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Preface: General Chair

Welcome to the 51st Annual Meeting of the Association for Computational Linguistics in Sofia, Bulgaria!
The first ACL meeting was held in Denver in 1963 under the name AMTCL. This makes ACL one of the
longest running conferences in computer science. This year we received a record total number of 1286
submissions, which is a testament to the continued and growing importance of computational linguistics
and natural language processing.

The success of an ACL conference is made possible by the dedication and hard work of many people. 1
thank all of them for volunteering their time and energy in service to our community.

Priscilla Rasmussen, the ACL Business Manager, and Graeme Hirst, the treasurer, did most of the
groundwork in selecting Sofia as the conference site, went through several iterations of planning and
shouldered a significant part of the organizational work for the conference. It was my first exposure to
the logistics of organizing a large event and I was surprised at how much expertise and experience is
necessary to make ACL a successful meeting.

Thanks to Svetla Koeva and her team for their work on local arrangements, including social activities
(Radka Vlahova, Tsvetana Dimitrova, Svetlozara Lesseva), local sponsorship (Stoyan Mihov, Rositsa
Dekova), conference handbook (Nikolay Genov, Hristina Kukova), web site (Tinko Tinchev, Emil
Stoyanov, Georgi lliev), local exhibits (Maria Todorova, Ekaterina Tarpomanova), internet, wifi and
equipment (Martin Yalamov, Angel Genov, Borislav Rizov) and student volunteer management (Kalina
Boncheva). Perhaps most importantly, Svetla was the liaison to the professional conference organizer
AIM Group, a relationship that is crucial for the success of the conference. Doing the local arrangements
is a fulltime job for an extended period of time. We are lucky that we have people in our community who
are willing to provide this service without compensation.

The program co-chairs Pascale Fung and Massimo Poesio selected a strong set of papers for the main
conference and invited three great keynote speakers, Harald Baayen, Chantal Prat and Lars Rasmussen.
Putting together the program of the top conference in our field is a difficult job and I thank Pascale and
Massimo for taking on this important responsibility.

Thanks are also due to the other key members of the ACL organizing committees: Aoife Cahill and
Qun Liu (workshop co-chairs); Johan Bos and Keith Hall (tutorial co-chairs); Miriam Butt and Sarmad
Hussain (demo co-chairs); Steven Bethard, Preslav Nakov and Feiyu Xu (faculty advisors to the student
research workshop); Anik Dey, Eva Vecchi, Sebastian Krause and Ivelina Nikolova (co-chairs of the
student research workshop); Leo Wanner (mentoring chair); and Anisava Miltenova, Ivan Derzhanski
and Anna Korhonen (publicity co-chairs).

I am particularly indebted to Roberto Navigli, Jing-Shin Chang and Stefano Faralli for producing the
proceedings of the conference, a bigger job than usual because of the large number of submissions and
the resulting large number of acceptances.

The ACL conference and the ACL organization benefit greatly from the financial support of our sponsors.
We thank the platinum level sponsor, Baidu; the three gold level sponsors; the three silver level sponsors;
and six bronze level sponsors. Three other sponsors took advantage of more creative options to assist us:
Facebook sponsored the Student Volunteers; IBM sponsored the Best Student Paper Award; and SDL
sponsored the conference bags. We are grateful for the financial support from these organizations.

Finally, I would like to express my appreciation to the area chairs, workshop organizers, tutorial
presenters and reviewers for their participation and contribution.

Of course, the ACL conference is primarily held for the people who attend the conference, including the



authors. I would like to thank all of you for your participation and wish you a productive and enjoyable
meeting in Sofia!

ACL 2013 General Chair
Hinrich Schuetze, University of Munich
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Preface: Programme Committee Co-Chairs

Welcome to the 2013 Conference of the Association for Computational Linguistics! Our community
continues to grow, and this year’s conference has set a new record for paper submissions. We received
1286 submissions, which is 12% more than the previous record; we are particularly pleased to see a
striking increase in the number of short papers submitted - 624, which is 21.8% higher than the previous
record set in 2011.

Another encouraging trend in recent years is the increasing number of aspects of language processing,
and forms of language, of interest to our community. In order to reflect this greater diversity, this year’s
conference has a much larger number of tracks than previous conferences, 26. Consequently, many more
area chairs and reviewers were recruited than in the past, thus involving an even greater subset of the
community in the selection of the program. We feel this, too, is a very positive development. We thank
the area chairs and reviewers for their hard work.

A key innovation introduced this year is the presentation at the conference of sixteen papers accepted by
the new ACL journal, Transactions of the Association for Computational Linguistics (TACL). We have
otherwise maintained most of the innovations introduced in recent years, including accepting papers
accompanied by supplemental materials such as corpora or software.

Another new practice this year is the presence of an industrial keynote speaker in addition to the two
traditional keynote speakers. We are delighted to have as invited speakers two scholars as distinguished as
Prof. Harald Baayen of Tuebingen and Alberta and Prof. Chantel Prat from the University of Wisconsin.
Prof. Baayen will talk about using eye-tracking to study the semantics of compounds, an issue of great
interest for work on distributional semantics. Prof. Prat will talk about research studying language in
bilinguals using methods from neuroscience. The industrial keynote speaker, Dr. Lars Rasmussen from
Facebook, will talk about the new graph search algorithm recently announced by the company. Last, but
not least, the recipient of this year’s ACL Lifetime Achievement Award will give a plenary lecture during
the final day of the conference.

The list of people to thank for their contribution to this year’s program is very long. First of all we
wish to thank the authors who submitted top quality work to the conference; we would not have such
a strong program without them, nor without the hard work of area chairs and reviewers, who enabled
us to make often very difficult choices and to provide valuable feedback to the authors. As usual, Rich
Gerber and the START team gave us crucial help with an amazing speed. The general conference chair
Hinrich Schuetze provided valuable guidance and kept the timetable ticking along. We thank the local
arrangements committee headed by Svetla Koeva, who played a key role in finalizing the program. We
also thank the publication chairs, Jing-Shin Chang and Roberto Navigli, and their collaborator Stefano
Faralli, who together produced this volume; and Priscilla Rasmussen, Drago Radev and Graeme Hirst,
who provided enormously useful guidance and support. Finally, we wish to thank previous program
chairs, and in particular John Carroll, Stephen Clark, and Jian Su, for their insight on the process.

We hope you will be as pleased as we are with the result and that you’ll enjoy the conference in Sofia
this Summer.

ACL 2013 Program Co-Chairs
Pascale Fung, Hong-Kong University of Science and Technology
Massimo Poesio, University of Essex
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Invited Talk

When parsing makes things worse: An eye-tracking study of English compounds
Harald Baayen
Seminar fiir Sprachwissenschaft, Eberhard Karls University, Tuebingen

Abstract

Compounds differ in the degree to which they are semantically compositional (compare, e.g., "carwash",
"handbag", "beefcake" and "humbug"). Since even relatively transparent compounds such as "carwash"
may leave the uninitiated reader with uncertainty about the intended meaning (soap for washing cars? a
place where you can get your car washed?), an efficient way of retrieving the meaning of a compound is
to use the compound’s form as an access key for its meaning.

However, in psychology, the view has become popular that at the earliest stage of lexical processing
in reading, a morpho-orthographic decomposition into morphemes would necessarily take place. Theo-
rists ascribing to obligatory decomposition appear to have some hash coding scheme in mind, with the
constituents providing entry points to a form of table look-up (e.g., Taft & Forster, 1976).

Leaving aside the question of whether such a hash coding scheme would be computationally efficient
as well as the question how the putative morpho-orthographic representations would be learned, my
presentation focuses on the details of lexical processing as revealed by an eye-tracking study of the
reading of English compounds in sentences.

A careful examination of the eye-tracking record with generalized additive modeling (Wood, 2006),
combined with computational modeling using naive discrimination learning (Baayen, Milin, Filipovic,
Hendrix, & Marelli, 2011) revealed that how far the eye moved into the compound is co-determined by
the compound’s lexical distributional properties, including the cosine similarity of the compound and its
head in document vector space (as measured with latent semantic analysis, Landauer & Dumais, 1997).
This indicates that compound processing is initiated already while the eye is fixating on the preceding
word, and that even before the eye has landed on the compound, processes discriminating the meaning
of the compound from the meaning of its head have already come into play.

Once the eye lands on the compound, two very different reading signatures emerge, which critically
depend on the letter trigrams spanning the morpheme boundary (e.g., "ndb" and "dba" in "handbag").
From a discrimination learning perspective, these boundary trigrams provide the crucial (and only) or-
thographic cues for the compound’s (idiosyncratic) meaning. If the boundary trigrams are sufficiently
strongly associated with the compound’s meaning, and if the eye lands early enough in the word, a single
fixation suffices. Within 240 ms (of which 80 ms involve planning the next saccade) the compound’s
meaning is discriminated well enough to proceed to the next word.

However, when the boundary trigrams are only weakly associated with the compound’s meaning, multi-
ple fixations become necessary. In this case, without the availability of the critical orthographic cues, the
eye-tracking record bears witness to the cognitive system engaging not only bottom-up processes from
form to meaning, but also top-down guessing processes that are informed by the a-priori probability of
the head and the cosine similarities of the compound and its constituents in semantic vector space.

These results challenge theories positing obligatory decomposition with hash coding, as hash coding

predicts insensitivity to semantic transparency, contrary to fact. Our results also challenge theories posit-

ing blind look-up based on compounds’ orthographic forms. Although this might be computationally

efficient, the eye can’t help seeing parts of the whole. In summary, reality is much more complex, with

deep pre-arrival parafoveal processing followed by either efficient discrimination driven by the boundary
XV



trigrams (within 140 ms), or by an inefficient decompositional process (requiring an additional 200 ms)
that seeks to make sense of the conjunction of head and modifier.

References

Baayen, R. H., Kuperman, V., Shaoul, C., Milin, P., Kliegl, R. & Ramscar, M. (submitted), Decom-
position makes things worse. A discrimination learning approach to the time course of understanding
compounds in reading.

Baayen, R. H., Milin, P, Filipovic Durdjevic, D., Hendrix, P. & Marelli, M. (2011), An amorphous
model for morphological processing in visual comprehension based on naive discriminative learning,
Psychological Review, 118, 3, 438-481.

Landauer, T.K. & Dumais, S.T. (1997), A Solution to Plato’s Problem: The Latent Semantic Analysis
theory of acquisition, induction and representation of knowledge, Psychological Review, 104, 2, 211-
240.

Taft, M. & Forster, K. I. (1976), Lexical Storage and Retrieval of Polymorphemic and Polysyllabic
Words, Journal of Verbal Learning and Verbal Behavior, 15, 607-620.

Wood, S. N. (2006), Generalized Additive Models, Chapman & Hall/CRC, New York.

XVi



Invited Talk

The Natural Language Interface of Graph Search
Lars Rasmussen
Facebook Inc

Abstract

The backbone of the Facebook social network service is an enormous graph representing hundreds of
types of nodes and thousands of types of edges. Among these nodes are over 1 billion users and 250
billion photos. The edges connecting these nodes have exceeded 1 trillion and continue to grow at an
incredible rate. Retrieving information from such a graph has been a formidable and exciting task. Now
it is possible for you to find, in an aggregated manner, restaurants in a city that your friends have visited,
or photos of people who have attended college with you, and explore many other nuanced connections
between the nodes and edges in our graph given that such information is visible to you.

Graph Search Beta, launched early this year, is a personalized semantic search engine that allows users
to express their intent in natural language. It seeks answers through the traversal of relevant graph edges
and ranks results by various signals extracted from our data. You can find “tv shows liked by people who
study linguistics* by issuing this query verbatim and, for the entertainment value, compare the results
with “tv shows liked by people who study computer science®. Our system is built to be robust to many
varied inputs, such as grammatically incorrect user queries or traditional keyword searches. Our query
suggestions are always constructed in natural language, expressing the precise intention interpreted by
our system. This means users would know in advance whether the system has correctly understood their
intent before selecting any suggestion. The system also assists users with auto-completions, demonstrat-
ing what kinds of queries it can understand.

The development of the natural language interface encountered an array of challenging problems. The
grammar structure needed to incorporate semantic information in order to translate an unstructured query
into a structured semantic function, and also use syntactic information to return grammatically meaning-
ful suggestions. The system required not only the recognition of entities in a query, but also the resolution
of entities to database entries based on proximity of the entity and user nodes. Semantic parsing aimed to
rank potential semantics including those that may match the immediate purpose of the query along with
other refinements of the original intent. The ambiguous nature of natural language led us to consider
how to interpret certain queries in the most sensible way. The need for speed demanded state-of-the-art
parsing algorithms tailored for our system. In this talk, I will introduce the audience to Graph Search
Beta, share our experience in developing the technical components of the natural language interface, and
bring up topics that may be of interesting research value to the NLP community.
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Invited Talk

Individual Differences in Language and Executive Processes: How the Brain Keeps Track of
Variables
Chantel S. Prat
University of Washington

Abstract

Language comprehension is a complex cognitive process which requires tracking and integrating multi-
ple variables. Thus, it is not surprising that language abilities (e.g., reading comprehension) vary widely
even in the college population, and that language and general cognitive abilities (e.g., working memory
capacity) co-vary. Although it has been widely accepted that improvements in general cognitive abili-
ties enable (or give rise to) increased linguistic skills, the fact that individuals who develop bilingually
outperform monolinguals in tests of executive functioning provides evidence of a situation in which a
particular language experience gives rise to improvements in general cognitive processes. In this talk, I
will describe two converging lines of research investigating individual differences in working memory
capacity and reading ability in monolinguals and improved executive functioning in bilinguals. Results
from these investigations suggest that the functioning of the fronto-striatal loops can explain the relation
between language and non-linguistic executive functioning in both populations. I then discuss evidence
suggesting that this system may function to track and route “variables” into prefrontal control structures.

XViil



Table of Contents

Translating Dialectal Arabic to English
Hassan Sajjad, Kareem Darwish and Yonatan Belinkov........... ... . ... ... ..o .. 1

Exact Maximum Inference for the Fertility Hidden Markov Model
Chris QUITK . ..o 7

A Tale about PRO and Monsters
Preslav Nakov, Francisco Guzmdn and Stephan Vogel .................. ... ... i it 12

Supervised Model Learning with Feature Grouping based on a Discrete Constraint
Jun Suzuki and Masaaki Nagata. ... .......oo ittt 18

Exploiting Topic based Twitter Sentiment for Stock Prediction
Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li, Huayi Li and Xiaotie Deng................. 24

Learning Entity Representation for Entity Disambiguation
Zhengyan He, Shujie Liu, Mu Li, Ming Zhou, Longkai Zhang and Houfeng Wang ............ 30

Natural Language Models for Predicting Programming Comments
Dana Movshovitz-Attias and William W. Cohen ............. .. ... i i, 35

Paraphrasing Adaptation for Web Search Ranking
Chenguang Wang, Nan Duan, Ming Zhou and Ming Zhang ............... ... ..o, 41

Semantic Parsing as Machine Translation
Jacob Andreas, Andreas Vlachos and Stephen Clark................ .o i, 47

A relatedness benchmark to test the role of determiners in compositional distributional semantics
Raffaella Bernardi, Georgiana Dinu, Marco Marelli and Marco Baroni ....................... 53

An Empirical Study on Uncertainty Identification in Social Media Context
Zhongyu Wei, Junwen Chen, Wei Gao, Binyang Li, Lanjun Zhou, Yulan He and Kam-Fai Wong58

PARMA: A Predicate Argument Aligner
Travis Wolfe, Benjamin Van Durme, Mark Dredze, Nicholas Andrews, Charley Beller, Chris
Callison-Burch, Jay DeYoung, Justin Snyder, Jonathan Weese, Tan Xu and Xuchen Yao............ 63

Aggregated Word Pair Features for Implicit Discourse Relation Disambiguation
Or Biran and Kathleen McKeown . ... ... e e 69

Implicatures and Nested Beliefs in Approximate Decentralized-POMDPs
Adam Vogel, Christopher Potts and Dan Jurafsky ............ ... . i i 74

Domain-Specific Coreference Resolution with Lexicalized Features
Nathan Gilbert and Ellen Riloff .. ... . . e 81

Learning to Order Natural Language Texts
Jiwei Tan, Xiaojun Wan and Jianguo Xia0. .. .......ouritiir i 87

Universal Dependency Annotation for Multilingual Parsing

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das,
Kuzman Gancheyv, Keith Hall, Slav Petrov, Hao Zhang, Oscar Téckstrom, Claudia Bedini, Niria Bertomeu
Castelld and Jungmee Lee . . .. ... e e 92

X1X



An Empirical Examination of Challenges in Chinese Parsing
Jonathan K. Kummerfeld, Daniel Tse, James R. Curranand Dan Klein....................... 98

Joint Inference for Heterogeneous Dependency Parsing
Guangyou Zhou and Jun Zhao . .. ... ... e 104

Easy-First POS Tagging and Dependency Parsing with Beam Search
Ji Ma, Jingbo Zhu, Tong Xiao and Nan Yang ...........c..uueeiiiiiieeeniiieeennnnnnnn. 110

Arguments and Modifiers from the Learner’s Perspective
Leon Bergen, Edward Gibson and Timothy J. O’Donnell .............. ... .. ... ... ... 115

Benefactive/Malefactive Event and Writer Attitude Annotation
Lingjia Deng, Yoonjung Choi and Janyce Wiebe . .............cooiiiiiiiiiiiiiiinnnnn. 120

GuiTAR-based Pronominal Anaphora Resolution in Bengali
Apurbalal Senapati and Utpal Garain . ......... ..., 126

A Decade of Automatic Content Evaluation of News Summaries: Reassessing the State of the Art
Peter A. Rankel, John M. Conroy, Hoa Trang Dang and Ani Nenkova....................... 131

On the Predictability of Human Assessment: when Matrix Completion Meets NLP Evaluation
Guillaume WiSIEWSKI . . ..o vttt et e e e e 137

Automated Pyramid Scoring of Summaries using Distributional Semantics
Rebecca J. Passonneau, Emily Chen, Weiwei Guo and Dolores Perin ....................... 143

Are Semantically Coherent Topic Models Useful for Ad Hoc Information Retrieval ?
Romain Deveaud, Eric SanJuan and Patrice Bellot .......... ... .. ... ... .o .. 148

Post-Retrieval Clustering Using Third-Order Similarity Measures
Jose G. Moreno, Gaél Dias and Guillaume Cleuziou ............ ..., 153

Automatic Coupling of Answer Extraction and Information Retrieval
Xuchen Yao, Benjamin Van Durme and Peter Clark ............ ... ... o o e, 159

An improved MDL-based compression algorithm for unsupervised word segmentation
Ruey-Cheng Chen . . ... e e 166

Co-regularizing character-based and word-based models for semi-supervised Chinese word segmenta-
tion
Xiaodong Zeng, Derek F. Wong, Lidia S. Chao and Isabel Trancoso ........................ 171

Improving Chinese Word Segmentation on Micro-blog Using Rich Punctuations
Longkai Zhang, Li Li, Zhengyan He, Houfeng Wang and Ni Sun........................... 177

Accurate Word Segmentation using Transliteration and Language Model Projection
Masato Hagiwara and Satoshi Sekine............. .. i 183

Broadcast News Story Segmentation Using Manifold Learning on Latent Topic Distributions
Xiaoming Lu, Lei Xie, Cheung-Chi Leung, Bin Ma and Haizhou Li ........................ 190

Is word-to-phone mapping better than phone-phone mapping for handling English words?
Naresh Kumar Elluru, Anandaswarup Vadapalli, Raghavendra Elluru, Hema Murthy and Kishore
Prahallad . . ... e 196

XX



Enriching Entity Translation Discovery using Selective Temporality
Gae-won You, Young-rok Cha, Jinhan Kim and Seung-won Hwang......................... 201

Combination of Recurrent Neural Networks and Factored Language Models for Code-Switching Lan-
guage Modeling
Heike Adel, Ngoc Thang Vuand TanjaSchultz . .......... ... ... ... ... i ... 206

Latent Semantic Matching: Application to Cross-language Text Categorization without Alignment Infor-
mation
Tsutomu Hirao, Tomoharu Iwata and Masaaki Nagata..................coviiiiineennnn. 212

TopicSpam: a Topic-Model based approach for spam detection
Jiwei Li, Claire Cardie and Sujian Li . ... e i 217

Semantic Neighborhoods as Hypergraphs
Chris Quirk and Pallavi Choudhury........ ... . 222

Unsupervised joke generation from big data
Sasa Petrovi¢ and David Matthews . ......... 228

Modeling of term-distance and term-occurrence information for improving n-gram language model per-
formance
Tze Yuang Chong, Rafael E. Banchs, Eng Siong Chng and Haizhou Li...................... 233

Discriminative Approach to Fill-in-the-Blank Quiz Generation for Language Learners
Keisuke Sakaguchi, Yuki Arase and Mamoru Komachi............... ... oL 238

"Let Everything Turn Well in Your Wife": Generation of Adult Humor Using Lexical Constraints
Alessandro Valitutti, Hannu Toivonen, Antoine Doucet and Jukka M. Toivanen .............. 243

Random Walk Factoid Annotation for Collective Discourse
Ben King, Rahul Jha, Dragomir Radev and Robert Mankoff................................ 249

Identifying English and Hungarian Light Verb Constructions: A Contrastive Approach
Veronika Vincze, Istvan Nagy T. and Richard Farkas ...................................... 255

English-to-Russian MT evaluation campaign
Pavel Braslavski, Alexander Beloborodov, Maxim Khalilov and Serge Sharoff............... 262

IndoNet: A Multilingual Lexical Knowledge Network for Indian Languages
Brijesh Bhatt, Lahari Poddar and Pushpak Bhattacharyya................... .. ... ... . ..., 268

Building Japanese Textual Entailment Specialized Data Sets for Inference of Basic Sentence Relations
Kimi Kaneko, Yusuke Miyao and Daisuke Bekki ............. ... .. i it 273

Building Comparable Corpora Based on Bilingual LDA Model
Zede Zhu, Miao Li, Lei Chen and Zhenxin Yang . ..........oouuiiiiiiiiiiiieniniiee... 278

Using Lexical Expansion to Learn Inference Rules from Sparse Data
Oren Melamud, Ido Dagan, Jacob Goldberger and Idan Szpektor........................... 283

Mining Equivalent Relations from Linked Data
Ziqi Zhang, Anna Lisa Gentile, Isabelle Augenstein, Eva Blomqvist and Fabio Ciravegna. .. .. 289

Context-Dependent Multilingual Lexical Lookup for Under-Resourced Languages
Lian Tze Lim, Lay-Ki Soon, Tek Yong Lim, Enya Kong Tang and Bali Ranaivo-Malancon. ...294

XX1



Sorani Kurdish versus Kurmanji Kurdish: An Empirical Comparison
Kyumars Sheykh Esmaili and Shahin Salavati ............. ... ... .. L. 300

Enhanced and Portable Dependency Projection Algorithms Using Interlinear Glossed Text
Ryan Georgi, Fei Xia and William D. Lewis......... ..o i 306

Cross-lingual Projections between Languages from Different Families
Mo Yu, Tiejun Zhao, Yalong Bai, Hao Tian and Dianhai Yu................................ 312

Using Context Vectors in Improving a Machine Translation System with Bridge Language
Samira Tofighi Zahabi, Somayeh Bakhshaei and Shahram Khadivi.......................... 318

Task Alternation in Parallel Sentence Retrieval for Twitter Translation
Felix Hieber, Laura Jehl and Stefan Riezler.............. ... . i, 323

Sign Language Lexical Recognition With Propositional Dynamic Logic
Arturo Curiel and Christophe Collet . ............ . i e 328

Stacking for Statistical Machine Translation
Majid Razmara and Anoop Sarkar. ...... ... e 334

Bilingual Data Cleaning for SMT using Graph-based Random Walk
Lei Cui, Dongdong Zhang, Shujie Liu, Mu Li and Ming Zhou.............. ... .. .. .. ..., 340

Automatically Predicting Sentence Translation Difficulty
Abhijit Mishra, Pushpak Bhattacharyya and Michael Carl.................. ... . ... . ... .. 346

Learning to Prune: Context-Sensitive Pruning for Syntactic MT
Wenduan Xu, Yue Zhang, Philip Williams and Philipp Koehn.............. ... ... .. ... 352

A Novel Graph-based Compact Representation of Word Alignment
Qun Liu, Zhaopeng Tu and Shouxun Lin....... ... i i 358

Stem Translation with Affix-Based Rule Selection for Agglutinative Languages
Zhiyang Wang, Yajuan Lii, Meng Sunand Qun Liu ......... ... ... o oL, 364

A Novel Translation Framework Based on Rhetorical Structure Theory
Mei Tu, Yu Zhou and Chengqing Zong . . . ......ounn ettt eaaieees 370

Improving machine translation by training against an automatic semantic frame based evaluation metric
Chi-kiu Lo, Karteek Addanki, Markus Saersand DekaiWu........... ... . ... ... . ... .. 375

Bilingual Lexical Cohesion Trigger Model for Document-Level Machine Translation
Guosheng Ben, Deyi Xiong, Zhiyang Teng, Yajuan Liiand Qun Liu ........................ 382

Generalized Reordering Rules for Improved SMT
Fei Huang and Cezar Pendus . ....... ... ...t i 387

A Tightly-coupled Unsupervised Clustering and Bilingual Alignment Model for Transliteration
Tingting Li, Tiejun Zhao, Andrew Finch and Chunyue Zhang ................ ... . ... ..... 393

Can Markov Models Over Minimal Translation Units Help Phrase-Based SMT?
Nadir Durrani, Alexander Fraser, Helmut Schmid, Hieu Hoang and Philipp Koehn ........... 399

Learning Non-linear Features for Machine Translation Using Gradient Boosting Machines
Kristina Toutanova and Byung-Gyu Ahn......... .. i e 406

XXil



Language Independent Connectivity Strength Features for Phrase Pivot Statistical Machine Translation
Ahmed El Kholy, Nizar Habash, Gregor Leusch, Evgeny Matusov and Hassan Sawaf......... 412

Semantic Roles for String to Tree Machine Translation
Marzieh Bazrafshan and Daniel Gildea ............... ... ... ... ... . i i i 419

Minimum Bayes Risk based Answer Re-ranking for Question Answering

Question Classification Transfer
Anne-Laure LigOzat . .. .....oii 429

Latent Semantic Tensor Indexing for Community-based Question Answering
Xipeng Qiu, Le Tian and Xuanjing Huang. . ....... ... ... e 434

Measuring semantic content in distributional vectors
Aurélie Herbelot and Mohan Ganesalingam ............. ... . i 440

Modeling Human Inference Process for Textual Entailment Recognition
Hen-Hsen Huang, Kai-Chun Chang and Hsin-HsiChen ............... ... ... ... ... . .. 446

Recognizing Partial Textual Entailment
Omer Levy, Torsten Zesch, Ido Dagan and Iryna Gurevych .......... ... ... ... ... 451

Sentence Level Dialect Identification in Arabic
Heba Elfardy and Mona Diab . . ... e e 456

Leveraging Domain-Independent Information in Semantic Parsing
Dan Goldwasser and Dan Roth. ... ... 462

A Structured Distributional Semantic Model for Event Co-reference
Kartik Goyal, Sujay Kumar Jauhar, Huiying Li, Mrinmaya Sachan, Shashank Srivastava and Eduard

Text Classification from Positive and Unlabeled Data using Misclassified Data Correction
Fumiyo Fukumoto, Yoshimi Suzuki and Suguru Matsuyoshi ............................... 474

Character-to-Character Sentiment Analysis in Shakespeare’s Plays
Eric T. Nalisnick and Henry S. Baird . ........ ... i e 479

A Novel Classifier Based on Quantum Computation
Ding Liu, Xiaofang Yang and Minghu Jiang......... ... ... . i i, 484

Re-embedding words
Igor Labutov and Hod Lipson. ... 489

LABR: A Large Scale Arabic Book Reviews Dataset
Mohamed Aly and Amir AtIYa. ... ..ottt e e e 494

Generating Recommendation Dialogs by Extracting Information from User Reviews
Kevin Reschke, Adam Vogel and Dan Jurafsky ............. ... .. i, 499

Exploring Sentiment in Social Media: Bootstrapping Subjectivity Clues from Multilingual Twitter Streams
Svitlana Volkova, Theresa Wilson and David Yarowsky................. ..., 505

XX1il



Joint Modeling of News Reader’s and Comment Writer’s Emotions
Huanhuan Liu, Shoushan Li, Guodong Zhou, Chu-ren Huang and Peifeng Li................ 511

An annotated corpus of quoted opinions in news articles
Tim O’Keefe, James R. Curran, Peter Ashwell and Irena Koprinska......................... 516

Dual Training and Dual Prediction for Polarity Classification
Rui Xia, Tao Wang, Xuelei Hu, Shoushan Li and Chengqing Zong.......................... 521

Co-Regression for Cross-Language Review Rating Prediction
XI0JUN W . . oot e 526

Extracting Definitions and Hypernym Relations relying on Syntactic Dependencies and Support Vector
Machines
Guido Boella and Luigi Di Caro. . .......ooi i e 532

Neighbors Help: Bilingual Unsupervised WSD Using Context
Sudha Bhingardive, Samiulla Shaikh and Pushpak Bhattacharyya........................... 538

Reducing Annotation Effort for Quality Estimation via Active Learning
Daniel Beck, Lucia Speciaand Trevor Cohn........ ... ... ... 543

Reranking with Linguistic and Semantic Features for Arabic Optical Character Recognition
Nadi Tomeh, Nizar Habash, Ryan Roth, Noura Farra, Pradeep Dasigi and Mona Diab . ....... 549

Evolutionary Hierarchical Dirichlet Process for Timeline Summarization
Jiwei Liand Sujian Li. ... ..o e 556

Using Integer Linear Programming in Concept-to-Text Generation to Produce More Compact Texts
Gerasimos Lampouras and Ion Androutsopoulos. ..., 561

Sequential Summarization: A New Application for Timely Updated Twitter Trending Topics
Dehong Gao, Wenjie Liand Renxian Zhang . ...ttt 567

A System for Summarizing Scientific Topics Starting from Keywords
Rahul Jha, Amjad Abu-Jbara and Dragomir Radev ............. ... ... iiiiiiiiiiinn.. 572

A Unified Morpho-Syntactic Scheme of Stanford Dependencies
ReUt TSar Aty .. oo 578

Dependency Parser Adaptation with Subtrees from Auto-Parsed Target Domain Data
Xuezhe Maand Fei Xia ... ... e 585

Iterative Transformation of Annotation Guidelines for Constituency Parsing
Xiang Li, Wenbin Jiang, Yajuan Liland Qun Liu. ........ ... oo oo 591

Nonparametric Bayesian Inference and Efficient Parsing for Tree-adjoining Grammars
Elif Yamangil and Stuart M. Shieber. ....... .. ... i 597

Using CCG categories to improve Hindi dependency parsing
Bharat Ram Ambati, Tejaswini Deoskar and Mark Steedman............................... 604

The Effect of Higher-Order Dependency Features in Discriminative Phrase-Structure Parsing
Greg Coppola and Mark Steedman . ............. i e 610

XX1V



Turning on the Turbo: Fast Third-Order Non-Projective Turbo Parsers
Andre Martins, Miguel Almeida and Noah A. Smith............ ... ... ... ... ..., 617

A Lattice-based Framework for Joint Chinese Word Segmentation, POS Tagging and Parsing
Zhiguo Wang, Chengqing Zong and Nianwen XUe€ . .. .....ovutitiittennnieeennnnnnn.. 623

Efficient Implementation of Beam-Search Incremental Parsers
Yoav Goldberg, Kai Zhaoand Liang Huang . ............ ... ... i, 628

Simpler unsupervised POS tagging with bilingual projections
Long Duong, Paul Cook, Steven Bird and Pavel Pecina................. ... ... ... ... 634

Part-of-speech tagging with antagonistic adversaries

ANders SBZAard . ... ... e 640

Temporal Signals Help Label Temporal Relations
Leon Derczynski and Robert Gaizauskas. ........... ... i, 645

Diverse Keyword Extraction from Conversations
Maryam Habibi and Andrei Popescu-Belis ........ ... oo i 651

Understanding Tables in Context Using Standard NLP Toolkits
Vidhya Govindaraju, Ce Zhang and Christopher Ré ........... ... . ... ... ... . ... 658

Filling Knowledge Base Gaps for Distant Supervision of Relation Extraction
Wei Xu, Raphael Hoffmann, Le Zhao and Ralph Grishman ..................... ... ... ... 665

Joint Apposition Extraction with Syntactic and Semantic Constraints
Will Radford and James R. Curran ...t e 671

Adaptation Data Selection using Neural Language Models: Experiments in Machine Translation
Kevin Duh, Graham Neubig, Katsuhito Sudoh and Hajime Tsukada......................... 678

Mapping Source to Target Strings without Alignment by Analogical Learning: A Case Study with Translit-
eration
Phillippe Langlais . ... .....c.utttt et e et 684

Scalable Modified Kneser-Ney Language Model Estimation
Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark and Philipp Koehn.................. 690

Incremental Topic-Based Translation Model Adaptation for Conversational Spoken Language Transla-
tion

Sanjika Hewavitharana, Dennis Mehay, Sankaranarayanan Ananthakrishnan and Prem Natarajan
697

A Lightweight and High Performance Monolingual Word Aligner
Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch and Peter Clark................... 702

A Learner Corpus-based Approach to Verb Suggestion for ESL
Yu Sawai, Mamoru Komachi and Yuji Matsumoto ..o, 708

Learning Semantic Textual Similarity with Structural Representations
Aliaksei Severyn, Massimo Nicosia and Alessandro Moschitti ............................. 714

Typesetting for Improved Readability using Lexical and Syntactic Information
Ahmed Salama, Kemal Oflazer and SusanHagan ............... ... ... ... ... . oo, 719

XXV



Annotation of regular polysemy and underspecification
Héctor Martinez Alonso, Bolette Sandford Pedersen and NariaBel ......................... 725

Derivational Smoothing for Syntactic Distributional Semantics
Sebastian Pad6, Jan Snajder and Britta Zeller. ... ............oouuuieeeee i .. 731

Diathesis alternation approximation for verb clustering
Lin Sun, Diana McCarthy and Anna Korhonen .............. ... ..o iiiiiiiiiiinennnnn. 736

Outsourcing FrameNet to the Crowd
Marco Fossati, Claudio Giulianoand Sara Tonelli............ ..., 742

Smatch: an Evaluation Metric for Semantic Feature Structures
Shu Cai and Kevin Knight. ... ... e 748

Variable Bit Quantisation for LSH
Sean Moran, Victor Lavrenko and Miles Osborne . ..., 753

Context Vector Disambiguation for Bilingual Lexicon Extraction from Comparable Corpora
Dhouha Bouamor, Nasredine Semmar and Pierre Zweigenbaum............................ 759

The Effects of Lexical Resource Quality on Preference Violation Detection
Jesse Dunietz, Lori Levin and Jaime Carbonell . .......... ..., 765

Exploiting Qualitative Information from Automatic Word Alignment for Cross-lingual NLP Tasks
José G.C. de Souza, Miquel Espla-Gomis, Marco Turchi and Matteo Negri.................. 771

An Information Theoretic Approach to Bilingual Word Clustering
Manaal Faruqui and Chris DYer. .. .......o.ui i e e 777

Building and Evaluating a Distributional Memory for Croatian
Jan Snajder, Sebastian Pad6 and Zeljko AIiC . ... ..o i 784

Generalizing Image Captions for Image-Text Parallel Corpus
Polina Kuznetsova, Vicente Ordonez, Alexander Berg, Tamara Berg and Yejin Choi.......... 790

Recognizing Identical Events with Graph Kernels
Goran Glavas and Jan Snajder . ................... 797

Automatic Term Ambiguity Detection
Tyler Baldwin, Yunyao Li, Bogdan Alexe and Ioana R. Stanoi.............................. 804

Towards Accurate Distant Supervision for Relational Facts Extraction
Xingxing Zhang, Jianwen Zhang, Junyu Zeng, Jun Yan, Zheng Chen and Zhifang Sui .. ...... 810

Extra-Linguistic Constraints on Stance Recognition in Ideological Debates
Kazi Saidul Hasan and Vincent Ng .. ... o i 816

Are School-of-thought Words Characterizable?
Xiaorui Jiang, Xiaoping Sunand Hai Zhuge........... ... . i i 822

Identifying Opinion Subgroups in Arabic Online Discussions
Amjad Abu-Jbara, Ben King, Mona Diab and DragomirRadev............................. 829

Extracting Events with Informal Temporal References in Personal Histories in Online Communities
Miaomiao Wen, Zeyu Zheng, Hyeju Jang, Guang Xiang and Carolyn Penstein Rosé.......... 836

XXVi



Multimodal DBN for Predicting High-Quality Answers in cQA portals
Haifeng Hu, Bingquan Liu, Baoxun Wang, Ming Liu and Xiaolong Wang ................... 843

Bi-directional Inter-dependencies of Subjective Expressions and Targets and their Value for a Joint
Model
Roman Klinger and Philipp Cimiano .............oo i e 848

Identifying Sentiment Words Using an Optimization-based Model without Seed Words
Hongliang Yu, Zhi-Hong Deng and Shiyingxue Li .......... ... ... o .. 855

Detecting Turnarounds in Sentiment Analysis: Thwarting
Ankit Ramteke, Akshat Malu, Pushpak Bhattacharyya and J. Saketha Nath.................. 860

Explicit and Implicit Syntactic Features for Text Classification
Matt Post and Shane Bergsma. . ... e 866

Does Korean defeat phonotactic word segmentation?
Robert Daland and Kie Zuraw . . ...... ..ot e 873

Word surprisal predicts N400 amplitude during reading
Stefan L. Frank, Leun J. Otten, Giulia Galli and Gabriella Vigliocco........................ 878

Computerized Analysis of a Verbal Fluency Test
James O. Ryan, Serguei Pakhomov, Susan Marino, Charles Bernick and Sarah Banks......... 884

A New Set of Norms for Semantic Relatedness Measures
Sean Szumlanski, Fernando Gomez and Valerie K. Sims............ ... ... ... 890

XX Vil






Conference Program

Monday August 5, 2013
(7:30 - 17:00) Registration
(9:00 - 9:30) Opening session
(9:30) Invited Talk 1: Harald Baayen
(10:30) Coffee Break
Oral Presentations
(12:15) Lunch break
(16:15) Coffee Break
(16:45 - 18:05) SP 4a

16:45 Translating Dialectal Arabic to English
Hassan Sajjad, Kareem Darwish and Yonatan Belinkov

17:05 Exact Maximum Inference for the Fertility Hidden Markov Model
Chris Quirk
17:25 A Tale about PRO and Monsters

Preslav Nakov, Francisco Guzmdan and Stephan Vogel

17:45 Supervised Model Learning with Feature Grouping based on a Discrete Constraint
Jun Suzuki and Masaaki Nagata

XXixX



Monday August 5, 2013 (continued)

16:45

17:05

17:25

17:45

16:45

17:05

17:25

17:45

(16:45 - 18:05) SP 4b

Exploiting Topic based Twitter Sentiment for Stock Prediction
Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li, Huayi Li and Xiaotie Deng

Learning Entity Representation for Entity Disambiguation
Zhengyan He, Shujie Liu, Mu Li, Ming Zhou, Longkai Zhang and Houfeng Wang

Natural Language Models for Predicting Programming Comments
Dana Movshovitz-Attias and William W. Cohen

Paraphrasing Adaptation for Web Search Ranking
Chenguang Wang, Nan Duan, Ming Zhou and Ming Zhang

(16:45 - 18:05) SP 4c

Semantic Parsing as Machine Translation
Jacob Andreas, Andreas Vlachos and Stephen Clark

A relatedness benchmark to test the role of determiners in compositional distributional

semantics
Raffaella Bernardi, Georgiana Dinu, Marco Marelli and Marco Baroni

An Empirical Study on Uncertainty Identification in Social Media Context

Zhongyu Wei, Junwen Chen, Wei Gao, Binyang Li, Lanjun Zhou, Yulan He and Kam-Fai

Wong

PARMA: A Predicate Argument Aligner

Travis Wolfe, Benjamin Van Durme, Mark Dredze, Nicholas Andrews, Charley Beller,
Chris Callison-Burch, Jay DeYoung, Justin Snyder, Jonathan Weese, Tan Xu and Xuchen

Yao

XXX



Monday August 5, 2013 (continued)

16:45

17:05

17:25

17:45

16:45

17:05

17:25

17:45

(16:45 - 18:05) SP 4d

Aggregated Word Fair Features for Implicit Discourse Relation Disambiguation
Or Biran and Kathleen McKeown

Implicatures and Nested Beliefs in Approximate Decentralized-POMDPs
Adam Vogel, Christopher Potts and Dan Jurafsky

Domain-Specific Coreference Resolution with Lexicalized Features
Nathan Gilbert and Ellen Riloff

Learning to Order Natural Language Texts
Jiwei Tan, Xiaojun Wan and Jianguo Xiao

(16:45 - 18:05) SP 4e

Universal Dependency Annotation for Multilingual Parsing

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan
Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Téckstrom, Claudia

Bedini, Nuria Bertomeu Castellé and Jungmee Lee

An Empirical Examination of Challenges in Chinese Parsing
Jonathan K. Kummerfeld, Daniel Tse, James R. Curran and Dan Klein

Joint Inference for Heterogeneous Dependency Parsing
Guangyou Zhou and Jun Zhao

Easy-First POS Tagging and Dependency Parsing with Beam Search
Ji Ma, Jingbo Zhu, Tong Xiao and Nan Yang

XXX1



Monday August 5, 2013 (continued)
(18:30 - 19:45) Poster Session A
SP - Cognitive Modelling and Psycholinguistics

Arguments and Modifiers from the Learner’s Perspective
Leon Bergen, Edward Gibson and Timothy J. O’Donnell

SP - Dialogue and Interactive Systems

Benefactive/Malefactive Event and Writer Attitude Annotation
Lingjia Deng, Yoonjung Choi and Janyce Wiebe

SP- Discourse, Coreference and Pragmatics

GuiTAR-based Pronominal Anaphora Resolution in Bengali
Apurbalal Senapati and Utpal Garain

SP - Evaluation Methods

A Decade of Automatic Content Evaluation of News Summaries: Reassessing the State of
the Art
Peter A. Rankel, John M. Conroy, Hoa Trang Dang and Ani Nenkova

On the Predictability of Human Assessment: when Matrix Completion Meets NLP Evalu-
ation

Guillaume Wisniewski

Automated Pyramid Scoring of Summaries using Distributional Semantics
Rebecca J. Passonneau, Emily Chen, Weiwei Guo and Dolores Perin

XXXii



Monday August 5, 2013 (continued)
SP - Information Retrieval

Are Semantically Coherent Topic Models Useful for Ad Hoc Information Retrieval?
Romain Deveaud, Eric SanJuan and Patrice Bellot

Post-Retrieval Clustering Using Third-Order Similarity Measures
Jose G. Moreno, Gaél Dias and Guillaume Cleuziou

Automatic Coupling of Answer Extraction and Information Retrieval
Xuchen Yao, Benjamin Van Durme and Peter Clark

SP - Word Segmentation

An improved MDL-based compression algorithm for unsupervised word segmentation
Ruey-Cheng Chen

Co-regularizing character-based and word-based models for semi-supervised Chinese
word segmentation
Xiaodong Zeng, Derek F. Wong, Lidia S. Chao and Isabel Trancoso

Improving Chinese Word Segmentation on Micro-blog Using Rich Punctuations
Longkai Zhang, Li Li, Zhengyan He, Houfeng Wang and Ni Sun

Accurate Word Segmentation using Transliteration and Language Model Projection
Masato Hagiwara and Satoshi Sekine

SP - Spoken Language Processing

Broadcast News Story Segmentation Using Manifold Learning on Latent Topic Distribu-
tions

Xiaoming Lu, Lei Xie, Cheung-Chi Leung, Bin Ma and Haizhou Li

Is word-to-phone mapping better than phone-phone mapping for handling English words?

Naresh Kumar Elluru, Anandaswarup Vadapalli, Raghavendra Elluru, Hema Murthy and
Kishore Prahallad

XXX1i1



Monday August 5, 2013 (continued)
SP - Multilinguality

Enriching Entity Translation Discovery using Selective Temporality
Gae-won You, Young-rok Cha, Jinhan Kim and Seung-won Hwang

Combination of Recurrent Neural Networks and Factored Language Models for Code-
Switching Language Modeling
Heike Adel, Ngoc Thang Vu and Tanja Schultz

Latent Semantic Matching: Application to Cross-language Text Categorization without
Alignment Information
Tsutomu Hirao, Tomoharu Iwata and Masaaki Nagata

SP - NLP Applications

TopicSpam: a Topic-Model based approach for spam detection
Jiwei Li, Claire Cardie and Sujian Li

Semantic Neighborhoods as Hypergraphs
Chris Quirk and Pallavi Choudhury

Unsupervised joke generation from big data
Sasa Petrovi¢ and David Matthews

Modeling of term-distance and term-occurrence information for improving n-gram lan-
guage model performance

Tze Yuang Chong, Rafael E. Banchs, Eng Siong Chng and Haizhou Li

Discriminative Approach to Fill-in-the-Blank Quiz Generation for Language Learners
Keisuke Sakaguchi, Yuki Arase and Mamoru Komachi

XXX1V



Monday August 5, 2013 (continued)
SP - NLP and Creativity
"Let Everything Turn Well in Your Wife": Generation of Adult Humor Using Lexical Con-
straints

Alessandro Valitutti, Hannu Toivonen, Antoine Doucet and Jukka M. Toivanen

Random Walk Factoid Annotation for Collective Discourse
Ben King, Rahul Jha, Dragomir Radev and Robert Mankoff

SP - NLP for the Languages of Central and Eastern Europe and the Balkans

ldentifying English and Hungarian Light Verb Constructions: A Contrastive Approach
Veronika Vincze, Istvdn Nagy T. and Richard Farkas

English-to-Russian MT evaluation campaign
Pavel Braslavski, Alexander Beloborodov, Maxim Khalilov and Serge Sharoff

SP - Language Resources

IndoNet: A Multilingual Lexical Knowledge Network for Indian Languages
Brijesh Bhatt, Lahari Poddar and Pushpak Bhattacharyya

Building Japanese Textual Entailment Specialized Data Sets for Inference of Basic Sen-
tence Relations

Kimi Kaneko, Yusuke Miyao and Daisuke Bekki

Building Comparable Corpora Based on Bilingual LDA Model
Zede Zhu, Miao Li, Lei Chen and Zhenxin Yang

XXXV



Monday August 5, 2013 (continued)
SP - Lexical Semantics and Ontologies

Using Lexical Expansion to Learn Inference Rules from Sparse Data
Oren Melamud, Ido Dagan, Jacob Goldberger and Idan Szpektor

Mining Equivalent Relations from Linked Data
Ziqi Zhang, Anna Lisa Gentile, Isabelle Augenstein, Eva Blomqvist and Fabio Ciravegna

SP - Low Resource Language Processing

Context-Dependent Multilingual Lexical Lookup for Under-Resourced Languages
Lian Tze Lim, Lay-Ki Soon, Tek Yong Lim, Enya Kong Tang and Bali Ranaivo-Malangon

Sorani Kurdish versus Kurmanji Kurdish: An Empirical Comparison
Kyumars Sheykh Esmaili and Shahin Salavati

Enhanced and Portable Dependency Projection Algorithms Using Interlinear Glossed Text
Ryan Georgi, Fei Xia and William D. Lewis

Cross-lingual Projections between Languages from Different Families
Mo Yu, Tiejun Zhao, Yalong Bai, Hao Tian and Dianhai Yu

Using Context Vectors in Improving a Machine Translation System with Bridge Language
Samira Tofighi Zahabi, Somayeh Bakhshaei and Shahram Khadivi

SP - Machine Translation: Methods, Applications and Evaluations

Task Alternation in Parallel Sentence Retrieval for Twitter Translation
Felix Hieber, Laura Jehl and Stefan Riezler

Sign Language Lexical Recognition With Propositional Dynamic Logic
Arturo Curiel and Christophe Collet

Stacking for Statistical Machine Translation
Majid Razmara and Anoop Sarkar

XXXVi



Monday August 5, 2013 (continued)

Bilingual Data Cleaning for SMT using Graph-based Random Walk
Lei Cui, Dongdong Zhang, Shujie Liu, Mu Li and Ming Zhou

Automatically Predicting Sentence Translation Difficulty
Abhijit Mishra, Pushpak Bhattacharyya and Michael Carl

Learning to Prune: Context-Sensitive Pruning for Syntactic MT
Wenduan Xu, Yue Zhang, Philip Williams and Philipp Koehn

A Novel Graph-based Compact Representation of Word Alignment
Qun Liu, Zhaopeng Tu and Shouxun Lin

Stem Translation with Affix-Based Rule Selection for Agglutinative Languages
Zhiyang Wang, Yajuan Lii, Meng Sun and Qun Liu

A Novel Translation Framework Based on Rhetorical Structure Theory
Mei Tu, Yu Zhou and Chengqing Zong

Improving machine translation by training against an automatic semantic frame based
evaluation metric

Chi-kiu Lo, Karteek Addanki, Markus Saers and Dekai Wu

(19:45 - 21:00) Poster Session B

SP - Machine Translation: Statistical Models

Bilingual Lexical Cohesion Trigger Model for Document-Level Machine Translation
Guosheng Ben, Deyi Xiong, Zhiyang Teng, Yajuan Lii and Qun Liu

Generalized Reordering Rules for Improved SMT
Fei Huang and Cezar Pendus

A Tightly-coupled Unsupervised Clustering and Bilingual Alignment Model for Translit-
eration

Tingting Li, Tiejun Zhao, Andrew Finch and Chunyue Zhang

Can Markov Models Over Minimal Translation Units Help Phrase-Based SMT?
Nadir Durrani, Alexander Fraser, Helmut Schmid, Hieu Hoang and Philipp Koehn

XXX Vil



Monday August 5, 2013 (continued)
Learning Non-linear Features for Machine Translation Using Gradient Boosting Ma-
chines
Kristina Toutanova and Byung-Gyu Ahn
Language Independent Connectivity Strength Features for Phrase Pivot Statistical Ma-
chine Translation

Ahmed El Kholy, Nizar Habash, Gregor Leusch, Evgeny Matusov and Hassan Sawaf

Semantic Roles for String to Tree Machine Translation
Marzieh Bazrafshan and Daniel Gildea

SP -Question Answering

Minimum Bayes Risk based Answer Re-ranking for Question Answering
Nan Duan

Question Classification Transfer
Anne-Laure Ligozat

Latent Semantic Tensor Indexing for Community-based Question Answering
Xipeng Qiu, Le Tian and Xuanjing Huang

SP - Semantics

Measuring semantic content in distributional vectors
Aurélie Herbelot and Mohan Ganesalingam

Modeling Human Inference Process for Textual Entailment Recognition
Hen-Hsen Huang, Kai-Chun Chang and Hsin-Hsi Chen

Recognizing Partial Textual Entailment
Omer Levy, Torsten Zesch, Ido Dagan and Iryna Gurevych

Sentence Level Dialect Identification in Arabic
Heba Elfardy and Mona Diab

Leveraging Domain-Independent Information in Semantic Parsing
Dan Goldwasser and Dan Roth

XXXViil



Monday August 5, 2013 (continued)
A Structured Distributional Semantic Model for Event Co-reference
Kartik Goyal, Sujay Kumar Jauhar, Huiying Li, Mrinmaya Sachan, Shashank Srivastava
and Eduard Hovy

SP - Sentiment Analysis, Opinion Mining and Text Classification

Text Classification from Positive and Unlabeled Data using Misclassified Data Correction
Fumiyo Fukumoto, Yoshimi Suzuki and Suguru Matsuyoshi

Character-to-Character Sentiment Analysis in Shakespeare’s Plays
Eric T. Nalisnick and Henry S. Baird

A Novel Classifier Based on Quantum Computation
Ding Liu, Xiaofang Yang and Minghu Jiang

Re-embedding words
Igor Labutov and Hod Lipson

LABR: A Large Scale Arabic Book Reviews Dataset
Mohamed Aly and Amir Atiya

Generating Recommendation Dialogs by Extracting Information from User Reviews
Kevin Reschke, Adam Vogel and Dan Jurafsky

Exploring Sentiment in Social Media: Bootstrapping Subjectivity Clues from Multilingual
Twitter Streams

Svitlana Volkova, Theresa Wilson and David Yarowsky

Joint Modeling of News Reader’s and Comment Writer’s Emotions
Huanhuan Liu, Shoushan Li, Guodong Zhou, Chu-ren Huang and Peifeng Li

An annotated corpus of quoted opinions in news articles
Tim O’Keefe, James R. Curran, Peter Ashwell and Irena Koprinska

Dual Training and Dual Prediction for Polarity Classification
Rui Xia, Tao Wang, Xuelei Hu, Shoushan Li and Chengqing Zong

Co-Regression for Cross-Language Review Rating Prediction
Xiaojun Wan

XXX1X



Monday August 5, 2013 (continued)
SP - Statistical and Machine Learning Methods in NLP

Extracting Definitions and Hypernym Relations relying on Syntactic Dependencies and
Support Vector Machines
Guido Boella and Luigi Di Caro

Neighbors Help: Bilingual Unsupervised WSD Using Context
Sudha Bhingardive, Samiulla Shaikh and Pushpak Bhattacharyya

Reducing Annotation Effort for Quality Estimation via Active Learning
Daniel Beck, Lucia Specia and Trevor Cohn

Reranking with Linguistic and Semantic Features for Arabic Optical Character Recogni-
tion
Nadi Tomeh, Nizar Habash, Ryan Roth, Noura Farra, Pradeep Dasigi and Mona Diab

SP - Summarization and Generation

Evolutionary Hierarchical Dirichlet Process for Timeline Summarization
Jiwei Li and Sujian Li

Using Integer Linear Programming in Concept-to-Text Generation to Produce More Com-
pact Texts
Gerasimos Lampouras and lon Androutsopoulos

Sequential Summarization: A New Application for Timely Updated Twitter Trending Top-
ics

Dehong Gao, Wenjie Li and Renxian Zhang

A System for Summarizing Scientific Topics Starting from Keywords
Rahul Jha, Amjad Abu-Jbara and Dragomir Radev

x1



Monday August 5, 2013 (continued)
SP - Syntax and Parsing

A Unified Morpho-Syntactic Scheme of Stanford Dependencies
Reut Tsarfaty

Dependency Parser Adaptation with Subtrees from Auto-Parsed Target Domain Data
Xuezhe Ma and Fei Xia

Iterative Transformation of Annotation Guidelines for Constituency Parsing
Xiang Li, Wenbin Jiang, Yajuan Lii and Qun Liu

Nonparametric Bayesian Inference and Efficient Parsing for Tree-adjoining Grammars
Elif Yamangil and Stuart M. Shieber

Using CCG categories to improve Hindi dependency parsing
Bharat Ram Ambati, Tejaswini Deoskar and Mark Steedman

The Effect of Higher-Order Dependency Features in Discriminative Phrase-Structure
Parsing
Greg Coppola and Mark Steedman

Turning on the Turbo: Fast Third-Order Non-Projective Turbo Parsers
Andre Martins, Miguel Almeida and Noah A. Smith

A Lattice-based Framework for Joint Chinese Word Segmentation, POS Tagging and Pars-
ing
Zhiguo Wang, Chengqing Zong and Nianwen Xue

Efficient Implementation of Beam-Search Incremental Parsers
Yoav Goldberg, Kai Zhao and Liang Huang

xli



Monday August 5, 2013 (continued)
SP - Tagging and Chunking

Simpler unsupervised POS tagging with bilingual projections
Long Duong, Paul Cook, Steven Bird and Pavel Pecina

Part-of-speech tagging with antagonistic adversaries
Anders Sggaard

SP - Text Mining and Information Extraction

Temporal Signals Help Label Temporal Relations
Leon Derczynski and Robert Gaizauskas

Diverse Keyword Extraction from Conversations
Maryam Habibi and Andrei Popescu-Belis

Understanding Tables in Context Using Standard NLP Toolkits
Vidhya Govindaraju, Ce Zhang and Christopher Ré

Filling Knowledge Base Gaps for Distant Supervision of Relation Extraction
Wei Xu, Raphael Hoffmann, Le Zhao and Ralph Grishman

Joint Apposition Extraction with Syntactic and Semantic Constraints
Will Radford and James R. Curran

xlii



Tuesday August 6, 2013

16:45

17:05

17:25

17:45

(7:30 - 17:00) Registration

(9:00) Industrial Lecture: Lars Rasmussen (Facebook)

(10:00) Best Paper Award

(10:30) Coffee Break

Oral Presentations

(12:15) Lunch break

(16:15) Coffee Break

(16:45 - 18:05) SP 8a

Adaptation Data Selection using Neural Language Models: Experiments in Machine
Translation

Kevin Duh, Graham Neubig, Katsuhito Sudoh and Hajime Tsukada

Mapping Source to Target Strings without Alignment by Analogical Learning: A Case
Study with Transliteration

Phillippe Langlais

Scalable Modified Kneser-Ney Language Model Estimation
Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark and Philipp Koehn

Incremental Topic-Based Translation Model Adaptation for Conversational Spoken Lan-
guage Translation

Sanjika Hewavitharana, Dennis Mehay, Sankaranarayanan Ananthakrishnan and Prem
Natarajan

xliii



Tuesday August 6, 2013 (continued)

16:45

17:05

17:25

17:45

16:45

17:05

17:25

17:45

(16:45 - 18:05) SP 8b

A Lightweight and High Performance Monolingual Word Aligner
Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch and Peter Clark

A Learner Corpus-based Approach to Verb Suggestion for ESL
Yu Sawai, Mamoru Komachi and Yuji Matsumoto

Learning Semantic Textual Similarity with Structural Representations
Aliaksei Severyn, Massimo Nicosia and Alessandro Moschitti

Typesetting for Improved Readability using Lexical and Syntactic Information
Ahmed Salama, Kemal Oflazer and Susan Hagan

(16:45 - 18:05) SP 8c

Annotation of regular polysemy and underspecification
Héctor Martinez Alonso, Bolette Sandford Pedersen and Niiria Bel

Derivational Smoothing for Syntactic Distributional Semantics
Sebastian Padé, Jan Snajder and Britta Zeller

Diathesis alternation approximation for verb clustering
Lin Sun, Diana McCarthy and Anna Korhonen

Outsourcing FrameNet to the Crowd
Marco Fossati, Claudio Giuliano and Sara Tonelli

xliv



Tuesday August 6, 2013 (continued)

(16:45 - 18:05) SP 8d

16:45 Smatch: an Evaluation Metric for Semantic Feature Structures
Shu Cai and Kevin Knight
17:05 Variable Bit Quantisation for LSH

Sean Moran, Victor Lavrenko and Miles Osborne
17:25 Context Vector Disambiguation for Bilingual Lexicon Extraction from Comparable Cor-
pora

Dhouha Bouamor, Nasredine Semmar and Pierre Zweigenbaum

17:45 The Effects of Lexical Resource Quality on Preference Violation Detection
Jesse Dunietz, Lori Levin and Jaime Carbonell

(18:30) Banquet
Wednesday August 7, 2013
(9:30) Invited Talk 3: Chantal Prat
(10:30) Coffee Break
Oral Presentations

(12:15) Lunch break

xlv



Wednesday August 7, 2013 (continued)

15:00

15:35

15:55

16:15

16:45

17:05

17:25

17:45

(13:30) ACL Business Meeting

(15:00 -16:45) SP 10d

Exploiting Qualitative Information from Automatic Word Alignment for Cross-lingual NLP
Tasks

José G.C. de Souza, Miquel Espla-Gomis, Marco Turchi and Matteo Negri

An Information Theoretic Approach to Bilingual Word Clustering
Manaal Faruqui and Chris Dyer

Building and Evaluating a Distributional Memory for Croatian
Jan Snajder, Sebastian Pad6 and Zeljko Agié

Generalizing Image Captions for Image-Text Parallel Corpus
Polina Kuznetsova, Vicente Ordonez, Alexander Berg, Tamara Berg and Yejin Choi

(16:15) Coffee Break

(16:45 - 18:05) SP 11a

Recognizing Identical Events with Graph Kernels
Goran Glavas and Jan Snajder

Automatic Term Ambiguity Detection
Tyler Baldwin, Yunyao Li, Bogdan Alexe and Ioana R. Stanoi

Towards Accurate Distant Supervision for Relational Facts Extraction
Xingxing Zhang, Jianwen Zhang, Junyu Zeng, Jun Yan, Zheng Chen and Zhifang Sui

Extra-Linguistic Constraints on Stance Recognition in Ideological Debates
Kazi Saidul Hasan and Vincent Ng

x1vi



Wednesday August 7, 2013 (continued)

16:45

17:05

17:25

17:45

16:45

17:05

17:25

17:45

(16:45 - 18:05) SP 11b

Are School-of-thought Words Characterizable?
Xiaorui Jiang, Xiaoping Sun and Hai Zhuge

Identifying Opinion Subgroups in Arabic Online Discussions
Amjad Abu-Jbara, Ben King, Mona Diab and Dragomir Radev

Extracting Events with Informal Temporal References in Personal Histories in Online
Communities
Miaomiao Wen, Zeyu Zheng, Hyeju Jang, Guang Xiang and Carolyn Penstein Rosé

Multimodal DBN for Predicting High-Quality Answers in cQA portals
Haifeng Hu, Bingquan Liu, Baoxun Wang, Ming Liu and Xiaolong Wang

(16:45 - 18:05) SP 11c¢

Bi-directional Inter-dependencies of Subjective Expressions and Targets and their Value
for a Joint Model

Roman Klinger and Philipp Cimiano

Identifying Sentiment Words Using an Optimization-based Model without Seed Words
Hongliang Yu, Zhi-Hong Deng and Shiyingxue Li

Detecting Turnarounds in Sentiment Analysis: Thwarting
Ankit Ramteke, Akshat Malu, Pushpak Bhattacharyya and J. Saketha Nath

Explicit and Implicit Syntactic Features for Text Classification
Matt Post and Shane Bergsma

x1vii



Wednesday August 7, 2013 (continued)

16:45

17:05

17:25

17:45

(16:45 - 18:05) SP 11d

Does Korean defeat phonotactic word segmentation?
Robert Daland and Kie Zuraw

Word surprisal predicts N400 amplitude during reading
Stefan L. Frank, Leun J. Otten, Giulia Galli and Gabriella Vigliocco

Computerized Analysis of a Verbal Fluency Test
James O. Ryan, Serguei Pakhomov, Susan Marino, Charles Bernick and Sarah Banks

A New Set of Norms for Semantic Relatedness Measures
Sean Szumlanski, Fernando Gomez and Valerie K. Sims

(18:30) Lifetime Achievement Award Session
(19:15) Closing Session

(19:30) End

x1viii



Translating Dialectal Arabic to English

Hassan Sajjad, Kareem Darwish
Qatar Computing Research Institute
Qatar Foundation

{hsajjad, kdarwish}@gf.org.qga

Abstract

We present a dialectal Egyptian Arabic
to English statistical machine translation
system that leverages dialectal to Modern
Standard Arabic (MSA) adaptation. In
contrast to previous work, we first nar-
row down the gap between Egyptian and
MSA by applying an automatic character-
level transformational model that changes
Egyptian to EG’, which looks simi-
lar to MSA. The transformations include
morphological, phonological and spelling
changes.  The transformation reduces
the out-of-vocabulary (OOV) words from
5.2% to 2.6% and gives a gain of 1.87
BLEU points. Further, adapting large
MSA/English parallel data increases the
lexical coverage, reduces OOVs to 0.7%
and leads to an absolute BLEU improve-
ment of 2.73 points.

1 Introduction

Modern Standard Arabic (MSA) is the lingua
franca for the Arab world. Arabic speakers gen-
erally use dialects in daily interactions. There are
6 dominant dialects, namely Egyptian, Moroccan,
Levantine, Iraqi, Gulf, and Yemeni!. The dialects
may differ in vocabulary, morphology, syntax, and
spelling from MSA and most lack spelling con-
ventions.

Different dialects often make different lexical
choices to express concepts. For example, the con-

cept corresponding to “Oryd” & j (“I want”) is
expressed as “EAwz” ;sle in Egyptian, “Abgy”
6&{‘ in Gulf, “Aby” d‘ in Iraqi, and “bdy” SN
i.l.‘l Levantine?. Often, .;vords have different or op-

posite meanings in different dialects.

'nttp://en.wikipedia.org/wiki/
Varieties_of Arabic
2 All transliterations follow the Buckwalter scheme
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Arabic dialects may differ morphologically
from MSA. For example, Egyptian Arabic uses a
negation construct similar to the French “ne pas”
negation construct. The Egyptian word “mlIEbt$”
Jilake (or alternatively spelled _idwlle) (“T did

not play”) is composed of “m+IEbt+$”.

The pronunciations of letters often differ from
one dialect to another. For example, the letter “q”
Gy is typically pronounced in MSA as an unvoiced
uvular stop (as the “q” in “quote”), but as a glot-
tal stop in Egyptian and Levantine (like “A” in
“Alpine”) and a voiced velar stop in the Gulf (like

g” in “gavel”). Differing pronunciations often re-
flect on spelling.

Social media platforms allowed people to ex-
press themselves more freely in writing. Although
MSA is used in formal writing, dialects are in-
creasingly being used on social media sites. Some
notable trends on social platforms include (Dar-
wish et al., 2012):

- Mixed language texts where bilingual (or mul-
tilingual) users code switch between Arabic and
English (or Arabic and French). In the exam-
ple “wSIny mrsy” o » dlegy (“got it thank
you”), “thank you” is the transliterated French
word “merci”.

— The use of phonetic transcription to match di-
alectal pronunciation. For example, “Sdq” Buwe
(“truth”) is often written as “Sj” C‘-’ in Gulf di-

alect.

— Creative spellings, spelling mistakes, and word
elongations are ubiquitous in social texts.

— The use of new words like “lol” J ¢} (“LOL”).

— The attachment of new meanings to words such
as using “THn” u,’da to mean “very” while it
means “grinding” in MSA.

The Egyptian dialect has the largest number of
speakers and is the most commonly understood di-
alect in the Arab world. In this work, we focused
on translating dialectal Egyptian to English us-

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 1-6,
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ing Egyptian to MSA adaptation. Unlike previous
work, we first narrowed the gap between Egyptian
and MSA using character-level transformations
and word n-gram models that handle spelling mis-
takes, phonological variations, and morphological
transformations. Later, we applied an adaptation
method to incorporate MSA/English parallel data.
The contributions of this paper are as follows:
— We trained an Egyptian/MSA transformation
model to make Egyptian look similar to MSA. We
publicly released the training data.
— We built a phrasal Machine Translation (MT)
system on adapted Egyptian/English parallel data,
which outperformed a non-adapted baseline by
1.87 BLEU points.
— We used phrase-table merging (Nakov and Ng,
2009) to utilize MSA/English parallel data with
the available in-domain parallel data.

2 Previous Work

Our work is related to research on MT from a re-
source poor language (to other languages) by piv-
oting on a closely related resource rich language.
This can be done by either translating between
the related languages using word-level translation,
character level transformations, and language spe-
cific rules (Durrani et al., 2010; Hajic et al., 2000;
Nakov and Tiedemann, 2012), or by concatenating
the parallel data for both languages (Nakov and
Ng, 2009). These translation methods generally
require parallel data, for which hardly any exists
between dialects and MSA. Instead of translating
between a dialect and MSA, we tried to narrow
down the lexical, morphological and phonetic gap
between them using a character-level conversion
model, which we trained on a small set of parallel
dialect/MSA word pairs.

In the context of Arabic dialects?, most previous
work focused on converting dialects to MSA and
vice versa to improve the processing of dialects
(Sawaf, 2010; Chiang et al., 2006; Mohamed et
al.,, 2012; Utiyama and Isahara, 2008). Sawaf
(2010) proposed a dialect to MSA normalization
that used character-level rules and morphological
analysis. Salloum and Habash (2011) also used a
rule-based method to generate MSA paraphrases
of dialectal out-of-vocabulary (OOV) and low fre-
quency words. Instead of rules, we automatically

*Due to space limitations, we restrict discussion to work
on dialects only.

learnt character mappings from dialect/MSA word
pairs.

Zbib et al. (2012) explored several methods for
dialect/English MT. Their best Egyptian/English
system was trained on dialect/English parallel
data. They used two language models built from
the English GigaWord corpus and from a large
web crawl. Their best system outperformed man-
ually translating Egyptian to MSA then translat-
ing using an MSA/English system. In contrast, we
showed that training on in-domain dialectal data
irrespective of its small size is better than training
on large MSA/English data. Our LM experiments
also affirmed the importance of in-domain English
LMs. We also showed that a conversion does not
imply a straight forward usage of MSA resources
and there is a need for adaptation which we ful-
filled using phrase-table merging (Nakov and Ng,
2009).

2.1 Baseline

We constructed baselines that were based on the
following training data:

- An Egyptian/English parallel corpus consist-
ing of ~38k sentences, which is part of the
LDC2012T09 corpus (Zbib et al., 2012). We ran-
domly divided it into 32k sentences for training,
2k for development and 4k for testing. We hence-
forth refer to this corpus as EG and the English
part of it as F'G,,,. We did not have access to the
training/test splits of Zbib et al. (2012) to directly
compare to their results.

- An MSA/English parallel corpus consisting of
200k sentences from LDC*. We refer to this cor-
pus as the AR corpus.

For language modeling, we used either EG.,
or the English side of the AR corpus plus the En-
glish side of NIST12 training data and English Gi-
gaWord v5. We refer to this corpus as GW.

We tokenized Egyptian and Arabic accord-
ing to the ATB tokenization scheme using the
MADA+TOKAN morphological analyzer and to-
kenizer v3.1 (Roth et al., 2008). Word elonga-
tions were already fixed in the corpus. We word-
aligned the parallel data using GIZA++ (Och and
Ney, 2003), and symmetrized the alignments using
grow-diag-final-and heuristic (Koehn et al., 2003).
We trained a phrasal MT system (Koehn et al.,
2003). We built five-gram LMs using KenLM

*Arabic News (LDC2004T17), eTIRR (LDC2004E72),
and parallel corpora the GALE program



| Train LM BLEU OOV
Bl | AR GW 7.48 6.7
B2 | EG GWwW 12.82 52
B3 | EG EGen 13.94 52
B4 | EG EGenGW 14.23 5.2

Table 1: Baseline results using the EG and AR
training sets with GW and EG,,, corpora for LM
training

with modified Kneser-Ney smoothing (Heafield,
2011). In case of more than one LM, we tuned
their weights on a development set using Mini-
mum Error Rate Training (Och and Ney, 2003).
We built several baseline systems as follows:
— Bl used AR for training a translation model and
GW for LM.
— B2-B4 systems used identical training data,
namely EG, with the GW, EG,,, or both for B2,
B3, and B4 respectively for language modeling.
Table 1 reports the baseline results. The system
trained on AR (BI) performed poorly compared
to the one trained on EG (B2) with a 6.75 BLEU
points difference. This highlights the difference
between MSA and Egyptian. Using FG data for
training both the translation and language models
was effective. B4 used two LMs and yielded the
best results. For later comparison, we only use the
B4 baseline.

3 Proposed Methods
3.1 Egyptian to EG’ Conversion

As mentioned previously, dialects differ from
MSA in vocabulary, morphology, and phonology.
Dialectal spelling often follows dialectal pronun-
ciation, and dialects lack standard spelling con-
ventions. To address the vocabulary problem, we
used the EG corpus for training.

To address the spelling and morphological dif-
ferences, we trained a character-level mapping
model to generate MSA words from dialectal
ones using character transformations. To train the
model, we extracted the most frequent words from
a dialectal Egyptian corpus, which had 12,527
news comments (containing 327k words) from Al-
Youm Al-Sabe news site (Zaidan and Callison-
Burch, 2011) and translated them to their equiv-
alent MSA words. We hired a professional trans-
lator, who generated one or more translations of
the most frequent 5,581 words into MSA. Out of
these word pairs, 4,162 involved character-level
transformations due to phonological, morphologi-

cal, or spelling changes. We aligned the translated
pairs at character level using GIZA++ and Moses
in the manner described in Section 2.1. As in the
baseline of Kahki et al. (2011), given a source
word, we produced all of its possible segmenta-
tions along with their associated character-level
mappings. We restricted individual source char-
acter sequences to be 3 characters at most. We
retained all mapping sequences leading to valid
words in a large lexicon. We built the lexicon from
a set of 234,638 Aljazeera articles that span a 10
year period and contain 254M tokens. Spelling
mistakes in Aljazeera articles were very infre-
quent. We sorted the candidates by the product of
the constituent mapping probabilities and kept the
top 10 candidates. Then we used a trigram LM that
we built from the aforementioned Aljazeera arti-
cles to pick the most likely candidate in context.
We simply multiplied the character-level transfor-
mation probability with the LM probability — giv-
ing them equal weight. Since Egyptian has a “ne
pas” like negation construct that involves putting a
“»” and “ 4" at the beginning and end of verbs,
we handled words that had negation by remov-
ing these two letters, then applying our character
transformation, and lastly adding the negation ar-
ticle “1A” Y before the verb. We converted the EG
train, tune, and test parts. We refer to the converted
corpus as EG'.

As an example, our system transformed

do fumace (%Lw ?ﬁ‘ o~ (“what is hap-

pening to them does not please anyone”) to

do cmmy Yoo faf oW . Transform-
ing “Ally” &J l'to “Al*y” ¢linvolved a spelling

correction. The transformation of “byHSIhm”

~; to “yHSIThm” o) Juax involved a mor-
phological change and word splitting. Chang-
ing “myEjb$” jumacs to “1A YEjbB” Cammy Y in-
volved morphologically transforming a negation
construct.

3.2 Combining AR and EG’

The aforementioned conversion generated a lan-
guage that is close, but not identical, to MSA.
In order to maximize the gain using both paral-
lel corpora, we used the phrase merging technique
described in Nakov and Ng (2009) to merge the
phrase tables generated from the AR and EG’ cor-
pora. If a phrase occurred in both phrase tables, we

Shttp://www.aljazeera.net



adopted one of the following three solutions:

- Only added the phrase with its translations and
their probabilities from the AR phrase table. This
assumed AR alignments to be more reliable.

- Only added the phrase with its translations and
their probabilities from the EG’ phrase table. This
assumed E'G’ alignments to be more reliable.

- Added translations of the phrase from both
phrase tables and left the choice to the decoder.
We added three additional features to the new
phrase table to avail the information about the ori-
gin of phrases (as in Nakov and Ng (2009)).

3.3 Evaluation and Discussion

We performed the following experiments:

- S0 involved translating the EG’ test using AR.

- 87 and S2 trained on the EG’ with EG,,, and
both EG.,, and GW for LM training respectively.
- S, used phrase merging technique. All systems
trained on both FG’ and AR corpora. We built
separate phrase tables from the two corpora and
merged them. When merging, we preferred AR or
EG' for Syr and Sgq respectively. For Sarr,
we kept phrases from both phrase tables.

Table 2 summarizes results of using EG’ and
phrase table merging. SO was slightly better than
BI, but lagged considerably behind training using
EG or EG'. S1, which used only EG’ for train-
ing showed an improvement of 1.67 BLEU points
from the best baseline system (B4). Using both
language models (S2) led to slight improvement.
Phrase merging that preferred phrases learnt from
EG’ data over AR data performed the best with a
BLEU score of 16.96.

| Train LM BLEU OOV
B4 | EG EGen GW 14.23 52
SO AR EGen 8.61 2.0
S1 EG’ EGen 15.90 2.6
S2 EG’ EGen GW 16.10 2.6
Sar PTsr EGen GW 16.14 0.7
Sear | PTeg EGen GW 16.96 0.7
Sarr | PTgg',arn  EGenGW 16.73 0.7

Table 2: Summary of results using different com-
binations of FG'/English and MSA/English train-
ing data

We analyzed 100 test sentences that led to the
greatest absolute change in BLEU score, whether
positive or negative, between training with EG
and EG’. The largest difference in BLEU was
0.69 in favor of EG’. Translating the Egyp-

tian sentence “wbyHtrmwA AlnAs AltAnyp”
Wl Ul Tga iy ¢ produced “lge iy 5 (OOV)
the second people” (BLEU = 0.31). Conver-
sion changed “wbyHtrmwA” to “wyHtrmwA” and
“AltAnyp” Wl to “AlvAnyp” 45, leading to
“and they respect other people” (BLEU = 1).
Training with EG’ outperformed EG for 63 of the
sentences. Conversion improved MT, because it
reduced OOVs, enabled MADA+TOKAN to suc-
cessfully analyze words, and reduced spelling mis-
takes.

In further analysis, we examined 1% of the sen-
tences with the largest difference in BLEU score.
Out of these, more than 70% were cases where the
EG’ model achieved a higher BLEU score. For
each observed conversion error, we identified its
linguistic character, i.e. whether it is lexical, syn-
tactic, morphological or other. We found that in
more than half of the cases (=57%) using morpho-
logical information could have improved the con-
version. Consider the following example, where
(1) is the original G sentence and its EG/EN
translation, and (2) is the converted EG’ sentence
and its EG'/EN translation:

Lodis, s $> oY
1An dy Hsb rgbtk
because this is according to your desire

2. &8 Cow> 04 Qfﬁ
10n h*h Hsb rgbth
because this is according to his desire

In this case, “rgbtk” &l | (“your wish™) was con-

verted to “rgbth” &<, (“his wish”) leading to an
unwanted change in the translation. This could be
avoided, for instance, by running a morphologi-
cal analyzer on the original and converted word,
and making sure their morphological features (in
this case, the person of the possessive) correspond.
In a similar case, the phrase “mEndy$ AEdA”
slasl fyaies was converted to “Endy OEdA™
slasl gais, thereby changing the translation from
*I don’t have enemies” to ”I have enemies”. Here,
again, a morphological analyzer could verify the
retaining of negation after conversion.

In another sentence, “knty” d“{ (“you (fm.)

were”) was correctly converted to the MSA “knt”
=S, which is used for feminine and masculine
forms. However, the induced ambiguity ended up
hurting translation.



Aside from morphological mistakes, conversion
often changed words completely. In one sen-
tence, the word “IbAnh” & ("chewing gum)

was wrongly converted to “l1Onh” <N (because
it”), resulting in a wrong translation. Perhaps a
morphological analyzer, or just a part-of-speech
tagger, could enforce (or probabilistically encour-
age) a match in parts of speech.

The conversion also faces some other chal-
lenges. Consider the following example:

Lol W Ll lgn
hwA AHnA EmInA Ayyyh
he is we did we What ? ?

2. ¢l W & g
hw nHn EmInA Ayh
he we did we do ? ?

While the first two words “hwA AHnA” U>| ‘j.b
were correctly converted to “hw nHn” u-‘ 9o, the
final word “Ayyyh” 43! ("what”) was shortened
but remained dialectal “Ayh” 4! rather than MSA

“mA/mA*A” W/13k. There is a syntactic chal-
lenge in this sentence, since the Egyptian word or-
der in interrogative sentences is normally different
from the MSA word order: the interrogative par-
ticle appears at the end of the sentence instead of
at the beginning. Addressing this problem might
have improved translation.

The above analysis suggests that incorporat-
ing deeper linguistic information in the conversion
procedure could improve translation quality. In
particular, using a morphological analyzer seeems
like a promising possibility. One approach could
be to run a morphological analyzer for dialectal
Arabic (e.g. MADA-ARZ (Habash et al., 2013))
on the original EG sentence and another analyzer
for MSA (such as MADA) on the converted EG’
sentence, and then to compare the morphological
features. Discrepancies should be probabilistically
incorporated in the conversion. Exploring this ap-
proach is left for future work.

4 Conclusion

We presented an Egyptian to English MT system.
In contrast to previous work, we used an auto-
matic conversion method to map Egyptian close
to MSA. The converted Egyptian EG’ had fewer
OOV words and spelling mistakes and improved
language handling. The MT system built on the

adapted parallel data showed an improvement of
1.87 BLEU points over our best baseline. Using
phrase table merging that combined AR and EG’
training data in a way that preferred adapted di-
alectal data yielded an extra 0.86 BLEU points.
We will make the training data for our conversion
system publicly available.

For future work, we want to expand our work
to other dialects, while utilizing dialectal morpho-
logical analysis to improve conversion. Also, we
believe that improving English language model-
ing to match the genre of the translated sentences
can have significant positive impact on translation
quality.
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Abstract

The notion of fertility in word alignment
(the number of words emitted by a sin-
gle state) is useful but difficult to model.
Initial attempts at modeling fertility used
heuristic search methods. Recent ap-
proaches instead use more principled ap-
proximate inference techniques such as
Gibbs sampling for parameter estimation.
Yet in practice we also need the single best
alignment, which is difficult to find us-
ing Gibbs. Building on recent advances in
dual decomposition, this paper introduces
an exact algorithm for finding the sin-
gle best alignment with a fertility HMM.
Finding the best alignment appears impor-
tant, as this model leads to a substantial
improvement in alignment quality.

1 Introduction

Word-based translation models intended to model
the translation process have found new uses iden-
tifying word correspondences in sentence pairs.
These word alignments are a crucial training com-
ponent in most machine translation systems. Fur-
thermore, they are useful in other NLP applica-
tions, such as entailment identification.

The simplest models may use lexical infor-
mation alone. The seminal Model 1 (Brown
et al., 1993) has proved very powerful, per-
forming nearly as well as more complicated
models in some phrasal systems (Koehn et al.,
2003). With minor improvements to initializa-
tion (Moore, 2004) (which may be important
(Toutanova and Galley, 2011)), it can be quite
competitive. Subsequent IBM models include
more detailed information about context. Models

7

2 and 3 incorporate a positional model based on
the absolute position of the word; Models 4 and
5 use a relative position model instead (an English
word tends to align to a French word that is nearby
the French word aligned to the previous English
word). Models 3, 4, and 5 all incorporate a no-
tion of “fertility”: the number of French words that
align to any English word.

Although these latter models covered a broad
range of phenomena, estimation techniques and
MAP inference were challenging.  The au-
thors originally recommended heuristic proce-
dures based on local search for both. Such meth-
ods work reasonably well, but can be computation-
ally inefficient and have few guarantees. Thus,
many researchers have switched to the HMM
model (Vogel et al., 1996) and variants with more
parameters (He, 2007). This captures the posi-
tional information in the IBM models in a frame-
work that admits exact parameter estimation infer-
ence, though the objective function is not concave:
local maxima are a concern.

Modeling fertility is challenging in the HMM
framework as it violates the Markov assump-
tion. Where the HMM jump model considers only
the prior state, fertility requires looking across
the whole state space. Therefore, the standard
forward-backward and Viterbi algorithms do not
apply. Recent work (Zhao and Gildea, 2010) de-
scribed an extension to the HMM with a fertility
model, using MCMC techniques for parameter es-
timation. However, they do not have a efficient
means of MAP inference, which is necessary in
many applications such as machine translation.

This paper introduces a method for exact MAP
inference with the fertility HMM using dual de-
composition. The resulting model leads to sub-
stantial improvements in alignment quality.

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 7-11,
Sofia, Bulgaria, August 4-9 2013. (©2013 Association for Computational Linguistics



2 HMM alignment

Let us briefly review the HMM translation model
as a starting point. We are given a sequence of
English words e = ey,...,er. This model pro-
duces distributions over French word sequences
f = fi,..., f; and word alignment vectors a =
ai,...,ay, where a; € [0..J] indicates the En-
glish word generating the jth French word, O rep-
resenting a special NULL state to handle systemat-
ically unaligned words.

J
Pr(f,ale) = p(J|1) H (ajlaj-1) p(filea;)

The generative story begins by predicting the num-
ber of words in the French sentence (hence the
number of elements in the alignment vector). Then
for each French word position, first the alignment
variable (English word index used to generate the
current French word) is selected based on only the
prior alignment variable. Next the French word is
predicted based on its aligned English word.

Following prior work (Zhao and Gildea, 2010),
we augment the standard HMM with a fertility dis-
tribution.

I
Pr(f,ale) =p(J|T) [ [ p(¢ile:)
=1
; ()
11 »(ajla;—1) p(filea,)
j=1

where ¢; = ijl 0(%, a;) indicates the number of
times that state j is visited. This deficient model
wastes some probability mass on inconsistent con-
figurations where the number of times that a state
1 is visited does not match its fertility ¢;. Follow-
ing in the footsteps of older, richer, and wiser col-
leagues (Brown et al., 1993),we forge ahead un-
concerned by this complication.

2.1 Parameter estimation

Of greater concern is the exponential complex-
ity of inference in this model. For the standard
HMM, there is a dynamic programming algorithm
to compute the posterior probability over word
alignments Pr(ale,f). These are the sufficient
statistics gathered in the E step of EM.

The structure of the fertility model violates the
Markov assumptions used in this dynamic pro-
gramming method. However, we may empirically

estimate the posterior distribution using Markov
chain Monte Carlo methods such as Gibbs sam-
pling (Zhao and Gildea, 2010). In this case,
we make some initial estimate of the a vector,
potentially randomly. We then repeatedly re-
sample each element of that vector conditioned
on all other positions according to the distribu-
tion Pr(aj|la_;,e,f). Given a complete assign-
ment of the alignment for all words except the cur-
rent, computing the complete probability includ-
ing transition, emission, and jump, is straightfor-
ward. This estimate comes with a computational
cost: we must cycle through all positions of the
vector repeatedly to gather a good estimate. In
practice, a small number of samples will suffice.

2.2 MAP inference with dual decomposition

Dual decomposition, also known as Lagrangian
relaxation, is a method for solving complex
combinatorial optimization problems (Rush and
Collins, 2012). These complex problems are sepa-
rated into distinct components with tractable MAP
inference procedures. The subproblems are re-
peatedly solved with some communication over
consistency until a consistent and globally optimal
solution is found.

Here we are interested in the problem of find-
ing the most likely alignment of a sentence pair
e, f. Thus, we need to solve the combinatorial op-
timization problem argmax, Pr(f,ale). Let us
rewrite the objective function as follows:

I
= (1ozptonlen + 3 BRI

=1 Jraj=t

J | e,
+> <1ogp(aj|aj1) + ng(gj‘e ”)>
j=1

Because f is fixed, the p(J|I) term is constant and
may be omitted. Note how we’ve split the opti-
mization into two portions. The first captures fer-
tility as well as some component of the translation
distribution, and the second captures the jump dis-
tribution and the remainder of the translation dis-
tribution.

Our dual decomposition method follows this
segmentation. Define y, as ya(7,7j) = 1ifa; =1,
and 0 otherwise. Let z € {0,1}7*/ be a binary



u®(i,5):=0 Viel.I,jel.J
for k=1t0 K
a® := argmaxa (f(@) + X2, u* V(0. )yali. )
z®) := arg max, (g(z) - Zi,j “(kil)(i»j)z(@j))
if ya=12
return a*)
end if

) (i, ) = w6, ) + 8 (yacw (i:5) = 296, 5)
end for
return a

(K)

Figure 1: The dual decomposition algorithm for
the fertility HMM, where Jj, is the step size at the
kth iteration for 1 < k£ < K, and K is the max
number of iterations.

matrix. Define the functions f and g as
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Then we want to find
arg max f(a) + g(z)

subject to the constraints ya(7,7) = z(i,7)Vi, .
Note how this recovers the original objective func-
tion when matching variables are found.

We use the dual decomposition algorithm
from Rush and Collins (2012), reproduced
here in Figure 1. Note how the langrangian
adds one additional term word, scaled by a
value indicating whether that word is aligned
in the current position. Because it is only
added for those words that are aligned, we
can merge this with the logp(fjleq,) terms
in both f and g. Therefore, we can solve

arg maxa (f(a) + 3, v, j)yali§)) us-
ing the standard Viterbi algorithm.

The g function, on the other hand, does not have
a commonly used decomposition structure. Luck-
ily we can factor this maximization into pieces that
allow for efficient computation. Note that g sums
over arbitrary binary matrices. Unlike the HMM,
where each French word must have exactly one
English generator, this maximization allows each

<1ogp(aj|aj1) + ;logp(fﬂeaj))

2(i,§) = 0 Y(i,5) € [1..1] x [1..]]

v:=0
for i=1to [
forj=1toJ
z(j) := (logp(fjle:) , 5)
end for

sort « in descending order by first component
maz = logp(¢ = 0le;) ,arg := 0, sum := 0
for f=1toJ
sum = sum + z[f, 1]
if sum + log p(¢ = fle;) > max
maz = sum + log p(¢ = flei)
arg = f
end if
end for
V=V + max
for f =1toarg
z(i,z[f,2]) :=1
end for
end for
return z, v

Figure 2: Algorithm for finding the arg max and
max of g, the fertility-related component of the
dual decomposition objective.

French word to have zero or many generators. Be-
cause assignments that are in accordance between
this model and the HMM will meet the HMM’s
constraints, the overall dual decomposition algo-
rithm will return valid assignments, even though
individual selections for this model may fail to
meet the requirements.

As the scoring function g can be decomposed
into a sum of scores for each row ) _, g; (i.e., there
are no interactions between distinct rows of the
matrix) we can maximize each row independently:

1 1
max Z 9i(z;) = Z mzaxgi(zi)
i=1 i=1

Within each row, we seek the best of all 27 pos-
sible configurations. These configurations may
be grouped into equivalence classes based on the
number of non-zero entries. In each class, the
max assignment is the one using words with the
highest log probabilities; the total score of this as-
signment is the sum those log probabilities and
the log probability of that fertility. Sorting the
scores of each cell in the row in descending or-
der by log probability allows for linear time com-
putation of the max for each row. The algorithm
described in Figure 2 finds this maximal assign-
ment in O(IJlogJ) time, generally faster than
the O(I2.J) time used by Viterbi.

We note in passing that this maximizer is pick-
ing from an unconstrained set of binary matri-



ces. Since each English word may generate as
many French words as it likes, regardless of all
other words in the sentence, the underlying ma-
trix have many more or many fewer non-zero en-
tries than there are French words. A straightfor-
ward extension to the algorithm of Figure 2 returns
only z matrices with exactly J nonzero entries.
Rather than maximizing each row totally indepen-
dently, we keep track of the best configurations
for each number of words generated in each row,
and then pick the best combination that sums to .J:
another straightforward exercise in dynamic pro-
gramming. This refinement does not change the
correctness of the dual decomposition algorithm;
rather it speeds the convergence.

3 Fertility distribution parameters

Original IBM models used a categorical distribu-
tion of fertility, one such distribution for each En-
glish word. This gives EM a great amount of free-
dom in parameter estimation, with no smoothing
or parameter tying of even rare words. Prior work
addressed this by using the single parameter Pois-
son distribution, forcing infrequent words to share
a global parameter estimated from the fertility of
all words in the corpus (Zhao and Gildea, 2010).

We explore instead a feature-rich approach to
address this issue. Prior work has explored
feature-rich approaches to modeling the transla-
tion distribution (Berg-Kirkpatrick et al., 2010);
we use the same technique, but only for the fertil-
ity model. The fertility distribution is modeled as
a log-linear distribution of F’, a binary feature set:
p(ple) o exp (0 - F(e,¢)). We include a simple
set of features:

e A binary indicator for each fertility ¢. This
feature is present for all words, acting as
smoothing.

e A binary indicator for each word id and fer-
tility, if the word occurs more than 10 times.

e A binary indicator for each word length (in
letters) and fertility.

e A binary indicator for each four letter word
prefix and fertility.

Together these produce a distribution that can
learn a reasonable distribution not only for com-
mon words, but also for rare words. Including
word length information aids in for languages with
compounding: long words in one language may
correspond to multiple words in the other.
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Algorithm AER (G—E) | AER (E—G)
HMM 24.0 21.8
FHMM Viterbi 19.7 19.6
FHMM Dual-dec 18.0 17.4

Table 1: Experimental results over the 120 evalu-
ation sentences. Alignment error rates in both di-
rections are provided here.

4 Evaluation

We explore the impact of this improved MAP in-
ference procedure on a task in German-English
word alignment. For training data we use the news
commentary data from the WMT 2012 translation
task.! 120 of the training sentences were manually
annotated with word alignments.

The results in Table 1 compare several differ-
ent algorithms on this same data. The first line is
a baseline HMM using exact posterior computa-
tion and inference with the standard dynamic pro-
gramming algorithms. The next line shows the fer-
tility HMM with approximate posterior computa-
tion from Gibbs sampling but with final alignment
selected by the Viterbi algorithm. Clearly fertil-
ity modeling is improving alignment quality. The
prior work compared Viterbi with a form of local
search (sampling repeatedly and keeping the max),
finding little difference between the two (Zhao and
Gildea, 2010). Here, however, the difference be-
tween a dual decomposition and Viterbi is signifi-
cant: their results were likely due to search error.

5 Conclusions and future work

We have introduced a dual decomposition ap-
proach to alignment inference that substantially
reduces alignment error. Unfortunately the algo-
rithm is rather slow to converge: after 40 iterations
of the dual decomposition, still only 55 percent
of the test sentences have converged. We are ex-
ploring improvements to the simple sub-gradient
method applied here in hopes of finding faster con-
vergence, fast enough to make this algorithm prac-
tical. Alternate parameter estimation techniques
appear promising given the improvements of dual
decomposition over sampling. Once the perfor-
mance issues of this algorithm are improved, ex-
ploring hard EM or some variant thereof might
lead to more substantial improvements.

!www.statmt.org/wmt12/translation-task.html
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Abstract

While experimenting with tuning on long
sentences, we made an unexpected discov-
ery: that PRO falls victim to monsters —
overly long negative examples with very
low BLEU+1 scores, which are unsuitable
for learning and can cause testing BLEU
to drop by several points absolute. We
propose several effective ways to address
the problem, using length- and BLEU+1-
based cut-offs, outlier filters, stochastic
sampling, and random acceptance. The
best of these fixes not only slay and pro-
tect against monsters, but also yield higher
stability for PRO as well as improved test-
time BLEU scores. Thus, we recommend
them to anybody using PRO, monster-
believer or not.

1 Once Upon a Time...

For years, the standard way to do statistical ma-
chine translation parameter tuning has been to
use minimum error-rate training, or MERT (Och,
2003). Howeyver, as researchers started using mod-
els with thousands of parameters, new scalable op-
timization algorithms such as MIRA (Watanabe et
al., 2007; Chiang et al., 2008) and PRO (Hopkins
and May, 2011) have emerged. As these algo-
rithms are relatively new, they are still not quite
well understood, and studying their properties is
an active area of research.

For example, Nakov et al. (2012) have pointed
out that PRO tends to generate translations that
are consistently shorter than desired. = They
have blamed this on inadequate smoothing in
PRO’s optimization objective, namely sentence-
level BLEU+1, and they have addressed the prob-
lem using more sensible smoothing. We wondered
whether the issue could be partially relieved sim-
ply by tuning on longer sentences, for which the
effect of smoothing would naturally be smaller.

12

To our surprise, tuning on the longer 50% of the
tuning sentences had a disastrous effect on PRO,
causing an absolute drop of three BLEU points
on testing; at the same time, MERT and MIRA
did not have such a problem. While investigating
the reasons, we discovered hundreds of monsters
creeping under PRO’s surface...

Our tale continues as follows. We first explain
what monsters are in Section 2, then we present a
theory about how they can be slayed in Section 3,
we put this theory to test in practice in Section 4,
and we discuss some related efforts in Section 5.
Finally, we present the moral of our tale, and we
hint at some planned future battles in Section 6.

2 Monsters, Inc.

PRO uses pairwise ranking optimization, where
the learning task is to classify pairs of hypotheses
into correctly or incorrectly ordered (Hopkins and
May, 2011). It searches for a vector of weights
w such that higher evaluation metric scores cor-
respond to higher model scores and vice versa.
More formally, PRO looks for weights w such that
9(i,5) > g(i.§") & hu(i,j) > hw(i,f), where
g is a local scoring function (typically, sentence-
level BLEU+1) and h,, are the model scores for
a given input sentence ¢ and two candidate hy-
potheses 7 and j' that were obtained using w. If
g(i,7) > g(i,5"), we will refer to j and ;' as the
positive and the negative example in the pair.

Learning good parameter values requires nega-
tive examples that are comparable to the positive
ones. Instead, tuning on long sentences quickly
introduces monsters, i.e., corrupted negative ex-
amples that are unsuitable for learning: they are
(i) much longer than the respective positive ex-
amples and the references, and (ii) have very low
BLEU+1 scores compared to the positive exam-
ples and in absolute terms. The low BLEU+1
means that PRO effectively has to learn from pos-
itive examples only.

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 12—-17,
Sofia, Bulgaria, August 4-9 2013. (©2013 Association for Computational Linguistics



Avg. Lengths Avg. BLEU+1

iter.  pos neg ref. pos neg
1 452 446 465 52.5 37.6
2 464 705 532 52.8 14.5
3 464 261.0 534 524 2.19
4 464 2500 530 52.0 2.30
5 463 248.0 530 52.1 2.34
25 479 2290 525 522 281

Table 1: PRO iterations, tuning on long sentences.

Table 1 shows an optimization run of PRO when
tuning on long sentences. We can see monsters
after iterations in which positive examples are on
average longer than negative ones (e.g., iter. 1).
As a result, PRO learns to generate longer sen-
tences, but it overshoots too much (iter. 2), which
gives rise to monsters. Ideally, the learning algo-
rithm should be able to recover from overshoot-
ing. However, once monsters are encountered,
they quickly start dominating, with no chance for
PRO to recover since it accumulates n-best lists,
and thus also monsters, over iterations. As a result,
PRO keeps jumping up and down and converges to
random values, as Figure 1 shows.

By default, PRO’s parameters are averaged
over iterations, and thus the final result is quite
mediocre, but selecting the highest tuning score
does not solve the problem either: for example,
on Figure 1, PRO never achieves a BLEU better
than that for the default initialization parameters.
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Figure 1: PRO tuning results on long sentences
across iterations. The dark-gray line shows the
tuning BLEU (left axis), the light-gray one is the
hypothesis/reference length ratio (right axis).

Figure 2 shows the translations after iterations
1, 3 and 4; the last two are monsters. The monster
at iteration 3 is potentially useful, but that at itera-
tion 4 is clearly unsuitable as a negative example.
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Optimizer Objective BLEU
PRO sent-BLEU+1 44.57
MERT corpus-BLEU 4753
MIRA pseudo-doc-BLEU 47.80
PRO (5 objective) pseudo-doc-BLEU  21.35
MIRA (5 objective) sent-BLEU+1 47.59
PRO, PC-smooth, ground fixed sent-BLEU+1  45.71

Table 2: PRO vs. MERT vs. MIRA.

We also checked whether other popular opti-
mizers yield very low BLEU scores at test time
when tuned on long sentences. Lines 2-3 in Ta-
ble 2 show that this is not the case for MERT and
MIRA. Since they optimize objectives that are dif-
ferent from PRO’s,! we further experimented with
plugging MIRA’s objective into PRO and PRO’s
objective into MIRA. The resulting MIRA scores
were not much different from before, while PRO’s
score dropped even further; we also found mon-
sters. Next, we applied the length fix for PRO
proposed in (Nakov et al., 2012); this helped a
bit, but still left PRO two BLEU points behind
MERT? and MIRA, and the monsters did not go
away. We can conclude that the monster problem
is PRO-specific, cannot be blamed on the objective
function, and is different from the length bias.

Note also that monsters are not specific to a
dataset or language pair. We found them when
tuning on the top-50% of WMT10 and testing on
WMT11 for Spanish-English; this yielded a drop
in BLEU from 29.63 (MERT) to 27.12 (PRO).

**REF**: but we have to close ranks with each other and realize that in
unity there is strength while in division there is weakness .

**IT1**: but we are that we add our ranks to some of us and that we know
that in the strength and weakness in

**IT3**:, we are the but of the that that the , and , of ranks the the on
the the our the our the some of we can include , and , of to the of we know
the the our in of the of some people , force of the that that the in of the
that that the the weakness Union the the , and

**IT4**: namely Dr Heba Handossah and Dr Mona been pushed aside because a
larger story EU Ambassador to Egypt Ian Burg highlighted 've dragged us
backwards and dragged our speaking , never balme your defaulting a December
7th 1941 in Pearl Harbor ) we can include ranks will be joined by all 've
dragged us backwards and dragged our $ 3.8 billion in tourism income
proceeds Chamber are divided among themselves : some 've dragged us
backwards and dragged our were exaggerated . Al @-@ Hakim namely Dr Heba
Handossah and Dr Mona December 7th 1941 in Pearl Harbor ) cases might be
known to us December 7th 1941 in Pearl Harbor ) platform depends on
combating all liberal policies Track and Field Federation shortened strength
as well face several challenges , namely Dr Heba Handossah and Dr Mona
platform depends on combating all liberal policies the report forecast that
the weak structure

Figure 2: Example reference translation and hy-
pothesis translations after iterations 1, 3 and 4.
The last two hypotheses are monsters.

!See (Cherry and Foster, 2012) for details on objectives.

2Also, using PRO to initialize MERT, as implemented in
Moses, yields 46.52 BLEU and monsters, but using MERT to
initialize PRO yields 47.55 and no monsters.



3 Slaying Monsters: Theory

Below we explain what monsters are and where
they come from. Then, we propose various mon-
ster slaying techniques to be applied during PRO’s
selection and acceptance steps.

3.1 Whatis PRO?

PRO is a batch optimizer that iterates between
(i) translation: using the current parameter values,
generate k-best translations, and (ii) optimization:
using the translations from all previous iterations,
find new parameter values. The optimization step
has four substeps:

1. Sampling: For each sentence, sample uni-
formly at random I' = 5000 pairs from the
set of all candidate translations for that sen-
tence from all previous iterations.

. Selection: From these sampled pairs, select
those for which the absolute difference be-
tween their BLEU+1 scores is higher than
a = 0.05 (note: this is 5 BLEU+1 points).

3. Acceptance: For each sentence, accept the
= = 50 selected pairs with the highest abso-
lute difference in their BLEU+1 scores.

Learning: Assemble the accepted pairs for
all sentences into a single set and use it to
train a ranker to prefer the higher-scoring
sentence in each pair.

We believe that monsters are nurtured by PRO’s
selection and acceptance policies. PRO’s selec-
tion step filters pairs involving hypotheses that dif-
fer by less than five BLEU+1 points, but it does
not cut-off ones that differ too much based on
BLEU+1 or length. PRO’s acceptance step selects
= = 50 pairs with the highest BLEU+1 differ-
entials, which creates breeding ground for mon-
sters since these pairs are very likely to include
one monster and one good hypothesis.

Below we discuss monster slaying geared to-
wards the selection and acceptance steps of PRO.

3.2 Slaying at Selection

In the selection step, PRO filters pairs for which
the difference in BLEU+1 is less than five points,
but it has no cut-off on the maximum BLEU+1 dif-
ferentials nor cut-offs based on absolute length or
difference in length. Here, we propose several se-
lection filters, both deterministic and probabilistic.
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Cut-offs. A cut-off is a deterministic rule that
filters out pairs that do not comply with some cri-
teria. We experiment with a maximal cut-off on
(a) the difference in BLEU+1 scores and (b) the
difference in lengths. These are relative cut-offs
because they refer to the pair, but absolute cut-offs
that apply to each of the elements in the pair are
also possible (not explored here). Cut-offs (a) and
(b) slay monsters by not allowing the negative ex-
amples to get much worse in BLEU+1 or in length
than the positive example in the pair.

Filtering outliers. Outliers are rare or extreme
observations in a sample. We assume normal dis-
tribution of the BLEU+1 scores (or of the lengths)
of the translation hypotheses for the same source
sentence, and we define as outliers hypotheses
whose BLEU+1 (or length) is more than A stan-
dard deviations away from the sample average.
We apply the outlier filter to both the positive and
the negative example in a pair, but it is more im-
portant for the latter. We experiment with values
of A like 2 and 3. This filtering slays monsters be-
cause they are likely outliers. However, it will not
work if the population gets riddled with monsters,
in which case they would become the norm.

Stochastic sampling. Instead of filtering ex-
treme examples, we can randomly sample pairs
according to their probability of being typical. Let
us assume that the values of the local scoring func-
tions, i.e., the BLEU+1 scores, are distributed nor-
mally: g(,§) ~ N(u,c?). Given a sample of hy-
pothesis translations {j} of the same source sen-
tence ¢, we can estimate o empirically. Then,
the difference A = ¢(i,7) — g(i,7’) would be
distributed normally with mean zero and variance
202. Now, given a pair of examples, we can calcu-
late their A, and we can choose to select the pair
with some probability, according to N (0, 202).

3.3 Slaying at Acceptance

Another problem is caused by the acceptance
mechanism of PRO: among all selected pairs, it
accepts the top-= with the highest BLEU+1 dif-
ferentials. It is easy to see that these differentials
are highest for nonmonster—-monster pairs if such
pairs exist. One way to avoid focusing primarily
on such pairs is to accept a random set of = pairs,
among the ones that survived the selection step.
One possible caveat is that we can lose some of
the discriminative power of PRO by focusing on
examples that are not different enough.



TESTING

TUNING (run 1, it. 25, avg.) TEST (tune:full)

Avg. for 3 reruns Lengths BLEU+1 Avg. for 3 reruns
PRO fix BLEU StdDev  Pos Neg Ref Pos Neg BLEU  StdDev
PRO (baseline) 44.70 0266 479 229.0 525 522 2.8 47.80 0.052
Max diff. cut-off BLEU+1 max=107 47.94 0.165 479 49.6 494 494 399 4777 0.035
BLEU+1 max=20* 47.73 0.136 477 555 51.1 49.8 327 47.85 0.049
LEN max=5 48.09 0.021 46.8 47.0 479 529 378 4773 0.051
LEN max=10 f 47.99 0.025 473 48.5 487 525 356 47.80 0.056
Outliers BLEU+1 A=2.07  48.05 0.119 46.8 472 477 522 395 4747 0.090
BLEU+1 A\=3.0 47.12 1.348 476 168.0 53.0 51.7 39 4753 0.038
LEN A\=2.0 46.68 2.005 493 82.7 53.1 52.3 53 4749 0.085
LEN A\=3.0 47.02 0.727 482 163.0 514 514 4.2 47.65 0.096
Stoch. sampl. A BLEU+1 46.33 1.000  46.8 216.0 533 53.1 24 4774 0.035
A LEN 46.36 1281 474 201.0 529 53.4 29 4778 0.081

Table 3: Some fixes to PRO (select pairs with highest BLEU+1 differential, also require at least 5
BLEU+1 points difference). A dagger (7) indicates selection fixes that successfully get rid of monsters.

4 Attacking Monsters: Practice

Below, we first present our general experimental
setup. Then, we present the results for the var-
ious selection alternatives, both with the original
acceptance strategy and with random acceptance.

4.1 Experimental Setup

We used a phrase-based SMT model (Koehn et al.,
2003) as implemented in the Moses toolkit (Koehn
et al., 2007). We trained on all Arabic-English
data for NIST 2012 except for UN, we tuned on
(the longest-50% of) the MTO06 sentences, and we
tested on MT09. We used the MADA ATB seg-
mentation for Arabic (Roth et al., 2008) and true-
casing for English, phrases of maximal length 7,
Kneser-Ney smoothing, and lexicalized reorder-
ing (Koehn et al., 2005), and a 5-gram language
model, trained on GigaWord v.5 using KenLM
(Heafield, 2011). We dropped unknown words
both at tuning and testing, and we used minimum
Bayes risk decoding at testing (Kumar and Byrne,
2004). We evaluated the output with NIST’s scor-
ing tool v.13a, cased.

We used the Moses implementations of MERT,
PRO and batch MIRA, with the —return-best-dev
parameter for the latter. We ran these optimizers
for up to 25 iterations and we used 1000-best lists.

For stability (Foster and Kuhn, 2009), we per-
formed three reruns of each experiment (tuning +
evaluation), and we report averaged scores.

4.2 Selection Alternatives

Table 3 presents the results for different selection
alternatives. The first two columns show the test-
ing results: average BLEU and standard deviation
over three reruns.
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The following five columns show statistics
about the last iteration (it. 25) of PRO’s tuning
for the worst rerun: average lengths of the positive
and the negative examples and average effective
reference length, followed by average BLEU+1
scores for the positive and the negative examples
in the pairs. The last two columns present the re-
sults when tuning on the full tuning set. These are
included to verify the behavior of PRO in a non-
monster prone environment.

We can see in Table 3 that all selection mech-
anisms considerably improve BLEU compared to
the baseline PRO, by 2-3 BLEU points. However,
not every selection alternative gets rid of monsters,
which can be seen by the large lengths and low
BLEU+1 for the negative examples (in bold).

The max cut-offs for BLEU+1 and for lengths
both slay the monsters, but the latter yields much
lower standard deviation (thirteen times lower than
for the baseline PRO!), thus considerably increas-
ing PRO’s stability. On the full dataset, BLEU
scores are about the same as for the original PRO
(with small improvement for BLEU+1 max=20),
but the standard deviations are slightly better.

Rejecting outliers using BLEU+1 and A = 3 is
not strong enough to filter out monsters, but mak-
ing this criterion more strict by setting A = 2,
yields competitive BLEU and kills the monsters.

Rejecting outliers based on length does not
work as effectively though. We can think of two
possible reasons: (i) lengths are not normally dis-
tributed, they are more Poisson-like, and (ii) the
acceptance criterion is based on the top-= differ-
entials based on BLEU+1, not based on length.

On the full dataset, rejecting outliers, BLEU+1
and length, yields lower BLEU and less stability.



TESTING TUNING (run 1, it. 25, avg.) TEST (tune:full)

Avg. for 3 reruns Lengths BLEU+1 Avg. for 3 reruns

PRO fix BLEU StdDev  Pos Neg Ref Pos Neg BLEU StdDev
PRO (baseline) 44.70 0266 479 229.0 52.5 522 2.8 47.80 0.052
Rand. accept  PRO, rand |/ 47.87 0.147 477 48.5 48.70 477 429 4759 0.114
Outliers BLEU+1 A=2.0, rand* 47.85 0.078 482 484 489 475 436 47.62 0.091
BLEU+1 A\=3.0,rand 47.97 0.168 476 47.6 484 478 436 4744 0.070
LEN A\=2.0, rand” 47.69 0.114 478 47.8 48.6 479 436 4748 0.046
LEN A\=3.0, rand 47.89 0235 478 48.0 487 477 431 47.64 0.090
Stoch. sampl. A BLEU+1, rand” 47.99 0.087 479 48.0 487 478 435 47.67 0.096
A LEN, rand” 47.94 0.060 47.8 47.9 48.6 478 436 47.65 0.097

Table 4: More fixes to PRO (with random acceptance, no minimum BLEU+1). The (1) indicates that
random acceptance kills monsters. The asterisk (*) indicates improved stability over random acceptance.

Reasons (i) and (ii) arguably also apply to
stochastic sampling of differentials (for BLEU+1
or for length), which fails to kill the monsters,
maybe because it gives them some probability of
being selected by design. To alleviate this, we test
the above settings with random acceptance.

4.3 Random Acceptance

Table 4 shows the results for accepting training
pairs for PRO uniformly at random. To eliminate
possible biases, we also removed the min=0.05
BLEU+1 selection criterion. Surprisingly, this
setup effectively eliminated the monster problem.
Further coupling this with the distributional cri-
teria can also yield increased stability, and even
small further increase in test BLEU. For instance,
rejecting BLEU outliers with A = 2 yields com-
parable average test BLEU, but with only half the
standard deviation.

On the other hand, using the stochastic sam-
pling of differentials based on either BLEU+1 or
lengths improves the test BLEU score while in-
creasing the stability across runs. The random
acceptance has a caveat though: it generally de-
creases the discriminative power of PRO, yielding
worse results when tuning on the full, nonmonster
prone tuning dataset. Stochastic selection does
help to alleviate this problem. Yet, the results are
not as good as when using a max cut-off for the
length. Therefore, we recommend using the latter
as a default setting.

5 Related Work

We are not aware of previous work that discusses
the issue of monsters, but there has been work on
a different, length problem with PRO (Nakov et
al., 2012). We have seen that its solution, fix the
smoothing in BLEU+1, did not work for us.

The stability of MERT has been improved using
regularization (Cer et al., 2008), random restarts
(Moore and Quirk, 2008), multiple replications
(Clark et al., 2011), and parameter aggregation
(Cettolo et al., 2011).

With the emergence of new optimization tech-
niques, there have been studies that compare sta-
bility between MIRA-MERT (Chiang et al., 2008;
Chiang et al., 2009; Cherry and Foster, 2012),
PRO-MERT (Hopkins and May, 2011), MIRA-
PRO-MERT (Cherry and Foster, 2012; Gimpel
and Smith, 2012; Nakov et al., 2012).

Pathological verbosity can be an issue when
tuning MERT on recall-oriented metrics such
as METEOR (Lavie and Denkowski, 2009;
Denkowski and Lavie, 2011). Large variance be-
tween the results obtained with MIRA has also
been reported (Simianer et al., 2012). However,
none of this work has focused on monsters.

6 Tale’s Moral and Future Battles

We have studied a problem with PRO, namely that
it can fall victim to monsters, overly long negative
examples with very low BLEU+1 scores, which
are unsuitable for learning. We have proposed sev-
eral effective ways to address this problem, based
on length- and BLEU+1-based cut-offs, outlier fil-
ters and stochastic sampling. The best of these
fixes have not only slayed the monsters, but have
also brought much higher stability to PRO as well
as improved test-time BLEU scores. These bene-
fits are less visible on the full dataset, but we still
recommend them to everybody who uses PRO as
protection against monsters. Monsters are inher-
ent in PRO; they just do not always take over.

In future work, we plan a deeper look at the
mechanism of monster creation in PRO and its
possible connection to PRO’s length bias.
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Abstract

This paper proposes a framework of super-
vised model learning that realizes feature
grouping to obtain lower complexity mod-
els. The main idea of our method is to
integrate a discrete constraint into model
learning with the help of the dual decom-
position technique. Experiments on two
well-studied NLP tasks, dependency pars-
ing and NER, demonstrate that our method
can provide state-of-the-art performance
even if the degrees of freedom in trained
models are surprisingly small, ie., 8 or
even 2. This significant benefit enables us
to provide compact model representation,
which is especially useful in actual use.

1 Introduction

This paper focuses on the topic of supervised
model learning, which is typically represented as
the following form of the optimization problem:

w=argmin {O(w; D)},

(D
O(w; D) = L(w; D) + Q(w),

where D is supervised training data that consists
of the corresponding input x and output y pairs,
that is, (x,y) € D. w is an /N-dimensional vector
representation of a set of optimization variables,
which are also interpreted as feature weights.
L(w; D) and 2(w) represent a loss function and
aregularization term, respectively. Nowadays, we,
in most cases, utilize a supervised learning method
expressed as the above optimization problem to
estimate the feature weights of many natural lan-
guage processing (NLP) tasks, such as text clas-
sification, POS-tagging, named entity recognition,
dependency parsing, and semantic role labeling.
In the last decade, the Li-regularization tech-
nique, which incorporates Li-norm into (w),
has become popular and widely-used in many
NLP tasks (Gao et al., 2007; Tsuruoka et al.,
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2009). The reason is that L1-regularizers encour-
age feature weights to be zero as much as pos-
sible in model learning, which makes the resul-
tant model a sparse solution (many zero-weights
exist). We can discard all features whose weight
is zero from the trained model' without any loss.
Therefore, L;-regularizers have the ability to eas-
ily and automatically yield compact models with-
out strong concern over feature selection.

Compact models generally have significant and
clear advantages in practice: instances are faster
loading speed to memory, less memory occupa-
tion, and even faster decoding is possible if the
model is small enough to be stored in cache mem-
ory. Given this background, our aim is to establish
a model learning framework that can reduce the
model complexity beyond that possible by sim-
ply applying Li-regularizers. To achieve our goal,
we focus on the recently developed concept of au-
tomatic feature grouping (Tibshirani et al., 2005;
Bondell and Reich, 2008). We introduce a model
learning framework that achieves feature group-
ing by incorporating a discrete constraint during
model learning.

2 Feature Grouping Concept

Going beyond Li-regularized sparse modeling,
the idea of ‘automatic feature grouping’ has re-
cently been developed. Examples are fused
lasso (Tibshirani et al., 2005), grouping pur-
suit (Shen and Huang, 2010), and OSCAR (Bon-
dell and Reich, 2008). The concept of automatic
feature grouping is to find accurate models that
have fewer degrees of freedom. This is equiva-
lent to enforce every optimization variables to be
equal as much as possible. A simple example is
that wy = (0.1,0.5,0.1,0.5,0.1) is preferred over
wg = (0.1,0.3,0.2,0.5,0.3) since w; and Wo
have two and four unique values, respectively.
There are several merits to reducing the degree

'This paper refers to model after completion of (super-
vised) model learning as “trained model”
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of freedom. For example, previous studies clari-
fied that it can reduce the chance of over-fitting to
the training data (Shen and Huang, 2010). This is
an important property for many NLP tasks since
they are often modeled with a high-dimensional
feature space, and thus, the over-fitting problem is
readily triggered. It has also been reported that it
can improve the stability of selecting non-zero fea-
tures beyond that possible with the standard L;-
regularizer given the existence of many highly cor-
related features (Jornsten and Yu, 2003; Zou and
Hastie, 2005). Moreover, it can dramatically re-
duce model complexity. This is because we can
merge all features whose feature weight values are
equivalent in the trained model into a single fea-
ture cluster without any loss.

3 Modeling with Feature Grouping

This section describes our proposal for obtaining
a feature grouping solution.

3.1 Integration of a Discrete Constraint

Let S be a finite set of discrete values, i.e., a set
integer from —4 to 4, thatis, S={—4,..., —1, 0,
1,...,4}. The detailed discussion how we define
S can be found in our experiments section since
it deeply depends on training data. Then, we de-
fine the objective that can simultaneously achieve
a feature grouping and model learning as follows:

O(w; D)= L(w; D) + Q(w)

st. weShN. &

where S* is the cartesian power of a set S. The
only difference with Eq. 1 is the additional dis-
crete constraint, namely, w € SN. This con-
straint means that each variable (feature weight)
in trained models must take a value in S, that is,
w, € S, where w,, is the n-th factor of w, and
n € {1,...,N}. As a result, feature weights in
trained models are automatically grouped in terms
of the basis of model learning. This is the basic
idea of feature grouping proposed in this paper.
However, a concern is how we can efficiently
optimize Eq. 2 since it involves a NP-hard combi-
natorial optimization problem. The time complex-
ity of the direct optimization is exponential against
N. Next section introduces a feasible algorithm.

3.2 Dual Decomposition Formulation

Hereafter, we strictly assume that £(w;D) and
Q(w) are both convex in w. Then, the proper-
ties of our method are unaffected by the selection
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of £L(w; D) and Q(w). Thus, we ignore their spe-
cific definition in this section. Typical cases can
be found in the experiments section. Then, we re-
formulate Eq. 2 by using the dual decomposition
technique (Everett, 1963):

O(w,u;D)=L(w;D) + Q(w) + T(u)
st. w=u, andu € SV.

3)

Difference from Eq. 2, Eq. 3 has an additional term
Y (u), which is similar to the regularizer (w),
whose optimization variables w and u are tight-
ened with equality constraint w = u. Here, this
paper only considers the case Y(u) = 22||u|3 +
A1][ull1, and A2 > 0 and \; > 0%. This objec-
tive can also be viewed as the decomposition of
the standard loss minimization problem shown in
Eq. 1 and the additional discrete constraint regu-
larizer by the dual decomposition technique.

To solve the optimization in Eq. 3, we lever-
age the alternating direction method of multiplier
(ADMM) (Gabay and Mercier, 1976; Boyd et al.,
2011). ADMM provides a very efficient optimiza-
tion framework for the problem in the dual decom-
position form. Here, a represents dual variables
for the equivalence constraint w =u. ADMM in-
troduces the augmented Lagrangian term £||w —
u||2 with p >0 which ensures strict convexity and
increases robustness?.

Finally, the optimization problem in Eq. 3 can
be converted into a series of iterative optimiza-
tion problems. Detailed derivation in the general
case can be found in (Boyd et al., 2011). Fig. 1
shows the entire model learning framework of our
proposed method. The remarkable point is that
ADMM works by iteratively computing one of the
three optimization variable sets w, u, and o while
holding the other variables fixed in the iterations
t =1,2,... until convergence.

Stepl (w-update): This part of the optimiza-
tion problem shown in Eq. 4 is essentially Eq. 1
with a ‘biased’ Lo-regularizer. ‘bias’ means here
that the direction of regularization is toward point
a instead of the origin. Note that it becomes a
standard Lo-regularizer if a = 0. We can select
any learning algorithm that can handle the Lo-
regularizer for this part of the optimization.

Step2 (u-update): This part of the optimization
problem shown in Eq. 5 can be rewritten in the

Note that this setting includes the use of only L1-, Lo-,
or without regularizers (.1 only: A1 >0 and A2 =0, L2 only:

A1 =0 and A2 >0, and without regularizer: A\; =0, A2 =0).
*Standard dual decomposition can be viewed as p=0



Input: Training data:D, parameters:p, &, €primal, and €qual
Initialize: w") = 0,u” =0,V =0,andt = 1.
Stepl w-update:
Solve w ) = arg min,, {O(w; D, u®, a*)}.
For our case,

O(w;D,u,@) = O(w; D) + Zflw —al3, )
wherea = u — a.
Step2 u-update:
Solve u"*") = arg min, {O(u; D, w ), aV)}.
For our case,

A
O(w; D, w, ) = | [ul + Ml full + 5llb — ull

st. ueSV,
whereb =w + ®)
Step3 a-update:
atth) = o® ¢ §(w(t+1) _ u(t+1)) (6)
Step4 convergence check:
Hw(t+1) _ u(”l)Hg/N < Eprimal o

[ — u®2/N < equa

Break the loop if the above two conditions are reached,
or go back to Stepl witht =t + 1.

Output: u*t?

Figure 1: Entire learning framework of our

method derived from ADMM (Boyd et al., 2011).

following equivalent simple form:

= arg miny {3/|u — b'[[3 + M [Jull}

st. ue SV, ®)

where b’ o, P. and A /\;jrp. This
optimization is still a combinatorial optimization
problem. However unlike Eq. 2, this optimization
can be efficiently solved.

Fig. 2 shows the procedure to obtain the exact
solution of Eq. 5, namely u**1). The remarkable
point is that the costly combinatorial optimization
problem is disappeared, and instead, we are only
required to perform two feature-wise calculations
whose total time complexities is O(N log |S|) and
fully parallelizable. The similar technique has
been introduced in Zhong and Kwok (2011) for
discarding a costly combinatorial problem from
the optimization with OSCAR-regularizers with
the help of proximal gradient methods, i.e., (Beck
and Teboulle, 2009).

We omit to show the detailed derivation of
Fig. 2 because of the space reason. However, this
is easily understandable. The key properties are
the following two folds; (i) The objective shown
in Eq. 8 is a convex and also symmetric function
with respect to @/, where @’ is the optimal solution
of Eq. 8 without the discrete constraint. Therefore,
the optimal solution 0 is at the point where the
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Input: b’ = (b,)7_;, A, and S.

1, Find the optimal solution of Eq. 8 without the constraint.
The optimization of mixed L2 and Li-norms is known
to have a closed form solution, i.e., (Beck and Teboulle,
2009), that is;

/a{n = Sgn(b:'L) max(O, |bfn| - )‘/1)7
where (i0,)3_; = @',
2, Find the nearest valid point in S N from 1’ in terms of the

Lo-distance;
G, = arg min(a, — u)®
u€eS
where (i, )N_; = . This can be performed by a binary
search, whose time complexity is generally O(log |S]).

Output: 0

Figure 2: Procedure for solving Step2

nearest valid point given S» from @’ in terms of
the Lo-distance. (ii) The valid points given SV are
always located at the vertexes of axis-aligned or-
thotopes (hyperrectangles) in the parameter space
of feature weights. Thus, the solution 11, which is
the nearest valid point from @, can be obtained by
individually taking the nearest value in S from ),
for all n.

Step3 (a-update): We perform gradient ascent
on dual variables to tighten the constraint w = u.
Note that £ is the learning rate; we can simply set
it to 1.0 for every iteration (Boyd et al., 2011).

Step4 (convergence check): It can be evaluated
both primal and dual residuals as defined in Eq. 7
with suitably small €y and €y,

3.3 Online Learning

We can select an online learning algorithm for
Stepl since the ADMM framework does not re-
quire exact minimization of Eq. 4. In this case, we
perform one-pass update through the data in each
ADMM iteration (Duh et al., 2011). Note that the
total calculation cost of our method does not in-
crease much from original online learning algo-
rithm since the calculation cost of Steps 2 through
4 is relatively much smaller than that of Step1.

4 Experiments

We conducted experiments on two well-studied
NLP tasks, namely named entity recognition
(NER) and dependency parsing (DEPAR).

Basic settings: We simply reused the settings
of most previous studies. We used CoNLL’03
data (Tjong Kim Sang and De Meulder, 2003)
for NER, and the Penn Treebank (PTB) III cor-
pus (Marcus et al., 1994) converted to depen-
dency trees for DEPAR (McDonald et al., 2005).



Our decoding models are the Viterbi algorithm
on CRF (Lafferty et al., 2001), and the second-
order parsing model proposed by (Carreras, 2007)
for NER and DEPAR, respectively. Features
are automatically generated according to the pre-
defined feature templates widely-used in the pre-
vious studies. We also integrated the cluster fea-
tures obtained by the method explained in (Koo et
al., 2008) as additional features for evaluating our
method in the range of the current best systems.

Evaluation measures: The purpose of our ex-
periments is to investigate the effectiveness of our
proposed method in terms of both its performance
and the complexity of the trained model. There-
fore, our evaluation measures consist of two axes.
Task performance was mainly evaluated in terms
of the complete sentence accuracy (COMP) since
the objective of all model learning methods eval-
uated in our experiments is to maximize COMP.
We also report the Fg—; score (F-s¢) for NER,
and the unlabeled attachment score (UAS) for DE-
PAR for comparison with previous studies. Model
complexity is evaluated by the number of non-zero
active features (#nzF) and the degree of freedom
(#DoF) (Zhong and Kwok, 2011). #nzF is the
number of features whose corresponding feature
weight is non-zero in the trained model, and #DoF
is the number of unique non-zero feature weights.

Baseline methods: Our main baseline is L-
regularized sparse modeling. To cover both batch
and online leaning, we selected L;-regularized
CRF (L1CREF) (Lafferty et al., 2001) optimized by
OWL-QN (Andrew and Gao, 2007) for the NER
experiment, and the Li-regularized regularized
dual averaging (L1RDA) method (Xiao, 2010)*
for DEPAR. Additionally, we also evaluated Lo-
regularized CRF (L2CRF) with L-BFGS (Liu and
Nocedal, 1989) for NER, and passive-aggressive
algorithm (L2PA) (Crammer et al., 2006)° for DE-
PAR since Lo-regularizer often provides better re-
sults than L;-regularizer (Gao et al., 2007).

For a fair comparison, we applied the proce-
dure of Step2 as a simple quantization method
to trained models obtained from Lq-regularized
model learning, which we refer to as (QT).

“RDA provided better results at least in our experiments
than L;-regularized FOBOS (Duchi and Singer, 2009), and
its variant (Tsuruoka et al., 2009), which are more familiar to
the NLP community.

SL2PA is also known as a loss augmented variant of one-
best MIRA, well-known in DEPAR (McDonald et al., 2005).
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4.1 Configurations of Our Method

Base learning algorithm: The settings of our
method in our experiments imitate L;-regularized
learning algorithm since the purpose of our
experiments is to investigate the effectiveness
against standard [Lj-regularized learning algo-
rithms. Then, we have the following two possible
settings; DC-ADMM: we leveraged the baseline
L;-regularized learning algorithm to solve Stepl,
and set Ay = 0 and A2 = 0 for Step2. DCwL1-
ADMM: we leveraged the baseline Lo-regularized
learning algorithm, but without Ls-regularizer, to
solve Stepl, and set A\; > 0 and Ay = 0 for Step2.
The difference can be found in the objective func-
tion O(w, u; D) shown in Eq. 3;

oc-apmmy: O(w,u; D) =L(w; D)+ A ||w]|1
ocwLi-apmmy: O(w, u; D) =L(w; D)+ A ||ul|;

In other words, DC-ADMM utilizes L;-
regularizer as a part of base leaning algorithm
Q(w)=M\1||w||1, while DCwL1-ADMM discards
regularizer of base learning algorithm 2(w), but
instead introducing Y(u) = A||u||;. Note that
these two configurations are essentially identical
since objectives are identical, even though the
formulation and algorithm is different. We only
report results of DC-ADMM because of the space
reason since the results of DCwL1-ADMM were
nearly equivalent to those of DC-ADMM.

Definition of S: DC-ADMM can utilize any fi-
nite set for S. However, we have to carefully se-
lect it since it deeply affects the performance. Ac-
tually, this is the most considerable point of our
method. We preliminarily investigated the several
settings. Here, we introduce an example of tem-
plate which is suitable for large feature set. Let
7, 0, and k represent non-negative real-value con-
stants, ¢ be a positive integer, 0 = {—1, 1}, and
a function f 5. (z,y) = y(nk® + 6). Then, we
define a finite set of values S as follows:

Snome={Inon(®,y)l(x,y) € S¢xo} U{0},
where S; is a set of non-negative integers from
zero to ¢ — 1, that is, S¢p = {m}fn_zlo. For example,
if weset n=0.1, § =0.4, k=4, and ( = 3, then
Sysmc = 1{—2.0, 0.8, —0.5, 0, 0.5, 0.8, 2.0}.
The intuition of this template is that the distribu-
tion of the feature weights in trained model often
takes a form a similar to that of the ‘power law’
in the case of the large feature sets. Therefore, us-
ing an exponential function with a scale and bias
seems to be appropriate for fitting them.
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Figure 3: Performance vs. degree of freedom in
the trained model for the development data

Note that we can control the upper bound of
#DoF in trained model by (, namely if ( = 4 then
the upper bound of #DoF is 8 (doubled by posi-
tive and negative sides). We fixed p=1, £ =1,
A=0,k=4 (or2if { > 5),0=n/2in all ex-
periments. Thus the only tunable parameter in our
experiments is 7) for each (.

4.2 Results and Discussions

Fig. 3 shows the task performance on the develop-
ment data against the model complexities in terms
of the degrees of freedom in the trained models.
Plots are given by changing the ¢ value for DC-
ADMM and L;-regularized methods with QT. The
plots of the standard L-regularized methods are
given by changing the regularization constants ;.
Moreover, Table 1 shows the final results of our
experiments on the test data. The tunable param-
eters were fixed at values that provided the best
performance on the development data.

According to the figure and table, the most re-
markable point is that DC-ADMM successfully
maintained the task performance even if #DoF (the
degree of freedom) was 8, and the performance
drop-offs were surprisingly limited even if #DoF
was 2, which is the upper bound of feature group-
ing. Moreover, it is worth noting that the DC-
ADMM performance is sometimes improved. The
reason may be that such low degrees of freedom
prevent over-fitting to the training data. Surpris-
ingly, the simple quantization method (QT) pro-
vided fairly good results. However, we empha-
size that the models produced by the QT approach
offer no guarantee as to the optimal solution. In
contrast, DC-ADMM can truly provide the opti-
mal solution of Eq. 3 since the discrete constraint
is also considered during the model learning.

In general, a trained model consists of two parts:

Test Model complex.

NER COMP F-sc #nzF | #DoF
L2CRF 84.88 8997 || 61.6M | 38.6M
LICRF 84.85 8999 | 614K | 321K
(w/ QT (=4) | 7839 85.33 | 568K 8

W/ QT (=2) | 7340 8145 | 454K 4

(w/ QT (=1) | 6553 7587 | 454K 2
DC-ADMM ((=4) | 8496 89.92 || 643K 8
((=2) | 84.04 89.35| 455K 4

(C=1)| 83.06 88.62 | 364K 2

Test Model complex.

DEPER COMP UAS #nzF | #DoF
L2PA 49.67 93.51 || 15.5M | 5.59M
LIRDA 49.54 9348 || 7.76M | 3.56M
(w/ QT ¢(=4) | 38.58 90.85 || 6.32M 8

(w/ QT ¢=2) | 34.19 89.42 || 3.08M 4
w/QT (=1) | 3042 88.67 || 3.08M 2
DC-ADMM ((=4) | 49.83 9355 | 5.81M 8
(¢=2)| 4897 93.18 || 4.11M 4

(C=1)| 46.56 92.86 || 6.37TM 2

Table 1: Comparison results of the methods on test
data (K: thousand, M: million)

feature weights and an indexed structure of fea-
ture strings, which are used as the key for obtain-
ing the corresponding feature weight. This paper
mainly discussed how to reduce the size of the for-
mer part, and described its successful reduction.
We note that it is also possible to reduce the lat-
ter part especially if the feature string structure is
TRIE. We omit the details here since it is not the
main topic of this paper, but by merging feature
strings that have the same feature weights, the size
of entire trained models in our DEPAR case can be
reduced to about 10 times smaller than those ob-
tained by standard L;-regularization, i.e., to 12.2
MB from 124.5 MB.

5 Conclusion

This paper proposed a model learning framework
that can simultaneously realize feature grouping
by the incorporation of a simple discrete con-
straint into model learning optimization. This
paper also introduced a feasible algorithm, DC-
ADMM, which can vanish the infeasible combi-
natorial optimization part from the entire learning
algorithm with the help of the ADMM technique.
Experiments showed that DC-ADMM drastically
reduced model complexity in terms of the degrees
of freedom in trained models while maintaining
the performance. There may exist theoretically
cleverer approaches to feature grouping, but the
performance of DC-ADMM is close to the upper
bound. We believe our method, DC-ADMM, to be
very useful for actual use.
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Abstract

This paper proposes a technique to leverage
topic based sentiments from Twitter to help
predict the stock market. We first utilize a con-
tinuous Dirichlet Process Mixture model to
learn the daily topic set. Then, for each topic
we derive its sentiment according to its opin-
ion words distribution to build a sentiment
time series. We then regress the stock index
and the Twitter sentiment time series to predict
the market. Experiments on real-life S&P100
Index show that our approach is effective and
performs better than existing state-of-the-art
non-topic based methods.

1 Introduction

Social media websites such as Twitter, Facebook,
etc., have become ubiquitous platforms for social
networking and content sharing. Every day, they
generate a huge number of messages, which give
researchers an unprecedented opportunity to uti-
lize the messages and the public opinions con-
tained in them for a wide range of applications
(Liu, 2012). In this paper, we use them for the
application of stock index time series analysis.

Here are some example tweets upon querying
the keyword “$aapl” (which is the stock symbol
for Apple Inc.) in Twitter:

1. “Shanghai Oriental Morning Post confirm-
ing w Sources that $AAPL TV will debut
in May, Prices range from $1600-$3200,
but $32,000 for a 50"wow.”

2. “SAAPL permanently lost its bid for a ban
on U.S. sales of the Samsung Galaxy Nex-
us http://dthin.gs/XqcY74.”

3. “$AAPL is loosing customers. everybody is
buying android phones! $GO0OG.”

* The work was done when the first author was visiting
University of Illinois at Chicago.

As shown, the retrieved tweets may talk about
Apple’s products, Apple’s competition relation-
ship with other companies, etc. These messages
are often related to people’s sentiments about
Apple Inc., which can affect or reflect its stock
trading since positive sentiments can impact
sales and financial gains. Naturally, this hints
that topic based sentiment is a useful factor to
consider for stock prediction as they reflect peo-
ple’s sentiment on different topics in a certain
time frame.

This paper focuses on daily one-day-ahead
prediction of stock index based on the temporal
characteristics of topics in Twitter in the recent
past. Specifically, we propose a non-parametric
topic-based sentiment time series approach to
analyzing the streaming Twitter data. The key
motivation here is that Twitter’s streaming mes-
sages reflect fresh sentiments of people which
are likely to be correlated with stocks in a short
time frame. We also analyze the effect of training
window size which best fits the temporal dynam-
ics of stocks. Here window size refers to the
number of days of tweets used in model building.

Our final prediction model is built using vec-
tor autoregression (VAR). To our knowledge,
this is the first attempt to use non-parametric
continuous topic based Twitter sentiments for
stock prediction in an autoregressive framework.

2 Related Work

2.1 Market Prediction and Social Media

Stock market prediction has attracted a great deal
of attention in the past. Some recent researches
suggest that news and social media such as blogs,
micro-blogs, etc., can be analyzed to extract pub-
lic sentiments to help predict the market (La-
vrenko et al., 2000; Schumaker and Chen, 2009).
Bollen et al. (2011) used tweet based public
mood to predict the movement of Dow Jones

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 24-29,
Sofia, Bulgaria, August 4-9 2013. (©2013 Association for Computational Linguistics
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Figure 1: Continuous DPM.

Industrial Average index. Ruiz et al. (2012) stud-
ied the relationship between Twitter activities
and stock market under a graph based view.
Feldman et al. (2011) introduced a hybrid ap-
proach for stock sentiment analysis based on
companies’ news articles.

2.2

Topic modeling as a task of corpus exploration
has attracted significant attention in recent years.
One of the basic and most widely used models is
Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). LDA can learn a predefined number of
topics and has been widely applied in its extend-
ed forms in sentiment analysis and many other
tasks (Mei et al., 2007; Branavan et al., 2008; Lin
and He, 2009; Zhao et al., 2010; Wang et al.,

Aspect and Sentiment Models

2010; Brody and Elhadad, 2010; Jo and Oh, 2011;

Moghaddam and Ester, 2011; Sauper et al., 2011;
Mukherjee and Liu, 2012; He et al., 2012).

The Dirichlet Processes Mixture (DPM) model
is a non-parametric extension of LDA (Teh et al.,
2006), which can estimate the number of topics
inherent in the data itself. In this work, we em-
ploy topic based sentiment analysis using DPM
on Twitter posts (or tweets). First, we employ a
DPM to estimate the number of topics in the
streaming snapshot of tweets in each day.

Next, we build a sentiment time series based
on the estimated topics of daily tweets. Lastly,
we regress the stock index and the sentiment
time series in an autoregressive framework.

3  Model
We now present our stock prediction framework.
3.1 Continuous DPM Model

Comparing to edited articles, it is much harder to
preset the number of topics to best fit continuous
streaming Twitter data due to the large topic di-
versity in tweets. Thus, we resort to a non-
parametric approach: the Dirichlet Process Mix-
ture (DPM) model, and let the model estimate the
number of topics inherent in the data itself.
Mixture model is widely used in clustering and

25

can be formalized as follows:

X~ Nk=1 T p(x]2; = k) @
where x; is a data point, z; is its cluster label, K
is the number of topics, p(x;|z; = k) is the sta-
tistical (topic) models: {®,}¥_, and m; is the
component weight satisfying m;, =0 and
Zk T, = 1.

In our setting of DPM, the number of mixture
components (topics) K is unfixed apriori but es-
timated from tweets in each day. DPM is defined
as in (Neal, 2010):

x; | 0; ~ Mult(6;)
016G ~ G
G ~ DP(H,a) #)
where 6; is the parameter of the model that x;
belongs to, and G is defined as a Dirichlet Pro-
cess with the base measure H and the concentra-
tion parameter a (Neal, 2010).

We note that neighboring days may share the
same or closely related topics because some top-
ics may last for a long period of time covering
multiple days, while other topics may just last for
a short period of time. Given a set of time-
stamped tweets, the overall generative process
should be dynamic as the topics evolve over time.
There are several ways to model this dynamic
nature (Sun et al.,, 2010; Kim and Oh, 2011;
Chua and Asur, 2012; Blei and Lafferty, 2006;
Wang et al., 2008). In this paper, we follow the
approach of Sun et al. (2010) due to its generality
and extensibility.

Figure 1 shows the graphical model of our con-
tinuous version of DPM (which we call cDPM).
As shown, the tweets set is divided into daily

based collections: {D,, D, ... Dy}. {x”}'Df' are the

observed tweets and {9“}|D t| are the model pa-
rameters (latent topics) that generate these tweets.
For each subset of tweets, D, (tweets of day t),
we build a DPM on it. For the first day (t = 0),
the model functions the same as a standard DPM,
i.e., all the topics use the same base measure,
H,y ~ Dir(f). However, for later days (t > 0),
besides the base measure, H.~Dir(f), we make
use of topics learned from previous days as pri-
ors. This ensures smooth topic chains or links
(details in 8.2). For efficiency, we only consider
topics of one previous day as priors.

We use collapsed Gibbs sampling (Bishop,
2006) for model inference. Hyper-parameters are
set to: aqp = a;=--=a=1; =05 as in
(Sun et al., 2010; Teh et al., 2006) which have
been shown to work well. Because a tweet has at
most 140 characters, we assume that each tweet
contains only one topic. Hence, we only need to
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Figure 2: Linking the continuous topics via
neighboring priors.

sample the topic assignment z; for each tweet x;.
According to different situations with respect

to a topic’s prior, for each tweet x; in Dy, the

conditional distribution for z; given all other

tweets’ topic assignments, denoted by z_;, can be

summarized as follows:

1. k™ is a new topic: Its candidate priors contain
the symmetric base prior Dir(B) and topics

{Pr-1 ety learned from D,_, if t > 0.
= If k* takes a symmetric base prior:

p(z; = k™ |z_;, x;, H) ~

V1

F(ﬁlvl) Hu:lr(ﬁ-‘_niﬂi) (3)
n—1+a r'(B|V|+n;) HL‘Ql r(g)

where the first part denotes the prior proba-
bility according to the Dirichlet Process and
the second part is the data likelihood (this
interpretation can similarly be applied to the
following three equations).
= If k™ takes one topic k from {¢t_1,k}1,ft=‘11 as
its prior:
p(zi = k™ |z_yx, H) ~
amy, TBIVD  Thd, FAVIBDe 1 k(W) +1i) @
n=t+a FBIVI+n) [, r(vIBde—1k(®)
2. k is an existing topic: We already know its
prior.
= If k takes a symmetric base prior:

a

p(z; = klz_y,x;, H) ~ _
ng' TV Toly FB+niv+nich)
n=1+arBIvi+ni+nigt) [V rg+nil)

©)

= If k takes topic ¢¢_4 j as its prior:

p(z = klz_,x;, H) ~ '
r(BIvi+nicty) TV, r(BIVIge—1 k(@) +niptnih) ©)
n=1+a r(Ivi+ni+ngty)  TIhd, F(BIVIde—1 @) +nih)

Notations in the above equations are listed as
follows:

K;_4 is the number of topics learned in day t-1.
|V| is the vocabulary size.

n; is the document length of x;.

n; ,, is the term frequency of word v in x;.
¢t-1,(v) is the probability of word v in pre-
vious day’s topic K.

ni' is the number of tweets assigned to topic k

—i
Nk
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excluding the current one x;.

nj., is the term frequency of word v in topic k,
with statistic from x; excluded. While n,;f(.)
denotes the marginalized sum of all words in
topic k with statistic from x; excluded.
Similarly, the posteriors on {¢.,(v)} (topic
word distributions) are given according to their
prior situations as follows:

« If topic k takes the base prior:

Gee(V) = (B + )/ BIVI+ 1)) (1)
where ny ,, is the frequency of word v in topic
k and ny (. is the marginalized sum over all

words.
otherwise, it is defined recursively as:

G () = BIVIde—1x(v) + nk,v)/(ﬁlvl + ngy) 8)
where ¢¢_4 j serves as the topic prior for ¢, .

Finally, for each day we estimate the topic
weights, m;, as follows:

T = Mg/ X !
where ny, is the number of tweets in topic k.

3.2

Based on an opinion lexicon O (a list of positive
and negative opinion words, e.g., good and bad),
each opinion word, o € O is assigned with a po-
larity label (o) as “+1” if it is positive and “-1”
if negative. We spilt each tweet’s text into opin-
ion part and non-opinion part. Only non-opinion
words in tweets are used for Gibbs sampling.
Based on DPM, we learn a set of topics from
the non-opinion words space V. The correspond-
ing tweets’ opinion words share the same topic
assignments as its tweet. Then, we compute the
posterior on opinion word probability, ¢ (o)
for topic k analogously to equations (7) and (8).
Finally, we define the topic based sentiment
score S(t, k) of topic k in day t as a weighted
linear combination of the opinion polarity labels:

St k) = T ¢t (0)1(0); S(t k) €[-1,1]  (10)

According to the generative process of cDPM,
topics between neighboring days are linked if a
topic k takes another topic as its prior. We regard
this as evolution of topic k. Although there may
be slight semantic variation, the assumption is
reasonable. Then, the sentiment scores for each
topic series form the sentiment time series {...,
S(t-1, k), S(t, k), S(t+1, k), ...}.

Figure 2 demonstrates the linking process
where a triangle denotes a new topic (with base
symmetric prior), a circle denotes a middle topic
(taking a topic from the previous day as its prior,

)

Topic-based Sentiment Time Series



while also supplying prior for the next day) and
an ellipse denotes an end topic (no further topics
use it as a prior). In this example, two continuous
topic chains or links (via linked priors) exist for
the time interval [t-1, t+1]: one in light grey color,
and the other in black. As shown, there may be
more than one topic chain/link (5-20 in our ex-
periments) for a certain time interval*. Thus, we
sort multiple sentiment series according to their
accumulative weights of topics over each link:
Yi2e, Tek- N our experiments, we try the top
five series and use the one that gives the best re-
sult, which is mostly the first (top ranked) series
with a few exceptions of the second series. The
topics mostly focus on hot keywords like: news,
stocknews, earning, report, which stimulate ac-
tive discussions on the social media platform.

3.3

For model building, we use vector autoregression
(VAR). The first order (time steps of historical
information to use: lag = 1) VAR model for two
time series {x;} and {y,} is given by:

Time Series Analysis with VAR

Xe = V11X%¢—1 + V121 + Exy

Ve = 021%1 + U22Ye1 + &y (11)
where {&} are the white noises and {9} are model
parameters. We use the “dse” library? in the R
language to fit our VAR model based on least
square regression.

Instead of training in one period and predicting
over another disjointed period, we use a moving
training and prediction process under sliding
windows® (i.e., train in [t, t + w] and predict in-
dex ont +w + 1) with two main considerations:

¢ Due to the dynamic and random nature of both
the stock market and public sentiments, we are
more interested in their short term relationship.

e Based on the sliding windows, we have more
training and testing points.

Figure 3 details the algorithm for stock index
prediction. The accuracy is computed based on
the index up and down dynamics, the function
Match(y*,y) returns True only if y*(our predic-
tion) and y (actual value) share the same index
up or down direction.

! The actual topic priors for topic links are governed by the
four cases of the Gibbs Sampler.

2 http://cran.r-project.org/web/packages/dse

% This is similar to the autoregressive moving average
(ARMA) models.
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Parameter:
w: training window size; lag: the order of VAR,;
Input: t: the date of time series; {x,}: sentiment time
series; {y.}: index time series;
Output: prediction accuracy.
1. fort=0,1,2,...,N-w-1
{
Model,.= VAR(x[t, t + w], y[t, t + w], lag);
Virws+1= Model, .Predict(x[t+w+1-lag, t+w],
y[t+w+1-lag, t+w]);

if MatCh(y:+w+1:.Vt+w+1) )
rightNum++;
}

Accuracy = rightNum / (N-w);
Return Accuracy;

Figure 3: Prediction algorithm and accuracy

Ao

o

O No

4

We collected the tweets via Twitter’s REST API
for streaming data, using symbols of the Stand-
ard & Poor's 100 stocks (S&P100) as keywords.
In this study, we focus only on predicting the
S&P100 index. The time period of our dataset is
between Nov. 2, 2012 and Feb. 7, 2013, which
gave us 624782 tweets. We obtained the S&P100
index’s daily close values from Yahoo Finance.

Dataset

)
5.1

Bollen et al. (2011) used the mood dimension,
Calm together with the index value itself to pre-
dict the Dow Jones Industrial Average. However,
their Calm lexicon is not publicly available. We
thus are unable to perform a direct comparison
with their system. We identified and labeled a
Calm lexicon (words like “anxious”, “shocked”,
“settled” and “dormant”) using the opinion lexi-
con® of Hu and Liu (2004) and computed the sen-
timent score using the method of Bollen et al.
(2011) (sentiment ratio). Our pilot experiments
showed that using the full opinion lexicon of Hu
and Liu (2004) actually performs consistently
better than the Calm lexicon. Hence, we use the
entire opinion lexicon in Hu and Liu (2004).

Experiment

Selecting a Sentiment Metric

5.2 S&P100INDEX Movement Prediction

We evaluate the performance of our method by
comparing with two baselines. The first (Index)
uses only the index itself, which reduces the
VAR model to the univariate autoregressive
model (AR), resulting in only one index time
series {y.} in the algorithm of Figure 3.

4 http://cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar



Lag Index Raw cDPM

1 | 0.48(0.54) | 0.57(0.59) | 0.60(0.64)

2 ] 0.58(0.65) | 0.53(0.62) | 0.60(0.63)

3 ]0.52(0.56) | 0.53(0.60) | 0.61(0.68)
Table 1: Average (best) accuracies over all
training window sizes and different lags 1, 2, 3.
LagRaw vs. IndexcDPM vs. Index|cDPM vs. Raw

1 18.8% 25.0% 5.3%
2 -8.6% 3.4% 13.2%
3 1.9% 17.3% 15.1%

Table 2: Pairwise improvements among Index,
Raw and cDPM averaged over all training win-
dow sizes.

When considering Twitter sentiments, existing
works (Bollen et al., 2011, Ruiz et al., 2012)
simply compute the sentiment score as ratio of
pos/neg opinion words per day. This generates a
lexicon-based sentiment time series, which is
then combined with the index value series to give

us the second baseline Raw.

In summary, Index uses index only with the
AR model while Raw uses index and opinion

lexicon based time series. Our cDPM uses index

and the proposed topic based sentiment time se-
ries. Both Raw and cDPM employ the two di-
mensional VAR model. We experiment with dif-
ferent lag settings from 1-3 days.

We also experiment with different training
window sizes, ranging from 15 - 30 days, and
compute the prediction accuracy for each win-
dow size. Table 1 shows the respective average

and best accuracies over all window sizes for

each lag and Table 2 summarizes the pairwise
performance improvements of averaged scores
over all training window sizes. Figure 4 show the
detailed accuracy comparison for lag 1 and lag 3.
From Table 1, 2, and Figure 4, we note:

i. Topic-based public sentiments from tweets
can improve stock prediction over simple sen-
timent ratio which may suffer from backchan-
nel noise and lack of focus on prevailing top-
ics. For example, on lag 2, Raw performs
worse by 8.6% than Index itself.

ii. cDPM outperforms all others in terms of both
the best accuracy (lag 3) and the average ac-
curacies for different window sizes. The max-
imum average improvement reaches 25.0%
compared to Index at lag 1 and 15.1% com-
pared to Raw at lag 3. This is due to the fact
that cDPM learns the topic based sentiments
instead of just using the opinion words’ ratio
like Raw, and in a short time period, some
topics are more correlated with the stock mar-
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Figure 4: Comparison of prediction accuracy of
up/down stock index on S&P 100 index for dif-
ferent training window sizes.

ket than others. Our proposed sentiment time
series using cDPM can capture this phenome-
non and also help reduce backchannel noise
of raw sentiments.

iii. On average, cDPM gets the best performance
for training window sizes within [21, 22], and
the best prediction accuracy is 68.0% on win-
dow size 22 at lag 3.

6 Conclusions

Predicting the stock market is an important but
difficult problem. This paper showed that Twit-
ter’s topic based sentiment can improve the pre-
diction accuracy beyond existing non-topic based
approaches. Specifically, a non-parametric topic-
based sentiment time series approach was pro-
posed for the Twitter stream. For prediction, vec-
tor autoregression was used to regress S&P100
index with the learned sentiment time series. Be-
sides the short term dynamics based prediction,
we believe that the proposed method can be ex-
tended for long range dependency analysis of
Twitter sentiments and stocks, which can render
deep insights into the complex phenomenon of
stock market. This will be part of our future work.
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Abstract

We propose a novel entity disambigua-
tion model, based on Deep Neural Net-
work (DNN). Instead of utilizing simple
similarity measures and their disjoint com-
binations, our method directly optimizes
document and entity representations for a
given similarity measure. Stacked Denois-
ing Auto-encoders are first employed to
learn an initial document representation in
an unsupervised pre-training stage. A su-
pervised fine-tuning stage follows to opti-
mize the representation towards the simi-
larity measure. Experiment results show
that our method achieves state-of-the-art
performance on two public datasets with-
out any manually designed features, even
beating complex collective approaches.

1 Introduction

Entity linking or disambiguation has recently re-
ceived much attention in natural language process-
ing community (Bunescu and Pasca, 2006; Han
et al., 2011; Kataria et al., 2011; Sen, 2012). It is
an essential first step for succeeding sub-tasks in
knowledge base construction (Ji and Grishman,
2011) like populating attribute to entities. Given
a sentence with four mentions, “The [[Python]] of
[[Delphi]] was a creature with the body of a snake.
This creature dwelled on [[Mount Parnassus]], in
central [[Greece]].” How can we determine that
Python is an earth-dragon in Greece mythology
and not the popular programming language, Del-
phi is not the auto parts supplier, and Mount Par-
nassus is in Greece, not in Colorado?

A most straightforward method is to compare
the context of the mention and the definition of
candidate entities. Previous work has explored
many ways of measuring the relatedness of context
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d and entity e, such as dot product, cosine similar-
ity, Kullback-Leibler divergence, Jaccard distance,
or more complicated ones (Zheng et al., 2010;
Kulkarni et al., 2009; Hoffart et al., 2011; Bunescu
and Pasca, 2006; Cucerzan, 2007; Zhang et al.,
2011). However, these measures are often dupli-
cate or over-specified, because they are disjointly
combined and their atomic nature determines that
they have no internal structure.

Another line of work focuses on collective dis-
ambiguation (Kulkarni et al., 2009; Han et al.,
2011; Ratinov et al., 2011; Hoffart et al., 2011).
Ambiguous mentions within the same context are
resolved simultaneously based on the coherence
among decisions. Collective approaches often un-
dergo a non-trivial decision process. In fact, (Rati-
nov et al., 2011) show that even though global ap-
proaches can be improved, local methods based on
only similarity sim(d, e) of context d and entity e
are hard to beat. This somehow reveals the impor-
tance of a good modeling of sim/(d, e).

Rather than learning context entity associa-
tion at word level, topic model based approaches
(Kataria et al., 2011; Sen, 2012) can learn it in
the semantic space. However, the one-topic-per-
entity assumption makes it impossible to scale to
large knowledge base, as every entity has a sepa-
rate word distribution P(wle); besides, the train-
ing objective does not directly correspond with
disambiguation performances.

To overcome disadvantages of previous ap-
proaches, we propose a novel method to learn con-
text entity association enriched with deep architec-
ture. Deep neural networks (Hinton et al., 2006;
Bengio et al., 2007) are built in a hierarchical man-
ner, and allow us to compare context and entity
at some higher level abstraction; while at lower
levels, general concepts are shared across entities,
resulting in compact models. Moreover, to make
our model highly correlated with disambiguation
performance, our method directly optimizes doc-
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ument and entity representations for a fixed simi-
larity measure. In fact, the underlying representa-
tions for computing similarity measure add inter-
nal structure to the given similarity measure. Fea-
tures are learned leveraging large scale annotation
of Wikipedia, without any manual design efforts.
Furthermore, the learned model is compact com-
pared with topic model based approaches, and can
be trained discriminatively without relying on ex-
pensive sampling strategy. Despite its simplicity,
it beats all complex collective approaches in our
experiments. The learned similarity measure can
be readily incorporated into any existing collective
approaches, which further boosts performance.

2 Learning Representation for
Contextual Document

Given a mention string m with its context docu-
ment d, a list of candidate entities C'(m) are gen-
erated for m, for each candidate entity e; € C'(m),
we compute a ranking score sim(dyy,, e;) indicat-
ing how likely m refers to e;. The linking result is
e = argmaxe,; Sim(dm, €;).

Our algorithm consists of two stages. In the pre-
training stage, Stacked Denoising Auto-encoders
are built in an unsupervised layer-wise fashion to
discover general concepts encoding d and e. In the
supervised fine-tuning stage, the entire network
weights are fine-tuned to optimize the similarity
score sim(d, e).

2.1 Greedy Layer-wise Pre-training

Stacked Auto-encoders (Bengio et al., 2007) is
one of the building blocks of deep learning. As-
sume the input is a vector x, an auto-encoder con-
sists of an encoding process h(z) and a decod-
ing process g(h(x)). The goal is to minimize the
reconstruction error L(z, g(h(z))), thus retaining
maximum information. By repeatedly stacking
new auto-encoder on top of previously learned
h(z), stacked auto-encoders are obtained. This
way we learn multiple levels of representation of
input z.

One problem of auto-encoder is that it treats all
words equally, no matter it is a function word or
a content word. Denoising Auto-encoder (DA)
(Vincent et al., 2008) seeks to reconstruct x given
arandom corruption  of . DA can capture global
structure while ignoring noise as the author shows
in image processing. In our case, we input each
document as a binary bag-of-words vector (Fig.
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1). DA will capture general concepts and ignore
noise like function words. By applying masking
noise (randomly mask 1 with 0), the model also
exhibits a fill-in-the-blank property (Vincent et
al., 2010): the missing components must be re-
covered from partial input. Take “greece” for ex-
ample, the model must learn to predict it with
“python” “mount”, through some hidden unit. The
hidden unit may somehow express the concept of
Greece mythology.

@ reconstruct input

(.OO.(A).O.O)

O reconstruct random

zero node
9(htx)) not reconstruct
A @ active
hix) active, but
mask out

((XeXeXeXeX YeXeXo) EoXttX

python codin
dragon

g e snake p
delphi mount greece

Figure 1: DA and reconstruction sampling.

In order to distinguish between a large num-
ber of entities, the vocabulary size must be large
enough. This adds considerable computational
overhead because the reconstruction process in-
volves expensive dense matrix multiplication. Re-
construction sampling keeps the sparse property
of matrix multiplication by reconstructing a small
subset of original input, with no loss of quality of
the learned representation (Dauphin et al., 2011).

2.2 Supervised Fine-tuning

This stage we optimize the learned representation
(“hidden layer n” in Fig. 2) towards the ranking
score sim(d,e), with large scale Wikipedia an-
notation as supervision. We collect hyperlinks in
Wikipedia as our training set {(d;, e;, m;)}, where
m,; is the mention string for candidate generation.
The network weights below “hidden layer n” are
initialized with the pre-training stage.

Next, we stack another layer on top of the
learned representation. The whole network is
tuned by the final supervised objective. The reason
to stack another layer on top of the learned rep-
resentation, is to capture problem specific struc-
tures. Denote the encoding of d and e as d and
é respectively, after stacking the problem-specific
layer, the representation for d is given as f(d) =
sigmoid(W x d + b), where W and b are weight
and bias term respectively. f(e) follows the same



encoding process.
The similarity score of (d, e) pair is defined as
the dot product of f(d) and f(e) (Fig. 2):

sim(d, e) = Dot(f(d), f(e)) (1)

sim(d,e)

f(d) f(e)

(0000000 (....\...)
)

hidden layer n

(0000000 (0000000
A A

1 1
| stacked auto-encoder |

(...‘...) (o000 :

0000

Figure 2: Network structure of fine-tuning stage.

Our goal is to rank the correct entity higher
than the rest candidates relative to the context of
the mention. For each training instance (d, e), we
contrast it with one of its negative candidate pair
(d,€’). This gives the pairwise ranking criterion:

L(d,e) = max{0,1 — sim(d, e) + sim(d, ')}
(2)
Alternatively, we can contrast with all its candi-
date pairs (d, e;). That is, we raise the similarity
score of true pair sim(d,e) and penalize all the
rest sim(d, e;). The loss function is defined as
negative log of softmax function:

exp sim(d, e)
2 e;eC(m) XD sim(d, ;)

L(d,e) = —log 3)

Finally, we seek to minimize the following train-
ing objective across all training instances:

L= L(d.e) (4)
d,e

The loss function is closely related to con-
trastive estimation (Smith and Eisner, 2005),
which defines where the positive example takes
probability mass from. We find that by penaliz-
ing more negative examples, convergence speed
can be greatly accelerated. In our experiments, the
softmazx loss function consistently outperforms
pairwise ranking loss function, which is taken as
our default setting.
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However, the softmax training criterion adds
additional computational overhead when per-
forming mini-batch Stochastic Gradient Descent
(SGD). Although we can use a plain SGD (i.e.
mini-batch size is 1), mini-batch SGD is faster to
converge and more stable. Assume the mini-batch
size is m and the number of candidates is n, a total
of m x n forward-backward passes over the net-
work are performed to compute a similarity ma-
trix (Fig. 3), while pairwise ranking criterion only
needs 2 X m. We address this problem by grouping
training pairs with same mention m into one mini-
batch {(d, e;)|e; € C(m)}. Observe that if candi-
date entities overlap, they share the same forward-
backward path. Only m + n forward-backward
passes are needed for each mini-batch now.

Python (programming language)

Pythonidae
Q) Python (mythology)

W(eee®...... 000

i1 leoee...... (Y X )

i @O ® ... ... Q00O O-=nmnide
| —
el el e2 en

Figure 3: Sharing path within mini-batch.

The re-organization of mini-batch is similar
in spirit to Backpropagation Through Structure
(BTS) (Goller and Kuchler, 1996). BTS is a vari-
ant of the general backpropagation algorithm for
structured neural network. In BTS, parent node
is computed with its child nodes at the forward
pass stage; child node receives gradient as the sum
of derivatives from all its parents. Here (Fig. 2),
parent node is the score node sim(d, e) and child
nodes are f(d) and f(e). In Figure 3, each row
shares forward path of f(d) while each column
shares forward path of f(e). At backpropagation
stage, gradient is summed over each row of score
nodes for f(d) and over each column for f(e).

Till now, our input simply consists of bag-of-
words binary vector. We can incorporate any
handcrafted feature f(d, e) as:

—

sim(d, e) = Dot(f(d), f(e)) + Af(d,e) (%)
In fact, we find that with only Dot(f(d), f(e))
as ranking score, the performance is sufficiently
good. So we leave this as our future work.



3 Experiments and Analysis

Training settings: In pre-training stage, input
layer has 100,000 units, all hidden layers have
1,000 units with rectifier function maz(0, x). Fol-
lowing (Glorot et al., 2011), for the first recon-
struction layer, we use sigmoid activation func-
tion and cross-entropy error function. For higher
reconstruction layers, we use softplus (log(1 +
exp(z))) as activation function and squared loss
as error function. For corruption process, we use a
masking noise probability in {0.1,0.4,0.7} for the
first layer, a Gaussian noise with standard devi-
ation of 0.1 for higher layers. For reconstruction
sampling, we set the reconstruction rate to 0.01. In
fine-tuning stage, the final layer has 200 units with
sigmoid activation function. The learning rate is
set to 1le-3. The mini-batch size is set to 20.

We run all our experiments on a Linux ma-
chine with 72GB memory 6 core Xeon CPU. The
model is implemented in Python with C exten-
sions, numpy configured with Openblas library.
Thanks to reconstruction sampling and refined
mini-batch arrangement, it takes about 1 day to
converge for pre-training and 3 days for fine-
tuning, which is fast given our training set size.

Datasets: We use half of Wikipedia ! plain text
("1.5M articles split into sections) for pre-training.
We collect a total of 40M hyperlinks grouped by
name string m for fine-tuning stage. We holdout
a subset of hyperlinks for model selection, and we
find that 3 layers network with a higher masking
noise rate (0.7) always gives best performance.

We select TAC-KBP 2010 (Ji and Grishman,
2011) dataset for non-collective approaches, and
AIDA 2 dataset for collective approaches. For both
datasets, we evaluate the non-NIL queries. The
TAC-KBP and AIDA testb dataset contains 1020
and 4485 non-NIL queries respectively.

For candidate generation, mention-to-entity dic-
tionary is built by mining Wikipedia structures,
following (Cucerzan, 2007). We keep top 30 can-
didates by prominence P(e|m) for speed consid-
eration. The candidate generation recall are 94.0%
and 98.5% for TAC and AIDA respectively.

Analysis: Table 1 shows evaluation results
across several best performing systems. (Han et
al., 2011) is a collective approach, using Person-
alized PageRank to propagate evidence between

Yavailable at http://dumps.wikimedia.org/enwiki/, we use
the 20110405 xml dump.
Zavailable at http://www.mpi-inf.mpg.de/yago-naga/aida/
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different decisions. To our surprise, our method
with only local evidence even beats several com-
plex collective methods with simple word similar-
ity. This reveals the importance of context model-
ing in semantic space. Collective approaches can
improve performance only when local evidence is
not confident enough. When embedding our sim-
ilarity measure sim(d, e) into (Han et al., 2011),
we achieve the best results on AIDA.

A close error analysis shows some typical er-
rors due to the lack of prominence feature and
name matching feature. Some queries acciden-
tally link to rare candidates and some link to en-
tities with completely different names. We will
add these features as mentioned in Eq. 5 in future.
We will also add NIL-detection module, which is
required by more realistic application scenarios.
A first thought is to construct pseudo-NIL with
Wikipedia annotations and automatically learn the
threshold and feature weight as in (Bunescu and
Pasca, 2006; Kulkarni et al., 2009).

Methods micro macro
P@1 P@1
TAC 2010 eval
Lcc (2010) (topl, noweb)  79.22 -
Siel 2010 (top2, noweb) 71.57 -
our best 80.97 -

AIDA dataset (collective approaches)

AIDA (2011) 82.29 82.02
Shirakawa et al. (2011) 81.40 83.57
Kulkarni et al. (2009) 72.87 76.74
wordsim (cosine) 48.38 37.30
Han (2011) +wordsim 78.97 75.77
our best (non-collective) 84.82 83.37
Han (2011) + our best 85.62 83.95

Table 1: Evaluation on TAC and AIDA dataset.

4 Conclusion

We propose a deep learning approach that auto-
matically learns context-entity similarity measure
for entity disambiguation. The intermediate rep-
resentations are learned leveraging large scale an-
notations of Wikipedia, without any manual effort
of designing features. The learned representation
of entity is compact and can scale to very large
knowledge base. Furthermore, experiment reveals
the importance of context modeling in this field.
By incorporating our learned measure into collec-
tive approach, performance is further improved.
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Abstract

Statistical language models have success-
fully been used to describe and analyze
natural language documents. Recent work
applying language models to program-
ming languages is focused on the task
of predicting code, while mainly ignoring
the prediction of programmer comments.
In this work, we predict comments from
JAVA source files of open source projects,
using topic models and n-grams, and we
analyze the performance of the models
given varying amounts of background data
on the project being predicted. We evalu-
ate models on their comment-completion
capability in a setting similar to code-
completion tools built into standard code
editors, and show that using a comment
completion tool can save up to 47% of the
comment typing.

1 Introduction and Related Work

Statistical language models have traditionally
been used to describe and analyze natural lan-
guage documents. Recently, software engineer-
ing researchers have adopted the use of language
models for modeling software code. Hindle et al.
(2012) observe that, as code is created by humans
it is likely to be repetitive and predictable, similar
to natural language. NLP models have thus been
used for a variety of software development tasks
such as code token completion (Han et al., 2009;
Jacob and Tairas, 2010), analysis of names in code
(Lawrie et al., 2006; Binkley et al., 2011) and min-
ing software repositories (Gabel and Su, 2008).
An important part of software programming and
maintenance lies in documentation, which may
come in the form of tutorials describing the code,
or inline comments provided by the programmer.
The documentation provides a high level descrip-
tion of the task performed by the code, and may
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include examples of use-cases for specific code
segments or identifiers such as classes, methods
and variables. Well documented code is easier to
read and maintain in the long-run but writing com-
ments is a laborious task that is often overlooked
or at least postponed by many programmers.

Code commenting not only provides a summa-
rization of the conceptual idea behind the code
(Sridhara et al., 2010), but can also be viewed as a
form of document expansion where the comment
contains significant terms relevant to the described
code. Accurately predicted comment words can
therefore be used for a variety of linguistic uses
including improved search over code bases using
natural language queries, code categorization, and
locating parts of the code that are relevant to a spe-
cific topic or idea (Tseng and Juang, 2003; Wan et
al., 2007; Kumar and Carterette, 2013; Shepherd
et al., 2007; Rastkar et al., 2011). A related and
well studied NLP task is that of predicting natural
language caption and commentary for images and
videos (Blei and Jordan, 2003; Feng and Lapata,
2010; Feng and Lapata, 2013; Wu and Li, 2011).

In this work, our goal is to apply statistical lan-
guage models for predicting class comments. We
show that n-gram models are extremely success-
ful in this task, and can lead to a saving of up
to 47% in comment typing. This is expected as
n-grams have been shown as a strong model for
language and speech prediction that is hard to im-
prove upon (Rosenfeld, 2000). In some cases how-
ever, for example in a document expansion task,
we wish to extract important terms relevant to the
code regardless of local syntactic dependencies.
We hence also evaluate the use of LDA (Blei et al.,
2003) and link-LDA (Erosheva et al., 2004) topic
models, which are more relevant for the term ex-
traction scenario. We find that the topic model per-
formance can be improved by distinguishing code
and zext tokens in the code.
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2 Method

2.1 Models

We train n-gram models (n = 1, 2, 3) over source
code documents containing sequences of com-
bined code and text tokens from multiple training
datasets (described below). We use the Berkeley
Language Model package (Pauls and Klein, 2011)
with absolute discounting (Kneser-Ney smooth-
ing; (1995)) which includes a backoff strategy to
lower-order n-grams. Next, we use LDA topic
models (Blei et al., 2003) trained on the same data,
with 1, 5, 10 and 20 topics. The joint distribution
of a topic mixture 6, and a set of IV topics z, for
a single source code document with N observed
word tokens, d = {w;}_,, given the Dirichlet pa-
rameters « and 3, is therefore

p(0,z,wla, B) = (1)

p(6la) [ [ p(=16)p(w]z. )

Under the models described so far, there is no dis-
tinction between text and code tokens.

Finally, we consider documents as having a
mixed membership of two entity types, code and
text tokens, d = ({w§°?}Cn  {wie*t}Tn ) where
the fext words are tokens from comment and
string literals, and the code words include the pro-
gramming language syntax tokens (e.g., public,
private, for, etc’ ) and all identifiers. In this
case, we train link-LDA models (Erosheva et al.,
2004) with 1, 5, 10 and 20 topics. Under the link-
LDA model, the mixed-membership joint distribu-
tion of a topic mixture, words and topics is then

p(@,z,w|a,ﬁ) :p(0|05)' (2)

H p(ztext|9)p(wtext|zt6xt’ 6)

wtext

H p(zcodew)p(wcode‘zcode7ﬂ)

weode

where 0 is the joint topic distribution, w is the set
of observed document words, 2'**! is a topic asso-
ciated with a text word, and z°°% a topic associ-
ated with a code word.

The LDA and link-LDA models use Gibbs sam-
pling (Griffiths and Steyvers, 2004) for topic infer-
ence, based on the implementation of Balasubra-
manyan and Cohen (2011) with single or multiple
entities per document, respectively.
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2.2 Testing Methodology

Our goal is to predict the tokens of the JAVA class
comment (the one preceding the class definition)
in each of the test files. Each of the models de-
scribed above assigns a probability to the next
comment token. In the case of n-grams, the prob-
ability of a token word w; is given by considering
previous words p(w;|w;—1,...,wq). This proba-
bility is estimated given the previous n — 1 tokens
as p(w;|wi—1, . .. awi—(n—l))'

For the topic models, we separate the docu-
ment tokens into the class definition and the com-
ment we wish to predict. The set of tokens of
the class comment w¢€, are all considered as text
tokens. The rest of the tokens in the document
w", are considered to be the class definition, and
they may contain both code and text tokens (from
string literals and other comments in the source
file). We then compute the posterior probability
of document topics by solving the following infer-
ence problem conditioned on the w” tokens

9) Zr’ wr’a, 5)
p(w'|a, B)
This gives us an estimate of the document distri-

bution, 6, with which we infer the probability of
the comment tokens as

p(wel0, 8) = p(w’|z, B)p(2[0)

p(6, 7w, a, 8) = 2

3)

4

Following Blei et al. (2003), for the case
of a single entity LDA, the inference problem
from equation (3) can be solved by considering
p(0, z,w|a, B), as in equation (1), and by taking
the marginal distribution of the document tokens
as a continuous mixture distribution for the set
w = w", by integrating over # and summing over
the set of topics z

p(wla, B) :/p(ea).
(H ZP(ZIH)p(wIz,B)) do

For the case of link-LDA where the document is
comprised of two entities, in our case code to-
kens and text tokens, we can consider the mixed-
membership joint distribution 6, as in equation (2),
and similarly the marginal distribution p(w|a, 3)
over both code and text tokens from w". Since
comment words in w® are all considered as text
tokens they are sampled using fext topics, namely

Ztert in equation (4).

(&)



3 Experimental Settings

3.1 Data and Training Methodology

We use source code from nine open source JAVA
projects: Ant, Cassandra, Log4j, Maven, Minor-
Third, Batik, Lucene, Xalan and Xerces. For each
project, we divide the source files into a training
and testing dataset. Then, for each project in turn,
we consider the following three main training sce-
narios, leading to using three training datasets.

To emulate a scenario in which we are predict-
ing comments in the middle of project develop-
ment, we can use data (documented code) from the
same project. In this case, we use the in-project
training dataset (IN). Alternatively, if we train a
comment prediction model at the beginning of the
development, we need to use source files from
other, possibly related projects. To analyze this
scenario, for each of the projects above we train
models using an out-of-project dataset (OUT) con-
taining data from the other eight projects.

Typically, source code files contain a greater
amount of code versus comment text. Since we are
interested in predicting comments, we consider a
third training data source which contains more En-
glish text as well as some code segments. We use
data from the popular Q&A website StackOver-
flow (SO) where users ask and answer technical
questions about software development, tools, al-
gorithms, etc’. We downloaded a dataset of all ac-
tions performed on the site since it was launched in
August 2008 until August 2012. The data includes
3,453,742 questions and 6,858,133 answers posted
by 1,295,620 users. We used only posts that are
tagged as JAVA related questions and answers.

All the models for each project are then tested
on the testing set of that project. We report results
averaged over all projects in Table 1.

Source files were tokenized using the Eclipse
JDT compiler tools, separating code tokens and
identifiers. Identifier names (of classes, methods
and variables), were further tokenized by camel
case notation (e.g., ‘'minMargin’ was converted to
’min margin’). Non alpha-numeric tokens (e.g.,
dot, semicolon) were discarded from the code, as
well as numeric and single character literals. Text
from comments or any string literals within the
code were further tokenized with the Mallet sta-
tistical natural language processing package (Mc-
Callum, 2002). Posts from SO were parsed using
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the Apache Tika toolkit' and then tokenized with
the Mallet package. We considered as raw code
tokens anything labeled using a <code> markup
(as indicated by the SO users who wrote the post).

3.2 Evaluation

Since our models are trained using various data
sources the vocabularies used by each of them are
different, making the comment likelihood given by
each model incomparable due to different sets of
out-of-vocabulary tokens. We thus evaluate mod-
els using a character saving metric which aims at
quantifying the percentage of characters that can
be saved by using the model in a word-completion
settings, similar to standard code completion tools
built into code editors. For a comment word with
n characters, w = wy, . .., wy,, we predict the two
most likely words given each model filtered by the
first 0, ..., n characters of w. Let k be the minimal
k; for which w is in the top two predicted word to-
kens where tokens are filtered by the first k; char-
acters. Then, the number of saved characters for w
is n — k. In Table 1 we report the average percent-
age of saved characters per comment using each of
the above models. The final results are also aver-
aged over the nine input projects. As an example,
in the predicted comment shown in Table 2, taken
from the project Minor-Third, the token entity is
the most likely token according to the model SO
trigram, out of tokens starting with the prefix en’.
The saved characters in this case are ’tity’.

4 Results

Table 1 displays the average percentage of char-
acters saved per class comment using each of the
models. Models trained on in-project data (IN)
perform significantly better than those trained on
another data source, regardless of the model type,
with an average saving of 47.1% characters using
a trigram model. This is expected, as files from
the same project are likely to contain similar com-
ments, and identifier names that appear in the com-
ment of one class may appear in the code of an-
other class in the same project. Clearly, in-project
data should be used when available as it improves
comment prediction leading to an average increase
of between 6% for the worst model (26.6 for OUT
unigram versus 33.05 for IN) and 14% for the best
(32.96 for OUT trigram versus 47.1 for IN).

"http://tika.apache.org/



Model n-gram LDA Link-LDA

n / topics 1 2 3 20 10 5 1 20 10 5 1

IN 33.05 43.27 47.1 3420 3393 33.63 33.05 3576 35.81 3537 34.59
3.62) (579 (6.87) (3.63) (3.67) (3.67) (3.62) (395 (412) (398 (392

our 26.6 31.52 3296 26.79 26.8 26.86 26.6 28.03 28 28  27.82
(3.37) (417 (433) (3.26) (336) (344 (337 (3.60) (3.56) (3.67) (3.62)

SO 27.8 3329 3456 2725 2722 2734 278 28.08 28.12 2794 279
(3.51) (4400 (4.78) (3.67) (3.44) (355 (351) (348 (3.58) (3.56) (345

Table 1: Average percentage of characters saved per comment using n-gram, LDA and link-LDA models
trained on three training sets: IN, OUT, and SO. The results are averaged over nine JAVA projects (with

standard deviations in parenthesis).

Model Predicted Comment

IN trigram “Train a named-entity extractor"
IN link-LDA ~ “Train a named-entity extractor®
OUT trigram “Train a named-entity extractor"
SO trigram “Train a named-entity extractor"

Table 2: Sample comment from the Minor-Third
project predicted using IN, OUT and SO based
models. Saved characters are underlined.

Of the out-of-project data sources, models us-
ing a greater amount of text (SO) mostly out-
performed models based on more code (OUT).
This increase in performance, however, comes at
a cost of greater run-time due to the larger word
dictionary associated with the SO data. Note that
in the scope of this work we did not investigate the
contribution of each of the background projects
used in OUT, and how their relevance to the tar-
get prediction project effects their performance.

The trigram model shows the best performance
across all training data sources (47% for IN, 32%
for OUT and 34% for SO). Amongst the tested
topic models, link-LDA models which distinguish
code and text tokens perform consistently better
than simple LDA models in which all tokens are
considered as text. We did not however find a
correlation between the number of latent topics
learned by a topic model and its performance. In
fact, for each of the data sources, a different num-
ber of topics gave the optimal character saving re-
sults.

Note that in this work, all topic models are
based on unigram tokens, therefore their results
are most comparable with that of the unigram in
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Dataset n-gram link-LDA
IN 2778.35  574.34
our 1865.67  670.34
SO 1898.43  638.55

Table 3: Average words per project for which each
tested model completes the word better than the
other. This indicates that each of the models is bet-
ter at predicting a different set of comment words.

Table 1, which does not benefit from the back-
off strategy used by the bigram and trigram mod-
els. By this comparison, the link-LDA topic model
proves more successful in the comment prediction
task than the simpler models which do not distin-
guish code and text tokens. Using n-grams without
backoff leads to results significantly worse than
any of the presented models (not shown).

Table 2 shows a sample comment segment for
which words were predicted using trigram models
from all training sources and an in-project link-
LDA. The comment is taken from the TrainEx-
tractor class in the Minor-Third project, a ma-
chine learning library for annotating and catego-
rizing text. Both IN models show a clear advan-
tage in completing the project-specific word Train,
compared to models based on out-of-project data
(OUT and SO). Interestingly, in this example the
trigram is better at completing the term named-
entity given the prefix named. However, the topic
model is better at completing the word extractor
which refers to the target class. This example indi-
cates that each model type may be more successful
in predicting different comment words, and that
combining multiple models may be advantageous.



This can also be seen by the analysis in Table 3
where we compare the average number of words
completed better by either the best n-gram or topic
model given each training dataset. Again, while
n-grams generally complete more words better, a
considerable portion of the words is better com-
pleted using a topic model, further motivating a
hybrid solution.

5 Conclusions

We analyze the use of language models for pre-
dicting class comments for source file documents
containing a mixture of code and fext tokens. Our
experiments demonstrate the effectiveness of us-
ing language models for comment completion,
showing a saving of up to 47% of the comment
characters. When available, using in-project train-
ing data proves significantly more successful than
using out-of-project data. However, we find that
when using out-of-project data, a dataset based on
more words than code performs consistently bet-
ter. The results also show that different models
are better at predicting different comment words,
which motivates a hybrid solution combining the
advantages of multiple models.
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Abstract

Mismatch between queries and documents
is a key issue for the web search task. In
order to narrow down such mismatch, in
this paper, we present an in-depth inves-
tigation on adapting a paraphrasing tech-
nique to web search from three aspect-
s: a search-oriented paraphrasing mod-
el; an NDCG-based parameter optimiza-
tion algorithm; an enhanced ranking mod-
el leveraging augmented features comput-
ed on paraphrases of original queries. Ex-
periments performed on the large scale
query-document data set show that, the
search performance can be significantly
improved, with +3.28% and +1.14% ND-
CG gains on dev and test sets respectively.

1 Introduction

Paraphrasing is an NLP technique that generates
alternative expressions to convey the same mean-
ing of the input text in different ways. Researcher-
s have made great efforts to improve paraphrasing
from different perspectives, such as paraphrase ex-
traction (Zhao et al., 2007), paraphrase generation
(Quirk et al., 2004), model optimization (Zhao et
al., 2009) and etc. But as far as we know, none of
previous work has explored the impact of using a
well designed paraphrasing engine for web search
ranking task specifically.

In web search, mismatches between queries and
their relevant documents are usually caused by ex-
pressing the same meaning in different natural lan-
guage ways. E.g., X is the author of Y and Y was
written by X have identical meaning in most cas-
es, but they are quite different in literal sense. The
capability of paraphrasing is just right to alleviate
such issues. Motivated by this, this paper presents

* This work has been done while the author was visiting
Microsoft Research Asia.
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an in-depth study on adapting paraphrasing to web
search. First, we propose a search-oriented para-
phrasing model, which includes specifically de-
signed features for web queries that can enable a
paraphrasing engine to learn preferences on dif-
ferent paraphrasing strategies. Second, we opti-
mize the parameters of the paraphrasing model ac-
cording to the Normalized Discounted Cumulative
Gain (NDCG) score, by leveraging the minimum
error rate training (MERT) algorithm (Och, 2003).
Third, we propose an enhanced ranking model by
using augmented features computed on paraphras-
es of original queries.

Many query reformulation approaches have
been proposed to tackle the query-document mis-
match issue, which can be generally summarized
as query expansion and query substitution. Query
expansion (Baeza-Yates, 1992; Jing and Croft,
1994; Lavrenko and Croft, 2001; Cui et al., 2002;
Yu et al., 2003; Zhang and Yu, 2006; Craswell and
Szummer, 2007; Elsas et al., 2008; Xu et al., 2009)
adds new terms extracted from different sources to
the original query directly; while query substitu-
tion (Brill and Moore, 2000; Jones et al., 2006;
Guo et al., 2008; Wang and Zhai, 2008; Dang
and Croft, 2010) uses probabilistic models, such
as graphical models, to predict the sequence of
rewritten query words to form a new query. Com-
paring to these works, our paraphrasing engine al-
ters queries in a similar way to statistical machine
translation, with systematic tuning and decoding
components. Zhao et al. (2009) proposes an uni-
fied paraphrasing framework that can be adapted
to different applications using different usability
models. Our work can be seen as an extension a-
long this line of research, by carrying out in-depth
study on adapting paraphrasing to web search.

Experiments performed on the large scale data
set show that, by leveraging additional matching
features computed on query paraphrases, signif-
icant NDCG gains can be achieved on both dev

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 41-46,
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(+3.28%) and test (+1.14%) sets.

2 Paraphrasing for Web Search

In this section, we first summarize our paraphrase
extraction approaches, and then describe our para-
phrasing engine for the web search task from three
aspects, including: 1) a search-oriented paraphras-
ing model; 2) an NDCG-based parameter opti-
mization algorithm; 3) an enhanced ranking model
with augmented features that are computed based
on the extra knowledge provided by the paraphrase
candidates of the original queries.

2.1 Paraphrase Extraction

Paraphrases can be mined from various resources.
Given a bilingual corpus, we use Bannard and
Callison-Burch (2005)’s pivot-based approach to
extract paraphrases. Given a monolingual cor-
pus, Lin and Pantel (2001)’s method is used to ex-
tract paraphrases based on distributional hypoth-
esis. Additionally, human annotated data can al-
so be used as high-quality paraphrases. We use
Miller (1995)’s approach to extract paraphrases
from the synonym dictionary of WordNet. Word
alignments within each paraphrase pair are gener-
ated using GIZA++ (Och and Ney, 2000).

2.2 Search-Oriented Paraphrasing Model

Similar to statistical machine translation (SMT),
given an input query (), our paraphrasing engine
generates paraphrase candidates' based on a linear
model.

Q arg max P(Q'|Q)

Q' EH(Q)

M
arg max
Q' EH(Q) ye

Al (Q, Q)
1

H(Q) is the hypothesis space containing all para-
phrase candidates of @, h,, is the mth feature
function with weight \,,, Q" denotes one candi-
date. In order to enable our paraphrasing model
to learn the preferences on different paraphrasing
strategies according to the characteristics of web
queries, we design search-oriented features> based
on word alignments within @ and @', which can
be described as follows:

'"We apply CYK algorithm (Chappelier and Rajman,
1998), which is most commonly used in SMT (Chiang,
2005), to generating paraphrase candidates.

2Similar features have been demonstrated effective in

(Jones et al., 2006). But we use SMT-like model to gener-
ate query reformulations.
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Word Addition feature hwapp(Q,Q’),
which is defined as the number of words in
the paraphrase candidate ()’ without being
aligned to any word in the original query Q).

Word Deletion feature hwppr(Q,Q),
which is defined as the number of words in
the original query () without being aligned
to any word in the paraphrase candidate @’

Word Overlap feature hyyo(Q, Q'), which is
defined as the number of word pairs that align
identical words between @ and Q'.

Word Alteration feature hy 4(Q, Q'), which
is defined as the number of word pairs that
align different words between @ and Q.

Word Reorder feature hyyr(Q, Q'), which is
modeled by a relative distortion probability
distribution, similar to the distortion model in
(Koehn et al., 2003).

hip(Q, Q")

Length Difference feature
which is defined as |Q'| — |Q].

Edit Distance feature hpp(Q,Q'), which is
defined as the character-level edit distance
between Q and Q’.

Besides, a set of traditional SMT features
(Koehn et al., 2003) are also used in our paraphras-
ing model, including translation probability, lex-
ical weight, word count, paraphrase rule count?,
and language model feature.

2.3 NDCG-based Parameter Optimization

We utilize minimum error rate training (MERT)
(Och, 2003) to optimize feature weights of the
paraphrasing model according to NDCG. We de-
fine D as the entire document set. R is a rank-
ing model* that can rank documents in D based
on each input query. {Q;, DFe*¢!}5 | is a human-
labeled development set. Q; is the i*" query and
Df“bel C D is a subset of documents, in which
the relevance between (); and each document is
labeled by human annotators.

MERT is used to optimize feature weights
of our linear-formed paraphrasing model. For

3Paraphrase rule count is the number of rules that are used
to generate paraphrase candidates.

“The ranking model R (Liu et al., 2007) uses matching
features computed based on original queries and documents.



each query Q; in {Q;};_,, we first generate N-
best paraphrase candidates {Q? é\le’ and com-
pute NDCG score for each paraphrase based on
documents ranked by the ranker R and labeled
documents D{J“bez. We then optimize the feature

weights according to the following criterion:

S
M= arg min{z Err(DEe Qi AM R)}
A=
The objective of MERT is to find the optimal fea-
ture weight vector ;\{‘4 that minimizes the error cri-
terion E'rr according to the NDCG scores of top-1
paraphrase candidates.
The error function Err is defined as:

Err(DE Qi A R) =1 — N(DF Q;, R)

where Q; is the best paraphrase candidate accord-
ing to the paraphrasing model based on the weight
vector A}, N (DFebel Q;, R) is the NDCG score
of QZ computed on the documents ranked by ‘R of
Qi and labeled document set DiL“bel of ;. The
relevance rating labeled by human annotators can
be represented by five levels: “Perfect”, “Excel-
lent”, “Good”, “Fair”, and “Bad”. When comput-
ing NDCG scores, these five levels are commonly
mapped to the numerical scores 31, 15, 7, 3, O re-
spectively.

2.4 Enhanced Ranking Model

In web search, the key objective of the ranking
model is to rank the retrieved documents based on
their relevance to a given query.

Given a query  and its retrieved document set
D = {Dg}, for each Dg € D, we use the fol-
lowing ranking model to compute their relevance,
which is formulated as a weighted combination of
matching features:

K
R(Q, Dg) =Y MFr(Q, Do)
k=1

F = {F},..., Fx} denotes a set of matching fea-
tures that measure the matching degrees between
Q and Dg, Fx(Q,Dg) € F is the k" matching
feature, Ay is its corresponding feature weight.

How to learn the weight vector { Az} isas-
tandard learning-to-rank task. The goal of learning
is to find an optimal weight vector {j\k}szl, such
that for any two documents DiQ € Dand D]é e D,
the following condition holds:

R(Q, D) > R(Q, DY) < 1py, > 7y
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where rp,, denotes a numerical relevance rating
labeled by human annotators denoting the rele-
vance between () and D).

As the ultimate goal of improving paraphrasing
is to help the search task, we present a straight-
forward but effective method to enhance the rank-
ing model R described above, by leveraging para-
phrase candidates of the original query as the extra
knowledge to compute matching features.

Formally, given a query () and its /V-best para-
phrase candidates {Q, ..., @y }, we enrich the o-
riginal feature vector F to {F,Fy,...,Fy} for Q
and Dgq, where all features in F,, have the same
meanings as they are in F, however, their feature
values are computed based on )}, and Dy, instead
of @ and Dg. In this way, the paraphrase candi-
dates act as hidden variables and expanded match-
ing features between queries and documents, mak-
ing our ranking model more tunable and flexible
for web search.

3 Experiment

3.1 Data and Metric

Paraphrase pairs are extracted as we described in
Section 2.1. The bilingual corpus includes 5.1M
sentence pairs from the NIST 2008 constrained
track of Chinese-to-English machine translation
task. The monolingual corpus includes 16.7M
queries from the log of a commercial search en-
gine. Human annotated data contains 0.3M syn-
onym pairs from WordNet dictionary. Word align-
ments of each paraphrase pair are trained by
GIZA++. The language model is trained based
on a portion of queries, in which the frequency of
each query is higher than a predefined threshold,
5. The number of paraphrase pairs is 58M. The
minimum length of paraphrase rule is 1, while the
maximum length of paraphrase rule is 5.

We randomly select 2, 838 queries from the log
of a commercial search engine, each of which at-
tached with a set of documents that are annotat-
ed with relevance ratings described in Section 2.3.
We use the first 1,419 queries together with their
annotated documents as the development set to
tune paraphrasing parameters (as we discussed in
Section 2.3), and use the rest as the test set. The
ranking model is trained based on the develop-
ment set. NDCG is used as the evaluation metric
of the web search task.



3.2 Baseline Systems

The baselines of the paraphrasing and the ranking
model are described as follows:

The paraphrasing baseline is denoted as BL-
Para, which only uses traditional SMT features
described at the end of Section 2.2. Weights are
optimized by MERT using BLEU (Papineni et al.,
2002) as the error criterion. Development data are
generated based on the English references of NIST
2008 constrained track of Chinese-to-English ma-
chine translation task. We use the first reference
as the source, and the rest as its paraphrases.

The ranking model baseline (Liu et al., 2007) is
denoted as BL-Rank, which only uses matching
features computed based on original queries and
different meta-streams of web pages, including
URL, page title, page body, meta-keywords, meta-
description and anchor texts. The feature function-
s we use include unigram/bigram/trigram BM25
and original/normalized Perfect-Match. The rank-
ing model is learned based on SV M™% toolkit
(Joachims, 2006) with default parameter setting.

3.3 Impacts of Search-Oriented Features

We first evaluate the effectiveness of the search-
oriented features. To do so, we add these features
into the paraphrasing model baseline, and denote it
as BL-Para+SF, whose weights are optimized in
the same way with BL-Para. The ranking model
baseline BL-Rank is used to rank the documents.
We then compare the NDCG@1 scores of the best
documents retrieved using either original query, or
query paraphrases generated by BL-Para and BL-
Para+SF respectively, and list comparison results
in Table 1, where Cand@1 denotes the best para-
phrase candidate generated by each paraphrasing
model.

Test Set
BL-Para | BL-Para+SF
Original Query | Cand@1 Cand@1
27.28% 26.44% 26.53%

Table 1: Impacts of search-oriented features.

From Table 1, we can see, even using the best
query paraphrase, its corresponding NDCG score
is still lower than the NDCG score of the original
query. This performance dropping makes sense,
as changing user queries brings the risks of query
drift. When adding search-oriented features in-
to the baseline, the performance changes little, as
these two models are optimized based on BLEU
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score only, without considering characteristics of
mismatches in search.

3.4 Impacts of Optimization Algorithm

We then evaluate the impact of our NDCG-based
optimization method. We add the optimization al-
gorithm described in Section 2.3 into BL-Para+SF,
and get a paraphrasing model BL-Para+SF+Opt.
The ranking model baseline BL-Rank is used.
Similar to the experiment in Table 1, we compare
the NDCG@1 scores of the best documents re-
trieved using query paraphrases generated by BL-
Para+SF and BL-Para+SF+Opt respectively, with
results shown in Table 2.

Test Set
BL-Para+SF | BL-Para+SF+Opt
Original Query Cand@1 Cand@1
27.28% 26.53% 27.06%(+0.53%)

Table 2: Impacts of NDCG-based optimization.

Table 2 indicates that, by leveraging NDCG as
the error criterion for MERT, search-oriented fea-
tures benefit more (+0.53% NDCG) in selecting
the best query paraphrase from the whole para-
phrasing search space. The improvement is statis-
tically significant (p < 0.001) by t-test (Smucker
et al., 2007). The quality of the top-1 paraphrase
generated by BL-Para+SF+Opt is very close to the
original query.

3.5 Impacts of Enhanced Ranking Model

We last evaluate the effectiveness of the en-
hanced ranking model. The ranking model base-
line BL-Rank only uses original queries to com-
pute matching features between queries and docu-
ments; while the enhanced ranking model, denot-
ed as BL-Rank+Para, uses not only the original
query but also its top-1 paraphrase candidate gen-
erated by BL-Para+SF+Opt to compute augment-
ed matching features described in Section 2.4.

Dev Set
NDCG@1 NDCG@5
BL-Rank 25.31% 33.76%
BL-Rank+Para | 28.59%(+3.28%) 34.25%(+0.49%)
Test Set
NDCG@1 NDCG@5

BL-Rank
BL-Rank+Para

27.28%
28.42%(+1.14%)

34.79%
35.68%(+0.89%)

Table 3: Impacts of enhanced ranking model.

From Table 3, we can see that NDCG@k (k =
1,5) scores of BL-Rank+Para outperforms BL-
Rank on both dev and test sets. T-test shows that



the improvement is statistically significant (p <
0.001). Such end-to-end NDCG improvements
come from the extra knowledge provided by the
hidden paraphrases of original queries. This nar-
rows down the query-document mismatch issue to
a certain extent.

4 Conclusion and Future Work

In this paper, we present an in-depth study on us-
ing paraphrasing for web search, which pays close
attention to various aspects of the application in-
cluding choice of model and optimization tech-
nique. In the future, we will compare and com-
bine paraphrasing with other query reformulation
techniques, e.g., pseudo-relevance feedback (Yu et
al., 2003) and a conditional random field-based ap-
proach (Guo et al., 2008).
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Abstract

Semantic parsing is the problem of de-
riving a structured meaning representation
from a natural language utterance. Here
we approach it as a straightforward ma-
chine translation task, and demonstrate
that standard machine translation com-
ponents can be adapted into a semantic
parser. In experiments on the multilingual
GeoQuery corpus we find that our parser
is competitive with the state of the art,
and in some cases achieves higher accu-
racy than recently proposed purpose-built
systems. These results support the use of
machine translation methods as an infor-
mative baseline in semantic parsing evalu-
ations, and suggest that research in seman-
tic parsing could benefit from advances in
machine translation.

1 Introduction

Semantic parsing (SP) is the problem of trans-
forming a natural language (NL) utterance into
a machine-interpretable meaning representation
(MR). It is well-studied in NLP, and a wide va-
riety of methods have been proposed to tackle
it, e.g. rule-based (Popescu et al., 2003), super-
vised (Zelle, 1995), unsupervised (Goldwasser et
al., 2011), and response-based (Liang et al., 2011).

At least superficially, SP is simply a machine
translation (MT) task: we transform an NL ut-
terance in one language into a statement of an-
other (un-natural) meaning representation lan-
guage (MRL). Indeed, successful semantic parsers
often resemble MT systems in several impor-
tant respects, including the use of word align-
ment models as a starting point for rule extrac-
tion (Wong and Mooney, 2006; Kwiatkowski et
al., 2010) and the use of automata such as tree
transducers (Jones et al., 2012) to encode the re-
lationship between NL and MRL.
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47

Stephen Clark
Computer Laboratory
University of Cambridge
sc609@cam.ac.uk

The key difference between the two tasks is that
in SP, the target language (the MRL) has very dif-
ferent properties to an NL. In particular, MRs must
conform strictly to a particular structure so that
they are machine-interpretable. Contrast this with
ordinary MT, where varying degrees of wrongness
are tolerated by human readers (and evaluation
metrics). To avoid producing malformed MRs, al-
most all of the existing research on SP has focused
on developing models with richer structure than
those commonly used for MT.

In this work we attempt to determine how ac-
curate a semantic parser we can build by treating
SP as a pure MT task, and describe pre- and post-
processing steps which allow structure to be pre-
served in the MT process.

Our contributions are as follows: We develop
a semantic parser using off-the-shelf MT compo-
nents, exploring phrase-based as well as hierarchi-
cal models. Experiments with four languages on
the popular GeoQuery corpus (Zelle, 1995) show
that our parser is competitve with the state-of-
the-art, in some cases achieving higher accuracy
than recently introduced purpose-built semantic
parsers. Our approach also appears to require
substantially less time to train than the two best-
performing semantic parsers. These results sup-
port the use of MT methods as an informative
baseline in SP evaluations and show that research
in SP could benefit from research advances in MT.

2 MT-based semantic parsing

The input is a corpus of NL utterances paired with
MRs. In order to learn a semantic parser using
MT we linearize the MRs, learn alignments be-
tween the MRL and the NL, extract translation
rules, and learn a language model for the MRL.
We also specify a decoding procedure that will re-
turn structured MRs for an utterance during pre-
diction.

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 47-52,
Sofia, Bulgaria, August 4-9 2013. (©2013 Association for Computational Linguistics



states bordering Texas
state(next_to(state(stateid(texas))))

|l STEM & LINEARIZE

state border texa
state1 next_toy statey stateidy texasg

{ ALIGN
state  border  texa \
statey next_toy Sstatey stateid; texasg

) EXTRACT (PHRASE)

( state , state; )
( state border , state; border; )
(texa, statey stateid) texasg )

) EXTRACT (HIER)
[X] — (state , state;)
[X] — (state [X] texa ,

stateq [X] statey stateid texasy)

Figure 1: Illustration of preprocessing and rule ex-
traction.

Linearization We assume that the MRL is
variable-free (that is, the meaning representation
for each utterance is tree-shaped), noting that for-
malisms with variables, like the A-calculus, can
be mapped onto variable-free logical forms with
combinatory logics (Curry et al., 1980).

In order to learn a semantic parser using MT
we begin by converting these MRs to a form more
similar to NL. To do so, we simply take a preorder
traversal of every functional form, and label every
function with the number of arguments it takes.
After translation, recovery of the function is easy:
if the arity of every function in the MRL is known,
then every traversal uniquely specifies its corre-
sponding tree. Using an example from GeoQuery,
given an input function of the form

answer(population(city(cityid(‘seattle’, ‘wa’))))
we produce a “decorated” translation input of the
form

answery population; cityy cityids seattleg wag

where each subscript indicates the symbol’s arity
(constants, including strings, are treated as zero-
argument functions). Explicit argument number
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labeling serves two functions. Most importantly,
it eliminates any possible ambiguity from the tree
reconstruction which takes place during decod-
ing: given any sequence of decorated MRL to-
kens, we can always reconstruct the correspond-
ing tree structure (if one exists). Arity labeling ad-
ditionally allows functions with variable numbers
of arguments (e.g. cityid, which in some training
examples is unary) to align with different natural
language strings depending on context.

Alignment Following the linearization of the
MRs, we find alignments between the MR tokens
and the NL tokens using the IBM Model 4 (Brown
et al., 1993). Once the alignment algorithm is
run in both directions (NL to MRL, MRL to NL),
we symmetrize the resulting alignments to obtain
a consensus many-to-many alignment (Och and
Ney, 2000; Koehn et al., 2005).

Rule extraction From the many-to-many align-
ment we need to extract a translation rule ta-
ble, consisting of corresponding phrases in NL
and MRL. We consider a phrase-based transla-
tion model (Koehn et al., 2003) and a hierarchi-
cal translation model (Chiang, 2005). Rules for
the phrase-based model consist of pairs of aligned
source and target sequences, while hierarchical
rules are SCFG productions containing at most
two instances of a single nonterminal symbol.
Note that both extraction algorithms can learn
rules which a traditional tree-transducer-based ap-
proach cannot—for example the right hand side

[X] rivery ally traversey [X]

corresponding to the pair of disconnected tree
fragments:

[X] traverse
| |
river [X]
v
all

(where each X indicates a gap in the rule).

Language modeling In addition to translation
rules learned from a parallel corpus, MT systems
also rely on an n-gram language model for the tar-
get language, estimated from a (typically larger)
monolingual corpus. In the case of SP, such a
monolingual corpus is rarely available, and we in-
stead use the MRs available in the training data to
learn a language model of the MRL. This informa-
tion helps guide the decoder towards well-formed



structures; it encodes, for example, the preferences
of predicates of the MRL for certain arguments.

Prediction Given a new NL utterance, we need
to find the n best translations (i.e. sequences
of decorated MRL tokens) that maximize the
weighted sum of the translation score (the prob-
abilities of the translations according to the rule
translation table) and the language model score, a
process usually referred to as decoding. Standard
decoding procedures for MT produce an n-best list
of all possible translations, but here we need to
restrict ourselves to translations corresponding to
well-formed MRs. In principle this could be done
by re-writing the beam search algorithm used in
decoding to immediately discard malformed MRs;
for the experiments in this paper we simply filter
the regular n-best list until we find a well-formed
MR. This filtering can be done with time linear in
the length of the example by exploiting the argu-
ment label numbers introduced during lineariza-
tion. Finally, we insert the brackets according to
the tree structure specified by the argument num-
ber labels.

3 Experimental setup

Dataset We conduct experiments on the Geo-
Query data set. The corpus consists of a set of
880 natural-language questions about U.S. geog-
raphy in four languages (English, German, Greek
and Thai), and their representations in a variable-
free MRL that can be executed against a Prolog
database interface. Initial experimentation was
done using 10 fold cross-validation on the 600-
sentence development set and the final evaluation
on a held-out test set of 280 sentences. All seman-
tic parsers for GeoQuery we compare against also
makes use of NP lists (Jones et al., 2012), which
contain MRs for every noun phrase that appears in
the NL utterances of each language. In our exper-
iments, the NP list was included by appending all
entries as extra training sentences to the end of the
training corpus of each language with 50 times the
weight of regular training examples, to ensure that
they are learned as translation rules.

Evaluation for each utterance is performed by
executing both the predicted and the gold standard
MRs against the database and obtaining their re-
spective answers. An MR is correct if it obtains
the same answer as the gold standard MR, allow-
ing for a fair comparison between systems using
different learning paradigms. Following Jones et
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al. (2012) we report accuracy, i.e. the percent-
age of NL questions with correct answers, and Fy,
i.e. the harmonic mean of precision (percentage of
correct answers obtained).

Implementation In all experiments, we use the
IBM Model 4 implementation from the GIZA++
toolkit (Och and Ney, 2000) for alignment, and
the phrase-based and hierarchical models imple-
mented in the Moses toolkit (Koehn et al., 2007)
for rule extraction. The best symmetrization algo-
rithm, translation and language model weights for
each language are selected using cross-validation
on the development set. In the case of English and
German, we also found that stemming (Bird et al.,
2009; Porter, 1980) was hepful in reducing data
sparsity.

4 Results

We first compare the results for the two translation
rule extraction models, phrase-based and hierar-
chical (“MT-phrase” and “MT-hier” respectively
in Table 1). We find that the hierarchical model
performs better in all languages apart from Greek,
indicating that the long-range reorderings learned
by a hierarchical translation system are useful for
this task. These benefits are most pronounced in
the case of Thai, likely due to the the language’s
comparatively different word order.

We also present results for both models with-
out using the NP lists for training in Table 2. As
expected, the performances are almost uniformly
lower, but the parser still produces correct output
for the majority of examples.

As discussed above, one important modifica-
tion of the MT paradigm which allows us to pro-
duce structured output is the addition of structure-
checking to the beam search. It is not evident,
a priori, that this search procedure is guaran-
teed to find any well-formed outputs in reasonable
time; to test the effect of this extra requirement on

en de el th
MT-phrase 753 688 704 53.0
MT-phrase (-NP) 63.4 658 64.0 39.8
MT-hier 80.5 689 69.1 704
MT-hier (-NP) 625 699 629 62.1

Table 2: GeoQuery accuracies with and without
NPs. Rows with (-NP) did not use the NP list.



English [en] German [de] Greek [el] Thai [th]

Acc. F; Acc. F, Acc. F; |, Acc. Fy
WASP 71.1 7777 | 657 749 | 707 786 | 71.4 75.0
UBL 82.1 82.1 | 75.0 75.0 | 73.6 73.7| 664 664
tsVB 793 793 | 746 746 | 754 754 | 782 78.2
hybrid-tree 76.8 81.0 | 62.1 685 | 693 74.6 | 73.6 76.7

" MT-phrase 753 758 | 68.8 70.8 | 704 73.0 | 53.0 544

MT-hier 80.5 81.8 | 689 71.8 |69.1 723|704 70.7

Table 1: Accuracy and F; scores for the multilingual GeoQuery test set.

reported by Jones et al. (2012).

the speed of SP, we investigate how many MRs
the decoder needs to generate before producing
one which is well-formed. In practice, increasing
search depth in the n-best list from 1 to 50 results
in a gain of no more than a percentage point or
two, and we conclude that our filtering method is
appropriate for the task.

We also compare the MT-based semantic
parsers to several recently published ones: WASP
(Wong and Mooney, 2006), which like the hier-
archical model described here learns a SCFG to
translate between NL and MRL; tsVB (Jones et
al., 2012), which uses variational Bayesian infer-
ence to learn weights for a tree transducer; UBL
(Kwiatkowski et al., 2010), which learns a CCG
lexicon with semantic annotations; and hybrid-
tree (Lu et al., 2008), which learns a synchronous
generative model over variable-free MRs and NL
strings.

In the results shown in Table 1 we observe that
on English GeoQuery data, the hierarchical trans-
lation model achieves scores competitive with the
state of the art, and in every language one of the
MT systems achieves accuracy at least as good as
a purpose-built semantic parser.

We conclude with an informal test of training
speeds. While differences in implementation and
factors like programming language choice make
a direct comparison of times necessarily impre-
cise, we note that the MT system takes less than
three minutes to train on the GeoQuery corpus,
while the publicly-available implementations of
tsVB and UBL require roughly twenty minutes and
five hours respectively on a 2.1 GHz CPU. So
in addition to competitive performance, the MT-
based parser also appears to be considerably more
efficient at training time than other parsers in the
literature.
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Results for other systems as

5 Related Work

WASP, an early automatically-learned SP system,
was strongly influenced by MT techniques. Like
the present work, it uses GIZA++ alignments as
a starting point for the rule extraction procedure,
and algorithms reminiscent of those used in syn-
tactic MT to extract rules.

tsVB also uses a piece of standard MT ma-
chinery, specifically tree transducers, which have
been profitably employed for syntax-based ma-
chine translation (Maletti, 2010). In that work,
however, the usual MT parameter-estimation tech-
nique of simply counting the number of rule oc-
currences does not improve scores, and the au-
thors instead resort to a variational inference pro-
cedure to acquire rule weights. The present work
is also the first we are aware of which uses phrase-
based rather than tree-based machine translation
techniques to learn a semantic parser. hybrid-tree
(Lu et al., 2008) similarly describes a generative
model over derivations of MRL trees.

The remaining system discussed in this paper,
UBL (Kwiatkowski et al., 2010), leverages the fact
that the MRL does not simply encode trees, but
rather A-calculus expressions. It employs resolu-
tion procedures specific to the A-calculus such as
splitting and unification in order to generate rule
templates. Like other systems described, it uses
GIZA alignments for initialization. Other work
which generalizes from variable-free meaning rep-
resentations to A-calculus expressions includes the
natural language generation procedure described
by Lu and Ng (2011).

UBL, like an MT system (and unlike most of the
other systems discussed in this section), extracts
rules at multiple levels of granularity by means of
this splitting and unification procedure. hybrid-
tree similarly benefits from the introduction of



multi-level rules composed from smaller rules, a
process similar to the one used for creating phrase
tables in a phrase-based MT system.

6 Discussion

Our results validate the hypothesis that it is possi-
ble to adapt an ordinary MT system into a work-
ing semantic parser. In spite of the compara-
tive simplicity of the approach, it achieves scores
comparable to (and sometimes better than) many
state-of-the-art systems. For this reason, we argue
for the use of a machine translation baseline as a
point of comparison for new methods. The results
also demonstrate the usefulness of two techniques
which are crucial for successful MT, but which are
not widely used in semantic parsing. The first is
the incorporation of a language model (or com-
parable long-distance structure-scoring model) to
assign scores to predicted parses independent of
the transformation model. The second is the
use of large, composed rules (rather than rules
which trigger on only one lexical item, or on tree
portions of limited depth (Lu et al., 2008)) in
order to “memorize” frequently-occurring large-
scale structures.

7 Conclusions

We have presented a semantic parser which uses
techniques from machine translation to learn map-
pings from natural language to variable-free mean-
ing representations. The parser performs com-
parably to several recent purpose-built semantic
parsers on the GeoQuery dataset, while training
considerably faster than state-of-the-art systems.
Our experiments demonstrate the usefulness of
several techniques which might be broadly applied
to other semantic parsers, and provides an infor-
mative basis for future work.
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Abstract

Distributional models of semantics cap-
ture word meaning very effectively, and
they have been recently extended to ac-
count for compositionally-obtained rep-
resentations of phrases made of content
words. We explore whether compositional
distributional semantic models can also
handle a construction in which grammat-
ical terms play a crucial role, namely de-
terminer phrases (DPs). We introduce a
new publicly available dataset to test dis-
tributional representations of DPs, and we
evaluate state-of-the-art models on this set.

1 Introduction

Distributional semantics models (DSMs) approx-
imate meaning with vectors that record the dis-
tributional occurrence patterns of words in cor-
pora. DSMs have been effectively applied to in-
creasingly more sophisticated semantic tasks in
linguistics, artificial intelligence and cognitive sci-
ence, and they have been recently extended to
capture the meaning of phrases and sentences via
compositional mechanisms. However, scaling up
to larger constituents poses the issue of how to
handle grammatical words, such as determiners,
prepositions, or auxiliaries, that lack rich concep-
tual content, and operate instead as the logical
“glue” holding sentences together.

In typical DSMs, grammatical words are treated
as “stop words” to be discarded, or at best used
as context features in the representation of content
words. Similarly, current compositional DSMs
(cDSMs) focus almost entirely on phrases made
of two or more content words (e.g., adjective-noun
or verb-noun combinations) and completely ig-
nore grammatical words, to the point that even
the test set of transitive sentences proposed by
Grefenstette and Sadrzadeh (2011) contains only
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Tarzan-style statements with determiner-less sub-
jects and objects: “table show result”, “priest say
mass”, etc. As these examples suggest, however,
as soon as we set our sight on modeling phrases
and sentences, grammatical words are hard to
avoid. Stripping off grammatical words has more
serious consequences than making you sound like
the Lord of the Jungle. Even if we accept the
view of, e.g., Garrette et al. (2013), that the log-
ical framework of language should be left to other
devices than distributional semantics, and the lat-
ter should be limited to similarity scoring, still ig-
noring grammatical elements is going to dramat-
ically distort the very similarity scores (c)DSMs
should provide. If we want to use a cDSM for
the classic similarity-based paraphrasing task, the
model shouldn’t conclude that “The table shows
many results” is identical to “the table shows no
results” since the two sentences contain the same
content words, or that “zo kill many rats” and “to
kill few rats” are equally good paraphrases of “to
exterminate rats”.

We focus here on how cDSMs handle determin-
ers and the phrases they form with nouns (defer-
miner phrases, or DPs).! While determiners are
only a subset of grammatical words, they are a
large and important subset, constituting the natu-
ral stepping stone towards sentential distributional
semantics: Compositional methods have already
been successfully applied to simple noun-verb and
noun-verb-noun structures (Mitchell and Lapata,
2008; Grefenstette and Sadrzadeh, 2011), and de-
terminers are just what is missing to turn these
skeletal constructions into full-fledged sentences.
Moreover, determiner-noun phrases are, in super-
ficial syntactic terms, similar to the adjective-noun
phrases that have already been extensively studied
from a cDSM perspective by Baroni and Zampar-

'Some linguists refer to what we call DPs as noun phrases

or NPs. We say DPs simply to emphasize our focus on deter-
miners.
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elli (2010), Guevara (2010) and Mitchell and Lap-
ata (2010). Thus, we can straightforwardly extend
the methods already proposed for adjective-noun
phrases to DPs.

We introduce a new task, a similarity-based
challenge, where we consider nouns that are
strongly conceptually related to certain DPs and
test whether cDSMs can pick the most appropri-
ate related DP (e.g., monarchy is more related to
one ruler than many rulers).> We make our new
dataset publicly available, and we hope that it will
stimulate further work on the distributional seman-
tics of grammatical elements.’

2  Composition models

Interest in compositional DSMs has skyrocketed
in the last few years, particularly since the influ-
ential work of Mitchell and Lapata (2008; 2009;
2010), who proposed three simple but effective
composition models. In these models, the com-
posed vectors are obtained through component-
wise operations on the constituent vectors. Given
input vectors u and v, the multiplicative model
(mult) returns a composed vector p with: p;, =
u;v;. In the weighted additive model (wadd), the
composed vector is a weighted sum of the two in-
put vectors: p = au—+ 8v, where « and [ are two
scalars. Finally, in the dilation model, the output
vector is obtained by first decomposing one of the
input vectors, say v, into a vector parallel to u and
an orthogonal vector. Following this, the parallel
vector is dilated by a factor A before re-combining.
This results in: p = (A — 1){(u, v)u + (u,u)v.

A more general form of the additive model
(fulladd) has been proposed by Guevara (2010)
(see also Zanzotto et al. (2010)). In this approach,
the two vectors to be added are pre-multiplied by
weight matrices estimated from corpus-extracted
examples: p = Au + Bv.

Baroni and Zamparelli (2010) and Coecke et
al. (2010) take inspiration from formal semantics
to characterize composition in terms of function
application. The former model adjective-noun
phrases by treating the adjective as a function from
nouns onto modified nouns. Given that linear
functions can be expressed by matrices and their
application by matrix-by-vector multiplication, a

2Baroni et al. (2012), like us, study determiner phrases
with distributional methods, but they do not model them com-
positionally.

SDataset and code available from clic.cimec.
unitn.it/composes.
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functor (such as the adjective) is represented by a
matrix U to be multiplied with the argument vec-
tor v (e.g., the noun vector): p = Uv. Adjective
matrices are estimated from corpus-extracted ex-
amples of noun vectors and corresponding output
adjective-noun phrase vectors, similarly to Gue-
vara’s approach.*

3 The noun-DP relatedness benchmark

Paraphrasing a single word with a phrase is a
natural task for models of compositionality (Tur-
ney, 2012; Zanzotto et al., 2010) and determin-
ers sometimes play a crucial role in defining the
meaning of a noun. For example a trilogy is com-
posed of three works, an assemblage includes sev-
eral things and an orchestra is made of many
musicians. These examples are particularly in-
teresting, since they point to a “conceptual” use
of determiners, as components of the stable and
generic meaning of a content word (as opposed to
situation-dependent deictic and anaphoric usages):
for these determiners the boundary between con-
tent and grammatical word is somewhat blurred,
and they thus provide a good entry point for testing
DSM representations of DPs on a classic similarity
task. In other words, we can set up an experiment
in which having an effective representation of the
determiner is crucial in order to obtain the correct
result.

Using regular expressions over WordNet
glosses (Fellbaum, 1998) and complementing
them with definitions from various online dic-
tionaries, we constructed a list of more than 200
nouns that are strongly conceptually related to a
specific DP. We created a multiple-choice test set
by matching each noun with its associated DP
(target DP), two “foil” DPs sharing the same noun
as the target but combined with other determiners
(same-N foils), one DP made of the target deter-
miner combined with a random noun (same-D
foil), the target determiner (D foil), and the target
noun (N foil). A few examples are shown in Table
1. After the materials were checked by all authors,
two native speakers took the multiple-choice test.
We removed the cases (32) where these subjects
provided an unexpected answer. The final set,

*Other approaches to composition in DSMs have been re-
cently proposed by Socher et al. (2012) and Turney (2012).
We leave their empirical evaluation on DPs to further work,
in the first case because it is not trivial to adapt their complex
architecture to our setting; in the other because it is not clear
how Turney would extend his approach to represent DPs.



noun target DP same-N foil 1 same-N foil 2 same-D foil D foil N foil
duel two opponents  various opponents  three opponents  two engineers two opponents
homeless  no home too few homes one home no incision no home
polygamy  several wives most wives fewer wives several negotiators several wives
opulence  too many goods some goods no goods too many abductions too many  goods
Table 1: Examples from the noun-DP relatedness benchmark
characterized by full subject agreement, contains method ___accuracy | method accuracy
. . lexfunc 39.3 | noun 17.3
173 nouns, each matched with 6 possible answers. fulladd 347 | random 16.7
The target DPs contain 23 distinct determiners. observed 34.1 | mult 12.7
dilation 31.8 | determiner 4.6
wadd 23.1

4 Setup

Our semantic space provides distributional repre-
sentations of determiners, nouns and DPs. We
considered a set of 50 determiners that include all
those in our benchmark and range from quanti-
fying determiners (every, some...) and low nu-
merals (one to four), to multi-word units analyzed
as single determiners in the literature, such as a
few, all that, too much. We picked the 20K most
frequent nouns in our source corpus considering
singular and plural forms as separate words, since
number clearly plays an important role in DP se-
mantics. Finally, for each of the target determiners
we added to the space the 2K most frequent DPs
containing that determiner and a target noun.

Co-occurrence statistics were collected from the
concatenation of ukWaC, a mid-2009 dump of the
English Wikipedia and the British National Cor-
pus,’ with a total of 2.8 billion tokens. We use
a bag-of-words approach, counting co-occurrence
with all context words in the same sentence with
a target item. We tuned a number of parameters
on the independent MEN word-relatedness bench-
mark (Bruni et al., 2012). This led us to pick the
top 20K most frequent content word lemmas as
context items, Pointwise Mutual Information as
weighting scheme, and dimensionality reduction
by Non-negative Matrix Factorization.

Except for the parameter-free mult method, pa-
rameters of the composition methods are esti-
mated by minimizing the average Euclidean dis-
tance between the model-generated and corpus-
extracted vectors of the 20K DPs we consider.®
For the lexfunc model, we assume that the deter-
miner is the functor and the noun is the argument,

5wacky .sslmit.unibo.it; www.natcorp.ox.
ac.uk

8 All vectors are normalized to unit length before compo-
sition. Note that the objective function used in estimation
minimizes the distance between model-generated and corpus-

extracted vectors. We do not use labeled evaluation data to
optimize the model parameters.
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Table 2: Percentage accuracy of composition
methods on the relatedness benchmark

and estimate separate matrices representing each
determiner using the 2K DPs in the semantic space
that contain that determiner. For dilation, we treat
direction of stretching as a parameter, finding that
it is better to stretch the noun.

Similarly to the classic TOEFL synonym detec-
tion challenge (Landauer and Dumais, 1997), our
models tackle the relatedness task by measuring
cosines between each target noun and the candi-
date answers and returning the item with the high-
est cosine.

5 Results

Table 2 reports the accuracy results (mean ranks
of correct answers confirm the same trend). All
models except mult and determiner outperform the
trivial random guessing baseline, although they
are all well below the 100% accuracy of the hu-
mans who took our test. For the mult method we
observe a very strong bias for choosing a single
word as answer (>60% of the times), which in
the test set is always incorrect. This leads to its
accuracy being below the chance level. We sus-
pect that the highly “intersective” nature of this
model (we obtain very sparse composed DP vec-
tors, only ~4% dense) leads to it not being a re-
liable method for comparing sequences of words
of different length: Shorter sequences will be con-
sidered more similar due to their higher density.
The determiner-only baseline (using the vector of
the component determiner as surrogate for the DP)
fails because D vectors tend to be far from N vec-
tors, thus the N foil is often preferred to the correct
response (that is represented, for this baseline, by
its D). In the noun-only baseline (use the vector
of the component noun as surrogate for the DP),



the correct response is identical to the same-N and
N foils, thus forcing a random choice between
these. Not surprisingly, this approach performs
quite badly. The observed DP vectors extracted di-
rectly from the corpus compete with the top com-
positional methods, but do not surpass them.’

The lexfunc method is the best compositional
model, indicating that its added flexibility in mod-
eling composition pays off empirically. The ful-
ladd model is not as good, but also performs well.
The wadd and especially dilation models perform
relatively well, but they are penalized by the fact
that they assign more weight to the noun vectors,
making the right answer dangerously similar to the
same-N and N foils.

Taking a closer look at the performance of the
best model (lexfunc), we observe that it is not
equally distributed across determiners. Focusing
on those determiners appearing in at least 4 cor-
rect answers, they range from those where lexfunc
performance was very significantly above chance
(p<0.001 of equal or higher chance performance):
too few, all, four, too much, less, several, to
those on which performance was still significant
but less impressively so (0.001 < p < 0.05): sev-
eral, no, various, most, two, too many, many, one;
to those where performance was not significantly
better than chance at the 0.05 level: much, more,
three, another. Given that, on the one hand, per-
formance is not constant across determiners, and
on the other no obvious groupings can account
for their performance difference (compare the ex-
cellent lexfunc performance on four to the lousy
one on three!), future research should explore the
contextual properties of specific determiners that
make them more or less amenable to be captured
by compositional DSMs.

6 Conclusion

DSMs, even when applied to phrases, are typically
seen as models of content word meaning. How-
ever, to scale up compositionally beyond the sim-
plest constructions, cDSMs must deal with gram-
matical terms such as determiners. This paper
started exploring this issue by introducing a new
and publicly available set testing DP semantics in
a similarity-based task and using it to systemati-
cally evaluate, for the first time, cDSMs on a con-

"The observed method is in fact at advantage in our ex-
periment because a considerable number of DP foils are not
found in the corpus and are assigned similarity O with the tar-
get.
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struction involving grammatical words. The most
important take-home message is that distributional
representations are rich enough to encode infor-
mation about determiners, achieving performance
well above chance on the new benchmark.

Theoretical considerations would lead one to
expect a “functional” approach to determiner rep-
resentations along the lines of Baroni and Zampar-
elli (2010) and Coecke et al. (2010) to outperform
those approaches that combine vectors separately
representing determiners and nouns. This predic-
tion was largely borne out in the results, although
the additive models, and particularly fulladd, were
competitive rivals.

We attempted to capture the distributional se-
mantics of DPs using a fairly standard, “vanilla”
semantic space characterized by latent dimensions
that summarize patterns of co-occurrence with
content word contexts. By inspecting the con-
text words that are most associated with the var-
ious latent dimensions we obtained through Non-
negative Matrix Factorization, we notice how they
are capturing broad, “topical” aspects of meaning
(the first dimension is represented by scripture, be-
liever, resurrection, the fourth by fever, infection,
infected, and so on). Considering the sort of se-
mantic space we used (which we took to be a rea-
sonable starting point because of its effectiveness
in a standard lexical task), it is actually surpris-
ing that we obtained the significant results we ob-
tained. Thus, a top priority in future work is to ex-
plore different contextual features, such as adverbs
and grammatical terms, that might carry informa-
tion that is more directly relevant to the semantics
of determiners.

Another important line of research pertains to
improving composition methods: Although the
best model, at 40% accuracy, is well above chance,
we are still far from the 100% performance of hu-
mans. We will try, in particular, to include non-
linear transformations in the spirit of Socher et al.
(2012), and look for better ways to automatically
select training data.

Last but not least, in the near future we
would like to test if cDSMs, besides dealing with
similarity-based aspects of determiner meaning,
can also help in capturing those formal properties
of determiners, such as monotonicity or definite-
ness, that theoretical semanticists have been tradi-
tionally interested in.
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Abstract

Uncertainty text detection is important
to many social-media-based applications
since more and more users utilize social
media platforms (e.g., Twitter, Facebook,
etc.) as information source to produce
or derive interpretations based on them.
However, existing uncertainty cues are in-
effective in social media context because
of its specific characteristics. In this pa-
per, we propose a variant of annotation
scheme for uncertainty identification and
construct the first uncertainty corpus based
on tweets. We then conduct experiments
on the generated tweets corpus to study the
effectiveness of different types of features
for uncertainty text identification.

1 Introduction

Social media is not only a social network tool for
people to communicate but also plays an important
role as information source with more and more
users searching and browsing news on it. People
also utilize information from social media for de-
veloping various applications, such as earthquake
warning systems (Sakaki et al., 2010) and fresh
webpage discovery (Dong et al., 2010). How-
ever, due to its casual and word-of-mouth pecu-
liarities, the quality of information in social me-
dia in terms of factuality becomes a premier con-
cern. Chances are there for uncertain information
or even rumors flooding in such a context of free
form. We analyzed a tweet dataset which includes
326,747 posts (Details are given in Section 3) col-
lected during 2011 London Riots, and result re-
veals that at least 18.91% of these tweets bear un-
certainty characteristics'. Therefore, distinguish-
ing uncertain statements from factual ones is cru-
cial for users to synthesize social media informa-
tion to produce or derive reliable interpretations,

'The preliminary study was done based on a manually de-
fined uncertainty cue-phrase list. Tweets containing at least
one hedge cue were treated as uncertain.
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and this is expected helpful for applications like
credibility analysis (Castillo et al., 2011) and ru-
mor detection (Qazvinian et al., 2011) based on
social media.

Although uncertainty has been studied theoret-
ically for a long time as a grammatical phenom-
ena (Seifert and Welte, 1987), the computational
treatment of uncertainty is a newly emerging area
of research. Szarvas et al. (2012) pointed out that
“Uncertainty - in its most general sense - can be
interpreted as lack of information: the receiver of
the information (i.e., the hearer or the reader) can-
not be certain about some pieces of information”.
In recent years, the identification of uncertainty
in formal text, e.g., biomedical text, reviews or
newswire, has attracted lots of attention (Kilicoglu
and Bergler, 2008; Medlock and Briscoe, 2007;
Szarvas, 2008; Light et al., 2004). However, un-
certainty identification in social media context is
rarely explored.

Previous research shows that uncertainty identi-
fication is domain dependent as the usage of hedge
cues varies widely in different domains (Morante
and Sporleder, 2012). Therefore, the employment
of existing out-of-domain corpus to social media
context is ineffective. Furthermore, compared to
the existing uncertainty corpus, the expression of
uncertainty in social media is fairly different from
that in formal text in a sense that people usu-
ally raise questions or refer to external informa-
tion when making uncertain statements. But, nei-
ther of the uncertainty expressions can be repre-
sented based on the existing types of uncertainty
defined in the literature. Therefore, a different un-
certainty classification scheme is needed in social
media context.

In this paper, we propose a novel uncertainty
classification scheme and construct the first uncer-
tainty corpus based on social media data — tweets
in specific here. And then we conduct experi-
ments for uncertainty post identification and study
the effectiveness of different categories of features
based on the generated corpus.

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 5862,
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2 Related work

We introduce some popular uncertainty corpora
and methods for uncertainty identification.

2.1 Uncertainty corpus

Several text corpora from various domains have
been annotated over the past few years at different
levels (e.g., expression, event, relation, sentence)
with information related to uncertainty.

Sauri and Pustejovsky (2009) presented a cor-
pus annotated with information about the factu-
ality of events, namely Factbank, which is con-
structed based on TimeBank? containing 3,123 an-
notated sentences from 208 news documents with
8 different levels of uncertainty defined.

Vincze et al. (2008) constructed the BioSocpe
corpus, which consists of medical and biological
texts annotated for negation, uncertainty and their
linguistic scope. This corpus contains 20,924 sen-
tences.

Ganter et al. (2009) generated Wikipedia
Weasels Corpus, where Weasel tags in Wikipedia
articles is adopted readily as labels for uncertainty
annotation. It contains 168,923 unique sentences
with 437 weasel tags in total.

Although several uncertainty corpora exist,
there is not a uniform set of standard for uncer-
tainty annotation. Szarvas et al. (2012) normal-
ized the annotation of the three corpora aforemen-
tioned. However, the context of these corpora
is different from that of social media. Typically,
these documents annotated are grammatically cor-
rect, carefully punctuated, formally structured and
logically expressed.

2.2 Uncertainty identification

Previous work on uncertainty identification fo-
cused on classifying sentences into uncertain
or definite categories. Existing approaches are
mainly based on supervised methods (Light et
al., 2004; Medlock and Briscoe, 2007; Medlock,
2008; Szarvas, 2008) using the annotated corpus
with different types of features including Part-Of-
Speech (POS) tags, stems, n-grams, etc..
Classification of uncertain sentences was con-
solidated as a task in the 2010 edition of CoNLL
shared task on learning to detect hedge cues
and their scope in natural language text (Farkas
et al., 2010). The best system for Wikipedia
data (Georgescul, 2010) employed Support Vector
Machine (SVM), and the best system for biolog-
ical data (Tang et al., 2010) adopted Conditional

http://www.timeml.org/site/timebank/
timebank.html
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Random Fields (CRF).

In our work, we conduct an empirical study of
uncertainty identification on tweets dataset and ex-
plore the effectiveness of different types of fea-
tures (i.e., content-based, user-based and Twitter-
specific) from social media context.

3 Uncertainty corpus for microblogs

3.1 Types of uncertainty in microblogs

Traditionally, uncertainty can be divided into
two categories, namely Epistemic and Hypothet-
ical (Kiefer, 2005). For Epistemic, there are two
sub-classes Possible and Probable. For Hypotheti-
cal, there are four sub-classes including Investiga-
tion, Condition, Doxastic and Dynamic. The detail
of the classification is described as below (Kiefer,
2005):

Epistemic: On the basis of our world knowledge
we cannot decide at the moment whether the
statement is true or false.

Hypothetical: This type of uncertainty includes
four sub-classes:

e Doxastic: Expresses the speaker’s be-
liefs and hypotheses.

e Investigation: Proposition under inves-
tigation.

e Condition:
tion.

e Dynamic: Contains deontic, disposi-
tional, circumstantial and buletic modal-
ity.

Compared to the existing uncertainty corpora,
social media authors enjoy free form of writing.
In order to study the difference, we annotated a
small set of 827 randomly sampled tweets accord-
ing to the scheme of uncertainty types above, in
which we found 65 uncertain tweets. And then,
we manually identified all the possible uncertain
tweets, and found 246 really uncertain ones out of
these 827 tweets, which means that 181 uncertain
tweets are missing based on this scheme. We have
the following three salient observations:

— Firstly, there is no tweet found with the type of
Investigation. We find people seldom use words
like “examine” or “test” (indicative words of In-
vestigation category) when posting tweets. Once
they do this, the statement should be considered
as highly certain. For example, @dobibid I have
tested the link, it is fake!

— Secondly, people frequently raise questions
about some specific topics for confirmation which
expresses uncertainty. For example, @ITVCentral

Proposition under condi-



Can you confirm that Birmingham children’s hos-
pital has/hasn’t been attacked by rioters?

— Thirdly, people tend to post message with exter-
nal information (e.g., story from friends) which re-
veals uncertainty. For example, Friend who works
at the children’s hospital in Birmingham says the
riot police are protecting it.

Based on these observations, we propose a vari-
ant of uncertainty types in social media context
by eliminating the category of Investigation and
adding the category of Question and External un-
der Hypothetical, as shown in Table 3.1. Note
that our proposed scheme is based on Kiefer’s
work (2005) which was previously extended to
normalize uncertainty corpora in different genres
by Szarvas et al. (2012). But we did not try these
extended schema for specific genres since even the
most general one (Kiefer, 2005) was proved un-
suitable for social media context.

3.2 Annotation result

The dataset we annotated was collected from Twit-
ter using Streaming API during summer riots
in London during August 6-13 2011, including
326,747 tweets in total. Search criteria include
hashtags like #ukriots, #londonriots, #prayforlon-
don, and so on. We further extracted the tweets
relating to seven significant events during the riot
identified by UK newspaper The Guardian from
this set of tweets. We annotated all the 4,743 ex-
tracted tweets for the seven events®.

Two annotators were trained to annotate the
dataset independently. Given a collection of
tweets T = {t1, ta, t3...t,, }, the annotation task is
to label each tweet t; as either uncertain or cer-
tain. Uncertainty assertions are to be identified
in terms of the judgements about the author’s in-
tended meaning rather than the presence of uncer-
tain cue-phrase. For those tweets annotated as un-
certain, sub-class labels are also required accord-
ing to the classification indicated in Table 3.1 (i.e.,
multi-label is allowed).

The Kappa coefficient (Carletta, 1996) indi-
cating inter-annotator agreement was 0.9073 for
the certain/uncertain binary classification and was
0.8271 for fine-grained annotation. The conflict
labels from the two annotators were resolved by a
third annotator. Annotation result is displayed in
Table 3.2, where 926 out of 4,743 tweets are la-
beled as uncertain accounting for 19.52%. Ques-
tion is the uncertainty category with most tweets,
followed by External. Only 21 tweets are labeled

‘http://www.guardian.co.uk/
uk/interactive/2011/dec/07/
london-riots—-twitter
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Tweet# 4743
Uncertainty# 926
Enistemic Possible# 16
P! Probable# 129
Condition# 71
. Doxastict# 48
Hypothetical Dynamic# 21
External# 208
Question# 488

Table 2: Statistics of annotation result

as Dynamic and all of them are buletic modal-
ity* which shares similarity with Doxastic. There-
fore, we consider Dynamic together with Domes-
tic in the error analysis for simplicity. During
the preliminary annotation, we found that uncer-
tainty cue-phrase is a good indicator for uncer-
tainty tweets since tweets labeled as uncertain al-
ways contain at least one cue-phrase. Therefore,
annotators are also required identify cue-phrases
which trigger the sense of uncertainty in the tweet.
All cue-phrases appearing more than twice are col-
lected to form a uncertainty cue-phrase list.

4 Experiment and evaluation

We aim to identify those uncertainty tweets from
tweet collection automatically based on machine
learning approaches. In addition to n-gram fea-
tures, we also explore the effectiveness of three
categories of social media specific features includ-
ing content-based, user-based and Twitter-specific
ones. The description of the three categories of
features is shown in Table 4. Since the length of
tweet is relatively short, we therefore did not carry
out stopwords removal or stemming.

Our preliminary experiments showed that com-
bining unigrams with bigrams and trigrams gave
better performance than using any one or two of
these three features. Therefore, we just report the
result based on the combination of them as n-gram
features. Five-fold cross validation is used for
evaluation. Precision, recall and F-1 score of un-
certainty category are used as the metrics.

4.1 Opverall performance

The overall performance of different approaches
is shown in Table 4.1. We used uncertainty cue-
phrase matching approach as baseline, denoted
by CP. For CP, we labeled tweets containing at
least one entry in uncertainty cue-phrase list (de-
scribed in Section 3) as uncertain. All the other
approaches are supervised methods using SVM
based on different feature sets. n-gram stands for
n-gram feature set, C means content-based feature
set, U denotes user-based feature set, T represents

*Proposition expresses plans, intentions or desires.



Category Subtype Cue Phrase Example
Epistemic Possible, etc.  may, etc. It may be raining.
; Probable likely, etc. It is probably raining.

Condition if, etc. If it rains, we’ll stay in.

Hypothetical Doxastic believe, etc. He believes that the Earth is flat.

yP Dynamic hope, etc. fake picture of the london eye on fire... i hope

External someone said, etc.  Someone said that London zoo was attacked.
Question seriously?, etc. Birmingham riots are moving to the children hospital?! seriously?

Table 1: Classification of uncertainty in social media context

Category Name Description
Length Length of the tweet
Content-based CueJ’hra§e th:ther the tweet contains a uncertainty cue
OOV _Ratio Ratio of words out of vocabulary
URL Whether the tweet contains a URL
URL_Count Frequency of URLSs in corpus
Twitter-specific Retweet_Count ~ How many times has thi§ tweet been retweeted
Hashtag Whether the tweet contains a hashtag
Hashtag_Count ~ Number of Hashtag in tweets
Reply Is the current tweet a reply tweet
Rtweet Is the current tweet a retweet tweet
Follower_Count ~ Number of follower the user owns
List_Count Number of list the users owns

Friend_Count

Number of friends the user owns

User-based Favorites_Count ~ Number of favorites the user owns
Tweet_Count Number of tweets the user published
Verified Whether the user is verified
Table 3: Feature list for uncertainty classification
Approach Precision Recall F-1 Type Poss. Prob. D.&D. Cond. Que. Ext.
CpP 0.3732 0.9589 0.5373 Total# 16 129 69 71 488 208
SVM,—gram 0.7278 0.8259 0.7737 Error# 11 20 18 11 84 40
SVM,.—gram+c 0.8010 0.8260 0.8133 % 069 0.16 0.26 0.15 0.17 023
SVMy,—gram 0.7708 0.8271  0.7979 e -
SVMn—zramiZ 0.7578 0.8266 0.7907 Table 5: Error distributions
SVM,, _gram+ALL 0.8162 0.8269 0.8215
SVM,,_gram+Cue_Phrase  0.7989 0.8266 08125
SVMy,—gram+Length 0.7372 0.8216  0.7715  in Table 4.2. Our method performs worst on the
SVM,, _gram+00V _Ratio  0.7414 0.8233  0.7802

Table 4: Result of uncertainty tweets identification

Twitter-specific feature set and ALL is the combi-
nation of C, U and T.

Table 4.1 shows that CP achieves the best recall
but its precision is the lowest. The learning based
methods with different feature sets give some sim-
ilar recalls. Compared to CP, SVM,,_4rqm in-
creases the F-1 score by 43.9% due to the salient
improvement on precision and small drop of re-
call. The performance improves in terms of pre-
cision and F-1 score when the feature set is ex-
panded by adding C, U or T onto n-gram, where
+C brings the highest gain, and SVM,,_ yam+ALL
performs best in terms of precision and F-1 score.
We then study the effectiveness of the three
content-based features, and result shows that the
presence of uncertain cue-phrase is most indica-
tive for uncertainty tweet identification.

4.2 Error analysis

We analyze the prediction errors based on
SVM,,_gram+arr- The distribution of errors in
terms of different types of uncertainty is shown
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type of Possible and on the combination of Dy-
namic and Doxastic because these two types have
the least number of samples in the corpus and the
classifier tends to be undertrained without enough
samples.

5 Conclusion and future work

In this paper, we propose a variant of classification
scheme for uncertainty identification in social me-
dia and construct the first uncertainty corpus based
on tweets. We perform uncertainty identification
experiments on the generated dataset to explore
the effectiveness of different types of features. Re-
sult shows that the three categories of social media
specific features can improve uncertainty identifi-
cation. Furthermore, content-based features bring
the highest improvement among the three and the
presence of uncertain cue-phrase contributes most
for content-based features.

In future, we will explore to use uncertainty
identification for social media applications.
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Abstract

We introduce PARMA, a system for cross-
document, semantic predicate and argu-
ment alignment. Our system combines a
number of linguistic resources familiar to
researchers in areas such as recognizing
textual entailment and question answering,
integrating them into a simple discrimina-
tive model. PARMA achieves state of the
art results on an existing and a new dataset.
We suggest that previous efforts have fo-
cussed on data that is biased and too easy,
and we provide a more difficult dataset
based on translation data with a low base-
line which we beat by 17% F1.

1 Introduction

A key step of the information extraction pipeline
is entity disambiguation, in which discovered en-
tities across many sentences and documents must
be organized to represent real world entities. The
NLP community has a long history of entity dis-
ambiguation both within and across documents.
While most information extraction work focuses
on entities and noun phrases, there have been a
few attempts at predicate, or event, disambigua-
tion. Commonly a situational predicate is taken to
correspond to either an event or a state, lexically
realized in verbs such as “elect” or nominaliza-
tions such as “election”. Similar to entity coref-
erence resolution, almost all of this work assumes
unanchored mentions: predicate argument tuples
are grouped together based on coreferent events.
The first work on event coreference dates back to
Bagga and Baldwin (1999). More recently, this
task has been considered by Bejan and Harabagiu
(2010) and Lee et al. (2012). As with unanchored
entity disambiguation, these methods rely on clus-
tering methods and evaluation metrics.

Another view of predicate disambiguation seeks
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to link or align predicate argument tuples to an ex-
isting anchored resource containing references to
events or actions, similar to anchored entity dis-
ambiguation (entity linking) (Dredze et al., 2010;
Han and Sun, 2011). The most relevant, and per-
haps only, work in this area is that of Roth and
Frank (2012) who linked predicates across docu-
ment pairs, measuring the F1 of aligned pairs.
Here we present PARMA, a new system for pred-
icate argument alignment. As opposed to Roth and
Frank, PARMA is designed as a a trainable plat-
form for the incorporation of the sort of lexical se-
mantic resources used in the related areas of Rec-
ognizing Textual Entailment (RTE) and Question
Answering (QA). We demonstrate the effective-
ness of this approach by achieving state of the art
performance on the data of Roth and Frank despite
having little relevant training data. We then show
that while the “lemma match” heuristic provides a
strong baseline on this data, this appears to be an
artifact of their data creation process (which was
heavily reliant on word overlap). In response, we
evaluate on a new and more challenging dataset for
predicate argument alignment derived from multi-
ple translation data. We release PARMA as a new
framework for the incorporation and evaluation of
new resources for predicate argument alignment.!

2 PARMA

PARMA (Predicate ARguMent Aligner) is a
pipelined system with a wide variety of features
used to align predicates and arguments in two doc-
uments. Predicates are represented as mention
spans and arguments are represented as corefer-
ence chains (sets of mention spans) provided by
in-document coreference resolution systems such
as included in the Stanford NLP toolkit. Results
indicated that the chains are of sufficient quality
so as not to limit performance, though future work

"https://github.com/hltcoe/parma
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RF

e Australian [police]; have [arrested]2 a man in the western city of Perth over an alleged [plot]s to [bomb]y Israeli diplomatic
[buildings]s in the country , police and the suspect s [lawyer]g [said]7

e Federal [police]; have [arrested]> a man over an [alleged]s [plan]s to [bomb], Israeli diplomatic [posts]s in Australia , the
suspect s [attorney]e [said]7 Tuesday

LDC MTC

o As I [walked]; to the [veranda]s side , I [saw]» that a [tent]s is being decorated for [Mahfil-e-Naat]4 -LRB- A [get-together]s
in which the poetic lines in praise of Prophet Mohammad are recited -RRB-

o [ [came]; towards the [balcony]> , and while walking over there I [saw]» that a [camp]3 was set up outside for the [Naatia]4
[meeting]s .

Figure 1: Example of gold-standard alignment pairs from Roth and Frank’s data set and our data set
created from the LDC’s Multiple Translation Corpora. The RF data set exhibits high lexical overlap,
where most of the alignments are between identical words like police-police and said-said. The LDC
MTC was constructed to increase lexical diversity, leading to more challenging alignments like veranda-
balcony and tent-camp

may relax this assumption. to high-recall. Each feature has access to the pro-
We refer to a predicate or an argument as an  posed argument or predicate spans to be linked and
“item” with type predicate or argument. An align-  the containing sentences as context. While we use
ment between two documents is a subset of all ~ supervised learning, some of the existing datasets
pairs of items in either documents with the same  for this task are very small. For extra training data,
type.>2 We call the two documents being aligned ~ we pool material from different datasets and use
the source document S and the target document  the multi-domain split feature space approach to
T'. Items are referred to by their index, and a; jisa  learn dataset specific behaviors (Daumé, 2007).
binary variable representing an alignment between Features in general are defined over mention
item 7 in S and item j in T'. A full alignment is an  spans or head tokens, but we split these features
assignment @ = {a;; : ¢ € Ng,j € Np}, where  to create separate feature-spaces for predicates and
Ng and N7 are the set of item indices for S and T’ arguments.3
respectively. For argument coref chains we heuristically
We train a logistic regression model on exam-  choose a canonical mention to represent each
ple alignmentsand maximize the likelihood of a  chain, and some features only look at this canon-
document alignment under the assumption that the ~ ical mention. The canonical mention is cho-
item alignments are independent. Our objective  sen based on length,* information about the head
is to maximize the log-likelihood of all p(S,T') word,> and position in the document.® In most
with an L1 regularizer (with parameter \). After  cases, coref chains that are longer than one are
learning model parameters w by regularized max-  proper nouns and the canonical mention is the first
imum likelihood on training data, we introducing ~ and longest mention (outranking pronominal ref-
a threshold 7 on alignment probabilities to get a  erences and other name shortenings).
classifier. We perform line search on 7 and choose =~ PPDB  We use lexical features from the Para-
the value that maximizes F1 on dev data. Train- phrase Database (PPDB) (Ganitkevitch et al.,
ing was done using the Mallet toolkit (McCallum,  2013). PPDB is a large set of paraphrases ex-

2002). tracted from bilingual corpora using pivoting tech-
niques. We make use of the English lexical portion
2.1 Features which contains over 7 million rules for rewriting

terms like “planet” and “earth”. PPDB offers a
variety of conditional probabilities for each (syn-
chronous context free grammar) rule, which we

The focus of PARMA is the integration of a diverse
range of features based on existing lexical seman-
tic resources. We built PARMA on a supervised
framework to take advantage of this wide variety 3While conceptually cleaner, In practice we found this
of features since they can describe many different  SPlitting to have no impact on performance.

4. . . .
. . in tokens, not counting some words like determiners and
correlated aspects of generation. The following | .. ary verbs &

features cover the spectrum from high-precision Slike its part of speech tag and whether the it was tagged
as a named entity
Note that type is not the same thing as part of speech: we ®mentions that appear earlier in the document and earlier
allow nominal predicates like “death”. in a given sentence are given preference
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treat as independent experts. For each of these rule
probabilities (experts), we find all rules that match
the head tokens of a given alignment and have a
feature for the max and harmonic mean of the log
probabilities of the resulting rule set.

FrameNet FrameNet is a lexical database based
on Charles Fillmore’s Frame Semantics (Fill-
more, 1976; Baker et al.,, 1998). The database
(and the theory) is organized around seman-
tic frames that can be thought of as descrip-
tions of events. Frames crucially include spec-
ification of the participants, or Frame Elements,
in the event. The Destroying frame, for in-
stance, includes frame elements Destroyer or
Cause Undergoer. Frames are related to other
frames through inheritance and perspectivization.
For instance the frames Commerce_buy and
Commerce_sell (with respective lexical real-
izations “buy” and “sell””) are both perspectives of
Commerce_goods—transfer (no lexical re-
alizations) which inherits from Transfer (with
lexical realization “transfer”).

We compute a shortest path between headwords
given edges (hypernym, hyponym, perspectivized
parent and child) in FrameNet and bucket by dis-
tance to get features. We also have a binary feature
for whether two tokens evoke the same frame.

TED Alignments Given two predicates or argu-
ments in two sentences, we attempt to align the
two sentences they appear in using a Tree Edit
Distance (TED) model that aligns two dependency
trees, based on the work described by (Yao et al.,
2013). We represent a node in a dependency tree
with three fields: lemma, POS tag and the type
of dependency relation to the node’s parent. The
TED model aligns one tree with the other using
the dynamic programming algorithm of Zhang and
Shasha (1989) with three predefined edits: dele-
tion, insertion and substitution, seeking a solution
yielding the minimum edit cost. Once we have
built a tree alignment, we extract features for 1)
whether the heads of the two phrases are aligned
and 2) the count of how many tokens are aligned
in both trees.

WordNet WordNet (Miller, 1995) is a database
of information (synonyms, hypernyms, etc.) per-
taining to words and short phrases. For each entry,
WordNet provides a set of synonyms, hypernyms,
etc. Given two spans, we use WordNet to deter-
mine semantic similarity by measuring how many
synonym (or other) edges are needed to link two
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terms. Similar words will have a short distance.
For features, we find the shortest path linking the
head words of two mentions using synonym, hy-
pernym, hyponym, meronym, and holonym edges
and bucket the length.

String Transducer To represent similarity be-
tween arguments that are names, we use a stochas-
tic edit distance model. This stochastic string-to-
string transducer has latent “edit” and “no edit”
regions where the latent regions allow the model
to assign high probability to contiguous regions of
edits (or no edits), which are typical between vari-
ations of person names. In an edit region, param-
eters govern the relative probability of insertion,
deletion, substitution, and copy operations. We
use the transducer model of Andrews et al. (2012).
Since in-domain name pairs were not available, we
picked 10,000 entities at random from Wikipedia
to estimate the transducer parameters. The entity
labels were used as weak supervision during EM,
as in Andrews et al. (2012).

For a pair of mention spans, we compute the
conditional log-likelihood of the two mentions go-
ing both ways, take the max, and then bucket to get
binary features. We duplicate these features with
copies that only fire if both mentions are tagged as
PER, ORG or LOC.

3 Evaluation

We consider three datasets for evaluating PARMA.
For richer annotations that include lemmatiza-
tions, part of speech, NER, and in-doc corefer-
ence, we pre-processed each of the datasets using
tools’ similar to those used to create the Annotated
Gigaword corpus (Napoles et al., 2012).
Extended Event Coreference Bank Based on
the dataset of Bejan and Harabagiu (2010), Lee et
al. (2012) introduced the Extended Event Coref-
erence Bank (EECB) to evaluate cross-document
event coreference. EECB provides document clus-
ters, within which entities and events may corefer.
Our task is different from Lee et al. but we can
modify the corpus setup to support our task. To
produce source and target document pairs, we se-
lect the first document within every cluster as the
source and each of the remaining documents as
target documents (i.e. N — 1 pairs for a cluster
of size V). This yielded 437 document pairs.
Roth and Frank The only existing dataset for
our task is from Roth and Frank (2012) (RF), who

"https://github.com/cnap/anno-pipeline



annotated documents from the English Gigaword
Fifth Edition corpus (Parker et al., 2011). The data
was generated by clustering similar news stories
from Gigaword using TF-IDF cosine similarity of
their headlines. This corpus is small, containing
only 10 document pairs in the development set and
60 in the test set. To increase the training size,
we train PARMA with 150 randomly selected doc-
ument pairs from both EECB and MTC, and the
entire dev set from Roth and Frank using multi-
domain feature splitting. We tuned the threshold
7 on the Roth and Frank dev set, but choose the
regularizer A based on a grid search on a 5-fold
version of the EECB dataset.

Multiple Translation Corpora We constructed
a new predicate argument alignment dataset
based on the LDC Multiple Translation Corpora
(MTC),? which consist of multiple English trans-
lations for foreign news articles. Since these mul-
tiple translations are semantically equivalent, they
provide a good resource for aligned predicate ar-
gument pairs. However, finding good pairs is a
challenge: we want pairs with significant overlap
so that they have predicates and arguments that
align, but not documents that are trivial rewrites
of each other. Roth and Frank selected document
pairs based on clustering, meaning that the pairs
had high lexical overlap, often resulting in mini-
mal rewrites of each other. As a result, despite ig-
noring all context, their baseline method (lemma-
alignment) worked quite well.

To create a more challenging dataset, we se-
lected document pairs from the multiple transla-
tions that minimize the lexical overlap (in En-
glish). Because these are translations, we know
that there are equivalent predicates and arguments
in each pair, and that any lexical variation pre-
serves meaning. Therefore, we can select pairs
with minimal lexical overlap in order to create
a system that truly stresses lexically-based align-
ment systems.

Each document pair has a correspondence be-
tween sentences, and we run GIZA++ on these
sentences to produce token-level alignments. We
take all aligned nouns as arguments and all aligned
verbs (excluding be-verbs, light verbs, and report-
ing verbs) as predicates. We then add negative ex-
amples by randomly substituting half of the sen-
tences in one document with sentences from an-

SLDC2010T10, LDC2010T11, LDC2010T12,

LDC2010T14, LDC2010T17, LDC2010T23, LDC2002TO01,
LDC2003T18, and LDC2005T05
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Performance vs Lexical Overlap

F1

Doc-pair Cosine Similarity

Figure 2: We plotted the PARMA’s performance on
each of the document pairs. Red squares show the
F1 for individual document pairs drawn from Roth
and Frank’s data set, and black circles show F1 for
our Multiple Translation Corpora test set. The x-
axis represents the cosine similarity between the
document pairs. On the RF data set, performance
is correlated with lexical similarity. On our more
lexically diverse set, this is not the case. This
could be due to the fact that some of the docu-
ments in the RF sets are minor re-writes of the
same newswire story, making them easy to align.

other corpus, guaranteed to be unrelated. The
amount of substitutions we perform can vary the
“relatedness” of the two documents in terms of
the predicates and arguments that they talk about.
This reflects our expectation of real world data,
where we do not expect perfect overlap in predi-
cates and arguments between a source and target
document, as you would in translation data.

Lastly, we prune any document pairs that have
more than 80 predicates or arguments or have a
Jaccard index on bags of lemmas greater than 0.5,
to give us a dataset of 328 document pairs.

Metric We use precision, recall, and F1. For the
RF dataset, we follow Roth and Frank (2012) and
Cohn et al. (2008) and evaluate on a version of F1
that considers SURE and POSSIBLE links, which
are available in the RF data. Given an alignment
to be scored A and a reference alignment B which
contains SURE and POSSIBLE links, B, and B, re-
spectively, precision and recall are:

_ |AN B,y
|A]

_|AN By

P _ 2 Psl
| Bs|

R ()



F1 P R
EECB | lemma 63.5 | 84.8 | 50.8
PARMA 74.3 | 80.5 | 69.0
RF lemma 483 | 40.3 | 60.3
Roth and Frank | 54.8 | 59.7 | 50.7
PARMA 57.6 | 524 | 64.0
MTC lemma 42.1 | 51.3 | 35.7
PARMA 59.2 | 734 | 49.6

Table 1: PARMA outperforms the baseline lemma
matching system on the three test sets, drawn from
the Extended Event Coreference Bank, Roth and
Frank’s data, and our set created from the Multiple
Translation Corpora. PARMA achieves a higher F1
and recall score than Roth and Frank’s reported
result.

and F1 as the harmonic mean of the two. Results
for EECB and MTC reflect 5-fold cross validation,
and RF uses the given dev/test split.

Lemma baseline Following Roth and Frank we
include a lemma baseline, in which two predicates
or arguments align if they have the same lemma.’

4 Results

On every dataset PARMA significantly improves
over the lemma baselines (Table 1). On REF,
compared to Roth and Frank, the best published
method for this task, we also improve, making
PARMA the state of the art system for this task.
Furthermore, we expect that the smallest improve-
ments over Roth and Frank would be on RF, since
there is little training data. We also note that com-
pared to Roth and Frank we obtain much higher
recall but lower precision.

We also observe that MTC was more challeng-
ing than the other datasets, with a lower lemma
baseline. Figure 2 shows the correlation between
document similarity and document F1 score for
RF and MTC. While for RF these two measures
are correlated, they are uncorrelated for MTC. Ad-
ditionally, there is more data in the MTC dataset
which has low cosine similarity than in RF.

5 Conclusion

PARMA achieves state of the art performance on
three datasets for predicate argument alignment.
It builds on the development of lexical semantic
resources and provides a platform for learning to
utilize these resources. Additionally, we show that

“We could not reproduce lemma from Roth and Frank
(shown in Table 1) due to a difference in lemmatizers. We ob-
tained 55.4; better than their system but worse than PARMA.
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task difficulty can be strongly tied to lexical simi-
larity if the evaluation dataset is not chosen care-
fully, and this provides an artificially high baseline
in previous work. PARMA is robust to drops in lex-
ical similarity and shows large improvements in
those cases. PARMA will serve as a useful bench-
mark in determining the value of more sophis-
ticated models of predicate-argument alignment,
which we aim to address in future work.

While our system is fully supervised, and thus
dependent on manually annotated examples, we
observed here that this requirement may be rela-
tively modest, especially for in-domain data.
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Aggregated Word Pair Features for Implicit Discourse Relation
Disambiguation
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Abstract

We present a reformulation of the word
pair features typically used for the task
of disambiguating implicit relations in the
Penn Discourse Treebank. Our word pair
features achieve significantly higher per-
formance than the previous formulation
when evaluated without additional fea-
tures. In addition, we present results
for a full system using additional features
which achieves close to state of the art per-
formance without resorting to gold syntac-
tic parses or to context outside the relation.

1 Introduction

Discourse relations such as contrast and causal-
ity are part of what makes a text coherent. Be-
ing able to automatically identify these relations
is important for many NLP tasks such as gener-
ation, question answering and textual entailment.
In some cases, discourse relations contain an ex-
plicit marker such as but or because which makes
it easy to identify the relation. Prior work (Pitler
and Nenkova, 2009) showed that where explicit
markers exist, the class of the relation can be dis-
ambiguated with f-scores higher than 90%.
Predicting the class of implicit discourse rela-
tions, however, is much more difficult. Without an
explicit marker to rely on, work on this task ini-
tially focused on using lexical cues in the form
of word pairs mined from large corpora where
they appear around an explicit marker (Marcu and
Echihabi, 2002). The intuition is that these pairs
will tend to represent semantic relationships which
are related to the discourse marker (for example,
word pairs often appearing around but may tend
to be antonyms). While this approach showed
some success and has been used extensively in
later work, it has been pointed out by multiple
authors that many of the most useful word pairs
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are pairs of very common functional words, which
contradicts the original intuition, and it is hard to
explain why these are useful.

In this work we focus on the task of identi-
fying and disambiguating implicit discourse rela-
tions which have no explicit marker. In particular,
we present a reformulation of the word pair fea-
tures that have most often been used for this task
in the past, replacing the sparse lexical features
with dense aggregated score features. This is the
main contribution of our paper. We show that our
formulation outperforms the original one while re-
quiring less features, and that using a stop list of
functional words does not significantly affect per-
formance, suggesting that these features indeed
represent semantically related content word pairs.

In addition, we present a system which com-
bines these word pairs with additional features to
achieve near state of the art performance without
the use of syntactic parse features and of context
outside the arguments of the relation. Previous
work has attributed much of the achieved perfor-
mance to these features, which are easy to get in
the experimental setting but would be less reliable
or unavailable in other applications.!

2 Related Work

This line of research began with (Marcu and Echi-
habi, 2002), who used a small number of unam-
biguous explicit markers and patterns involving
them, such as [Argl, but Arg2] to collect sets of
word pairs from a large corpus using the cross-
product of the words in Argl and Arg2. The au-
thors created a feature out of each pair and built a
naive bayes model directly from the unannotated
corpus, updating the priors and posteriors using
maximum likelihood. While they demonstrated

'Reliable syntactic parses are not always available in do-
mains other than newswire, and context (preceding relations,
especially explicit relations) is not always available in some
applications such as generation and question answering.
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some success, their experiments were run on data
that is unnatural in two ways. First, it is balanced.
Second, it is constructed with the same unsuper-
vised method they use to extract the word pairs -
by assuming that the patterns correspond to a par-
ticular relation and collecting the arguments from
an unannotated corpus. Even if the assumption is
correct, these arguments are really taken from ex-
plicit relations with their markers removed, which
as others have pointed out (Blair-Goldensohn et
al., 2007; Pitler et al., 2009) may not look like true
implicit relations.

More recently, implicit relation prediction has
been evaluated on annotated implicit relations
from the Penn Discourse Treebank (Prasad et al.,
2008). PDTB uses hierarchical relation types
which abstract over other theories of discourse
such as RST (Mann and Thompson, 1987) and
SDRT (Asher and Lascarides, 2003). It contains
40, 600 annotated relations from the WSJ corpus.
Each relation has two arguments, Argl and Arg2,
and the annotators decide whether it is explicit or
implicit.

The first to evaluate directly on PDTB in a re-
alistic setting were Pitler et al. (2009). They used
word pairs as well as additional features to train
four binary classifiers, each corresponding to one
of the high-level PDTB relation classes. Although
other features proved to be useful, word pairs were
still the major contributor to most of these clas-
sifiers. In fact, their best system for comparison
included only the word pair features, and for all
other classes other than expansion the word pair
features alone achieved an f-score within 2 points
of the best system. Interestingly, they found that
training the word pair features on PDTB itself was
more useful than training them on an external cor-
pus like Marcu and Echihabi (2002), although in
some cases they resort to information gain in the
external corpus for filtering the word pairs.

Zhou et al. (2010) used a similar method and
added features that explicitly try to predict the
implicit marker in the relation, increasing perfor-
mance. Most recently to the best of our knowl-
edge, Park and Cardie (2012) achieved the highest
performance by optimizing the feature set. An-
other work evaluating on PDTB is (Lin et al.,
2009), who are unique in evaluating on the more
fine-grained second-level relation classes.
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3 Word Pairs

3.1 The Problem: Sparsity

While Marcu and Echihabi (2002)’s approach of
training a classifier from an unannotated corpus
provides a relatively large amount of training data,
this data does not consist of true implicit relations.
However, the approach taken by Pitler et al. (2009)
and repeated in more recent work (training directly
on PDTB) is problematic as well: when training a
model with so many sparse features on a dataset
the size of PDTB (there are 22,141 non-explicit
relations overall), it is likely that many important
word pairs will not be seen in training.

In fact, even the larger corpus of Marcu and
Echihabi (2002) may not be quite large enough
to solve the sparsity issue, given that the num-
ber of word pairs is quadratic in the vocabulary.
Blair-Goldensohn et al. (2007) report that using
even a very small stop list (25 words) significantly
reduces performance, which is counter-intuitive.
They attribute this finding to the sparsity of the
feature space. An analysis in (Pitler et al., 2009)
also shows that the top word pairs (ranked by
information gain) all contain common functional
words, and are not at all the semantically-related
content words that were imagined. In the case
of some reportedly useful word pairs (the-and; in-
the; the-of...) it is hard to explain how they might
affect performance except through overfitting.

3.2 The Solution: Aggregation

Representing each word pair as a single feature has
the advantage of allowing the weights for each pair
to be learned directly from the data. While pow-
erful, this approach requires large amounts of data
to be effective.

Another possible approach is to aggregate some
of the pairs together and learn weights from the
data only for the aggregated sets of words. For this
approach to be effective, the pairs we choose to
group together should have similar meaning with
regard to predicting the relation.

Biran and Rambow (2011) is to our knowledge
the only other work utilizing a similar approach.
They used aggregated word pair set features to
predict whether or not a sentence is argumentative.
Their method is to group together word pairs that
have been collected around the same explicit dis-
course marker: for every discourse marker such
as therefore or however, they have a single fea-
ture whose value depends only on the word pairs



collected around that marker. This is reasonable
given the intuition that the marker pattern is unam-
biguous and points at a particular relation. Using
one feature per marker can be seen as analogous
(yet complementary) to Zhou et al. (2010)’s ap-
proach of trying to predict the implicit connective
by giving a score to each marker using a language
model.

This work uses binary features which only in-
dicate the appearance of one or more of the pairs.
The original frequencies of the word pairs are not
used anywhere. A more powerful approach is to
use an informed function to weight the word pairs
used inside each feature.

3.3 Our Approach

Our approach is similar in that we choose to ag-
gregate word pairs that were collected around the
same explicit marker. We first assembled a list of
all 102 discourse markers used in PDTB, in both
explicit and implicit relations.?

Next, we extract word pairs for each marker
from the Gigaword corpus by taking the cross
product of words that appear in a sentence around
that marker. This is a simpler approach than us-
ing patterns - for example, the marker because can
appear in two patterns: [Argl because Arg2] and
[because Argl, Arg2], and we only use the first.
We leave the task of listing the possible patterns
for each of the 102 markers to future work because
of the significant manual effort required. Mean-
while, we rely on the fact that we use a very large
corpus and hope that the simple pattern [Argl
marker Arg2] is enough to make our features use-
ful. There are, of course, markers for which this
pattern does not normally apply, such as by com-
parison or on one hand. We expect these features
to be down-weighted by the final classifier, as ex-
plained at the end of this section. When collect-
ing the pairs, we stem the words and discard pairs
which appear only once around the marker.

We can think of each discourse marker as hav-
ing a corresponding unordered “document”, where
each word pair is a term with an associated fre-
quency. We want to create a feature for each
marker such that for each data instance (that is,
for each potential relation in the PDTB data) the
value for the feature is the relevance of the marker
document to the data instance.

%in implicit relations, there is no marker in the text but the
implicit marker is provided by the human annotators
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Each data instance in PDTB consists of two ar-
guments, and can therefore also be represented
as a set of word pairs extracted from the cross-
product of the two arguments. To represent the rel-
evance of the instance to each marker, we set the
value of the marker feature to the cosine similarity
of the data instance and the marker’s “document”,
where each word pair is a dimension.

While the terms (i.e. word pairs) of the
data instance are weighted by simple occurence
count, we weight the terms in each marker’s
document with tf-idf, where tf is defined in

one of two ways: normalized term frequency
( count(t)
max{count(s,d

yscay) and pointwise mutual infor-

. count(t
mation (log T )*cngn w7 ), where wy and wo

are the member words of the pair. Idf is calculated
normally given that the set of all documents is de-
fined as the 102 marker documents.

We then train a binary classifier (logistic regres-
sion) using these 102 features for each of the four
high-level relations in PDTB: comparison, con-
tingency, expansion and temporal. To make sure
our results are comparable to previous work, we
treat EntRel relations as instances of expansion
and use sections 2-20 for training and sections 21-
22 for testing. We use a ten fold stratified cross-
validation of the training set for development. Ex-
plicit relations are excluded from all data sets.

As mentioned earlier, there are markers that do
not fit the simple pattern we use. In particular,
some markers always or often appear as the first
term of a sentence. For these, we expect the list of
word pairs to be empty or almost empty, since in
most sentences there are no words on the left (and
recall that we discard pairs that appear only once).
Since the features created for these markers will
be uninformative, we expect them to be weighted
down by the classifier and have no significant ef-
fect on prediction.

4 Evaluation of Word Pairs

For our main evaluation, we evaluate the perfor-
mance of word pair features when used with no
additional features. Results are shown in Table 1.
Our word pair features outperform the previous
formulation (represented by the results reported by
(Pitler et al., 2009), but used by virtually all previ-
ous work on this task). For most relation classes,
tf is significantly better than pmi. 3

3Significance was verified for our own results in all exper-
iments shown in this paper with a standard t-test



[ [ Comparison [ Contingency | Expansion [ Temporal
Pitler ct al., 2000 21.96 (56.59) | 45.6 (67.1) | 63.84 (60.28) | 16.21 (61.98)
tf-idf, no stop list__ || 23 (61.72) 44.03 (66.79) | 66.48 (60.93) | 19.54 (68.09)
pmi-idf, no stop list || 24.38 (61.72) | 38.96 (61.52) | 62.22 (57.26) | 16 (65.53)
tf-idf, with stop list 23.77 44 .33 65.33 16.98

Table 1: Main evaluation. F-measure (accuracy) for various implementations of the word pairs features

[ [[ Comparison [ Contingency [ Expansion | Temporal ]
Best System 25.4 (63.36) 46.94 (68.09) | 75.87 (62.84) | 20.23 (68.35)
features used pmi+1,2,3,6 tf+ALL tf+8 tf+3,9
Pitler et al., 2009 21.96 (56.59) | 47.13 (67.3) 76.42 (63.62) | 16.76 (63.49)
Zhou et al., 2010 31.79 (58.22) | 47.16 (48.96) | 70.11 (54.54) | 20.3 (55.48)
Park and Cardie, 2012 || 31.32 (74.66) | 49.82 (72.09) | 79.22 (69.14) | 26.57 (79.32)

Table 2: Secondary evaluation. F-measure (accuracy) for the best systems. #f and pmi refer to the word
pair features used (by tf implementation), and the numbers refer to the indeces of Table 3

Comp. [ Cont. [ Exp. [ Temp. |

1 | WordNet 20.07 34.07 | 52.96 | 11.58
2 | VerbClass || 14.24 | 24.84 | 49.6 10.04
3 | MPN 23.84 | 38.58 | 49.97 | 13.16
4 | Modality 17.49 28.92 | 13.84 | 10.72
5 | Polarity 1646 | 26.36 | 65.15 | 11.58
6 | Affect 18.62 | 31.59 | 59.8 13.37
7 | Similarity 20.68 345 43.16 | 12.1

8 | Negation 8.28 2247 | 75.87 | 11.1

9 | Length 20.75 31.28 | 65.72 | 10.19

Table 3: F-measure for each feature category

We also show results using a stop list of 50 com-
mon functional words. The stop list has only a
small effect on performance except in the tempo-
ral class. This may be because of functional words
like was and will which have a temporal effect.

5 Other Features

For our secondary evaluation, we include addi-
tional features to complement the word pairs. Pre-
vious work has relied on features based on the gold
parse trees of the Penn Treebank (which overlaps
with PDTB) and on contextual information from
relations preceding the one being disambiguated.
We intentionally limit ourselves to features that do
not require either so that our system can be readily
used on arbitrary argument pairs.

WordNet Features: We define four features
based on WordNet (Fellbaum, 1998) - Synonyms,
Antonyms, Hypernyms and Hyponyms. The values
are the counts of word pairs in the cross-product of
the words in the arguments that have the particular
relation (synonymy, antonymy etc) between them.
Verb Class: This is the count of pairs of verbs
from Argl and Arg2 that share the same class, de-
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fined as the highest level Levin verb class (Levin,
1993) from the LCS database (Dorr, 2001).
Money, Percentages and Numbers (MPN): The
counts of currency symbols/abbreviations, per-
centage signs or cues (“percent”’, “BPS”...) and
numbers in each argument.

Modality: Presence or absence of each English
modal in each argument.

Polarity: Based on MPQA (Wilson et al., 2005).
We include the counts of positive and negative
words according to the MPQA subjectivity lexicon
for both arguments. Unlike Pitler et al. (2009), we
do not use neutral polarity features. We also do not
explicitly group negation with polarity (although
we do have separate negation features).

Affect: Based on the Dictionary of Affect in Lan-
guage (Whissell, 1989). Each word in the DAL
gets a score for three dimensions - pleasantness
(pleasant - unpleasant), activation (passive - ac-
tive) and imagery (hard to imagine - easy to imag-
ine). We use the average score for each dimension
in each argument as a feature.

Content Similarity: We use the cosine similarity
and word overlap of the arguments as features.
Negation: Presence or absence of negation terms
in each of the arguments.

Length: The ratio between the lengths (counts of
words) of the arguments.

6 Evaluation of Additional Features

For our secondary evaluation, we present results
for each feature category on its own in Table 3 and
for our best system for each of the relation classes
in Table 2. We show results for the best systems
from (Pitler et al., 2009), (Zhou et al., 2010) and



(Park and Cardie, 2012) for comparison.

7 Conclusion

We presented an aggregated approach to word pair
features and showed that it outperforms the previ-
ous formulation for all relation types but contin-
gency. This is our main contribution. With this
approach, using a stop list does not have a major
effect on results for most relation classes, which
suggests most of the word pairs affecting perfor-
mance are content word pairs which may truly be
semantically related to the discourse structure.

In addition, we introduced the new and useful
WordNet, Affect, Length and Negation feature cat-
egories. Our final system outperformed the best
system from Pitler et al. (2009), who used mostly
similar features, for comparison and temporal and
is competitive with the most recent state of the
art systems for contingency and expansion with-
out using any syntactic or context features.
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Abstract

Conversational implicatures involve rea-
soning about multiply nested belief struc-
tures. This complexity poses significant
challenges for computational models of
conversation and cognition. We show that
agents in the multi-agent Decentralized-
POMDP reach implicature-rich interpreta-
tions simply as a by-product of the way
they reason about each other to maxi-
mize joint utility. Our simulations involve
a reference game of the sort studied in
psychology and linguistics as well as a
dynamic, interactional scenario involving
implemented artificial agents.

1 Introduction

Gricean conversational implicatures (Grice, 1975)
are inferences that listeners make in order to
reconcile the speaker’s linguistic behavior with
the assumption that the speaker is cooperative.
As Grice conceived of them, implicatures cru-
cially involve reasoning about multiply-nested be-
lief structures: roughly, for p to count as an impli-
cature, the speaker must believe that the listener
will infer that the speaker believes p. This com-
plexity makes implicatures an important testing
ground for models of conversation and cognition.

Implicatures have received considerable atten-
tion in the context of simple reference games in
which the listener uses the speaker’s utterance
to try to identify the speaker’s intended referent
(Rosenberg and Cohen, 1964; Clark and Wilkes-
Gibbs, 1986; Dale and Reiter, 1995; DeVault and
Stone, 2007; Krahmer and van Deemter, 2012).
Many implicature patterns can be embedded in
these games using specific combinations of poten-
tial referents and message sets. The paradigm has
proven fruitful not only for evaluating computa-
tional models (Golland et al., 2010; Degen and

74

Franke, 2012; Frank and Goodman, 2012; Rohde
etal., 2012; Bergen et al., 2012) but also for study-
ing children’s pragmatic abilities without implic-
itly assuming they have mastered challenging lin-
guistic structures (Stiller et al., 2011).

In this paper, we extend these results beyond
simple reference games to full decision-problems
in which the agents reason about language and ac-
tion together over time. To do this, we use the De-
centralized Partially Observable Markov Decision
Process (Dec-POMDP) to implement agents that
are capable of manipulating the multiply-nested
belief structures required for implicature calcula-
tion. Optimal decision making in Dec-POMDPs
is NEXP complete, so we employ the single-agent
POMDP approximation of Vogel et al. (2013).
We show that agents in the Dec-POMDP reach
implicature-rich interpretations simply as a by-
product of the way they reason about each other
to maximize joint utility. Our simulations involve
areference game and a dynamic, interactional sce-
nario involving implemented artificial agents.

2 Decision-Theoretic Communication

The Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) (Bernstein et
al., 2002) is a multi-agent generalization of the
POMDP, where agents act to maximize a shared
utility function. Formally, a Dec-POMDP con-
sists of a tuple (S,A4,0,R,T,Q,by,7y). Sis a
finite set of states, A is the set of actions, O is
the set of observations, and T'(s'|a1, ag, s) is the
transition distribution which determines what ef-
fect the joint action (a1, az) has on the state of the
world. The true state s € .S is not observable to
the agents, who must utilize observations o € O,
which are emitted after each action according to
the observation distribution (01, 02|s’,a). The
reward function R(s, a1, as) represents the goal of
the agents, who act to maximize expected reward.
Lastly, by € A(S) is the initial belief state and
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v € [0, 1) is the discount factor.

The true state of the world s € S is not ob-
servable to either agent. In single-agent POMDPs,
agents maintain a belief state b(s) € A(S), which
is a distribution over states. Agents acting in Dec-
POMDPs must take into account not only their
beliefs about the state of the world, but also the
beliefs of their partners, leading to nested belief
states. In the model presented here, our agent
models the other agent’s beliefs about the state of
the world, and assumes that the other agent does
not take into account our own beliefs, a common
approach (Gmytrasiewicz and Doshi, 2005).

Agents make decisions according to
a policy m; A(S) — A which max-
imizes the discounted expected reward
S0V EIR(s", af ab)[bo, 71, o). Using
the assumption that the other agent tracks one less
level of belief, we can solve for the other agent’s
policy 7, which allows us to estimate his actions
and beliefs over time. To construct policies,
we use Perseus (Spaan and Vlassis, 2005), a
point-based value iteration algorithm.

Even tracking just one level of nested beliefs
quickly leads to a combinatorial explosion in the
number of belief states the other agent might have.
This causes decision making in Dec-POMDPs to
be NEXP complete, limiting their application to
problems with only a handful of states (Bernstein
et al., 2002). To ameliorate this difficulty, we
use the method of Vogel et al. (2013), which cre-
ates a single-agent approximation to the full Dec-
POMDP. To form this single-agent POMDP, we
augment the state space to be S x S, where the
second set of state variables allows us to model
the other agent’s beliefs. We maintain a point
estimate b of the other agent’s beliefs, which
is formed by summing out observations O that
the other player might have received. To ac-
complish this, we factor the transition distribu-
tion into two terms: T'((s',§)|a, 7(3), (s,5))
T(5's',a,7(5),(s,5))T(s'|a,7(5),(s,5)). This
observation marginalization can be folded into the
transition distribution 7'(5'|s’, a, 7(3), (s, 5)):

T(5' s, a,7(5),(s,5)) =Pr(5|s,a,7(5),(s,5))
B (0|5, a,7(5))T(5|a,7(5),5)
(s

),
s $(0]5", a, 7 (5)) T (5" |a, 7 (5),
x Q(ols, a,7‘r(§))>

5)
(1)

Communication is treated as another type of ob-
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servation, with messages coming from a finite set
M. Each message m € M has the semantics
Pr(s|m), which represents the probability that the
world is in state s € S given that m is true. Mes-
sages m received from a partner are combined
with perceptual observations o € O, to form a
joint observation (m, o).

A literal listener, denoted L, interprets mes-
sages according to this semantics, without taking
into account the beliefs of the speaker. L assumes
that the perceptual observations and messages are
conditionally independent given the state of the
world. Using Bayes’ rule, the literal listener’s joint
observation/message distribution is

Pr((o,m)l|s,s’,a) = Q(o|s’, a) Pr(m]s)
Pr(s|m) Pr(m)
> mren Pris|m’) Pr(m’)

The Pr(m) prior over messages can be estimated
from corpus data, but we use a uniform prior for
simplicity.

A literal speaker, denoted S, produces mes-
sages according to the most descriptive term:

= Q(o|s',a) 2)

3)

7ws(s) = arg max p(s|m).
meM
The literal speaker does not model the beliefs of
the listener.

To interpret implicatures, a level-one lis-
tener, denoted L(S), models the beliefs a literal
speaker must have had to produce an utterance:
Pr(m|s) = 1[7s(s) = m], where 7g is the level-
one listener’s estimate of the speaker’s policy. In
this setting, we denote the level-one listener’s es-
timate of the speaker’s belief as 5, yielding the be-
lief update equation

Pr((0,m)|(s,5), (s, 5), a,75(5))
Q(o|s’,a)1[7s(5)

4

m]

The literal semantics of messages is not explicitly
included in the level-one listener’s belief update.
Instead, when he solves for the literal speaker’s
policy g, the meaning of a message is the set of
beliefs that would lead the literal speaker to pro-
duce the utterance.

A level-one speaker, S(L), produces utterances
to influence a literal listener, and a level-two lis-
tener, L(S(L)), uses two levels of belief nesting to
interpret utterances as the beliefs that a level-one
speaker might have to produce that utterance. At
each level of nesting, we apply the marginalized



1 2 3
(a) Scenario.
Message 1 ) T3
moustache % % 0
glasses 0 % %
hat 0 0 1
(b) Literal interpretations.
Message 1 T9 T3
moustache 1 0 0
glasses 0 1 0
hat 0 0 1

(c) Implicature-rich interpretations.

Figure 1: A simple reference game. The matrices
give distributions Pr(¢ = r;|utterance)

belief-state approach of (Vogel et al., 2013), aug-
menting the state space with another copy of the
underlying world state space, where the new copy
represents the next level of belief. For instance, the
L(S(L)) agent will make decisions in the S x S x S
space. For an L(S(L)) state (s, 5, §), s is the true
state of the world, s is the speaker’s belief of the
state of the world, and $ is the speaker’s belief of
the listener’s beliefs. In the next two sections we
show how a level-one and level-two listener infer
implicatures.

3 Reference Game Implicatures

Fig. 1a is the scenario for a reference game of the
sort pioneered by Rosenberg and Cohen (1964)
and Dale and Reiter (1995). The potential refer-
ents are ry, 2, and r3. Speakers use a restricted
vocabulary consisting of three messages: ‘mous-
tache’, ‘glasses’, and ‘hat’. The speaker is as-
signed a referent r; (hidden from the listener) and
produces a message on that basis. The speaker and
listener share the goal of having the listener iden-
tify the speaker’s intended referent r;.

Fig. 1b depicts the literal interpretations for
this game. It looks like the listener’s chances
of success are low. Only ‘hat’ refers unambigu-

76

ously. However, the language and scenario fa-
cilitate scalar implicature (Horn, 1972; Harnish,
1979; Gazdar, 1979). Briefly, the scalar implica-
ture pattern is that a speaker who is knowledgeable
about the relevant domain will choose a commu-
nicatively weak utterance U over a communica-
tively stronger utterance U’ iff U’ is false (assum-
ing U and U’ are relevant). The required sense of
communicative strength encompasses logical en-
tailments as well as more particularized pragmatic
partial orders (Hirschberg, 1985).

In our scenario, ‘hat’ is stronger than ‘glasses’:
the referents wearing a hat are a proper subset
of those wearing glasses. Thus, given the play-
ers’ goal, if the speaker says ‘glasses’, the lis-
tener should draw the scalar implicature that ‘hat’
is false. Thus, ‘glasses’ comes to unambiguously
refer to ro (Fig. lc, line 2). Similarly, though
‘moustache’ and ‘glasses’ do not literally stand in
the specific—general relationship needed for scalar
implicature, they do with ‘glasses’ pragmatically
associated with r, (Fig. Ic, line 1).

Our implementation of these games as Dec-
POMDPs mirrors their intuitive description and
their treatment in iterated best response models
(Jager, 2007; Jiager, 2012; Franke, 2009; Frank
and Goodman, 2012). The state space .S encodes
the attributes of the referents (e.g., hat(rz) = T,
glasses(r;) = F) and includes a target variable ¢
identifying the speaker’s referent (hidden from the
listener). The speaker has three speech actions,
identified with the three messages. The listener
has four actions: ‘listen’ plus a ‘choose’ action c;
for each referent r;. The set of observations O is
just the set of messages (construed as utterances).
The agents receive a positive reward iff the listener
action c; corresponds to the speaker’s target ¢. Be-
cause this is a one-step reference game, the transi-
tion distribution 7' is the identity distribution.

The literal listener L interprets utterances as
a truth-conditional speaker would produce them
(Fig. 1b). The level-one speaker S(L) augments
the state space with a variable ‘listener_target’ and
models L’s beliefs b using the approximate meth-
ods of Sec. 2. Crucially, the optimal speaker pol-
icy TS(L) is such that WS(L)(t:?”g) ‘hat’ and
msw)(t=r1) ‘moustache’. The level-two lis-
tener L(S(L)) models S(L) via an estimate of the
‘listener_target’ variable. For each speech action
m, L(S(L)) considers all values of ¢ and the likeli-



hood that S(L) would have produced m:
Pr(t:ri\m) X ]l[ﬁ's(L)(t:?”i) = m]

Since S(L) uses ‘hat’” to describe r3 and
‘moustache’ to describe r1, L(S(L)) correctly in-
fers that ‘glasses’ refers to 3, completing Fig. 1¢’s
full implicature-rich pattern of mutual exclusivity
(Clark, 1987; Frank et al., 2009).

This basic pattern is robustly attested empiri-
cally in human data. The experimental data are,
of course, invariably less crisp than our idealized
model predicts, but many important sources of
variation could be brought into our model, with
the addition of strong salience priors (Frank and
Goodman, 2012; Stiller et al., 2011), assumptions
about bounded rationality (Camerer et al., 2004;
Franke, 2009), and a ‘soft-max’ view of the lis-
tener (Frank et al., 2009).

4 Cards World Implicatures

The Cards corpus' contains 1266 metadata-rich
transcripts from a two-player chat-based game.
The world is a simple maze in which a deck of
cards has been distributed. The players’ goal is to
find specific subsets of the cards, subject to a vari-
ety of constraints on what they can see and do. The
Dec-POMDP-based agents of Vogel et al. (2013)
play a simplified version in which the goal is to be
co-located with a single card. Vogel et al. show
that their agents’ linguistic behavior is broadly
Gricean. However, their agents’ language is too
simple to reveal implicatures. The present section
remedies this shortcoming. Implicature-rich inter-
pretations are an immediate consequence.

We implement the simplified Cards tasks as fol-
lows. The state space S is composed of the loca-
tion of each player and the location of the card.
The transition distribution 7°(s'|s, a1, a2) encodes
the outcome of movement actions. Agents receive
one of two sensor observations, indicating whether
the card is at their current location. The players are
rewarded when they are both located on the card.
Each player begins knowing his own location, but
not the location of the other player nor of the card.

The players have four movement actions (‘up’,
‘down’, ‘left’, ‘right’) and nine speech actions in-
terpreted as identifying card locations. Fig. 2 de-
picts these utterances as a partial order determined
by entailment. These general-to-specific relation-

1 .
http://cardscorpus.christopherpotts.net
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top right top left bottom right bottom left

top  right left middle

Figure 2: Cards world utterance actions.

bottom

top left (5.75) top (6.68) top right (5.57)
left (6.81) middle (7.16) right (6.86)
| e |
s (15
1
-

bottom left (6.11) bottom (6.37) bottom right (5.42)

[ - -

K
Figure 3: Literal interpretations derived from the
Cards corpus. The entropy of each distribution is
included in parentheses. Each term is estimated
from all tokens that contain it, which washes
out implicature-rich usage, thereby providing our
model with an empirically-grounded literal start.

ships show that the language can support scalar
conversational implicatures.?

Fig. 2 is not entirely appropriate in our setting,
however. Our expressions are vague; there is no
sharp boundary between, e.g., ‘top’ and ‘bottom’,
nor is it clear where ‘top right’ begins. To model
this vagueness, we analyze each message m as
denoting a conditional distribution Pr(z|m) over
grid squares x in the gameboard. These distribu-
tions are derived from human—human Cards inter-
actions using the data and methods of Potts (2012).
Of course, there is a tension here: our model as-
sumes that we begin with literal interpretations,
but human—human data will reflect pragmatically-
enriched usage. To get around this, we approxi-
mate literal interpretations by deriving each term’s
distribution from all the corpus tokens that con-
tain it. For example, the distribution for ‘top’ is

2Our agents cannot produce modified versions of ‘mid-
dle’ like ‘middle right’. These would be synonymous with
implicature-enriched general terms. We work with a simple
cost-function that treats all forms alike, but future versions of
this work will incorporate more realistic form-based costs.



top left (5.17) top (3.46) top right (5.04) top left (5.82) top (5.74) top right (5.49)
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left (3.91) middle (2.35) right (3.58) left (6.15) middle (6.14) right (6.57)
i
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bottom left (4.81) bottom (3.70) bottom right (5.04)

E F
Figure 4: Implicature-rich interpretations, derived
using the level-one listener L(S).

estimated not only from ‘top’ but also from ‘top
right’, ‘middle right’, and so forth. The denotation
for ‘top right’ excludes simple ‘top’ and ‘right’
utterances but includes expressions like ‘very top
right’. This semantics washes out any implicature
patterns, thereby giving us a proper literal starting
point. Fig. 3 shows these denotations for the full
set of expressions. The entailment relations from
Fig. 2 are (fuzzily) evident. For example, the areas
of high probability for ‘right’ properly contain the
areas of high probability for ‘top right’.

To show how the Dec-POMDP model delivers
implicatures, we begin with a literal speaker S
who does not consider the location of the other
player and instead searches the board until he finds
the card. After finding it, he communicates the re-
ferring expression with highest literal probability
for his location, using the distributions from Fig. 3.
We denote the literal speaker’s policy by ms. The
level-one listener L(S) tracks an estimate of S’s lo-
cation and beliefs about the card location. Using
the approximation defined in Sec. 2, L(S) inter-
prets an utterance m as Pr(m/|s) = 1[7s(s) = m].
Thus, the meaning of each m is the set of be-
liefs that S might have to produce this utterance.
Fig. 4 shows how L(S) interprets each message.
The meaning of general terms like ‘top’ and ‘right’
now exclude their modified counterparts. This
is evident in the lack of overlap between high-
probability areas and in the lower entropy values.

Direct evaluation of this result against the cor-
pus data is not possible, because the corpus does
not encode interpretations. However, we expect

1
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bottom left (5.29) bottom (5.43) bottom right (5.44)

. -
Figure 5: Distributions reflecting human speakers’
aggregate referential intentions . Each term is es-
timated only from tokens that exactly match it.

listener interpretations to align with speaker in-
tentions, and we can gain insight into (aggregate)
speaker intentions using our method for ground-
ing referential terms. Whereas the literal inter-
pretation for message m is obtained from all the
tokens that contain it (Fig. 3), the speaker’s in-
tended interpretation for m is obtained from all
of the tokens that exactly match it. For instance,
the meaning of ‘top’ now excludes tokens like ‘top
left’. Fig. 5 shows these denotations, which mirror
the distributions predicted by our model (Fig. 4).
Thus, the L(S) model correctly infers the prag-
matic meaning of referring expressions as used by
human speakers, albeit in an idealized manner.

5 Future Work

We showed that implicatures arise in cooperative
contexts from nested belief models. Our listener-
centric implicatures must be combined with ratio-
nal speaker behavior (Vogel et al., 2013) to pro-
duce general dialog agents. The computational
complexity of Dec-POMDPs is prohibitive, and
our approximations can be problematic for deep
belief nesting. Future work will explore sampling-
based approaches to belief update and decision
making (Doshi and Gmytrasiewicz, 2009) to over-
come these problems. These steps will move us
closer to a computationally effective, unified the-
ory of pragmatic enrichment and decision making.
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Abstract

Most coreference resolvers rely heavily on
string matching, syntactic properties, and
semantic attributes of words, but they lack
the ability to make decisions based on in-
dividual words. In this paper, we ex-
plore the benefits of lexicalized features
in the setting of domain-specific corefer-
ence resolution. We show that adding
lexicalized features to off-the-shelf coref-
erence resolvers yields significant perfor-
mance gains on four domain-specific data
sets and with two types of coreference res-
olution architectures.

1 Introduction

Coreference resolvers are typically evaluated on
collections of news articles that cover a wide range
of topics, such as the ACE (ACE03, 2003; ACE04,
2004; ACEOQS5, 2005) and OntoNotes (Pradhan
et al,, 2007) data sets. Many NLP applica-
tions, however, involve text analysis for special-
ized domains, such as clinical medicine (Gooch
and Roudsari, 2012; Glinos, 2011), legal text anal-
ysis (Bouayad-Agha et al., 2009), and biological
literature (Batista-Navarro and Ananiadou, 2011;
Castafio et al., 2002). Learning-based corefer-
ence resolvers can be easily retrained for a spe-
cialized domain given annotated training texts for
that domain. However, we found that retraining
an off-the-shelf coreference resolver with domain-
specific texts showed little benefit.

This surprising result led us to question the na-
ture of the feature sets used by noun phrase (NP)
coreference resolvers. Nearly all of the features
employed by recent systems fall into three cate-
gories: string match and word overlap, syntactic
properties (e.g., appositives, predicate nominals,
parse features, etc.), and semantic matching (e.g.,
gender agreement, WordNet similarity, named en-
tity classes, etc.). Conspicuously absent from most
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systems are lexical features that allow the classi-
fier to consider the specific words when making a
coreference decision. A few researchers have ex-
perimented with lexical features, but they achieved
mixed results in evaluations on broad-coverage
corpora (Bengston and Roth, 2008; Bjorkelund
and Nugues, 2011; Rahman and Ng, 2011a).

We hypothesized that lexicalized features can
have a more substantial impact in domain-specific
settings. Lexical features can capture domain-
specific knowledge and subtle semantic distinc-
tions that may be important within a domain.
For example, based on the resolutions found in
domain-specific training sets, our lexicalized fea-
tures captured the knowledge that “tomcat” can
be coreferent with “plane”, “UAW” can be coref-
erent with “union”, and “anthrax” can be coref-
erent with “diagnosis”. Capturing these types of
domain-specific information is often impossible
using only general-purpose resources. For exam-
ple, WordNet defines “tomcat” only as an animal,
does not contain an entry for “UAW”, and catego-
rizes “anthrax” and “diagnosis” very differently.!

In this paper, we evaluate the impact of lexi-
calized features on 4 domains: management suc-
cession (MUC-6 data), vehicle launches (MUC-7
data), disease outbreaks (ProMed texts), and ter-
rorism (MUC-4 data). We incorporate lexical-
ized feature sets into two different coreference ar-
chitectures: Reconcile (Stoyanov et al., 2010), a
pairwise coreference classifier, and Sieve (Raghu-
nathan et al., 2010), a rule-based system. Our re-
sults show that lexicalized features significantly
improve performance in all four domains and in
both types of coreference architectures.

2 Related Work

We are not the first researchers to use lexicalized
features for coreference resolution. However, pre-

"WordNet defines “anthrax” as a disease (condition/state)
and “diagnosis” as an identification (discovery event).
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Test MUC-6 MUC-7 Promed MUC-4
Train P R F P R F P R F P R F
MUC-6 80.79 6271 70.61 | 84.33 61.74 7129 | 83.54 7034 76.37 | 80.22 60.81 69.18
MUC-7 7478 65.59 69.88 | 82.73 64.09 7223 | 85.29 7182 7798 | 77.35 64.19 70.16
Promed 73.60 6420 68.60 | 82.88 63.37 71.82 | 80.31 72.66 76.29 | 74.52 65.65 69.80
MUC-4 69.27 65.66 6742 | 71.49 6722 6929 | 76.92 7425 7556 | 71.76 67.37 69.50

Table 1: Cross-domain B? (Bagga and Baldwin, 1998) results for Reconcile with its general feature set.
The Paired Permutation test (Pesarin, 2001) was used for statistical significance testing and gray cells
represent results that are not significantly different from the best result.

vious work has evaluated the benefit of lexical fea-
tures only for broad-coverage data sets.

Bengston and Roth (2008) incorporated a mem-
orization feature to learn which entities can re-
fer to one another. They created a binary fea-
ture for every pair of head nouns, including pro-
nouns. They reported no significant improvement
from these features on the ACE 2004 data.

Rahman and Ng (2011a) also utilized lexical
features, going beyond strict memorization with
methods to combat data sparseness and incorpo-
rating semantic information. They created a fea-
ture for every ordered pair of head nouns (for
pronouns and nominals) or full NPs (for proper
nouns). Semi-lexical features were also used when
one NP was a Named Entity, and unseen features
were used when the NPs were not in the training
set. Their features did yield improvements on both
the ACE 2005 and OntoNotes-2 data, but the semi-
lexical features included Named Entity classes as
well as word-based features.

Rahman and Ng (2011b) explored the use of
lexical features in greater detail and showed their
benefit on the ACEO5 corpus independent of, and
combined with, a conventional set of coreference
features. The ACEOQOS5 corpus is drawn from six
sources (Newswire, Broadcast News, Broadcast
Conversations, Conversational Telephone Speech,
Webblogs, and Usenet). The authors experi-
mented with utilizing lexical information drawn
from different sources. The results showed that
the best performance came from training and test-
ing with lexical knowledge drawn from the same
source. Although our approach is similar, this pa-
per focuses on learning lexical information from
different domains as opposed to the different gen-
res found in the six sources of the ACEOS5 corpus.

Bjorkelund and Nugues (2011) used lexical
word pairs for the 2011 CoNLL Shared Task,
showing significant positive impact on perfor-
mance. They used over 2000 annotated docu-
ments from the broad-coverage OntoNotes corpus

for training. Our work aims to show the benefit of
lexical features using much smaller training sets
(< 50 documents) focused on specific domains.

Lexical features have also been used for slightly
different purposes. Florian et al. (2004) utilized
lexical information such as mention spelling and
context for entity tracking in ACE. Ng (2007) used
lexical information to assess the likelihood of a
noun phrase being anaphoric, but this did not show
clear improvements on ACE data.

There has been previous work on domain-
specific coreference resolution for several do-
mains, including biological literature (Castafo et
al.,, 2002; Liang and Lin, 2005; Gasperin and
Briscoe, 2008; Kim et al., 2011; Batista-Navarro
and Ananiadou, 2011), clinical medicine (He,
2007; Zheng et al., 2011; Glinos, 2011; Gooch and
Roudsari, 2012) and legal documents (Bouayad-
Aghaetal., 2009). In addition, BABAR (Bean and
Riloff, 2004) used contextual role knowledge for
coreference resolution in the domains of terrorism
and natural disasters. But BABAR acquired and
used lexical information to match the compatibil-
ity of contexts surrounding NPs, not the NPs them-
selves. To the best of our knowledge, our work is
the first to examine the impact of lexicalized fea-
tures for domain-specific coreference resolution.

3 Exploiting Lexicalized Features

Table 1 shows the performance of a learning-based
coreference resolver, Reconcile (Stoyanov et al.,
2010), with its default feature set using different
combinations of training and testing data. Recon-
cile does not include any lexical features, but does
contain over 60 general features covering seman-
tic agreement, syntactic constraints, string match
and recency.

Each row represents a training set, each column
represents a test set, and each cell shows precision
(P), recall (R), and F score results under the B>
metric when using the corresponding training and
test data. The best results for each test set appear
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MUC-6 MUC-7 ProMED MUC-4
P R F P R F P R F P R F
Reconcile 80.79 6271 70.61 | 82.73 64.09 7223 | 80.31 72.66 7629 | 71.76 67.37 69.50
+LexLookup | 87.01 6340 73.35 | 87.39 62.86 73.12 | 86.66 7095 78.02 | 82.89 67.53 74.42
+LexSets 86.50 63.76 7341 | 85.86 64.35 73.56 | 86.19 72.14 78.54 | 8198 67.73 74.18
Sieve 9220 61.70 7390 | 9146 59.59 72.16 | 9443 6725 78.55 | 91.30 59.84 72.30
+LexBegin 91.22 6297 7451 | 9124 60.28 7259 | 93.51 69.15 = 79.51 | 89.01 62.84 73.67
+LexEnd 90.59 6347 74.64 | 91.17 60.56 @ 72.78 | 93.99 68.87 @ 79.49 | 89.04 64.03 74.47

Table 2: B? results for baselines and lexicalized feature sets across four domains.

in boldface.

We performed statistical significance testing us-
ing the Paired Permutation test (Pesarin, 2001) and
the gray cells represent results where there was
not significant difference from the best results in
the same column. If just one cell is gray in a col-
umn, that indicates the result was significantly bet-
ter than the other results in the same column with
p < 0.05.

Table 1 does not show much benefit from train-
ing on the same domain as the test set. Three
different training sets produce F scores that are
not significantly different for both the MUC-6
and MUC-4 test data. For ProMed, training on
the MUC-7 data yields significantly better results
than training on all the other data sets, includ-
ing ProMed texts! Based on these results, it
would seem that training on the MUC-7 texts is
likely to yield the best results no matter what do-
main you plan to use the coreference resolver for.
The goal of our work is to investigate whether
lexical features can extract additional knowledge
from domain-specific training texts to help tailor
a coreference resolver to perform better for a spe-
cific domain.

3.1 Extracting Coreferent Training Pairs

We adopt the terminology introduced by Stoyanov
et al. (2009) to define a coreference element (CE)
as a noun phrase that can participate in a corefer-
ence relation based on the task definition.

Each training document has manually annotated
gold coreference chains corresponding to the sets
of CEs that are coreferent. For each CE in a gold
chain, we pair that CE with all of the other CEs in
the same chain. We consider the coreference rela-
tion to be bi-directional, so we don’t retain infor-
mation about which CE was the antecedent. We
do not extract CE pairs that share the same head
noun because they are better handled with string
match. For nominal NPs, we retain only the head
noun, but we use the entire NP for proper names.
We discard pairs that include a pronoun, and nor-

malize strings to lower case for consistency.

3.2 Lexicalized Feature Sets

We explore two ways to capture lexicalized infor-
mation as features. The first approach indicates
whether two CEs have ever been coreferent in the
training data. We create a single feature called
LEXLOOKUP(X,Y) that receives a value of 1 when
x and y have been coreferent at least twice, or
a value of 0 otherwise.? LEXLOOKUP(X,Y) is a
single feature that captures all CE pairs that were
coreferent in the training data.

We also created set-based features that capture
the set of terms that have been coreferent with a
particular CE. The CorefSet(z) is the set of CEs
that have appeared in the same coreference chain
as mention z at least twice.

We create a set of binary-valued features
LEXSET(X,Y), one for each CE z in the training
data. Given a pair of CEs, = and y, LEXSET(X,Y)
=1 ify € CorefSet(x), or 0 otherwise. The ben-
efit of the set-based features over a single mono-
lithic feature is that the classifier has one set-based
feature for each mention found in the training data,
so it can learn to handle individual terms differ-
ently.

We also tried encoding a separate feature for
each distinct pair of words, analogous to the mem-
orization feature in Bengston and Roth (2008).
This did not improve performance as much as the
other feature representations presented here.

4 Evaluation

4.1 Data Sets

We evaluated the performance of lexicalized fea-
tures on 4 domain-specific corpora including two
standard coreference benchmarks, the MUC-6 and
MUC-7 data sets. The MUC-6 domain is manage-
ment succession and consists of 30 training texts
and 30 test texts. The MUC-7 domain is vehicle

2We require a frequency > 2 to minimize overfitting be-
cause many cases occur only once in the training data.
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launches and consists of 30 training texts and 20
test texts. We used these standard train/test splits
to be consistent with previous work.

We also created 2 new coreference data sets
which we will make freely available.  We
manually annotated 45 ProMed-mail articles
(www.promedmail.org) about disease outbreaks
and 45 MUC-4 texts about terrorism, following
the MUC guidelines (Hirschman, 1997). Inter-
annotator agreement between two annotators was
.77 (k) on ProMed and .84 (MUC F Score)(Villain
et al., 1995) on both ProMed and MUC-4.3 We
performed 5-fold cross-validation on both data
sets and report the micro-averaged results.

Gold CE spans were used in all experiments to
factor out issues with markable identification and
anaphoricity across the different domains.

4.2 Coreference Resolution Models

We conducted experiments using two coreference
resolution architectures. Reconcile* (Stoyanov et
al., 2010) is a freely available pairwise mention
classifier. For classification, we chose Weka’s
(Witten and Frank, 2005) Decision Tree learner
inside Reconcile. Reconcile contains roughly 60
features (none lexical), largely modeled after Ng
and Cardie (2002). We modified Reconcile’s Sin-
gle Link clustering scheme to enforce an addi-
tional rule that non-overlapping proper names can-
not be merged into the same chain.

We also conducted experiments with the Sieve
coreference resolver, which applies high precision
heuristic rules to incrementally build coreference
chains. We implemented the LEXLOOKUP(X,Y)
feature as an additional heuristic rule. We tried
inserting this heuristic before Sieve’s other rules
(LexBegin), and also after Sieve’s other rules
(LexEnd).

4.3 Experimental Results

Table 2 presents results for Reconcile trained with
and without lexical features and when adding
a lexical heuristic with data drawn from same-
domain texts to Sieve.

The first row shows the results without the lex-
icalized features (from Table 1). All F scores
for Reconcile with lexicalized features are signifi-
cantly better than without these features based on
the Paired Permutation test (Pesarin, 2001) with

3We also computed x on MUC-4, but unfortunately the
score and original data were lost.
*nttp://www.cs.utah.edu/nlp/reconcile/

84

p < 0.05. MUC-4 showed the largest gain for
Reconcile, with the F score increasing from 69.5
to over 74. For most domains, adding the lexical
features to Reconcile substantially increased pre-
cision with comparable levels of recall.

The bottom half of Table 2 contains the results
of adding a lexical heuristic to Sieve. The first
row shows the default system with no lexical in-
formation. All F scores with the lexical heuristic
are significantly better than without it. In Sieve’s
high-precision coreference architecture, the lexi-
cal heuristic yields additional recall gains without
sacrificing much precision.

ACE 2004
P R F
Reconcile 70.59 83.09 76.33
+LexLookup | 71.32 8293 = 76.69
+LexSets 71.44 8345 76.98
Sieve 90.09 7423 81.39
+LexBegin 86.54 7543 80.61
+LexEnd 87.00 7545 80.82

Table 3: B3 results for baselines and lexicalized
feature sets on the broad-coverage ACE 2004 data
set.

Table 3 shows the results for Reconcile and
Sieve when training and testing on the ACE 2004
data. Here, we see little improvement from adding
lexical information. For Reconcile, the small dif-
ferences in F scores are not statistically significant.
For Sieve, the unlexicalized system yields a signif-
icantly higher F score than when adding the lexi-
cal heuristic. These results support our hypothesis
that lexicalized information can be beneficial for
capturing domain-specific word associations, but
may not be as helpful in a broad-coverage setting
where the language covers a diverse set of topics.

Table 4 shows a re-evaluation of the cross-
domain experiments from Table 1 for Reconcile
with the LexSet features added. The bottom half
of the table shows cross-domain experiments for
Sieve using the lexical heuristic at the end of its
rule set (LexEnd). Results are presented using
both the B3 metric and the MUC Score (Villain
etal., 1995).

Training and testing on the same domain al-
ways produced the highest recall scores for MUC-
7, ProMed, and MUC-4 when utilizing lexical
features. In all cases, lexical features acquired
from same-domain texts yield results that are ei-
ther clearly the best or not significantly different
from the best.



Test MUC-6 MUC-7 Promed MUC-4
Train P R F ‘ P R F P R F ‘ P R F
Reconcile (B3 Score)
MUC-6 86.50 63.76 73.41 | 90.44 60.75 72.68 | 89.28 68.14 7729 | 84.05 60.61 70.44
MUC-7 80.65 63.42 71.01 | 85.86 64.46 73.56 | 89.41 70.05 78.55 | 80.61 63.26 70.89
Promed 81.69 62.73 70.96 | 88.32 62.79 73.40 | 86.19 72.14 78.54 | 84.81 62.58 72.02
MUC-4 81.20 62.34 70.53 | 87.23 63.13 73.25 | 87.52 71.11 78.46 | 8198 67.73 74.18
Reconcile (MUC Score)
MUC-6 89.56 71.17 7932 | 90.85 67.43 7741 | 89.61 65.67 7579 | 88.27 66.98 76.16
MUC-7 86.14 7222 78.57 | 89.56 72.01 79.83 | 89.34 68.08 @ 77.27 | 87.30 7022 77.83
Promed 86.92 70.68 77.97 | 90.93 70.33 79.31 | 88.54 69.55 @ 77.90 | 88.83 68.89 78.23
MUC-4 85.72 70.50 77.37 | 88.78 71.24 79.05 | 88.24 68.18 77.55 | 87.89 74.18 80.45
Sieve (B? Score)
MUC-6 90.59 63.47 7464 | 91.20 5991 7232 | 9430 67.25 7851 | 91.30 59.90 72.34
MUC-7 91.62 63.67 75.13 | 91.17 60.56 72.78 | 94.43 67.35 78.62 | 91.14 60.44 72.68
Promed 92.14 6170 7390 | 91.46 5993 7241 | 93.99 68.87 79.49 | 91.27 60.76 72.96
MUC-4 91.76 61.88 7391 | 91.26 59.93 7234 | 9430 67.35 7858 | 89.04 64.03 74.47
Sieve (MUC Score)
MUC-6 91.80 70.87 7999 | 91.38 6552 7632 | 92.08 64.71 76.01 | 90.38 66.98 77.10
MUC-7 91.82 69.70 79.25 | 91.68 66.36 7699 | 92.20 64.86 76.15 | 90.71 67.09 77.13
Promed 91.99 69.15 7895 | 91.68 6552 7642 | 91.70 66.33 7698 | 90.85 67.09 77.18
MUC-4 91.79 6939 79.03 | 91.48 6552 7636 | 92.00 64.86 76.08 | 90.31 69.62 @ 78.62

Table 4: Cross-domain B? and MUC results for Reconcile and Sieve with lexical features. Gray cells
represent results that are not significantly different from the best results in the column at the 0.05 p-level.

For MUC-6 and MUC-7, the highest F score re-
sults almost always come from training on same-
domain texts, although in some cases these re-
sults are not significantly different from training
on other domains. Lexical features can yield im-
provements when training on a different domain if
there is overlap in the vocabulary across the do-
mains. For the ProMed domain, the Sieve system
performs significantly better, under both metrics,
with same-domain lexical features than with lexi-
cal features acquired from a different domain. For
Reconcile, there is not a significant difference in
the F score for ProMed when training on ProMed,
MUC-4, or MUC-7. In the MUC-4 domain, using
same-domain lexical information always produces
the best F score, under both metrics and in both
coreference systems.

5 Conclusions

We explored the use of lexical information for
domain-specific coreference resolution using 4
domain-specific data sets and 2 coreference re-
solvers. Lexicalized features consistently im-
proved performance for all of the domains and in
both coreference architectures. We see benefits
from lexicalized features in cross-domain training,
but the gains are often more substantial when uti-
lizing same-domain lexical knowledge.

In the future, we plan to explore additional types
of lexical information to benefit domain-specific
coreference resolution.
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Abstract

Ordering texts is an important task for many
NLP applications. Most previous works on
summary sentence ordering rely on the contex-
tual information (e.g. adjacent sentences) of
each sentence in the source document. In this
paper, we investigate a more challenging task
of ordering a set of unordered sentences with-
out any contextual information. We introduce
a set of features to characterize the order and
coherence of natural language texts, and use
the learning to rank technique to determine the
order of any two sentences. We also propose
to use the genetic algorithm to determine the
total order of all sentences. Evaluation results
on a news corpus show the effectiveness of
our proposed method.

1 Introduction

Ordering texts is an important task in many natu-
ral language processing (NLP) applications. It is
typically applicable in the text generation field,
both for concept-to-text generation and text-to-
text generation (Lapata, 2003), such as multiple
document summarization (MDS), question an-
swering and so on. However, ordering a set of
sentences into a coherent text is still a hard and
challenging problem for computers.

Previous works on sentence ordering mainly
focus on the MDS task (Barzilay et al., 2002;
Okazaki et al.,, 2004; Nie et al., 2006; Ji and
Pulman, 2006; Madnani et al., 2007; Zhang et al.,
2010; He et al., 2006; Bollegala et al., 2005; Bol-
legala et al., 2010). In this task, each summary
sentence is extracted from a source document.
The timestamp of the source documents and the
adjacent sentences in the source documents can
be used as important clues for ordering summary
sentences.

In this study, we investigate a more challeng-
ing and more general task of ordering a set of
unordered sentences (e.g. randomly shuffle the

* Xiaojun Wan is the corresponding author.
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sentences in a text paragraph) without any con-
textual information. This task can be applied to
almost all text generation applications without
restriction.

In order to address this challenging task, we
first introduce a few useful features to character-
ize the order and coherence of natural language
texts, and then propose to use the learning to
rank algorithm to determine the order of two sen-
tences. Moreover, we propose to use the genetic
algorithm to decide the overall text order. Evalu-
ations are conducted on a news corpus, and the
results show the prominence of our method. Each
component technique or feature in our method
has also been validated.

2 Related Work

For works taking no use of source document,
Lapata (2003) proposed a probabilistic model
which learns constraints on sentence ordering
from a corpus of texts. Experimental evaluation
indicated the importance of several learned lexi-
cal and syntactic features. However, the model
only works well when using single feature, but
unfortunately, it becomes worse when multiple
features are combined. Barzilay and Lee (2004)
investigated the utility of domain-specific con-
tent model for representing topic and topic shifts
and the model performed well on the five se-
lected domains. Nahnsen (2009) employed fea-
tures which were based on discourse entities,
shallow syntactic analysis, and temporal prece-
dence relations retrieved from VerbOcean. How-
ever, the model does not perform well on data-
sets describing the consequences of events.

3
3.1

Our Proposed Method

Overview

The task of text ordering can be modeled like
(Cohen et al., 1998), as measuring the coherence
of a text by summing the association strength of
any sentence pairs. Then the objective of a text
ordering model is to find a permutation which
can maximize the summation.

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 87-91,
Sofia, Bulgaria, August 4-9 2013. (©2013 Association for Computational Linguistics



Formally, we define an association strength
function PREF(u,v)e R to measure how strong
it is that sentence u should be arranged before
sentence v (denoted as u>v ). We then define
function AGREE(p,PREF) as:

AGREE(p,PREF)= >’
u,v:p(u)>p(v)
where p denotes a sentence permutation and

PREF(u,v) 1)

p(u)> p(v) means u > v in the permutation p.

Then the objective of finding an overall order of
the sentences becomes finding a permutation p

to maximize AGREE(p,PREF).

The main framework is made up of two parts:
defining a pairwise order relation and determin-
ing an overall order. Our study focuses on both
the two parts by learning a better pairwise rela-
tion and proposing a better search strategy, as
described respectively in next sections.

3.2 Pairwise Relation Learning

The goal for pairwise relation learning is defin-
ing the strength function PREF for any sentence
pair. In our method we define the function PREF
by combining multiple features.

Method: Traditionally, there are two main
methods for defining a strength function: inte-
grating features by a linear combination (He et
al., 2006; Bollegala et al., 2005) or by a binary
classifier (Bollegala et al., 2010). However, the
binary classification method is very coarse-
grained since it considers any pair of sentences
either “positive” or “negative”. Instead we pro-
pose to use a better model of learning to rank to
integrate multiple features.

In this study, we use Ranking SVM imple-
mented in the svm™* toolkit (Joachims, 2002;
Joachims, 2006) as the ranking model. The ex-
amples to be ranked in our ranking model are
sequential sentence pairs like u > v . The feature
values for a training example are generated by a
few feature functions f;(«,v), and we will intro-

duce the features later. We build the training ex-
amples for svm™" as follows:

For a training query, which is a paragraph with
n sequential sentences as s, >, =..>5,, We

can get Aj =n(n—1) training examples. For
pairs like s, >s_,, (k>0) the target rank values
are set to n—k, which means that the longer the
distance between the two sentences is, the small-
er the target value is. Other pairs like s ., >,
are all set to 0. In order to better capture the or-
der information of each feature, for every sen-

tence pair u >v, we derive four feature values
from each function f,(u,v), which are listed as

follows:
V= fiu,v) )
172, if fi(u,v)+ f,(v,;u)=0
V.,= .
" AGH) , otherwise O
Jiu,v)+ fi(v,u)
IS, it D fiw,»)=0
V.= yeSNy#u 4
" Sfiu,v)/ z fi(u,y), otherwise )
yeSNy#u
Sy i Y fixv)=0
V. = xeSNx#v 5
SR PACRYY. > fixy), otherwise %)
xeSNx#y

where S is the set of all sentences in a paragraph
and |S| is the number of sentences in S . The

three additional feature values of (3) (4) (5) are
defined to measure the priority of u>v to v>u,
u>v to u>=VyeS—{u,v} and u>v to
Vxe S —{u,v}>v respectively, by calculating
the proportion of f;(u,v) in respective summa-
tions.

The learned model can be used to predict tar-
get values for new examples. A paragraph of un-
ordered sentences is viewed as a test query, and
the predicted target value for u>v is set as
PREF(u,v).

Features: We select four types of features to
characterize text coherence. Every type of fea-
tures is quantified with several functions distin-
guished by i in the formulation of f;(u,v) and

normalized to [0,1]. The features and definitions
of f;(u,v) are introduced in Table 1.
Type

Similarity

Description
sim(u,Vv)

sim(latter(u), former(v))

overlap ; (u,v) / min(|u |,| v )

Overlap overlap ; (latter (), former(v))

overlap ; (u,v)

Number of
coreference chains
Number of
coreference words
Noun
Verb
Verb & noun dependency
Adjective & adverb

Table 1: Features used in our model.

Coreference

Probability
Model




As in Table 1, function sim(u,v) denotes the
cosine similarity of sentence u and v ; latter(u)
and former(v) denotes the latter half part of u

and the former part of v respectively, which are
separated by the most centered comma (if exists)
or word (if no comma exits); overlap ; (u,v) de-

notes the number of mutual words of # and v,
for j=1,2,3 representing lemmatized noun,

verb and adjective or adverb respectively; |u| is

the number of words of sentence u. The value
will be set to 0 if the denominator is 0.

For the coreference features we use the ARK-
ref' tool. It can output the coreference chains
containing words which represent the same entity
for two sequential sentences u >V .

The probability model originates from (Lapata,
2003), and we implement the model with four
features of lemmatized noun, verb, adjective or
adverb, and verb and noun related dependency.

3.3 Overall Order Determination

Cohen et al. (1998) proved finding a permutation
p to maximize AGREE(p,PREF) is NP-

complete. To solve this, they proposed a greedy
algorithm for finding an approximately optimal
order. Most later works adopted the greedy
search strategy to determine the overall order.
However, a greedy algorithm does not always
lead to satisfactory results, as our experiment
shows in Section 4.2. Therefore, we propose to
use the genetic algorithm (Holland, 1992) as the
search strategy, which can lead to better results.
Genetic Algorithm: The genetic algorithm
(GA) is an artificial intelligence algorithm for
optimization and search problems. The key point
of using GA is modeling the individual, fitness
function and three operators of crossover, muta-
tion and selection. Once a problem is modeled,
the algorithm can be constructed conventionally.
In our method we set a permutation p as an

individual encoded by a numerical path, for ex-
ample a permutation s, > s, > s, is encoded as (2

1 3). Then the function AGREE(0,PREF) is just

the fitness function. We adopt the order-based
crossover operator which is described in (Davis,
1985). The mutation operator is a random inver-
sion of two sentences. For selection operator we
take a tournament selection operator which ran-
domly selects two individuals to choose the one
with the greater fitness value AGREE(p,PREF).

! http://www.ark.cs.cmu.edu/ARKref/

After several generations of evolution, the indi-
vidual with the greatest fitness value will be a
close solution to the optimal result.

4 Experiments
4.1 Experiment Setup

Data Set and Evaluation Metric: We con-
ducted the experiments on the North American
News Text Corpus”. We trained the model on 80
thousand paragraphs and tested with 200 shuffled
paragraphs. We use Kendall’s 7 as the evalua-
tion metric, which is based on the number of in-
versions in the rankings.

Comparisons: It is incomparable with other
methods for summary sentence ordering based
on special summarization corpus, so we imple-
mented Lapata’s probability model for compari-
son, which is considered the state of the art for
this task. In addition, we implemented a random
ordering as a baseline. We also tried to use a
classification model in place of the ranking mod-
el. In the classification model, sentence pairs like
s, =s,,, were viewed as positive examples and

a+l
all other pairs were viewed as negative examples.
When deciding the overall order for either rank-
ing or classification model we used three search
strategies: greedy, genetic and exhaustive (or
brutal) algorithms. In addition, we conducted a
series of experiments to evaluate the effect of
each feature. For each feature, we tested in two
experiments, one of which only contained the
single feature and the other one contained all the
other features. For comparative analysis of fea-
tures, we tested with an exhaustive search algo-
rithm to determine the overall order.

4.2 Experiment Results

The comparison results in Table 2 show that our
Ranking SVM based method improves the per-
formance over the baselines and the classifica-
tion based method with any of the search algo-
rithms. We can also see the greedy search strat-
egy does not perform well and the genetic algo-
rithm can provide a good approximate solution to
obtain optimal results.

Method Greedy | Exhaustive | Genetic

Baseline -0.0127
Probability 0.1859
Classification | 0.5006 0.5360 0.5264

Ranking 0.5191 0.5768 0.5747

Table 2: Average 7 of different methods.

2 The corpus is available from
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalog
Id=LDC98T30



Ranking vs. Classification: It is not surpris-
ing that the ranking model is better, because
when using a classification model, an example
should be labeled either positive or negative. It is
not very reasonable to label a sentence pair like
s, > 8, (k>1) as a negative example, nor a pos-

itive one, because in some cases, it is easy to
conclude one sentence should be arranged after
another but hard to decide whether they should
be adjacent. As we see in the function AGREE,
the value of PREF(s,,s ,,) also contributes to

the summation. In a ranking model, this informa-
tion can be quantified by the different priorities
of sentence pairs with different distances.

Single Feature Effect: The effects of differ-
ent types of features are shown in Table 3. Prob
denotes Lapata’s probability model with differ-
ent features.

tences does not help to decide which sentence
should be arranged before another. In this case
the overlap and similarity of half part of the sen-
tences may help. For example latter((3)) and
former((4)) share an overlap of “Israel” while
there is no overlap for latter((4)) and former((3)).

Coreference is also an important clue for or-
dering natural language texts. When we use a
pronoun to represent an entity, it always has oc-
curred before. For example when conducting
coreference resolution for (1)>(2), it will be

found that “He” refers to “Vanunu”. Otherwise
for (2) > (1), no coreference chain will be found.

4.3  Genetic Algorithm

There are three main parameters for GA includ-
ing the crossover probability (PC), the mutation
probability (PM) and the population size (PS).

Feature Only Removed There is no definite selection for these parame-
Similarity 0.0721 0.4614 ters. In our study we experimented with a wide
Overlap 01284 04631 range of parameter values to see the effect_ of
each parameter. It is hard to traverse all possible
Coreference 0.0734 0.4704 L .
combinations so when testing a parameter we
Probuoun 0.3679 0.3932 fixed the other two parameters. The results are
Probess 0.0615 0.4544 shown in Table 4.
Probagjective&adverb g;ggg gjég § Para;ue Avg Max Min Stddev
Pmbﬂj’;lendency : 05763 - PS | 0.5731 | 0.5859 | 0.5606 | 0.0046
. PC | 0.5733 | 0.5806 | 0.5605 | 0.0038
Table 3: Effects of different features. PM | 05741 | 05803 | 0.5337 | 0.0045

It can be seen in Table 3 that all these features
contribute to the final result. The two features of
noun probability and dependency probability
play an important role as demonstrated in (La-
pata, 2003). Other features also improve the final
performance. A paragraph which is ordered en-
tirely right by our method is shown in Figure 1.

(1) Vanunu, 43, is serving an 18-year sentence for

treason.

He was kidnapped by Israel's Mossad spy

agency in Rome in 1986 after giving The Sun-

day Times of London photographs of the in-

side of the Dimona reactor.

From the photographs, experts determined

that Israel had the world's sixth largest stock-

pile of nuclear weapons.

(4) Israel has never confirmed or denied that it
has a nuclear capability.

Figure 1: A right ordered paragraph.

)

¢)

Sentences which should be arranged together
tend to have a higher similarity and overlap. Like
sentence (3) and (4) in Figure 1, they have a
highest cosine similarity of 0.2240 and most
overlap words of “Israel” and “nuclear”. How-
ever, the similarity or overlap of the two sen-
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Table 4: Results of GA with different parameters.

As we can see in Table 4, when adjusting the
three parameters the average 7 values are all
close to the exhaustive result of 0.5768 and their
standard deviations are low. Table 4 shows that
in our case the genetic algorithm is not very sen-
sible to the parameters. In the experiments, we
set PS to 30, PC to 0.5 and PM to 0.05, and
reached a value of 0.5747, which is very close to
the theoretical upper bound of 0.5768.

5

In this paper we propose a method for ordering
sentences which have no contextual information
by making use of Ranking SVM and the genetic
algorithm. Evaluation results demonstrate the
good effectiveness of our method.

In future work, we will explore more features
such as semantic features to further improve the
performance.

Conclusion and Discussion
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Abstract

We present a new collection of treebanks
with homogeneous syntactic dependency
annotation for six languages: German,
English, Swedish, Spanish, French and
Korean. To show the usefulness of such a
resource, we present a case study of cross-
lingual transfer parsing with more reliable
evaluation than has been possible before.
This ‘universal’ treebank is made freely
available in order to facilitate research on
multilingual dependency parsing.!

1 Introduction

In recent years, syntactic representations based
on head-modifier dependency relations between
words have attracted a lot of interest (Kiibler et
al., 2009). Research in dependency parsing — com-
putational methods to predict such representations
— has increased dramatically, due in large part to
the availability of dependency treebanks in a num-
ber of languages. In particular, the CoNLL shared
tasks on dependency parsing have provided over
twenty data sets in a standardized format (Buch-
holz and Marsi, 2006; Nivre et al., 2007).

While these data sets are standardized in terms
of their formal representation, they are still hetero-
geneous treebanks. That is to say, despite them
all being dependency treebanks, which annotate
each sentence with a dependency tree, they sub-
scribe to different annotation schemes. This can
include superficial differences, such as the renam-
ing of common relations, as well as true diver-
gences concerning the analysis of linguistic con-
structions. Common divergences are found in the

"Downloadable at https://code.google.com/p/uni-dep-tb/.
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analysis of coordination, verb groups, subordinate
clauses, and multi-word expressions (Nilsson et
al., 2007; Kiibler et al., 2009; Zeman et al., 2012).

These data sets can be sufficient if one’s goal
is to build monolingual parsers and evaluate their
quality without reference to other languages, as
in the original CoNLL shared tasks, but there are
many cases where heterogenous treebanks are less
than adequate. First, a homogeneous represen-
tation is critical for multilingual language tech-
nologies that require consistent cross-lingual anal-
ysis for downstream components. Second, consis-
tent syntactic representations are desirable in the
evaluation of unsupervised (Klein and Manning,
2004) or cross-lingual syntactic parsers (Hwa et
al., 2005). In the cross-lingual study of McDonald
et al. (2011), where delexicalized parsing models
from a number of source languages were evalu-
ated on a set of target languages, it was observed
that the best target language was frequently not the
closest typologically to the source. In one stun-
ning example, Danish was the worst source lan-
guage when parsing Swedish, solely due to greatly
divergent annotation schemes.

In order to overcome these difficulties, some
cross-lingual studies have resorted to heuristics to
homogenize treebanks (Hwa et al., 2005; Smith
and Eisner, 2009; Ganchev et al., 2009), but we
are only aware of a few systematic attempts to
create homogenous syntactic dependency anno-
tation in multiple languages. In terms of auto-
matic construction, Zeman et al. (2012) attempt
to harmonize a large number of dependency tree-
banks by mapping their annotation to a version of
the Prague Dependency Treebank scheme (Haji¢
et al., 2001; Bohmova et al., 2003). Addition-
ally, there have been efforts to manually or semi-
manually construct resources with common syn-

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 92-97,
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tactic analyses across multiple languages using al-
ternate syntactic theories as the basis for the repre-
sentation (Butt et al., 2002; Helmreich et al., 2004,
Hovy et al., 2006; Erjavec, 2012).

In order to facilitate research on multilingual
syntactic analysis, we present a collection of data
sets with uniformly analyzed sentences for six lan-
guages: German, English, French, Korean, Span-
ish and Swedish. This resource is freely avail-
able and we plan to extend it to include more data
and languages. In the context of part-of-speech
tagging, universal representations, such as that of
Petrov et al. (2012), have already spurred numer-
ous examples of improved empirical cross-lingual
systems (Zhang et al., 2012; Gelling et al., 2012;
Tackstrom et al., 2013). We aim to do the same for
syntactic dependencies and present cross-lingual
parsing experiments to highlight some of the bene-
fits of cross-lingually consistent annotation. First,
results largely conform to our expectations of
which target languages should be useful for which
source languages, unlike in the study of McDon-
ald et al. (2011). Second, the evaluation scores
in general are significantly higher than previous
cross-lingual studies, suggesting that most of these
studies underestimate true accuracy. Finally, un-
like all previous cross-lingual studies, we can re-
port full labeled accuracies and not just unlabeled
structural accuracies.

2 Towards A Universal Treebank

The Stanford typed dependencies for English
(De Marneffe et al., 2006; de Marneffe and Man-
ning, 2008) serve as the point of departure for our
‘universal’ dependency representation, together
with the tag set of Petrov et al. (2012) as the under-
lying part-of-speech representation. The Stanford
scheme, partly inspired by the LFG framework,
has emerged as a de facto standard for depen-
dency annotation in English and has recently been
adapted to several languages representing different
(and typologically diverse) language groups, such
as Chinese (Sino-Tibetan) (Chang et al., 2009),
Finnish (Finno-Ugric) (Haverinen et al., 2010),
Persian (Indo-Iranian) (Seraji et al., 2012), and
Modern Hebrew (Semitic) (Tsarfaty, 2013). Its
widespread use and proven adaptability makes it a
natural choice for our endeavor, even though ad-
ditional modifications will be needed to capture
the full variety of grammatical structures in the
world’s languages.
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ADPMOD

ADPOBJ

NSUBJ ADPOBJ

POSS

a

sa famille
VERB ADP DET NOUN ADP

Alexandre réside avec
NOUN

Tinqueux .
NOUN P

Figure 1: A sample French sentence.

We use the so-called basic dependencies (with
punctuation included), where every dependency
structure is a tree spanning all the input tokens,
because this is the kind of representation that most
available dependency parsers require. A sample
dependency tree from the French data set is shown
in Figure 1. We take two approaches to generat-
ing data. The first is traditional manual annotation,
as previously used by Helmreich et al. (2004) for
multilingual syntactic treebank construction. The
second, used only for English and Swedish, is to
automatically convert existing treebanks, as in Ze-
man et al. (2012).

2.1 Automatic Conversion

Since the Stanford dependencies for English are
taken as the starting point for our universal annota-
tion scheme, we begin by describing the data sets
produced by automatic conversion. For English,
we used the Stanford parser (v1.6.8) (Klein and
Manning, 2003) to convert the Wall Street Jour-
nal section of the Penn Treebank (Marcus et al.,
1993) to basic dependency trees, including punc-
tuation and with the copula verb as head in cop-
ula constructions. For Swedish, we developed a
set of deterministic rules for converting the Tal-
banken part of the Swedish Treebank (Nivre and
Megyesi, 2007) to a representation as close as pos-
sible to the Stanford dependencies for English.
This mainly consisted in relabeling dependency
relations and, due to the fine-grained label set used
in the Swedish Treebank (Teleman, 1974), this
could be done with high precision. In addition,
a small number of constructions required struc-
tural conversion, notably coordination, which in
the Swedish Treebank is given a Prague style anal-
ysis (Nilsson et al., 2007). For both English and
Swedish, we mapped the language-specific part-
of-speech tags to universal tags using the map-
pings of Petrov et al. (2012).

2.2 Manual Annotation

For the remaining four languages, annotators were
given three resources: 1) the English Stanford



guidelines; 2) a set of English sentences with Stan-
ford dependencies and universal tags (as above);
and 3) a large collection of unlabeled sentences
randomly drawn from newswire, weblogs and/or
consumer reviews, automatically tokenized with a
rule-based system. For German, French and Span-
ish, contractions were split, except in the case of
clitics. For Korean, tokenization was more coarse
and included particles within token units. Annota-
tors could correct this automatic tokenization.

The annotators were then tasked with producing
language-specific annotation guidelines with the
expressed goal of keeping the label and construc-
tion set as close as possible to the original English
set, only adding labels for phenomena that do not
exist in English. Making fine-grained label dis-
tinctions was discouraged. Once these guidelines
were fixed, annotators selected roughly an equal
amount of sentences to be annotated from each do-
main in the unlabeled data. As the sentences were
already randomly selected from a larger corpus,
annotators were told to view the sentences in or-
der and to discard a sentence only if it was 1) frag-
mented because of a sentence splitting error; 2) not
from the language of interest; 3) incomprehensible
to a native speaker; or 4) shorter than three words.
The selected sentences were pre-processed using
cross-lingual taggers (Das and Petrov, 2011) and
parsers (McDonald et al., 2011).

The annotators modified the pre-parsed trees us-
ing the TrEd? tool. At the beginning of the annota-
tion process, double-blind annotation, followed by
manual arbitration and consensus, was used itera-
tively for small batches of data until the guidelines
were finalized. Most of the data was annotated
using single-annotation and full review: one an-
notator annotating the data and another reviewing
it, making changes in close collaboration with the
original annotator. As a final step, all annotated
data was semi-automatically checked for annota-
tion consistency.

2.3 Harmonization

After producing the two converted and four an-
notated data sets, we performed a harmonization
step, where the goal was to maximize consistency
of annotation across languages. In particular, we
wanted to eliminate cases where the same label
was used for different linguistic relations in dif-
ferent languages and, conversely, where one and

2 Available at http://ufal.mff.cuni.cz/tred/.
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the same relation was annotated with different la-
bels, both of which could happen accidentally be-
cause annotators were allowed to add new labels
for the language they were working on. Moreover,
we wanted to avoid, as far as possible, labels that
were only used in one or two languages.

In order to satisfy these requirements, a number
of language-specific labels were merged into more
general labels. For example, in analogy with the
nn label for (element of a) noun-noun compound,
the annotators of German added aa for compound
adjectives, and the annotators of Korean added vv
for compound verbs. In the harmonization step,
these three labels were merged into a single label
compmod for modifier in compound.

In addition to harmonizing language-specific la-
bels, we also renamed a small number of relations,
where the name would be misleading in the uni-
versal context (although quite appropriate for En-
glish). For example, the label prep (for a mod-
ifier headed by a preposition) was renamed adp-
mod, to make clear the relation to other modifier
labels and to allow postpositions as well as prepo-
sitions.> We also eliminated a few distinctions in
the original Stanford scheme that were not anno-
tated consistently across languages (e.g., merging
complm with mark, number with num, and purpcl
with advcl).

The final set of labels is listed with explanations
in Table 1. Note that relative to the universal part-
of-speech tagset of Petrov et al. (2012) our final
label set is quite rich (40 versus 12). This is due
mainly to the fact that the the former is based on
deterministic mappings from a large set of annota-
tion schemes and therefore reduced to the granu-
larity of the greatest common denominator. Such a
reduction may ultimately be necessary also in the
case of dependency relations, but since most of our
data sets were created through manual annotation,
we could afford to retain a fine-grained analysis,
knowing that it is always possible to map from
finer to coarser distinctions, but not vice versa.*

2.4 Final Data Sets

Table 2 presents the final data statistics. The num-
ber of sentences, tokens and tokens/sentence vary

3Consequently, pobj and pcomp were changed to adpobj
and adpcomp.

“The only two data sets that were created through con-
version in our case were English, for which the Stanford de-
pendencies were originally defined, and Swedish, where the
native annotation happens to have a fine-grained label set.



Label Description Label Description Label Description
acomp adjectival complement compmod compound modifier nmod noun modifier
adp adposition conj conjunct nsubj nominal subject
adpcomp | complement of adposition cop copula nsubjpass | passive nominal subject
adpmod adpositional modifier csubj clausal subject num numeric modifier
adpobj object of adposition csubjpass | passive clausal subject p punctuation
advcl adverbial clause modifier dep generic parataxis parataxis
advmod adverbial modifier det determiner partmod participial modifier
amod adjectival modifier dobj direct object poss possessive
appos appositive expl expletive prt verb particle
attr attribute infmod infinitival modifier rcmod relative clause modifier
aux auxiliary iobj indirect object rel relative
auxpass passive auxiliary mark marker xcomp open clausal complement
cc conjunction mwe multi-word expression
ccomp clausal complement neg negation

Table 1: Harmonized label set based on Stanford dependencies (De Marneffe et al., 2006).

source(s) # sentences # tokens
DE N,R 4,000 59,014
EN PTB* 43,948 1,046,829
SV STB' 6,159 96,319
ES N,B,R 4,015 112,718
FR N, B,R 3,978 90,000
KO N, B 6,194 71,840

Table 2: Data set statistics. *Automatically con-
verted WSJ section of the PTB. The data release
includes scripts to generate this data, not the data
itself. TAutomatically converted Talbanken sec-
tion of the Swedish Treebank. N=News, B=Blogs,
R=Consumer Reviews.

due to the source and tokenization. For example,
Korean has 50% more sentences than Spanish, but
~40k less tokens due to a more coarse-grained to-
kenization. In addition to the data itself, anno-
tation guidelines and harmonization rules are in-
cluded so that the data can be regenerated.

3 Experiments

One of the motivating factors in creating such a
data set was improved cross-lingual transfer eval-
uation. To test this, we use a cross-lingual transfer
parser similar to that of McDonald et al. (2011).
In particular, it is a perceptron-trained shift-reduce
parser with a beam of size 8. We use the features
of Zhang and Nivre (2011), except that all lexical
identities are dropped from the templates during
training and testing, hence inducing a ‘delexical-
ized’ model that employs only ‘universal’ proper-
ties from source-side treebanks, such as part-of-
speech tags, labels, head-modifier distance, etc.
We ran a number of experiments, which can be
seen in Table 3. For these experiments we ran-
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domly split each data set into training, develop-
ment and testing sets.> The one exception is En-
glish, where we used the standard splits. Each
row in Table 3 represents a source training lan-
guage and each column a target evaluation lan-
guage. We report both unlabeled attachment score
(UAS) and labeled attachment score (LAS) (Buch-
holz and Marsi, 2006). This is likely the first re-
liable cross-lingual parsing evaluation. In partic-
ular, previous studies could not even report LAS
due to differences in treebank annotations.

We can make several interesting observations.
Most notably, for the Germanic and Romance tar-
get languages, the best source language is from
the same language group. This is in stark contrast
to the results of McDonald et al. (2011), who ob-
serve that this is rarely the case with the heteroge-
nous CoNLL treebanks. Among the Germanic
languages, it is interesting to note that Swedish
is the best source language for both German and
English, which makes sense from a typological
point of view, because Swedish is intermediate be-
tween German and English in terms of word or-
der properties. For Romance languages, the cross-
lingual parser is approaching the accuracy of the
supervised setting, confirming that for these lan-
guages much of the divergence is lexical and not
structural, which is not true for the Germanic lan-
guages. Finally, Korean emerges as a very clear
outlier (both as a source and as a target language),
which again is supported by typological consider-
ations as well as by the difference in tokenization.

With respect to evaluation, it is interesting to
compare the absolute numbers to those reported
in McDonald et al. (2011) for the languages com-

SThese splits are included in the release of the data.



Source Target Test Language
Training Unlabel.ed Attachment Score (UAS) Labele{d Attachment Score (LAS)
Language Germanic Romance Germanic Romance
DE EN SV ES FR KO DE EN N ES FR KO

DE 74.86  55.05 65.89 | 60.65 62.18 | 40.59 || 64.84 47.09 53.57 | 48.14 49.59 | 27.73
EN 58.50 8333 70.56 | 68.07 70.14 | 42.37 || 48.11 7854 57.04 | 56.86 58.20 | 26.65
SV 61.25 61.20 80.01 | 67.50 67.69 | 36.95 || 52.19 49.71 7090 | 54.72 5496 | 19.64
ES 55.39 5856 66.84 | 78.46 75.12 | 30.25 || 45.52 47.87 53.09 | 70.29 63.65 | 16.54
FR 55.05 59.02 65.05 | 7230 8144 | 3579 || 45.96 4741 5225 | 62.56 73.37 | 20.84
KO 33.04 3220 27.62 | 2691 2935 | 71.22 || 26.36 21.81 18.12 | 18.63 19.52 | 55.85

Table 3: Cross-lingual transfer parsing results

mon to both studies (DE, EN, SV and ES). In that
study, UAS was in the 38—68% range, as compared
to 55-75% here. For Swedish, we can even mea-
sure the difference exactly, because the test sets
are the same, and we see an increase from 58.3%
to 70.6%. This suggests that most cross-lingual
parsing studies have underestimated accuracies.

4 Conclusion

We have released data sets for six languages with
consistent dependency annotation. After the ini-
tial release, we will continue to annotate data in
more languages as well as investigate further au-
tomatic treebank conversions. This may also lead
to modifications of the annotation scheme, which
should be regarded as preliminary at this point.
Specifically, with more typologically and morpho-
logically diverse languages being added to the col-
lection, it may be advisable to consistently en-
force the principle that content words take func-
tion words as dependents, which is currently vi-
olated in the analysis of adpositional and copula
constructions. This will ensure a consistent analy-
sis of functional elements that in some languages
are not realized as free words or are not obliga-
tory, such as adpositions which are often absent
due to case inflections in languages like Finnish. It
will also allow the inclusion of language-specific
functional or morphological markers (case mark-
ers, topic markers, classifiers, etc.) at the leaves of
the tree, where they can easily be ignored in appli-
cations that require a uniform cross-lingual repre-
sentation. Finally, this data is available on an open
source repository in the hope that the community
will commit new data and make corrections to ex-
isting annotations.
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Abstract

Aspects of Chinese syntax result in a dis-
tinctive mix of parsing challenges. How-
ever, the contribution of individual sources
of error to overall difficulty is not well un-
derstood. We conduct a comprehensive
automatic analysis of error types made by
Chinese parsers, covering a broad range of
error types for large sets of sentences, en-
abling the first empirical ranking of Chi-
nese error types by their performance im-
pact. We also investigate which error types
are resolved by using gold part-of-speech
tags, showing that improving Chinese tag-
ging only addresses certain error types,
leaving substantial outstanding challenges.

1 Introduction

A decade of Chinese parsing research, enabled
by the Penn Chinese Treebank (PCTB; Xue et al.,
2005), has seen Chinese parsing performance im-
prove from 76.7 F; (Bikel and Chiang, 2000) to
84.1 F; (Qian and Liu, 2012). While recent ad-
vances have focused on understanding and reduc-
ing the errors that occur in segmentation and part-
of-speech tagging (Qian and Liu, 2012; Jiang et al.,
2009; Forst and Fang, 2009), a range of substantial
issues remain that are purely syntactic.

Early work by Levy and Manning (2003) pre-
sented modifications to a parser motivated by a
manual investigation of parsing errors. They noted
substantial differences between Chinese and En-
glish parsing, attributing some of the differences to
treebank annotation decisions and others to mean-
ingful differences in syntax. Based on this analysis
they considered how to modify their parser to cap-
ture the information necessary to model the syn-
tax within the PCTB. However, their manual ana-
lysis was limited in scope, covering only part of
the parser output, and was unable to characterize
the relative impact of the issues they uncovered.

Daniel Tsef
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This paper presents a more comprehensive ana-
lysis of errors in Chinese parsing, building on the
technique presented in Kummerfeld et al. (2012),
which characterized the error behavior of English
parsers by quantifying how often they make er-
rors such as PP attachment and coordination scope.
To accommodate error classes that are absent in
English, we augment the system to recognize
Chinese-specific parse errors.! We use the modi-
fied system to show the relative impact of different
error types across a range of Chinese parsers.

To understand the impact of tagging errors on
different error types, we performed a part-of-
speech ablation experiment, in which particular
confusions are introduced in isolation. By analyz-
ing the distribution of errors in the system output
with and without gold part-of-speech tags, we are
able to isolate and quantify the error types that can
be resolved by improvements in tagging accuracy.

Our analysis shows that improvements in tag-
ging accuracy can only address a subset of the chal-
lenges of Chinese syntax. Further improvement in
Chinese parsing performance will require research
addressing other challenges, in particular, deter-
mining coordination scope.

2 Background

The closest previous work is the detailed manual
analysis performed by Levy and Manning (2003).
While their focus was on issues faced by their fac-
tored PCFG parser (Klein and Manning, 2003b),
the error types they identified are general issues
presented by Chinese syntax in the PCTB. They
presented several Chinese error types that are rare
or absent in English, including noun/verb ambigu-
ity, NP-internal structure and coordination ambi-
guity due to pro-drop, suggesting that closing the
English-Chinese parsing gap demands techniques

!The system described in this paper is available from
http://code.google.com/p/berkeley-parser-analyser/
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beyond those currently used for English. How-
ever, as noted in their final section, their manual
analysis of parse errors in 100 sentences only cov-
ered a portion of a single parser’s output, limiting
the conclusions they could reach regarding the dis-
tribution of errors in Chinese parsing.

2.1 Automatic Error Analysis

Our analysis builds on Kummerfeld et al.
(2012), which presented a system that automati-
cally classifies English parse errors using a two
stage process. First, the system finds the shortest
path from the system output to the gold annota-
tions, where each step in the path is a tree transfor-
mation, fixing at least one bracket error. Second,
each transformation step is classified into one of
several error types.

When directly applied to Chinese parser output,
the system placed over 27% of the errors in the
catch-all ‘Other’ type. Many of these errors clearly
fall into one of a small set of error types, motivat-
ing an adaptation to Chinese syntax.

3 Adapting error analysis to Chinese

To adapt the Kummerfeld et al. (2012) system to
Chinese, we developed a new version of the second
stage of the system, which assigns an error cate-
gory to each tree transformation step.

To characterize the errors the original system
placed in the ‘Other’ category, we looked through
one hundred sentences, identifying error types
generated by Chinese syntax that the existing sys-
tem did not account for. With these observations
we were able to implement new rules to catch the
previously missed cases, leading to the set shown
in Table 1. To ensure the accuracy of our classifica-
tions, we alternated between refining the classifica-
tion code and looking at affected classifications to
identify issues. We also periodically changed the
sentences from the development set we manually
checked, to avoid over-fitting.

Where necessary, we also expanded the infor-
mation available during classification. For exam-
ple, we use the structure of the final gold standard
tree when classifying errors that are a byproduct of
sense disambiguation errors.

4 Chinese parsing errors

Table 1 presents the errors made by the Berkeley
parser. Below we describe the error types that are
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Error Type Brackets % of total ‘
NP-internal* 6019 22.70%
Coordination 2781 10.49%
Verb taking wrong args* 2310 8.71%
Unary 2262 8.53%
Modifier Attachment 1900 7.17%
One Word Span 1560 5.88%
Different label 1418 5.35%
Unary A-over-A 1208 4.56%
Wrong sense/bad attach* 1018 3.84%
Noun boundary error* 685 2.58%
VP Attachment 626 2.36%
Clause Attachment 542 2.04%
PP Attachment 514 1.94%
Split Verb Compound* 232 0.88%
Scope error* 143 0.54%
NP Attachment 109 041%
Other 3186 12.02%

Table 1: Errors made when parsing Chinese. Values are the
number of bracket errors attributed to that error type. The
values shown are for the Berkeley parser, evaluated on the
development set. * indicates error types that were added or
substantially changed as part of this work.

either new in this analysis, have had their definition
altered, or have an interesting distribution.”

In all of our results we follow Kummerfeld et al.
(2012), presenting the number of bracket errors
(missing or extra) attributed to each error type.
Bracket counts are more informative than a direct
count of each error type, because the impact on
EVALB F-score varies between errors, €.g. a sin-
gle attachment error can cause 20 bracket errors,
while a unary error causes only one.

NP-internal. (Figure la). Unlike the Penn
Treebank (Marcus et al., 1993), the PCTB anno-
tates some NP-internal structure. We assign this
error type when a transformation involves words
whose parts of speech in the gold tree are one of:
CC, CD, DEG, ETC, JJ, NN, NR, NT and OD.

We investigated the errors that fall into the NP-
internal category and found that 49% of the errors
involved the creation or deletion of a single pre-
termianl phrasal bracket. These errors arise when
a parser proposes a tree in which POS tags (for in-
stance, JJ or NN) occur as siblings of phrasal tags
(such as NP), a configuration used by the PCTB
bracketing guidelines to indicate complementation
as opposed to adjunction (Xue et al., 2005).

2For an explanation of the English error types, see Kum-
merfeld et al. (2012).



Verb taking wrong args. (Figure 1b). This
error type arises when a verb (e.g. 155 reverse)
is hypothesized to take an incorrect argument
(ffiff Bush instead of HV{i7 position). Note that
this also covers some of the errors that Kummer-
feld et al. (2012) classified as NP Attachment,
changing the distribution for that type.

Unary. For mis-application of unary rules we
separate out instances in which the two brackets in
the production have the the same label (A-over-A).
This cases is created when traces are eliminated, a
standard step in evaluation. More than a third of
unary errors made by the Berkeley parser are of the
A-over-A type. This can be attributed to two fac-
tors: (i) the PCTB annotates non-local dependen-
cies using traces, and (ii) Chinese syntax generates
more traces than English syntax (Guo et al., 2007).
However, for parsers that do not return traces they
are a benign error.

Modifier attachment. (Figure 1c). Incorrect
modifier scope caused by modifier phrase attach-
ment level. This is less frequent in Chinese than
in English: while English VP modifiers occur in
pre- and post-verbal positions, Chinese only al-
lows pre-verbal modification.

Wrong sense/bad attach. (Figure 1d). This ap-
plies when the head word of a phrase receives the
wrong POS, leading to an attachment error. This
error type is common in Chinese because of POS
fluidity, e.g. the well-known Chinese verb/noun
ambiguity often causes mis-attachments that are
classified as this error type.

In Figure 1d, the word %7 invest has
both noun and verb senses. While the gold
standard interpretation is the relative clause
firms that Macau invests in, the parser returned an
NP interpretation Macau investment firms.

Noun boundary error. In this error type, a span
is moved to a position where the POS tags of its
new siblings all belong to the list of NP-internal
structure tags which we identified above, reflecting
the inclusion of additional material into an NP.

Split verb compound. The PCTB annota-
tions recognize several Chinese verb compound-
ing strategies, such as the serial verb construc-
tion R XIZE1% plan [and] build) and the resulta-
tive construction C&E 2N cook [until] done), which
join a bare verb to another lexical item. We in-
troduce an error type specific to Chinese, in which
such verb compounds are split, with the two halves
of the compound placed in different phrases.
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Scope error. These are cases in which a new
span must be added to more closely bind a modifier
phrase (ADVP, ADJP, and PP).

PP attachment. This error type is rare in Chi-
nese, as adjunct PPs are pre-verbal. It does oc-
cur near coordinated VPs, where ambiguity arises
about which of the conjuncts the PP has scope
over. Whether this particular case is PP attachment
or coordination is debatable; we follow Kummer-
feld et al. (2012) and label it PP attachment.

4.1 Chinese-English comparison

It is difficult to directly compare error analysis
results for Chinese and English parsing because
of substantial changes in the classification method,
and differences in treebank annotations.

As described in the previous section, the set of
error categories considered for Chinese is very dif-
ferent to the set of categories for English. Even
for some of the categories that were not substan-
tially changed, errors may be classified differently
because of cross-over between categories between



NP Verb Mod. 1-Word Diff Wrong Noun VP Clause PP
System F; Int. Coord Args Unary Attach Span Label Sense Edge Attach Attach Attach Other
Best 154 125 101 076 0.2 0.21 030 005 021 026 022 018 1.87
Berk-G 868 Il Il HE N N ' §F | F [N N N N N
Berk-2 818 Il | N HN HN N ' =HS B N N N =N =N N
Berk-1 §81.] Il | N  HN HN N ' HI B N =N N N N N
ZPAR 78] Il Il TN i IlN =N =N I BN BN BN BN BN
Bikel 761 Il Il NN  HIN BN BN BN IS S BN BN BN EE
Stan-F 760 il I Il  HIN BN BN BB BN D BN B B BN
Stan-P 700 Il HIN HIIN IIIN I D D D N DD DS
Worst 394 175 173 148 1.68 1.06 102 088 055 050 044 044 411

Table 2: Error breakdown for the development set of PCTB 6. The area filled in for each bar indicates the average number of
bracket errors per sentence attributed to that error type, where an empty bar is no errors and a full bar has the value indicated in
the bottom row. The parsers are: the Berkeley parser with gold POS tags as input (Berk-G), the Berkeley product parser with

two grammars (Berk-2), the Berkeley parser (Berk-1), the parser
the Stanford Factored parser (Stan-F), and the Stanford Unlexical

two categories (e.g. between Verb taking wrong
args and NP Attachment).

Differences in treebank annotations also present
a challenge for cross-language error comparison.
The most common error type in Chinese, NP-
internal structure, is rare in the results of Kummer-
feld et al. (2012), but the datasets are not compara-
ble because the PTB has very limited NP-internal
structure annotated. Further characterization of the
impact of annotation differences on errors is be-
yond the scope of this paper.

Three conclusions that can be made are that (i)
coordination is a major issue in both languages,
(ii) PP attachment is a much greater problem in
English, and (iii) a higher frequency of trace-
generating syntax in Chinese compared to English
poses substantial challenges.

S Cross-parser analysis

The previous section described the error types
and their distribution for a single Chinese parser.
Here we confirm that these are general trends, by
showing that the same pattern is observed for sev-
eral different parsers on the PCTB 6 dev set.
We include results for a transition-based parser
(ZPAR; Zhang and Clark, 2009), a split-merge
PCFG parser (Petrov et al., 2006; Petrov and Klein,
2007; Petrov, 2010), a lexicalized parser (Bikel
and Chiang, 2000), and a factored PCFG and de-
pendency parser (Levy and Manning, 2003; Klein
and Manning, 2003a,b). 4

Comparing the two Stanford parsers in Table 2,
the factored model provides clear improvements

3We use the standard data split suggested by the PCTB 6
file manifest. As a result, our results differ from those previ-
ously reported on other splits. All analysis is on the dev set,
to avoid revealing specific information about the test set.

“These parsers represent a variety of parsing methods,

though exclude some recently developed parsers that are not
publicly available (Qian and Liu, 2012; Xiong et al., 2005).
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of Zhang and Clark (2009) (ZPAR), the Bikel parser (Bikel),
ized PCFG parser (Stan-P).

on sense disambiguation, but performs slightly
worse on coordination.

The Berkeley product parser we include uses
only two grammars because we found, in contrast
to the English results (Petrov, 2010), that further
grammars provided limited benefits. Comparing
the performance with the standard Berkeley parser
it seems that the diversity in the grammars only as-
sists certain error types, with most of the improve-
ment occurring in four of the categories, while
there is no improvement, or a slight decrease, in
five categories.

6 Tagging Error Impact

The challenge of accurate POS tagging in Chi-
nese has been a major part of several recent papers
(Qian and Liu, 2012; Jiang et al., 2009; Forst and
Fang, 2009). The Berk-G row of Table 2 shows
the performance of the Berkeley parser when given
gold POS tags.> While the F; improvement is un-
surprising, for the first time we can clearly show
that the gains are only in a subset of the error types.
In particular, tagging improvement will not help
for two of the most significant challenges: coordi-
nation scope errors, and verb argument selection.

To see which tagging confusions contribute to
which error reductions, we adapt the POS ablation
approach of Tse and Curran (2012). We consider
the POS tag pairs shown in Table 3. To isolate the
effects of each confusion we start from the gold
tags and introduce the output of the Stanford tag-
ger whenever it returns one of the two tags being
considered.® We then feed these “semi-gold” tags

>We used the Berkeley parser as it was the best of the
parsers we considered. Note that the Berkeley parser occa-
sionally prunes all of the parses that use the gold POS tags,
and so returns the best available alternative. This leads to a
POS accuracy of 99.35%, which is still well above the parser’s

standard POS accuracy of 93.66%.
®We introduce errors to gold tags, rather than removing er-



[ Confusedtags  Errors  AFp |
\'AY NN 1055 -2.72
DEC DEG 526 -1.72
1 NN 297  -0.57
NR NN 320 -0.05

Table 3: The most frequently confused POS tag pairs. Each
A Fq is relative to Berk-G.

to the Berkeley parser, and run the fine-grained er-
ror analysis on its output.

VV/NN. This confusion has been consistently
shown to be a major contributor to parsing errors
(Levy and Manning, 2003; Tse and Curran, 2012;
Qian and Liu, 2012), and we find a drop of over 2.7
F when the output of the tagger is introduced. We
found that while most error types have contribu-
tions from a range of POS confusions, verb/noun
confusion was responsible for virtually all of the
noun boundary errors corrected by using gold tags.

DEG/DEC. This confusion between the rela-
tivizer and subordinator senses of the particle HY
de is the primary source of improvements on mod-
ifier attachment when using gold tags.

NR/NN and JJ/NN. Despite their frequency,
these confusions have little effect on parsing per-
formance. Even within the NP-internal error type
their impact is limited, and almost all of the errors
do not change the logical form.

7 Conclusion

We have quantified the relative impacts of a
comprehensive set of error types in Chinese pars-
ing. Our analysis has also shown that while im-
provements in Chinese POS tagging can make a
substantial difference for some error types, it will
not address two high-frequency error types: in-
correct verb argument attachment and coordina-
tion scope. The frequency of these two error types
is also unimproved by the use of products of la-
tent variable grammars. These observations sug-
gest that resolving the core challenges of Chinese
parsing will require new developments that suit the
distinctive properties of Chinese syntax.
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Abstract

This paper is concerned with the problem
of heterogeneous dependency parsing. In
this paper, we present a novel joint infer-
ence scheme, which is able to leverage
the consensus information between het-
erogeneous treebanks in the parsing phase.
Different from stacked learning meth-
ods (Nivre and McDonald, 2008; Martins
et al., 2008), which process the depen-
dency parsing in a pipelined way (e.g., a
second level uses the first level outputs), in
our method, multiple dependency parsing
models are coordinated to exchange con-
sensus information. We conduct experi-
ments on Chinese Dependency Treebank
(CDT) and Penn Chinese Treebank (CTB),
experimental results show that joint infer-
ence can bring significant improvements
to all state-of-the-art dependency parsers.

1 Introduction

Dependency parsing is the task of building depen-
dency links between words in a sentence, which
has recently gained a wide interest in the natu-
ral language processing community and has been
used for many problems ranging from machine
translation (Ding and Palmer, 2004) to question
answering (Zhou et al., 2011a). Over the past few
years, supervised learning methods have obtained
state-of-the-art performance for dependency pars-
ing (Yamada and Matsumoto, 2003; McDonald
et al.,, 2005; McDonald and Pereira, 2006; Hall
et al., 2006; Zhou et al., 2011b; Zhou et al.,
2011c). These methods usually rely heavily on
the manually annotated treebanks for training the
dependency models. However, annotating syntac-
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T (with) Ho't(eyes)  $lfj(cast) 75 5 (Hongkong )
BA NN Vv NR

H(with) Ht(eyes)  #lf(cast) Fr 5 (Hongkong )
p n \% ns

Figure 1: Different grammar formalisms of syn-
tactic structures between CTB (upper) and CDT
(below). CTB is converted into dependency gram-
mar based on the head rules of (Zhang and Clark,
2008).

tic structure, either phrase-based or dependency-
based, is both time consuming and labor intensive.
Making full use of the existing manually annotated
treebanks would yield substantial savings in data-
annotation costs.

In this paper, we present a joint inference
scheme for heterogenous dependency parsing.
This scheme is able to leverage consensus in-
formation between heterogenous treebanks dur-
ing the inference phase instead of using individual
output in a pipelined way, such as stacked learning
methods (Nivre and McDonald, 2008; Martins et
al., 2008). The basic idea is very simple: although
heterogenous treebanks have different grammar
formalisms, they share some consensus informa-
tion in dependency structures for the same sen-
tence. For example in Figure 1, the dependency
structures actually share some partial agreements
for the same sentence, the two words “eyes” and
“Hongkong” depend on “cast” in both Chinese
Dependency Treebank (CDT) (Liu et al., 2006)
and Penn Chinese Treebank (CTB) (Xue et al.,
2005). Therefore, we would like to train the de-
pendency parsers on individual heterogenous tree-
bank and jointly parse the same sentences with
consensus information exchanged between them.

The remainder of this paper is divided as fol-

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 104—109,
Sofia, Bulgaria, August 4-9 2013. (©2013 Association for Computational Linguistics
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consensus information exchange

i Joint inference

test data

Figure 2: General joint inference scheme of het-
erogeneous dependency parsing.

lows. Section 2 gives a formal description of
the joint inference for heterogeneous dependency
parsing. In section 3, we present the experimental
results. Finally, we conclude with ideas for future
research.

2 Our Approach

The general joint inference scheme of heteroge-
neous dependency parsing is shown in Figure 2.
Here, heterogeneous treebanks refer to two Chi-
nese treebanks: CTB and CDT, therefore we have
only two parsers, but the framework is generic
enough to integrate more parsers. For easy expla-
nation of the joint inference scheme, we regard a
parser without consensus information as a base-
line parser, a parser incorporates consensus infor-
mation called a joint parser. Joint inference pro-
vides a framework that accommodates and coordi-
nates multiple dependency parsing models. Sim-
ilar to Li et al. (2009) and Zhu et al. (2010),
the joint inference for heterogeneous dependency
parsing consists of four components: (1) Joint In-
ference Model; (2) Parser Coordination; (3) Joint
Inference Features; (4) Parameter Estimation.

2.1 Joint Inference Model

For a given sentence x, a joint dependency parsing
model finds the best dependency parsing tree y*
among the set of possible candidate parses )(x)
based on a scoring function Fj:

y" = argmax Fs(z,y)
yeY ()

ey

Following (Li et al., 2009), we will use dj, to de-
note the kth joint parser, and also use the notation
Hp(x) for a list of parse candidates of sentence
x determined by di. The sth joint parser can be
written as:

FS(SL‘7y) = PS(mvy) + Z \Pk(y7H’€(m))
ko ks

@

where Ps(z,y) is the score function of the sth
baseline model, and each Wy (y, Hy(z)) is a partial
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consensus score function with respect to dj, and is
defined over y and Hy(z):

Uy, Ha (@) = Y M frea(y, Hi(x)) ©)
i

where each fi;(y, Hp(x)) is a feature function
based on a consensus measure between y and
Hi(x), and Ay is the corresponding weight pa-
rameter. Feature index [ ranges over all consensus-
based features in equation (3).

2.2 Parser Coordination

Note that in equation (2), though the baseline score
function Ps(x,y) can be computed individually,
the case of Wy (y, H(x)) is more complicated. It
is not feasible to enumerate all parse candidates
for dependency parsing. In this paper, we use a
bootstrapping method to solve this problem. The
basic idea is that we can use baseline models’ n-
best output as seeds, and iteratively refine joint
models’ n-best output with joint inference. The
joint inference process is shown in Algorithm 1.

Algorithm 1 Joint inference for multiple parsers
Step1: For each joint parser di, perform inference with
a baseline model, and memorize all dependency parsing
candidates generated during inference in Hy(z);

Step2: For each candidate in Hy(z), we extract subtrees
and store them in H}, (). First, we extract bigram-subtrees
that contain two words. If two words have a dependency
relation, we add these two words as a subtree into Hj,(z).
Similarly, we can extract trigram-subtrees. Note that the
dependency direction is kept. Besides, we also store the
“ROOT” word of each candidate in H},(x);

Step3: Use joint parsers to re-parse the sentence x with
the baseline features and joint inference features (see sub-
section 2.3). For joint parser dy, consensus-based features
of any dependency parsing candidate are computed based
on current setting of H’(z) for all s but k. New depen-
dency parsing candidates generated by dj, in re-parsing are
cached in Hy, (z);

Step4: Update all H(x) with Hj, (z);

Step5: Iterate from Step2 to Step4 until a preset iteration
limit is reached.

In Algorithm 1, dependency parsing candidates
of different parsers can be mutually improved. For
example, given two parsers d; and do with candi-
dates H1 and Ho, improvements on 1 enable ds
to improve Hg, and H; benefits from improved
Ho, and so on.

We can see that a joint parser does not en-
large the search space of its baseline model, the
only change is parse scoring. By running a com-
plete inference process, joint model can be applied
to re-parsing all candidates explored by a parser.



Thus Step3 can be viewed as full-scale candidates
reranking because the reranking scope is beyond
the limited n-best output currently cached in H.

2.3 Joint Inference Features

In this section we introduce the consensus-based
feature functions fy;(y, Hi(z)) introduced in
equation (3). The formulation can be written as:

fraly, He(@) = Y PW'lde)Li(y,y)

y €M (x)

C)

where y is a dependency parse of = by using parser
ds (s # k), vy is a dependency parse in Hy(x)
and P(y'|d},) is the posterior probability of depen-
dency parse 3/ parsed by parser dj, given sentence
x. Ij(y,y’) is a consensus measure defined on y
and y' using different feature functions.

Dependency parsing model P(y'|dy) can be
predicted by using the global linear models
(GLMs) (e.g., McDonald et al. (2005); McDonald
and Pereira (2006)). The consensus-based score
functions I;(y, y’) include the following parts:

(1) head-modifier dependencies. Each head-
modifier dependency (denoted as “edge”) is a tu-
ple t =< h,m,h — m >, 50 Leage(y,y’)
ey 5L 1),

(2) sibling dependencies: Each sibling de-
pendency (denoted as “sib”) is a tuple t =<
i,h,m,h <~ i — m >, so Ig(y,y)
ey (1)

(3) grandparent dependencies: Each grand-
parent dependency (denoted as “gp”) is a tuple
t =< h,i,m,h — i — m >, s0 Iy(y,y) =

Z<h,i,m,hﬁiam>€y 6(t7 y/)'

(4) root feature: This feature (denoted as
“root”) indicates whether the multiple depen-
dency parsing trees share the same “ROOT”, so
oot (,Y') = - roorsey (< ROOT >, /).

d(+,-) is a indicator function—0(¢,y’) is 1 if
t € 9 and O otherwise, feature index [ €
{edge, sib, gp,root} in equation (4). Note that
< h,m,h = m > and < m,h,m — h > are
two different edges.

In our joint model, we extend the baseline fea-
tures of (McDonald et al., 2005; McDonald and
Pereira, 2006; Carreras, 2007) by conjoining with
the consensus-based features, so that we can learn
in which kind of contexts the different parsers
agree/disagree. For the third-order features (e.g.,
grand-siblings and tri-siblings) described in (Koo
et al., 2010), we will discuss it in future work.
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2.4 Parameter Estimation

The parameters are tuned to maximize the depen-
dency parsing performance on the development
set, using an algorithm similar to the average per-
ceptron algorithm due to its strong performance
and fast training (Koo et al., 2008). Due to lim-
ited space, we do not present the details. For more
information, please refer to (Koo et al., 2008).

3 Experiments

In this section, we describe the experiments
to evaluate our proposed approach by using
CTB4 (Xue et al., 2005) and CDT (Liu et al.,
2006). For the former, we adopt a set of head-
selection rules (Zhang and Clark, 2008) to convert
the phrase structure syntax of treebank into a de-
pendency tree representation. The standard data
split of CTB4 from Wang et al. (2007) is used. For
the latter, we randomly select 2,000 sentences for
test set, another 2,000 sentences for development
set, and others for training set.

We use two baseline parsers, one trained on
CTB4, and another trained on CDT in the ex-
periments. We choose the n-best size of 16 and
the best iteration time of four on the development
set since these settings empirically give the best
performance. CTB4 and CDT use two different
POS tag sets and transforming from one tag set
to another is difficult (Niu et al., 2009). To over-
come this problem, we use Stanford POS Tagger!
to train a universal POS tagger on the People’s
Daily corpus,? a large-scale Chinese corpus (ap-
proximately 300 thousand sentences and 7 mil-
lion words) annotated with word segmentation and
POS tags. Then the POS tagger produces a uni-
versal layer of POS tags for both the CTB4 and
CDT. Note that the word segmentation standards
of these corpora (CTB4, CDT and People’s Daily)
slightly differs; however, we do not consider this
problem and leave it for future research.

The performance of the parsers is evaluated us-
ing the following metrics: UAS, DA, and CM,
which are defined by (Hall et al., 2006). All the
metrics except CM are calculated as mean scores
per word, and punctuation tokens are consistently
excluded.

We conduct experiments incrementally to eval-
uate the joint features used in our first-order and
second-order parsers. The first-order parser

"http://nlp.stanford.edu/software/tagger.shtml
*http://www.icL.pku.edu.cn



- Features CTB4 CpT
UAS CM UAS CM
baseline 86.6 42.5 75.4 16.6
+ edge 88.01 (11.41) | 44.28 (11.78) || 77.10 (T1.70) | 17.82 (11.22)
depl + root 87.22 (10.62) | 43.03 (10.53) || 75.83 (10.43) | 16.81 (10.21)
+ both 88.19 (11.59) | 44.54 (12.04) || 77.16 (T1.76) | 17.90 (11.30)
CTB4 + CDT 87.32 43.08 7591 16.89
baseline 88.38 48.81 77.52 19.70
+ edge 89.17 (10.79) | 49.73 (10.92) || 78.44 (10.92) | 20.85 (11.15)
+ sib 88.94 (10.56) | 49.26 (10.45) || 78.02 (10.50) | 20.13 (10.43)
dep2 +gp 88.90 (10.52) | 49.11 (10.30) || 77.97 (10.45) | 20.06 (10.36)
+ root 88.61 (10.23) | 48.88 (10.07) || 77.65 (10.13) | 19.88 (10.18)
+ all 89.62 (11.24) | 50.15 (11.34) || 79.01 (11.49) | 21.11 (11.41)
CTB4 + CDT 88.91 49.13 78.03 20.12

Table 1: Dependency parsing results on the test set with different joint inference features. Abbreviations:
depl/dep2 = first-order parser and second-order parser; baseline = depl without considering any joint
inference features; +* = the baseline features conjoined with the joint inference features derived from the
heterogeneous treebanks; CTB4 + CDT = we simply concatenate the two corpora and train a dependency
parser, and then test on CTB4 and CDT using this single model. Improvements of joint models over

baseline models are shown in parentheses.

[ Type | Systems [ <40 [ Full |

dep2 90.86 | 88.38

D MaltParser 87.1 85.8

Wang et al. (2007) 86.6 -

MST et 90.55 | 88.82
C Martins et al. (2008)] | 90.63 | 88.34
Surdeanu et al. (2010)7 | 89.40 | 86.63

H Zhao et al. (2009) 88.9 86.1
Ours 91.48 | 89.62
S Yu et al. (2008) - 87.26
Chen et al. (2009) 92.34 | 89.91
Chen et al. (2012) - 91.59

Table 2: Comparison of different approach on
CTB4 test set using UAS metric. MaltParser =
Hall et al. (2006); MST ;,:=Nivre and McDon-
ald (2008). Type D = discriminative dependency
parsers without using any external resources; C =
combined parsers (stacked and ensemble parsers);
H = discriminative dependency parsers using ex-
ternal resources derived from heterogeneous tree-
banks, S = discriminative dependency parsers us-
ing external unlabeled data. t The results on CTB4
were not directly reported in these papers, we im-
plemented the experiments in this paper.

(depl) only incorporates head-modifier depen-
dency part (McDonald et al., 2005). The second-
order parser (dep2) uses the head-modifier and
sibling dependency parts (McDonald and Pereira,
2006), as well as the grandparent dependency
part (Carreras, 2007; Koo et al., 2008). Table 1
shows the experimental results.

As shown in Table 1, we note that adding more
joint inference features incrementally, the depen-
dency parsing performance is improved consis-
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tently, for both treebanks (CTB4 or CDT). As a
final note, all comparisons between joint models
and baseline models in Table 1 are statistically sig-
nificant.> Furthermore, we also present a base-
line method called “CTB4 + CDT” for compari-
son. This method first tags both CTB4 and CDT
with the universal POS tagger trained on the Peo-
ple’s Daily corpus, then simply concatenates the
two corpora and trains a dependency parser, and
finally tests on CTB4 and CDT using this single
model. The comparisons in Table 1 tell us that
very limited information is obtained without con-
sensus features by simply taking a union of the
dependencies and their contexts from the two tree-
banks.

To put our results in perspective, we also com-
pare our second-order joint parser with other best-
performing systems. “< 40” refers to the sentence
with the length up to 40 and “Full” refers to all
the sentences in test set. The results are shown
in Table 2, our approach significantly outperforms
many systems evaluated on this data set. Chen
et al. (2009) and Chen et al. (2012) reported a
very high accuracy using subtree-based features
and dependency language model based features
derived from large-scale data. Our systems did not
use such knowledge. Moreover, their technique is
orthogonal to ours, and we suspect that combin-
ing their subtree-based features into our systems
might get an even better performance. We do not
present the comparison of our proposed approach

3We use the sign test at the sentence level. All the com-
parisons are significant at p < 0.05.



[ Type | Systems [ UAS | DA |

Duan et al. (2007) 83.88 | 84.36

D Huang and Sagae (2010) | 85.20 | 85.52
Zhang and Nivre (2011) 86.0 -

C Zhang and Clark (2008) - 86.21
Bohnet and Kuhn (2012) | 87.5 -
H Liet al. (2012) 86.44 -

Ours 85.88 | 86.52

S Chen et al. (2009) - 86.70

Table 3: Comparison of different approaches on
CTBS test set. Abbreviations D, C, H and S are as
in Table 2.

[ Treebanks | #Sen | # Better | # NoChange [ # Worse |
CTB4 355 74 255 26
CDT 2,000 341 1,562 97

Table 4: Statistics on joint inference output on

CTB4 and CDT development set.

with the state-of-the-art methods on CDT because
there is little work conducted on this treebank.

Some researchers conducted experiments on
CTB5 with a different data split: files 1-815 and
files 1,001-1,136 for training, files 886-931 and
1,148-1,151 for development, files 816-885 and
files 1,137-1,147 for testing. The development
and testing sets were also performed using gold-
standard assigned POS tags. We report the experi-
mental results on CTBS test set in Table 4. Our re-
sults are better than most systems on this data split,
except Zhang and Nivre (2011), Li et al. (2012)
and Chen et al. (2009).

3.1 Additional Results

To obtain further information about how depen-
dency parsers benefit from the joint inference, we
conduct an initial experiment on CTB4 and CDT.
From Table 4, we find that out of 355 sentences on
the development set of CTB4, 74 sentences ben-
efit from the joint inference, while 26 sentences
suffer from it. For CDT, we also find that out of
2,000 sentences on the development set, 341 sen-
tences benefit from the joint inference, while 97
sentences suffer from it. Although the overall de-
pendency parsing results is improved, joint infer-
ence worsens dependency parsing result for some
sentences. In order to obtain further information
about the error sources, it is necessary to investi-
gate why joint inference gives negative results, we
will leave it for future work.

4 Conclusion and Future Work

We proposed a novel framework of joint infer-
ence, in which multiple dependency parsing mod-
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els were coordinated to search for better depen-
dency parses by leveraging the consensus infor-
mation between heterogeneous treebanks. Exper-
imental results showed that joint inference signif-
icantly outperformed the state-of-the-art baseline
models.

There are some ways in which this research
could be continued. First, recall that the joint in-
ference scheme involves an iterative algorithm by
using bootstrapping. Intuitively, there is a lack of
formal guarantee. A natural avenue for further re-
search would be the use of more powerful algo-
rithms that provide certificates of optimality; e.g.,
dual decomposition that aims to develop decod-
ing algorithms with formal guarantees (Rush et
al., 2010). Second, we would like to combine our
heterogeneous treebank annotations into a unified
representation in order to make dependency pars-
ing results comparable across different annotation
guidelines (e.g., Tsarfaty et al. (2011)).
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Abstract

In this paper, we combine easy-first de-
pendency parsing and POS tagging algo-
rithms with beam search and structured
perceptron. We propose a simple variant
of “early-update” to ensure valid update
in the training process. The proposed so-
lution can also be applied to combine
beam search and structured perceptron
with other systems that exhibit spurious
ambiguity. On CTB, we achieve 94.01%
tagging accuracy and 86.33% unlabeled
attachment score with a relatively small
beam width. On PTB, we also achieve
state-of-the-art performance.

1 Introduction

The easy-first dependency parsing algorithm
(Goldberg and Elhadad, 2010) is attractive due to
its good accuracy, fast speed and simplicity. The
easy-first parser has been applied to many appli-
cations (Seeker et al., 2012; Sgggard and Wulff,
2012). By processing the input tokens in an easy-
to-hard order, the algorithm could make use of
structured information on both sides of the hard
token thus making more indicative predictions.
However, rich structured information also causes
exhaustive inference intractable. As an alterna-
tive, greedy search which only explores a tiny
fraction of the search space is adopted (Goldberg
and Elhadad, 2010).

To enlarge the search space, a natural exten-
sion to greedy search is beam search. Recent
work also shows that beam search together with
perceptron-based global learning (Collins, 2002)
enable the use of non-local features that are help-
ful to improve parsing performance without
overfitting (Zhang and Nivre, 2012). Due to the-
se advantages, beam search and global learning
has been applied to many NLP tasks (Collins and

No spurious ambiguity: one unique correct action sequence

stepl step2 - stepk-1 stepk

beam |€ 3| |P 15 P25 P 32
P4 C13 P22 P 28\
P2 P 10 C 200 P 26| valid update

i

C 25

model score

Spurious ambiguity: multiple correct action sequences
stepl  step2 -+ stepk-1 stepk

c,9 P15 p 20 p 27 validupdate
G 7 G 12 P 19 P 25
P 6 P 10 C, 17 P 24

invalid update !
G 9 G 19 G 29
G 237/—/
Figure 1: Example of cases without/with spurious
ambiguity. The 3 x 1 table denotes a beam. “C/P”

denotes correct/predicted action sequence. The
numbers following C/P are model scores.

Roark 2004; Zhang and Clark, 2007). However,
to the best of our knowledge, no work in the lit-
erature has ever applied the two techniques to
easy-first dependency parsing.

While applying beam-search is relatively
straightforward, the main difficulty comes from
combining easy-first dependency parsing with
perceptron-based global learning. In particular,
one needs to guarantee that each parameter up-
date is valid, i.e., the correct action sequence has
lower model score than the predicted one'. The
difficulty in ensuring validity of parameter up-
date for the easy-first algorithm is caused by its
spurious ambiguity, i.e., the same result might be
derived by more than one action sequences.

For algorithms which do not exhibit spurious
ambiguity, “early update” (Collins and Roark
2004) is always valid: at the k-th step when the
single correct action sequence falls off the beam,

! As shown by (Huang et al., 2012), only valid update guar-
antees the convergence of any perceptron-based training.
Invalid update may lead to bad learning or even make the
learning not converge at all.
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b2

)

RIGHT(D) (b) am valid LeFT(
T

I
(a) T am valid (d) am
(c) I valid
c) I am
LEFT(3) —TRlGHT(1)
valid

Figure 2: An example of parsing “I am valid”. Spu-
rious ambiguity: (d) can be derived by both
[RIGHT(1), LEFT(2)] and [LEFT(3), RIGHT(1)].

its model score must be lower than those still in
the beam (as illustrated in figure 1, also see the
proof in (Huang et al., 2012)). While for easy-
first dependency parsing, there could be multiple
action sequences that yield the gold result (C, and
C, in figure 1). When all correct sequences fall
off the beam, some may indeed have higher
model score than those still in the beam (C; in
figure 1), causing invalid update.

For the purpose of valid update, we present a
simple solution which is based on early update.
The basic idea is to use one of the correct action
sequences that were pruned right at the k-th step
(C, in figure 1) for parameter update.

The proposed solution is general and can also
be applied to other algorithms that exhibit spuri-
ous ambiguity, such as easy-first POS tagging
(Ma et al., 2012) and transition-based dependen-
cy parsing with dynamic oracle (Goldberg and
Nivre, 2012). In this paper, we report experi-
mental results on both easy-first dependency
parsing and POS tagging (Ma et al., 2012). We
show that both easy-first POS tagging and de-
pendency parsing can be improved significantly
from beam search and global learning. Specifi-
cally, on CTB we achieve 94.01% tagging accu-
racy which is the best result to date? for a single
tagging model. With a relatively small beam, we
achieve 86.33% unlabeled score (assume gold
tags), better than state-of-the-art transition-based
parsers (Huang and Sagae, 2010; Zhang and
Nivre, 2011). On PTB, we also achieve good
results that are comparable to the state-of-the-art.

2  Easy-first dependency parsing

The easy-first dependency parsing algorithm
(Goldberg and Elhadad, 2010) builds a depend-
ency tree by performing two types of actions
LEFT(i) and RIGHT(i) to a list of sub-tree struc-
tures py,..., pr. pi is initialized with the i-th word

2 Joint tagging-parsing models achieve higher accuracy, but
those models are not directly comparable to ours.

Algorithm 1: Easy-first with beam search

Input:  sentence x of n words, beam width s
Output: one best dependency tree

BEST. (x, 3, w) £ argtop®
s( ) £ arg Pyeu, e

// top s extensions from the beam
1 Ry« ] Il initially, empty beam
2 for kel..n—1do
3 R, « BEST,(x,84_1, W)
4 return 3,_,[0](x) // tree built by the best sequence

EXTEN(y)w ) ‘p(y )

of the input sentence. Action LEFT(i)/RIGHT(i)
attaches p; to its left/right neighbor and then re-
moves p; from the sub-tree list. The algorithm
proceeds until only one sub-tree left which is the
dependency tree of the input sentence (see the
example in figure 2). Each step, the algorithm
chooses the highest score action to perform ac-
cording to the linear model:
Score(x) = w - @(x)

Here, w is the weight vector and ¢ is the feature
representation.  In  particular, @ (LEFT(i)/
RIGHT(i)) denotes features extracted from p;.

The parsing algorithm is greedy which ex-
plores a tiny fraction of the search space. Once
an incorrect action is selected, it can never yield
the correct dependency tree. To enlarge the
search space, we introduce the beam-search ex-
tension in the next section.

3 Easy-first with beam search

In this section, we introduce easy-first with beam
search in our own notations that will be used
throughout the rest of this paper.

For a sentence x of n words, let y be the action
(sub-)sequence that can be applied, in sequence,
to x and the result sub-tree list is denoted by
y(x). For example, suppose x is “I am valid” and
y is [RIGHT(1)], then y(x) yields figure 2(b). Let
A; to be LEFT(i)/RIGHT(i) actions where i € [1,1].
Thus, the set of all possible one-action extension
of yis:

EXTEN(y) 2 {y 0 ala € Ap )}

Here, ‘0’ means insert a to the end of y. Follow-
ing (Huang et al., 2012), in order to formalize
beam search, we also use the argtopycyw - ¢ (¥)
operation which returns the top s action sequenc-
es in Y according to w - ¢(y). Here, Ydenotes a
set of action sequences, ¢(y) denotes the sum of
feature vectors of each action in y

Pseudo-code of easy-first with beam search is
shown in algorithm 1. Beam search grows s
(beam width) action sequences in parallel using a
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Algorithm 2: Perceptron-based training over one

training sample (x, t)

Input:  (x,t), s, parameter w

Output: new parameter w
Torc(x, 8, w, C) £ argmax

y'GCn(UyEBEXTEN(y))W 16
// top correct extension from the beam
B <[]
for kel..n—1do
y = Torc(x, By_1, w,C)
), « BEST (x,R),_,, W)
if 8, N C = @ 1/ all correct seq. falls off the beam
w e w+ @) — @B [0])
break
if 8,_1[0](x) # t //full update

wew+ @) —oB,-4[0])
10 returnw

© oo N Ol hWN B

beam f3, (sequences in f3 are sorted in terms of

model score, i.e., w- @(R[0]) > w-@(B[1]) ...).

At each step, the sequences in {3 are expanded in
all possible ways and then f3 is filled up with the
top s newly expanded sequences (line 2 ~ line 3).
Finally, it returns the dependency tree built by
the top action sequence in 3,,_;.

4 Training

To learn the weight vector w, we use the percep-
tron-based global learning® (Collins, 2002) which
updates w by rewarding the feature weights fired
in the correct action sequence and punish those
fired in the predicted incorrect action sequence.
Current work (Huang et al., 2012) rigorously
explained that only valid update ensures conver-
gence of any perceptron variants. They also justi-
fied that the popular “early update” (Collins and
Roark, 2004) is valid for the systems that do not
exhibit spurious ambiguity”.

However, for the easy-first algorithm or more
generally, systems that exhibit spurious ambigui-
ty, even “early update” could fail to ensure valid-
ity of update (see the example in figure 1). For
validity of update, we propose a simple solution
which is based on “early update” and which can
accommodate spurious ambiguity. The basic idea
is to use the correct action sequence which was

® Following (Zhang and Nivre, 2012), we say the training
algorithm is global if it optimizes the score of an entire ac-
tion sequence. A local learner trains a classifier which dis-
tinguishes between single actions.

* As shown in (Goldberg and Nivre 2012), most transition-
based dependency parsers (Nivre et al., 2003; Huang and
Sagae 2010;Zhang and Clark 2008) ignores spurious ambi-
guity by using a static oracle which maps a dependency tree
to a single action sequence.

Features of (Goldberg and Elhadad, 2010)

for pin iy, P, Piss Wp-Vlp, Wp-Vrp, to-vl,,
tp-vrp, tlcy, trey, wicy, wic,

for p in i, Pi, Pis Pivsy Pisz ty-tlcy, to-trey, totley-tre,

for p,q,r in (pi-Zl Pi-1, pi)v (pi-

to-tatr, Ty-lgWy
1 Pisa, P, (Pisss Piva P

forp, g in (pi.s, pi) totlcyty, to-trey-ty, to-ticy-wg,,

t,-trcy-Wy, t-Wy-tlc,, to-wy-trc,

Table 1: Feature templates for English dependency
parsing. w, denotes the head word of p, t, denotes the
POS tag of w,. vlp/vr, denotes the number p’s of
left/right child. Ic,/rc, denotes p’s leftmost/rightmost
child. p; denotes partial tree being considered.

pruned right at the step when all correct sequence
falls off the beam (as C; in figure 1).

Algorithm 2 shows the pseudo-code of the
training procedure over one training sample
(x, t), a sentence-tree pair. Here we assume C to
be the set of all correct action sequences/sub-
sequences. At step k, the algorithm constructs a
correct action sequence v of length k by extend-
ing those in 3,4 (line 3). It also checks whether
3, no longer contains any correct sequence. If so,
y together with 3, [0] are used for parameter up-
date (line 5 ~ line 6). It can be easily verified that
each update in line 6 is valid. Note that both
‘Topc’ and the operation in line 5 use C to check
whether an action sequence y is correct or not.
This can be efficiently implemented (without
explicitly enumerating €) by checking if each
LEFT(i)/RIGHT(i) in y are compatible with (x, t):
p; already collected all its dependents according
to t; p; is attached to the correct neighbor sug-
gested by t.

5 Experiments

For English, we use PTB as our data set. We use
the standard split for dependency parsing and the
split used by (Ratnaparkhi, 1996) for POS tag-
ging. Penn2Malt’ is used to convert the bracket-
ed structure into dependencies. For dependency
parsing, POS tags of the training set are generat-
ed using 10-fold jack-knifing.

For Chinese, we use CTB 5.1 and the split
suggested by (Duan et al., 2007) for both tagging
and dependency parsing. We also use Penn2Malt
and the head-finding rules of (Zhang and Clark
2008) to convert constituency trees into depend-
encies. For dependency parsing, we assume gold
segmentation and POS tags for the input.

® http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html
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Features used in English dependency parsing
are listed in table 1. Besides the features in
(Goldberg and Elhadad, 2010), we also include
some trigram features and valency features
which are useful for transition-based dependency
parsing (Zhang and Nivre, 2011). For English
POS tagging, we use the same features as in
(Shen et al., 2007). For Chinese POS tagging and
dependency parsing, we use the same features as
(Ma et al., 2012). All of our experiments are
conducted on a Core i7 (2.93GHz) machine, both

the tagger and parser are implemented using C++.

5.1 Effect of beam width

Tagging/parsing performances with different
beam widths on the development set are listed in
table 2 and table 3. We can see that Chinese POS
tagging, dependency parsing as well as English
dependency parsing greatly benefit from beam
search. While tagging accuracy on English only
slightly improved. This may because that the
accuracy of the greedy baseline tagger is already
very high and it is hard to get further improve-
ment. Table 2 and table 3 also show that the
speed of both tagging and dependency parsing
drops linearly with the growth of beam width.

5.2  Final results

Tagging results on the test set together with some
previous results are listed in table 4. Dependency
parsing resul<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>