamic
programming techniques with the time complexi-
ty of O(n®). The basic idea of the Eisner algo-
rithm is to parse the left and right dependents of
an EDU independently and combine them at a
later stage. This reduces the overhead of index-
ing heads. Only two binary variables, i.e. c and d,
are required to specify whether the heads occur
leftmost or rightmost and whether an item is
complete.

Eisner(T, A)

Input: Text T=eg ;... €,; Arc scores A(e;e;)

1 Instantiate E[i, i, d, ¢c]=0.0 for all i, d, ¢

2 Form:=1ton

3 Fori:=1ton

j=i+m

if j> n then break;

# Create subgraphs with ¢=0 by adding arcs

E[l, jl 0! 0]=maxisqﬁj (E[irqur1]+E[q+lrj!011]+/1(ej1ei))
E[l, jl 11 0]=maxisqﬁj (E[irqur1]+E[q+lrj!011]+/1(ei1ej))
# Add corresponding left/right subgraphs

E[l, jr 0, 1]:maXiSqu (E[I!qr011]+E[q!J1010]

4
5
6
7
8
9
1
1 Efi, j, 1, 1]=maxi« (E[i,9,1,0]+E[q,j,1,1])

0
1

Figure 3: Eisner Algorithm

Figure 3 shows the pseudo-code of the Eisner
algorithm. A dynamic programming table
E[i,j,d,c] is used to represent the highest scored
subtree spanning e; to e;. d indicates whether ¢ is
the head (d=1) or ¢; is head (d=0). c¢ indicates
whether the subtree will not take any more de-
pendents (c=1) or it needs to be completed (c=0).
The algorithm begins by initializing all length-
one subtrees to a score of 0.0. In the inner loop,
the first two steps (Lines 7 and 8) are to construct
the new dependency arcs by taking the maximum
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over all the internal indices (i<q<j) in the span,
and calculating the value of merging the two sub-
trees and adding one new arc. The last two steps
(Lines 10 and 11) attempt to achieve an optimal
left/right subtree in the span by adding the corre-
sponding left/right subtree to the arcs that have
been added previously. This algorithm considers
all the possible subtrees. We can then get the
optimal dependency tree with the score
E[O,n,1,1] .

3.3 Maximum Spanning Tree Algorithm

As the bottom-up Eisner Algorithm must main-
tain the nested structural constraint, it cannot
parse the non-projective dependency trees like 8’
and 9’ in Figure 2. However, the non-projective
dependency does exist in real discourse. For ex-
ample, the earlier text mainly talks about the top-
ic A with mentioning the topic B, while the latter
text gives a supplementary explanation for the
topic B. This example can constitute a non-
projective tree and its pictorial diagram is exhib-
ited in Figure 4. Following the work of McDon-
ald (2005b), we formalize discourse dependency
parsing as searching for a maximum spanning
tree (MST) in a directed graph.

O o ... ;i ... O ... O

A A B A B

Figure 4: Pictorial Diagram of Non-projective
Trees

Chu and Liu (1965) and Edmonds (1967) in-
dependently proposed the virtually identical al-
gorithm named the Chu-Liu/Edmonds algorithm,
for finding MSTs on directed graphs (McDonald
et al. 2005b). Figure 5 shows the details of the
Chu-Liu/Edmonds algorithm for discourse pars-
ing. Each node in the graph greedily selects the
incoming arc with the highest score. If one tree
results, the algorithm ends. Otherwise, there
must exist a cycle. The algorithm contracts the
identified cycle into a single node and recalcu-
lates the scores of the arcs which go in and out of
the cycle. Next, the algorithm recursively call
itself on the contracted graph. Finally, those arcs
which go in or out of one cycle will recover
themselves to connect with the original nodes in
V. Like McDonald et al. (2005b), we adopt an
efficient  implementation of the Chu-
Liu/Edmonds algorithm that is proposed by Tar-
jan (1997) with O(n?) time complexity.



Chu-Liu-Edmonds(G, 1)

Input: Text T=eye;... €, Arc scores A(e;g))

A’ = {<e;, | & = argmax A(g;g)); 1<j<V[}

G =(V,A)

If G” has no cycles, then return G’

Find an arc set Ac that is a cycle in G’

<G, ep> = contract(G, Ac, 1)

G = (V, A)=Chu-Liu-Edmonds(Gc, 1)

For the arc <e;,ec> where ep(e;,ec)=g;:
A=AUAcU{<e;e)}-{<eiec>, <a(g).e>}

For the arc <ec, &> where ep(ec ,e;)=¢;:
A=AU{<e;e>}-{<ec.e>}

OO0 ~NO O WN B

10
11 v=V
12 Return G
Contract(G=(V,A), Ac, 1)
Let G¢ be the subgraph of G excluding nodes in C
Add a node ec to G¢ denoting the cycle C
For g; eV-C : JejeC <e;g>cA
Add arc <ec,g> to G¢ with
ep(ec.ej)=argmax,,ecM(€;.€;)
ﬂ“(eClej) = l(ep(ecrej)7ej)
Fore; eV-C: 3gjeC (eig)eA
Add arc <e;,ec> to G with
ep(e;.ec)= =argmax,cc [A(€.))-A(a(e;).e)]
L(eiec) =A(ei€)-A(alei).e)+score(C)
Return <G, ep>

A WN PR

o o1

© 0o

Figure 5: Chu-Liu/Edmonds MST Algorithm

4 Learning

In Section 3, we assume that the arc scores are
available. In fact, the score of each arc is calcu-
lated as a linear combination of feature weights.
Thus, we need to determine the features for arc
representation first. With referring to McDonald
et al. (2005a; 2005b), we use the Margin Infused
Relaxed Algorithm (MIRA) to learn the feature
weights based on a training set of documents

annotated with dependency structures {(T,, y, )}i )

where y; denotes the correct dependency tree for
the text T;.

4.1 Features

Following (Feng and Hirst, 2012; Lin et al., 2009;
Hernault et al., 2010b), we explore the following
6 feature types combined with relations to repre-
sent each labeled arc <e;, r, e3> .

(1) WORD: The first one word, the last one
word, and the first bigrams in each EDU, the pair
of the two first words and the pair of the two last
words in the two EDUs are extracted as features.
(2) POS: The first one and two POS tags in each
EDU, and the pair of the two first POS tags in
the two EDUs are extracted as features.

(3) Position: These features concern whether the
two EDUs are included in the same sentence, and
the positions where the two EDUs are located in
one sentence, one paragraph, or one document.

(4) Length: The length of each EDU.

(5) Syntactic: POS tags of the dominating nodes
as defined in Soricut and Marcu (2003) are ex-
tracted as features. We use the syntactic trees
from the Penn Treebank to find the dominating
nodes,.

(6) Semantic similarity: We compute the se-
mantic relatedness between the two EDUs based
on WordNet. The word pairs are extracted from
(ei, &) and their similarity is calculated. Then, we
can get a weighted complete bipartite graph
where words are deemed as nodes and similarity
as weights. From this bipartite graph, we get the
maximum weighted matching and use the aver-
aged weight of the matches as the similarity be-
tween e and €. In particular, we use
path_similarity, wup_similarity, res_similarity,
jen_similarity and lin_similarity provided by the
nltk.wordnet.similarity (Bird et. al., 2009) pack-
age for calculating word similarity.

As for relations, we experiment two sets of
relation labels from RST-DT. One is composed
of 19 coarse-grained relations and the other 111
fine-grained relations®.

4.2 MIRA based Learning

Margin Infused Relaxed Algorithm (MIRA) is an
online algorithm for multiclass classification and
is extended by Taskar et al. (2003) to cope with
structured classification.

MIRA Input: a training set {(T;. ¥, )}IN:1

1 w’=0;v=0;j=0

2  Foriter:=1to K

3 Fori:=1toN

4 update w according to (T, y;):
min“wj+l —Wj"
st s(Ti y) —s(T v ) = L(Yi ¥ )
where y,'= DT (T,,w’)

5 V=VHW

6 j=j+l

7 w=V/(K*N)

29

Figure 6: MIRA based Learning

Figure 6 gives the pseudo-code of the MIRA
algorithm (McDonld et al., 2005b). This algo-
rithm is designed to update the parameters w us-
ing a single training instance (T;,y;) in each
iteration. On each update, MIRA attempts to
keep the norm of the change to the weight vector

® 19 relations include the original 18 relation in RST-DT
plus one artificial ROOT relation. The 111 relations also
include the ROOT relation.



as small as possible, which is subject to con-
structing the correct dependency tree under con-
sideration with a margin at least as large as the
loss of the incorrect dependency trees. We define
the loss of a discourse dependency tree y,' (de-

noted by L(y,,y,") ) as the number of the EDUs

that have incorrect heads. Since there are expo-
nentially many possible incorrect dependency
trees and thus exponentially many margin con-
straints, here we relax the optimization and stay
with a single best dependency tree
y,'= DT (T,,w') which is parsed under the weight

vector w. In this algorithm, the successive up-
dated values of w are accumulated and averaged
to avoid overfitting.

5 Experiments

5.1 Preparation

We test our methods experimentally using the
discourse dependency treebank which is built as
in Section 2. The training part of the corpus is
composed of 342 documents and contains 18,765
EDUs, while the test part consists of 38 docu-
ments and 2,346 EDUs. The number of EDUs in
each document ranges between 2 and 304. Two
sets of relations are adopted. One is composed of
19 relations and Table 1 shows the number of
each relation in the training and test corpus. The
other is composed of 111 relations. Due to space
limitation, Table 2 only lists the 10 highest-
distributed relations with regard to their frequen-
cy in the training corpus.

The following experiments are conducted: (1)
to measure the parsing performance with differ-
ent relation sets and different feature types; (2) to
compare our parsing methods with the state-of-
the-art discourse parsing methods.

Relations | Train | Test | Relations | Train | Test
Elaboration | 6879 796 Temporal 426 73
Attribution | 2641 343 ROOT 342 38
Joint 1711 212 Compari. 273 29
Same-unit 1230 127 Condition 258 48
Contrast 944 146 Manner. 191 27
Explanation | 849 110 Summary 188 32
Background | 786 111 Topic-Cha. | 187 13
Cause 785 82 Textual 147 9
Evaluation 502 80 TopicCom. | 126 24
Enablement | 500 46 Total 18765 | 2346

Table 1: Coarse-grained Relation Distribution

30

Relations Train | Test
Elaboration-additional 2912 | 312
Attribution 2474 | 329
Elaboration-object-attribute-e 2274 | 250
List 1690 | 206
Same-unit 1230 | 127
Elaboration-additional-e 747 69
Circumstance 545 80
Explanation-argumentative 524 70
Purpose 430 43
Contrast 358 64

Table 2: 10 Highest Distributed Fine-grained
Relations

5.2 Feature Influence on Two Relation Sets

So far, researches on discourse parsing avoid
adopting too fine-grained relations and the rela-
tion sets containing around 20 labels are widely
used. In our experiments, we observe that adopt-
ing a fine-grained relation set can even be helpful
to building the discourse trees. Here, we conduct
experiments on two relation sets that contain 19
and 111 labels respectively. At the same time,
different feature types are tested their effects on
discourse parsing.

Method | Features Unlabeled Labeled
AcC. AccC.

Eisner 1+2 0.3602 0.2651
1+2+3 0.7310 0.4855
1+2+3+4 0.7370 0.4868
1+2+3+4+45 0.7447 0.4957
1+2+3+445+6 | 0.7455 0.4983

MST 1+2 0.1957 0.1479
1+2+3 0.7246 0.4783
1+2+3+4 0.7280 0.4795
1+2+3+4+45 0.7340 0.4915
1+2+3+4+45+6 | 0.7331 0.4851

Table 3: Performance Using Coarse-grained Re-
lations.

Method | Feature types | Unlabeled Labeled
Acc. AccC.

Eisner 1+2 0.3743 0.2421
1+2+3 0.7451 0.4079
1+2+3+4 0.7472 0.4041
1+2+3+4+5 0.7506 0.4254
1+2+3+4+45+6 | 0.7485 0.4288

MST 1+2 0.2080 0.1300
1+2+3 0.7366 0.4054
1+2+3+4 0.7468 0.4071
1+2+3+4+5 0.7494 0.4288
1+2+3+4+5+6 | 0.7460 0.4309

Table 4: Performance Using Fine-grained Rela-
tions.

Based on the MIRA leaning algorithm, the
Eisner algorithm and MST algorithm are used to
parse the test documents respectively. Referring
to the evaluation of syntactic dependency parsing,



we use unlabeled accuracy to calculate the ratio
of EDUs that correctly identify their heads, la-
beled accuracy the ratio of EDUs that have both
correct heads and correct relations. Table 3 and
Table 4 show the performance on two relation
sets. The numbers (1-6) represent the corre-
sponding feature types described in Section 4.1.
From Table 3 and Table 4, we can see that the
addition of more feature types, except the 6™ fea-
ture type (semantic similarity), can promote the
performance of relation labeling, whether using
the coarse-grained 19 relations and the fine-
grained 111 relations. As expected, the first and
second types of features (WORD and POS) are
the ones which play an important role in building
and labeling the discourse dependency trees.
These two types of features attain similar per-
formance on two relation sets. The Eisner algo-
rithm can achieve unlabeled accuracy around
0.36 and labeled accuracy around 0.26, while
MST algorithm achieves unlabeled accuracy
around 0.20 and labeled accuracy around 0.14.
The third feature type (Position) is also very
helpful to discourse parsing. With the addition of
this feature type, both unlabeled accuracy and
labeled accuracy exhibit a marked increase. Es-
pecially, when applying MST algorithm on dis-
course parsing, unlabeled accuracy rises from
around 0.20 to around 0.73. This result is con-
sistent with Hernault’s work (2010b) whose ex-
periments have exhibited the usefulness of those
position-related features. The other two types of
features which are related to length and syntactic
parsing, only promote the performance slightly.
As we employed the MIRA learning algorithm,
it is possible to identify which specific features
are useful, by looking at the weights learned to
each feature using the training data. Table 5 se-
lects 10 features with the highest weights in ab-
solute value for the parser which uses the coarse-
grained relations, while Table 6 selects the top
10 features for the parser using the fine-grained
relations. Each row denotes one feature: the left
part before the symbol “&” is from one of the 6
feature types and the right part denotes a specific
relation. From Table 5 and Table 6, we can see
that some features are reasonable. For example,
The sixth feature in Table 5 represents that the
dependency relation is preferred to be labeled
Explanation with the fact that “because” is the
first word of the dependent EDU. From these
two tables, we also observe that most of the
heavily weighted features are usually related to
those highly distributed relations. When using
the coarse-grained relations, the popular relations

(eg. Elaboration, Attribution and Joint) are al-
ways preferred to be labeled. When using the
fine-grained relations, the large relations includ-
ing List and Elaboration-object-attribute-e are
given the precedence of labeling. This phenome-
non is mainly caused by the sparseness of the
training corpus and the imbalance of relations.
To solve this problem, the augment of training

corpus is necessary.

Feature description Weight

1 Last two words in dependent EDU are 0475
“appeals court” & Joint )
First word in dependent EDU is “racked”

2 & Elaboration 0.445
First two words in head EDU are “I ‘d”

3 & Attribution 0.324
Last word in dependent EDU is “in”

4 |& Elaboration -0.323
5 The res_similarity between two EDUs is 0 0.322
& Elaboration '

First word in dependent EDU is “because”

6 & Explanation 0.306

7 _|First POS in head EDU is “DT” & Joint -0.299

8 First two words in dependent EDU are “that 0.287
required” & Elaboration )

9 First two words in dependent EDU are “that 0277
the” & Elaboration '
First word in dependent EDU is “because”

10 |g Cause 0.265

Table 5: Top 10 Feature Weights for Coarse-
grained Relation Labeling (Eisner Algorithm)

Features Weight

1 |Last two words in dependent EDU are “ap- 0576
peals court” & List )

2 |First two words in head EDU are “I ‘d” 0.385
& Attribution )

3 [First two words in dependent EDU is “that 0.348
the” & Elaboration-object-attribute-e )

4 [First POS in head EDU is “DT” & List -0.323

5 |Last word in dependent EDU is “in” & List  |-0.286

6 [First word in dependent EDU is “racked” & 0.445
Elaboration-object-attribute-e )

7 [First two word pairs are <”In an””But | 5o,
even”> & List )

8 |Dependent EDU has a dominating node -0.244
tagged “CD”& Elaboration-object-attribute-e | ™

9 [First two words in dependent EDU are “pa- 0231
tents disputes” & Purpose )

10 [First word in dependent EDU is “t0” 0.230
& Purpose )

Table 6: Top 10 Feature Weights for Coarse-
grained Relation Labeling (Eisner Algorithm)

Unlike previous discourse parsing approaches,

our methods combine tree building and relation
labeling into a uniform framework naturally.
This means that relations play a role in building
the dependency tree structure. From Table 3 and
Table 4, we can see that fine-grained relations
are more helpful to building unlabeled discourse
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trees more than the coarse-grained relations. The
best result of unlabeled accuracy using 111 rela-
tions is 0.7506, better than the best performance
(0.7447) using 19 relations. We can also see that
the labeled accuracy using the fine-grained rela-
tions can achieve 0.4309, only 0.06 lower than
the best labeled accuracy (0.4915) using the
coarse-grained relations.

In addition, comparing the MST algorithm
with the Eisner algorithm, Table 3 and Table 4
show that their performances are not significant-
ly different from each other. But we think that
MST algorithm has more potential in discourse
dependency parsing, because our converted dis-
course dependency treebank contains only pro-
jective trees and somewhat suppresses the MST
algorithm to exhibit its advantage of parsing non-
projective trees. In fact, we observe that some
non-projective dependencies produced by the
MST algorithm are even reasonable than what
they are in the dependency treebank. Thus, it is
important to build a manually labeled discourse
dependency treebank, which will be our future
work.

5.3 Comparison with Other Systems

The state-of-the-art discourse parsing methods
normally produce the constituency based dis-
course trees. To comprehensively evaluate the
performance of a labeled constituency tree, the
blank tree structure (‘S”), the tree structure with
nuclearity indication (‘N’), and the tree structure
with rhetorical relation indication but no nuclear-
ity indication (‘R’) are evaluated respectively
using the F measure (Marcu 2000).

To compare our discourse parsers with others,
we adopt MIRA and Eisner algorithm to conduct
discourse parsing with all the 6 types of features
and then convert the produced projective de-
pendency trees to constituency based trees
through their correspondence as stated in Section
2. Our parsers using two relation sets are named
Our-coarse and Our-fine respectively. The in-
putted EDUs of our parsers are from the standard
segmentation of RST-DT. Other text-level dis-
course parsing methods include: (1) Percep-
coarse: we replace MIRA with the averaged per-
ceptron learning algorithm and the other settings
are the same with Our-coarse; (2) HILDA-
manual and HILDA-seg are from Hernault
(2010b)’s work, and their inputted EDUs are
from RST-DT and their own EDU segmenter
respectively; (3) LeThanh indicates the results
given by LeThanh el al. (2004), which built a
multi-level rule based parser and used 14 rela-
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tions evaluated on 21 documents from RST-DT;
(4) Marcu denotes the results given by Mar-
cu(2000)’s decision-tree based parser which used
15 relations evaluated on unspecified documents.

Table 7 shows the performance comparison
for all the parsers mentioned above. Human de-
notes the manual agreement between two human
annotators. From this table, we can see that both
our parsers perform better than all the other
parsers as a whole, though our parsers are not
developed directly for constituency based trees.
Our parsers do not exhibit obvious advantage
than HILDA-manual on labeling the blank tree
structure, because our parsers and HILDA-
manual all perform over 94% of Human and this
performance level somewhat reaches a bottle-
neck to promote more. However, our parsers
outperform the other parsers on both nuclearity
and relation labeling. Our-coarse achieves 94.2%
and 91.8% of the human F-scores, on labeling
nuclearity and relation respectively, while Our-
fine achieves 95.2% and 87.6%. We can also see
that the averaged perceptron learning algorithm,
though simple, can achieve a comparable per-
formance, better than HILDA-manual. The
parsers HILDA-seg, LeThanh and Marcu use
their own automatic EDU segmenters and exhibit
a relatively low performance. This means that
EDU segmentation is important to a practical
discourse parser and worth further investigation.

S N R
Our-coarse 82.9 73.0 60.6
Our-fine 83.4 73.8 57.8
Percep-coarse 82.3 72.6 59.4
HILDA-manual 83.0 68.4 55.3
HILDA-seg 72.3 59.1 47.8
LeThanh 53.7 47.1 39.9
Marcu 44.8 30.9 18.8
Human 88.1 77.5 66.0

Table 7: Full Parser Evaluation

MAFS | WAFS | Acc
QOur-coarse 0.454 | 0.643 | 66.84
Percep-coarse | 0.438 | 0.633 | 65.37
Feng 0.440 | 0.607 | 65.30
HILDA-manual | 0.428 | 0.604 | 64.18
Baseline - - 35.82

Table 8: Relation Labeling Performance

To further compare the performance of rela-
tion labeling, we follow Hernault el al. (2010a)
and use Macro-averaged F-score (MAFS) to
evaluate each relation. Due to space limitation,
we do not list the F scores for each relation.
Macro-averaged F-score is not influenced by the
number of instances that are contained in each



relation. Weight-averaged F-score (WAFS)
weights the performance of each relation by the
number of its existing instances. Table 8 com-
pares our parser Our-coarse with other parsers
HILDA-manual, Feng (Feng and Hirst, 2012)
and Baseline. Feng (Feng and Hirst, 2012) can
be seen as a strengthened version of HILDA
which adopts more features and conducts feature
selection. Baseline always picks the most fre-
guent relation (i.e. Elaboration). From the results,
we find that Our-coarse consistently provides
superior performance for most relations over
other parsers, and therefore results in higher
MAFS and WAFS.

6 Related Work

So far, the existing discourse parsing techniques
are mainly based on two well-known treebanks.
One is the Penn Discourse TreeBank (PDTB)
(Prasad et al., 2007) and the other is RST-DT.
PDTB adopts the predicate-arguments repre-
sentation by taking an implicit/explicit connec-
tive as a predication of two adjacent sentences
(arguments). Then the discourse relation between
each pair of sentences is annotated independently
to characterize its predication. A majority of re-
searches regard discourse parsing as a classifica-
tion task and mainly focus on exploiting various
linguistic features and classifiers when using
PDTB (Wellner et al., 2006; Pitler et al., 2009;
Wang et al., 2010). However, the predicate-
arguments annotation scheme itself has such a
limitation that one can only obtain the local dis-

course relations without knowing the rich context.

In contrast, RST and its treebank enable peo-
ple to derive a complete representation of the
whole discourse. Researches have begun to in-
vestigate how to construct a RST tree for the
given text. Since the RST tree is similar to the
constituency based syntactic tree except that the
constituent nodes are different, the syntactic
parsing technigques have been borrowed for dis-
course parsing (Soricut and Marcu, 2003;
Baldridge and Lascarides, 2005; Sagae, 2009;
Hernault et al., 2010b; Feng and Hirst, 2012).
Soricut and Marcu (2003) use a standard bottom-
up chart parsing algorithm to determine the dis-
course structure of sentences. Baldridge and Las-
carides (2005) model the process of discourse
parsing with the probabilistic head driven parsing
techniques. Sagae (2009) apply a transition based
constituent parsing approach to construct a RST
tree for a document. Hernault et al. (2010b) de-
velop a greedy bottom-up tree building strategy
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for discourse parsing. The two adjacent text
spans with the closest relations are combined in
each iteration. As the extension of Hernault’s
work, Feng and Hirst (2012) further explore var-
ious features aiming to achieve better perfor-
mance. However, as analyzed in Section 1, there
exist three limitations with the constituency
based discourse representation and parsing. We
innovatively adopt the dependency structure,
which can be benefited from the existing RST-
DT, to represent the discourse. To the best of our
knowledge, this work is the first to apply de-
pendency structure and dependency parsing
techniques in discourse analysis.

7 Conclusions

In this paper, we present the benefits and feasi-
bility of applying dependency structure in text-
level discourse parsing. Through the correspond-
ence between constituency-based trees and de-
pendency trees, we build a discourse dependency
treebank by converting the existing RST-DT.
Based on dependency structure, we are able to
directly analyze the relations between the EDUs
without worrying about the additional interior
text spans, and apply the existing state-of-the-art
dependency parsing techniques which have a
relatively low time complexity. In our work, we
use the graph based dependency parsing tech-
niques learned from the annotated dependency
trees. The Eisner algorithm and the MST algo-
rithm are applied to parse the optimal projective
and non-projective dependency trees respectively
based on the arc-factored model. To calculate the
score for each arc, six types of features are ex-
plored to represent the arcs and the feature
weights are learned based on the MIRA learning
technique. Experimental results exhibit the effec-
tiveness of the proposed approaches. In the fu-
ture, we will focus on non-projective discourse
dependency parsing and explore more effective
features.
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Abstract

A key challenge for computational conver-
sation models is to discover latent struc-
ture in task-oriented dialogue, since it pro-
vides a basis for analysing, evaluating, and
building conversational systems. We pro-
pose three new unsupervised models to
discover latent structures in task-oriented
dialogues. Our methods synthesize hidden
Markov models (for underlying state) and
topic models (to connect words to states).
We apply them to two real, non-trivial
datasets: human-computer spoken dia-
logues in bus query service, and human-
human text-based chats from a live tech-
nical support service. We show that our
models extract meaningful state represen-
tations and dialogue structures consistent
with human annotations. Quantitatively,
we show our models achieve superior per-
formance on held-out log likelihood eval-
uation and an ordering task.

1 Introduction

Modeling human conversation is a fundamental
scientific pursuit. In addition to yielding ba-
sic insights into human communication, compu-
tational models of conversation underpin a host
of real-world applications, including interactive
dialogue systems (Young, 2006), dialogue sum-
marization (Murray et al., 2005; Daumé III and
Marcu, 2006; Liu et al., 2010), and even medi-
cal applications such as diagnosis of psychological
conditions (DeVault et al., 2013).

Computational models of conversation can be
broadly divided into two genres: modeling and
control. Control is concerned with choosing ac-
tions in interactive settings—for example to maxi-
mize task completion—using reinforcement learn-

*Work done at Microsoft Research.

Jason D. Williams
Microsoft Research
Redmond, WA 98052

jason.williams@microsoft.com
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ing (Levin et al., 2000), supervised learning (Hur-
tado et al., 2010), hand-crafted rules (Larsson and
Traum, 2000), or mixtures of these (Henderson
and Lemon, 2008). By contrast, modeling—the
genre of this paper—is concerned with inferring
a phenomena in an existing corpus, such as di-
alogue acts in two-party conversations (Stolcke
et al., 2000) or topic shifts in multi-party dia-
logues (Galley et al., 2003; Purver et al., 2006;
Hsueh et al., 2006; Banerjee and Rudnicky, 2006).

Many past works rely on supervised learning or
human annotations, which usually requires man-
ual labels and annotation guidelines (Jurafsky et
al., 1997). It constrains scaling the size of training
examples, and application domains. By contrast,
unsupervised methods operate only on the observ-
able signal (e.g. words) and are estimated with-
out labels or their attendant limitations (Crook et
al., 2009). They are particularly relevant because
conversation is a temporal process where models
are trained to infer a latent state which evolves as
the dialogue progresses (Bangalore et al., 2006;
Traum and Larsson, 2003).

Our basic approach is to assume that each ut-
terance in the conversation is in a latent state,
which has a causal effect on the words the conver-
sants produce. Inferring this model yields basic
insights into the structure of conversation and also
has broad practical benefits, for example, speech
recognition (Williams and Balakrishnan, 2009),
natural language generation (Rieser and Lemon,
2010), and new features for dialogue policy opti-
mization (Singh et al., 2002; Young, 2006).

There has been limited past work on unsuper-
vised methods for conversation modeling. Choti-
mongkol (2008) studies task-oriented conversa-
tion and proposed a model based on a hidden
Markov model (HMM). Ritter et al. (2010) ex-
tends it by introducing additional word sources,
and applies to non-task-oriented conversations—
social interactions on Twitter, where the subjects

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 3646,
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discussed are very diffuse. The additional word
sources capture the subjects, leaving the state-
specific models to express common dialogue flows
such as question/answer pairs.

In this paper, we retain the underlying HMM,
but assume words are emitted using fopic models
(TM), exemplified by latent Dirichlet allocation
(Blei et al., 2003, LDA). LDA assumes each word
in an utterance is drawn from one of a set of latent
topics, where each topic is a multinomial distri-
bution over the vocabulary. The key idea is that
the set of topics is shared across all states, and
each state corresponds to a mixture of topics. We
propose three model variants that link topics and
states in different ways.

Sharing topics across states is an attractive
property in task-oriented dialogue, where a sin-
gle concept can be discussed at many points in a
dialogue, yet different topics often appear in pre-
dictable sequences. Compared to past works, the
decoupling of states and topics gives our mod-
els more expressive power and the potential to be
more data efficient. Empirically, we find that our
models outperform past approaches on two real-
world corpora of task-oriented dialogues.

This paper is organized as follows: Section 2 in-
troduces two task-oriented domains and corpora;
Section 3 details three new unsupervised genera-
tive models which combine HMMs and LDA and
efficient inference schemes; Section 4 evaluates
our models qualitatively and quantitatively, and fi-
nally conclude in Section 5.

2 Data

To test the generality of our models, we study two
very different datasets: a set of human-computer
spoken dialogues in quering bus timetable (Bus-
Time), and a set of human-human text-based dia-
logues in the technical support domain (7TechSup-
port). In BusTime, the conversational structure is
known because the computer followed a determin-
istic program (Williams, 2012), making it possible
to directly compare an inferred model to ground
truth on this corpus.! In TechSupport, there is no
known flowchart,> making this a realistic applica-
tion of unsupervised methods.

lAvailable for download at http://research.microsoft.
com/en-us/events/dstc/

Technical support human agents use many types of
documentation—mainly checklists and guidelines, but in
general, there are no flowcharts.
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BusTime This corpus consists of logs of tele-
phone calls between a spoken dialogue system and
real bus users in Pittsburgh, USA (Black et al.,
2010). For the user side, the words logged are the
words recognized by the automatic speech recog-
nizer. The vocabulary of the recognizer was con-
strained to the bus timetable task, so only words
known to the recognizer in advance are output.
Even so, the word error rate is approximately 30-
40%, due to the challenging audio conditions of
usage—with traffic noise and extraneous speech.
The system asked users sequentially for a bus
route, origin and destination, and optionally date
and time. The system confirmed low-confidence
speech recognition results. Due to the speech
recognition channel, system and user turns always

alternate. An example dialogue is given below:

System: Say a route like (bus-route), or say I’m not sure.
User: (bus-route).

System: I thought you said (bus-route), is that right?
User: Yes.

System: Say where’re you leaving from, like (location).
User: (location).

System: Okay, (location), where are you going to?

We discard dialogues with fewer than 20 ut-
terances. We also map all named entities (e.g.,
“downtown” and “28X”) to their semantic types
(resp. (location) and (bus-route)) to reduce vo-
cabulary size. The corpus we use consists of ap-
proximately 850 dialogue sessions or 30,000 ut-
terances. It contains 370, 000 tokens (words or se-
mantic types) with vocabulary size 250.

TechSupport This corpus consists of logs of
real web-based human-human text “chat” con-
versations between clients and technical support
agents at a large corporation. Usually, clients and
agents first exchange names and contact informa-
tion; after that, dialogues are quite free-form, as
agents ask questions and suggest fixes. Most dia-
logues ultimately end when the client’s issue has
been resolved; some clients are provided with a
reference number for future follow-up. An exam-

ple dialogue is given below:
Agent: Welcome to the answer desk! My name is (agent-
name). How can I help you today?
Agent: May I have your name, email and phone no.?
Client: Hi, (agent-name). I recently installed new soft-
ware but I kept getting error, can you help me?
Agent: Sorry to hear that. Let me help you with that.
Agent: May I have your name, email and phone no.?
Client: The error code is (error-code).
Client: It appears every time when I launch it.
Client: Sure. My name is (client-name).
Client: My email and phone are (email), (phone).
Agent: Thanks, (client-name), please give me a minute.
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Figure 1: Plate diagrams of baseline models, from
existing work (Chotimongkol, 2008; Ritter et al.,

2010). Variable definitions are given in the text.

This data is less structured than BusTime;
clients’ issues span software, hardware, network-
ing, and other topics. In addition, clients use com-
mon internet short-hand (e.g., “thx”, “gtg”, “ppl”,
“hv”, etc), with mis-spellings (e.g., “ofice”, “off-
fice”, “erorr”, etc). In addition, chats from the web
interface are segmented into turns when a user hits
“Enter” on a keyboard. Therefore, clients’ input
and agents’ responses do not necessarily alternate
consecutively, e.g., an agent’s response may take
multiple turns as in the above example. Also, it
is unreasonable to group consecutive chats from
the same party to form a “alternating” structure
like BusTime dataset due to the asynchronism of
different states. For instance, the second block
of client inputs clearly comes from two different
states which should not be merged together.

We discard dialogues with fewer than 30 utter-
ances. We map named entities to their semantic
types, apply stemming, and remove stop words.>
The corpus we use contains approximately 2, 000
dialogue sessions or 80,000 conversation utter-
ances. It consists of 770, 000 tokens, with a a vo-
cabulary size of 6, 600.

3 Latent Structure in Dialogues

In this work, our goal is to infer latent structure
presented in task-oriented conversation. We as-
sume that the structure can be encoded in a prob-
abilistic state transition diagram, where the dia-
logue is in one state at each utterance, and states
have a causal effect on the words observed. We as-
sume the boundaries between utterances are given,
which is trivial in many corpora.

The simplest formulation we consider is an
HMM where each state contains a unigram lan-
guage model (LM), proposed by Chotimongkol
(2008) for task-oriented dialogue and originally

3We used regular expression to map named entities, and
Porter stemmer in NLTK to stem all tokens.
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developed for discourse analysis by Barzilay and
Lee (2004). We call it LM-HMM as in Figure 1(a).
For a corpus of M dialogues, the m-th dialogue
contains n utterances, each of which contains IV,
words (we omit index m from terms because it
will be clear from context). At n-th utterance,
we assume the dialogue is in some latent state s,.
Words in n-th utterance wy, 1, ..., Wy, N, are gen-
erated (independently) according to the LM. When
an utterance is complete, the next state is drawn
according to HMM, i.e., P(s'|s).

While LM-HMM captures the basic intuition of
conversation structure, it assumes words are con-
ditioned only on state. Ritter et al. (2010) extends
LM-HMM to allow words to be emitted from two
additional sources: the topic of current dialogue
¢, or a background LM 1) shared across all dia-
logues. A multinomial 7 indicates the expected
fraction of words from these three sources. For
every word in an utterance, first draw a source in-
dicator r from 7r, and then generate the word from
the corresponding source. We call it LM-HMMS
(Figure 1(b)). Ritter et al. (2010) finds these al-
ternate sources are important in non-task-oriented
domains, where events are diffuse and fleeting.
For example, Twitter exchanges often focus on a
particular event (labeled X), and follow patterns
like “saw X last night?”, “X was amazing”. Here
X appears throughout the dialogue but does not
help to distinguish conversational states in social
media. We also explore similar variants.

In this paper, these two models form our base-
lines. For all models, we use Markov chain Monte
Carlo (MCMC) inference (Neal, 2000) to find la-
tent variables that best fit observed data. We also
assume symmetric Dirichlet priors on all multino-
mial distributions and apply collapsed Gibbs sam-
pling. In the rest of this section, we present our
models and their inference algorithms in turn.

3.1 TM-HMM

Our approach is to modify the emission probabil-
ities of states to be distributions over topics rather
than distributions over words. In other words, in-
stead of generating words via a LM, we generate
words from a topic model (TM), where each state
maps to a mixture of topics. The key benefit of this
additional layer of abstraction is to enable states
to express higher-level concepts through pooling
of topics across states. For example, topics might
be inferred for content like “bus-route” or “lo-
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(a) TM-HMM

(b) TM-HMMS
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Figure 2: Plate diagrams of proposed models. TM-HMM is an HMM with state-wise topic distributions.
TM-HMMS adds session-wise topic distribution and a source generator. TM-HMMSS adds a state-wise
source generator. Variable definitions are given in the text.

cations”; and other topics for dialogue acts, like
to “ask” or “confirm” information. States could
then be combinations of these, e.g., a state might
express “ask bus route” or “confirm location”.
This approach also decouples the number of top-
ics from the number of states. Throughout this pa-
per, we denote the number of topics as K and the
number of states as 7". We index words, turns and
dialogues in the same ways as baseline models.

We develop three generative models. In the first
variant (TM-HMM, Figure 2(a)), we assume every
state s in HMM is associated with a distribution
over topics 6, and topics generate words w at each
utterance. The other two models allow words to
be generated from different sources (in addition to
states), akin to the LM-HMMS model.

TM-HMM generates a dialogue as following:

1: For each utterance n in that dialogue, sample
a state s,, based on the previous state s,_1.
For each word in utterance n, first draw a
topic z from the state-specified distribution
over topics 8, conditioned on s,,, then gener-
ate word w from the topic-specified distribu-
tion over vocabulary ¢, based on z.

We assume 6’s and ¢’s are drawn from corre-
sponding Dirichlet priors, as in LDA.

The posterior distributions of state assignment
s, and topic assignment z,, ; are

p(5n|s—na z, 0(,’7) X p(5n|5—n7’7)
'p(zn‘svz—naa)7 (1)
p(zn,i‘sa W, Z_(n,i)> auB) X p(zn,i|sv Z_(n,i) a)

: p(wn,i Sny W_(n4)s zn@)a

where «, 3, -y are symmetric Dirichlet priors on
state-wise topic distribution 8;’s, topic-wise word
distribution ¢,’s and state transition multinomials,
respectively. All probabilities can be computed
using collapsed Gibbs sampler for LDA (Griffiths
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and Steyvers, 2004) and HMM (Goldwater and
Griffiths, 2007). We iteratively sample all param-
eters until convergence.

3.2 TM-HMMS

TM-HMMS (Figure 2(b)) extends TM-HMM to al-
low words to be generated either from state LM
(as in LM-HMM), or a set of dialogue topics
(akin to LM-HMMS). Because task-oriented dia-
logues usually focus on a specific domain, a set
of words appears repeatedly throughout a given
dialogue. Therefore, the topic distribution is of-
ten stable throughout the entire dialogue, and
does not vary from turn to turn. For example,
in the troubleshooting domain, dialogues about
network connections, desktop productivity, and
anti-virus software could each map to different
session-wide topics. To express this, words in
the TM-HMMS model are generated either from
a dialogue-specific topic distribution, or from a
state-specific language model.* A distribution
over sources is sampled once at the beginning of
each dialogue and selects the expected fraction of
words generated from different sources.
The generative story for a dialogue session is:

1: At the beginning of each session, draw a dis-
tribution over topics @ and a distribution over
word sources T.

. For each utterance n in the conversation, draw
a state s, based on previous state s,,_1.

: For each word in utterance n, first choose a
word source r according to T, and then de-
pending on r, generate a word w either from
the session-wide topic distribution 6 or the
language model specified by the state s,,.

“Note that a TM-HMMS model with state-specific topic
models (instead of state-specific language models) would be
subsumed by TM-HMM, since one topic could be used as the
background topic in TM-HMMS.



Again, we impose Dirichlet priors on distributions
over topics 0’s and distributions over words ¢’s
as in LDA. We also assume the distributions over
sources T’s are governed by a Beta distribution.

The session-wide topics is slightly different
from that used in LM-HMMS: LM-HMMS was de-
veloped for social chats on Twitter where topics
are very diffuse and unlikely to repeat; hence of-
ten unique to each dialogue. By contrast, our mod-
els are designed for task-oriented dialogues which
pertain to a given domain where topics are more
tightly clustered; thus, in TM-HMMS session-wide
topics are shared across the corpus.

The posterior distributions of state assignment
Sn, word source 7, ; and topic assignment z,, ; are

p(Sn‘T, S—n, W, 77 7T) X p(Sn]S_n, 7)

'p(wn|ra S, 7‘-)7

T _(n,i), S W, ﬂ-) X p(rn,i|r—(n,i)v 7T)
'p(wn,i|raSaw—(n,i)aza/@)v (2)
p(zn,i‘rv W, Z_(n,0)> auB) X p(zn,i’r’U Z_(ny)s a)

' p(wn7i|1“, w—(n,i)a zZ, B)?

p(rn,i

where 7 is a symmetric Dirichlet prior on session-
wise word source distribution 7,,’s, and other
symbols are defined above. All these probabilities
are Dirichlet-multinomial distributions and there-
fore can be computed efficiently.

3.3 TM-HMMSS

The TM-HMMSS (Figure 2(c)) model modifies
TM-HMMS to re-sample the distribution over
word sources T at every utterance, instead of once
at the beginning of each session. This modifica-
tion allows the fraction of words drawn from the
session-wide topics to vary over the course of the
dialogue. This is attractive in task-oriented di-
alogue, where some sections of the dialogue al-
ways follow a similar script, regardless of session
topic—for example, the opening, closing, or ask-
ing the user if they will take a survey. To support
these patterns, TM-HMMSS conditions the source
generator distribution on the current state.

The generative story of TM-HMMSS is very
similar to TM-HMMS, except the distribution over
word sources 7’s are sampled at every state. A
dialogue is generated as following:

1: For each session, draw a topic distrib