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Preface: General Chair

Welcome to the 51st Annual Meeting of the Association for Computational Linguistics in Sofia, Bulgaria!
The first ACL meeting was held in Denver in 1963 under the name AMTCL. This makes ACL one of the
longest running conferences in computer science. This year we received a record total number of 1286
submissions, which is a testament to the continued and growing importance of computational linguistics
and natural language processing.

The success of an ACL conference is made possible by the dedication and hard work of many people. I
thank all of them for volunteering their time and energy in service to our community.

Priscilla Rasmussen, the ACL Business Manager, and Graeme Hirst, the treasurer, did most of the
groundwork in selecting Sofia as the conference site, went through several iterations of planning and
shouldered a significant part of the organizational work for the conference. It was my first exposure to
the logistics of organizing a large event and I was surprised at how much expertise and experience is
necessary to make ACL a successful meeting.

Thanks to Svetla Koeva and her team for their work on local arrangements, including social activities
(Radka Vlahova, Tsvetana Dimitrova, Svetlozara Lesseva), local sponsorship (Stoyan Mihov, Rositsa
Dekova), conference handbook (Nikolay Genov, Hristina Kukova), web site (Tinko Tinchev, Emil
Stoyanov, Georgi Iliev), local exhibits (Maria Todorova, Ekaterina Tarpomanova), internet, wifi and
equipment (Martin Yalamov, Angel Genov, Borislav Rizov) and student volunteer management (Kalina
Boncheva). Perhaps most importantly, Svetla was the liaison to the professional conference organizer
AIM Group, a relationship that is crucial for the success of the conference. Doing the local arrangements
is a fulltime job for an extended period of time. We are lucky that we have people in our community who
are willing to provide this service without compensation.

The program co-chairs Pascale Fung and Massimo Poesio selected a strong set of papers for the main
conference and invited three great keynote speakers, Harald Baayen, Chantal Prat and Lars Rasmussen.
Putting together the program of the top conference in our field is a difficult job and I thank Pascale and
Massimo for taking on this important responsibility.

Thanks are also due to the other key members of the ACL organizing committees: Aoife Cahill and
Qun Liu (workshop co-chairs); Johan Bos and Keith Hall (tutorial co-chairs); Miriam Butt and Sarmad
Hussain (demo co-chairs); Steven Bethard, Preslav Nakov and Feiyu Xu (faculty advisors to the student
research workshop); Anik Dey, Eva Vecchi, Sebastian Krause and Ivelina Nikolova (co-chairs of the
student research workshop); Leo Wanner (mentoring chair); and Anisava Miltenova, Ivan Derzhanski
and Anna Korhonen (publicity co-chairs).

I am particularly indebted to Roberto Navigli, Jing-Shin Chang and Stefano Faralli for producing the
proceedings of the conference, a bigger job than usual because of the large number of submissions and
the resulting large number of acceptances.

The ACL conference and the ACL organization benefit greatly from the financial support of our sponsors.
We thank the platinum level sponsor, Baidu; the three gold level sponsors; the three silver level sponsors;
and six bronze level sponsors. Three other sponsors took advantage of more creative options to assist us:
Facebook sponsored the Student Volunteers; IBM sponsored the Best Student Paper Award; and SDL
sponsored the conference bags. We are grateful for the financial support from these organizations.

Finally, I would like to express my appreciation to the area chairs, workshop organizers, tutorial
presenters and reviewers for their participation and contribution.

Of course, the ACL conference is primarily held for the people who attend the conference, including the
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authors. I would like to thank all of you for your participation and wish you a productive and enjoyable
meeting in Sofia!

ACL 2013 General Chair
Hinrich Schuetze, University of Munich
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Preface: Programme Committee Co-Chairs

Welcome to the 2013 Conference of the Association for Computational Linguistics! Our community
continues to grow, and this year’s conference has set a new record for paper submissions. We received
1286 submissions, which is 12% more than the previous record; we are particularly pleased to see a
striking increase in the number of short papers submitted - 624, which is 21.8% higher than the previous
record set in 2011.

Another encouraging trend in recent years is the increasing number of aspects of language processing,
and forms of language, of interest to our community. In order to reflect this greater diversity, this year’s
conference has a much larger number of tracks than previous conferences, 26. Consequently, many more
area chairs and reviewers were recruited than in the past, thus involving an even greater subset of the
community in the selection of the program. We feel this, too, is a very positive development. We thank
the area chairs and reviewers for their hard work.

A key innovation introduced this year is the presentation at the conference of sixteen papers accepted by
the new ACL journal, Transactions of the Association for Computational Linguistics (TACL). We have
otherwise maintained most of the innovations introduced in recent years, including accepting papers
accompanied by supplemental materials such as corpora or software.

Another new practice this year is the presence of an industrial keynote speaker in addition to the two
traditional keynote speakers. We are delighted to have as invited speakers two scholars as distinguished as
Prof. Harald Baayen of Tuebingen and Alberta and Prof. Chantel Prat from the University of Wisconsin.
Prof. Baayen will talk about using eye-tracking to study the semantics of compounds, an issue of great
interest for work on distributional semantics. Prof. Prat will talk about research studying language in
bilinguals using methods from neuroscience. The industrial keynote speaker, Dr. Lars Rasmussen from
Facebook, will talk about the new graph search algorithm recently announced by the company. Last, but
not least, the recipient of this year’s ACL Lifetime Achievement Award will give a plenary lecture during
the final day of the conference.

The list of people to thank for their contribution to this year’s program is very long. First of all we
wish to thank the authors who submitted top quality work to the conference; we would not have such
a strong program without them, nor without the hard work of area chairs and reviewers, who enabled
us to make often very difficult choices and to provide valuable feedback to the authors. As usual, Rich
Gerber and the START team gave us crucial help with an amazing speed. The general conference chair
Hinrich Schuetze provided valuable guidance and kept the timetable ticking along. We thank the local
arrangements committee headed by Svetla Koeva, who played a key role in finalizing the program. We
also thank the publication chairs, Jing-Shin Chang and Roberto Navigli, and their collaborator Stefano
Faralli, who together produced this volume; and Priscilla Rasmussen, Drago Radev and Graeme Hirst,
who provided enormously useful guidance and support. Finally, we wish to thank previous program
chairs, and in particular John Carroll, Stephen Clark, and Jian Su, for their insight on the process.

We hope you will be as pleased as we are with the result and that you’ll enjoy the conference in Sofia
this Summer.

ACL 2013 Program Co-Chairs
Pascale Fung, Hong-Kong University of Science and Technology
Massimo Poesio, University of Essex
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Adam, Lopez-Cozar Ramon, Louis Annie, Lu Wei, Lu Xiaofei, Lu Yue, Luca Dini, Luo Xiao-
qiang, Lv Yajuan

Ma Yanjun, Macherey Wolfgang, Macherey Klaus, Madnani Nitin, Maegaard Bente, Magnini
Bernardo, Maier Andreas, Manandhar Suresh, Marcu Daniel, Markantonatou Stella, Markert Katja,
Marsi Erwin, Martin James H., Martinez David, Mason Rebecca, Matsubara Shigeki, Matsumoto

xii



Yuji, Matsuzaki Takuya, Mauro Cettolo, Mauser Arne, May Jon, Mayfield James, Maynard Di-
ana, McCarthy Diana, McClosky David, McCoy Kathy, McCrae John Philip, McNamee Paul, Meij
Edgar, Mejova Yelena, Mellish Chris, Merlo Paola, Metze Florian, Metzler Donald, Meyers Adam,
Mi Haitao, Mihalcea Rada, Miltsakaki Eleni, Minkov Einat, Mitchell Margaret, Miyao Yusuke,
Mochihashi Daichi, Moens Marie-Francine, Mohammad Saif, Moilanen Karo, Monson Christian,
Montes Manuel, Monz Christof, Moon Taesun, Moore Robert, Morante Roser, Morarescu Paul,
Mueller Thomas, Munteanu Dragos, Murawaki Yugo, Muresan Smaranda, Myaeng Sung-Hyon,
Mylonakis Markos

Nakagawa Tetsuji, Nakano Mikio, Nakazawa Toshiaki, Nakov Preslav, Naradowsky Jason, Naseem
Tahira, Nastase Vivi, Navarro Borja, Navigli Roberto, Nazarenko Adeline, Nederhof Mark-Jan,
Negri Matteo, Nenkova Ani, Neubig Graham, Neumann Guenter, Ng Vincent, Ngai Grace, Nguyen
ThuyLinh, Nivre Joakim, Nowson Scott

Och Franz, Odijk Jan, Oflazer Kemal, Oh Jong-Hoon, Okazaki Naoaki, Oltramari Alessandro,
Orasan Constantin, Osborne Miles, Osenova Petya, Ott Myle, Ovesdotter Alm Cecilia

Padó Sebastian, Palmer Martha, Palmer Alexis, Pang Bo, Pantel Patrick, Paraboni Ivandre, Pardo
Thiago, Paris Cecile, Paroubek Patrick, Patwardhan Siddharth, Paul Michael, Paulik Matthias,
Pearl Lisa, Pedersen Ted, Pedersen Bolette, Pedersen Ted, Peñas Anselmo, Penn Gerald, Perez-
Rosas Veronica, Peters Wim, Petrov Slav, Petrovic Sasa, Piasecki Maciej, Pighin Daniele, Pinkal
Manfred, Piperidis Stelios, Piskorski Jakub, Pitler Emily, Plank Barbara, Ponzetto Simone Paolo,
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Invited Talk

When parsing makes things worse: An eye-tracking study of English compounds
Harald Baayen

Seminar für Sprachwissenschaft, Eberhard Karls University, Tuebingen

Abstract

Compounds differ in the degree to which they are semantically compositional (compare, e.g., "carwash",
"handbag", "beefcake" and "humbug"). Since even relatively transparent compounds such as "carwash"
may leave the uninitiated reader with uncertainty about the intended meaning (soap for washing cars? a
place where you can get your car washed?), an efficient way of retrieving the meaning of a compound is
to use the compound’s form as an access key for its meaning.

However, in psychology, the view has become popular that at the earliest stage of lexical processing
in reading, a morpho-orthographic decomposition into morphemes would necessarily take place. Theo-
rists ascribing to obligatory decomposition appear to have some hash coding scheme in mind, with the
constituents providing entry points to a form of table look-up (e.g., Taft & Forster, 1976).

Leaving aside the question of whether such a hash coding scheme would be computationally efficient
as well as the question how the putative morpho-orthographic representations would be learned, my
presentation focuses on the details of lexical processing as revealed by an eye-tracking study of the
reading of English compounds in sentences.

A careful examination of the eye-tracking record with generalized additive modeling (Wood, 2006),
combined with computational modeling using naive discrimination learning (Baayen, Milin, Filipovic,
Hendrix, & Marelli, 2011) revealed that how far the eye moved into the compound is co-determined by
the compound’s lexical distributional properties, including the cosine similarity of the compound and its
head in document vector space (as measured with latent semantic analysis, Landauer & Dumais, 1997).
This indicates that compound processing is initiated already while the eye is fixating on the preceding
word, and that even before the eye has landed on the compound, processes discriminating the meaning
of the compound from the meaning of its head have already come into play.

Once the eye lands on the compound, two very different reading signatures emerge, which critically
depend on the letter trigrams spanning the morpheme boundary (e.g., "ndb" and "dba" in "handbag").
From a discrimination learning perspective, these boundary trigrams provide the crucial (and only) or-
thographic cues for the compound’s (idiosyncratic) meaning. If the boundary trigrams are sufficiently
strongly associated with the compound’s meaning, and if the eye lands early enough in the word, a single
fixation suffices. Within 240 ms (of which 80 ms involve planning the next saccade) the compound’s
meaning is discriminated well enough to proceed to the next word.

However, when the boundary trigrams are only weakly associated with the compound’s meaning, multi-
ple fixations become necessary. In this case, without the availability of the critical orthographic cues, the
eye-tracking record bears witness to the cognitive system engaging not only bottom-up processes from
form to meaning, but also top-down guessing processes that are informed by the a-priori probability of
the head and the cosine similarities of the compound and its constituents in semantic vector space.

These results challenge theories positing obligatory decomposition with hash coding, as hash coding
predicts insensitivity to semantic transparency, contrary to fact. Our results also challenge theories posit-
ing blind look-up based on compounds’ orthographic forms. Although this might be computationally
efficient, the eye can’t help seeing parts of the whole. In summary, reality is much more complex, with
deep pre-arrival parafoveal processing followed by either efficient discrimination driven by the boundary

xv



trigrams (within 140 ms), or by an inefficient decompositional process (requiring an additional 200 ms)
that seeks to make sense of the conjunction of head and modifier.
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Invited Talk

The Natural Language Interface of Graph Search
Lars Rasmussen

Facebook Inc

Abstract

The backbone of the Facebook social network service is an enormous graph representing hundreds of
types of nodes and thousands of types of edges. Among these nodes are over 1 billion users and 250
billion photos. The edges connecting these nodes have exceeded 1 trillion and continue to grow at an
incredible rate. Retrieving information from such a graph has been a formidable and exciting task. Now
it is possible for you to find, in an aggregated manner, restaurants in a city that your friends have visited,
or photos of people who have attended college with you, and explore many other nuanced connections
between the nodes and edges in our graph given that such information is visible to you.

Graph Search Beta, launched early this year, is a personalized semantic search engine that allows users
to express their intent in natural language. It seeks answers through the traversal of relevant graph edges
and ranks results by various signals extracted from our data. You can find “tv shows liked by people who
study linguistics“ by issuing this query verbatim and, for the entertainment value, compare the results
with “tv shows liked by people who study computer science“. Our system is built to be robust to many
varied inputs, such as grammatically incorrect user queries or traditional keyword searches. Our query
suggestions are always constructed in natural language, expressing the precise intention interpreted by
our system. This means users would know in advance whether the system has correctly understood their
intent before selecting any suggestion. The system also assists users with auto-completions, demonstrat-
ing what kinds of queries it can understand.

The development of the natural language interface encountered an array of challenging problems. The
grammar structure needed to incorporate semantic information in order to translate an unstructured query
into a structured semantic function, and also use syntactic information to return grammatically meaning-
ful suggestions. The system required not only the recognition of entities in a query, but also the resolution
of entities to database entries based on proximity of the entity and user nodes. Semantic parsing aimed to
rank potential semantics including those that may match the immediate purpose of the query along with
other refinements of the original intent. The ambiguous nature of natural language led us to consider
how to interpret certain queries in the most sensible way. The need for speed demanded state-of-the-art
parsing algorithms tailored for our system. In this talk, I will introduce the audience to Graph Search
Beta, share our experience in developing the technical components of the natural language interface, and
bring up topics that may be of interesting research value to the NLP community.
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Invited Talk

Individual Differences in Language and Executive Processes: How the Brain Keeps Track of
Variables

Chantel S. Prat
University of Washington

Abstract
Language comprehension is a complex cognitive process which requires tracking and integrating multi-
ple variables. Thus, it is not surprising that language abilities (e.g., reading comprehension) vary widely
even in the college population, and that language and general cognitive abilities (e.g., working memory
capacity) co-vary. Although it has been widely accepted that improvements in general cognitive abili-
ties enable (or give rise to) increased linguistic skills, the fact that individuals who develop bilingually
outperform monolinguals in tests of executive functioning provides evidence of a situation in which a
particular language experience gives rise to improvements in general cognitive processes. In this talk, I
will describe two converging lines of research investigating individual differences in working memory
capacity and reading ability in monolinguals and improved executive functioning in bilinguals. Results
from these investigations suggest that the functioning of the fronto-striatal loops can explain the relation
between language and non-linguistic executive functioning in both populations. I then discuss evidence
suggesting that this system may function to track and route “variables” into prefrontal control structures.
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Abstract

We present a dialectal Egyptian Arabic
to English statistical machine translation
system that leverages dialectal to Modern
Standard Arabic (MSA) adaptation. In
contrast to previous work, we first nar-
row down the gap between Egyptian and
MSA by applying an automatic character-
level transformational model that changes
Egyptian to EG′, which looks simi-
lar to MSA. The transformations include
morphological, phonological and spelling
changes. The transformation reduces
the out-of-vocabulary (OOV) words from
5.2% to 2.6% and gives a gain of 1.87
BLEU points. Further, adapting large
MSA/English parallel data increases the
lexical coverage, reduces OOVs to 0.7%
and leads to an absolute BLEU improve-
ment of 2.73 points.

1 Introduction

Modern Standard Arabic (MSA) is the lingua
franca for the Arab world. Arabic speakers gen-
erally use dialects in daily interactions. There are
6 dominant dialects, namely Egyptian, Moroccan,
Levantine, Iraqi, Gulf, and Yemeni1. The dialects
may differ in vocabulary, morphology, syntax, and
spelling from MSA and most lack spelling con-
ventions.

Different dialects often make different lexical
choices to express concepts. For example, the con-
cept corresponding to “Oryd” YK
P



@ (“I want”) is

expressed as “EAwz” 	PðA« in Egyptian, “Abgy”
ù



	
ªK. @ in Gulf, “Aby” ú



G
.
@ in Iraqi, and “bdy” ø



YK.

in Levantine2. Often, words have different or op-
posite meanings in different dialects.

1http://en.wikipedia.org/wiki/
Varieties_of_Arabic

2All transliterations follow the Buckwalter scheme

Arabic dialects may differ morphologically
from MSA. For example, Egyptian Arabic uses a
negation construct similar to the French “ne pas”
negation construct. The Egyptian word “mlEbt$”

�
�

�
�J.ªÊÓ (or alternatively spelled �

�
�
�J.ªËAÓ) (“I did

not play”) is composed of “m+lEbt+$”.

The pronunciations of letters often differ from
one dialect to another. For example, the letter “q”
�

� is typically pronounced in MSA as an unvoiced
uvular stop (as the “q” in “quote”), but as a glot-
tal stop in Egyptian and Levantine (like “A” in
“Alpine”) and a voiced velar stop in the Gulf (like
“g” in “gavel”). Differing pronunciations often re-
flect on spelling.

Social media platforms allowed people to ex-
press themselves more freely in writing. Although
MSA is used in formal writing, dialects are in-
creasingly being used on social media sites. Some
notable trends on social platforms include (Dar-
wish et al., 2012):
- Mixed language texts where bilingual (or mul-
tilingual) users code switch between Arabic and
English (or Arabic and French). In the exam-
ple “wSlny mrsy” ú



æ�QÓ ú




	
æÊ�ð (“got it thank

you”), “thank you” is the transliterated French
word “merci”.
– The use of phonetic transcription to match di-
alectal pronunciation. For example, “Sdq” �

�Y�

(“truth”) is often written as “Sj” l .
�� in Gulf di-

alect.
– Creative spellings, spelling mistakes, and word
elongations are ubiquitous in social texts.
– The use of new words like “lol” ÈñË (“LOL”).
– The attachment of new meanings to words such
as using “THn” 	áj£ to mean “very” while it
means “grinding” in MSA.

The Egyptian dialect has the largest number of
speakers and is the most commonly understood di-
alect in the Arab world. In this work, we focused
on translating dialectal Egyptian to English us-

1



ing Egyptian to MSA adaptation. Unlike previous
work, we first narrowed the gap between Egyptian
and MSA using character-level transformations
and word n-gram models that handle spelling mis-
takes, phonological variations, and morphological
transformations. Later, we applied an adaptation
method to incorporate MSA/English parallel data.

The contributions of this paper are as follows:
– We trained an Egyptian/MSA transformation
model to make Egyptian look similar to MSA. We
publicly released the training data.
– We built a phrasal Machine Translation (MT)
system on adapted Egyptian/English parallel data,
which outperformed a non-adapted baseline by
1.87 BLEU points.
– We used phrase-table merging (Nakov and Ng,
2009) to utilize MSA/English parallel data with
the available in-domain parallel data.

2 Previous Work
Our work is related to research on MT from a re-
source poor language (to other languages) by piv-
oting on a closely related resource rich language.
This can be done by either translating between
the related languages using word-level translation,
character level transformations, and language spe-
cific rules (Durrani et al., 2010; Hajič et al., 2000;
Nakov and Tiedemann, 2012), or by concatenating
the parallel data for both languages (Nakov and
Ng, 2009). These translation methods generally
require parallel data, for which hardly any exists
between dialects and MSA. Instead of translating
between a dialect and MSA, we tried to narrow
down the lexical, morphological and phonetic gap
between them using a character-level conversion
model, which we trained on a small set of parallel
dialect/MSA word pairs.

In the context of Arabic dialects3, most previous
work focused on converting dialects to MSA and
vice versa to improve the processing of dialects
(Sawaf, 2010; Chiang et al., 2006; Mohamed et
al., 2012; Utiyama and Isahara, 2008). Sawaf
(2010) proposed a dialect to MSA normalization
that used character-level rules and morphological
analysis. Salloum and Habash (2011) also used a
rule-based method to generate MSA paraphrases
of dialectal out-of-vocabulary (OOV) and low fre-
quency words. Instead of rules, we automatically

3Due to space limitations, we restrict discussion to work
on dialects only.

learnt character mappings from dialect/MSA word
pairs.

Zbib et al. (2012) explored several methods for
dialect/English MT. Their best Egyptian/English
system was trained on dialect/English parallel
data. They used two language models built from
the English GigaWord corpus and from a large
web crawl. Their best system outperformed man-
ually translating Egyptian to MSA then translat-
ing using an MSA/English system. In contrast, we
showed that training on in-domain dialectal data
irrespective of its small size is better than training
on large MSA/English data. Our LM experiments
also affirmed the importance of in-domain English
LMs. We also showed that a conversion does not
imply a straight forward usage of MSA resources
and there is a need for adaptation which we ful-
filled using phrase-table merging (Nakov and Ng,
2009).

2.1 Baseline

We constructed baselines that were based on the
following training data:
- An Egyptian/English parallel corpus consist-
ing of ≈38k sentences, which is part of the
LDC2012T09 corpus (Zbib et al., 2012). We ran-
domly divided it into 32k sentences for training,
2k for development and 4k for testing. We hence-
forth refer to this corpus as EG and the English
part of it as EGen. We did not have access to the
training/test splits of Zbib et al. (2012) to directly
compare to their results.
- An MSA/English parallel corpus consisting of
200k sentences from LDC4. We refer to this cor-
pus as the AR corpus.

For language modeling, we used either EGen
or the English side of the AR corpus plus the En-
glish side of NIST12 training data and English Gi-
gaWord v5. We refer to this corpus as GW.

We tokenized Egyptian and Arabic accord-
ing to the ATB tokenization scheme using the
MADA+TOKAN morphological analyzer and to-
kenizer v3.1 (Roth et al., 2008). Word elonga-
tions were already fixed in the corpus. We word-
aligned the parallel data using GIZA++ (Och and
Ney, 2003), and symmetrized the alignments using
grow-diag-final-and heuristic (Koehn et al., 2003).
We trained a phrasal MT system (Koehn et al.,
2003). We built five-gram LMs using KenLM

4Arabic News (LDC2004T17), eTIRR (LDC2004E72),
and parallel corpora the GALE program
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Train LM BLEU OOV

B1 AR GW 7.48 6.7
B2 EG GW 12.82 5.2
B3 EG EGen 13.94 5.2
B4 EG EGenGW 14.23 5.2

Table 1: Baseline results using the EG and AR
training sets with GW and EGen corpora for LM
training

with modified Kneser-Ney smoothing (Heafield,
2011). In case of more than one LM, we tuned
their weights on a development set using Mini-
mum Error Rate Training (Och and Ney, 2003).

We built several baseline systems as follows:
– B1 used AR for training a translation model and
GW for LM.
– B2-B4 systems used identical training data,
namely EG, with the GW, EGen, or both for B2,
B3, and B4 respectively for language modeling.

Table 1 reports the baseline results. The system
trained on AR (B1) performed poorly compared
to the one trained on EG (B2) with a 6.75 BLEU
points difference. This highlights the difference
between MSA and Egyptian. Using EG data for
training both the translation and language models
was effective. B4 used two LMs and yielded the
best results. For later comparison, we only use the
B4 baseline.

3 Proposed Methods

3.1 Egyptian to EG′ Conversion
As mentioned previously, dialects differ from
MSA in vocabulary, morphology, and phonology.
Dialectal spelling often follows dialectal pronun-
ciation, and dialects lack standard spelling con-
ventions. To address the vocabulary problem, we
used the EG corpus for training.

To address the spelling and morphological dif-
ferences, we trained a character-level mapping
model to generate MSA words from dialectal
ones using character transformations. To train the
model, we extracted the most frequent words from
a dialectal Egyptian corpus, which had 12,527
news comments (containing 327k words) from Al-
Youm Al-Sabe news site (Zaidan and Callison-
Burch, 2011) and translated them to their equiv-
alent MSA words. We hired a professional trans-
lator, who generated one or more translations of
the most frequent 5,581 words into MSA. Out of
these word pairs, 4,162 involved character-level
transformations due to phonological, morphologi-

cal, or spelling changes. We aligned the translated
pairs at character level using GIZA++ and Moses
in the manner described in Section 2.1. As in the
baseline of Kahki et al. (2011), given a source
word, we produced all of its possible segmenta-
tions along with their associated character-level
mappings. We restricted individual source char-
acter sequences to be 3 characters at most. We
retained all mapping sequences leading to valid
words in a large lexicon. We built the lexicon from
a set of 234,638 Aljazeera articles5 that span a 10
year period and contain 254M tokens. Spelling
mistakes in Aljazeera articles were very infre-
quent. We sorted the candidates by the product of
the constituent mapping probabilities and kept the
top 10 candidates. Then we used a trigram LM that
we built from the aforementioned Aljazeera arti-
cles to pick the most likely candidate in context.
We simply multiplied the character-level transfor-
mation probability with the LM probability – giv-
ing them equal weight. Since Egyptian has a “ne
pas” like negation construct that involves putting a
“Ð” and “ �

�” at the beginning and end of verbs,
we handled words that had negation by remov-
ing these two letters, then applying our character
transformation, and lastly adding the negation ar-
ticle “lA” B before the verb. We converted theEG
train, tune, and test parts. We refer to the converted
corpus as EG′.

As an example, our system transformed
Yg

�
��. j. ªJ
Ó ÑêÊ�jJ
K. ú



Î

�
Ë @ ��. (“what is hap-

pening to them does not please anyone”) to
Yg I. j. ªK
 B ÑêË É�m�'


 ø



	
YË@ ��. . Transform-

ing “Ally” ú


Î

�
Ë @ to “Al*y” ø




	
YË@ involved a spelling

correction. The transformation of “byHSlhm”
ÑêÊ�jJ
K. to “yHSl lhm” ÑêË É�m�'


 involved a mor-
phological change and word splitting. Chang-
ing “myEjb$” �

��. j. ªJ
Ó to “lA yEjb” I. j. ªK
 B in-
volved morphologically transforming a negation
construct.

3.2 Combining AR and EG′

The aforementioned conversion generated a lan-
guage that is close, but not identical, to MSA.
In order to maximize the gain using both paral-
lel corpora, we used the phrase merging technique
described in Nakov and Ng (2009) to merge the
phrase tables generated from theAR andEG′ cor-
pora. If a phrase occurred in both phrase tables, we

5http://www.aljazeera.net
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adopted one of the following three solutions:
- Only added the phrase with its translations and
their probabilities from the AR phrase table. This
assumed AR alignments to be more reliable.
- Only added the phrase with its translations and
their probabilities from theEG′ phrase table. This
assumed EG′ alignments to be more reliable.
- Added translations of the phrase from both
phrase tables and left the choice to the decoder.
We added three additional features to the new
phrase table to avail the information about the ori-
gin of phrases (as in Nakov and Ng (2009)).

3.3 Evaluation and Discussion
We performed the following experiments:
- S0 involved translating the EG′ test using AR.
- S1 and S2 trained on the EG′ with EGen and
both EGen and GW for LM training respectively.
- S∗ used phrase merging technique. All systems
trained on both EG′ and AR corpora. We built
separate phrase tables from the two corpora and
merged them. When merging, we preferredAR or
EG′ for SAR and SEG′ respectively. For SALL,
we kept phrases from both phrase tables.

Table 2 summarizes results of using EG′ and
phrase table merging. S0 was slightly better than
B1, but lagged considerably behind training using
EG or EG′. S1, which used only EG′ for train-
ing showed an improvement of 1.67 BLEU points
from the best baseline system (B4). Using both
language models (S2) led to slight improvement.
Phrase merging that preferred phrases learnt from
EG′ data over AR data performed the best with a
BLEU score of 16.96.

Train LM BLEU OOV

B4 EG EGenGW 14.23 5.2

S0 AR EGen 8.61 2.0
S1 EG′ EGen 15.90 2.6
S2 EG′ EGenGW 16.10 2.6

SAR PTAR EGenGW 16.14 0.7
SEG′ PTEG′ EGenGW 16.96 0.7
SALL PTEG′,AR EGenGW 16.73 0.7

Table 2: Summary of results using different com-
binations of EG′/English and MSA/English train-
ing data

We analyzed 100 test sentences that led to the
greatest absolute change in BLEU score, whether
positive or negative, between training with EG
and EG′. The largest difference in BLEU was
0.69 in favor of EG′. Translating the Egyp-

tian sentence “wbyHtrmwA AlnAs AltAnyp”
�
éJ


	
K A

�
JË @ �A

	
JË @ @ñÓQ

�
�jJ
K. ð produced “ @ñÓQ

�
�jJ
K. ð (OOV)

the second people” (BLEU = 0.31). Conver-
sion changed “wbyHtrmwA” to “wyHtrmwA” and
“AltAnyp” �

éJ

	
K A

�
JË @ to “AlvAnyp” �

éJ

	
K A

�
JË @, leading to

“and they respect other people” (BLEU = 1).
Training withEG′ outperformedEG for 63 of the
sentences. Conversion improved MT, because it
reduced OOVs, enabled MADA+TOKAN to suc-
cessfully analyze words, and reduced spelling mis-
takes.

In further analysis, we examined 1% of the sen-
tences with the largest difference in BLEU score.
Out of these, more than 70% were cases where the
EG′ model achieved a higher BLEU score. For
each observed conversion error, we identified its
linguistic character, i.e. whether it is lexical, syn-
tactic, morphological or other. We found that in
more than half of the cases (≈57%) using morpho-
logical information could have improved the con-
version. Consider the following example, where
(1) is the original EG sentence and its EG/EN
translation, and (2) is the converted EG′ sentence
and its EG′/EN translation:

1. ½
�
JJ.

	
«P I. �k ø



X

	
àB

lAn dy Hsb rgbtk
because this is according to your desire

2. é
�
JJ.

	
«P I. �k è

	
Yë

	
à



B

lOn h*h Hsb rgbth
because this is according to his desire

In this case, “rgbtk” ½
�
JJ.

	
«P (“your wish”) was con-

verted to “rgbth” é
�
JJ.

	
«P (“his wish”) leading to an

unwanted change in the translation. This could be
avoided, for instance, by running a morphologi-
cal analyzer on the original and converted word,
and making sure their morphological features (in
this case, the person of the possessive) correspond.
In a similar case, the phrase “mEndy$ AEdA”
Z @Y«@

�
��
Y

	
JªÓ was converted to “Endy OEdA’”

Z @Y«@ ø



Y
	
J«, thereby changing the translation from

”I don’t have enemies” to ”I have enemies”. Here,
again, a morphological analyzer could verify the
retaining of negation after conversion.

In another sentence, “knty” ú



�
æ

	
J» (“you (fm.)

were”) was correctly converted to the MSA “knt”
�

I
	
J», which is used for feminine and masculine

forms. However, the induced ambiguity ended up
hurting translation.
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Aside from morphological mistakes, conversion
often changed words completely. In one sen-
tence, the word “lbAnh” é

	
KAJ. Ë (”chewing gum”)

was wrongly converted to “lOnh” é
	
K


B (”because

it”), resulting in a wrong translation. Perhaps a
morphological analyzer, or just a part-of-speech
tagger, could enforce (or probabilistically encour-
age) a match in parts of speech.

The conversion also faces some other chal-
lenges. Consider the following example:

1. éJ

�
K
 @ A

	
JÊÔ« A

	
Jk@ @ñë

hwA AHnA EmlnA Ayyyh
he is we did we What ? ?

2. éK
 @ A
	
JÊÔ« 	ám�

	
' ñë

hw nHn EmlnA Ayh
he we did we do ? ?

While the first two words “hwA AHnA” A
	
Jk@ @ñë

were correctly converted to “hw nHn” 	ám�
	
' ñë, the

final word “Ayyyh” éJ

�
K
 @ (”what”) was shortened

but remained dialectal “Ayh” éK
 @ rather than MSA
“mA/mA*A” AÓ/ @

	
XAÓ. There is a syntactic chal-

lenge in this sentence, since the Egyptian word or-
der in interrogative sentences is normally different
from the MSA word order: the interrogative par-
ticle appears at the end of the sentence instead of
at the beginning. Addressing this problem might
have improved translation.

The above analysis suggests that incorporat-
ing deeper linguistic information in the conversion
procedure could improve translation quality. In
particular, using a morphological analyzer seeems
like a promising possibility. One approach could
be to run a morphological analyzer for dialectal
Arabic (e.g. MADA-ARZ (Habash et al., 2013))
on the original EG sentence and another analyzer
for MSA (such as MADA) on the converted EG′

sentence, and then to compare the morphological
features. Discrepancies should be probabilistically
incorporated in the conversion. Exploring this ap-
proach is left for future work.

4 Conclusion

We presented an Egyptian to English MT system.
In contrast to previous work, we used an auto-
matic conversion method to map Egyptian close
to MSA. The converted Egyptian EG′ had fewer
OOV words and spelling mistakes and improved
language handling. The MT system built on the

adapted parallel data showed an improvement of
1.87 BLEU points over our best baseline. Using
phrase table merging that combined AR and EG′

training data in a way that preferred adapted di-
alectal data yielded an extra 0.86 BLEU points.
We will make the training data for our conversion
system publicly available.

For future work, we want to expand our work
to other dialects, while utilizing dialectal morpho-
logical analysis to improve conversion. Also, we
believe that improving English language model-
ing to match the genre of the translated sentences
can have significant positive impact on translation
quality.
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Abstract

The notion of fertility in word alignment
(the number of words emitted by a sin-
gle state) is useful but difficult to model.
Initial attempts at modeling fertility used
heuristic search methods. Recent ap-
proaches instead use more principled ap-
proximate inference techniques such as
Gibbs sampling for parameter estimation.
Yet in practice we also need the single best
alignment, which is difficult to find us-
ing Gibbs. Building on recent advances in
dual decomposition, this paper introduces
an exact algorithm for finding the sin-
gle best alignment with a fertility HMM.
Finding the best alignment appears impor-
tant, as this model leads to a substantial
improvement in alignment quality.

1 Introduction

Word-based translation models intended to model
the translation process have found new uses iden-
tifying word correspondences in sentence pairs.
These word alignments are a crucial training com-
ponent in most machine translation systems. Fur-
thermore, they are useful in other NLP applica-
tions, such as entailment identification.

The simplest models may use lexical infor-
mation alone. The seminal Model 1 (Brown
et al., 1993) has proved very powerful, per-
forming nearly as well as more complicated
models in some phrasal systems (Koehn et al.,
2003). With minor improvements to initializa-
tion (Moore, 2004) (which may be important
(Toutanova and Galley, 2011)), it can be quite
competitive. Subsequent IBM models include
more detailed information about context. Models

2 and 3 incorporate a positional model based on
the absolute position of the word; Models 4 and
5 use a relative position model instead (an English
word tends to align to a French word that is nearby
the French word aligned to the previous English
word). Models 3, 4, and 5 all incorporate a no-
tion of “fertility”: the number of French words that
align to any English word.

Although these latter models covered a broad
range of phenomena, estimation techniques and
MAP inference were challenging. The au-
thors originally recommended heuristic proce-
dures based on local search for both. Such meth-
ods work reasonably well, but can be computation-
ally inefficient and have few guarantees. Thus,
many researchers have switched to the HMM
model (Vogel et al., 1996) and variants with more
parameters (He, 2007). This captures the posi-
tional information in the IBM models in a frame-
work that admits exact parameter estimation infer-
ence, though the objective function is not concave:
local maxima are a concern.

Modeling fertility is challenging in the HMM
framework as it violates the Markov assump-
tion. Where the HMM jump model considers only
the prior state, fertility requires looking across
the whole state space. Therefore, the standard
forward-backward and Viterbi algorithms do not
apply. Recent work (Zhao and Gildea, 2010) de-
scribed an extension to the HMM with a fertility
model, using MCMC techniques for parameter es-
timation. However, they do not have a efficient
means of MAP inference, which is necessary in
many applications such as machine translation.

This paper introduces a method for exact MAP
inference with the fertility HMM using dual de-
composition. The resulting model leads to sub-
stantial improvements in alignment quality.
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2 HMM alignment

Let us briefly review the HMM translation model
as a starting point. We are given a sequence of
English words e = e1, . . . , eI . This model pro-
duces distributions over French word sequences
f = f1, . . . , fJ and word alignment vectors a =
a1, . . . , aJ , where aj ∈ [0..J ] indicates the En-
glish word generating the jth French word, 0 rep-
resenting a special NULL state to handle systemat-
ically unaligned words.

Pr(f ,a|e) = p(J |I)
J∏

j=1

p(aj |aj−1) p
(
fj
∣∣eaj

)

The generative story begins by predicting the num-
ber of words in the French sentence (hence the
number of elements in the alignment vector). Then
for each French word position, first the alignment
variable (English word index used to generate the
current French word) is selected based on only the
prior alignment variable. Next the French word is
predicted based on its aligned English word.

Following prior work (Zhao and Gildea, 2010),
we augment the standard HMM with a fertility dis-
tribution.

Pr(f ,a|e) =p(J |I)
I∏

i=1

p(φi|ei)

J∏

j=1

p(aj |aj−1) p
(
fj
∣∣eaj

)
(1)

where φi =
∑J

j=1 δ(i, aj) indicates the number of
times that state j is visited. This deficient model
wastes some probability mass on inconsistent con-
figurations where the number of times that a state
i is visited does not match its fertility φi. Follow-
ing in the footsteps of older, richer, and wiser col-
leagues (Brown et al., 1993),we forge ahead un-
concerned by this complication.

2.1 Parameter estimation

Of greater concern is the exponential complex-
ity of inference in this model. For the standard
HMM, there is a dynamic programming algorithm
to compute the posterior probability over word
alignments Pr(a|e, f). These are the sufficient
statistics gathered in the E step of EM.

The structure of the fertility model violates the
Markov assumptions used in this dynamic pro-
gramming method. However, we may empirically

estimate the posterior distribution using Markov
chain Monte Carlo methods such as Gibbs sam-
pling (Zhao and Gildea, 2010). In this case,
we make some initial estimate of the a vector,
potentially randomly. We then repeatedly re-
sample each element of that vector conditioned
on all other positions according to the distribu-
tion Pr(aj |a−j , e, f). Given a complete assign-
ment of the alignment for all words except the cur-
rent, computing the complete probability includ-
ing transition, emission, and jump, is straightfor-
ward. This estimate comes with a computational
cost: we must cycle through all positions of the
vector repeatedly to gather a good estimate. In
practice, a small number of samples will suffice.

2.2 MAP inference with dual decomposition

Dual decomposition, also known as Lagrangian
relaxation, is a method for solving complex
combinatorial optimization problems (Rush and
Collins, 2012). These complex problems are sepa-
rated into distinct components with tractable MAP
inference procedures. The subproblems are re-
peatedly solved with some communication over
consistency until a consistent and globally optimal
solution is found.

Here we are interested in the problem of find-
ing the most likely alignment of a sentence pair
e, f . Thus, we need to solve the combinatorial op-
timization problem argmaxa Pr(f ,a|e). Let us
rewrite the objective function as follows:

h(a) =
I∑

i=1


log p(φi|ei) +

∑

j,aj=i

log p(fj |ei)
2




+
J∑

j=1

(
log p(aj |aj−1) +

log p
(
fj
∣∣eaj

)

2

)

Because f is fixed, the p(J |I) term is constant and
may be omitted. Note how we’ve split the opti-
mization into two portions. The first captures fer-
tility as well as some component of the translation
distribution, and the second captures the jump dis-
tribution and the remainder of the translation dis-
tribution.

Our dual decomposition method follows this
segmentation. Define ya as ya(i, j) = 1 if aj = i,
and 0 otherwise. Let z ∈ {0, 1}I×J be a binary
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u(0)(i, j) := 0 ∀i ∈ 1..I, j ∈ 1..J
for k = 1 to K

a(k) := argmaxa

(
f(a) +

∑
i,j u

(k−1)(i, j)ya(i, j)
)

z(k) := argmaxz

(
g(z)−∑i,j u

(k−1)(i, j)z(i, j)
)

if ya = z

return a(k)

end if
u(k)(i, j) := u(k)(i, j) + δk

(
ya(k)(i, j)− z(k)(i, j)

)

end for
return a(K)

Figure 1: The dual decomposition algorithm for
the fertility HMM, where δk is the step size at the
kth iteration for 1 ≤ k ≤ K, and K is the max
number of iterations.

matrix. Define the functions f and g as

f(a) =
J∑

j=1

(
log p(aj |aj−1) +

1

2
log p

(
fj
∣∣eaj

))

g(z) =

I∑

i=1

(
log p(φ (zi)|ei) +

J∑

j=1

z(i, j)

2
log p(fj |ei)

)

Then we want to find

argmax
a,z

f(a) + g(z)

subject to the constraints ya(i, j) = z(i, j)∀i, j.
Note how this recovers the original objective func-
tion when matching variables are found.

We use the dual decomposition algorithm
from Rush and Collins (2012), reproduced
here in Figure 1. Note how the langrangian
adds one additional term word, scaled by a
value indicating whether that word is aligned
in the current position. Because it is only
added for those words that are aligned, we
can merge this with the log p

(
fj
∣∣eaj

)
terms

in both f and g. Therefore, we can solve
argmaxa

(
f(a) +

∑
i,j u

(k−1)(i, j)ya(i, j)
)

us-
ing the standard Viterbi algorithm.

The g function, on the other hand, does not have
a commonly used decomposition structure. Luck-
ily we can factor this maximization into pieces that
allow for efficient computation. Note that g sums
over arbitrary binary matrices. Unlike the HMM,
where each French word must have exactly one
English generator, this maximization allows each

z(i, j) := 0 ∀(i, j) ∈ [1..I]× [1..J ]
v := 0
for i = 1 to I

for j = 1 to J
x(j) := (log p(fj |ei) , j)

end for
sort x in descending order by first component
max := log p(φ = 0|ei) , arg := 0, sum := 0
for f = 1 to J

sum := sum+ x[f, 1]
if sum+ log p(φ = f |ei) > max
max := sum+ log p(φ = f |ei)
arg := f

end if
end for
v := v +max
for f = 1 to arg

z(i, x[f, 2]) := 1
end for

end for
return z, v

Figure 2: Algorithm for finding the arg max and
max of g, the fertility-related component of the
dual decomposition objective.

French word to have zero or many generators. Be-
cause assignments that are in accordance between
this model and the HMM will meet the HMM’s
constraints, the overall dual decomposition algo-
rithm will return valid assignments, even though
individual selections for this model may fail to
meet the requirements.

As the scoring function g can be decomposed
into a sum of scores for each row

∑
i gi (i.e., there

are no interactions between distinct rows of the
matrix) we can maximize each row independently:

max
z

I∑

i=1

gi(zi) =

I∑

i=1

max
z
gi(zi)

Within each row, we seek the best of all 2J pos-
sible configurations. These configurations may
be grouped into equivalence classes based on the
number of non-zero entries. In each class, the
max assignment is the one using words with the
highest log probabilities; the total score of this as-
signment is the sum those log probabilities and
the log probability of that fertility. Sorting the
scores of each cell in the row in descending or-
der by log probability allows for linear time com-
putation of the max for each row. The algorithm
described in Figure 2 finds this maximal assign-
ment in O(IJ log J) time, generally faster than
the O(I2J) time used by Viterbi.

We note in passing that this maximizer is pick-
ing from an unconstrained set of binary matri-
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ces. Since each English word may generate as
many French words as it likes, regardless of all
other words in the sentence, the underlying ma-
trix have many more or many fewer non-zero en-
tries than there are French words. A straightfor-
ward extension to the algorithm of Figure 2 returns
only z matrices with exactly J nonzero entries.
Rather than maximizing each row totally indepen-
dently, we keep track of the best configurations
for each number of words generated in each row,
and then pick the best combination that sums to J :
another straightforward exercise in dynamic pro-
gramming. This refinement does not change the
correctness of the dual decomposition algorithm;
rather it speeds the convergence.

3 Fertility distribution parameters

Original IBM models used a categorical distribu-
tion of fertility, one such distribution for each En-
glish word. This gives EM a great amount of free-
dom in parameter estimation, with no smoothing
or parameter tying of even rare words. Prior work
addressed this by using the single parameter Pois-
son distribution, forcing infrequent words to share
a global parameter estimated from the fertility of
all words in the corpus (Zhao and Gildea, 2010).

We explore instead a feature-rich approach to
address this issue. Prior work has explored
feature-rich approaches to modeling the transla-
tion distribution (Berg-Kirkpatrick et al., 2010);
we use the same technique, but only for the fertil-
ity model. The fertility distribution is modeled as
a log-linear distribution of F , a binary feature set:
p(φ|e) ∝ exp (θ · F (e, φ)). We include a simple
set of features:

• A binary indicator for each fertility φ. This
feature is present for all words, acting as
smoothing.

• A binary indicator for each word id and fer-
tility, if the word occurs more than 10 times.

• A binary indicator for each word length (in
letters) and fertility.

• A binary indicator for each four letter word
prefix and fertility.

Together these produce a distribution that can
learn a reasonable distribution not only for com-
mon words, but also for rare words. Including
word length information aids in for languages with
compounding: long words in one language may
correspond to multiple words in the other.

Algorithm AER (G→E) AER (E→G)
HMM 24.0 21.8
FHMM Viterbi 19.7 19.6
FHMM Dual-dec 18.0 17.4

Table 1: Experimental results over the 120 evalu-
ation sentences. Alignment error rates in both di-
rections are provided here.

4 Evaluation

We explore the impact of this improved MAP in-
ference procedure on a task in German-English
word alignment. For training data we use the news
commentary data from the WMT 2012 translation
task.1 120 of the training sentences were manually
annotated with word alignments.

The results in Table 1 compare several differ-
ent algorithms on this same data. The first line is
a baseline HMM using exact posterior computa-
tion and inference with the standard dynamic pro-
gramming algorithms. The next line shows the fer-
tility HMM with approximate posterior computa-
tion from Gibbs sampling but with final alignment
selected by the Viterbi algorithm. Clearly fertil-
ity modeling is improving alignment quality. The
prior work compared Viterbi with a form of local
search (sampling repeatedly and keeping the max),
finding little difference between the two (Zhao and
Gildea, 2010). Here, however, the difference be-
tween a dual decomposition and Viterbi is signifi-
cant: their results were likely due to search error.

5 Conclusions and future work

We have introduced a dual decomposition ap-
proach to alignment inference that substantially
reduces alignment error. Unfortunately the algo-
rithm is rather slow to converge: after 40 iterations
of the dual decomposition, still only 55 percent
of the test sentences have converged. We are ex-
ploring improvements to the simple sub-gradient
method applied here in hopes of finding faster con-
vergence, fast enough to make this algorithm prac-
tical. Alternate parameter estimation techniques
appear promising given the improvements of dual
decomposition over sampling. Once the perfor-
mance issues of this algorithm are improved, ex-
ploring hard EM or some variant thereof might
lead to more substantial improvements.

1www.statmt.org/wmt12/translation-task.html
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Abstract
While experimenting with tuning on long
sentences, we made an unexpected discov-
ery: that PRO falls victim to monsters –
overly long negative examples with very
low BLEU+1 scores, which are unsuitable
for learning and can cause testing BLEU
to drop by several points absolute. We
propose several effective ways to address
the problem, using length- and BLEU+1-
based cut-offs, outlier filters, stochastic
sampling, and random acceptance. The
best of these fixes not only slay and pro-
tect against monsters, but also yield higher
stability for PRO as well as improved test-
time BLEU scores. Thus, we recommend
them to anybody using PRO, monster-
believer or not.

1 Once Upon a Time...

For years, the standard way to do statistical ma-
chine translation parameter tuning has been to
use minimum error-rate training, or MERT (Och,
2003). However, as researchers started using mod-
els with thousands of parameters, new scalable op-
timization algorithms such as MIRA (Watanabe et
al., 2007; Chiang et al., 2008) and PRO (Hopkins
and May, 2011) have emerged. As these algo-
rithms are relatively new, they are still not quite
well understood, and studying their properties is
an active area of research.

For example, Nakov et al. (2012) have pointed
out that PRO tends to generate translations that
are consistently shorter than desired. They
have blamed this on inadequate smoothing in
PRO’s optimization objective, namely sentence-
level BLEU+1, and they have addressed the prob-
lem using more sensible smoothing. We wondered
whether the issue could be partially relieved sim-
ply by tuning on longer sentences, for which the
effect of smoothing would naturally be smaller.

To our surprise, tuning on the longer 50% of the
tuning sentences had a disastrous effect on PRO,
causing an absolute drop of three BLEU points
on testing; at the same time, MERT and MIRA
did not have such a problem. While investigating
the reasons, we discovered hundreds of monsters
creeping under PRO’s surface...

Our tale continues as follows. We first explain
what monsters are in Section 2, then we present a
theory about how they can be slayed in Section 3,
we put this theory to test in practice in Section 4,
and we discuss some related efforts in Section 5.
Finally, we present the moral of our tale, and we
hint at some planned future battles in Section 6.

2 Monsters, Inc.

PRO uses pairwise ranking optimization, where
the learning task is to classify pairs of hypotheses
into correctly or incorrectly ordered (Hopkins and
May, 2011). It searches for a vector of weights
w such that higher evaluation metric scores cor-
respond to higher model scores and vice versa.
More formally, PRO looks for weights w such that
g(i, j) > g(i, j′) ⇔ hw(i, j) > hw(i, j′), where
g is a local scoring function (typically, sentence-
level BLEU+1) and hw are the model scores for
a given input sentence i and two candidate hy-
potheses j and j′ that were obtained using w. If
g(i, j) > g(i, j′), we will refer to j and j′ as the
positive and the negative example in the pair.

Learning good parameter values requires nega-
tive examples that are comparable to the positive
ones. Instead, tuning on long sentences quickly
introduces monsters, i.e., corrupted negative ex-
amples that are unsuitable for learning: they are
(i) much longer than the respective positive ex-
amples and the references, and (ii) have very low
BLEU+1 scores compared to the positive exam-
ples and in absolute terms. The low BLEU+1
means that PRO effectively has to learn from pos-
itive examples only.
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Avg. Lengths Avg. BLEU+1

iter. pos neg ref. pos neg

1 45.2 44.6 46.5 52.5 37.6
2 46.4 70.5 53.2 52.8 14.5
3 46.4 261.0 53.4 52.4 2.19
4 46.4 250.0 53.0 52.0 2.30
5 46.3 248.0 53.0 52.1 2.34
. . . . . . . . . . . . . . . . . .
25 47.9 229.0 52.5 52.2 2.81

Table 1: PRO iterations, tuning on long sentences.

Table 1 shows an optimization run of PRO when
tuning on long sentences. We can see monsters
after iterations in which positive examples are on
average longer than negative ones (e.g., iter. 1).
As a result, PRO learns to generate longer sen-
tences, but it overshoots too much (iter. 2), which
gives rise to monsters. Ideally, the learning algo-
rithm should be able to recover from overshoot-
ing. However, once monsters are encountered,
they quickly start dominating, with no chance for
PRO to recover since it accumulates n-best lists,
and thus also monsters, over iterations. As a result,
PRO keeps jumping up and down and converges to
random values, as Figure 1 shows.

By default, PRO’s parameters are averaged
over iterations, and thus the final result is quite
mediocre, but selecting the highest tuning score
does not solve the problem either: for example,
on Figure 1, PRO never achieves a BLEU better
than that for the default initialization parameters.
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Figure 1: PRO tuning results on long sentences
across iterations. The dark-gray line shows the
tuning BLEU (left axis), the light-gray one is the
hypothesis/reference length ratio (right axis).

Figure 2 shows the translations after iterations
1, 3 and 4; the last two are monsters. The monster
at iteration 3 is potentially useful, but that at itera-
tion 4 is clearly unsuitable as a negative example.

Optimizer Objective BLEU
PRO sent-BLEU+1 44.57
MERT corpus-BLEU 47.53
MIRA pseudo-doc-BLEU 47.80
PRO (6= objective) pseudo-doc-BLEU 21.35
MIRA (6= objective) sent-BLEU+1 47.59
PRO, PC-smooth, ground fixed sent-BLEU+1 45.71

Table 2: PRO vs. MERT vs. MIRA.

We also checked whether other popular opti-
mizers yield very low BLEU scores at test time
when tuned on long sentences. Lines 2-3 in Ta-
ble 2 show that this is not the case for MERT and
MIRA. Since they optimize objectives that are dif-
ferent from PRO’s,1 we further experimented with
plugging MIRA’s objective into PRO and PRO’s
objective into MIRA. The resulting MIRA scores
were not much different from before, while PRO’s
score dropped even further; we also found mon-
sters. Next, we applied the length fix for PRO
proposed in (Nakov et al., 2012); this helped a
bit, but still left PRO two BLEU points behind
MERT2 and MIRA, and the monsters did not go
away. We can conclude that the monster problem
is PRO-specific, cannot be blamed on the objective
function, and is different from the length bias.

Note also that monsters are not specific to a
dataset or language pair. We found them when
tuning on the top-50% of WMT10 and testing on
WMT11 for Spanish-English; this yielded a drop
in BLEU from 29.63 (MERT) to 27.12 (PRO).From run 110 /home/guzmanhe/NIST12/ems/preslav-mada-atb/tuning/tmp.110

**REF**: but we have to close ranks with each other and realize that in 
unity there is strength while in division there is weakness . 
-----------------------------------------------------
**IT1**: but we are that we add our ranks to some of us and that we know 
that in the strength and weakness in

**IT3**:, we are the but of the that that the , and , of ranks the the on 
the the our the our the some of we can include , and , of to the of we know 
the the our in of the of some people , force of the that that the in of the 
that that the the weakness Union the the , and

**IT4**: namely Dr Heba Handossah and Dr Mona been pushed aside because a 
larger story EU Ambassador to Egypt Ian Burg highlighted 've dragged us 
backwards and dragged our speaking , never balme your defaulting a December 
7th 1941 in Pearl Harbor ) we can include ranks will be joined by all 've 
dragged us backwards and dragged our $ 3.8 billion in tourism income 
proceeds Chamber are divided among themselves : some 've dragged us 
backwards and dragged our were exaggerated . Al @-@ Hakim namely Dr Heba 
Handossah and Dr Mona December 7th 1941 in Pearl Harbor ) cases might be 
known to us December 7th 1941 in Pearl Harbor ) platform depends on 
combating all liberal policies Track and Field Federation shortened strength 
as well face several challenges , namely Dr Heba Handossah and Dr Mona 
platform depends on combating all liberal policies the report forecast that 
the weak structure

**IT7**: , the sakes of our on and the , the we can include however , the Al 
ranks the the on the , to the = last of we , the long of the part of some of 
to the affect that the of some is the with ] us our to the affect that the 
with ] us our of the in baker , the cook , the on and the , the we know , 
has are in the heaven of to the affect that the of weakness of @-@ Ittihad 
@-@ Al the force , to 

Figure 2: Example reference translation and hy-
pothesis translations after iterations 1, 3 and 4.
The last two hypotheses are monsters.

1See (Cherry and Foster, 2012) for details on objectives.
2Also, using PRO to initialize MERT, as implemented in

Moses, yields 46.52 BLEU and monsters, but using MERT to
initialize PRO yields 47.55 and no monsters.
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3 Slaying Monsters: Theory

Below we explain what monsters are and where
they come from. Then, we propose various mon-
ster slaying techniques to be applied during PRO’s
selection and acceptance steps.

3.1 What is PRO?
PRO is a batch optimizer that iterates between
(i) translation: using the current parameter values,
generate k-best translations, and (ii) optimization:
using the translations from all previous iterations,
find new parameter values. The optimization step
has four substeps:

1. Sampling: For each sentence, sample uni-
formly at random Γ = 5000 pairs from the
set of all candidate translations for that sen-
tence from all previous iterations.

2. Selection: From these sampled pairs, select
those for which the absolute difference be-
tween their BLEU+1 scores is higher than
α = 0.05 (note: this is 5 BLEU+1 points).

3. Acceptance: For each sentence, accept the
Ξ = 50 selected pairs with the highest abso-
lute difference in their BLEU+1 scores.

4. Learning: Assemble the accepted pairs for
all sentences into a single set and use it to
train a ranker to prefer the higher-scoring
sentence in each pair.

We believe that monsters are nurtured by PRO’s
selection and acceptance policies. PRO’s selec-
tion step filters pairs involving hypotheses that dif-
fer by less than five BLEU+1 points, but it does
not cut-off ones that differ too much based on
BLEU+1 or length. PRO’s acceptance step selects
Ξ = 50 pairs with the highest BLEU+1 differ-
entials, which creates breeding ground for mon-
sters since these pairs are very likely to include
one monster and one good hypothesis.

Below we discuss monster slaying geared to-
wards the selection and acceptance steps of PRO.

3.2 Slaying at Selection
In the selection step, PRO filters pairs for which
the difference in BLEU+1 is less than five points,
but it has no cut-off on the maximum BLEU+1 dif-
ferentials nor cut-offs based on absolute length or
difference in length. Here, we propose several se-
lection filters, both deterministic and probabilistic.

Cut-offs. A cut-off is a deterministic rule that
filters out pairs that do not comply with some cri-
teria. We experiment with a maximal cut-off on
(a) the difference in BLEU+1 scores and (b) the
difference in lengths. These are relative cut-offs
because they refer to the pair, but absolute cut-offs
that apply to each of the elements in the pair are
also possible (not explored here). Cut-offs (a) and
(b) slay monsters by not allowing the negative ex-
amples to get much worse in BLEU+1 or in length
than the positive example in the pair.

Filtering outliers. Outliers are rare or extreme
observations in a sample. We assume normal dis-
tribution of the BLEU+1 scores (or of the lengths)
of the translation hypotheses for the same source
sentence, and we define as outliers hypotheses
whose BLEU+1 (or length) is more than λ stan-
dard deviations away from the sample average.
We apply the outlier filter to both the positive and
the negative example in a pair, but it is more im-
portant for the latter. We experiment with values
of λ like 2 and 3. This filtering slays monsters be-
cause they are likely outliers. However, it will not
work if the population gets riddled with monsters,
in which case they would become the norm.

Stochastic sampling. Instead of filtering ex-
treme examples, we can randomly sample pairs
according to their probability of being typical. Let
us assume that the values of the local scoring func-
tions, i.e., the BLEU+1 scores, are distributed nor-
mally: g(i, j) ∼ N(µ, σ2). Given a sample of hy-
pothesis translations {j} of the same source sen-
tence i, we can estimate σ empirically. Then,
the difference ∆ = g(i, j) − g(i, j′) would be
distributed normally with mean zero and variance
2σ2. Now, given a pair of examples, we can calcu-
late their ∆, and we can choose to select the pair
with some probability, according to N(0, 2σ2).

3.3 Slaying at Acceptance

Another problem is caused by the acceptance
mechanism of PRO: among all selected pairs, it
accepts the top-Ξ with the highest BLEU+1 dif-
ferentials. It is easy to see that these differentials
are highest for nonmonster–monster pairs if such
pairs exist. One way to avoid focusing primarily
on such pairs is to accept a random set of Ξ pairs,
among the ones that survived the selection step.
One possible caveat is that we can lose some of
the discriminative power of PRO by focusing on
examples that are not different enough.
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TESTING TUNING (run 1, it. 25, avg.) TEST(tune:full)

Avg. for 3 reruns Lengths BLEU+1 Avg. for 3 reruns
PRO fix BLEU StdDev Pos Neg Ref Pos Neg BLEU StdDev
PRO (baseline) 44.70 0.266 47.9 229.0 52.5 52.2 2.8 47.80 0.052

Max diff. cut-off BLEU+1 max=10 † 47.94 0.165 47.9 49.6 49.4 49.4 39.9 47.77 0.035
BLEU+1 max=20 † 47.73 0.136 47.7 55.5 51.1 49.8 32.7 47.85 0.049
LEN max=5 † 48.09 0.021 46.8 47.0 47.9 52.9 37.8 47.73 0.051
LEN max=10 † 47.99 0.025 47.3 48.5 48.7 52.5 35.6 47.80 0.056

Outliers BLEU+1 λ=2.0 † 48.05 0.119 46.8 47.2 47.7 52.2 39.5 47.47 0.090
BLEU+1 λ=3.0 47.12 1.348 47.6 168.0 53.0 51.7 3.9 47.53 0.038
LEN λ=2.0 46.68 2.005 49.3 82.7 53.1 52.3 5.3 47.49 0.085
LEN λ=3.0 47.02 0.727 48.2 163.0 51.4 51.4 4.2 47.65 0.096

Stoch. sampl. ∆ BLEU+1 46.33 1.000 46.8 216.0 53.3 53.1 2.4 47.74 0.035
∆ LEN 46.36 1.281 47.4 201.0 52.9 53.4 2.9 47.78 0.081

Table 3: Some fixes to PRO (select pairs with highest BLEU+1 differential, also require at least 5
BLEU+1 points difference). A dagger (†) indicates selection fixes that successfully get rid of monsters.

4 Attacking Monsters: Practice

Below, we first present our general experimental
setup. Then, we present the results for the var-
ious selection alternatives, both with the original
acceptance strategy and with random acceptance.

4.1 Experimental Setup
We used a phrase-based SMT model (Koehn et al.,
2003) as implemented in the Moses toolkit (Koehn
et al., 2007). We trained on all Arabic-English
data for NIST 2012 except for UN, we tuned on
(the longest-50% of) the MT06 sentences, and we
tested on MT09. We used the MADA ATB seg-
mentation for Arabic (Roth et al., 2008) and true-
casing for English, phrases of maximal length 7,
Kneser-Ney smoothing, and lexicalized reorder-
ing (Koehn et al., 2005), and a 5-gram language
model, trained on GigaWord v.5 using KenLM
(Heafield, 2011). We dropped unknown words
both at tuning and testing, and we used minimum
Bayes risk decoding at testing (Kumar and Byrne,
2004). We evaluated the output with NIST’s scor-
ing tool v.13a, cased.

We used the Moses implementations of MERT,
PRO and batch MIRA, with the –return-best-dev
parameter for the latter. We ran these optimizers
for up to 25 iterations and we used 1000-best lists.

For stability (Foster and Kuhn, 2009), we per-
formed three reruns of each experiment (tuning +
evaluation), and we report averaged scores.

4.2 Selection Alternatives
Table 3 presents the results for different selection
alternatives. The first two columns show the test-
ing results: average BLEU and standard deviation
over three reruns.

The following five columns show statistics
about the last iteration (it. 25) of PRO’s tuning
for the worst rerun: average lengths of the positive
and the negative examples and average effective
reference length, followed by average BLEU+1
scores for the positive and the negative examples
in the pairs. The last two columns present the re-
sults when tuning on the full tuning set. These are
included to verify the behavior of PRO in a non-
monster prone environment.

We can see in Table 3 that all selection mech-
anisms considerably improve BLEU compared to
the baseline PRO, by 2-3 BLEU points. However,
not every selection alternative gets rid of monsters,
which can be seen by the large lengths and low
BLEU+1 for the negative examples (in bold).

The max cut-offs for BLEU+1 and for lengths
both slay the monsters, but the latter yields much
lower standard deviation (thirteen times lower than
for the baseline PRO!), thus considerably increas-
ing PRO’s stability. On the full dataset, BLEU
scores are about the same as for the original PRO
(with small improvement for BLEU+1 max=20),
but the standard deviations are slightly better.

Rejecting outliers using BLEU+1 and λ = 3 is
not strong enough to filter out monsters, but mak-
ing this criterion more strict by setting λ = 2,
yields competitive BLEU and kills the monsters.

Rejecting outliers based on length does not
work as effectively though. We can think of two
possible reasons: (i) lengths are not normally dis-
tributed, they are more Poisson-like, and (ii) the
acceptance criterion is based on the top-Ξ differ-
entials based on BLEU+1, not based on length.

On the full dataset, rejecting outliers, BLEU+1
and length, yields lower BLEU and less stability.
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TESTING TUNING (run 1, it. 25, avg.) TEST(tune:full)

Avg. for 3 reruns Lengths BLEU+1 Avg. for 3 reruns
PRO fix BLEU StdDev Pos Neg Ref Pos Neg BLEU StdDev
PRO (baseline) 44.70 0.266 47.9 229.0 52.5 52.2 2.8 47.80 0.052

Rand. accept PRO, rand †† 47.87 0.147 47.7 48.5 48.70 47.7 42.9 47.59 0.114
Outliers BLEU+1 λ=2.0, rand∗ 47.85 0.078 48.2 48.4 48.9 47.5 43.6 47.62 0.091

BLEU+1 λ=3.0, rand 47.97 0.168 47.6 47.6 48.4 47.8 43.6 47.44 0.070
LEN λ=2.0, rand∗ 47.69 0.114 47.8 47.8 48.6 47.9 43.6 47.48 0.046
LEN λ=3.0, rand 47.89 0.235 47.8 48.0 48.7 47.7 43.1 47.64 0.090

Stoch. sampl. ∆ BLEU+1, rand∗ 47.99 0.087 47.9 48.0 48.7 47.8 43.5 47.67 0.096
∆ LEN, rand∗ 47.94 0.060 47.8 47.9 48.6 47.8 43.6 47.65 0.097

Table 4: More fixes to PRO (with random acceptance, no minimum BLEU+1). The (††) indicates that
random acceptance kills monsters. The asterisk (∗) indicates improved stability over random acceptance.

Reasons (i) and (ii) arguably also apply to
stochastic sampling of differentials (for BLEU+1
or for length), which fails to kill the monsters,
maybe because it gives them some probability of
being selected by design. To alleviate this, we test
the above settings with random acceptance.

4.3 Random Acceptance

Table 4 shows the results for accepting training
pairs for PRO uniformly at random. To eliminate
possible biases, we also removed the min=0.05
BLEU+1 selection criterion. Surprisingly, this
setup effectively eliminated the monster problem.
Further coupling this with the distributional cri-
teria can also yield increased stability, and even
small further increase in test BLEU. For instance,
rejecting BLEU outliers with λ = 2 yields com-
parable average test BLEU, but with only half the
standard deviation.

On the other hand, using the stochastic sam-
pling of differentials based on either BLEU+1 or
lengths improves the test BLEU score while in-
creasing the stability across runs. The random
acceptance has a caveat though: it generally de-
creases the discriminative power of PRO, yielding
worse results when tuning on the full, nonmonster
prone tuning dataset. Stochastic selection does
help to alleviate this problem. Yet, the results are
not as good as when using a max cut-off for the
length. Therefore, we recommend using the latter
as a default setting.

5 Related Work

We are not aware of previous work that discusses
the issue of monsters, but there has been work on
a different, length problem with PRO (Nakov et
al., 2012). We have seen that its solution, fix the
smoothing in BLEU+1, did not work for us.

The stability of MERT has been improved using
regularization (Cer et al., 2008), random restarts
(Moore and Quirk, 2008), multiple replications
(Clark et al., 2011), and parameter aggregation
(Cettolo et al., 2011).

With the emergence of new optimization tech-
niques, there have been studies that compare sta-
bility between MIRA–MERT (Chiang et al., 2008;
Chiang et al., 2009; Cherry and Foster, 2012),
PRO–MERT (Hopkins and May, 2011), MIRA–
PRO–MERT (Cherry and Foster, 2012; Gimpel
and Smith, 2012; Nakov et al., 2012).

Pathological verbosity can be an issue when
tuning MERT on recall-oriented metrics such
as METEOR (Lavie and Denkowski, 2009;
Denkowski and Lavie, 2011). Large variance be-
tween the results obtained with MIRA has also
been reported (Simianer et al., 2012). However,
none of this work has focused on monsters.

6 Tale’s Moral and Future Battles

We have studied a problem with PRO, namely that
it can fall victim to monsters, overly long negative
examples with very low BLEU+1 scores, which
are unsuitable for learning. We have proposed sev-
eral effective ways to address this problem, based
on length- and BLEU+1-based cut-offs, outlier fil-
ters and stochastic sampling. The best of these
fixes have not only slayed the monsters, but have
also brought much higher stability to PRO as well
as improved test-time BLEU scores. These bene-
fits are less visible on the full dataset, but we still
recommend them to everybody who uses PRO as
protection against monsters. Monsters are inher-
ent in PRO; they just do not always take over.

In future work, we plan a deeper look at the
mechanism of monster creation in PRO and its
possible connection to PRO’s length bias.
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Abstract

This paper proposes a framework of super-
vised model learning that realizes feature
grouping to obtain lower complexity mod-
els. The main idea of our method is to
integrate a discrete constraint into model
learning with the help of the dual decom-
position technique. Experiments on two
well-studied NLP tasks, dependency pars-
ing and NER, demonstrate that our method
can provide state-of-the-art performance
even if the degrees of freedom in trained
models are surprisingly small, i.e., 8 or
even 2. This significant benefit enables us
to provide compact model representation,
which is especially useful in actual use.

1 Introduction

This paper focuses on the topic of supervised
model learning, which is typically represented as
the following form of the optimization problem:

ŵ = arg min
w

{
O(w;D)

}
,

O(w;D) = L(w;D) + Ω(w),
(1)

where D is supervised training data that consists
of the corresponding input x and output y pairs,
that is, (x,y) ∈ D. w is an N -dimensional vector
representation of a set of optimization variables,
which are also interpreted as feature weights.
L(w;D) and Ω(w) represent a loss function and
a regularization term, respectively. Nowadays, we,
in most cases, utilize a supervised learning method
expressed as the above optimization problem to
estimate the feature weights of many natural lan-
guage processing (NLP) tasks, such as text clas-
sification, POS-tagging, named entity recognition,
dependency parsing, and semantic role labeling.

In the last decade, the L1-regularization tech-
nique, which incorporates L1-norm into Ω(w),
has become popular and widely-used in many
NLP tasks (Gao et al., 2007; Tsuruoka et al.,

2009). The reason is that L1-regularizers encour-
age feature weights to be zero as much as pos-
sible in model learning, which makes the resul-
tant model a sparse solution (many zero-weights
exist). We can discard all features whose weight
is zero from the trained model1 without any loss.
Therefore, L1-regularizers have the ability to eas-
ily and automatically yield compact models with-
out strong concern over feature selection.

Compact models generally have significant and
clear advantages in practice: instances are faster
loading speed to memory, less memory occupa-
tion, and even faster decoding is possible if the
model is small enough to be stored in cache mem-
ory. Given this background, our aim is to establish
a model learning framework that can reduce the
model complexity beyond that possible by sim-
ply applying L1-regularizers. To achieve our goal,
we focus on the recently developed concept of au-
tomatic feature grouping (Tibshirani et al., 2005;
Bondell and Reich, 2008). We introduce a model
learning framework that achieves feature group-
ing by incorporating a discrete constraint during
model learning.

2 Feature Grouping Concept

Going beyond L1-regularized sparse modeling,
the idea of ‘automatic feature grouping’ has re-
cently been developed. Examples are fused
lasso (Tibshirani et al., 2005), grouping pur-
suit (Shen and Huang, 2010), and OSCAR (Bon-
dell and Reich, 2008). The concept of automatic
feature grouping is to find accurate models that
have fewer degrees of freedom. This is equiva-
lent to enforce every optimization variables to be
equal as much as possible. A simple example is
that ŵ1 = (0.1, 0.5, 0.1, 0.5, 0.1) is preferred over
ŵ2 = (0.1, 0.3, 0.2, 0.5, 0.3) since ŵ1 and ŵ2

have two and four unique values, respectively.
There are several merits to reducing the degree
1This paper refers to model after completion of (super-

vised) model learning as “trained model”
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of freedom. For example, previous studies clari-
fied that it can reduce the chance of over-fitting to
the training data (Shen and Huang, 2010). This is
an important property for many NLP tasks since
they are often modeled with a high-dimensional
feature space, and thus, the over-fitting problem is
readily triggered. It has also been reported that it
can improve the stability of selecting non-zero fea-
tures beyond that possible with the standard L1-
regularizer given the existence of many highly cor-
related features (Jörnsten and Yu, 2003; Zou and
Hastie, 2005). Moreover, it can dramatically re-
duce model complexity. This is because we can
merge all features whose feature weight values are
equivalent in the trained model into a single fea-
ture cluster without any loss.

3 Modeling with Feature Grouping

This section describes our proposal for obtaining
a feature grouping solution.

3.1 Integration of a Discrete Constraint
Let S be a finite set of discrete values, i.e., a set
integer from −4 to 4, that is, S={−4,. . . , −1, 0,
1, . . . , 4}. The detailed discussion how we define
S can be found in our experiments section since
it deeply depends on training data. Then, we de-
fine the objective that can simultaneously achieve
a feature grouping and model learning as follows:

O(w;D) =L(w;D) + Ω(w)
s.t. w ∈ SN . (2)

where SN is the cartesian power of a set S . The
only difference with Eq. 1 is the additional dis-
crete constraint, namely, w ∈ SN . This con-
straint means that each variable (feature weight)
in trained models must take a value in S, that is,
ŵn ∈ S , where ŵn is the n-th factor of ŵ, and
n ∈ {1, . . . , N}. As a result, feature weights in
trained models are automatically grouped in terms
of the basis of model learning. This is the basic
idea of feature grouping proposed in this paper.

However, a concern is how we can efficiently
optimize Eq. 2 since it involves a NP-hard combi-
natorial optimization problem. The time complex-
ity of the direct optimization is exponential against
N . Next section introduces a feasible algorithm.

3.2 Dual Decomposition Formulation
Hereafter, we strictly assume that L(w;D) and
Ω(w) are both convex in w. Then, the proper-
ties of our method are unaffected by the selection

of L(w;D) and Ω(w). Thus, we ignore their spe-
cific definition in this section. Typical cases can
be found in the experiments section. Then, we re-
formulate Eq. 2 by using the dual decomposition
technique (Everett, 1963):

O(w,u;D) =L(w;D) + Ω(w) + Υ(u)
s.t. w = u, and u ∈ SN . (3)

Difference from Eq. 2, Eq. 3 has an additional term
Υ(u), which is similar to the regularizer Ω(w),
whose optimization variables w and u are tight-
ened with equality constraint w = u. Here, this
paper only considers the case Υ(u) = λ2

2 ||u||22 +
λ1||u||1, and λ2 ≥ 0 and λ1 ≥ 02. This objec-
tive can also be viewed as the decomposition of
the standard loss minimization problem shown in
Eq. 1 and the additional discrete constraint regu-
larizer by the dual decomposition technique.

To solve the optimization in Eq. 3, we lever-
age the alternating direction method of multiplier
(ADMM) (Gabay and Mercier, 1976; Boyd et al.,
2011). ADMM provides a very efficient optimiza-
tion framework for the problem in the dual decom-
position form. Here, α represents dual variables
for the equivalence constraint w=u. ADMM in-
troduces the augmented Lagrangian term ρ

2 ||w −
u||22 with ρ>0 which ensures strict convexity and
increases robustness3.

Finally, the optimization problem in Eq. 3 can
be converted into a series of iterative optimiza-
tion problems. Detailed derivation in the general
case can be found in (Boyd et al., 2011). Fig. 1
shows the entire model learning framework of our
proposed method. The remarkable point is that
ADMM works by iteratively computing one of the
three optimization variable sets w, u, and α while
holding the other variables fixed in the iterations
t = 1, 2, . . . until convergence.

Step1 (w-update): This part of the optimiza-
tion problem shown in Eq. 4 is essentially Eq. 1
with a ‘biased’ L2-regularizer. ‘bias’ means here
that the direction of regularization is toward point
a instead of the origin. Note that it becomes a
standard L2-regularizer if a = 0. We can select
any learning algorithm that can handle the L2-
regularizer for this part of the optimization.

Step2 (u-update): This part of the optimization
problem shown in Eq. 5 can be rewritten in the

2Note that this setting includes the use of only L1-, L2-,
or without regularizers (L1 only: λ1>0 and λ2=0, L2 only:
λ1=0 and λ2>0, and without regularizer: λ1=0, λ2=0).

3Standard dual decomposition can be viewed as ρ=0
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Input: Training data:D, parameters:ρ, ξ, εprimal, and εdual

Initialize: w(1) = 0, u(1) = 0, α(1) = 0, and t = 1.
Step1 w-update:
Solve w(t+1) = argminw{O(w;D,u(t),α(t))}.
For our case,

O(w;D,u,α) =O(w;D) + ρ

2
||w − a||22, (4)

where a = u−α.

Step2 u-update:
Solve u(t+1) = argminu{O(u;D,w(t+1),α(t))}.
For our case,

O(u;D,w,α) =
λ2

2
||u||22 + λ1||u||1 + ρ

2
||b− u||22

s.t. u ∈ SN ,
(5)where b = w +α

Step3 α-update:
α(t+1) =α(t) + ξ(w(t+1) − u(t+1)) (6)

Step4 convergence check:
||w(t+1) − u(t+1)||22/N < εprimal

||u(t+1) − u(t)||22/N < εdual
(7)

Break the loop if the above two conditions are reached,
or go back to Step1 with t = t+ 1.

Output: u(t+1)

Figure 1: Entire learning framework of our
method derived from ADMM (Boyd et al., 2011).

following equivalent simple form:

û= arg minu{12 ||u− b′||22 + λ′1||u||1}
s.t. u ∈ SN , (8)

where b′ = ρ
λ2+ρ

b, and λ′1 = λ1
λ2+ρ

. This
optimization is still a combinatorial optimization
problem. However unlike Eq. 2, this optimization
can be efficiently solved.

Fig. 2 shows the procedure to obtain the exact
solution of Eq. 5, namely u(t+1). The remarkable
point is that the costly combinatorial optimization
problem is disappeared, and instead, we are only
required to perform two feature-wise calculations
whose total time complexities isO(N log |S|) and
fully parallelizable. The similar technique has
been introduced in Zhong and Kwok (2011) for
discarding a costly combinatorial problem from
the optimization with OSCAR-regularizers with
the help of proximal gradient methods, i.e., (Beck
and Teboulle, 2009).

We omit to show the detailed derivation of
Fig. 2 because of the space reason. However, this
is easily understandable. The key properties are
the following two folds; (i) The objective shown
in Eq. 8 is a convex and also symmetric function
with respect to û′, where û′ is the optimal solution
of Eq. 8 without the discrete constraint. Therefore,
the optimal solution û is at the point where the

Input: b′ = (b′n)
N
n=1, λ′

1, and S.
1, Find the optimal solution of Eq. 8 without the constraint.

The optimization of mixed L2 and L1-norms is known
to have a closed form solution, i.e., (Beck and Teboulle,
2009), that is;

û′
n = sgn(b′n)max(0, |b′n| − λ′

1),

where (û′
n)

N
n=1 = û′.

2, Find the nearest valid point in SN from û′ in terms of the
L2-distance;

ûn = argmin
u∈S

(û′
n − u)2

where (ûn)
N
n=1 = û. This can be performed by a binary

search, whose time complexity is generally O(log |S|).
Output: û

Figure 2: Procedure for solving Step2

nearest valid point given SN from û′ in terms of
the L2-distance. (ii) The valid points given SN are
always located at the vertexes of axis-aligned or-
thotopes (hyperrectangles) in the parameter space
of feature weights. Thus, the solution û, which is
the nearest valid point from û′, can be obtained by
individually taking the nearest value in S from û′n
for all n.

Step3 (α-update): We perform gradient ascent
on dual variables to tighten the constraint w = u.
Note that ξ is the learning rate; we can simply set
it to 1.0 for every iteration (Boyd et al., 2011).

Step4 (convergence check): It can be evaluated
both primal and dual residuals as defined in Eq. 7
with suitably small εprimal and εdual.

3.3 Online Learning

We can select an online learning algorithm for
Step1 since the ADMM framework does not re-
quire exact minimization of Eq. 4. In this case, we
perform one-pass update through the data in each
ADMM iteration (Duh et al., 2011). Note that the
total calculation cost of our method does not in-
crease much from original online learning algo-
rithm since the calculation cost of Steps 2 through
4 is relatively much smaller than that of Step1.

4 Experiments

We conducted experiments on two well-studied
NLP tasks, namely named entity recognition
(NER) and dependency parsing (DEPAR).

Basic settings: We simply reused the settings
of most previous studies. We used CoNLL’03
data (Tjong Kim Sang and De Meulder, 2003)
for NER, and the Penn Treebank (PTB) III cor-
pus (Marcus et al., 1994) converted to depen-
dency trees for DEPAR (McDonald et al., 2005).
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Our decoding models are the Viterbi algorithm
on CRF (Lafferty et al., 2001), and the second-
order parsing model proposed by (Carreras, 2007)
for NER and DEPAR, respectively. Features
are automatically generated according to the pre-
defined feature templates widely-used in the pre-
vious studies. We also integrated the cluster fea-
tures obtained by the method explained in (Koo et
al., 2008) as additional features for evaluating our
method in the range of the current best systems.

Evaluation measures: The purpose of our ex-
periments is to investigate the effectiveness of our
proposed method in terms of both its performance
and the complexity of the trained model. There-
fore, our evaluation measures consist of two axes.
Task performance was mainly evaluated in terms
of the complete sentence accuracy (COMP) since
the objective of all model learning methods eval-
uated in our experiments is to maximize COMP.
We also report the Fβ=1 score (F-sc) for NER,
and the unlabeled attachment score (UAS) for DE-
PAR for comparison with previous studies. Model
complexity is evaluated by the number of non-zero
active features (#nzF) and the degree of freedom
(#DoF) (Zhong and Kwok, 2011). #nzF is the
number of features whose corresponding feature
weight is non-zero in the trained model, and #DoF
is the number of unique non-zero feature weights.

Baseline methods: Our main baseline is L1-
regularized sparse modeling. To cover both batch
and online leaning, we selected L1-regularized
CRF (L1CRF) (Lafferty et al., 2001) optimized by
OWL-QN (Andrew and Gao, 2007) for the NER
experiment, and the L1-regularized regularized
dual averaging (L1RDA) method (Xiao, 2010)4

for DEPAR. Additionally, we also evaluated L2-
regularized CRF (L2CRF) with L-BFGS (Liu and
Nocedal, 1989) for NER, and passive-aggressive
algorithm (L2PA) (Crammer et al., 2006)5 for DE-
PAR since L2-regularizer often provides better re-
sults than L1-regularizer (Gao et al., 2007).

For a fair comparison, we applied the proce-
dure of Step2 as a simple quantization method
to trained models obtained from L1-regularized
model learning, which we refer to as (QT).

4RDA provided better results at least in our experiments
than L1-regularized FOBOS (Duchi and Singer, 2009), and
its variant (Tsuruoka et al., 2009), which are more familiar to
the NLP community.

5L2PA is also known as a loss augmented variant of one-
best MIRA, well-known in DEPAR (McDonald et al., 2005).

4.1 Configurations of Our Method
Base learning algorithm: The settings of our
method in our experiments imitate L1-regularized
learning algorithm since the purpose of our
experiments is to investigate the effectiveness
against standard L1-regularized learning algo-
rithms. Then, we have the following two possible
settings; DC-ADMM: we leveraged the baseline
L1-regularized learning algorithm to solve Step1,
and set λ1 = 0 and λ2 = 0 for Step2. DCwL1-
ADMM: we leveraged the baselineL2-regularized
learning algorithm, but without L2-regularizer, to
solve Step1, and set λ1 > 0 and λ2 = 0 for Step2.
The difference can be found in the objective func-
tion O(w,u;D) shown in Eq. 3;

(DC-ADMM) : O(w,u;D)=L(w;D)+λ1||w||1
(DCwL1-ADMM) : O(w,u;D)=L(w;D)+λ1||u||1

In other words, DC-ADMM utilizes L1-
regularizer as a part of base leaning algorithm
Ω(w)=λ1||w||1, while DCwL1-ADMM discards
regularizer of base learning algorithm Ω(w), but
instead introducing Υ(u) = λ1||u||1. Note that
these two configurations are essentially identical
since objectives are identical, even though the
formulation and algorithm is different. We only
report results of DC-ADMM because of the space
reason since the results of DCwL1-ADMM were
nearly equivalent to those of DC-ADMM.

Definition of S: DC-ADMM can utilize any fi-
nite set for S. However, we have to carefully se-
lect it since it deeply affects the performance. Ac-
tually, this is the most considerable point of our
method. We preliminarily investigated the several
settings. Here, we introduce an example of tem-
plate which is suitable for large feature set. Let
η, δ, and κ represent non-negative real-value con-
stants, ζ be a positive integer, σ = {−1, 1}, and
a function fη,δ,κ(x, y) = y(ηκx + δ). Then, we
define a finite set of values S as follows:

Sη,δ,κ,ζ ={fη,δ,κ(x, y)|(x, y) ∈ Sζ×σ} ∪ {0},
where Sζ is a set of non-negative integers from
zero to ζ − 1, that is, Sζ ={m}ζ−1m=0. For example,
if we set η = 0.1, δ = 0.4, κ= 4, and ζ = 3, then
Sη,δ,κ,ζ = {−2.0, −0.8, −0.5, 0, 0.5, 0.8, 2.0}.
The intuition of this template is that the distribu-
tion of the feature weights in trained model often
takes a form a similar to that of the ‘power law’
in the case of the large feature sets. Therefore, us-
ing an exponential function with a scale and bias
seems to be appropriate for fitting them.
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(a) NER (b) DEPAR
Figure 3: Performance vs. degree of freedom in
the trained model for the development data

Note that we can control the upper bound of
#DoF in trained model by ζ, namely if ζ = 4 then
the upper bound of #DoF is 8 (doubled by posi-
tive and negative sides). We fixed ρ = 1, ξ = 1,
λ2 = 0, κ = 4 (or 2 if ζ ≥ 5), δ = η/2 in all ex-
periments. Thus the only tunable parameter in our
experiments is η for each ζ.

4.2 Results and Discussions

Fig. 3 shows the task performance on the develop-
ment data against the model complexities in terms
of the degrees of freedom in the trained models.
Plots are given by changing the ζ value for DC-
ADMM andL1-regularized methods with QT. The
plots of the standard L1-regularized methods are
given by changing the regularization constants λ1.
Moreover, Table 1 shows the final results of our
experiments on the test data. The tunable param-
eters were fixed at values that provided the best
performance on the development data.

According to the figure and table, the most re-
markable point is that DC-ADMM successfully
maintained the task performance even if #DoF (the
degree of freedom) was 8, and the performance
drop-offs were surprisingly limited even if #DoF
was 2, which is the upper bound of feature group-
ing. Moreover, it is worth noting that the DC-
ADMM performance is sometimes improved. The
reason may be that such low degrees of freedom
prevent over-fitting to the training data. Surpris-
ingly, the simple quantization method (QT) pro-
vided fairly good results. However, we empha-
size that the models produced by the QT approach
offer no guarantee as to the optimal solution. In
contrast, DC-ADMM can truly provide the opti-
mal solution of Eq. 3 since the discrete constraint
is also considered during the model learning.

In general, a trained model consists of two parts:

Test Model complex.
NER COMP F-sc #nzF #DoF
L2CRF 84.88 89.97 61.6M 38.6M
L1CRF 84.85 89.99 614K 321K

(w/ QT ζ=4) 78.39 85.33 568K 8
(w/ QT ζ=2) 73.40 81.45 454K 4
(w/ QT ζ=1) 65.53 75.87 454K 2

DC-ADMM (ζ=4) 84.96 89.92 643K 8
(ζ=2) 84.04 89.35 455K 4
(ζ=1) 83.06 88.62 364K 2

Test Model complex.
DEPER COMP UAS #nzF #DoF
L2PA 49.67 93.51 15.5M 5.59M
L1RDA 49.54 93.48 7.76M 3.56M

(w/ QT ζ=4) 38.58 90.85 6.32M 8
(w/ QT ζ=2) 34.19 89.42 3.08M 4
(w/ QT ζ=1) 30.42 88.67 3.08M 2

DC-ADMM (ζ=4) 49.83 93.55 5.81M 8
(ζ=2) 48.97 93.18 4.11M 4
(ζ=1) 46.56 92.86 6.37M 2

Table 1: Comparison results of the methods on test
data (K: thousand, M: million)

feature weights and an indexed structure of fea-
ture strings, which are used as the key for obtain-
ing the corresponding feature weight. This paper
mainly discussed how to reduce the size of the for-
mer part, and described its successful reduction.
We note that it is also possible to reduce the lat-
ter part especially if the feature string structure is
TRIE. We omit the details here since it is not the
main topic of this paper, but by merging feature
strings that have the same feature weights, the size
of entire trained models in our DEPAR case can be
reduced to about 10 times smaller than those ob-
tained by standard L1-regularization, i.e., to 12.2
MB from 124.5 MB.

5 Conclusion

This paper proposed a model learning framework
that can simultaneously realize feature grouping
by the incorporation of a simple discrete con-
straint into model learning optimization. This
paper also introduced a feasible algorithm, DC-
ADMM, which can vanish the infeasible combi-
natorial optimization part from the entire learning
algorithm with the help of the ADMM technique.
Experiments showed that DC-ADMM drastically
reduced model complexity in terms of the degrees
of freedom in trained models while maintaining
the performance. There may exist theoretically
cleverer approaches to feature grouping, but the
performance of DC-ADMM is close to the upper
bound. We believe our method, DC-ADMM, to be
very useful for actual use.

22



References
Galen Andrew and Jianfeng Gao. 2007. Scal-

able Training of L1-regularized Log-linear Models.
In Zoubin Ghahramani, editor, Proceedings of the
24th Annual International Conference on Machine
Learning (ICML 2007), pages 33–40. Omnipress.

Amir Beck and Marc Teboulle. 2009. A Fast Iter-
ative Shrinkage-thresholding Algorithm for Linear
Inverse Problems. SIAM Journal on Imaging Sci-
ences, 2(1):183–202.

Howard D. Bondell and Brian J. Reich. 2008. Simulta-
neous Regression Shrinkage, Variable Selection and
Clustering of Predictors with OSCAR. Biometrics,
64(1):115.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein. 2011. Distributed Opti-
mization and Statistical Learning via the Alternat-
ing Direction Method of Multipliers. Foundations
and Trends in Machine Learning.

Xavier Carreras. 2007. Experiments with a Higher-
Order Projective Dependency Parser. In Proceed-
ings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007, pages 957–961.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. On-
line Passive-Aggressive Algorithms. Journal of Ma-
chine Learning Research, 7:551–585.

John Duchi and Yoram Singer. 2009. Efficient On-
line and Batch Learning Using Forward Backward
Splitting. Journal of Machine Learning Research,
10:2899–2934.

Kevin Duh, Jun Suzuki, and Masaaki Nagata. 2011.
Distributed Learning-to-Rank on Streaming Data
using Alternating Direction Method of Multipliers.
In NIPS’11 Big Learning Workshop.

Hugh Everett. 1963. Generalized Lagrange Multiplier
Method for Solving Problems of Optimum Alloca-
tion of Resources. Operations Research, 11(3):399–
417.

Daniel Gabay and Bertrand Mercier. 1976. A Dual
Algorithm for the Solution of Nonlinear Variational
Problems via Finite Element Approximation. Com-
puters and Mathematics with Applications, 2(1):17
– 40.

Jianfeng Gao, Galen Andrew, Mark Johnson, and
Kristina Toutanova. 2007. A comparative study of
parameter estimation methods for statistical natural
language processing. In Proceedings of the 45th An-
nual Meeting of the Association of Computational
Linguistics, pages 824–831, Prague, Czech Repub-
lic, June. Association for Computational Linguis-
tics.

Rebecka Jörnsten and Bin Yu. 2003. Simulta-
neous Gene Clustering and Subset Selection for

Sample Classification Via MDL. Bioinformatics,
19(9):1100–1109.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple Semi-supervised Dependency Pars-
ing. In Proceedings of ACL-08: HLT, pages 595–
603.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of the International
Conference on Machine Learning (ICML 2001),
pages 282–289.

Dong C. Liu and Jorge Nocedal. 1989. On the Limited
Memory BFGS Method for Large Scale Optimiza-
tion. Math. Programming, Ser. B, 45(3):503–528.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online Large-margin Training of
Dependency Parsers. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Lin-
guistics, pages 91–98.

Xiaotong Shen and Hsin-Cheng Huang. 2010. Group-
ing Pursuit Through a Regularization Solution Sur-
face. Journal of the American Statistical Associa-
tion, 105(490):727–739.

Robert Tibshirani, Michael Saunders, Saharon Ros-
set, Ji Zhu, and Keith Knight. 2005. Sparsity and
Smoothness via the Fused Lasso. Journal of the
Royal Statistical Society Series B, pages 91–108.

Erik Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of CoNLL-2003, pages 142–147.

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ana-
niadou. 2009. Stochastic Gradient Descent Training
for L1-regularized Log-linear Models with Cumu-
lative Penalty. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 477–485.

Lin Xiao. 2010. Dual Averaging Methods for Regular-
ized Stochastic Learning and Online Optimization.
Journal of Machine Learning Research, 11:2543–
2596.

Leon Wenliang Zhong and James T. Kwok. 2011.
Efficient Sparse Modeling with Automatic Feature
Grouping. In ICML.

Hui Zou and Trevor Hastie. 2005. Regularization and
Variable Selection via the Elastic Net. Journal of the
Royal Statistical Society, Series B, 67:301–320.

23



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 24–29,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Exploiting Topic based Twitter Sentiment for Stock Prediction 

Jianfeng Si
*
 Arjun Mukherjee† 

Bing Liu† 
Qing Li

* 
Huayi Li†

 
Xiaotie Deng‡ 

*
Department of Computer Science, City University of Hong Kong, Hong Kong, China 

*
{ thankjeff@gmail.com, qing.li@cityu.edu.hk} 

†Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA 
†{ arjun4787@gmail.com, liub@cs.uic.edu, lhymvp@gmail.com} 

‡AIMS Lab, Department of Computer Science, Shanghai Jiaotong University, Shanghai, China 
‡
deng-xt@cs.sjtu.edu.cn  

 

Abstract 

This paper proposes a technique to leverage 

topic based sentiments from Twitter to help 

predict the stock market. We first utilize a con-

tinuous Dirichlet Process Mixture model to 

learn the daily topic set. Then, for each topic 

we derive its sentiment according to its opin-

ion words distribution to build a sentiment 

time series. We then regress the stock index 

and the Twitter sentiment time series to predict 

the market. Experiments on real-life S&P100 

Index show that our approach is effective and 

performs better than existing state-of-the-art 

non-topic based methods. 

1 Introduction 

Social media websites such as Twitter, Facebook, 

etc., have become ubiquitous platforms for social 

networking and content sharing. Every day, they 

generate a huge number of messages, which give 

researchers an unprecedented opportunity to uti-

lize the messages and the public opinions con-

tained in them for a wide range of applications 

(Liu, 2012). In this paper, we use them for the 

application of stock index time series analysis. 

Here are some example tweets upon querying 

the keyword “$aapl” (which is the stock symbol 

for Apple Inc.) in Twitter: 

1. “Shanghai Oriental Morning Post confirm-

ing w Sources that $AAPL TV will debut 

in May, Prices range from $1600-$3200, 

but $32,000 for a 50"wow.” 

2. “$AAPL permanently lost its bid for a ban 

on U.S. sales of the Samsung Galaxy Nex-

us http://dthin.gs/XqcY74.” 

3. “$AAPL is loosing customers. everybody is 

buying android phones! $GOOG.” 

As shown, the retrieved tweets may talk about 

Apple’s products, Apple’s competition relation-

ship with other companies, etc. These messages 

are often related to people’s sentiments about 

Apple Inc., which can affect or reflect its stock 

trading since positive sentiments can impact 

sales and financial gains. Naturally, this hints 

that topic based sentiment is a useful factor to 

consider for stock prediction as they reflect peo-

ple’s sentiment on different topics in a certain 

time frame. 

This paper focuses on daily one-day-ahead 

prediction of stock index based on the temporal 

characteristics of topics in Twitter in the recent 

past. Specifically, we propose a non-parametric 

topic-based sentiment time series approach to 

analyzing the streaming Twitter data. The key 

motivation here is that Twitter’s streaming mes-

sages reflect fresh sentiments of people which 

are likely to be correlated with stocks in a short 

time frame. We also analyze the effect of training 

window size which best fits the temporal dynam-

ics of stocks. Here window size refers to the 

number of days of tweets used in model building. 

Our final prediction model is built using vec-

tor autoregression (VAR). To our knowledge, 

this is the first attempt to use non-parametric 

continuous topic based Twitter sentiments for 

stock prediction in an autoregressive framework. 

2 Related Work 

2.1 Market Prediction and Social Media 

Stock market prediction has attracted a great deal 

of attention in the past. Some recent researches 

suggest that news and social media such as blogs, 

micro-blogs, etc., can be analyzed to extract pub-

lic sentiments to help predict the market (La-

vrenko et al., 2000; Schumaker and Chen, 2009). 

Bollen et al. (2011) used tweet based public 

mood to predict the movement of Dow Jones 
*   The work was done when the first author was visiting 

University of Illinois at Chicago. 
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Industrial Average index. Ruiz et al. (2012) stud-

ied the relationship between Twitter activities 

and stock market under a graph based view. 

Feldman et al. (2011) introduced a hybrid ap-

proach for stock sentiment analysis based on 

companies’ news articles.  

2.2 Aspect and Sentiment Models 

Topic modeling as a task of corpus exploration 

has attracted significant attention in recent years. 

One of the basic and most widely used models is 

Latent Dirichlet Allocation (LDA) (Blei et al., 

2003). LDA can learn a predefined number of 

topics and has been widely applied in its extend-

ed forms in sentiment analysis and many other 

tasks (Mei et al., 2007; Branavan et al., 2008; Lin 

and He, 2009; Zhao et al., 2010; Wang et al., 

2010; Brody and Elhadad, 2010; Jo and Oh, 2011; 

Moghaddam and Ester, 2011; Sauper et al., 2011; 

Mukherjee and Liu, 2012; He et al., 2012).  

The Dirichlet Processes Mixture (DPM) model 

is a non-parametric extension of LDA (Teh et al., 

2006), which can estimate the number of topics 

inherent in the data itself. In this work, we em-

ploy topic based sentiment analysis using DPM 

on Twitter posts (or tweets). First, we employ a 

DPM to estimate the number of topics in the 

streaming snapshot of tweets in each day.  

Next, we build a sentiment time series based 

on the estimated topics of daily tweets. Lastly, 

we regress the stock index and the sentiment 

time series in an autoregressive framework. 

3 Model 

We now present our stock prediction framework. 

3.1 Continuous DPM Model 

Comparing to edited articles, it is much harder to 

preset the number of topics to best fit continuous 

streaming Twitter data due to the large topic di-

versity in tweets. Thus, we resort to a non-

parametric approach: the Dirichlet Process Mix-

ture (DPM) model, and let the model estimate the 

number of topics inherent in the data itself. 

Mixture model is widely used in clustering and 

can be formalized as follows: 

   ∑      (       ) 
              (1) 

where    is a data point,    is its cluster label, K 

is the number of topics,  (       ) is the sta-

tistical (topic) models: *  +   
  and     is the 

component weight satisfying      and  

∑      . 

In our setting of DPM, the number of mixture 

components (topics) K is unfixed apriori but es-

timated from tweets in each day. DPM is defined 

as in (Neal, 2010): 

                 (  )  
               

           (   )                 (2) 

where    is the parameter of the model that      
belongs to, and   is defined as a Dirichlet Pro-
cess with the base measure H and the concentra-
tion parameter   (Neal, 2010). 

We note that neighboring days may share the 

same or closely related topics because some top-

ics may last for a long period of time covering 

multiple days, while other topics may just last for 

a short period of time. Given a set of time-

stamped tweets, the overall generative process 

should be dynamic as the topics evolve over time. 

There are several ways to model this dynamic 

nature (Sun et al., 2010; Kim and Oh, 2011; 

Chua and Asur, 2012; Blei and Lafferty, 2006; 

Wang et al., 2008). In this paper, we follow the 

approach of Sun et al. (2010) due to its generality 

and extensibility. 

Figure 1 shows the graphical model of our con-

tinuous version of DPM (which we call cDPM). 

As shown, the tweets set is divided into daily 

based collections: *         +  *    +   
     are the 

observed tweets and *    +   
     are the model pa-

rameters (latent topics) that generate these tweets. 

For each subset of tweets,    (tweets of day  ), 

we build a DPM on it. For the first day (   ), 

the model functions the same as a standard DPM, 

i.e., all the topics use the same base measure, 

      ( ). However, for later days (   ), 

besides the base measure,       ( ), we make 

use of topics learned from previous days as pri-

ors. This ensures smooth topic chains or links 

(details in §3.2). For efficiency, we only consider 

topics of one previous day as priors. 

We use collapsed Gibbs sampling (Bishop, 

2006) for model inference. Hyper-parameters are 

set to:              ;       as in 

(Sun et al., 2010; Teh et al., 2006) which have 

been shown to work well. Because a tweet has at 

most 140 characters, we assume that each tweet 

contains only one topic. Hence, we only need to 

 

 

 

 

 

 

 

 

Figure 1: Continuous DPM. 
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sample the topic assignment    for each tweet   . 

According to different situations with respect 

to a topic’s prior, for each tweet    in   , the 

conditional distribution for    given all other 

tweets’ topic assignments, denoted by    , can be 

summarized as follows: 

1.    is a new topic: Its candidate priors contain 

the symmetric base prior    ( )  and topics 

*      +   
     learned from            .  

 If    takes a symmetric base prior: 

 (                )   

 

     

 (    )

 (       )

∏  (      )
   
   

∏  ( )
   
   

           (3) 

where the first part denotes the prior proba-

bility according to the Dirichlet Process and 

the second part is the data likelihood (this 

interpretation can similarly be applied to the 

following three equations).  

 If    takes one topic k from *      +   
     as 

its prior: 

 (                  )    

 
        

     

 (    )

 (       )

∏  (          ( )     )
   
   

∏  (          ( ))
   
   

 (4) 

2. k is an existing topic: We already know its 

prior. 

 If k takes a symmetric base prior: 

  (               )   

 
  
  

     

 (        ( )
  )

 (           ( )
  )

∏  (           
  )

   
   

∏  (      
  )

   
   

 (5) 

 If k takes topic        as its prior:  

  (               )   

  
  

     

 .        ( )
  /

 .           ( )
  /

∏  (          ( )          
  )

   
   

∏  (          ( )     
  )

   
   

 (6) 

Notations in the above equations are listed as 

follows: 

      is the number of topics learned in day t-1. 

 |V| is the vocabulary size. 

    is the document length of   . 

      is the term frequency of word   in   . 

       ( ) is the probability of word   in pre-

vious day’s topic k.  

   
   is the number of tweets assigned to topic k 

excluding the current one   .  

     
   is the term frequency of word   in topic k, 

with statistic from    excluded. While    ( )
   

denotes the marginalized sum of all words in 

topic k with statistic from    excluded. 

Similarly, the posteriors on *    ( )+  (topic 

word distributions) are given according to their 

prior situations as follows: 

 If topic k takes the base prior: 

           ( )   (      ) (         ( )) ⁄     (7) 

where      is the frequency of word   in topic 

k and    ( )  is the marginalized sum over all 

words. 

 otherwise, it is defined recursively as: 

    ( )  (          ( )      ) (         ( ))⁄  (8) 

where        serves as the topic prior for     . 

Finally, for each day we estimate the topic 

weights,    as follows:  

        ∑      ⁄                              (9) 

where    is the number of tweets in topic k. 

3.2 Topic-based Sentiment Time Series 

Based on an opinion lexicon   (a list of positive 

and negative opinion words, e.g., good and bad), 

each opinion word,     is assigned with a po-

larity label  ( ) as “+1” if it is positive and “-1” 

if negative. We spilt each tweet’s text into opin-

ion part and non-opinion part. Only non-opinion 

words in tweets are used for Gibbs sampling. 

Based on DPM, we learn a set of topics from 

the non-opinion words space  . The correspond-

ing tweets’ opinion words share the same topic 

assignments as its tweet. Then, we compute the 

posterior on opinion word probability,     
 ( ) 

for topic   analogously to equations (7) and (8). 

Finally, we define the topic based sentiment 

score  (   ) of topic   in day t as a weighted 

linear combination of the opinion polarity labels: 

 (   )   ∑     
 ( )

   
    ( );  (   )   ,    -    (10) 

According to the generative process of cDPM, 

topics between neighboring days are linked if a 

topic k takes another topic as its prior. We regard 

this as evolution of topic k. Although there may 

be slight semantic variation, the assumption is 

reasonable. Then, the sentiment scores for each 

topic series form the sentiment time series {…, 

S(t-1, k), S(t, k), S(t+1, k), ...}. 

Figure 2 demonstrates the linking process 

where a triangle denotes a new topic (with base 

symmetric prior), a circle denotes a middle topic 

(taking a topic from the previous day as its prior, 
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Figure 2: Linking the continuous topics via 
neighboring priors. 
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while also supplying prior for the next day) and 

an ellipse denotes an end topic (no further topics 

use it as a prior). In this example, two continuous 

topic chains or links (via linked priors) exist for 

the time interval [t-1, t+1]: one in light grey color, 

and the other in black. As shown, there may be 

more than one topic chain/link (5-20 in our ex-

periments) for a certain time interval
1
.Thus, we 

sort multiple sentiment series according to their 

accumulative weights of topics over each link: 

∑     
  
    

. In our experiments, we try the top 

five series and use the one that gives the best re-

sult, which is mostly the first (top ranked) series 

with a few exceptions of the second series. The 

topics mostly focus on hot keywords like: news, 

stocknews, earning, report, which stimulate ac-

tive discussions on the social media platform. 

3.3 Time Series Analysis with VAR 

For model building, we use vector autoregression 

(VAR). The first order (time steps of historical 

information to use: lag = 1) VAR model for two 

time series *  + and *  + is given by:  

                                                   
                                               (11) 

where * + are the white noises and * + are model 

parameters. We use the “dse” library
2
 in the R 

language to fit our VAR model based on least 

square regression. 

 Instead of training in one period and predicting 

over another disjointed period, we use a moving 

training and prediction process under sliding 

windows
3
 (i.e., train in [t, t + w] and predict in-

dex on t + w + 1) with two main considerations: 

 Due to the dynamic and random nature of both 

the stock market and public sentiments, we are 

more interested in their short term relationship. 

 Based on the sliding windows, we have more 

training and testing points.  

Figure 3 details the algorithm for stock index 

prediction. The accuracy is computed based on 

the index up and down dynamics, the function 

     (    ) returns True only if   (our predic-

tion) and   (actual value) share the same index 

up or down direction. 

 

 

                                                 
1 The actual topic priors for topic links are governed by the 

four cases of the Gibbs Sampler. 
2 http://cran.r-project.org/web/packages/dse 
3  This is similar to the autoregressive moving average 

(ARMA) models. 

4 Dataset 

We collected the tweets via Twitter’s REST API 

for streaming data, using symbols of the Stand-

ard & Poor's 100 stocks (S&P100) as keywords. 

In this study, we focus only on predicting the 

S&P100 index. The time period of our dataset is 

between Nov. 2, 2012 and Feb. 7, 2013, which 

gave us 624782 tweets. We obtained the S&P100 

index’s daily close values from Yahoo Finance. 

5 Experiment 

5.1 Selecting a Sentiment Metric 

Bollen et al. (2011) used the mood dimension, 

Calm together with the index value itself to pre-

dict the Dow Jones Industrial Average. However, 

their Calm lexicon is not publicly available. We 

thus are unable to perform a direct comparison 

with their system. We identified and labeled a 

Calm lexicon (words like “anxious”, “shocked”, 

“settled” and “dormant”) using the opinion lexi-

con
4
 of Hu and Liu (2004) and computed the sen-

timent score using the method of Bollen et al. 

(2011) (sentiment ratio). Our pilot experiments 

showed that using the full opinion lexicon of Hu 

and Liu (2004) actually performs consistently 

better than the Calm lexicon. Hence, we use the 

entire opinion lexicon in Hu and Liu (2004). 

5.2 S&P100INDEX Movement Prediction 

We evaluate the performance of our method by 

comparing with two baselines. The first (Index) 

uses only the index itself, which reduces the 

VAR model to the univariate autoregressive 

model (AR), resulting in only one index time 

series {  } in the algorithm of Figure 3.  

                                                 
4
 http://cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar 

Parameter:  

w: training window size; lag: the order of VAR;  

Input:   : the date of time series; {  }: sentiment time 
series; {  }: index time series; 

Output: prediction accuracy. 
1. for t = 0, 1, 2, …, N-w-1 

2. { 

3.         = VAR( ,     -  ,     -, lag); 

4.             
 =       .Predict(x[t+w+1-lag, t+w],  

  y[t+w+1-lag, t+w]); 
5.       if (      (      

        ) )   
 rightNum++;  
6.     } 
7.    Accuracy = rightNum / (N-w); 
8.    Return Accuracy; 

Figure 3: Prediction algorithm and accuracy 
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 When considering Twitter sentiments, existing 

works (Bollen et al., 2011, Ruiz et al., 2012) 

simply compute the sentiment score as ratio of 

pos/neg opinion words per day. This generates a 

lexicon-based sentiment time series, which is 

then combined with the index value series to give 

us the second baseline Raw.  

 In summary, Index uses index only with the 

AR model while Raw uses index and opinion 

lexicon based time series. Our cDPM uses index 

and the proposed topic based sentiment time se-

ries. Both Raw and cDPM employ the two di-

mensional VAR model. We experiment with dif-

ferent lag settings from 1-3 days. 

 We also experiment with different training 

window sizes, ranging from 15 - 30 days, and 

compute the prediction accuracy for each win-

dow size. Table 1 shows the respective average 

and best accuracies over all window sizes for 

each lag and Table 2 summarizes the pairwise 

performance improvements of averaged scores 

over all training window sizes. Figure 4 show the 

detailed accuracy comparison for lag 1 and lag 3.  

    From Table 1, 2, and Figure 4, we note: 

i. Topic-based public sentiments from tweets 
can improve stock prediction over simple sen-
timent ratio which may suffer from backchan-
nel noise and lack of focus on prevailing top-
ics. For example, on lag 2, Raw performs 
worse by 8.6% than Index itself. 

ii. cDPM outperforms all others in terms of both 
the best accuracy (lag 3) and the average ac-
curacies for different window sizes. The max-
imum average improvement reaches 25.0% 
compared to Index at lag 1 and 15.1% com-
pared to Raw at lag 3. This is due to the fact 
that cDPM learns the topic based sentiments 
instead of just using the opinion words’ ratio 
like Raw, and in a short time period, some 
topics are more correlated with the stock mar-

ket than others. Our proposed sentiment time 
series using cDPM can capture this phenome-
non and also help reduce backchannel noise 
of raw sentiments.  

iii. On average, cDPM gets the best performance 
for training window sizes within [21, 22], and 
the best prediction accuracy is 68.0% on win-
dow size 22 at lag 3. 

6 Conclusions 

Predicting the stock market is an important but 

difficult problem. This paper showed that Twit-

ter’s topic based sentiment can improve the pre-

diction accuracy beyond existing non-topic based 

approaches. Specifically, a non-parametric topic-

based sentiment time series approach was pro-

posed for the Twitter stream. For prediction, vec-

tor autoregression was used to regress S&P100 

index with the learned sentiment time series. Be-

sides the short term dynamics based prediction, 

we believe that the proposed method can be ex-

tended for long range dependency analysis of 

Twitter sentiments and stocks, which can render 

deep insights into the complex phenomenon of 

stock market. This will be part of our future work. 
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Lag Index Raw cDPM 

1 0.48(0.54) 0.57(0.59) 0.60(0.64) 

2 0.58(0.65) 0.53(0.62) 0.60(0.63) 

3 0.52(0.56) 0.53(0.60) 0.61(0.68) 

Table 1: Average (best) accuracies over all 

training window sizes and different lags 1, 2, 3. 

Lag Raw vs. Index cDPM vs. Index cDPM vs. Raw 

1 18.8% 25.0% 5.3% 

2 -8.6% 3.4% 13.2% 

3 1.9% 17.3% 15.1% 

Table 2: Pairwise improvements among Index, 

Raw and cDPM averaged over all training win-

dow sizes. 

 

Figure 4: Comparison of prediction accuracy of 

up/down stock index on S&P 100 index for dif-

ferent training window sizes. 
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Abstract

We propose a novel entity disambigua-
tion model, based on Deep Neural Net-
work (DNN). Instead of utilizing simple
similarity measures and their disjoint com-
binations, our method directly optimizes
document and entity representations for a
given similarity measure. Stacked Denois-
ing Auto-encoders are first employed to
learn an initial document representation in
an unsupervised pre-training stage. A su-
pervised fine-tuning stage follows to opti-
mize the representation towards the simi-
larity measure. Experiment results show
that our method achieves state-of-the-art
performance on two public datasets with-
out any manually designed features, even
beating complex collective approaches.

1 Introduction

Entity linking or disambiguation has recently re-
ceived much attention in natural language process-
ing community (Bunescu and Pasca, 2006; Han
et al., 2011; Kataria et al., 2011; Sen, 2012). It is
an essential first step for succeeding sub-tasks in
knowledge base construction (Ji and Grishman,
2011) like populating attribute to entities. Given
a sentence with four mentions, “The [[Python]] of
[[Delphi]] was a creature with the body of a snake.
This creature dwelled on [[Mount Parnassus]], in
central [[Greece]].” How can we determine that
Python is an earth-dragon in Greece mythology
and not the popular programming language, Del-
phi is not the auto parts supplier, and Mount Par-
nassus is in Greece, not in Colorado?

A most straightforward method is to compare
the context of the mention and the definition of
candidate entities. Previous work has explored
many ways of measuring the relatedness of context

∗Corresponding author

d and entity e, such as dot product, cosine similar-
ity, Kullback-Leibler divergence, Jaccard distance,
or more complicated ones (Zheng et al., 2010;
Kulkarni et al., 2009; Hoffart et al., 2011; Bunescu
and Pasca, 2006; Cucerzan, 2007; Zhang et al.,
2011). However, these measures are often dupli-
cate or over-specified, because they are disjointly
combined and their atomic nature determines that
they have no internal structure.

Another line of work focuses on collective dis-
ambiguation (Kulkarni et al., 2009; Han et al.,
2011; Ratinov et al., 2011; Hoffart et al., 2011).
Ambiguous mentions within the same context are
resolved simultaneously based on the coherence
among decisions. Collective approaches often un-
dergo a non-trivial decision process. In fact, (Rati-
nov et al., 2011) show that even though global ap-
proaches can be improved, local methods based on
only similarity sim(d, e) of context d and entity e
are hard to beat. This somehow reveals the impor-
tance of a good modeling of sim(d, e).

Rather than learning context entity associa-
tion at word level, topic model based approaches
(Kataria et al., 2011; Sen, 2012) can learn it in
the semantic space. However, the one-topic-per-
entity assumption makes it impossible to scale to
large knowledge base, as every entity has a sepa-
rate word distribution P (w|e); besides, the train-
ing objective does not directly correspond with
disambiguation performances.

To overcome disadvantages of previous ap-
proaches, we propose a novel method to learn con-
text entity association enriched with deep architec-
ture. Deep neural networks (Hinton et al., 2006;
Bengio et al., 2007) are built in a hierarchical man-
ner, and allow us to compare context and entity
at some higher level abstraction; while at lower
levels, general concepts are shared across entities,
resulting in compact models. Moreover, to make
our model highly correlated with disambiguation
performance, our method directly optimizes doc-
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ument and entity representations for a fixed simi-
larity measure. In fact, the underlying representa-
tions for computing similarity measure add inter-
nal structure to the given similarity measure. Fea-
tures are learned leveraging large scale annotation
of Wikipedia, without any manual design efforts.
Furthermore, the learned model is compact com-
pared with topic model based approaches, and can
be trained discriminatively without relying on ex-
pensive sampling strategy. Despite its simplicity,
it beats all complex collective approaches in our
experiments. The learned similarity measure can
be readily incorporated into any existing collective
approaches, which further boosts performance.

2 Learning Representation for
Contextual Document

Given a mention string m with its context docu-
ment d, a list of candidate entities C(m) are gen-
erated form, for each candidate entity ei ∈ C(m),
we compute a ranking score sim(dm, ei) indicat-
ing how likely m refers to ei. The linking result is
e = argmaxei sim(dm, ei).

Our algorithm consists of two stages. In the pre-
training stage, Stacked Denoising Auto-encoders
are built in an unsupervised layer-wise fashion to
discover general concepts encoding d and e. In the
supervised fine-tuning stage, the entire network
weights are fine-tuned to optimize the similarity
score sim(d, e).

2.1 Greedy Layer-wise Pre-training

Stacked Auto-encoders (Bengio et al., 2007) is
one of the building blocks of deep learning. As-
sume the input is a vector x, an auto-encoder con-
sists of an encoding process h(x) and a decod-
ing process g(h(x)). The goal is to minimize the
reconstruction error L(x, g(h(x))), thus retaining
maximum information. By repeatedly stacking
new auto-encoder on top of previously learned
h(x), stacked auto-encoders are obtained. This
way we learn multiple levels of representation of
input x.

One problem of auto-encoder is that it treats all
words equally, no matter it is a function word or
a content word. Denoising Auto-encoder (DA)
(Vincent et al., 2008) seeks to reconstruct x given
a random corruption x̃ of x. DA can capture global
structure while ignoring noise as the author shows
in image processing. In our case, we input each
document as a binary bag-of-words vector (Fig.

1). DA will capture general concepts and ignore
noise like function words. By applying masking
noise (randomly mask 1 with 0), the model also
exhibits a fill-in-the-blank property (Vincent et
al., 2010): the missing components must be re-
covered from partial input. Take “greece” for ex-
ample, the model must learn to predict it with
“python” “mount”, through some hidden unit. The
hidden unit may somehow express the concept of
Greece mythology.

h(x)

g(h(x))

python
dragon delphi

coding ...
greecemount

snake phd

reconstruct input

reconstruct random
zero node
not reconstruct

inactive

active, but 
mask out

active

Figure 1: DA and reconstruction sampling.

In order to distinguish between a large num-
ber of entities, the vocabulary size must be large
enough. This adds considerable computational
overhead because the reconstruction process in-
volves expensive dense matrix multiplication. Re-
construction sampling keeps the sparse property
of matrix multiplication by reconstructing a small
subset of original input, with no loss of quality of
the learned representation (Dauphin et al., 2011).

2.2 Supervised Fine-tuning

This stage we optimize the learned representation
(“hidden layer n” in Fig. 2) towards the ranking
score sim(d, e), with large scale Wikipedia an-
notation as supervision. We collect hyperlinks in
Wikipedia as our training set {(di, ei,mi)}, where
mi is the mention string for candidate generation.
The network weights below “hidden layer n” are
initialized with the pre-training stage.

Next, we stack another layer on top of the
learned representation. The whole network is
tuned by the final supervised objective. The reason
to stack another layer on top of the learned rep-
resentation, is to capture problem specific struc-
tures. Denote the encoding of d and e as d̂ and
ê respectively, after stacking the problem-specific
layer, the representation for d is given as f(d) =
sigmoid(W × d̂ + b), where W and b are weight
and bias term respectively. f(e) follows the same
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encoding process.
The similarity score of (d, e) pair is defined as

the dot product of f(d) and f(e) (Fig. 2):

sim(d, e) = Dot(f(d), f(e)) (1)

<.,.>

f(d) f(e)

hidden layer n

stacked auto-encoder

sim(d,e)

Figure 2: Network structure of fine-tuning stage.

Our goal is to rank the correct entity higher
than the rest candidates relative to the context of
the mention. For each training instance (d, e), we
contrast it with one of its negative candidate pair
(d, e′). This gives the pairwise ranking criterion:

L(d, e) = max{0, 1− sim(d, e) + sim(d, e′)}
(2)

Alternatively, we can contrast with all its candi-
date pairs (d, ei). That is, we raise the similarity
score of true pair sim(d, e) and penalize all the
rest sim(d, ei). The loss function is defined as
negative log of softmax function:

L(d, e) = − log
exp sim(d, e)∑

ei∈C(m) exp sim(d, ei)
(3)

Finally, we seek to minimize the following train-
ing objective across all training instances:

L =
∑

d,e

L(d, e) (4)

The loss function is closely related to con-
trastive estimation (Smith and Eisner, 2005),
which defines where the positive example takes
probability mass from. We find that by penaliz-
ing more negative examples, convergence speed
can be greatly accelerated. In our experiments, the
softmax loss function consistently outperforms
pairwise ranking loss function, which is taken as
our default setting.

However, the softmax training criterion adds
additional computational overhead when per-
forming mini-batch Stochastic Gradient Descent
(SGD). Although we can use a plain SGD (i.e.
mini-batch size is 1), mini-batch SGD is faster to
converge and more stable. Assume the mini-batch
size ism and the number of candidates is n, a total
of m × n forward-backward passes over the net-
work are performed to compute a similarity ma-
trix (Fig. 3), while pairwise ranking criterion only
needs 2×m. We address this problem by grouping
training pairs with same mentionm into one mini-
batch {(d, ei)|ei ∈ C(m)}. Observe that if candi-
date entities overlap, they share the same forward-
backward path. Only m + n forward-backward
passes are needed for each mini-batch now.

Python (programming language)

Pythonidae
Python (mythology)

... ...

... ...

... ...

d0

d1

...

dm

...

=sim(d,e)

e0 e1 e2 en

Figure 3: Sharing path within mini-batch.

The re-organization of mini-batch is similar
in spirit to Backpropagation Through Structure
(BTS) (Goller and Kuchler, 1996). BTS is a vari-
ant of the general backpropagation algorithm for
structured neural network. In BTS, parent node
is computed with its child nodes at the forward
pass stage; child node receives gradient as the sum
of derivatives from all its parents. Here (Fig. 2),
parent node is the score node sim(d, e) and child
nodes are f(d) and f(e). In Figure 3, each row
shares forward path of f(d) while each column
shares forward path of f(e). At backpropagation
stage, gradient is summed over each row of score
nodes for f(d) and over each column for f(e).

Till now, our input simply consists of bag-of-
words binary vector. We can incorporate any
handcrafted feature f(d, e) as:

sim(d, e) = Dot(f(d), f(e)) + ~λ~f(d, e) (5)

In fact, we find that with only Dot(f(d), f(e))
as ranking score, the performance is sufficiently
good. So we leave this as our future work.
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3 Experiments and Analysis

Training settings: In pre-training stage, input
layer has 100,000 units, all hidden layers have
1,000 units with rectifier functionmax(0, x). Fol-
lowing (Glorot et al., 2011), for the first recon-
struction layer, we use sigmoid activation func-
tion and cross-entropy error function. For higher
reconstruction layers, we use softplus (log(1 +
exp(x))) as activation function and squared loss
as error function. For corruption process, we use a
masking noise probability in {0.1,0.4,0.7} for the
first layer, a Gaussian noise with standard devi-
ation of 0.1 for higher layers. For reconstruction
sampling, we set the reconstruction rate to 0.01. In
fine-tuning stage, the final layer has 200 units with
sigmoid activation function. The learning rate is
set to 1e-3. The mini-batch size is set to 20.

We run all our experiments on a Linux ma-
chine with 72GB memory 6 core Xeon CPU. The
model is implemented in Python with C exten-
sions, numpy configured with Openblas library.
Thanks to reconstruction sampling and refined
mini-batch arrangement, it takes about 1 day to
converge for pre-training and 3 days for fine-
tuning, which is fast given our training set size.

Datasets: We use half of Wikipedia 1 plain text
(˜1.5M articles split into sections) for pre-training.
We collect a total of 40M hyperlinks grouped by
name string m for fine-tuning stage. We holdout
a subset of hyperlinks for model selection, and we
find that 3 layers network with a higher masking
noise rate (0.7) always gives best performance.

We select TAC-KBP 2010 (Ji and Grishman,
2011) dataset for non-collective approaches, and
AIDA 2 dataset for collective approaches. For both
datasets, we evaluate the non-NIL queries. The
TAC-KBP and AIDA testb dataset contains 1020
and 4485 non-NIL queries respectively.

For candidate generation, mention-to-entity dic-
tionary is built by mining Wikipedia structures,
following (Cucerzan, 2007). We keep top 30 can-
didates by prominence P (e|m) for speed consid-
eration. The candidate generation recall are 94.0%
and 98.5% for TAC and AIDA respectively.

Analysis: Table 1 shows evaluation results
across several best performing systems. (Han et
al., 2011) is a collective approach, using Person-
alized PageRank to propagate evidence between

1available at http://dumps.wikimedia.org/enwiki/, we use
the 20110405 xml dump.

2available at http://www.mpi-inf.mpg.de/yago-naga/aida/

different decisions. To our surprise, our method
with only local evidence even beats several com-
plex collective methods with simple word similar-
ity. This reveals the importance of context model-
ing in semantic space. Collective approaches can
improve performance only when local evidence is
not confident enough. When embedding our sim-
ilarity measure sim(d, e) into (Han et al., 2011),
we achieve the best results on AIDA.

A close error analysis shows some typical er-
rors due to the lack of prominence feature and
name matching feature. Some queries acciden-
tally link to rare candidates and some link to en-
tities with completely different names. We will
add these features as mentioned in Eq. 5 in future.
We will also add NIL-detection module, which is
required by more realistic application scenarios.
A first thought is to construct pseudo-NIL with
Wikipedia annotations and automatically learn the
threshold and feature weight as in (Bunescu and
Pasca, 2006; Kulkarni et al., 2009).

Methods micro
P@1

macro
P@1

TAC 2010 eval
Lcc (2010) (top1, noweb) 79.22 -
Siel 2010 (top2, noweb) 71.57 -
our best 80.97 -

AIDA dataset (collective approaches)
AIDA (2011) 82.29 82.02
Shirakawa et al. (2011) 81.40 83.57
Kulkarni et al. (2009) 72.87 76.74
wordsim (cosine) 48.38 37.30
Han (2011) +wordsim 78.97 75.77
our best (non-collective) 84.82 83.37
Han (2011) + our best 85.62 83.95

Table 1: Evaluation on TAC and AIDA dataset.

4 Conclusion

We propose a deep learning approach that auto-
matically learns context-entity similarity measure
for entity disambiguation. The intermediate rep-
resentations are learned leveraging large scale an-
notations of Wikipedia, without any manual effort
of designing features. The learned representation
of entity is compact and can scale to very large
knowledge base. Furthermore, experiment reveals
the importance of context modeling in this field.
By incorporating our learned measure into collec-
tive approach, performance is further improved.
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Abstract
Statistical language models have success-
fully been used to describe and analyze
natural language documents. Recent work
applying language models to program-
ming languages is focused on the task
of predicting code, while mainly ignoring
the prediction of programmer comments.
In this work, we predict comments from
JAVA source files of open source projects,
using topic models and n-grams, and we
analyze the performance of the models
given varying amounts of background data
on the project being predicted. We evalu-
ate models on their comment-completion
capability in a setting similar to code-
completion tools built into standard code
editors, and show that using a comment
completion tool can save up to 47% of the
comment typing.

1 Introduction and Related Work

Statistical language models have traditionally
been used to describe and analyze natural lan-
guage documents. Recently, software engineer-
ing researchers have adopted the use of language
models for modeling software code. Hindle et al.
(2012) observe that, as code is created by humans
it is likely to be repetitive and predictable, similar
to natural language. NLP models have thus been
used for a variety of software development tasks
such as code token completion (Han et al., 2009;
Jacob and Tairas, 2010), analysis of names in code
(Lawrie et al., 2006; Binkley et al., 2011) and min-
ing software repositories (Gabel and Su, 2008).

An important part of software programming and
maintenance lies in documentation, which may
come in the form of tutorials describing the code,
or inline comments provided by the programmer.
The documentation provides a high level descrip-
tion of the task performed by the code, and may

include examples of use-cases for specific code
segments or identifiers such as classes, methods
and variables. Well documented code is easier to
read and maintain in the long-run but writing com-
ments is a laborious task that is often overlooked
or at least postponed by many programmers.

Code commenting not only provides a summa-
rization of the conceptual idea behind the code
(Sridhara et al., 2010), but can also be viewed as a
form of document expansion where the comment
contains significant terms relevant to the described
code. Accurately predicted comment words can
therefore be used for a variety of linguistic uses
including improved search over code bases using
natural language queries, code categorization, and
locating parts of the code that are relevant to a spe-
cific topic or idea (Tseng and Juang, 2003; Wan et
al., 2007; Kumar and Carterette, 2013; Shepherd
et al., 2007; Rastkar et al., 2011). A related and
well studied NLP task is that of predicting natural
language caption and commentary for images and
videos (Blei and Jordan, 2003; Feng and Lapata,
2010; Feng and Lapata, 2013; Wu and Li, 2011).

In this work, our goal is to apply statistical lan-
guage models for predicting class comments. We
show that n-gram models are extremely success-
ful in this task, and can lead to a saving of up
to 47% in comment typing. This is expected as
n-grams have been shown as a strong model for
language and speech prediction that is hard to im-
prove upon (Rosenfeld, 2000). In some cases how-
ever, for example in a document expansion task,
we wish to extract important terms relevant to the
code regardless of local syntactic dependencies.
We hence also evaluate the use of LDA (Blei et al.,
2003) and link-LDA (Erosheva et al., 2004) topic
models, which are more relevant for the term ex-
traction scenario. We find that the topic model per-
formance can be improved by distinguishing code
and text tokens in the code.
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2 Method

2.1 Models

We train n-gram models (n = 1, 2, 3) over source
code documents containing sequences of com-
bined code and text tokens from multiple training
datasets (described below). We use the Berkeley
Language Model package (Pauls and Klein, 2011)
with absolute discounting (Kneser-Ney smooth-
ing; (1995)) which includes a backoff strategy to
lower-order n-grams. Next, we use LDA topic
models (Blei et al., 2003) trained on the same data,
with 1, 5, 10 and 20 topics. The joint distribution
of a topic mixture θ, and a set of N topics z, for
a single source code document with N observed
word tokens, d = {wi}Ni=1, given the Dirichlet pa-
rameters α and β, is therefore

p(θ, z, w|α, β) = (1)

p(θ|α)
∏

w

p(z|θ)p(w|z, β)

Under the models described so far, there is no dis-
tinction between text and code tokens.

Finally, we consider documents as having a
mixed membership of two entity types, code and
text tokens, d = ({wcodei }Cn

i=1, {wtexti }Tni=1), where
the text words are tokens from comment and
string literals, and the code words include the pro-
gramming language syntax tokens (e.g., public,
private, for, etc’ ) and all identifiers. In this
case, we train link-LDA models (Erosheva et al.,
2004) with 1, 5, 10 and 20 topics. Under the link-
LDA model, the mixed-membership joint distribu-
tion of a topic mixture, words and topics is then

p(θ, z, w|α, β) = p(θ|α)· (2)
∏

wtext

p(ztext|θ)p(wtext|ztext, β)·
∏

wcode

p(zcode|θ)p(wcode|zcode, β)

where θ is the joint topic distribution, w is the set
of observed document words, ztext is a topic asso-
ciated with a text word, and zcode a topic associ-
ated with a code word.

The LDA and link-LDA models use Gibbs sam-
pling (Griffiths and Steyvers, 2004) for topic infer-
ence, based on the implementation of Balasubra-
manyan and Cohen (2011) with single or multiple
entities per document, respectively.

2.2 Testing Methodology
Our goal is to predict the tokens of the JAVA class
comment (the one preceding the class definition)
in each of the test files. Each of the models de-
scribed above assigns a probability to the next
comment token. In the case of n-grams, the prob-
ability of a token word wi is given by considering
previous words p(wi|wi−1, . . . , w0). This proba-
bility is estimated given the previous n− 1 tokens
as p(wi|wi−1, . . . , wi−(n−1)).

For the topic models, we separate the docu-
ment tokens into the class definition and the com-
ment we wish to predict. The set of tokens of
the class comment wc, are all considered as text
tokens. The rest of the tokens in the document
wr, are considered to be the class definition, and
they may contain both code and text tokens (from
string literals and other comments in the source
file). We then compute the posterior probability
of document topics by solving the following infer-
ence problem conditioned on the wr tokens

p(θ, zr|wr, α, β) = p(θ, zr, wr|α, β)
p(wr|α, β) (3)

This gives us an estimate of the document distri-
bution, θ, with which we infer the probability of
the comment tokens as

p(wc|θ, β) =
∑

z

p(wc|z, β)p(z|θ) (4)

Following Blei et al. (2003), for the case
of a single entity LDA, the inference problem
from equation (3) can be solved by considering
p(θ, z, w|α, β), as in equation (1), and by taking
the marginal distribution of the document tokens
as a continuous mixture distribution for the set
w = wr, by integrating over θ and summing over
the set of topics z

p(w|α, β) =
∫
p(θ|α)· (5)

(∏

w

∑

z

p(z|θ)p(w|z, β)
)
dθ

For the case of link-LDA where the document is
comprised of two entities, in our case code to-
kens and text tokens, we can consider the mixed-
membership joint distribution θ, as in equation (2),
and similarly the marginal distribution p(w|α, β)
over both code and text tokens from wr. Since
comment words in wc are all considered as text
tokens they are sampled using text topics, namely
ztext, in equation (4).
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3 Experimental Settings

3.1 Data and Training Methodology

We use source code from nine open source JAVA
projects: Ant, Cassandra, Log4j, Maven, Minor-
Third, Batik, Lucene, Xalan and Xerces. For each
project, we divide the source files into a training
and testing dataset. Then, for each project in turn,
we consider the following three main training sce-
narios, leading to using three training datasets.

To emulate a scenario in which we are predict-
ing comments in the middle of project develop-
ment, we can use data (documented code) from the
same project. In this case, we use the in-project
training dataset (IN). Alternatively, if we train a
comment prediction model at the beginning of the
development, we need to use source files from
other, possibly related projects. To analyze this
scenario, for each of the projects above we train
models using an out-of-project dataset (OUT) con-
taining data from the other eight projects.

Typically, source code files contain a greater
amount of code versus comment text. Since we are
interested in predicting comments, we consider a
third training data source which contains more En-
glish text as well as some code segments. We use
data from the popular Q&A website StackOver-
flow (SO) where users ask and answer technical
questions about software development, tools, al-
gorithms, etc’. We downloaded a dataset of all ac-
tions performed on the site since it was launched in
August 2008 until August 2012. The data includes
3,453,742 questions and 6,858,133 answers posted
by 1,295,620 users. We used only posts that are
tagged as JAVA related questions and answers.

All the models for each project are then tested
on the testing set of that project. We report results
averaged over all projects in Table 1.

Source files were tokenized using the Eclipse
JDT compiler tools, separating code tokens and
identifiers. Identifier names (of classes, methods
and variables), were further tokenized by camel
case notation (e.g., ’minMargin’ was converted to
’min margin’). Non alpha-numeric tokens (e.g.,
dot, semicolon) were discarded from the code, as
well as numeric and single character literals. Text
from comments or any string literals within the
code were further tokenized with the Mallet sta-
tistical natural language processing package (Mc-
Callum, 2002). Posts from SO were parsed using

the Apache Tika toolkit1 and then tokenized with
the Mallet package. We considered as raw code
tokens anything labeled using a <code> markup
(as indicated by the SO users who wrote the post).

3.2 Evaluation

Since our models are trained using various data
sources the vocabularies used by each of them are
different, making the comment likelihood given by
each model incomparable due to different sets of
out-of-vocabulary tokens. We thus evaluate mod-
els using a character saving metric which aims at
quantifying the percentage of characters that can
be saved by using the model in a word-completion
settings, similar to standard code completion tools
built into code editors. For a comment word with
n characters, w = w1, . . . , wn, we predict the two
most likely words given each model filtered by the
first 0, . . . , n characters ofw. Let k be the minimal
ki for which w is in the top two predicted word to-
kens where tokens are filtered by the first ki char-
acters. Then, the number of saved characters for w
is n− k. In Table 1 we report the average percent-
age of saved characters per comment using each of
the above models. The final results are also aver-
aged over the nine input projects. As an example,
in the predicted comment shown in Table 2, taken
from the project Minor-Third, the token entity is
the most likely token according to the model SO
trigram, out of tokens starting with the prefix ’en’.
The saved characters in this case are ’tity’.

4 Results

Table 1 displays the average percentage of char-
acters saved per class comment using each of the
models. Models trained on in-project data (IN)
perform significantly better than those trained on
another data source, regardless of the model type,
with an average saving of 47.1% characters using
a trigram model. This is expected, as files from
the same project are likely to contain similar com-
ments, and identifier names that appear in the com-
ment of one class may appear in the code of an-
other class in the same project. Clearly, in-project
data should be used when available as it improves
comment prediction leading to an average increase
of between 6% for the worst model (26.6 for OUT
unigram versus 33.05 for IN) and 14% for the best
(32.96 for OUT trigram versus 47.1 for IN).

1http://tika.apache.org/
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Model n-gram LDA Link-LDA

n / topics 1 2 3 20 10 5 1 20 10 5 1

IN 33.05 43.27 47.1 34.20 33.93 33.63 33.05 35.76 35.81 35.37 34.59
(3.62) (5.79) (6.87) (3.63) (3.67) (3.67) (3.62) (3.95) (4.12) (3.98) (3.92)

OUT 26.6 31.52 32.96 26.79 26.8 26.86 26.6 28.03 28 28 27.82
(3.37) (4.17) (4.33) (3.26) (3.36) (3.44) (3.37) (3.60) (3.56) (3.67) (3.62)

SO 27.8 33.29 34.56 27.25 27.22 27.34 27.8 28.08 28.12 27.94 27.9
(3.51) (4.40) (4.78) (3.67) (3.44) (3.55) (3.51) (3.48) (3.58) (3.56) (3.45)

Table 1: Average percentage of characters saved per comment using n-gram, LDA and link-LDA models
trained on three training sets: IN, OUT, and SO. The results are averaged over nine JAVA projects (with
standard deviations in parenthesis).

Model Predicted Comment

IN trigram “Train a named-entity extractor“
IN link-LDA “Train a named-entity extractor“
OUT trigram “Train a named-entity extractor“
SO trigram “Train a named-entity extractor“

Table 2: Sample comment from the Minor-Third
project predicted using IN, OUT and SO based
models. Saved characters are underlined.

Of the out-of-project data sources, models us-
ing a greater amount of text (SO) mostly out-
performed models based on more code (OUT).
This increase in performance, however, comes at
a cost of greater run-time due to the larger word
dictionary associated with the SO data. Note that
in the scope of this work we did not investigate the
contribution of each of the background projects
used in OUT, and how their relevance to the tar-
get prediction project effects their performance.

The trigram model shows the best performance
across all training data sources (47% for IN, 32%
for OUT and 34% for SO). Amongst the tested
topic models, link-LDA models which distinguish
code and text tokens perform consistently better
than simple LDA models in which all tokens are
considered as text. We did not however find a
correlation between the number of latent topics
learned by a topic model and its performance. In
fact, for each of the data sources, a different num-
ber of topics gave the optimal character saving re-
sults.

Note that in this work, all topic models are
based on unigram tokens, therefore their results
are most comparable with that of the unigram in

Dataset n-gram link-LDA

IN 2778.35 574.34
OUT 1865.67 670.34
SO 1898.43 638.55

Table 3: Average words per project for which each
tested model completes the word better than the
other. This indicates that each of the models is bet-
ter at predicting a different set of comment words.

Table 1, which does not benefit from the back-
off strategy used by the bigram and trigram mod-
els. By this comparison, the link-LDA topic model
proves more successful in the comment prediction
task than the simpler models which do not distin-
guish code and text tokens. Using n-grams without
backoff leads to results significantly worse than
any of the presented models (not shown).

Table 2 shows a sample comment segment for
which words were predicted using trigram models
from all training sources and an in-project link-
LDA. The comment is taken from the TrainEx-
tractor class in the Minor-Third project, a ma-
chine learning library for annotating and catego-
rizing text. Both IN models show a clear advan-
tage in completing the project-specific word Train,
compared to models based on out-of-project data
(OUT and SO). Interestingly, in this example the
trigram is better at completing the term named-
entity given the prefix named. However, the topic
model is better at completing the word extractor
which refers to the target class. This example indi-
cates that each model type may be more successful
in predicting different comment words, and that
combining multiple models may be advantageous.
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This can also be seen by the analysis in Table 3
where we compare the average number of words
completed better by either the best n-gram or topic
model given each training dataset. Again, while
n-grams generally complete more words better, a
considerable portion of the words is better com-
pleted using a topic model, further motivating a
hybrid solution.

5 Conclusions

We analyze the use of language models for pre-
dicting class comments for source file documents
containing a mixture of code and text tokens. Our
experiments demonstrate the effectiveness of us-
ing language models for comment completion,
showing a saving of up to 47% of the comment
characters. When available, using in-project train-
ing data proves significantly more successful than
using out-of-project data. However, we find that
when using out-of-project data, a dataset based on
more words than code performs consistently bet-
ter. The results also show that different models
are better at predicting different comment words,
which motivates a hybrid solution combining the
advantages of multiple models.
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Abstract

Mismatch between queries and documents
is a key issue for the web search task. In
order to narrow down such mismatch, in
this paper, we present an in-depth inves-
tigation on adapting a paraphrasing tech-
nique to web search from three aspect-
s: a search-oriented paraphrasing mod-
el; an NDCG-based parameter optimiza-
tion algorithm; an enhanced ranking mod-
el leveraging augmented features comput-
ed on paraphrases of original queries. Ex-
periments performed on the large scale
query-document data set show that, the
search performance can be significantly
improved, with +3.28% and +1.14% ND-
CG gains on dev and test sets respectively.

1 Introduction

Paraphrasing is an NLP technique that generates
alternative expressions to convey the same mean-
ing of the input text in different ways. Researcher-
s have made great efforts to improve paraphrasing
from different perspectives, such as paraphrase ex-
traction (Zhao et al., 2007), paraphrase generation
(Quirk et al., 2004), model optimization (Zhao et
al., 2009) and etc. But as far as we know, none of
previous work has explored the impact of using a
well designed paraphrasing engine for web search
ranking task specifically.

In web search, mismatches between queries and
their relevant documents are usually caused by ex-
pressing the same meaning in different natural lan-
guage ways. E.g., X is the author of Y and Y was
written by X have identical meaning in most cas-
es, but they are quite different in literal sense. The
capability of paraphrasing is just right to alleviate
such issues. Motivated by this, this paper presents

∗ This work has been done while the author was visiting
Microsoft Research Asia.

an in-depth study on adapting paraphrasing to web
search. First, we propose a search-oriented para-
phrasing model, which includes specifically de-
signed features for web queries that can enable a
paraphrasing engine to learn preferences on dif-
ferent paraphrasing strategies. Second, we opti-
mize the parameters of the paraphrasing model ac-
cording to the Normalized Discounted Cumulative
Gain (NDCG) score, by leveraging the minimum
error rate training (MERT) algorithm (Och, 2003).
Third, we propose an enhanced ranking model by
using augmented features computed on paraphras-
es of original queries.

Many query reformulation approaches have
been proposed to tackle the query-document mis-
match issue, which can be generally summarized
as query expansion and query substitution. Query
expansion (Baeza-Yates, 1992; Jing and Croft,
1994; Lavrenko and Croft, 2001; Cui et al., 2002;
Yu et al., 2003; Zhang and Yu, 2006; Craswell and
Szummer, 2007; Elsas et al., 2008; Xu et al., 2009)
adds new terms extracted from different sources to
the original query directly; while query substitu-
tion (Brill and Moore, 2000; Jones et al., 2006;
Guo et al., 2008; Wang and Zhai, 2008; Dang
and Croft, 2010) uses probabilistic models, such
as graphical models, to predict the sequence of
rewritten query words to form a new query. Com-
paring to these works, our paraphrasing engine al-
ters queries in a similar way to statistical machine
translation, with systematic tuning and decoding
components. Zhao et al. (2009) proposes an uni-
fied paraphrasing framework that can be adapted
to different applications using different usability
models. Our work can be seen as an extension a-
long this line of research, by carrying out in-depth
study on adapting paraphrasing to web search.

Experiments performed on the large scale data
set show that, by leveraging additional matching
features computed on query paraphrases, signif-
icant NDCG gains can be achieved on both dev
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(+3.28%) and test (+1.14%) sets.

2 Paraphrasing for Web Search

In this section, we first summarize our paraphrase
extraction approaches, and then describe our para-
phrasing engine for the web search task from three
aspects, including: 1) a search-oriented paraphras-
ing model; 2) an NDCG-based parameter opti-
mization algorithm; 3) an enhanced ranking model
with augmented features that are computed based
on the extra knowledge provided by the paraphrase
candidates of the original queries.

2.1 Paraphrase Extraction
Paraphrases can be mined from various resources.
Given a bilingual corpus, we use Bannard and
Callison-Burch (2005)’s pivot-based approach to
extract paraphrases. Given a monolingual cor-
pus, Lin and Pantel (2001)’s method is used to ex-
tract paraphrases based on distributional hypoth-
esis. Additionally, human annotated data can al-
so be used as high-quality paraphrases. We use
Miller (1995)’s approach to extract paraphrases
from the synonym dictionary of WordNet. Word
alignments within each paraphrase pair are gener-
ated using GIZA++ (Och and Ney, 2000).

2.2 Search-Oriented Paraphrasing Model
Similar to statistical machine translation (SMT),
given an input query Q, our paraphrasing engine
generates paraphrase candidates1 based on a linear
model.

Q̂ = argmax
Q′∈H(Q)

P (Q′|Q)

= argmax
Q′∈H(Q)

M∑

m=1

λmhm(Q,Q
′)

H(Q) is the hypothesis space containing all para-
phrase candidates of Q, hm is the mth feature
function with weight λm, Q′ denotes one candi-
date. In order to enable our paraphrasing model
to learn the preferences on different paraphrasing
strategies according to the characteristics of web
queries, we design search-oriented features2 based
on word alignments within Q and Q′, which can
be described as follows:

1We apply CYK algorithm (Chappelier and Rajman,
1998), which is most commonly used in SMT (Chiang,
2005), to generating paraphrase candidates.

2Similar features have been demonstrated effective in
(Jones et al., 2006). But we use SMT-like model to gener-
ate query reformulations.

• Word Addition feature hWADD(Q,Q
′),

which is defined as the number of words in
the paraphrase candidate Q′ without being
aligned to any word in the original query Q.

• Word Deletion feature hWDEL(Q,Q
′),

which is defined as the number of words in
the original query Q without being aligned
to any word in the paraphrase candidate Q′.

• Word Overlap feature hWO(Q,Q
′), which is

defined as the number of word pairs that align
identical words between Q and Q′.

• Word Alteration feature hWA(Q,Q
′), which

is defined as the number of word pairs that
align different words between Q and Q′.

• Word Reorder feature hWR(Q,Q
′), which is

modeled by a relative distortion probability
distribution, similar to the distortion model in
(Koehn et al., 2003).

• Length Difference feature hLD(Q,Q
′),

which is defined as |Q′| − |Q|.

• Edit Distance feature hED(Q,Q′), which is
defined as the character-level edit distance
between Q and Q′.

Besides, a set of traditional SMT features
(Koehn et al., 2003) are also used in our paraphras-
ing model, including translation probability, lex-
ical weight, word count, paraphrase rule count3,
and language model feature.

2.3 NDCG-based Parameter Optimization

We utilize minimum error rate training (MERT)
(Och, 2003) to optimize feature weights of the
paraphrasing model according to NDCG. We de-
fine D as the entire document set. R is a rank-
ing model4 that can rank documents in D based
on each input query. {Qi,DLabeli }Si=1 is a human-
labeled development set. Qi is the ith query and
DLabeli ⊂ D is a subset of documents, in which
the relevance between Qi and each document is
labeled by human annotators.

MERT is used to optimize feature weights
of our linear-formed paraphrasing model. For

3Paraphrase rule count is the number of rules that are used
to generate paraphrase candidates.

4The ranking model R (Liu et al., 2007) uses matching
features computed based on original queries and documents.
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each query Qi in {Qi}Si=1, we first generate N-
best paraphrase candidates {Qji}Nj=1, and com-
pute NDCG score for each paraphrase based on
documents ranked by the ranker R and labeled
documents DLabeli . We then optimize the feature
weights according to the following criterion:

λ̂M1 = argmin
λM1

{
S∑

i=1

Err(DLabeli , Q̂i;λ
M
1 ,R)}

The objective of MERT is to find the optimal fea-
ture weight vector λ̂M1 that minimizes the error cri-
terionErr according to the NDCG scores of top-1
paraphrase candidates.

The error function Err is defined as:

Err(DLabeli , Q̂i;λ
M
1 ,R) = 1−N (DLabeli , Q̂i,R)

where Q̂i is the best paraphrase candidate accord-
ing to the paraphrasing model based on the weight
vector λM1 , N (DLabeli , Q̂i,R) is the NDCG score
of Q̂i computed on the documents ranked byR of
Q̂i and labeled document set DLabeli of Qi. The
relevance rating labeled by human annotators can
be represented by five levels: “Perfect”, “Excel-
lent”, “Good”, “Fair”, and “Bad”. When comput-
ing NDCG scores, these five levels are commonly
mapped to the numerical scores 31, 15, 7, 3, 0 re-
spectively.

2.4 Enhanced Ranking Model
In web search, the key objective of the ranking
model is to rank the retrieved documents based on
their relevance to a given query.

Given a query Q and its retrieved document set
D = {DQ}, for each DQ ∈ D, we use the fol-
lowing ranking model to compute their relevance,
which is formulated as a weighted combination of
matching features:

R(Q,DQ) =
K∑

k=1

λkFk(Q,DQ)

F = {F1, ..., FK} denotes a set of matching fea-
tures that measure the matching degrees between
Q and DQ, Fk(Q,DQ) ∈ F is the kth matching
feature, λk is its corresponding feature weight.

How to learn the weight vector {λk}Kk=1 is a s-
tandard learning-to-rank task. The goal of learning
is to find an optimal weight vector {λ̂k}Kk=1, such
that for any two documentsDi

Q ∈ D andDj
Q ∈ D,

the following condition holds:

R(Q,Di
Q) > R(Q,Dj

Q)⇔ rDi
Q
> r

Dj
Q

where rDQ
denotes a numerical relevance rating

labeled by human annotators denoting the rele-
vance between Q and DQ.

As the ultimate goal of improving paraphrasing
is to help the search task, we present a straight-
forward but effective method to enhance the rank-
ing modelR described above, by leveraging para-
phrase candidates of the original query as the extra
knowledge to compute matching features.

Formally, given a query Q and its N -best para-
phrase candidates {Q′1, ..., Q′N}, we enrich the o-
riginal feature vector F to {F,F1, ...,FN} for Q
and DQ, where all features in Fn have the same
meanings as they are in F, however, their feature
values are computed based onQ′n andDQ, instead
of Q and DQ. In this way, the paraphrase candi-
dates act as hidden variables and expanded match-
ing features between queries and documents, mak-
ing our ranking model more tunable and flexible
for web search.

3 Experiment

3.1 Data and Metric

Paraphrase pairs are extracted as we described in
Section 2.1. The bilingual corpus includes 5.1M
sentence pairs from the NIST 2008 constrained
track of Chinese-to-English machine translation
task. The monolingual corpus includes 16.7M
queries from the log of a commercial search en-
gine. Human annotated data contains 0.3M syn-
onym pairs from WordNet dictionary. Word align-
ments of each paraphrase pair are trained by
GIZA++. The language model is trained based
on a portion of queries, in which the frequency of
each query is higher than a predefined threshold,
5. The number of paraphrase pairs is 58M. The
minimum length of paraphrase rule is 1, while the
maximum length of paraphrase rule is 5.

We randomly select 2, 838 queries from the log
of a commercial search engine, each of which at-
tached with a set of documents that are annotat-
ed with relevance ratings described in Section 2.3.
We use the first 1, 419 queries together with their
annotated documents as the development set to
tune paraphrasing parameters (as we discussed in
Section 2.3), and use the rest as the test set. The
ranking model is trained based on the develop-
ment set. NDCG is used as the evaluation metric
of the web search task.

43



3.2 Baseline Systems
The baselines of the paraphrasing and the ranking
model are described as follows:

The paraphrasing baseline is denoted as BL-
Para, which only uses traditional SMT features
described at the end of Section 2.2. Weights are
optimized by MERT using BLEU (Papineni et al.,
2002) as the error criterion. Development data are
generated based on the English references of NIST
2008 constrained track of Chinese-to-English ma-
chine translation task. We use the first reference
as the source, and the rest as its paraphrases.

The ranking model baseline (Liu et al., 2007) is
denoted as BL-Rank, which only uses matching
features computed based on original queries and
different meta-streams of web pages, including
URL, page title, page body, meta-keywords, meta-
description and anchor texts. The feature function-
s we use include unigram/bigram/trigram BM25
and original/normalized Perfect-Match. The rank-
ing model is learned based on SVM rank toolkit
(Joachims, 2006) with default parameter setting.

3.3 Impacts of Search-Oriented Features
We first evaluate the effectiveness of the search-
oriented features. To do so, we add these features
into the paraphrasing model baseline, and denote it
as BL-Para+SF, whose weights are optimized in
the same way with BL-Para. The ranking model
baseline BL-Rank is used to rank the documents.
We then compare the NDCG@1 scores of the best
documents retrieved using either original query, or
query paraphrases generated by BL-Para and BL-
Para+SF respectively, and list comparison results
in Table 1, where Cand@1 denotes the best para-
phrase candidate generated by each paraphrasing
model.

Test Set
BL-Para BL-Para+SF

Original Query Cand@1 Cand@1
27.28% 26.44% 26.53%

Table 1: Impacts of search-oriented features.

From Table 1, we can see, even using the best
query paraphrase, its corresponding NDCG score
is still lower than the NDCG score of the original
query. This performance dropping makes sense,
as changing user queries brings the risks of query
drift. When adding search-oriented features in-
to the baseline, the performance changes little, as
these two models are optimized based on BLEU

score only, without considering characteristics of
mismatches in search.

3.4 Impacts of Optimization Algorithm
We then evaluate the impact of our NDCG-based
optimization method. We add the optimization al-
gorithm described in Section 2.3 into BL-Para+SF,
and get a paraphrasing model BL-Para+SF+Opt.
The ranking model baseline BL-Rank is used.
Similar to the experiment in Table 1, we compare
the NDCG@1 scores of the best documents re-
trieved using query paraphrases generated by BL-
Para+SF and BL-Para+SF+Opt respectively, with
results shown in Table 2.

Test Set
BL-Para+SF BL-Para+SF+Opt

Original Query Cand@1 Cand@1
27.28% 26.53% 27.06%(+0.53%)

Table 2: Impacts of NDCG-based optimization.

Table 2 indicates that, by leveraging NDCG as
the error criterion for MERT, search-oriented fea-
tures benefit more (+0.53% NDCG) in selecting
the best query paraphrase from the whole para-
phrasing search space. The improvement is statis-
tically significant (p < 0.001) by t-test (Smucker
et al., 2007). The quality of the top-1 paraphrase
generated by BL-Para+SF+Opt is very close to the
original query.

3.5 Impacts of Enhanced Ranking Model
We last evaluate the effectiveness of the en-
hanced ranking model. The ranking model base-
line BL-Rank only uses original queries to com-
pute matching features between queries and docu-
ments; while the enhanced ranking model, denot-
ed as BL-Rank+Para, uses not only the original
query but also its top-1 paraphrase candidate gen-
erated by BL-Para+SF+Opt to compute augment-
ed matching features described in Section 2.4.

Dev Set
NDCG@1 NDCG@5

BL-Rank 25.31% 33.76%
BL-Rank+Para 28.59%(+3.28%) 34.25%(+0.49%)

Test Set
NDCG@1 NDCG@5

BL-Rank 27.28% 34.79%
BL-Rank+Para 28.42%(+1.14%) 35.68%(+0.89%)

Table 3: Impacts of enhanced ranking model.

From Table 3, we can see that NDCG@k (k =
1, 5) scores of BL-Rank+Para outperforms BL-
Rank on both dev and test sets. T-test shows that
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the improvement is statistically significant (p <
0.001). Such end-to-end NDCG improvements
come from the extra knowledge provided by the
hidden paraphrases of original queries. This nar-
rows down the query-document mismatch issue to
a certain extent.

4 Conclusion and Future Work

In this paper, we present an in-depth study on us-
ing paraphrasing for web search, which pays close
attention to various aspects of the application in-
cluding choice of model and optimization tech-
nique. In the future, we will compare and com-
bine paraphrasing with other query reformulation
techniques, e.g., pseudo-relevance feedback (Yu et
al., 2003) and a conditional random field-based ap-
proach (Guo et al., 2008).
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Abstract
Semantic parsing is the problem of de-
riving a structured meaning representation
from a natural language utterance. Here
we approach it as a straightforward ma-
chine translation task, and demonstrate
that standard machine translation com-
ponents can be adapted into a semantic
parser. In experiments on the multilingual
GeoQuery corpus we find that our parser
is competitive with the state of the art,
and in some cases achieves higher accu-
racy than recently proposed purpose-built
systems. These results support the use of
machine translation methods as an infor-
mative baseline in semantic parsing evalu-
ations, and suggest that research in seman-
tic parsing could benefit from advances in
machine translation.

1 Introduction

Semantic parsing (SP) is the problem of trans-
forming a natural language (NL) utterance into
a machine-interpretable meaning representation
(MR). It is well-studied in NLP, and a wide va-
riety of methods have been proposed to tackle
it, e.g. rule-based (Popescu et al., 2003), super-
vised (Zelle, 1995), unsupervised (Goldwasser et
al., 2011), and response-based (Liang et al., 2011).

At least superficially, SP is simply a machine
translation (MT) task: we transform an NL ut-
terance in one language into a statement of an-
other (un-natural) meaning representation lan-
guage (MRL). Indeed, successful semantic parsers
often resemble MT systems in several impor-
tant respects, including the use of word align-
ment models as a starting point for rule extrac-
tion (Wong and Mooney, 2006; Kwiatkowski et
al., 2010) and the use of automata such as tree
transducers (Jones et al., 2012) to encode the re-
lationship between NL and MRL.

The key difference between the two tasks is that
in SP, the target language (the MRL) has very dif-
ferent properties to an NL. In particular, MRs must
conform strictly to a particular structure so that
they are machine-interpretable. Contrast this with
ordinary MT, where varying degrees of wrongness
are tolerated by human readers (and evaluation
metrics). To avoid producing malformed MRs, al-
most all of the existing research on SP has focused
on developing models with richer structure than
those commonly used for MT.

In this work we attempt to determine how ac-
curate a semantic parser we can build by treating
SP as a pure MT task, and describe pre- and post-
processing steps which allow structure to be pre-
served in the MT process.

Our contributions are as follows: We develop
a semantic parser using off-the-shelf MT compo-
nents, exploring phrase-based as well as hierarchi-
cal models. Experiments with four languages on
the popular GeoQuery corpus (Zelle, 1995) show
that our parser is competitve with the state-of-
the-art, in some cases achieving higher accuracy
than recently introduced purpose-built semantic
parsers. Our approach also appears to require
substantially less time to train than the two best-
performing semantic parsers. These results sup-
port the use of MT methods as an informative
baseline in SP evaluations and show that research
in SP could benefit from research advances in MT.

2 MT-based semantic parsing

The input is a corpus of NL utterances paired with
MRs. In order to learn a semantic parser using
MT we linearize the MRs, learn alignments be-
tween the MRL and the NL, extract translation
rules, and learn a language model for the MRL.
We also specify a decoding procedure that will re-
turn structured MRs for an utterance during pre-
diction.
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states bordering Texas
state(next to(state(stateid(texas))))

⇓ STEM & LINEARIZE

state border texa
state1 next to1 state1 stateid1 texas0

⇓ ALIGN

state border texa

state1 next to1 state1 stateid1 texas0

⇓ EXTRACT (PHRASE)

〈 state , state1 〉
〈 state border , state1 border1 〉
〈 texa , state1 stateid1 texas0 〉

...

⇓ EXTRACT (HIER)

[X]→ 〈state , state1〉
[X]→ 〈state [X] texa ,

state1 [X] state1 stateid1 texas0〉
...

Figure 1: Illustration of preprocessing and rule ex-
traction.

Linearization We assume that the MRL is
variable-free (that is, the meaning representation
for each utterance is tree-shaped), noting that for-
malisms with variables, like the λ-calculus, can
be mapped onto variable-free logical forms with
combinatory logics (Curry et al., 1980).

In order to learn a semantic parser using MT
we begin by converting these MRs to a form more
similar to NL. To do so, we simply take a preorder
traversal of every functional form, and label every
function with the number of arguments it takes.
After translation, recovery of the function is easy:
if the arity of every function in the MRL is known,
then every traversal uniquely specifies its corre-
sponding tree. Using an example from GeoQuery,
given an input function of the form

answer(population(city(cityid(‘seattle’, ‘wa’))))

we produce a “decorated” translation input of the
form

answer1 population1 city1 cityid2 seattle0 wa0
where each subscript indicates the symbol’s arity
(constants, including strings, are treated as zero-
argument functions). Explicit argument number

labeling serves two functions. Most importantly,
it eliminates any possible ambiguity from the tree
reconstruction which takes place during decod-
ing: given any sequence of decorated MRL to-
kens, we can always reconstruct the correspond-
ing tree structure (if one exists). Arity labeling ad-
ditionally allows functions with variable numbers
of arguments (e.g. cityid, which in some training
examples is unary) to align with different natural
language strings depending on context.

Alignment Following the linearization of the
MRs, we find alignments between the MR tokens
and the NL tokens using the IBM Model 4 (Brown
et al., 1993). Once the alignment algorithm is
run in both directions (NL to MRL, MRL to NL),
we symmetrize the resulting alignments to obtain
a consensus many-to-many alignment (Och and
Ney, 2000; Koehn et al., 2005).

Rule extraction From the many-to-many align-
ment we need to extract a translation rule ta-
ble, consisting of corresponding phrases in NL
and MRL. We consider a phrase-based transla-
tion model (Koehn et al., 2003) and a hierarchi-
cal translation model (Chiang, 2005). Rules for
the phrase-based model consist of pairs of aligned
source and target sequences, while hierarchical
rules are SCFG productions containing at most
two instances of a single nonterminal symbol.

Note that both extraction algorithms can learn
rules which a traditional tree-transducer-based ap-
proach cannot—for example the right hand side

[X] river1 all0 traverse1 [X]

corresponding to the pair of disconnected tree
fragments:

[X]
��

traverse
��

river
��

[X]

all
(where each X indicates a gap in the rule).

Language modeling In addition to translation
rules learned from a parallel corpus, MT systems
also rely on an n-gram language model for the tar-
get language, estimated from a (typically larger)
monolingual corpus. In the case of SP, such a
monolingual corpus is rarely available, and we in-
stead use the MRs available in the training data to
learn a language model of the MRL. This informa-
tion helps guide the decoder towards well-formed
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structures; it encodes, for example, the preferences
of predicates of the MRL for certain arguments.

Prediction Given a new NL utterance, we need
to find the n best translations (i.e. sequences
of decorated MRL tokens) that maximize the
weighted sum of the translation score (the prob-
abilities of the translations according to the rule
translation table) and the language model score, a
process usually referred to as decoding. Standard
decoding procedures for MT produce an n-best list
of all possible translations, but here we need to
restrict ourselves to translations corresponding to
well-formed MRs. In principle this could be done
by re-writing the beam search algorithm used in
decoding to immediately discard malformed MRs;
for the experiments in this paper we simply filter
the regular n-best list until we find a well-formed
MR. This filtering can be done with time linear in
the length of the example by exploiting the argu-
ment label numbers introduced during lineariza-
tion. Finally, we insert the brackets according to
the tree structure specified by the argument num-
ber labels.

3 Experimental setup

Dataset We conduct experiments on the Geo-
Query data set. The corpus consists of a set of
880 natural-language questions about U.S. geog-
raphy in four languages (English, German, Greek
and Thai), and their representations in a variable-
free MRL that can be executed against a Prolog
database interface. Initial experimentation was
done using 10 fold cross-validation on the 600-
sentence development set and the final evaluation
on a held-out test set of 280 sentences. All seman-
tic parsers for GeoQuery we compare against also
makes use of NP lists (Jones et al., 2012), which
contain MRs for every noun phrase that appears in
the NL utterances of each language. In our exper-
iments, the NP list was included by appending all
entries as extra training sentences to the end of the
training corpus of each language with 50 times the
weight of regular training examples, to ensure that
they are learned as translation rules.

Evaluation for each utterance is performed by
executing both the predicted and the gold standard
MRs against the database and obtaining their re-
spective answers. An MR is correct if it obtains
the same answer as the gold standard MR, allow-
ing for a fair comparison between systems using
different learning paradigms. Following Jones et

al. (2012) we report accuracy, i.e. the percent-
age of NL questions with correct answers, and F1,
i.e. the harmonic mean of precision (percentage of
correct answers obtained).

Implementation In all experiments, we use the
IBM Model 4 implementation from the GIZA++
toolkit (Och and Ney, 2000) for alignment, and
the phrase-based and hierarchical models imple-
mented in the Moses toolkit (Koehn et al., 2007)
for rule extraction. The best symmetrization algo-
rithm, translation and language model weights for
each language are selected using cross-validation
on the development set. In the case of English and
German, we also found that stemming (Bird et al.,
2009; Porter, 1980) was hepful in reducing data
sparsity.

4 Results

We first compare the results for the two translation
rule extraction models, phrase-based and hierar-
chical (“MT-phrase” and “MT-hier” respectively
in Table 1). We find that the hierarchical model
performs better in all languages apart from Greek,
indicating that the long-range reorderings learned
by a hierarchical translation system are useful for
this task. These benefits are most pronounced in
the case of Thai, likely due to the the language’s
comparatively different word order.

We also present results for both models with-
out using the NP lists for training in Table 2. As
expected, the performances are almost uniformly
lower, but the parser still produces correct output
for the majority of examples.

As discussed above, one important modifica-
tion of the MT paradigm which allows us to pro-
duce structured output is the addition of structure-
checking to the beam search. It is not evident,
a priori, that this search procedure is guaran-
teed to find any well-formed outputs in reasonable
time; to test the effect of this extra requirement on

en de el th

MT-phrase 75.3 68.8 70.4 53.0
MT-phrase (-NP) 63.4 65.8 64.0 39.8

MT-hier 80.5 68.9 69.1 70.4
MT-hier (-NP) 62.5 69.9 62.9 62.1

Table 2: GeoQuery accuracies with and without
NPs. Rows with (-NP) did not use the NP list.
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English [en] German [de] Greek [el] Thai [th]
Acc. F1 Acc. F1 Acc. F1 Acc. F1

WASP 71.1 77.7 65.7 74.9 70.7 78.6 71.4 75.0
UBL 82.1 82.1 75.0 75.0 73.6 73.7 66.4 66.4
tsVB 79.3 79.3 74.6 74.6 75.4 75.4 78.2 78.2

hybrid-tree 76.8 81.0 62.1 68.5 69.3 74.6 73.6 76.7
MT-phrase 75.3 75.8 68.8 70.8 70.4 73.0 53.0 54.4

MT-hier 80.5 81.8 68.9 71.8 69.1 72.3 70.4 70.7

Table 1: Accuracy and F1 scores for the multilingual GeoQuery test set. Results for other systems as
reported by Jones et al. (2012).

the speed of SP, we investigate how many MRs
the decoder needs to generate before producing
one which is well-formed. In practice, increasing
search depth in the n-best list from 1 to 50 results
in a gain of no more than a percentage point or
two, and we conclude that our filtering method is
appropriate for the task.

We also compare the MT-based semantic
parsers to several recently published ones: WASP

(Wong and Mooney, 2006), which like the hier-
archical model described here learns a SCFG to
translate between NL and MRL; tsVB (Jones et
al., 2012), which uses variational Bayesian infer-
ence to learn weights for a tree transducer; UBL

(Kwiatkowski et al., 2010), which learns a CCG
lexicon with semantic annotations; and hybrid-
tree (Lu et al., 2008), which learns a synchronous
generative model over variable-free MRs and NL
strings.

In the results shown in Table 1 we observe that
on English GeoQuery data, the hierarchical trans-
lation model achieves scores competitive with the
state of the art, and in every language one of the
MT systems achieves accuracy at least as good as
a purpose-built semantic parser.

We conclude with an informal test of training
speeds. While differences in implementation and
factors like programming language choice make
a direct comparison of times necessarily impre-
cise, we note that the MT system takes less than
three minutes to train on the GeoQuery corpus,
while the publicly-available implementations of
tsVB and UBL require roughly twenty minutes and
five hours respectively on a 2.1 GHz CPU. So
in addition to competitive performance, the MT-
based parser also appears to be considerably more
efficient at training time than other parsers in the
literature.

5 Related Work

WASP, an early automatically-learned SP system,
was strongly influenced by MT techniques. Like
the present work, it uses GIZA++ alignments as
a starting point for the rule extraction procedure,
and algorithms reminiscent of those used in syn-
tactic MT to extract rules.

tsVB also uses a piece of standard MT ma-
chinery, specifically tree transducers, which have
been profitably employed for syntax-based ma-
chine translation (Maletti, 2010). In that work,
however, the usual MT parameter-estimation tech-
nique of simply counting the number of rule oc-
currences does not improve scores, and the au-
thors instead resort to a variational inference pro-
cedure to acquire rule weights. The present work
is also the first we are aware of which uses phrase-
based rather than tree-based machine translation
techniques to learn a semantic parser. hybrid-tree
(Lu et al., 2008) similarly describes a generative
model over derivations of MRL trees.

The remaining system discussed in this paper,
UBL (Kwiatkowski et al., 2010), leverages the fact
that the MRL does not simply encode trees, but
rather λ-calculus expressions. It employs resolu-
tion procedures specific to the λ-calculus such as
splitting and unification in order to generate rule
templates. Like other systems described, it uses
GIZA alignments for initialization. Other work
which generalizes from variable-free meaning rep-
resentations to λ-calculus expressions includes the
natural language generation procedure described
by Lu and Ng (2011).

UBL, like an MT system (and unlike most of the
other systems discussed in this section), extracts
rules at multiple levels of granularity by means of
this splitting and unification procedure. hybrid-
tree similarly benefits from the introduction of

50



multi-level rules composed from smaller rules, a
process similar to the one used for creating phrase
tables in a phrase-based MT system.

6 Discussion

Our results validate the hypothesis that it is possi-
ble to adapt an ordinary MT system into a work-
ing semantic parser. In spite of the compara-
tive simplicity of the approach, it achieves scores
comparable to (and sometimes better than) many
state-of-the-art systems. For this reason, we argue
for the use of a machine translation baseline as a
point of comparison for new methods. The results
also demonstrate the usefulness of two techniques
which are crucial for successful MT, but which are
not widely used in semantic parsing. The first is
the incorporation of a language model (or com-
parable long-distance structure-scoring model) to
assign scores to predicted parses independent of
the transformation model. The second is the
use of large, composed rules (rather than rules
which trigger on only one lexical item, or on tree
portions of limited depth (Lu et al., 2008)) in
order to “memorize” frequently-occurring large-
scale structures.

7 Conclusions

We have presented a semantic parser which uses
techniques from machine translation to learn map-
pings from natural language to variable-free mean-
ing representations. The parser performs com-
parably to several recent purpose-built semantic
parsers on the GeoQuery dataset, while training
considerably faster than state-of-the-art systems.
Our experiments demonstrate the usefulness of
several techniques which might be broadly applied
to other semantic parsers, and provides an infor-
mative basis for future work.
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Abstract

Distributional models of semantics cap-
ture word meaning very effectively, and
they have been recently extended to ac-
count for compositionally-obtained rep-
resentations of phrases made of content
words. We explore whether compositional
distributional semantic models can also
handle a construction in which grammat-
ical terms play a crucial role, namely de-
terminer phrases (DPs). We introduce a
new publicly available dataset to test dis-
tributional representations of DPs, and we
evaluate state-of-the-art models on this set.

1 Introduction

Distributional semantics models (DSMs) approx-
imate meaning with vectors that record the dis-
tributional occurrence patterns of words in cor-
pora. DSMs have been effectively applied to in-
creasingly more sophisticated semantic tasks in
linguistics, artificial intelligence and cognitive sci-
ence, and they have been recently extended to
capture the meaning of phrases and sentences via
compositional mechanisms. However, scaling up
to larger constituents poses the issue of how to
handle grammatical words, such as determiners,
prepositions, or auxiliaries, that lack rich concep-
tual content, and operate instead as the logical
“glue” holding sentences together.

In typical DSMs, grammatical words are treated
as “stop words” to be discarded, or at best used
as context features in the representation of content
words. Similarly, current compositional DSMs
(cDSMs) focus almost entirely on phrases made
of two or more content words (e.g., adjective-noun
or verb-noun combinations) and completely ig-
nore grammatical words, to the point that even
the test set of transitive sentences proposed by
Grefenstette and Sadrzadeh (2011) contains only

Tarzan-style statements with determiner-less sub-
jects and objects: “table show result”, “priest say
mass”, etc. As these examples suggest, however,
as soon as we set our sight on modeling phrases
and sentences, grammatical words are hard to
avoid. Stripping off grammatical words has more
serious consequences than making you sound like
the Lord of the Jungle. Even if we accept the
view of, e.g., Garrette et al. (2013), that the log-
ical framework of language should be left to other
devices than distributional semantics, and the lat-
ter should be limited to similarity scoring, still ig-
noring grammatical elements is going to dramat-
ically distort the very similarity scores (c)DSMs
should provide. If we want to use a cDSM for
the classic similarity-based paraphrasing task, the
model shouldn’t conclude that “The table shows
many results” is identical to “the table shows no
results” since the two sentences contain the same
content words, or that “to kill many rats” and “to
kill few rats” are equally good paraphrases of “to
exterminate rats”.

We focus here on how cDSMs handle determin-
ers and the phrases they form with nouns (deter-
miner phrases, or DPs).1 While determiners are
only a subset of grammatical words, they are a
large and important subset, constituting the natu-
ral stepping stone towards sentential distributional
semantics: Compositional methods have already
been successfully applied to simple noun-verb and
noun-verb-noun structures (Mitchell and Lapata,
2008; Grefenstette and Sadrzadeh, 2011), and de-
terminers are just what is missing to turn these
skeletal constructions into full-fledged sentences.
Moreover, determiner-noun phrases are, in super-
ficial syntactic terms, similar to the adjective-noun
phrases that have already been extensively studied
from a cDSM perspective by Baroni and Zampar-

1Some linguists refer to what we call DPs as noun phrases
or NPs. We say DPs simply to emphasize our focus on deter-
miners.
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elli (2010), Guevara (2010) and Mitchell and Lap-
ata (2010). Thus, we can straightforwardly extend
the methods already proposed for adjective-noun
phrases to DPs.

We introduce a new task, a similarity-based
challenge, where we consider nouns that are
strongly conceptually related to certain DPs and
test whether cDSMs can pick the most appropri-
ate related DP (e.g., monarchy is more related to
one ruler than many rulers).2 We make our new
dataset publicly available, and we hope that it will
stimulate further work on the distributional seman-
tics of grammatical elements.3

2 Composition models

Interest in compositional DSMs has skyrocketed
in the last few years, particularly since the influ-
ential work of Mitchell and Lapata (2008; 2009;
2010), who proposed three simple but effective
composition models. In these models, the com-
posed vectors are obtained through component-
wise operations on the constituent vectors. Given
input vectors u and v, the multiplicative model
(mult) returns a composed vector p with: pi =
uivi. In the weighted additive model (wadd), the
composed vector is a weighted sum of the two in-
put vectors: p = αu+βv, where α and β are two
scalars. Finally, in the dilation model, the output
vector is obtained by first decomposing one of the
input vectors, say v, into a vector parallel to u and
an orthogonal vector. Following this, the parallel
vector is dilated by a factor λ before re-combining.
This results in: p = (λ− 1)〈u,v〉u+ 〈u,u〉v.

A more general form of the additive model
(fulladd) has been proposed by Guevara (2010)
(see also Zanzotto et al. (2010)). In this approach,
the two vectors to be added are pre-multiplied by
weight matrices estimated from corpus-extracted
examples: p = Au+Bv.

Baroni and Zamparelli (2010) and Coecke et
al. (2010) take inspiration from formal semantics
to characterize composition in terms of function
application. The former model adjective-noun
phrases by treating the adjective as a function from
nouns onto modified nouns. Given that linear
functions can be expressed by matrices and their
application by matrix-by-vector multiplication, a

2Baroni et al. (2012), like us, study determiner phrases
with distributional methods, but they do not model them com-
positionally.

3Dataset and code available from clic.cimec.
unitn.it/composes.

functor (such as the adjective) is represented by a
matrix U to be multiplied with the argument vec-
tor v (e.g., the noun vector): p = Uv. Adjective
matrices are estimated from corpus-extracted ex-
amples of noun vectors and corresponding output
adjective-noun phrase vectors, similarly to Gue-
vara’s approach.4

3 The noun-DP relatedness benchmark

Paraphrasing a single word with a phrase is a
natural task for models of compositionality (Tur-
ney, 2012; Zanzotto et al., 2010) and determin-
ers sometimes play a crucial role in defining the
meaning of a noun. For example a trilogy is com-
posed of three works, an assemblage includes sev-
eral things and an orchestra is made of many
musicians. These examples are particularly in-
teresting, since they point to a “conceptual” use
of determiners, as components of the stable and
generic meaning of a content word (as opposed to
situation-dependent deictic and anaphoric usages):
for these determiners the boundary between con-
tent and grammatical word is somewhat blurred,
and they thus provide a good entry point for testing
DSM representations of DPs on a classic similarity
task. In other words, we can set up an experiment
in which having an effective representation of the
determiner is crucial in order to obtain the correct
result.

Using regular expressions over WordNet
glosses (Fellbaum, 1998) and complementing
them with definitions from various online dic-
tionaries, we constructed a list of more than 200
nouns that are strongly conceptually related to a
specific DP. We created a multiple-choice test set
by matching each noun with its associated DP
(target DP), two “foil” DPs sharing the same noun
as the target but combined with other determiners
(same-N foils), one DP made of the target deter-
miner combined with a random noun (same-D
foil), the target determiner (D foil), and the target
noun (N foil). A few examples are shown in Table
1. After the materials were checked by all authors,
two native speakers took the multiple-choice test.
We removed the cases (32) where these subjects
provided an unexpected answer. The final set,

4Other approaches to composition in DSMs have been re-
cently proposed by Socher et al. (2012) and Turney (2012).
We leave their empirical evaluation on DPs to further work,
in the first case because it is not trivial to adapt their complex
architecture to our setting; in the other because it is not clear
how Turney would extend his approach to represent DPs.
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noun target DP same-N foil 1 same-N foil 2 same-D foil D foil N foil
duel two opponents various opponents three opponents two engineers two opponents
homeless no home too few homes one home no incision no home
polygamy several wives most wives fewer wives several negotiators several wives
opulence too many goods some goods no goods too many abductions too many goods

Table 1: Examples from the noun-DP relatedness benchmark

characterized by full subject agreement, contains
173 nouns, each matched with 6 possible answers.
The target DPs contain 23 distinct determiners.

4 Setup

Our semantic space provides distributional repre-
sentations of determiners, nouns and DPs. We
considered a set of 50 determiners that include all
those in our benchmark and range from quanti-
fying determiners (every, some. . . ) and low nu-
merals (one to four), to multi-word units analyzed
as single determiners in the literature, such as a
few, all that, too much. We picked the 20K most
frequent nouns in our source corpus considering
singular and plural forms as separate words, since
number clearly plays an important role in DP se-
mantics. Finally, for each of the target determiners
we added to the space the 2K most frequent DPs
containing that determiner and a target noun.

Co-occurrence statistics were collected from the
concatenation of ukWaC, a mid-2009 dump of the
English Wikipedia and the British National Cor-
pus,5 with a total of 2.8 billion tokens. We use
a bag-of-words approach, counting co-occurrence
with all context words in the same sentence with
a target item. We tuned a number of parameters
on the independent MEN word-relatedness bench-
mark (Bruni et al., 2012). This led us to pick the
top 20K most frequent content word lemmas as
context items, Pointwise Mutual Information as
weighting scheme, and dimensionality reduction
by Non-negative Matrix Factorization.

Except for the parameter-free mult method, pa-
rameters of the composition methods are esti-
mated by minimizing the average Euclidean dis-
tance between the model-generated and corpus-
extracted vectors of the 20K DPs we consider.6

For the lexfunc model, we assume that the deter-
miner is the functor and the noun is the argument,

5wacky.sslmit.unibo.it; www.natcorp.ox.
ac.uk

6All vectors are normalized to unit length before compo-
sition. Note that the objective function used in estimation
minimizes the distance between model-generated and corpus-
extracted vectors. We do not use labeled evaluation data to
optimize the model parameters.

method accuracy method accuracy
lexfunc 39.3 noun 17.3
fulladd 34.7 random 16.7
observed 34.1 mult 12.7
dilation 31.8 determiner 4.6
wadd 23.1

Table 2: Percentage accuracy of composition
methods on the relatedness benchmark

and estimate separate matrices representing each
determiner using the 2K DPs in the semantic space
that contain that determiner. For dilation, we treat
direction of stretching as a parameter, finding that
it is better to stretch the noun.

Similarly to the classic TOEFL synonym detec-
tion challenge (Landauer and Dumais, 1997), our
models tackle the relatedness task by measuring
cosines between each target noun and the candi-
date answers and returning the item with the high-
est cosine.

5 Results

Table 2 reports the accuracy results (mean ranks
of correct answers confirm the same trend). All
models except mult and determiner outperform the
trivial random guessing baseline, although they
are all well below the 100% accuracy of the hu-
mans who took our test. For the mult method we
observe a very strong bias for choosing a single
word as answer (>60% of the times), which in
the test set is always incorrect. This leads to its
accuracy being below the chance level. We sus-
pect that the highly “intersective” nature of this
model (we obtain very sparse composed DP vec-
tors, only ≈4% dense) leads to it not being a re-
liable method for comparing sequences of words
of different length: Shorter sequences will be con-
sidered more similar due to their higher density.
The determiner-only baseline (using the vector of
the component determiner as surrogate for the DP)
fails because D vectors tend to be far from N vec-
tors, thus the N foil is often preferred to the correct
response (that is represented, for this baseline, by
its D). In the noun-only baseline (use the vector
of the component noun as surrogate for the DP),
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the correct response is identical to the same-N and
N foils, thus forcing a random choice between
these. Not surprisingly, this approach performs
quite badly. The observed DP vectors extracted di-
rectly from the corpus compete with the top com-
positional methods, but do not surpass them.7

The lexfunc method is the best compositional
model, indicating that its added flexibility in mod-
eling composition pays off empirically. The ful-
ladd model is not as good, but also performs well.
The wadd and especially dilation models perform
relatively well, but they are penalized by the fact
that they assign more weight to the noun vectors,
making the right answer dangerously similar to the
same-N and N foils.

Taking a closer look at the performance of the
best model (lexfunc), we observe that it is not
equally distributed across determiners. Focusing
on those determiners appearing in at least 4 cor-
rect answers, they range from those where lexfunc
performance was very significantly above chance
(p<0.001 of equal or higher chance performance):
too few, all, four, too much, less, several; to
those on which performance was still significant
but less impressively so (0.001<p< 0.05): sev-
eral, no, various, most, two, too many, many, one;
to those where performance was not significantly
better than chance at the 0.05 level: much, more,
three, another. Given that, on the one hand, per-
formance is not constant across determiners, and
on the other no obvious groupings can account
for their performance difference (compare the ex-
cellent lexfunc performance on four to the lousy
one on three!), future research should explore the
contextual properties of specific determiners that
make them more or less amenable to be captured
by compositional DSMs.

6 Conclusion

DSMs, even when applied to phrases, are typically
seen as models of content word meaning. How-
ever, to scale up compositionally beyond the sim-
plest constructions, cDSMs must deal with gram-
matical terms such as determiners. This paper
started exploring this issue by introducing a new
and publicly available set testing DP semantics in
a similarity-based task and using it to systemati-
cally evaluate, for the first time, cDSMs on a con-

7The observed method is in fact at advantage in our ex-
periment because a considerable number of DP foils are not
found in the corpus and are assigned similarity 0 with the tar-
get.

struction involving grammatical words. The most
important take-home message is that distributional
representations are rich enough to encode infor-
mation about determiners, achieving performance
well above chance on the new benchmark.

Theoretical considerations would lead one to
expect a “functional” approach to determiner rep-
resentations along the lines of Baroni and Zampar-
elli (2010) and Coecke et al. (2010) to outperform
those approaches that combine vectors separately
representing determiners and nouns. This predic-
tion was largely borne out in the results, although
the additive models, and particularly fulladd, were
competitive rivals.

We attempted to capture the distributional se-
mantics of DPs using a fairly standard, “vanilla”
semantic space characterized by latent dimensions
that summarize patterns of co-occurrence with
content word contexts. By inspecting the con-
text words that are most associated with the var-
ious latent dimensions we obtained through Non-
negative Matrix Factorization, we notice how they
are capturing broad, “topical” aspects of meaning
(the first dimension is represented by scripture, be-
liever, resurrection, the fourth by fever, infection,
infected, and so on). Considering the sort of se-
mantic space we used (which we took to be a rea-
sonable starting point because of its effectiveness
in a standard lexical task), it is actually surpris-
ing that we obtained the significant results we ob-
tained. Thus, a top priority in future work is to ex-
plore different contextual features, such as adverbs
and grammatical terms, that might carry informa-
tion that is more directly relevant to the semantics
of determiners.

Another important line of research pertains to
improving composition methods: Although the
best model, at 40% accuracy, is well above chance,
we are still far from the 100% performance of hu-
mans. We will try, in particular, to include non-
linear transformations in the spirit of Socher et al.
(2012), and look for better ways to automatically
select training data.

Last but not least, in the near future we
would like to test if cDSMs, besides dealing with
similarity-based aspects of determiner meaning,
can also help in capturing those formal properties
of determiners, such as monotonicity or definite-
ness, that theoretical semanticists have been tradi-
tionally interested in.
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Abstract

Uncertainty text detection is important
to many social-media-based applications
since more and more users utilize social
media platforms (e.g., Twitter, Facebook,
etc.) as information source to produce
or derive interpretations based on them.
However, existing uncertainty cues are in-
effective in social media context because
of its specific characteristics. In this pa-
per, we propose a variant of annotation
scheme for uncertainty identification and
construct the first uncertainty corpus based
on tweets. We then conduct experiments
on the generated tweets corpus to study the
effectiveness of different types of features
for uncertainty text identification.

1 Introduction

Social media is not only a social network tool for
people to communicate but also plays an important
role as information source with more and more
users searching and browsing news on it. People
also utilize information from social media for de-
veloping various applications, such as earthquake
warning systems (Sakaki et al., 2010) and fresh
webpage discovery (Dong et al., 2010). How-
ever, due to its casual and word-of-mouth pecu-
liarities, the quality of information in social me-
dia in terms of factuality becomes a premier con-
cern. Chances are there for uncertain information
or even rumors flooding in such a context of free
form. We analyzed a tweet dataset which includes
326,747 posts (Details are given in Section 3) col-
lected during 2011 London Riots, and result re-
veals that at least 18.91% of these tweets bear un-
certainty characteristics1. Therefore, distinguish-
ing uncertain statements from factual ones is cru-
cial for users to synthesize social media informa-
tion to produce or derive reliable interpretations,

1The preliminary study was done based on a manually de-
fined uncertainty cue-phrase list. Tweets containing at least
one hedge cue were treated as uncertain.

and this is expected helpful for applications like
credibility analysis (Castillo et al., 2011) and ru-
mor detection (Qazvinian et al., 2011) based on
social media.

Although uncertainty has been studied theoret-
ically for a long time as a grammatical phenom-
ena (Seifert and Welte, 1987), the computational
treatment of uncertainty is a newly emerging area
of research. Szarvas et al. (2012) pointed out that
“Uncertainty - in its most general sense - can be
interpreted as lack of information: the receiver of
the information (i.e., the hearer or the reader) can-
not be certain about some pieces of information”.
In recent years, the identification of uncertainty
in formal text, e.g., biomedical text, reviews or
newswire, has attracted lots of attention (Kilicoglu
and Bergler, 2008; Medlock and Briscoe, 2007;
Szarvas, 2008; Light et al., 2004). However, un-
certainty identification in social media context is
rarely explored.

Previous research shows that uncertainty identi-
fication is domain dependent as the usage of hedge
cues varies widely in different domains (Morante
and Sporleder, 2012). Therefore, the employment
of existing out-of-domain corpus to social media
context is ineffective. Furthermore, compared to
the existing uncertainty corpus, the expression of
uncertainty in social media is fairly different from
that in formal text in a sense that people usu-
ally raise questions or refer to external informa-
tion when making uncertain statements. But, nei-
ther of the uncertainty expressions can be repre-
sented based on the existing types of uncertainty
defined in the literature. Therefore, a different un-
certainty classification scheme is needed in social
media context.

In this paper, we propose a novel uncertainty
classification scheme and construct the first uncer-
tainty corpus based on social media data – tweets
in specific here. And then we conduct experi-
ments for uncertainty post identification and study
the effectiveness of different categories of features
based on the generated corpus.
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2 Related work

We introduce some popular uncertainty corpora
and methods for uncertainty identification.

2.1 Uncertainty corpus
Several text corpora from various domains have
been annotated over the past few years at different
levels (e.g., expression, event, relation, sentence)
with information related to uncertainty.

Sauri and Pustejovsky (2009) presented a cor-
pus annotated with information about the factu-
ality of events, namely Factbank, which is con-
structed based on TimeBank2 containing 3,123 an-
notated sentences from 208 news documents with
8 different levels of uncertainty defined.

Vincze et al. (2008) constructed the BioSocpe
corpus, which consists of medical and biological
texts annotated for negation, uncertainty and their
linguistic scope. This corpus contains 20,924 sen-
tences.

Ganter et al. (2009) generated Wikipedia
Weasels Corpus, where Weasel tags in Wikipedia
articles is adopted readily as labels for uncertainty
annotation. It contains 168,923 unique sentences
with 437 weasel tags in total.

Although several uncertainty corpora exist,
there is not a uniform set of standard for uncer-
tainty annotation. Szarvas et al. (2012) normal-
ized the annotation of the three corpora aforemen-
tioned. However, the context of these corpora
is different from that of social media. Typically,
these documents annotated are grammatically cor-
rect, carefully punctuated, formally structured and
logically expressed.

2.2 Uncertainty identification
Previous work on uncertainty identification fo-
cused on classifying sentences into uncertain
or definite categories. Existing approaches are
mainly based on supervised methods (Light et
al., 2004; Medlock and Briscoe, 2007; Medlock,
2008; Szarvas, 2008) using the annotated corpus
with different types of features including Part-Of-
Speech (POS) tags, stems, n-grams, etc..

Classification of uncertain sentences was con-
solidated as a task in the 2010 edition of CoNLL
shared task on learning to detect hedge cues
and their scope in natural language text (Farkas
et al., 2010). The best system for Wikipedia
data (Georgescul, 2010) employed Support Vector
Machine (SVM), and the best system for biolog-
ical data (Tang et al., 2010) adopted Conditional

2http://www.timeml.org/site/timebank/
timebank.html

Random Fields (CRF).
In our work, we conduct an empirical study of

uncertainty identification on tweets dataset and ex-
plore the effectiveness of different types of fea-
tures (i.e., content-based, user-based and Twitter-
specific) from social media context.

3 Uncertainty corpus for microblogs

3.1 Types of uncertainty in microblogs
Traditionally, uncertainty can be divided into
two categories, namely Epistemic and Hypothet-
ical (Kiefer, 2005). For Epistemic, there are two
sub-classes Possible and Probable. For Hypotheti-
cal, there are four sub-classes including Investiga-
tion, Condition, Doxastic and Dynamic. The detail
of the classification is described as below (Kiefer,
2005):

Epistemic: On the basis of our world knowledge
we cannot decide at the moment whether the
statement is true or false.

Hypothetical: This type of uncertainty includes
four sub-classes:

• Doxastic: Expresses the speaker’s be-
liefs and hypotheses.

• Investigation: Proposition under inves-
tigation.

• Condition: Proposition under condi-
tion.

• Dynamic: Contains deontic, disposi-
tional, circumstantial and buletic modal-
ity.

Compared to the existing uncertainty corpora,
social media authors enjoy free form of writing.
In order to study the difference, we annotated a
small set of 827 randomly sampled tweets accord-
ing to the scheme of uncertainty types above, in
which we found 65 uncertain tweets. And then,
we manually identified all the possible uncertain
tweets, and found 246 really uncertain ones out of
these 827 tweets, which means that 181 uncertain
tweets are missing based on this scheme. We have
the following three salient observations:
– Firstly, there is no tweet found with the type of
Investigation. We find people seldom use words
like “examine” or “test” (indicative words of In-
vestigation category) when posting tweets. Once
they do this, the statement should be considered
as highly certain. For example, @dobibid I have
tested the link, it is fake!
– Secondly, people frequently raise questions
about some specific topics for confirmation which
expresses uncertainty. For example, @ITVCentral
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Can you confirm that Birmingham children’s hos-
pital has/hasn’t been attacked by rioters?
– Thirdly, people tend to post message with exter-
nal information (e.g., story from friends) which re-
veals uncertainty. For example, Friend who works
at the children’s hospital in Birmingham says the
riot police are protecting it.

Based on these observations, we propose a vari-
ant of uncertainty types in social media context
by eliminating the category of Investigation and
adding the category of Question and External un-
der Hypothetical, as shown in Table 3.1. Note
that our proposed scheme is based on Kiefer’s
work (2005) which was previously extended to
normalize uncertainty corpora in different genres
by Szarvas et al. (2012). But we did not try these
extended schema for specific genres since even the
most general one (Kiefer, 2005) was proved un-
suitable for social media context.

3.2 Annotation result
The dataset we annotated was collected from Twit-
ter using Streaming API during summer riots
in London during August 6-13 2011, including
326,747 tweets in total. Search criteria include
hashtags like #ukriots, #londonriots, #prayforlon-
don, and so on. We further extracted the tweets
relating to seven significant events during the riot
identified by UK newspaper The Guardian from
this set of tweets. We annotated all the 4,743 ex-
tracted tweets for the seven events3.

Two annotators were trained to annotate the
dataset independently. Given a collection of
tweets T = {t1, t2, t3...tn}, the annotation task is
to label each tweet ti as either uncertain or cer-
tain. Uncertainty assertions are to be identified
in terms of the judgements about the author’s in-
tended meaning rather than the presence of uncer-
tain cue-phrase. For those tweets annotated as un-
certain, sub-class labels are also required accord-
ing to the classification indicated in Table 3.1 (i.e.,
multi-label is allowed).

The Kappa coefficient (Carletta, 1996) indi-
cating inter-annotator agreement was 0.9073 for
the certain/uncertain binary classification and was
0.8271 for fine-grained annotation. The conflict
labels from the two annotators were resolved by a
third annotator. Annotation result is displayed in
Table 3.2, where 926 out of 4,743 tweets are la-
beled as uncertain accounting for 19.52%. Ques-
tion is the uncertainty category with most tweets,
followed by External. Only 21 tweets are labeled

3http://www.guardian.co.uk/
uk/interactive/2011/dec/07/
london-riots-twitter

Tweet# 4743
Uncertainty# 926

Epistemic Possible# 16
Probable# 129

Hypothetical

Condition# 71
Doxastic# 48
Dynamic# 21
External# 208
Question# 488

Table 2: Statistics of annotation result

as Dynamic and all of them are buletic modal-
ity4 which shares similarity with Doxastic. There-
fore, we consider Dynamic together with Domes-
tic in the error analysis for simplicity. During
the preliminary annotation, we found that uncer-
tainty cue-phrase is a good indicator for uncer-
tainty tweets since tweets labeled as uncertain al-
ways contain at least one cue-phrase. Therefore,
annotators are also required identify cue-phrases
which trigger the sense of uncertainty in the tweet.
All cue-phrases appearing more than twice are col-
lected to form a uncertainty cue-phrase list.

4 Experiment and evaluation

We aim to identify those uncertainty tweets from
tweet collection automatically based on machine
learning approaches. In addition to n-gram fea-
tures, we also explore the effectiveness of three
categories of social media specific features includ-
ing content-based, user-based and Twitter-specific
ones. The description of the three categories of
features is shown in Table 4. Since the length of
tweet is relatively short, we therefore did not carry
out stopwords removal or stemming.

Our preliminary experiments showed that com-
bining unigrams with bigrams and trigrams gave
better performance than using any one or two of
these three features. Therefore, we just report the
result based on the combination of them as n-gram
features. Five-fold cross validation is used for
evaluation. Precision, recall and F-1 score of un-
certainty category are used as the metrics.

4.1 Overall performance
The overall performance of different approaches
is shown in Table 4.1. We used uncertainty cue-
phrase matching approach as baseline, denoted
by CP. For CP, we labeled tweets containing at
least one entry in uncertainty cue-phrase list (de-
scribed in Section 3) as uncertain. All the other
approaches are supervised methods using SVM
based on different feature sets. n-gram stands for
n-gram feature set, C means content-based feature
set, U denotes user-based feature set, T represents

4Proposition expresses plans, intentions or desires.
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Category Subtype Cue Phrase Example

Epistemic Possible, etc. may, etc. It may be raining.
Probable likely, etc. It is probably raining.

Hypothetical

Condition if, etc. If it rains, we’ll stay in.
Doxastic believe, etc. He believes that the Earth is flat.
Dynamic hope, etc. fake picture of the london eye on fire... i hope
External someone said, etc. Someone said that London zoo was attacked.
Question seriously?, etc. Birmingham riots are moving to the children hospital?! seriously?

Table 1: Classification of uncertainty in social media context

Category Name Description

Content-based

Length Length of the tweet
Cue Phrase Whether the tweet contains a uncertainty cue
OOV Ratio Ratio of words out of vocabulary

Twitter-specific

URL Whether the tweet contains a URL
URL Count Frequency of URLs in corpus
Retweet Count How many times has this tweet been retweeted
Hashtag Whether the tweet contains a hashtag
Hashtag Count Number of Hashtag in tweets
Reply Is the current tweet a reply tweet
Rtweet Is the current tweet a retweet tweet

User-based

Follower Count Number of follower the user owns
List Count Number of list the users owns
Friend Count Number of friends the user owns
Favorites Count Number of favorites the user owns
Tweet Count Number of tweets the user published
Verified Whether the user is verified

Table 3: Feature list for uncertainty classification

Approach Precision Recall F-1
CP 0.3732 0.9589 0.5373
SVMn−gram 0.7278 0.8259 0.7737
SVMn−gram+C 0.8010 0.8260 0.8133
SVMn−gram+U 0.7708 0.8271 0.7979
SVMn−gram+T 0.7578 0.8266 0.7907
SVMn−gram+ALL 0.8162 0.8269 0.8215
SVMn−gram+Cue Phrase 0.7989 0.8266 0.8125
SVMn−gram+Length 0.7372 0.8216 0.7715
SVMn−gram+OOV Ratio 0.7414 0.8233 0.7802

Table 4: Result of uncertainty tweets identification

Twitter-specific feature set and ALL is the combi-
nation of C, U and T.

Table 4.1 shows that CP achieves the best recall
but its precision is the lowest. The learning based
methods with different feature sets give some sim-
ilar recalls. Compared to CP, SVMn−gram in-
creases the F-1 score by 43.9% due to the salient
improvement on precision and small drop of re-
call. The performance improves in terms of pre-
cision and F-1 score when the feature set is ex-
panded by adding C, U or T onto n-gram, where
+C brings the highest gain, and SVMn−gram+ALL

performs best in terms of precision and F-1 score.
We then study the effectiveness of the three
content-based features, and result shows that the
presence of uncertain cue-phrase is most indica-
tive for uncertainty tweet identification.

4.2 Error analysis
We analyze the prediction errors based on
SVMn−gram+ALL. The distribution of errors in
terms of different types of uncertainty is shown

Type Poss. Prob. D.&D. Cond. Que. Ext.
Total# 16 129 69 71 488 208
Error# 11 20 18 11 84 40
% 0.69 0.16 0.26 0.15 0.17 0.23

Table 5: Error distributions

in Table 4.2. Our method performs worst on the
type of Possible and on the combination of Dy-
namic and Doxastic because these two types have
the least number of samples in the corpus and the
classifier tends to be undertrained without enough
samples.

5 Conclusion and future work

In this paper, we propose a variant of classification
scheme for uncertainty identification in social me-
dia and construct the first uncertainty corpus based
on tweets. We perform uncertainty identification
experiments on the generated dataset to explore
the effectiveness of different types of features. Re-
sult shows that the three categories of social media
specific features can improve uncertainty identifi-
cation. Furthermore, content-based features bring
the highest improvement among the three and the
presence of uncertain cue-phrase contributes most
for content-based features.

In future, we will explore to use uncertainty
identification for social media applications.
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Abstract

We introduce PARMA, a system for cross-
document, semantic predicate and argu-
ment alignment. Our system combines a
number of linguistic resources familiar to
researchers in areas such as recognizing
textual entailment and question answering,
integrating them into a simple discrimina-
tive model. PARMA achieves state of the
art results on an existing and a new dataset.
We suggest that previous efforts have fo-
cussed on data that is biased and too easy,
and we provide a more difficult dataset
based on translation data with a low base-
line which we beat by 17% F1.

1 Introduction

A key step of the information extraction pipeline
is entity disambiguation, in which discovered en-
tities across many sentences and documents must
be organized to represent real world entities. The
NLP community has a long history of entity dis-
ambiguation both within and across documents.
While most information extraction work focuses
on entities and noun phrases, there have been a
few attempts at predicate, or event, disambigua-
tion. Commonly a situational predicate is taken to
correspond to either an event or a state, lexically
realized in verbs such as “elect” or nominaliza-
tions such as “election”. Similar to entity coref-
erence resolution, almost all of this work assumes
unanchored mentions: predicate argument tuples
are grouped together based on coreferent events.
The first work on event coreference dates back to
Bagga and Baldwin (1999). More recently, this
task has been considered by Bejan and Harabagiu
(2010) and Lee et al. (2012). As with unanchored
entity disambiguation, these methods rely on clus-
tering methods and evaluation metrics.

Another view of predicate disambiguation seeks

to link or align predicate argument tuples to an ex-
isting anchored resource containing references to
events or actions, similar to anchored entity dis-
ambiguation (entity linking) (Dredze et al., 2010;
Han and Sun, 2011). The most relevant, and per-
haps only, work in this area is that of Roth and
Frank (2012) who linked predicates across docu-
ment pairs, measuring the F1 of aligned pairs.

Here we present PARMA, a new system for pred-
icate argument alignment. As opposed to Roth and
Frank, PARMA is designed as a a trainable plat-
form for the incorporation of the sort of lexical se-
mantic resources used in the related areas of Rec-
ognizing Textual Entailment (RTE) and Question
Answering (QA). We demonstrate the effective-
ness of this approach by achieving state of the art
performance on the data of Roth and Frank despite
having little relevant training data. We then show
that while the “lemma match” heuristic provides a
strong baseline on this data, this appears to be an
artifact of their data creation process (which was
heavily reliant on word overlap). In response, we
evaluate on a new and more challenging dataset for
predicate argument alignment derived from multi-
ple translation data. We release PARMA as a new
framework for the incorporation and evaluation of
new resources for predicate argument alignment.1

2 PARMA

PARMA (Predicate ARguMent Aligner) is a
pipelined system with a wide variety of features
used to align predicates and arguments in two doc-
uments. Predicates are represented as mention
spans and arguments are represented as corefer-
ence chains (sets of mention spans) provided by
in-document coreference resolution systems such
as included in the Stanford NLP toolkit. Results
indicated that the chains are of sufficient quality
so as not to limit performance, though future work

1https://github.com/hltcoe/parma
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RF
• Australian [police]1 have [arrested]2 a man in the western city of Perth over an alleged [plot]3 to [bomb]4 Israeli diplomatic
[buildings]5 in the country , police and the suspect s [lawyer]6 [said]7
• Federal [police]1 have [arrested]2 a man over an [alleged]5 [plan]3 to [bomb]4 Israeli diplomatic [posts]8 in Australia , the
suspect s [attorney]6 [said]7 Tuesday
LDC MTC
• As I [walked]1 to the [veranda]2 side , I [saw]2 that a [tent]3 is being decorated for [Mahfil-e-Naat]4 -LRB- A [get-together]5
in which the poetic lines in praise of Prophet Mohammad are recited -RRB-
• I [came]1 towards the [balcony]2 , and while walking over there I [saw]2 that a [camp]3 was set up outside for the [Naatia]4
[meeting]5 .

Figure 1: Example of gold-standard alignment pairs from Roth and Frank’s data set and our data set
created from the LDC’s Multiple Translation Corpora. The RF data set exhibits high lexical overlap,
where most of the alignments are between identical words like police-police and said-said. The LDC
MTC was constructed to increase lexical diversity, leading to more challenging alignments like veranda-
balcony and tent-camp

may relax this assumption.
We refer to a predicate or an argument as an

“item” with type predicate or argument. An align-
ment between two documents is a subset of all
pairs of items in either documents with the same
type.2 We call the two documents being aligned
the source document S and the target document
T . Items are referred to by their index, and ai,j is a
binary variable representing an alignment between
item i in S and item j in T . A full alignment is an
assignment ~a = {aij : i ∈ NS , j ∈ NT }, where
NS and NT are the set of item indices for S and T
respectively.

We train a logistic regression model on exam-
ple alignmentsand maximize the likelihood of a
document alignment under the assumption that the
item alignments are independent. Our objective
is to maximize the log-likelihood of all p(S, T )
with an L1 regularizer (with parameter λ). After
learning model parameters w by regularized max-
imum likelihood on training data, we introducing
a threshold τ on alignment probabilities to get a
classifier. We perform line search on τ and choose
the value that maximizes F1 on dev data. Train-
ing was done using the Mallet toolkit (McCallum,
2002).

2.1 Features

The focus of PARMA is the integration of a diverse
range of features based on existing lexical seman-
tic resources. We built PARMA on a supervised
framework to take advantage of this wide variety
of features since they can describe many different
correlated aspects of generation. The following
features cover the spectrum from high-precision

2Note that type is not the same thing as part of speech: we
allow nominal predicates like “death”.

to high-recall. Each feature has access to the pro-
posed argument or predicate spans to be linked and
the containing sentences as context. While we use
supervised learning, some of the existing datasets
for this task are very small. For extra training data,
we pool material from different datasets and use
the multi-domain split feature space approach to
learn dataset specific behaviors (Daumé, 2007).

Features in general are defined over mention
spans or head tokens, but we split these features
to create separate feature-spaces for predicates and
arguments.3

For argument coref chains we heuristically
choose a canonical mention to represent each
chain, and some features only look at this canon-
ical mention. The canonical mention is cho-
sen based on length,4 information about the head
word,5 and position in the document.6 In most
cases, coref chains that are longer than one are
proper nouns and the canonical mention is the first
and longest mention (outranking pronominal ref-
erences and other name shortenings).
PPDB We use lexical features from the Para-
phrase Database (PPDB) (Ganitkevitch et al.,
2013). PPDB is a large set of paraphrases ex-
tracted from bilingual corpora using pivoting tech-
niques. We make use of the English lexical portion
which contains over 7 million rules for rewriting
terms like “planet” and “earth”. PPDB offers a
variety of conditional probabilities for each (syn-
chronous context free grammar) rule, which we

3While conceptually cleaner, In practice we found this
splitting to have no impact on performance.

4in tokens, not counting some words like determiners and
auxiliary verbs

5like its part of speech tag and whether the it was tagged
as a named entity

6mentions that appear earlier in the document and earlier
in a given sentence are given preference
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treat as independent experts. For each of these rule
probabilities (experts), we find all rules that match
the head tokens of a given alignment and have a
feature for the max and harmonic mean of the log
probabilities of the resulting rule set.

FrameNet FrameNet is a lexical database based
on Charles Fillmore’s Frame Semantics (Fill-
more, 1976; Baker et al., 1998). The database
(and the theory) is organized around seman-
tic frames that can be thought of as descrip-
tions of events. Frames crucially include spec-
ification of the participants, or Frame Elements,
in the event. The Destroying frame, for in-
stance, includes frame elements Destroyer or
Cause Undergoer. Frames are related to other
frames through inheritance and perspectivization.
For instance the frames Commerce buy and
Commerce sell (with respective lexical real-
izations “buy” and “sell”) are both perspectives of
Commerce goods-transfer (no lexical re-
alizations) which inherits from Transfer (with
lexical realization “transfer”).

We compute a shortest path between headwords
given edges (hypernym, hyponym, perspectivized
parent and child) in FrameNet and bucket by dis-
tance to get features. We also have a binary feature
for whether two tokens evoke the same frame.

TED Alignments Given two predicates or argu-
ments in two sentences, we attempt to align the
two sentences they appear in using a Tree Edit
Distance (TED) model that aligns two dependency
trees, based on the work described by (Yao et al.,
2013). We represent a node in a dependency tree
with three fields: lemma, POS tag and the type
of dependency relation to the node’s parent. The
TED model aligns one tree with the other using
the dynamic programming algorithm of Zhang and
Shasha (1989) with three predefined edits: dele-
tion, insertion and substitution, seeking a solution
yielding the minimum edit cost. Once we have
built a tree alignment, we extract features for 1)
whether the heads of the two phrases are aligned
and 2) the count of how many tokens are aligned
in both trees.

WordNet WordNet (Miller, 1995) is a database
of information (synonyms, hypernyms, etc.) per-
taining to words and short phrases. For each entry,
WordNet provides a set of synonyms, hypernyms,
etc. Given two spans, we use WordNet to deter-
mine semantic similarity by measuring how many
synonym (or other) edges are needed to link two

terms. Similar words will have a short distance.
For features, we find the shortest path linking the
head words of two mentions using synonym, hy-
pernym, hyponym, meronym, and holonym edges
and bucket the length.
String Transducer To represent similarity be-
tween arguments that are names, we use a stochas-
tic edit distance model. This stochastic string-to-
string transducer has latent “edit” and “no edit”
regions where the latent regions allow the model
to assign high probability to contiguous regions of
edits (or no edits), which are typical between vari-
ations of person names. In an edit region, param-
eters govern the relative probability of insertion,
deletion, substitution, and copy operations. We
use the transducer model of Andrews et al. (2012).
Since in-domain name pairs were not available, we
picked 10,000 entities at random from Wikipedia
to estimate the transducer parameters. The entity
labels were used as weak supervision during EM,
as in Andrews et al. (2012).

For a pair of mention spans, we compute the
conditional log-likelihood of the two mentions go-
ing both ways, take the max, and then bucket to get
binary features. We duplicate these features with
copies that only fire if both mentions are tagged as
PER, ORG or LOC.

3 Evaluation

We consider three datasets for evaluating PARMA.
For richer annotations that include lemmatiza-
tions, part of speech, NER, and in-doc corefer-
ence, we pre-processed each of the datasets using
tools7 similar to those used to create the Annotated
Gigaword corpus (Napoles et al., 2012).
Extended Event Coreference Bank Based on
the dataset of Bejan and Harabagiu (2010), Lee et
al. (2012) introduced the Extended Event Coref-
erence Bank (EECB) to evaluate cross-document
event coreference. EECB provides document clus-
ters, within which entities and events may corefer.
Our task is different from Lee et al. but we can
modify the corpus setup to support our task. To
produce source and target document pairs, we se-
lect the first document within every cluster as the
source and each of the remaining documents as
target documents (i.e. N − 1 pairs for a cluster
of size N ). This yielded 437 document pairs.
Roth and Frank The only existing dataset for
our task is from Roth and Frank (2012) (RF), who

7https://github.com/cnap/anno-pipeline
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annotated documents from the English Gigaword
Fifth Edition corpus (Parker et al., 2011). The data
was generated by clustering similar news stories
from Gigaword using TF-IDF cosine similarity of
their headlines. This corpus is small, containing
only 10 document pairs in the development set and
60 in the test set. To increase the training size,
we train PARMA with 150 randomly selected doc-
ument pairs from both EECB and MTC, and the
entire dev set from Roth and Frank using multi-
domain feature splitting. We tuned the threshold
τ on the Roth and Frank dev set, but choose the
regularizer λ based on a grid search on a 5-fold
version of the EECB dataset.
Multiple Translation Corpora We constructed
a new predicate argument alignment dataset
based on the LDC Multiple Translation Corpora
(MTC),8 which consist of multiple English trans-
lations for foreign news articles. Since these mul-
tiple translations are semantically equivalent, they
provide a good resource for aligned predicate ar-
gument pairs. However, finding good pairs is a
challenge: we want pairs with significant overlap
so that they have predicates and arguments that
align, but not documents that are trivial rewrites
of each other. Roth and Frank selected document
pairs based on clustering, meaning that the pairs
had high lexical overlap, often resulting in mini-
mal rewrites of each other. As a result, despite ig-
noring all context, their baseline method (lemma-
alignment) worked quite well.

To create a more challenging dataset, we se-
lected document pairs from the multiple transla-
tions that minimize the lexical overlap (in En-
glish). Because these are translations, we know
that there are equivalent predicates and arguments
in each pair, and that any lexical variation pre-
serves meaning. Therefore, we can select pairs
with minimal lexical overlap in order to create
a system that truly stresses lexically-based align-
ment systems.

Each document pair has a correspondence be-
tween sentences, and we run GIZA++ on these
sentences to produce token-level alignments. We
take all aligned nouns as arguments and all aligned
verbs (excluding be-verbs, light verbs, and report-
ing verbs) as predicates. We then add negative ex-
amples by randomly substituting half of the sen-
tences in one document with sentences from an-

8LDC2010T10, LDC2010T11, LDC2010T12,
LDC2010T14, LDC2010T17, LDC2010T23, LDC2002T01,
LDC2003T18, and LDC2005T05
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Figure 2: We plotted the PARMA’s performance on
each of the document pairs. Red squares show the
F1 for individual document pairs drawn from Roth
and Frank’s data set, and black circles show F1 for
our Multiple Translation Corpora test set. The x-
axis represents the cosine similarity between the
document pairs. On the RF data set, performance
is correlated with lexical similarity. On our more
lexically diverse set, this is not the case. This
could be due to the fact that some of the docu-
ments in the RF sets are minor re-writes of the
same newswire story, making them easy to align.

other corpus, guaranteed to be unrelated. The
amount of substitutions we perform can vary the
“relatedness” of the two documents in terms of
the predicates and arguments that they talk about.
This reflects our expectation of real world data,
where we do not expect perfect overlap in predi-
cates and arguments between a source and target
document, as you would in translation data.

Lastly, we prune any document pairs that have
more than 80 predicates or arguments or have a
Jaccard index on bags of lemmas greater than 0.5,
to give us a dataset of 328 document pairs.

Metric We use precision, recall, and F1. For the
RF dataset, we follow Roth and Frank (2012) and
Cohn et al. (2008) and evaluate on a version of F1
that considers SURE and POSSIBLE links, which
are available in the RF data. Given an alignment
to be scored A and a reference alignment B which
contains SURE and POSSIBLE links, Bs andBp re-
spectively, precision and recall are:

P =
|A ∩Bp|
|A| R =

|A ∩Bs|
|Bs|

(1)
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F1 P R
EECB lemma 63.5 84.8 50.8

PARMA 74.3 80.5 69.0
RF lemma 48.3 40.3 60.3

Roth and Frank 54.8 59.7 50.7
PARMA 57.6 52.4 64.0

MTC lemma 42.1 51.3 35.7
PARMA 59.2 73.4 49.6

Table 1: PARMA outperforms the baseline lemma
matching system on the three test sets, drawn from
the Extended Event Coreference Bank, Roth and
Frank’s data, and our set created from the Multiple
Translation Corpora. PARMA achieves a higher F1
and recall score than Roth and Frank’s reported
result.

and F1 as the harmonic mean of the two. Results
for EECB and MTC reflect 5-fold cross validation,
and RF uses the given dev/test split.

Lemma baseline Following Roth and Frank we
include a lemma baseline, in which two predicates
or arguments align if they have the same lemma.9

4 Results

On every dataset PARMA significantly improves
over the lemma baselines (Table 1). On RF,
compared to Roth and Frank, the best published
method for this task, we also improve, making
PARMA the state of the art system for this task.
Furthermore, we expect that the smallest improve-
ments over Roth and Frank would be on RF, since
there is little training data. We also note that com-
pared to Roth and Frank we obtain much higher
recall but lower precision.

We also observe that MTC was more challeng-
ing than the other datasets, with a lower lemma
baseline. Figure 2 shows the correlation between
document similarity and document F1 score for
RF and MTC. While for RF these two measures
are correlated, they are uncorrelated for MTC. Ad-
ditionally, there is more data in the MTC dataset
which has low cosine similarity than in RF.

5 Conclusion

PARMA achieves state of the art performance on
three datasets for predicate argument alignment.
It builds on the development of lexical semantic
resources and provides a platform for learning to
utilize these resources. Additionally, we show that

9We could not reproduce lemma from Roth and Frank
(shown in Table 1) due to a difference in lemmatizers. We ob-
tained 55.4; better than their system but worse than PARMA.

task difficulty can be strongly tied to lexical simi-
larity if the evaluation dataset is not chosen care-
fully, and this provides an artificially high baseline
in previous work. PARMA is robust to drops in lex-
ical similarity and shows large improvements in
those cases. PARMA will serve as a useful bench-
mark in determining the value of more sophis-
ticated models of predicate-argument alignment,
which we aim to address in future work.

While our system is fully supervised, and thus
dependent on manually annotated examples, we
observed here that this requirement may be rela-
tively modest, especially for in-domain data.
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Abstract

We present a reformulation of the word
pair features typically used for the task
of disambiguating implicit relations in the
Penn Discourse Treebank. Our word pair
features achieve significantly higher per-
formance than the previous formulation
when evaluated without additional fea-
tures. In addition, we present results
for a full system using additional features
which achieves close to state of the art per-
formance without resorting to gold syntac-
tic parses or to context outside the relation.

1 Introduction

Discourse relations such as contrast and causal-
ity are part of what makes a text coherent. Be-
ing able to automatically identify these relations
is important for many NLP tasks such as gener-
ation, question answering and textual entailment.
In some cases, discourse relations contain an ex-
plicit marker such as but or because which makes
it easy to identify the relation. Prior work (Pitler
and Nenkova, 2009) showed that where explicit
markers exist, the class of the relation can be dis-
ambiguated with f-scores higher than 90%.

Predicting the class of implicit discourse rela-
tions, however, is much more difficult. Without an
explicit marker to rely on, work on this task ini-
tially focused on using lexical cues in the form
of word pairs mined from large corpora where
they appear around an explicit marker (Marcu and
Echihabi, 2002). The intuition is that these pairs
will tend to represent semantic relationships which
are related to the discourse marker (for example,
word pairs often appearing around but may tend
to be antonyms). While this approach showed
some success and has been used extensively in
later work, it has been pointed out by multiple
authors that many of the most useful word pairs

are pairs of very common functional words, which
contradicts the original intuition, and it is hard to
explain why these are useful.

In this work we focus on the task of identi-
fying and disambiguating implicit discourse rela-
tions which have no explicit marker. In particular,
we present a reformulation of the word pair fea-
tures that have most often been used for this task
in the past, replacing the sparse lexical features
with dense aggregated score features. This is the
main contribution of our paper. We show that our
formulation outperforms the original one while re-
quiring less features, and that using a stop list of
functional words does not significantly affect per-
formance, suggesting that these features indeed
represent semantically related content word pairs.

In addition, we present a system which com-
bines these word pairs with additional features to
achieve near state of the art performance without
the use of syntactic parse features and of context
outside the arguments of the relation. Previous
work has attributed much of the achieved perfor-
mance to these features, which are easy to get in
the experimental setting but would be less reliable
or unavailable in other applications.1

2 Related Work

This line of research began with (Marcu and Echi-
habi, 2002), who used a small number of unam-
biguous explicit markers and patterns involving
them, such as [Arg1, but Arg2] to collect sets of
word pairs from a large corpus using the cross-
product of the words in Arg1 and Arg2. The au-
thors created a feature out of each pair and built a
naive bayes model directly from the unannotated
corpus, updating the priors and posteriors using
maximum likelihood. While they demonstrated

1Reliable syntactic parses are not always available in do-
mains other than newswire, and context (preceding relations,
especially explicit relations) is not always available in some
applications such as generation and question answering.
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some success, their experiments were run on data
that is unnatural in two ways. First, it is balanced.
Second, it is constructed with the same unsuper-
vised method they use to extract the word pairs -
by assuming that the patterns correspond to a par-
ticular relation and collecting the arguments from
an unannotated corpus. Even if the assumption is
correct, these arguments are really taken from ex-
plicit relations with their markers removed, which
as others have pointed out (Blair-Goldensohn et
al., 2007; Pitler et al., 2009) may not look like true
implicit relations.

More recently, implicit relation prediction has
been evaluated on annotated implicit relations
from the Penn Discourse Treebank (Prasad et al.,
2008). PDTB uses hierarchical relation types
which abstract over other theories of discourse
such as RST (Mann and Thompson, 1987) and
SDRT (Asher and Lascarides, 2003). It contains
40, 600 annotated relations from the WSJ corpus.
Each relation has two arguments, Arg1 and Arg2,
and the annotators decide whether it is explicit or
implicit.

The first to evaluate directly on PDTB in a re-
alistic setting were Pitler et al. (2009). They used
word pairs as well as additional features to train
four binary classifiers, each corresponding to one
of the high-level PDTB relation classes. Although
other features proved to be useful, word pairs were
still the major contributor to most of these clas-
sifiers. In fact, their best system for comparison
included only the word pair features, and for all
other classes other than expansion the word pair
features alone achieved an f-score within 2 points
of the best system. Interestingly, they found that
training the word pair features on PDTB itself was
more useful than training them on an external cor-
pus like Marcu and Echihabi (2002), although in
some cases they resort to information gain in the
external corpus for filtering the word pairs.

Zhou et al. (2010) used a similar method and
added features that explicitly try to predict the
implicit marker in the relation, increasing perfor-
mance. Most recently to the best of our knowl-
edge, Park and Cardie (2012) achieved the highest
performance by optimizing the feature set. An-
other work evaluating on PDTB is (Lin et al.,
2009), who are unique in evaluating on the more
fine-grained second-level relation classes.

3 Word Pairs

3.1 The Problem: Sparsity
While Marcu and Echihabi (2002)’s approach of
training a classifier from an unannotated corpus
provides a relatively large amount of training data,
this data does not consist of true implicit relations.
However, the approach taken by Pitler et al. (2009)
and repeated in more recent work (training directly
on PDTB) is problematic as well: when training a
model with so many sparse features on a dataset
the size of PDTB (there are 22, 141 non-explicit
relations overall), it is likely that many important
word pairs will not be seen in training.

In fact, even the larger corpus of Marcu and
Echihabi (2002) may not be quite large enough
to solve the sparsity issue, given that the num-
ber of word pairs is quadratic in the vocabulary.
Blair-Goldensohn et al. (2007) report that using
even a very small stop list (25 words) significantly
reduces performance, which is counter-intuitive.
They attribute this finding to the sparsity of the
feature space. An analysis in (Pitler et al., 2009)
also shows that the top word pairs (ranked by
information gain) all contain common functional
words, and are not at all the semantically-related
content words that were imagined. In the case
of some reportedly useful word pairs (the-and; in-
the; the-of...) it is hard to explain how they might
affect performance except through overfitting.

3.2 The Solution: Aggregation
Representing each word pair as a single feature has
the advantage of allowing the weights for each pair
to be learned directly from the data. While pow-
erful, this approach requires large amounts of data
to be effective.

Another possible approach is to aggregate some
of the pairs together and learn weights from the
data only for the aggregated sets of words. For this
approach to be effective, the pairs we choose to
group together should have similar meaning with
regard to predicting the relation.

Biran and Rambow (2011) is to our knowledge
the only other work utilizing a similar approach.
They used aggregated word pair set features to
predict whether or not a sentence is argumentative.
Their method is to group together word pairs that
have been collected around the same explicit dis-
course marker: for every discourse marker such
as therefore or however, they have a single fea-
ture whose value depends only on the word pairs
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collected around that marker. This is reasonable
given the intuition that the marker pattern is unam-
biguous and points at a particular relation. Using
one feature per marker can be seen as analogous
(yet complementary) to Zhou et al. (2010)’s ap-
proach of trying to predict the implicit connective
by giving a score to each marker using a language
model.

This work uses binary features which only in-
dicate the appearance of one or more of the pairs.
The original frequencies of the word pairs are not
used anywhere. A more powerful approach is to
use an informed function to weight the word pairs
used inside each feature.

3.3 Our Approach

Our approach is similar in that we choose to ag-
gregate word pairs that were collected around the
same explicit marker. We first assembled a list of
all 102 discourse markers used in PDTB, in both
explicit and implicit relations.2

Next, we extract word pairs for each marker
from the Gigaword corpus by taking the cross
product of words that appear in a sentence around
that marker. This is a simpler approach than us-
ing patterns - for example, the marker because can
appear in two patterns: [Arg1 because Arg2] and
[because Arg1, Arg2], and we only use the first.
We leave the task of listing the possible patterns
for each of the 102 markers to future work because
of the significant manual effort required. Mean-
while, we rely on the fact that we use a very large
corpus and hope that the simple pattern [Arg1
marker Arg2] is enough to make our features use-
ful. There are, of course, markers for which this
pattern does not normally apply, such as by com-
parison or on one hand. We expect these features
to be down-weighted by the final classifier, as ex-
plained at the end of this section. When collect-
ing the pairs, we stem the words and discard pairs
which appear only once around the marker.

We can think of each discourse marker as hav-
ing a corresponding unordered “document”, where
each word pair is a term with an associated fre-
quency. We want to create a feature for each
marker such that for each data instance (that is,
for each potential relation in the PDTB data) the
value for the feature is the relevance of the marker
document to the data instance.

2in implicit relations, there is no marker in the text but the
implicit marker is provided by the human annotators

Each data instance in PDTB consists of two ar-
guments, and can therefore also be represented
as a set of word pairs extracted from the cross-
product of the two arguments. To represent the rel-
evance of the instance to each marker, we set the
value of the marker feature to the cosine similarity
of the data instance and the marker’s “document”,
where each word pair is a dimension.

While the terms (i.e. word pairs) of the
data instance are weighted by simple occurence
count, we weight the terms in each marker’s
document with tf-idf, where tf is defined in
one of two ways: normalized term frequency
( count(t)
max{count(s,d):s∈d}) and pointwise mutual infor-

mation (log count(t)
count(w1)∗count(w2)

), wherew1 andw2

are the member words of the pair. Idf is calculated
normally given that the set of all documents is de-
fined as the 102 marker documents.

We then train a binary classifier (logistic regres-
sion) using these 102 features for each of the four
high-level relations in PDTB: comparison, con-
tingency, expansion and temporal. To make sure
our results are comparable to previous work, we
treat EntRel relations as instances of expansion
and use sections 2-20 for training and sections 21-
22 for testing. We use a ten fold stratified cross-
validation of the training set for development. Ex-
plicit relations are excluded from all data sets.

As mentioned earlier, there are markers that do
not fit the simple pattern we use. In particular,
some markers always or often appear as the first
term of a sentence. For these, we expect the list of
word pairs to be empty or almost empty, since in
most sentences there are no words on the left (and
recall that we discard pairs that appear only once).
Since the features created for these markers will
be uninformative, we expect them to be weighted
down by the classifier and have no significant ef-
fect on prediction.

4 Evaluation of Word Pairs

For our main evaluation, we evaluate the perfor-
mance of word pair features when used with no
additional features. Results are shown in Table 1.
Our word pair features outperform the previous
formulation (represented by the results reported by
(Pitler et al., 2009), but used by virtually all previ-
ous work on this task). For most relation classes,
tf is significantly better than pmi. 3

3Significance was verified for our own results in all exper-
iments shown in this paper with a standard t-test
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Comparison Contingency Expansion Temporal
Pitler et al., 2009 21.96 (56.59) 45.6 (67.1) 63.84 (60.28) 16.21 (61.98)
tf-idf, no stop list 23 (61.72) 44.03 (66.78) 66.48 (60.93) 19.54 (68.09)
pmi-idf, no stop list 24.38 (61.72) 38.96 (61.52) 62.22 (57.26) 16 (65.53)
tf-idf, with stop list 23.77 44.33 65.33 16.98

Table 1: Main evaluation. F-measure (accuracy) for various implementations of the word pairs features

Comparison Contingency Expansion Temporal
Best System 25.4 (63.36) 46.94 (68.09) 75.87 (62.84) 20.23 (68.35)
features used pmi+1,2,3,6 tf+ALL tf+8 tf+3,9
Pitler et al., 2009 21.96 (56.59) 47.13 (67.3) 76.42 (63.62) 16.76 (63.49)
Zhou et al., 2010 31.79 (58.22) 47.16 (48.96) 70.11 (54.54) 20.3 (55.48)
Park and Cardie, 2012 31.32 (74.66) 49.82 (72.09) 79.22 (69.14) 26.57 (79.32)

Table 2: Secondary evaluation. F-measure (accuracy) for the best systems. tf and pmi refer to the word
pair features used (by tf implementation), and the numbers refer to the indeces of Table 3

Comp. Cont. Exp. Temp.
1 WordNet 20.07 34.07 52.96 11.58
2 Verb Class 14.24 24.84 49.6 10.04
3 MPN 23.84 38.58 49.97 13.16
4 Modality 17.49 28.92 13.84 10.72
5 Polarity 16.46 26.36 65.15 11.58
6 Affect 18.62 31.59 59.8 13.37
7 Similarity 20.68 34.5 43.16 12.1
8 Negation 8.28 22.47 75.87 11.1
9 Length 20.75 31.28 65.72 10.19

Table 3: F-measure for each feature category

We also show results using a stop list of 50 com-
mon functional words. The stop list has only a
small effect on performance except in the tempo-
ral class. This may be because of functional words
like was and will which have a temporal effect.

5 Other Features

For our secondary evaluation, we include addi-
tional features to complement the word pairs. Pre-
vious work has relied on features based on the gold
parse trees of the Penn Treebank (which overlaps
with PDTB) and on contextual information from
relations preceding the one being disambiguated.
We intentionally limit ourselves to features that do
not require either so that our system can be readily
used on arbitrary argument pairs.
WordNet Features: We define four features
based on WordNet (Fellbaum, 1998) - Synonyms,
Antonyms, Hypernyms and Hyponyms. The values
are the counts of word pairs in the cross-product of
the words in the arguments that have the particular
relation (synonymy, antonymy etc) between them.
Verb Class: This is the count of pairs of verbs
from Arg1 and Arg2 that share the same class, de-

fined as the highest level Levin verb class (Levin,
1993) from the LCS database (Dorr, 2001).
Money, Percentages and Numbers (MPN): The
counts of currency symbols/abbreviations, per-
centage signs or cues (“percent”, “BPS”...) and
numbers in each argument.
Modality: Presence or absence of each English
modal in each argument.
Polarity: Based on MPQA (Wilson et al., 2005).
We include the counts of positive and negative
words according to the MPQA subjectivity lexicon
for both arguments. Unlike Pitler et al. (2009), we
do not use neutral polarity features. We also do not
explicitly group negation with polarity (although
we do have separate negation features).
Affect: Based on the Dictionary of Affect in Lan-
guage (Whissell, 1989). Each word in the DAL
gets a score for three dimensions - pleasantness
(pleasant - unpleasant), activation (passive - ac-
tive) and imagery (hard to imagine - easy to imag-
ine). We use the average score for each dimension
in each argument as a feature.
Content Similarity: We use the cosine similarity
and word overlap of the arguments as features.
Negation: Presence or absence of negation terms
in each of the arguments.
Length: The ratio between the lengths (counts of
words) of the arguments.

6 Evaluation of Additional Features

For our secondary evaluation, we present results
for each feature category on its own in Table 3 and
for our best system for each of the relation classes
in Table 2. We show results for the best systems
from (Pitler et al., 2009), (Zhou et al., 2010) and
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(Park and Cardie, 2012) for comparison.

7 Conclusion

We presented an aggregated approach to word pair
features and showed that it outperforms the previ-
ous formulation for all relation types but contin-
gency. This is our main contribution. With this
approach, using a stop list does not have a major
effect on results for most relation classes, which
suggests most of the word pairs affecting perfor-
mance are content word pairs which may truly be
semantically related to the discourse structure.

In addition, we introduced the new and useful
WordNet, Affect, Length and Negation feature cat-
egories. Our final system outperformed the best
system from Pitler et al. (2009), who used mostly
similar features, for comparison and temporal and
is competitive with the most recent state of the
art systems for contingency and expansion with-
out using any syntactic or context features.
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Abstract

Conversational implicatures involve rea-
soning about multiply nested belief struc-
tures. This complexity poses significant
challenges for computational models of
conversation and cognition. We show that
agents in the multi-agent Decentralized-
POMDP reach implicature-rich interpreta-
tions simply as a by-product of the way
they reason about each other to maxi-
mize joint utility. Our simulations involve
a reference game of the sort studied in
psychology and linguistics as well as a
dynamic, interactional scenario involving
implemented artificial agents.

1 Introduction

Gricean conversational implicatures (Grice, 1975)
are inferences that listeners make in order to
reconcile the speaker’s linguistic behavior with
the assumption that the speaker is cooperative.
As Grice conceived of them, implicatures cru-
cially involve reasoning about multiply-nested be-
lief structures: roughly, for p to count as an impli-
cature, the speaker must believe that the listener
will infer that the speaker believes p. This com-
plexity makes implicatures an important testing
ground for models of conversation and cognition.

Implicatures have received considerable atten-
tion in the context of simple reference games in
which the listener uses the speaker’s utterance
to try to identify the speaker’s intended referent
(Rosenberg and Cohen, 1964; Clark and Wilkes-
Gibbs, 1986; Dale and Reiter, 1995; DeVault and
Stone, 2007; Krahmer and van Deemter, 2012).
Many implicature patterns can be embedded in
these games using specific combinations of poten-
tial referents and message sets. The paradigm has
proven fruitful not only for evaluating computa-
tional models (Golland et al., 2010; Degen and

Franke, 2012; Frank and Goodman, 2012; Rohde
et al., 2012; Bergen et al., 2012) but also for study-
ing children’s pragmatic abilities without implic-
itly assuming they have mastered challenging lin-
guistic structures (Stiller et al., 2011).

In this paper, we extend these results beyond
simple reference games to full decision-problems
in which the agents reason about language and ac-
tion together over time. To do this, we use the De-
centralized Partially Observable Markov Decision
Process (Dec-POMDP) to implement agents that
are capable of manipulating the multiply-nested
belief structures required for implicature calcula-
tion. Optimal decision making in Dec-POMDPs
is NEXP complete, so we employ the single-agent
POMDP approximation of Vogel et al. (2013).
We show that agents in the Dec-POMDP reach
implicature-rich interpretations simply as a by-
product of the way they reason about each other
to maximize joint utility. Our simulations involve
a reference game and a dynamic, interactional sce-
nario involving implemented artificial agents.

2 Decision-Theoretic Communication

The Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) (Bernstein et
al., 2002) is a multi-agent generalization of the
POMDP, where agents act to maximize a shared
utility function. Formally, a Dec-POMDP con-
sists of a tuple (S,A,O,R, T,Ω, b0, γ). S is a
finite set of states, A is the set of actions, O is
the set of observations, and T (s′|a1, a2, s) is the
transition distribution which determines what ef-
fect the joint action (a1, a2) has on the state of the
world. The true state s ∈ S is not observable to
the agents, who must utilize observations o ∈ O,
which are emitted after each action according to
the observation distribution Ω(o1, o2|s′, a). The
reward functionR(s, a1, a2) represents the goal of
the agents, who act to maximize expected reward.
Lastly, b0 ∈ ∆(S) is the initial belief state and
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γ ∈ [0, 1) is the discount factor.
The true state of the world s ∈ S is not ob-

servable to either agent. In single-agent POMDPs,
agents maintain a belief state b(s) ∈ ∆(S), which
is a distribution over states. Agents acting in Dec-
POMDPs must take into account not only their
beliefs about the state of the world, but also the
beliefs of their partners, leading to nested belief
states. In the model presented here, our agent
models the other agent’s beliefs about the state of
the world, and assumes that the other agent does
not take into account our own beliefs, a common
approach (Gmytrasiewicz and Doshi, 2005).

Agents make decisions according to
a policy πi : ∆(S) → A which max-
imizes the discounted expected reward∑∞

t=0 γ
t
E[R(st, at1, a

t
2)|b0, π1, π2]. Using

the assumption that the other agent tracks one less
level of belief, we can solve for the other agent’s
policy π̄, which allows us to estimate his actions
and beliefs over time. To construct policies,
we use Perseus (Spaan and Vlassis, 2005), a
point-based value iteration algorithm.

Even tracking just one level of nested beliefs
quickly leads to a combinatorial explosion in the
number of belief states the other agent might have.
This causes decision making in Dec-POMDPs to
be NEXP complete, limiting their application to
problems with only a handful of states (Bernstein
et al., 2002). To ameliorate this difficulty, we
use the method of Vogel et al. (2013), which cre-
ates a single-agent approximation to the full Dec-
POMDP. To form this single-agent POMDP, we
augment the state space to be S × S, where the
second set of state variables allows us to model
the other agent’s beliefs. We maintain a point
estimate b̄ of the other agent’s beliefs, which
is formed by summing out observations O that
the other player might have received. To ac-
complish this, we factor the transition distribu-
tion into two terms: T ((s′, s̄′)|a, π̄(s̄), (s, s̄)) =
T̄ (s̄′|s′, a, π̄(s̄), (s, s̄))T (s′|a, π̄(s̄), (s, s̄)). This
observation marginalization can be folded into the
transition distribution T̄ (s̄′|s′, a, π̄(s̄), (s, s̄)):

T̄ (s̄′| s′, a, π̄(s̄), (s, s̄)) = Pr(s̄′|s′, a, π̄(s̄), (s, s̄))

=
∑

ō∈O

(
Ω(ō|s̄′, a, π̄(s̄))T (s̄′|a, π̄(s̄), s̄)∑
s̄′′ Ω(ō|s̄′′, a, π̄(s̄))T (s̄′′|a, π̄(s̄), s̄)

× Ω(ō|s′, a, π̄(s̄))

)
(1)

Communication is treated as another type of ob-

servation, with messages coming from a finite set
M . Each message m ∈ M has the semantics
Pr(s|m), which represents the probability that the
world is in state s ∈ S given that m is true. Mes-
sages m received from a partner are combined
with perceptual observations o ∈ O, to form a
joint observation (m, o).

A literal listener, denoted L, interprets mes-
sages according to this semantics, without taking
into account the beliefs of the speaker. L assumes
that the perceptual observations and messages are
conditionally independent given the state of the
world. Using Bayes’ rule, the literal listener’s joint
observation/message distribution is

Pr((o,m)|s, s′, a) = Ω(o|s′, a) Pr(m|s)

= Ω(o|s′, a)
Pr(s|m) Pr(m)∑

m′∈M Pr(s|m′) Pr(m′)
(2)

The Pr(m) prior over messages can be estimated
from corpus data, but we use a uniform prior for
simplicity.

A literal speaker, denoted S, produces mes-
sages according to the most descriptive term:

πS(s) = arg max
m∈M

p(s|m). (3)

The literal speaker does not model the beliefs of
the listener.

To interpret implicatures, a level-one lis-
tener, denoted L(S), models the beliefs a literal
speaker must have had to produce an utterance:
Pr(m|s) = 1[π̄S(s) = m], where π̄S is the level-
one listener’s estimate of the speaker’s policy. In
this setting, we denote the level-one listener’s es-
timate of the speaker’s belief as s̄, yielding the be-
lief update equation

Pr((o,m)|(s, s̄), (s′, s̄′), a, π̄S(s̄)) =

Ω(o|s′, a)1[π̄S(s̄) = m] (4)

The literal semantics of messages is not explicitly
included in the level-one listener’s belief update.
Instead, when he solves for the literal speaker’s
policy π̄S , the meaning of a message is the set of
beliefs that would lead the literal speaker to pro-
duce the utterance.

A level-one speaker, S(L), produces utterances
to influence a literal listener, and a level-two lis-
tener, L(S(L)), uses two levels of belief nesting to
interpret utterances as the beliefs that a level-one
speaker might have to produce that utterance. At
each level of nesting, we apply the marginalized
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r1 0 0 1
r2 0 1 1
r3 1 1 0

hat glasses mustache

r1 r2 r3

(a) Scenario.

Message r1 r2 r3

moustache 1
2

1
2 0

glasses 0 1
2

1
2

hat 0 0 1

(b) Literal interpretations.

Message r1 r2 r3

moustache 1 0 0
glasses 0 1 0

hat 0 0 1

(c) Implicature-rich interpretations.

Figure 1: A simple reference game. The matrices
give distributions Pr(t = ri|utterance)

belief-state approach of (Vogel et al., 2013), aug-
menting the state space with another copy of the
underlying world state space, where the new copy
represents the next level of belief. For instance, the
L(S(L)) agent will make decisions in the S×S×S
space. For an L(S(L)) state (s, s̄, ŝ), s is the true
state of the world, s̄ is the speaker’s belief of the
state of the world, and ŝ is the speaker’s belief of
the listener’s beliefs. In the next two sections we
show how a level-one and level-two listener infer
implicatures.

3 Reference Game Implicatures

Fig. 1a is the scenario for a reference game of the
sort pioneered by Rosenberg and Cohen (1964)
and Dale and Reiter (1995). The potential refer-
ents are r1, r2, and r3. Speakers use a restricted
vocabulary consisting of three messages: ‘mous-
tache’, ‘glasses’, and ‘hat’. The speaker is as-
signed a referent ri (hidden from the listener) and
produces a message on that basis. The speaker and
listener share the goal of having the listener iden-
tify the speaker’s intended referent ri.

Fig. 1b depicts the literal interpretations for
this game. It looks like the listener’s chances
of success are low. Only ‘hat’ refers unambigu-

ously. However, the language and scenario fa-
cilitate scalar implicature (Horn, 1972; Harnish,
1979; Gazdar, 1979). Briefly, the scalar implica-
ture pattern is that a speaker who is knowledgeable
about the relevant domain will choose a commu-
nicatively weak utterance U over a communica-
tively stronger utterance U ′ iff U ′ is false (assum-
ing U and U ′ are relevant). The required sense of
communicative strength encompasses logical en-
tailments as well as more particularized pragmatic
partial orders (Hirschberg, 1985).

In our scenario, ‘hat’ is stronger than ‘glasses’:
the referents wearing a hat are a proper subset
of those wearing glasses. Thus, given the play-
ers’ goal, if the speaker says ‘glasses’, the lis-
tener should draw the scalar implicature that ‘hat’
is false. Thus, ‘glasses’ comes to unambiguously
refer to r2 (Fig. 1c, line 2). Similarly, though
‘moustache’ and ‘glasses’ do not literally stand in
the specific–general relationship needed for scalar
implicature, they do with ‘glasses’ pragmatically
associated with r2 (Fig. 1c, line 1).

Our implementation of these games as Dec-
POMDPs mirrors their intuitive description and
their treatment in iterated best response models
(Jäger, 2007; Jäger, 2012; Franke, 2009; Frank
and Goodman, 2012). The state space S encodes
the attributes of the referents (e.g., hat(r2) = T,
glasses(r1) = F) and includes a target variable t
identifying the speaker’s referent (hidden from the
listener). The speaker has three speech actions,
identified with the three messages. The listener
has four actions: ‘listen’ plus a ‘choose’ action ci
for each referent ri. The set of observations O is
just the set of messages (construed as utterances).
The agents receive a positive reward iff the listener
action ci corresponds to the speaker’s target t. Be-
cause this is a one-step reference game, the transi-
tion distribution T is the identity distribution.

The literal listener L interprets utterances as
a truth-conditional speaker would produce them
(Fig. 1b). The level-one speaker S(L) augments
the state space with a variable ‘listener target’ and
models L’s beliefs b̄ using the approximate meth-
ods of Sec. 2. Crucially, the optimal speaker pol-
icy πS(L) is such that πS(L)(t=r3) = ‘hat’ and
πS(L)(t=r1) = ‘moustache’. The level-two lis-
tener L(S(L)) models S(L) via an estimate of the
‘listener target’ variable. For each speech action
m, L(S(L)) considers all values of t and the likeli-
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hood that S(L) would have produced m:

Pr(t=ri|m) ∝ 1[π̄S(L)(t=ri) = m]

Since S(L) uses ‘hat’ to describe r3 and
‘moustache’ to describe r1, L(S(L)) correctly in-
fers that ‘glasses’ refers to r2, completing Fig. 1c’s
full implicature-rich pattern of mutual exclusivity
(Clark, 1987; Frank et al., 2009).

This basic pattern is robustly attested empiri-
cally in human data. The experimental data are,
of course, invariably less crisp than our idealized
model predicts, but many important sources of
variation could be brought into our model, with
the addition of strong salience priors (Frank and
Goodman, 2012; Stiller et al., 2011), assumptions
about bounded rationality (Camerer et al., 2004;
Franke, 2009), and a ‘soft-max’ view of the lis-
tener (Frank et al., 2009).

4 Cards World Implicatures

The Cards corpus1 contains 1266 metadata-rich
transcripts from a two-player chat-based game.
The world is a simple maze in which a deck of
cards has been distributed. The players’ goal is to
find specific subsets of the cards, subject to a vari-
ety of constraints on what they can see and do. The
Dec-POMDP-based agents of Vogel et al. (2013)
play a simplified version in which the goal is to be
co-located with a single card. Vogel et al. show
that their agents’ linguistic behavior is broadly
Gricean. However, their agents’ language is too
simple to reveal implicatures. The present section
remedies this shortcoming. Implicature-rich inter-
pretations are an immediate consequence.

We implement the simplified Cards tasks as fol-
lows. The state space S is composed of the loca-
tion of each player and the location of the card.
The transition distribution T (s′|s, a1, a2) encodes
the outcome of movement actions. Agents receive
one of two sensor observations, indicating whether
the card is at their current location. The players are
rewarded when they are both located on the card.
Each player begins knowing his own location, but
not the location of the other player nor of the card.

The players have four movement actions (‘up’,
‘down’, ‘left’, ‘right’) and nine speech actions in-
terpreted as identifying card locations. Fig. 2 de-
picts these utterances as a partial order determined
by entailment. These general-to-specific relation-

1
http://cardscorpus.christopherpotts.net
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Figure 2: Cards world utterance actions.

top left (5.75) top (6.68) top right (5.57)

left (6.81) middle (7.16) right (6.86)

bottom left (6.11) bottom (6.37) bottom right (5.42)

Figure 3: Literal interpretations derived from the
Cards corpus. The entropy of each distribution is
included in parentheses. Each term is estimated
from all tokens that contain it, which washes
out implicature-rich usage, thereby providing our
model with an empirically-grounded literal start.

ships show that the language can support scalar
conversational implicatures.2

Fig. 2 is not entirely appropriate in our setting,
however. Our expressions are vague; there is no
sharp boundary between, e.g., ‘top’ and ‘bottom’,
nor is it clear where ‘top right’ begins. To model
this vagueness, we analyze each message m as
denoting a conditional distribution Pr(x|m) over
grid squares x in the gameboard. These distribu-
tions are derived from human–human Cards inter-
actions using the data and methods of Potts (2012).
Of course, there is a tension here: our model as-
sumes that we begin with literal interpretations,
but human–human data will reflect pragmatically-
enriched usage. To get around this, we approxi-
mate literal interpretations by deriving each term’s
distribution from all the corpus tokens that con-
tain it. For example, the distribution for ‘top’ is

2Our agents cannot produce modified versions of ‘mid-
dle’ like ‘middle right’. These would be synonymous with
implicature-enriched general terms. We work with a simple
cost-function that treats all forms alike, but future versions of
this work will incorporate more realistic form-based costs.
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top left (5.17) top (3.46) top right (5.04)

left (3.91) middle (2.35) right (3.58)

bottom left (4.81) bottom (3.70) bottom right (5.04)

Figure 4: Implicature-rich interpretations, derived
using the level-one listener L(S).

estimated not only from ‘top’ but also from ‘top
right’, ‘middle right’, and so forth. The denotation
for ‘top right’ excludes simple ‘top’ and ‘right’
utterances but includes expressions like ‘very top
right’. This semantics washes out any implicature
patterns, thereby giving us a proper literal starting
point. Fig. 3 shows these denotations for the full
set of expressions. The entailment relations from
Fig. 2 are (fuzzily) evident. For example, the areas
of high probability for ‘right’ properly contain the
areas of high probability for ‘top right’.

To show how the Dec-POMDP model delivers
implicatures, we begin with a literal speaker S
who does not consider the location of the other
player and instead searches the board until he finds
the card. After finding it, he communicates the re-
ferring expression with highest literal probability
for his location, using the distributions from Fig. 3.
We denote the literal speaker’s policy by πS. The
level-one listener L(S) tracks an estimate of S’s lo-
cation and beliefs about the card location. Using
the approximation defined in Sec. 2, L(S) inter-
prets an utterancem as Pr(m|s) = 1[π̄S(s) = m].
Thus, the meaning of each m is the set of be-
liefs that S might have to produce this utterance.
Fig. 4 shows how L(S) interprets each message.
The meaning of general terms like ‘top’ and ‘right’
now exclude their modified counterparts. This
is evident in the lack of overlap between high-
probability areas and in the lower entropy values.

Direct evaluation of this result against the cor-
pus data is not possible, because the corpus does
not encode interpretations. However, we expect

top left (5.82) top (5.74) top right (5.49)

left (6.15) middle (6.14) right (6.57)

bottom left (5.29) bottom (5.43) bottom right (5.44)

Figure 5: Distributions reflecting human speakers’
aggregate referential intentions . Each term is es-
timated only from tokens that exactly match it.

listener interpretations to align with speaker in-
tentions, and we can gain insight into (aggregate)
speaker intentions using our method for ground-
ing referential terms. Whereas the literal inter-
pretation for message m is obtained from all the
tokens that contain it (Fig. 3), the speaker’s in-
tended interpretation for m is obtained from all
of the tokens that exactly match it. For instance,
the meaning of ‘top’ now excludes tokens like ‘top
left’. Fig. 5 shows these denotations, which mirror
the distributions predicted by our model (Fig. 4).
Thus, the L(S) model correctly infers the prag-
matic meaning of referring expressions as used by
human speakers, albeit in an idealized manner.

5 Future Work

We showed that implicatures arise in cooperative
contexts from nested belief models. Our listener-
centric implicatures must be combined with ratio-
nal speaker behavior (Vogel et al., 2013) to pro-
duce general dialog agents. The computational
complexity of Dec-POMDPs is prohibitive, and
our approximations can be problematic for deep
belief nesting. Future work will explore sampling-
based approaches to belief update and decision
making (Doshi and Gmytrasiewicz, 2009) to over-
come these problems. These steps will move us
closer to a computationally effective, unified the-
ory of pragmatic enrichment and decision making.
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Abstract
Most coreference resolvers rely heavily on
string matching, syntactic properties, and
semantic attributes of words, but they lack
the ability to make decisions based on in-
dividual words. In this paper, we ex-
plore the benefits of lexicalized features
in the setting of domain-specific corefer-
ence resolution. We show that adding
lexicalized features to off-the-shelf coref-
erence resolvers yields significant perfor-
mance gains on four domain-specific data
sets and with two types of coreference res-
olution architectures.

1 Introduction

Coreference resolvers are typically evaluated on
collections of news articles that cover a wide range
of topics, such as the ACE (ACE03, 2003; ACE04,
2004; ACE05, 2005) and OntoNotes (Pradhan
et al., 2007) data sets. Many NLP applica-
tions, however, involve text analysis for special-
ized domains, such as clinical medicine (Gooch
and Roudsari, 2012; Glinos, 2011), legal text anal-
ysis (Bouayad-Agha et al., 2009), and biological
literature (Batista-Navarro and Ananiadou, 2011;
Castaño et al., 2002). Learning-based corefer-
ence resolvers can be easily retrained for a spe-
cialized domain given annotated training texts for
that domain. However, we found that retraining
an off-the-shelf coreference resolver with domain-
specific texts showed little benefit.

This surprising result led us to question the na-
ture of the feature sets used by noun phrase (NP)
coreference resolvers. Nearly all of the features
employed by recent systems fall into three cate-
gories: string match and word overlap, syntactic
properties (e.g., appositives, predicate nominals,
parse features, etc.), and semantic matching (e.g.,
gender agreement, WordNet similarity, named en-
tity classes, etc.). Conspicuously absent from most

systems are lexical features that allow the classi-
fier to consider the specific words when making a
coreference decision. A few researchers have ex-
perimented with lexical features, but they achieved
mixed results in evaluations on broad-coverage
corpora (Bengston and Roth, 2008; Björkelund
and Nugues, 2011; Rahman and Ng, 2011a).

We hypothesized that lexicalized features can
have a more substantial impact in domain-specific
settings. Lexical features can capture domain-
specific knowledge and subtle semantic distinc-
tions that may be important within a domain.
For example, based on the resolutions found in
domain-specific training sets, our lexicalized fea-
tures captured the knowledge that “tomcat” can
be coreferent with “plane”, “UAW” can be coref-
erent with “union”, and “anthrax” can be coref-
erent with “diagnosis”. Capturing these types of
domain-specific information is often impossible
using only general-purpose resources. For exam-
ple, WordNet defines “tomcat” only as an animal,
does not contain an entry for “UAW”, and catego-
rizes “anthrax” and “diagnosis” very differently.1

In this paper, we evaluate the impact of lexi-
calized features on 4 domains: management suc-
cession (MUC-6 data), vehicle launches (MUC-7
data), disease outbreaks (ProMed texts), and ter-
rorism (MUC-4 data). We incorporate lexical-
ized feature sets into two different coreference ar-
chitectures: Reconcile (Stoyanov et al., 2010), a
pairwise coreference classifier, and Sieve (Raghu-
nathan et al., 2010), a rule-based system. Our re-
sults show that lexicalized features significantly
improve performance in all four domains and in
both types of coreference architectures.

2 Related Work

We are not the first researchers to use lexicalized
features for coreference resolution. However, pre-

1WordNet defines “anthrax” as a disease (condition/state)
and “diagnosis” as an identification (discovery event).
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PPPPPPTrain
Test MUC-6 MUC-7 Promed MUC-4

P R F P R F P R F P R F
MUC-6 80.79 62.71 70.61 84.33 61.74 71.29 83.54 70.34 76.37 80.22 60.81 69.18
MUC-7 74.78 65.59 69.88 82.73 64.09 72.23 85.29 71.82 77.98 77.35 64.19 70.16
Promed 73.60 64.20 68.60 82.88 63.37 71.82 80.31 72.66 76.29 74.52 65.65 69.80
MUC-4 69.27 65.66 67.42 71.49 67.22 69.29 76.92 74.25 75.56 71.76 67.37 69.50

Table 1: Cross-domain B3 (Bagga and Baldwin, 1998) results for Reconcile with its general feature set.
The Paired Permutation test (Pesarin, 2001) was used for statistical significance testing and gray cells
represent results that are not significantly different from the best result.

vious work has evaluated the benefit of lexical fea-
tures only for broad-coverage data sets.

Bengston and Roth (2008) incorporated a mem-
orization feature to learn which entities can re-
fer to one another. They created a binary fea-
ture for every pair of head nouns, including pro-
nouns. They reported no significant improvement
from these features on the ACE 2004 data.

Rahman and Ng (2011a) also utilized lexical
features, going beyond strict memorization with
methods to combat data sparseness and incorpo-
rating semantic information. They created a fea-
ture for every ordered pair of head nouns (for
pronouns and nominals) or full NPs (for proper
nouns). Semi-lexical features were also used when
one NP was a Named Entity, and unseen features
were used when the NPs were not in the training
set. Their features did yield improvements on both
the ACE 2005 and OntoNotes-2 data, but the semi-
lexical features included Named Entity classes as
well as word-based features.

Rahman and Ng (2011b) explored the use of
lexical features in greater detail and showed their
benefit on the ACE05 corpus independent of, and
combined with, a conventional set of coreference
features. The ACE05 corpus is drawn from six
sources (Newswire, Broadcast News, Broadcast
Conversations, Conversational Telephone Speech,
Webblogs, and Usenet). The authors experi-
mented with utilizing lexical information drawn
from different sources. The results showed that
the best performance came from training and test-
ing with lexical knowledge drawn from the same
source. Although our approach is similar, this pa-
per focuses on learning lexical information from
different domains as opposed to the different gen-
res found in the six sources of the ACE05 corpus.

Björkelund and Nugues (2011) used lexical
word pairs for the 2011 CoNLL Shared Task,
showing significant positive impact on perfor-
mance. They used over 2000 annotated docu-
ments from the broad-coverage OntoNotes corpus

for training. Our work aims to show the benefit of
lexical features using much smaller training sets
(< 50 documents) focused on specific domains.

Lexical features have also been used for slightly
different purposes. Florian et al. (2004) utilized
lexical information such as mention spelling and
context for entity tracking in ACE. Ng (2007) used
lexical information to assess the likelihood of a
noun phrase being anaphoric, but this did not show
clear improvements on ACE data.

There has been previous work on domain-
specific coreference resolution for several do-
mains, including biological literature (Castaño et
al., 2002; Liang and Lin, 2005; Gasperin and
Briscoe, 2008; Kim et al., 2011; Batista-Navarro
and Ananiadou, 2011), clinical medicine (He,
2007; Zheng et al., 2011; Glinos, 2011; Gooch and
Roudsari, 2012) and legal documents (Bouayad-
Agha et al., 2009). In addition, BABAR (Bean and
Riloff, 2004) used contextual role knowledge for
coreference resolution in the domains of terrorism
and natural disasters. But BABAR acquired and
used lexical information to match the compatibil-
ity of contexts surrounding NPs, not the NPs them-
selves. To the best of our knowledge, our work is
the first to examine the impact of lexicalized fea-
tures for domain-specific coreference resolution.

3 Exploiting Lexicalized Features

Table 1 shows the performance of a learning-based
coreference resolver, Reconcile (Stoyanov et al.,
2010), with its default feature set using different
combinations of training and testing data. Recon-
cile does not include any lexical features, but does
contain over 60 general features covering seman-
tic agreement, syntactic constraints, string match
and recency.

Each row represents a training set, each column
represents a test set, and each cell shows precision
(P), recall (R), and F score results under the B3

metric when using the corresponding training and
test data. The best results for each test set appear

82



MUC-6 MUC-7 ProMED MUC-4
P R F P R F P R F P R F

Reconcile 80.79 62.71 70.61 82.73 64.09 72.23 80.31 72.66 76.29 71.76 67.37 69.50
+LexLookup 87.01 63.40 73.35 87.39 62.86 73.12 86.66 70.95 78.02 82.89 67.53 74.42
+LexSets 86.50 63.76 73.41 85.86 64.35 73.56 86.19 72.14 78.54 81.98 67.73 74.18
Sieve 92.20 61.70 73.90 91.46 59.59 72.16 94.43 67.25 78.55 91.30 59.84 72.30
+LexBegin 91.22 62.97 74.51 91.24 60.28 72.59 93.51 69.15 79.51 89.01 62.84 73.67
+LexEnd 90.59 63.47 74.64 91.17 60.56 72.78 93.99 68.87 79.49 89.04 64.03 74.47

Table 2: B3 results for baselines and lexicalized feature sets across four domains.

in boldface.
We performed statistical significance testing us-

ing the Paired Permutation test (Pesarin, 2001) and
the gray cells represent results where there was
not significant difference from the best results in
the same column. If just one cell is gray in a col-
umn, that indicates the result was significantly bet-
ter than the other results in the same column with
p ≤ 0.05.

Table 1 does not show much benefit from train-
ing on the same domain as the test set. Three
different training sets produce F scores that are
not significantly different for both the MUC-6
and MUC-4 test data. For ProMed, training on
the MUC-7 data yields significantly better results
than training on all the other data sets, includ-
ing ProMed texts! Based on these results, it
would seem that training on the MUC-7 texts is
likely to yield the best results no matter what do-
main you plan to use the coreference resolver for.
The goal of our work is to investigate whether
lexical features can extract additional knowledge
from domain-specific training texts to help tailor
a coreference resolver to perform better for a spe-
cific domain.

3.1 Extracting Coreferent Training Pairs
We adopt the terminology introduced by Stoyanov
et al. (2009) to define a coreference element (CE)
as a noun phrase that can participate in a corefer-
ence relation based on the task definition.

Each training document has manually annotated
gold coreference chains corresponding to the sets
of CEs that are coreferent. For each CE in a gold
chain, we pair that CE with all of the other CEs in
the same chain. We consider the coreference rela-
tion to be bi-directional, so we don’t retain infor-
mation about which CE was the antecedent. We
do not extract CE pairs that share the same head
noun because they are better handled with string
match. For nominal NPs, we retain only the head
noun, but we use the entire NP for proper names.
We discard pairs that include a pronoun, and nor-

malize strings to lower case for consistency.

3.2 Lexicalized Feature Sets

We explore two ways to capture lexicalized infor-
mation as features. The first approach indicates
whether two CEs have ever been coreferent in the
training data. We create a single feature called
LEXLOOKUP(X,Y) that receives a value of 1 when
x and y have been coreferent at least twice, or
a value of 0 otherwise.2 LEXLOOKUP(X,Y) is a
single feature that captures all CE pairs that were
coreferent in the training data.

We also created set-based features that capture
the set of terms that have been coreferent with a
particular CE. The CorefSet(x) is the set of CEs
that have appeared in the same coreference chain
as mention x at least twice.

We create a set of binary-valued features
LEXSET(X,Y), one for each CE x in the training
data. Given a pair of CEs, x and y, LEXSET(X,Y)
= 1 if y ∈ CorefSet(x), or 0 otherwise. The ben-
efit of the set-based features over a single mono-
lithic feature is that the classifier has one set-based
feature for each mention found in the training data,
so it can learn to handle individual terms differ-
ently.

We also tried encoding a separate feature for
each distinct pair of words, analogous to the mem-
orization feature in Bengston and Roth (2008).
This did not improve performance as much as the
other feature representations presented here.

4 Evaluation

4.1 Data Sets

We evaluated the performance of lexicalized fea-
tures on 4 domain-specific corpora including two
standard coreference benchmarks, the MUC-6 and
MUC-7 data sets. The MUC-6 domain is manage-
ment succession and consists of 30 training texts
and 30 test texts. The MUC-7 domain is vehicle

2We require a frequency ≥ 2 to minimize overfitting be-
cause many cases occur only once in the training data.
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launches and consists of 30 training texts and 20
test texts. We used these standard train/test splits
to be consistent with previous work.

We also created 2 new coreference data sets
which we will make freely available. We
manually annotated 45 ProMed-mail articles
(www.promedmail.org) about disease outbreaks
and 45 MUC-4 texts about terrorism, following
the MUC guidelines (Hirschman, 1997). Inter-
annotator agreement between two annotators was
.77 (κ) on ProMed and .84 (MUC F Score)(Villain
et al., 1995) on both ProMed and MUC-4.3 We
performed 5-fold cross-validation on both data
sets and report the micro-averaged results.

Gold CE spans were used in all experiments to
factor out issues with markable identification and
anaphoricity across the different domains.

4.2 Coreference Resolution Models
We conducted experiments using two coreference
resolution architectures. Reconcile4 (Stoyanov et
al., 2010) is a freely available pairwise mention
classifier. For classification, we chose Weka’s
(Witten and Frank, 2005) Decision Tree learner
inside Reconcile. Reconcile contains roughly 60
features (none lexical), largely modeled after Ng
and Cardie (2002). We modified Reconcile’s Sin-
gle Link clustering scheme to enforce an addi-
tional rule that non-overlapping proper names can-
not be merged into the same chain.

We also conducted experiments with the Sieve
coreference resolver, which applies high precision
heuristic rules to incrementally build coreference
chains. We implemented the LEXLOOKUP(X,Y)
feature as an additional heuristic rule. We tried
inserting this heuristic before Sieve’s other rules
(LexBegin), and also after Sieve’s other rules
(LexEnd).

4.3 Experimental Results
Table 2 presents results for Reconcile trained with
and without lexical features and when adding
a lexical heuristic with data drawn from same-
domain texts to Sieve.

The first row shows the results without the lex-
icalized features (from Table 1). All F scores
for Reconcile with lexicalized features are signifi-
cantly better than without these features based on
the Paired Permutation test (Pesarin, 2001) with

3We also computed κ on MUC-4, but unfortunately the
score and original data were lost.

4http://www.cs.utah.edu/nlp/reconcile/

p ≤ 0.05. MUC-4 showed the largest gain for
Reconcile, with the F score increasing from 69.5
to over 74. For most domains, adding the lexical
features to Reconcile substantially increased pre-
cision with comparable levels of recall.

The bottom half of Table 2 contains the results
of adding a lexical heuristic to Sieve. The first
row shows the default system with no lexical in-
formation. All F scores with the lexical heuristic
are significantly better than without it. In Sieve’s
high-precision coreference architecture, the lexi-
cal heuristic yields additional recall gains without
sacrificing much precision.

ACE 2004
P R F

Reconcile 70.59 83.09 76.33
+LexLookup 71.32 82.93 76.69
+LexSets 71.44 83.45 76.98
Sieve 90.09 74.23 81.39
+LexBegin 86.54 75.43 80.61
+LexEnd 87.00 75.45 80.82

Table 3: B3 results for baselines and lexicalized
feature sets on the broad-coverage ACE 2004 data
set.

Table 3 shows the results for Reconcile and
Sieve when training and testing on the ACE 2004
data. Here, we see little improvement from adding
lexical information. For Reconcile, the small dif-
ferences in F scores are not statistically significant.
For Sieve, the unlexicalized system yields a signif-
icantly higher F score than when adding the lexi-
cal heuristic. These results support our hypothesis
that lexicalized information can be beneficial for
capturing domain-specific word associations, but
may not be as helpful in a broad-coverage setting
where the language covers a diverse set of topics.

Table 4 shows a re-evaluation of the cross-
domain experiments from Table 1 for Reconcile
with the LexSet features added. The bottom half
of the table shows cross-domain experiments for
Sieve using the lexical heuristic at the end of its
rule set (LexEnd). Results are presented using
both the B3 metric and the MUC Score (Villain
et al., 1995).

Training and testing on the same domain al-
ways produced the highest recall scores for MUC-
7, ProMed, and MUC-4 when utilizing lexical
features. In all cases, lexical features acquired
from same-domain texts yield results that are ei-
ther clearly the best or not significantly different
from the best.
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PPPPPPTrain
Test MUC-6 MUC-7 Promed MUC-4

P R F P R F P R F P R F
Reconcile (B3 Score)

MUC-6 86.50 63.76 73.41 90.44 60.75 72.68 89.28 68.14 77.29 84.05 60.61 70.44
MUC-7 80.65 63.42 71.01 85.86 64.46 73.56 89.41 70.05 78.55 80.61 63.26 70.89
Promed 81.69 62.73 70.96 88.32 62.79 73.40 86.19 72.14 78.54 84.81 62.58 72.02
MUC-4 81.20 62.34 70.53 87.23 63.13 73.25 87.52 71.11 78.46 81.98 67.73 74.18

Reconcile (MUC Score)
MUC-6 89.56 71.17 79.32 90.85 67.43 77.41 89.61 65.67 75.79 88.27 66.98 76.16
MUC-7 86.14 72.22 78.57 89.56 72.01 79.83 89.34 68.08 77.27 87.30 70.22 77.83
Promed 86.92 70.68 77.97 90.93 70.33 79.31 88.54 69.55 77.90 88.83 68.89 78.23
MUC-4 85.72 70.50 77.37 88.78 71.24 79.05 88.24 68.18 77.55 87.89 74.18 80.45

Sieve (B3 Score)
MUC-6 90.59 63.47 74.64 91.20 59.91 72.32 94.30 67.25 78.51 91.30 59.90 72.34
MUC-7 91.62 63.67 75.13 91.17 60.56 72.78 94.43 67.35 78.62 91.14 60.44 72.68
Promed 92.14 61.70 73.90 91.46 59.93 72.41 93.99 68.87 79.49 91.27 60.76 72.96
MUC-4 91.76 61.88 73.91 91.26 59.93 72.34 94.30 67.35 78.58 89.04 64.03 74.47

Sieve (MUC Score)
MUC-6 91.80 70.87 79.99 91.38 65.52 76.32 92.08 64.71 76.01 90.38 66.98 77.10
MUC-7 91.82 69.70 79.25 91.68 66.36 76.99 92.20 64.86 76.15 90.71 67.09 77.13
Promed 91.99 69.15 78.95 91.68 65.52 76.42 91.70 66.33 76.98 90.85 67.09 77.18
MUC-4 91.79 69.39 79.03 91.48 65.52 76.36 92.00 64.86 76.08 90.31 69.62 78.62

Table 4: Cross-domain B3 and MUC results for Reconcile and Sieve with lexical features. Gray cells
represent results that are not significantly different from the best results in the column at the 0.05 p-level.

For MUC-6 and MUC-7, the highest F score re-
sults almost always come from training on same-
domain texts, although in some cases these re-
sults are not significantly different from training
on other domains. Lexical features can yield im-
provements when training on a different domain if
there is overlap in the vocabulary across the do-
mains. For the ProMed domain, the Sieve system
performs significantly better, under both metrics,
with same-domain lexical features than with lexi-
cal features acquired from a different domain. For
Reconcile, there is not a significant difference in
the F score for ProMed when training on ProMed,
MUC-4, or MUC-7. In the MUC-4 domain, using
same-domain lexical information always produces
the best F score, under both metrics and in both
coreference systems.

5 Conclusions

We explored the use of lexical information for
domain-specific coreference resolution using 4
domain-specific data sets and 2 coreference re-
solvers. Lexicalized features consistently im-
proved performance for all of the domains and in
both coreference architectures. We see benefits
from lexicalized features in cross-domain training,
but the gains are often more substantial when uti-
lizing same-domain lexical knowledge.

In the future, we plan to explore additional types
of lexical information to benefit domain-specific
coreference resolution.
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Abstract 

Ordering texts is an important task for many 
NLP applications. Most previous works on 
summary sentence ordering rely on the contex-
tual information (e.g. adjacent sentences) of 
each sentence in the source document. In this 
paper, we investigate a more challenging task 
of ordering a set of unordered sentences with-
out any contextual information. We introduce 
a set of features to characterize the order and 
coherence of natural language texts, and use 
the learning to rank technique to determine the 
order of any two sentences. We also propose 
to use the genetic algorithm to determine the 
total order of all sentences. Evaluation results 
on a news corpus show the effectiveness of 
our proposed method. 

1 Introduction 

Ordering texts is an important task in many natu-
ral language processing (NLP) applications. It is 
typically applicable in the text generation field, 
both for concept-to-text generation and text-to-
text generation (Lapata, 2003), such as multiple 
document summarization (MDS), question an-
swering and so on. However, ordering a set of 
sentences into a coherent text is still a hard and 
challenging problem for computers. 

Previous works on sentence ordering mainly 
focus on the MDS task (Barzilay et al., 2002; 
Okazaki et al., 2004; Nie et al., 2006; Ji and 
Pulman, 2006; Madnani et al., 2007; Zhang et al., 
2010; He et al., 2006; Bollegala et al., 2005; Bol-
legala et al., 2010). In this task, each summary 
sentence is extracted from a source document. 
The timestamp of the source documents and the 
adjacent sentences in the source documents can 
be used as important clues for ordering summary 
sentences. 

In this study, we investigate a more challeng-
ing and more general task of ordering a set of 
unordered sentences (e.g. randomly shuffle the 

                                                 
* Xiaojun Wan is the corresponding author. 

sentences in a text paragraph) without any con-
textual information. This task can be applied to 
almost all text generation applications without 
restriction. 

In order to address this challenging task, we 
first introduce a few useful features to character-
ize the order and coherence of natural language 
texts, and then propose to use the learning to 
rank algorithm to determine the order of two sen-
tences. Moreover, we propose to use the genetic 
algorithm to decide the overall text order. Evalu-
ations are conducted on a news corpus, and the 
results show the prominence of our method. Each 
component technique or feature in our method 
has also been validated.  

2 Related Work 

For works taking no use of source document, 
Lapata (2003) proposed a probabilistic model 
which learns constraints on sentence ordering 
from a corpus of texts. Experimental evaluation 
indicated the importance of several learned lexi-
cal and syntactic features. However, the model 
only works well when using single feature, but 
unfortunately, it becomes worse when multiple 
features are combined. Barzilay and Lee (2004) 
investigated the utility of domain-specific con-
tent model for representing topic and topic shifts 
and the model performed well on the five se-
lected domains. Nahnsen (2009) employed fea-
tures which were based on discourse entities, 
shallow syntactic analysis, and temporal prece-
dence relations retrieved from VerbOcean. How-
ever, the model does not perform well on data-
sets describing the consequences of events. 

3 Our Proposed Method  

3.1 Overview 

The task of text ordering can be modeled like 
(Cohen et al., 1998), as measuring the coherence 
of a text by summing the association strength of 
any sentence pairs. Then the objective of a text 
ordering model is to find a permutation which 
can maximize the summation. 
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Formally, we define an association strength 
function PREF( , ) Ru v ∈  to measure how strong 
it is that sentence u  should be arranged before 
sentence v  (denoted as u v ). We then define 
function AGREE( ,PREF)ρ  as: 

, : ( ) ( )
AGREE( ,PREF) = PREF( , )

u v u v
u v

ρ ρ
ρ

>
∑ (1)

where ρ  denotes a sentence permutation and 
( ) ( )u vρ ρ>  means u v  in the permutation ρ . 

Then the objective of finding an overall order of 
the sentences becomes finding a permutation ρ  
to maximize AGREE( ,PREF)ρ . 

The main framework is made up of two parts: 
defining a pairwise order relation and determin-
ing an overall order. Our study focuses on both 
the two parts by learning a better pairwise rela-
tion and proposing a better search strategy, as 
described respectively in next sections. 

3.2 Pairwise Relation Learning 

The goal for pairwise relation learning is defin-
ing the strength function PREF for any sentence 
pair. In our method we define the function PREF 
by combining multiple features. 

Method: Traditionally, there are two main 
methods for defining a strength function: inte-
grating features by a linear combination (He et 
al., 2006; Bollegala et al., 2005) or by a binary 
classifier (Bollegala et al., 2010). However, the 
binary classification method is very coarse-
grained since it considers any pair of sentences 
either “positive” or “negative”. Instead we pro-
pose to use a better model of learning to rank to 
integrate multiple features.  

In this study, we use Ranking SVM imple-
mented in the svmrank toolkit (Joachims, 2002; 
Joachims, 2006) as the ranking model. The ex-
amples to be ranked in our ranking model are 
sequential sentence pairs like u v . The feature 
values for a training example are generated by a 
few feature functions ( , )if u v , and we will intro-
duce the features later. We build the training ex-
amples for svmrank  as follows:  

For a training query, which is a paragraph with 
n  sequential sentences as 1 2 ... ns s s , we 
can get 2 ( 1)nA n n= −  training examples. For 
pairs like ( 0)a a ks s k+ >  the target rank values 
are set to n k− , which means that the longer the 
distance between the two sentences is, the small-
er the target value is. Other pairs like a k as s+  
are all set to 0. In order to better capture the or-
der information of each feature, for every sen-

tence pair u v , we derive four feature values 
from each function ( , )if u v , which are listed as 
follows: 

,1 ( , )iiV f u v=  (2)

,2

1 / 2, if ( , ) ( , ) 0
( , ) , otherwise

( , ) ( , )

i i

i i

i i

f u v f v u
V f u v

f u v f v u

+ =⎧
⎪= ⎨
⎪ +⎩

(3)

,3

1 / if ( , ) 0

( , ) / ( , ), otherwise

i
y S y u

i
i i

y S y u

S f u y
V
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∈ ∩ ≠
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⎪

= ⎨
⎪
⎩
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where S  is the set of all sentences in a paragraph 
and S  is the number of sentences in S . The 
three additional feature values of (3) (4) (5) are 
defined to measure the priority of u v  to v u ,   
u v  to { , }u y S u v∀ ∈ −  and u v  to 

{ , }x S u v v∀ ∈ −  respectively, by calculating 
the proportion of ( , )if u v  in respective summa-
tions. 

The learned model can be used to predict tar-
get values for new examples. A paragraph of un-
ordered sentences is viewed as a test query, and 
the predicted target value for u v  is set as 
PREF( , )u v . 

Features: We select four types of features to 
characterize text coherence. Every type of fea-
tures is quantified with several functions distin-
guished by i  in the formulation of ( , )if u v  and 
normalized to [0,1] . The features and definitions 
of ( , )if u v  are introduced in Table 1. 

Type Description 
sim( , )u v  

Similarity sim(latter( ),former( ))u v  
overlap ( , ) / min(| |,| |)j u v u v  

Overlap overlap (latter( ),former( ))
overlap ( , )
j

j

u v
u v

Number of  
coreference chains Coreference Number of 
coreference words 

Noun 
Verb 

Verb & noun dependency 
Probability

Model 
Adjective & adverb 

Table 1: Features used in our model. 
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As in Table 1, function sim( , )u v  denotes the 
cosine similarity of sentence u  and v ; latter( )u  
and former( )v  denotes the latter half part of u  
and  the former part of v  respectively, which are 
separated by the most centered comma (if exists) 
or word (if no comma exits); overlap ( , )j u v  de-
notes the number of mutual words of u  and v , 
for 1,2,3j =  representing lemmatized noun, 
verb and adjective or adverb respectively; | |u  is 
the number of words of sentence u . The value 
will be set to 0 if the denominator is 0.  

For the coreference features we use the ARK-
ref 1  tool. It can output the coreference chains 
containing words which represent the same entity 
for two sequential sentences u v .  

The probability model originates from (Lapata, 
2003), and we implement the model with four 
features of lemmatized noun, verb, adjective or 
adverb, and verb and noun related dependency.  

3.3 Overall Order Determination 

Cohen et al. (1998) proved finding a permutation 
ρ  to maximize AGREE( ,PREF)ρ  is NP-
complete. To solve this, they proposed a greedy 
algorithm for finding an approximately optimal 
order. Most later works adopted the greedy 
search strategy to determine the overall order.  

However, a greedy algorithm does not always 
lead to satisfactory results, as our experiment 
shows in Section 4.2. Therefore, we propose to 
use the genetic algorithm (Holland, 1992) as the 
search strategy, which can lead to better results. 

Genetic Algorithm: The genetic algorithm 
(GA) is an artificial intelligence algorithm for 
optimization and search problems. The key point 
of using GA is modeling the individual, fitness 
function and three operators of crossover, muta-
tion and selection. Once a problem is modeled, 
the algorithm can be constructed conventionally. 

In our method we set a permutation ρ  as an 
individual encoded by a numerical path, for ex-
ample a permutation 2 1 3s s s  is encoded as (2 
1 3). Then the function AGREE( ,PREF)ρ  is just 
the fitness function. We adopt the order-based 
crossover operator which is described in (Davis, 
1985). The mutation operator is a random inver-
sion of two sentences. For selection operator we 
take a tournament selection operator which ran-
domly selects two individuals to choose the one 
with the greater fitness value AGREE( ,PREF)ρ . 

                                                 
1 http://www.ark.cs.cmu.edu/ARKref/ 

After several generations of evolution, the indi-
vidual with the greatest fitness value will be a 
close solution to the optimal result. 

4 Experiments 
4.1 Experiment Setup 

Data Set and Evaluation Metric: We con-
ducted the experiments on the North American 
News Text Corpus2. We trained the model on 80 
thousand paragraphs and tested with 200 shuffled 
paragraphs. We use Kendall’s τ  as the evalua-
tion metric, which is based on the number of in-
versions in the rankings.  

Comparisons: It is incomparable with other 
methods for summary sentence ordering based 
on special summarization corpus, so we imple-
mented Lapata’s probability model for compari-
son, which is considered the state of the art for 
this task. In addition, we implemented a random 
ordering as a baseline. We also tried to use a 
classification model in place of the ranking mod-
el. In the classification model, sentence pairs like 

1a as s +  were viewed as positive examples and 
all other pairs were viewed as negative examples. 
When deciding the overall order for either rank-
ing or classification model we used three search 
strategies: greedy, genetic and exhaustive (or 
brutal) algorithms. In addition, we conducted a 
series of experiments to evaluate the effect of 
each feature. For each feature, we tested in two 
experiments, one of which only contained the 
single feature and the other one contained all the 
other features. For comparative analysis of fea-
tures, we tested with an exhaustive search algo-
rithm to determine the overall order.  

4.2 Experiment Results 

The comparison results in Table 2 show that our 
Ranking SVM based method improves the per-
formance over the baselines and the classifica-
tion based method with any of the search algo-
rithms. We can also see the greedy search strat-
egy does not perform well and the genetic algo-
rithm can provide a good approximate solution to 
obtain optimal results. 

Method Greedy Exhaustive Genetic
Baseline -0.0127 

Probability 0.1859 
Classification 0.5006 0.5360 0.5264

Ranking 0.5191 0.5768 0.5747
Table 2: Average τ  of different methods. 

                                                 
2 The corpus is available from 
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalog
Id=LDC98T30 
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Ranking vs. Classification: It is not surpris-
ing that the ranking model is better, because 
when using a classification model, an example 
should be labeled either positive or negative. It is 
not very reasonable to label a sentence pair like 

( 1)a a ks s k+ >  as a negative example, nor a pos-
itive one, because in some cases, it is easy to 
conclude one sentence should be arranged after 
another but hard to decide whether they should 
be adjacent. As we see in the function AGREE , 
the value of PREF( , )a a ks s +  also contributes to 
the summation. In a ranking model, this informa-
tion can be quantified by the different priorities 
of sentence pairs with different distances. 

Single Feature Effect: The effects of differ-
ent types of features are shown in Table 3. Prob 
denotes Lapata’s probability model with differ-
ent features.  

Feature Only Removed
Similarity 0.0721 0.4614 
Overlap 0.1284 0.4631 

Coreference 0.0734 0.4704 
Probnoun 0.3679 0.3932 
Probverb 0.0615 0.4544 

Probadjective&adverb 0.2650 0.4258 
Probdependency 0.2687 0.4892 

All 0.5768 
Table 3: Effects of different features. 

It can be seen in Table 3 that all these features 
contribute to the final result. The two features of 
noun probability and dependency probability 
play an important role as demonstrated in (La-
pata, 2003). Other features also improve the final 
performance. A paragraph which is ordered en-
tirely right by our method is shown in Figure 1. 

 
Sentences which should be arranged together 

tend to have a higher similarity and overlap. Like 
sentence (3) and (4) in Figure 1, they have a 
highest cosine similarity of 0.2240 and most 
overlap words of “Israel” and “nuclear”. How-
ever, the similarity or overlap of the two sen-

tences does not help to decide which sentence 
should be arranged before another. In this case 
the overlap and similarity of half part of the sen-
tences may help. For example latter((3)) and 
former((4)) share an overlap of “Israel” while 
there is no overlap for latter((4)) and former((3)). 

Coreference is also an important clue for or-
dering natural language texts. When we use a 
pronoun to represent an entity, it always has oc-
curred before. For example when conducting 
coreference resolution for (1) (2) , it will be 
found that “He” refers to “Vanunu”. Otherwise 
for (2) (1) , no coreference chain will be found.  

4.3 Genetic Algorithm 

There are three main parameters for GA includ-
ing the crossover probability (PC), the mutation 
probability (PM) and the population size (PS). 
There is no definite selection for these parame-
ters. In our study we experimented with a wide 
range of parameter values to see the effect of 
each parameter. It is hard to traverse all possible 
combinations so when testing a parameter we 
fixed the other two parameters. The results are 
shown in Table 4. 

  Value
Para Avg Max Min Stddev

PS 0.5731 0.5859 0.5606 0.0046
PC 0.5733 0.5806 0.5605 0.0038
PM 0.5741 0.5803 0.5337 0.0045

Table 4: Results of GA with different parameters. 
As we can see in Table 4, when adjusting the 

three parameters the average τ  values are all 
close to the exhaustive result of 0.5768 and their 
standard deviations are low. Table 4 shows that 
in our case the genetic algorithm is not very sen-
sible to the parameters. In the experiments, we 
set PS to 30, PC to 0.5 and PM to 0.05, and 
reached a value of 0.5747, which is very close to 
the theoretical upper bound of 0.5768. 

5 Conclusion and Discussion  
In this paper we propose a method for ordering 
sentences which have no contextual information 
by making use of Ranking SVM and the genetic 
algorithm. Evaluation results demonstrate the 
good effectiveness of our method. 

In future work, we will explore more features 
such as semantic features to further improve the 
performance. 
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(1) Vanunu, 43, is serving an 18-year sentence for 
treason.  

(2) He was kidnapped by Israel's Mossad spy 
agency in Rome in 1986 after giving The Sun-
day Times of London photographs of the in-
side of the Dimona reactor.  

(3) From the photographs, experts determined 
that Israel had the world's sixth largest stock-
pile of nuclear weapons.  

(4) Israel has never confirmed or denied that it 
has a nuclear capability. 

Figure 1: A right ordered paragraph. 
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Abstract

We present a new collection of treebanks
with homogeneous syntactic dependency
annotation for six languages: German,
English, Swedish, Spanish, French and
Korean. To show the usefulness of such a
resource, we present a case study of cross-
lingual transfer parsing with more reliable
evaluation than has been possible before.
This ‘universal’ treebank is made freely
available in order to facilitate research on
multilingual dependency parsing.1

1 Introduction

In recent years, syntactic representations based
on head-modifier dependency relations between
words have attracted a lot of interest (Kübler et
al., 2009). Research in dependency parsing – com-
putational methods to predict such representations
– has increased dramatically, due in large part to
the availability of dependency treebanks in a num-
ber of languages. In particular, the CoNLL shared
tasks on dependency parsing have provided over
twenty data sets in a standardized format (Buch-
holz and Marsi, 2006; Nivre et al., 2007).

While these data sets are standardized in terms
of their formal representation, they are still hetero-
geneous treebanks. That is to say, despite them
all being dependency treebanks, which annotate
each sentence with a dependency tree, they sub-
scribe to different annotation schemes. This can
include superficial differences, such as the renam-
ing of common relations, as well as true diver-
gences concerning the analysis of linguistic con-
structions. Common divergences are found in the

1Downloadable at https://code.google.com/p/uni-dep-tb/.

analysis of coordination, verb groups, subordinate
clauses, and multi-word expressions (Nilsson et
al., 2007; Kübler et al., 2009; Zeman et al., 2012).

These data sets can be sufficient if one’s goal
is to build monolingual parsers and evaluate their
quality without reference to other languages, as
in the original CoNLL shared tasks, but there are
many cases where heterogenous treebanks are less
than adequate. First, a homogeneous represen-
tation is critical for multilingual language tech-
nologies that require consistent cross-lingual anal-
ysis for downstream components. Second, consis-
tent syntactic representations are desirable in the
evaluation of unsupervised (Klein and Manning,
2004) or cross-lingual syntactic parsers (Hwa et
al., 2005). In the cross-lingual study of McDonald
et al. (2011), where delexicalized parsing models
from a number of source languages were evalu-
ated on a set of target languages, it was observed
that the best target language was frequently not the
closest typologically to the source. In one stun-
ning example, Danish was the worst source lan-
guage when parsing Swedish, solely due to greatly
divergent annotation schemes.

In order to overcome these difficulties, some
cross-lingual studies have resorted to heuristics to
homogenize treebanks (Hwa et al., 2005; Smith
and Eisner, 2009; Ganchev et al., 2009), but we
are only aware of a few systematic attempts to
create homogenous syntactic dependency anno-
tation in multiple languages. In terms of auto-
matic construction, Zeman et al. (2012) attempt
to harmonize a large number of dependency tree-
banks by mapping their annotation to a version of
the Prague Dependency Treebank scheme (Hajič
et al., 2001; Böhmová et al., 2003). Addition-
ally, there have been efforts to manually or semi-
manually construct resources with common syn-
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tactic analyses across multiple languages using al-
ternate syntactic theories as the basis for the repre-
sentation (Butt et al., 2002; Helmreich et al., 2004;
Hovy et al., 2006; Erjavec, 2012).

In order to facilitate research on multilingual
syntactic analysis, we present a collection of data
sets with uniformly analyzed sentences for six lan-
guages: German, English, French, Korean, Span-
ish and Swedish. This resource is freely avail-
able and we plan to extend it to include more data
and languages. In the context of part-of-speech
tagging, universal representations, such as that of
Petrov et al. (2012), have already spurred numer-
ous examples of improved empirical cross-lingual
systems (Zhang et al., 2012; Gelling et al., 2012;
Täckström et al., 2013). We aim to do the same for
syntactic dependencies and present cross-lingual
parsing experiments to highlight some of the bene-
fits of cross-lingually consistent annotation. First,
results largely conform to our expectations of
which target languages should be useful for which
source languages, unlike in the study of McDon-
ald et al. (2011). Second, the evaluation scores
in general are significantly higher than previous
cross-lingual studies, suggesting that most of these
studies underestimate true accuracy. Finally, un-
like all previous cross-lingual studies, we can re-
port full labeled accuracies and not just unlabeled
structural accuracies.

2 Towards A Universal Treebank

The Stanford typed dependencies for English
(De Marneffe et al., 2006; de Marneffe and Man-
ning, 2008) serve as the point of departure for our
‘universal’ dependency representation, together
with the tag set of Petrov et al. (2012) as the under-
lying part-of-speech representation. The Stanford
scheme, partly inspired by the LFG framework,
has emerged as a de facto standard for depen-
dency annotation in English and has recently been
adapted to several languages representing different
(and typologically diverse) language groups, such
as Chinese (Sino-Tibetan) (Chang et al., 2009),
Finnish (Finno-Ugric) (Haverinen et al., 2010),
Persian (Indo-Iranian) (Seraji et al., 2012), and
Modern Hebrew (Semitic) (Tsarfaty, 2013). Its
widespread use and proven adaptability makes it a
natural choice for our endeavor, even though ad-
ditional modifications will be needed to capture
the full variety of grammatical structures in the
world’s languages.

Alexandre réside avec sa famille à Tinqueux .
NOUN VERB ADP DET NOUN ADP NOUN P

NSUBJ
ADPMOD

ADPOBJ

POSS

ADPMOD

ADPOBJ

P

Figure 1: A sample French sentence.

We use the so-called basic dependencies (with
punctuation included), where every dependency
structure is a tree spanning all the input tokens,
because this is the kind of representation that most
available dependency parsers require. A sample
dependency tree from the French data set is shown
in Figure 1. We take two approaches to generat-
ing data. The first is traditional manual annotation,
as previously used by Helmreich et al. (2004) for
multilingual syntactic treebank construction. The
second, used only for English and Swedish, is to
automatically convert existing treebanks, as in Ze-
man et al. (2012).

2.1 Automatic Conversion
Since the Stanford dependencies for English are
taken as the starting point for our universal annota-
tion scheme, we begin by describing the data sets
produced by automatic conversion. For English,
we used the Stanford parser (v1.6.8) (Klein and
Manning, 2003) to convert the Wall Street Jour-
nal section of the Penn Treebank (Marcus et al.,
1993) to basic dependency trees, including punc-
tuation and with the copula verb as head in cop-
ula constructions. For Swedish, we developed a
set of deterministic rules for converting the Tal-
banken part of the Swedish Treebank (Nivre and
Megyesi, 2007) to a representation as close as pos-
sible to the Stanford dependencies for English.
This mainly consisted in relabeling dependency
relations and, due to the fine-grained label set used
in the Swedish Treebank (Teleman, 1974), this
could be done with high precision. In addition,
a small number of constructions required struc-
tural conversion, notably coordination, which in
the Swedish Treebank is given a Prague style anal-
ysis (Nilsson et al., 2007). For both English and
Swedish, we mapped the language-specific part-
of-speech tags to universal tags using the map-
pings of Petrov et al. (2012).

2.2 Manual Annotation
For the remaining four languages, annotators were
given three resources: 1) the English Stanford
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guidelines; 2) a set of English sentences with Stan-
ford dependencies and universal tags (as above);
and 3) a large collection of unlabeled sentences
randomly drawn from newswire, weblogs and/or
consumer reviews, automatically tokenized with a
rule-based system. For German, French and Span-
ish, contractions were split, except in the case of
clitics. For Korean, tokenization was more coarse
and included particles within token units. Annota-
tors could correct this automatic tokenization.

The annotators were then tasked with producing
language-specific annotation guidelines with the
expressed goal of keeping the label and construc-
tion set as close as possible to the original English
set, only adding labels for phenomena that do not
exist in English. Making fine-grained label dis-
tinctions was discouraged. Once these guidelines
were fixed, annotators selected roughly an equal
amount of sentences to be annotated from each do-
main in the unlabeled data. As the sentences were
already randomly selected from a larger corpus,
annotators were told to view the sentences in or-
der and to discard a sentence only if it was 1) frag-
mented because of a sentence splitting error; 2) not
from the language of interest; 3) incomprehensible
to a native speaker; or 4) shorter than three words.
The selected sentences were pre-processed using
cross-lingual taggers (Das and Petrov, 2011) and
parsers (McDonald et al., 2011).

The annotators modified the pre-parsed trees us-
ing the TrEd2 tool. At the beginning of the annota-
tion process, double-blind annotation, followed by
manual arbitration and consensus, was used itera-
tively for small batches of data until the guidelines
were finalized. Most of the data was annotated
using single-annotation and full review: one an-
notator annotating the data and another reviewing
it, making changes in close collaboration with the
original annotator. As a final step, all annotated
data was semi-automatically checked for annota-
tion consistency.

2.3 Harmonization

After producing the two converted and four an-
notated data sets, we performed a harmonization
step, where the goal was to maximize consistency
of annotation across languages. In particular, we
wanted to eliminate cases where the same label
was used for different linguistic relations in dif-
ferent languages and, conversely, where one and

2Available at http://ufal.mff.cuni.cz/tred/.

the same relation was annotated with different la-
bels, both of which could happen accidentally be-
cause annotators were allowed to add new labels
for the language they were working on. Moreover,
we wanted to avoid, as far as possible, labels that
were only used in one or two languages.

In order to satisfy these requirements, a number
of language-specific labels were merged into more
general labels. For example, in analogy with the
nn label for (element of a) noun-noun compound,
the annotators of German added aa for compound
adjectives, and the annotators of Korean added vv
for compound verbs. In the harmonization step,
these three labels were merged into a single label
compmod for modifier in compound.

In addition to harmonizing language-specific la-
bels, we also renamed a small number of relations,
where the name would be misleading in the uni-
versal context (although quite appropriate for En-
glish). For example, the label prep (for a mod-
ifier headed by a preposition) was renamed adp-
mod, to make clear the relation to other modifier
labels and to allow postpositions as well as prepo-
sitions.3 We also eliminated a few distinctions in
the original Stanford scheme that were not anno-
tated consistently across languages (e.g., merging
complm with mark, number with num, and purpcl
with advcl).

The final set of labels is listed with explanations
in Table 1. Note that relative to the universal part-
of-speech tagset of Petrov et al. (2012) our final
label set is quite rich (40 versus 12). This is due
mainly to the fact that the the former is based on
deterministic mappings from a large set of annota-
tion schemes and therefore reduced to the granu-
larity of the greatest common denominator. Such a
reduction may ultimately be necessary also in the
case of dependency relations, but since most of our
data sets were created through manual annotation,
we could afford to retain a fine-grained analysis,
knowing that it is always possible to map from
finer to coarser distinctions, but not vice versa.4

2.4 Final Data Sets

Table 2 presents the final data statistics. The num-
ber of sentences, tokens and tokens/sentence vary

3Consequently, pobj and pcomp were changed to adpobj
and adpcomp.

4The only two data sets that were created through con-
version in our case were English, for which the Stanford de-
pendencies were originally defined, and Swedish, where the
native annotation happens to have a fine-grained label set.
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Label Description
acomp adjectival complement

adp adposition
adpcomp complement of adposition
adpmod adpositional modifier
adpobj object of adposition
advcl adverbial clause modifier

advmod adverbial modifier
amod adjectival modifier
appos appositive

attr attribute
aux auxiliary

auxpass passive auxiliary
cc conjunction

ccomp clausal complement

Label Description
compmod compound modifier

conj conjunct
cop copula

csubj clausal subject
csubjpass passive clausal subject

dep generic
det determiner

dobj direct object
expl expletive

infmod infinitival modifier
iobj indirect object
mark marker
mwe multi-word expression
neg negation

Label Description
nmod noun modifier
nsubj nominal subject

nsubjpass passive nominal subject
num numeric modifier

p punctuation
parataxis parataxis
partmod participial modifier

poss possessive
prt verb particle

rcmod relative clause modifier
rel relative

xcomp open clausal complement

Table 1: Harmonized label set based on Stanford dependencies (De Marneffe et al., 2006).

source(s) # sentences # tokens
DE N, R 4,000 59,014
EN PTB∗ 43,948 1,046,829
SV STB† 6,159 96,319
ES N, B, R 4,015 112,718
FR N, B, R 3,978 90,000
KO N, B 6,194 71,840

Table 2: Data set statistics. ∗Automatically con-
verted WSJ section of the PTB. The data release
includes scripts to generate this data, not the data
itself. †Automatically converted Talbanken sec-
tion of the Swedish Treebank. N=News, B=Blogs,
R=Consumer Reviews.

due to the source and tokenization. For example,
Korean has 50% more sentences than Spanish, but
∼40k less tokens due to a more coarse-grained to-
kenization. In addition to the data itself, anno-
tation guidelines and harmonization rules are in-
cluded so that the data can be regenerated.

3 Experiments

One of the motivating factors in creating such a
data set was improved cross-lingual transfer eval-
uation. To test this, we use a cross-lingual transfer
parser similar to that of McDonald et al. (2011).
In particular, it is a perceptron-trained shift-reduce
parser with a beam of size 8. We use the features
of Zhang and Nivre (2011), except that all lexical
identities are dropped from the templates during
training and testing, hence inducing a ‘delexical-
ized’ model that employs only ‘universal’ proper-
ties from source-side treebanks, such as part-of-
speech tags, labels, head-modifier distance, etc.

We ran a number of experiments, which can be
seen in Table 3. For these experiments we ran-

domly split each data set into training, develop-
ment and testing sets.5 The one exception is En-
glish, where we used the standard splits. Each
row in Table 3 represents a source training lan-
guage and each column a target evaluation lan-
guage. We report both unlabeled attachment score
(UAS) and labeled attachment score (LAS) (Buch-
holz and Marsi, 2006). This is likely the first re-
liable cross-lingual parsing evaluation. In partic-
ular, previous studies could not even report LAS
due to differences in treebank annotations.

We can make several interesting observations.
Most notably, for the Germanic and Romance tar-
get languages, the best source language is from
the same language group. This is in stark contrast
to the results of McDonald et al. (2011), who ob-
serve that this is rarely the case with the heteroge-
nous CoNLL treebanks. Among the Germanic
languages, it is interesting to note that Swedish
is the best source language for both German and
English, which makes sense from a typological
point of view, because Swedish is intermediate be-
tween German and English in terms of word or-
der properties. For Romance languages, the cross-
lingual parser is approaching the accuracy of the
supervised setting, confirming that for these lan-
guages much of the divergence is lexical and not
structural, which is not true for the Germanic lan-
guages. Finally, Korean emerges as a very clear
outlier (both as a source and as a target language),
which again is supported by typological consider-
ations as well as by the difference in tokenization.

With respect to evaluation, it is interesting to
compare the absolute numbers to those reported
in McDonald et al. (2011) for the languages com-

5These splits are included in the release of the data.
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Source
Training

Language

Target Test Language
Unlabeled Attachment Score (UAS) Labeled Attachment Score (LAS)
Germanic Romance Germanic Romance

DE EN SV ES FR KO DE EN SV ES FR KO
DE 74.86 55.05 65.89 60.65 62.18 40.59 64.84 47.09 53.57 48.14 49.59 27.73
EN 58.50 83.33 70.56 68.07 70.14 42.37 48.11 78.54 57.04 56.86 58.20 26.65
SV 61.25 61.20 80.01 67.50 67.69 36.95 52.19 49.71 70.90 54.72 54.96 19.64
ES 55.39 58.56 66.84 78.46 75.12 30.25 45.52 47.87 53.09 70.29 63.65 16.54
FR 55.05 59.02 65.05 72.30 81.44 35.79 45.96 47.41 52.25 62.56 73.37 20.84
KO 33.04 32.20 27.62 26.91 29.35 71.22 26.36 21.81 18.12 18.63 19.52 55.85

Table 3: Cross-lingual transfer parsing results. Bolded are the best per target cross-lingual result.

mon to both studies (DE, EN, SV and ES). In that
study, UAS was in the 38–68% range, as compared
to 55–75% here. For Swedish, we can even mea-
sure the difference exactly, because the test sets
are the same, and we see an increase from 58.3%
to 70.6%. This suggests that most cross-lingual
parsing studies have underestimated accuracies.

4 Conclusion

We have released data sets for six languages with
consistent dependency annotation. After the ini-
tial release, we will continue to annotate data in
more languages as well as investigate further au-
tomatic treebank conversions. This may also lead
to modifications of the annotation scheme, which
should be regarded as preliminary at this point.
Specifically, with more typologically and morpho-
logically diverse languages being added to the col-
lection, it may be advisable to consistently en-
force the principle that content words take func-
tion words as dependents, which is currently vi-
olated in the analysis of adpositional and copula
constructions. This will ensure a consistent analy-
sis of functional elements that in some languages
are not realized as free words or are not obliga-
tory, such as adpositions which are often absent
due to case inflections in languages like Finnish. It
will also allow the inclusion of language-specific
functional or morphological markers (case mark-
ers, topic markers, classifiers, etc.) at the leaves of
the tree, where they can easily be ignored in appli-
cations that require a uniform cross-lingual repre-
sentation. Finally, this data is available on an open
source repository in the hope that the community
will commit new data and make corrections to ex-
isting annotations.
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Abstract
Aspects of Chinese syntax result in a dis-
tinctive mix of parsing challenges. How-
ever, the contribution of individual sources
of error to overall difficulty is not well un-
derstood. We conduct  a  comprehensive
automatic analysis of error types made by
Chinese parsers, covering a broad range of
error types for large sets of sentences, en-
abling the first empirical ranking of Chi-
nese error types by their performance im-
pact. We also investigate which error types
are resolved by using gold part-of-speech
tags, showing that improving Chinese tag-
ging  only  addresses  certain  error  types,
leaving substantial outstanding challenges.

1 Introduction
A decade of Chinese parsing research, enabled

by the Penn Chinese Treebank (PCTB; Xue et al.,
2005), has seen Chinese parsing performance im-
prove from 76.7 F1 (Bikel and Chiang, 2000) to
84.1 F1 (Qian and Liu, 2012). While recent ad-
vances have focused on understanding and reduc-
ing the errors that occur in segmentation and part-
of-speech tagging (Qian and Liu, 2012; Jiang et al.,
2009; Forst and Fang, 2009), a range of substantial
issues remain that are purely syntactic.

Early work by Levy and Manning (2003) pre-
sented modifications to a parser motivated by a
manual investigation of parsing errors. They noted
substantial differences between Chinese and En-
glish parsing, attributing some of the differences to
treebank annotation decisions and others to mean-
ingful differences in syntax. Based on this analysis
they considered how to modify their parser to cap-
ture the information necessary to model the syn-
tax within the PCTB. However, their manual ana-
lysis was limited in scope, covering only part of
the parser output, and was unable to characterize
the relative impact of the issues they uncovered.

This paper presents a more comprehensive ana-
lysis of errors in Chinese parsing, building on the
technique presented in Kummerfeld et al. (2012),
which characterized the error behavior of English
parsers by quantifying how often they make er-
rors such as PP attachment and coordination scope.
To accommodate error classes that are absent in
English, we  augment  the  system  to  recognize
Chinese-specific parse errors.1 We use the modi-
fied system to show the relative impact of different
error types across a range of Chinese parsers.

To understand the impact of tagging errors on
different  error  types, we  performed  a  part-of-
speech ablation experiment, in  which particular
confusions are introduced in isolation. By analyz-
ing the distribution of errors in the system output
with and without gold part-of-speech tags, we are
able to isolate and quantify the error types that can
be resolved by improvements in tagging accuracy.

Our analysis shows that improvements in tag-
ging accuracy can only address a subset of the chal-
lenges of Chinese syntax. Further improvement in
Chinese parsing performance will require research
addressing other challenges, in particular, deter-
mining coordination scope.

2 Background
The closest previous work is the detailed manual

analysis performed by Levy and Manning (2003).
While their focus was on issues faced by their fac-
tored PCFG parser (Klein and Manning, 2003b),
the error types they identified are general issues
presented by Chinese syntax in the PCTB. They
presented several Chinese error types that are rare
or absent in English, including noun/verb ambigu-
ity, NP-internal structure and coordination ambi-
guity due to pro-drop, suggesting that closing the
English-Chinese parsing gap demands techniques

1The system described  in  this  paper  is  available  from
http://code.google.com/p/berkeley-parser-analyser/
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beyond those currently used for English. How-
ever, as noted in their final section, their manual
analysis of parse errors in 100 sentences only cov-
ered a portion of a single parser’s output, limiting
the conclusions they could reach regarding the dis-
tribution of errors in Chinese parsing.

2.1 Automatic Error Analysis
Our  analysis  builds  on  Kummerfeld  et al.

(2012), which presented a system that automati-
cally classifies English parse errors using a two
stage process. First, the system finds the shortest
path from the system output to the gold annota-
tions, where each step in the path is a tree transfor-
mation, fixing at least one bracket error. Second,
each transformation step is classified into one of
several error types.

When directly applied to Chinese parser output,
the system placed over 27% of the errors in the
catch-all ‘Other’ type. Many of these errors clearly
fall into one of a small set of error types, motivat-
ing an adaptation to Chinese syntax.

3 Adapting error analysis to Chinese
To adapt the Kummerfeld et al. (2012) system to

Chinese, we developed a new version of the second
stage of the system, which assigns an error cate-
gory to each tree transformation step.

To characterize the errors the original system
placed in the ‘Other’ category, we looked through
one  hundred  sentences, identifying  error  types
generated by Chinese syntax that the existing sys-
tem did not account for. With these observations
we were able to implement new rules to catch the
previously missed cases, leading to the set shown
in Table 1. To ensure the accuracy of our classifica-
tions, we alternated between refining the classifica-
tion code and looking at affected classifications to
identify issues. We also periodically changed the
sentences from the development set we manually
checked, to avoid over-fitting.

Where necessary, we also expanded the infor-
mation available during classification. For exam-
ple, we use the structure of the final gold standard
tree when classifying errors that are a byproduct of
sense disambiguation errors.

4 Chinese parsing errors
Table 1 presents the errors made by the Berkeley

parser. Below we describe the error types that are

Error Type Brackets % of total
NP-internal* 6019 22.70%
Coordination 2781 10.49%
Verb taking wrong args* 2310 8.71%
Unary 2262 8.53%
Modifier Attachment 1900 7.17%
One Word Span 1560 5.88%
Different label 1418 5.35%
Unary A-over-A 1208 4.56%
Wrong sense/bad attach* 1018 3.84%
Noun boundary error* 685 2.58%
VP Attachment 626 2.36%
Clause Attachment 542 2.04%
PP Attachment 514 1.94%
Split Verb Compound* 232 0.88%
Scope error* 143 0.54%
NP Attachment 109 0.41%
Other 3186 12.02%

Table 1: Errors made when parsing Chinese. Values are the
number of bracket errors attributed to that error type. The
values shown are for the Berkeley parser, evaluated on the
development set. * indicates error types that were added or
substantially changed as part of this work.

either new in this analysis, have had their definition
altered, or have an interesting distribution.2

In all of our results we follow Kummerfeld et al.
(2012), presenting the number of bracket errors
(missing or extra)  attributed to each error type.
Bracket counts are more informative than a direct
count of each error type, because the impact on
EVALB F-score varies between errors, e.g. a sin-
gle attachment error can cause 20 bracket errors,
while a unary error causes only one.

NP-internal. (Figure 1a). Unlike  the  Penn
Treebank (Marcus et al., 1993), the PCTB anno-
tates some NP-internal structure. We assign this
error type when a transformation involves words
whose parts of speech in the gold tree are one of:
CC, CD, DEG, ETC, JJ, NN, NR, NT and OD.

We investigated the errors that fall into the NP-
internal category and found that 49% of the errors
involved the creation or deletion of a single pre-
termianl phrasal bracket. These errors arise when
a parser proposes a tree in which POS tags (for in-
stance, JJ or NN) occur as siblings of phrasal tags
(such as NP), a configuration used by the PCTB
bracketing guidelines to indicate complementation
as opposed to adjunction (Xue et al., 2005).

2For an explanation of the English error types, see Kum-
merfeld et al. (2012).

99



Verb taking wrong args. (Figure 1b). This
error type arises when a verb (e.g.扭转 reverse)
is  hypothesized  to  take  an  incorrect  argument
(布什 Bush instead of 地位 position). Note that
this also covers some of the errors that Kummer-
feld  et al. (2012) classified  as  NP Attachment,
changing the distribution for that type.

Unary. For mis-application of unary rules we
separate out instances in which the two brackets in
the production have the the same label (A-over-A).
This cases is created when traces are eliminated, a
standard step in evaluation. More than a third of
unary errors made by the Berkeley parser are of the
A-over-A type. This can be attributed to two fac-
tors: (i) the PCTB annotates non-local dependen-
cies using traces, and (ii) Chinese syntax generates
more traces than English syntax (Guo et al., 2007).
However, for parsers that do not return traces they
are a benign error.

Modifier attachment. (Figure 1c). Incorrect
modifier scope caused by modifier phrase attach-
ment level. This is less frequent in Chinese than
in English: while English VP modifiers occur in
pre- and post-verbal positions, Chinese only al-
lows pre-verbal modification.

Wrong sense/bad attach. (Figure 1d). This ap-
plies when the head word of a phrase receives the
wrong POS, leading to an attachment error. This
error type is common in Chinese because of POS
fluidity, e.g. the well-known Chinese verb/noun
ambiguity often causes mis-attachments that are
classified as this error type.

In  Figure 1d, the  word 投资 invest has
both  noun  and  verb  senses. While  the  gold
standard  interpretation  is  the  relative  clause
firms that Macau invests in, the parser returned an
NP interpretation Macau investment firms.

Noun boundary error. In this error type, a span
is moved to a position where the POS tags of its
new siblings all belong to the list of NP-internal
structure tags which we identified above, reflecting
the inclusion of additional material into an NP.

Split  verb  compound. The  PCTB annota-
tions recognize several Chinese verb compound-
ing strategies, such as  the serial  verb construc-
tion (规划建设 plan [and] build) and the resulta-
tive construction (煮熟 cook [until] done), which
join a bare verb to another lexical item. We in-
troduce an error type specific to Chinese, in which
such verb compounds are split, with the two halves
of the compound placed in different phrases.

....NP.

....

..NN... ..教练coach

.

....

..NN... ..女足soccer

.
.. ..NN... ..国家nat'l

.
..NP.
....

..NP.

....

..NP.....NN

. ....NP.....NN

. ....NP.....NN

(a) NP-internal structure errors

....VP.

....

..NP.

....

..NP... ..地位position

.
.. ..DNP.

....

..DEG... ..的
.

.. ..NP... ..布什Bush

.
.. ..VV... ..扭转reverse

.

..CP.

....

..IP.

....

..VP.
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..VV

. ....NP

. ....DEC

. ....NP
(b) Verb taking wrong arguments

....VP.

....
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.
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..QP... ..第三次
3rd time

.
.. ..ADVP... ..连续in a row

.
..VP.
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.
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(c) Modifier attachment ambiguity
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.
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.
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..NP

.
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....

..NP

. ....NP
(d) Sense confusion

Figure 1: Prominent error types in Chinese parsing. The left
tree is the gold structure; the right is the parser hypothesis.

Scope error. These are cases in which a new
span must be added to more closely bind a modifier
phrase (ADVP, ADJP, and PP).

PP attachment. This error type is rare in Chi-
nese, as adjunct PPs are pre-verbal. It does oc-
cur near coordinated VPs, where ambiguity arises
about  which of  the conjuncts  the PP has scope
over. Whether this particular case is PP attachment
or coordination is debatable; we follow Kummer-
feld et al. (2012) and label it PP attachment.

4.1 Chinese-English comparison
It is difficult to directly compare error analysis

results for Chinese and English parsing because
of substantial changes in the classification method,
and differences in treebank annotations.

As described in the previous section, the set of
error categories considered for Chinese is very dif-
ferent to the set of categories for English. Even
for some of the categories that were not substan-
tially changed, errors may be classified differently
because of cross-over between categories between
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NP Verb Mod. 1-Word Diff Wrong Noun VP Clause PP
System F1 Int. Coord Args Unary Attach Span Label Sense Edge Attach Attach Attach Other
Best 1.54 1.25 1.01 0.76 0.72 0.21 0.30 0.05 0.21 0.26 0.22 0.18 1.87
Berk-G 86.8
Berk-2 81.8
Berk-1 81.1
ZPAR 78.1
Bikel 76.1
Stan-F 76.0
Stan-P 70.0
Worst 3.94 1.75 1.73 1.48 1.68 1.06 1.02 0.88 0.55 0.50 0.44 0.44 4.11

Table 2: Error breakdown for the development set of PCTB 6. The area filled in for each bar indicates the average number of
bracket errors per sentence attributed to that error type, where an empty bar is no errors and a full bar has the value indicated in
the bottom row. The parsers are: the Berkeley parser with gold POS tags as input (Berk-G), the Berkeley product parser with
two grammars (Berk-2), the Berkeley parser (Berk-1), the parser of Zhang and Clark (2009) (ZPAR), the Bikel parser (Bikel),
the Stanford Factored parser (Stan-F), and the Stanford Unlexicalized PCFG parser (Stan-P).

two categories (e.g. between Verb taking wrong
args and NP Attachment).

Differences in treebank annotations also present
a challenge for cross-language error comparison.
The  most  common  error  type  in  Chinese, NP-
internal structure, is rare in the results of Kummer-
feld et al. (2012), but the datasets are not compara-
ble because the PTB has very limited NP-internal
structure annotated. Further characterization of the
impact of annotation differences on errors is be-
yond the scope of this paper.

Three conclusions that can be made are that (i)
coordination is a major issue in both languages,
(ii) PP attachment is a much greater problem in
English, and  (iii)  a  higher  frequency  of  trace-
generating syntax in Chinese compared to English
poses substantial challenges.

5 Cross-parser analysis
The previous section described the error types

and their distribution for a single Chinese parser.
Here we confirm that these are general trends, by
showing that the same pattern is observed for sev-
eral  different  parsers  on  the  PCTB 6 dev  set.3
We include results  for  a  transition-based parser
(ZPAR; Zhang  and  Clark, 2009), a  split-merge
PCFG parser (Petrov et al., 2006; Petrov and Klein,
2007; Petrov, 2010), a lexicalized parser (Bikel
and Chiang, 2000), and a factored PCFG and de-
pendency parser (Levy and Manning, 2003; Klein
and Manning, 2003a,b). 4

Comparing the two Stanford parsers in Table 2,
the factored model provides clear improvements

3We use the standard data split suggested by the PCTB 6
file manifest. As a result, our results differ from those previ-
ously reported on other splits. All analysis is on the dev set,
to avoid revealing specific information about the test set.

4These parsers represent a variety of parsing methods,
though exclude some recently developed parsers that are not
publicly available (Qian and Liu, 2012; Xiong et al., 2005).

on  sense  disambiguation, but  performs  slightly
worse on coordination.

The Berkeley product parser we include uses
only two grammars because we found, in contrast
to the English results (Petrov, 2010), that further
grammars provided limited benefits. Comparing
the performance with the standard Berkeley parser
it seems that the diversity in the grammars only as-
sists certain error types, with most of the improve-
ment  occurring in  four  of  the categories, while
there is no improvement, or a slight decrease, in
five categories.

6 Tagging Error Impact
The challenge of accurate POS tagging in Chi-

nese has been a major part of several recent papers
(Qian and Liu, 2012; Jiang et al., 2009; Forst and
Fang, 2009). The Berk-G row of Table 2 shows
the performance of the Berkeley parser when given
gold POS tags.5 While the F1 improvement is un-
surprising, for the first time we can clearly show
that the gains are only in a subset of the error types.
In particular, tagging improvement will not help
for two of the most significant challenges: coordi-
nation scope errors, and verb argument selection.

To see which tagging confusions contribute to
which error reductions, we adapt the POS ablation
approach of Tse and Curran (2012). We consider
the POS tag pairs shown in Table 3. To isolate the
effects of each confusion we start from the gold
tags and introduce the output of the Stanford tag-
ger whenever it returns one of the two tags being
considered.6 We then feed these “semi-gold” tags

5We used the Berkeley parser as it was the best of the
parsers we considered. Note that the Berkeley parser occa-
sionally prunes all of the parses that use the gold POS tags,
and so returns the best available alternative. This leads to a
POS accuracy of 99.35%, which is still well above the parser’s
standard POS accuracy of 93.66%.

6We introduce errors to gold tags, rather than removing er-
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Confused tags Errors ∆ F1

VV NN 1055 -2.72
DEC DEG 526 -1.72
JJ NN 297 -0.57
NR NN 320 -0.05

Table 3: The most frequently confused POS tag pairs. Each
∆ F1 is relative to Berk-G.

to the Berkeley parser, and run the fine-grained er-
ror analysis on its output.

VV/NN. This confusion has been consistently
shown to be a major contributor to parsing errors
(Levy and Manning, 2003; Tse and Curran, 2012;
Qian and Liu, 2012), and we find a drop of over 2.7
F1 when the output of the tagger is introduced. We
found that while most error types have contribu-
tions from a range of POS confusions, verb/noun
confusion was responsible for virtually all of the
noun boundary errors corrected by using gold tags.

DEG/DEC. This confusion between the rela-
tivizer and subordinator senses of the particle 的
de is the primary source of improvements on mod-
ifier attachment when using gold tags.

NR/NN and JJ/NN. Despite  their  frequency,
these confusions have little effect on parsing per-
formance. Even within the NP-internal error type
their impact is limited, and almost all of the errors
do not change the logical form.

7 Conclusion
We have  quantified  the  relative  impacts  of  a

comprehensive set of error types in Chinese pars-
ing. Our analysis has also shown that while im-
provements in Chinese POS tagging can make a
substantial difference for some error types, it will
not address two high-frequency error types: in-
correct verb argument attachment and coordina-
tion scope. The frequency of these two error types
is also unimproved by the use of products of la-
tent variable grammars. These observations sug-
gest that resolving the core challenges of Chinese
parsing will require new developments that suit the
distinctive properties of Chinese syntax.
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Abstract

This paper is concerned with the problem
of heterogeneous dependency parsing. In
this paper, we present a novel joint infer-
ence scheme, which is able to leverage
the consensus information between het-
erogeneous treebanks in the parsing phase.
Different from stacked learning meth-
ods (Nivre and McDonald, 2008; Martins
et al., 2008), which process the depen-
dency parsing in a pipelined way (e.g., a
second level uses the first level outputs), in
our method, multiple dependency parsing
models are coordinated to exchange con-
sensus information. We conduct experi-
ments on Chinese Dependency Treebank
(CDT) and Penn Chinese Treebank (CTB),
experimental results show that joint infer-
ence can bring significant improvements
to all state-of-the-art dependency parsers.

1 Introduction

Dependency parsing is the task of building depen-
dency links between words in a sentence, which
has recently gained a wide interest in the natu-
ral language processing community and has been
used for many problems ranging from machine
translation (Ding and Palmer, 2004) to question
answering (Zhou et al., 2011a). Over the past few
years, supervised learning methods have obtained
state-of-the-art performance for dependency pars-
ing (Yamada and Matsumoto, 2003; McDonald
et al., 2005; McDonald and Pereira, 2006; Hall
et al., 2006; Zhou et al., 2011b; Zhou et al.,
2011c). These methods usually rely heavily on
the manually annotated treebanks for training the
dependency models. However, annotating syntac-

(with) (eyes) (cast) (Hongkong )

   BA                      NN                 VV                         NR

(with) (eyes) (cast) (Hongkong )

      p                       n                      v                            ns

Figure 1: Different grammar formalisms of syn-
tactic structures between CTB (upper) and CDT
(below). CTB is converted into dependency gram-
mar based on the head rules of (Zhang and Clark,
2008).

tic structure, either phrase-based or dependency-
based, is both time consuming and labor intensive.
Making full use of the existing manually annotated
treebanks would yield substantial savings in data-
annotation costs.

In this paper, we present a joint inference
scheme for heterogenous dependency parsing.
This scheme is able to leverage consensus in-
formation between heterogenous treebanks dur-
ing the inference phase instead of using individual
output in a pipelined way, such as stacked learning
methods (Nivre and McDonald, 2008; Martins et
al., 2008). The basic idea is very simple: although
heterogenous treebanks have different grammar
formalisms, they share some consensus informa-
tion in dependency structures for the same sen-
tence. For example in Figure 1, the dependency
structures actually share some partial agreements
for the same sentence, the two words “eyes” and
“Hongkong” depend on “cast” in both Chinese
Dependency Treebank (CDT) (Liu et al., 2006)
and Penn Chinese Treebank (CTB) (Xue et al.,
2005). Therefore, we would like to train the de-
pendency parsers on individual heterogenous tree-
bank and jointly parse the same sentences with
consensus information exchanged between them.

The remainder of this paper is divided as fol-
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Treebank1 Treebank2

Parser1 Parser2

 consensus information exchange

Joint inference

test data

Figure 2: General joint inference scheme of het-
erogeneous dependency parsing.

lows. Section 2 gives a formal description of
the joint inference for heterogeneous dependency
parsing. In section 3, we present the experimental
results. Finally, we conclude with ideas for future
research.

2 Our Approach

The general joint inference scheme of heteroge-
neous dependency parsing is shown in Figure 2.
Here, heterogeneous treebanks refer to two Chi-
nese treebanks: CTB and CDT, therefore we have
only two parsers, but the framework is generic
enough to integrate more parsers. For easy expla-
nation of the joint inference scheme, we regard a
parser without consensus information as a base-
line parser, a parser incorporates consensus infor-
mation called a joint parser. Joint inference pro-
vides a framework that accommodates and coordi-
nates multiple dependency parsing models. Sim-
ilar to Li et al. (2009) and Zhu et al. (2010),
the joint inference for heterogeneous dependency
parsing consists of four components: (1) Joint In-
ference Model; (2) Parser Coordination; (3) Joint
Inference Features; (4) Parameter Estimation.

2.1 Joint Inference Model
For a given sentence x, a joint dependency parsing
model finds the best dependency parsing tree y∗

among the set of possible candidate parses Y(x)
based on a scoring function Fs:

y∗ = arg max
y∈Y(x)

Fs(x, y) (1)

Following (Li et al., 2009), we will use dk to de-
note the kth joint parser, and also use the notation
Hk(x) for a list of parse candidates of sentence
x determined by dk. The sth joint parser can be
written as:

Fs(x, y) = Ps(x, y) +
∑

k,k ̸=s

Ψk(y, Hk(x)) (2)

where Ps(x, y) is the score function of the sth
baseline model, and each Ψk(y,Hk(x)) is a partial

consensus score function with respect to dk and is
defined over y andHk(x):

Ψk(y, Hk(x)) =
∑

l

λk,lfk,l(y, Hk(x)) (3)

where each fk,l(y,Hk(x)) is a feature function
based on a consensus measure between y and
Hk(x), and λk,l is the corresponding weight pa-
rameter. Feature index l ranges over all consensus-
based features in equation (3).

2.2 Parser Coordination
Note that in equation (2), though the baseline score
function Ps(x, y) can be computed individually,
the case of Ψk(y,Hk(x)) is more complicated. It
is not feasible to enumerate all parse candidates
for dependency parsing. In this paper, we use a
bootstrapping method to solve this problem. The
basic idea is that we can use baseline models’ n-
best output as seeds, and iteratively refine joint
models’ n-best output with joint inference. The
joint inference process is shown in Algorithm 1.

Algorithm 1 Joint inference for multiple parsers
Step1: For each joint parser dk, perform inference with
a baseline model, and memorize all dependency parsing
candidates generated during inference in Hk(x);
Step2: For each candidate in Hk(x), we extract subtrees
and store them in H′

k(x). First, we extract bigram-subtrees
that contain two words. If two words have a dependency
relation, we add these two words as a subtree into H′

k(x).
Similarly, we can extract trigram-subtrees. Note that the
dependency direction is kept. Besides, we also store the
“ROOT” word of each candidate in H′

k(x);
Step3: Use joint parsers to re-parse the sentence x with
the baseline features and joint inference features (see sub-
section 2.3). For joint parser dk, consensus-based features
of any dependency parsing candidate are computed based
on current setting of H′

s(x) for all s but k. New depen-
dency parsing candidates generated by dk in re-parsing are
cached in H′′

k(x);
Step4: Update all Hk(x) with H′′

k(x);
Step5: Iterate from Step2 to Step4 until a preset iteration
limit is reached.

In Algorithm 1, dependency parsing candidates
of different parsers can be mutually improved. For
example, given two parsers d1 and d2 with candi-
dates H1 and H2, improvements on H1 enable d2

to improve H2, and H1 benefits from improved
H2, and so on.

We can see that a joint parser does not en-
large the search space of its baseline model, the
only change is parse scoring. By running a com-
plete inference process, joint model can be applied
to re-parsing all candidates explored by a parser.
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Thus Step3 can be viewed as full-scale candidates
reranking because the reranking scope is beyond
the limited n-best output currently cached inHk.

2.3 Joint Inference Features

In this section we introduce the consensus-based
feature functions fk,l(y,Hk(x)) introduced in
equation (3). The formulation can be written as:

fk,l(y, Hk(x)) =
∑

y′∈Hk(x)

P (y′|dk)Il(y, y′) (4)

where y is a dependency parse of x by using parser
ds (s ̸= k), y′ is a dependency parse in Hk(x)
and P (y′|dk) is the posterior probability of depen-
dency parse y′ parsed by parser dk given sentence
x. Il(y, y′) is a consensus measure defined on y
and y′ using different feature functions.

Dependency parsing model P (y′|dk) can be
predicted by using the global linear models
(GLMs) (e.g., McDonald et al. (2005); McDonald
and Pereira (2006)). The consensus-based score
functions Il(y, y′) include the following parts:

(1) head-modifier dependencies. Each head-
modifier dependency (denoted as “edge”) is a tu-
ple t =< h, m, h → m >, so Iedge(y, y′) =∑

t∈y δ(t, y′).
(2) sibling dependencies: Each sibling de-

pendency (denoted as “sib”) is a tuple t =<
i, h, m, h ← i → m >, so Isib(y, y′) =∑

t∈y δ(t, y′).
(3) grandparent dependencies: Each grand-

parent dependency (denoted as “gp”) is a tuple
t =< h, i, m, h → i → m >, so Igp(y, y′) =∑

<h,i,m,h→i→m>∈y δ(t, y′).
(4) root feature: This feature (denoted as

“root”) indicates whether the multiple depen-
dency parsing trees share the same “ROOT”, so
Iroot(y, y′) =

∑
<ROOT>∈y δ(< ROOT >, y′).

δ(·, ·) is a indicator function–δ(t, y′) is 1 if
t ∈ y′ and 0 otherwise, feature index l ∈
{edge, sib, gp, root} in equation (4). Note that
< h, m, h → m > and < m,h, m → h > are
two different edges.

In our joint model, we extend the baseline fea-
tures of (McDonald et al., 2005; McDonald and
Pereira, 2006; Carreras, 2007) by conjoining with
the consensus-based features, so that we can learn
in which kind of contexts the different parsers
agree/disagree. For the third-order features (e.g.,
grand-siblings and tri-siblings) described in (Koo
et al., 2010), we will discuss it in future work.

2.4 Parameter Estimation
The parameters are tuned to maximize the depen-
dency parsing performance on the development
set, using an algorithm similar to the average per-
ceptron algorithm due to its strong performance
and fast training (Koo et al., 2008). Due to lim-
ited space, we do not present the details. For more
information, please refer to (Koo et al., 2008).

3 Experiments

In this section, we describe the experiments
to evaluate our proposed approach by using
CTB4 (Xue et al., 2005) and CDT (Liu et al.,
2006). For the former, we adopt a set of head-
selection rules (Zhang and Clark, 2008) to convert
the phrase structure syntax of treebank into a de-
pendency tree representation. The standard data
split of CTB4 from Wang et al. (2007) is used. For
the latter, we randomly select 2,000 sentences for
test set, another 2,000 sentences for development
set, and others for training set.

We use two baseline parsers, one trained on
CTB4, and another trained on CDT in the ex-
periments. We choose the n-best size of 16 and
the best iteration time of four on the development
set since these settings empirically give the best
performance. CTB4 and CDT use two different
POS tag sets and transforming from one tag set
to another is difficult (Niu et al., 2009). To over-
come this problem, we use Stanford POS Tagger1

to train a universal POS tagger on the People’s
Daily corpus,2 a large-scale Chinese corpus (ap-
proximately 300 thousand sentences and 7 mil-
lion words) annotated with word segmentation and
POS tags. Then the POS tagger produces a uni-
versal layer of POS tags for both the CTB4 and
CDT. Note that the word segmentation standards
of these corpora (CTB4, CDT and People’s Daily)
slightly differs; however, we do not consider this
problem and leave it for future research.

The performance of the parsers is evaluated us-
ing the following metrics: UAS, DA, and CM,
which are defined by (Hall et al., 2006). All the
metrics except CM are calculated as mean scores
per word, and punctuation tokens are consistently
excluded.

We conduct experiments incrementally to eval-
uate the joint features used in our first-order and
second-order parsers. The first-order parser

1http://nlp.stanford.edu/software/tagger.shtml
2http://www.icl.pku.edu.cn
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– Features CTB4 CDT
UAS CM UAS CM

dep1

baseline 86.6 42.5 75.4 16.6
+ edge 88.01 (↑1.41) 44.28 (↑1.78) 77.10 (↑1.70) 17.82 (↑1.22)
+ root 87.22 (↑0.62) 43.03 (↑0.53) 75.83 (↑0.43) 16.81 (↑0.21)
+ both 88.19 (↑1.59) 44.54 (↑2.04) 77.16 (↑1.76) 17.90 (↑1.30)

CTB4 + CDT 87.32 43.08 75.91 16.89

dep2

baseline 88.38 48.81 77.52 19.70
+ edge 89.17 (↑0.79) 49.73 (↑0.92) 78.44 (↑0.92) 20.85 (↑1.15)
+ sib 88.94 (↑0.56) 49.26 (↑0.45) 78.02 (↑0.50) 20.13 (↑0.43)
+ gp 88.90 (↑0.52) 49.11 (↑0.30) 77.97 (↑0.45) 20.06 (↑0.36)

+ root 88.61 (↑0.23) 48.88 (↑0.07) 77.65 (↑0.13) 19.88 (↑0.18)
+ all 89.62 (↑1.24) 50.15 (↑1.34) 79.01 (↑1.49) 21.11 (↑1.41)

CTB4 + CDT 88.91 49.13 78.03 20.12

Table 1: Dependency parsing results on the test set with different joint inference features. Abbreviations:
dep1/dep2 = first-order parser and second-order parser; baseline = dep1 without considering any joint
inference features; +* = the baseline features conjoined with the joint inference features derived from the
heterogeneous treebanks; CTB4 + CDT = we simply concatenate the two corpora and train a dependency
parser, and then test on CTB4 and CDT using this single model. Improvements of joint models over
baseline models are shown in parentheses.

Type Systems ≤ 40 Full

D
dep2 90.86 88.38

MaltParser 87.1 85.8
Wang et al. (2007) 86.6 -

C
MSTMalt† 90.55 88.82

Martins et al. (2008)† 90.63 88.84
Surdeanu et al. (2010)† 89.40 86.63

H Zhao et al. (2009) 88.9 86.1
Ours 91.48 89.62

S Yu et al. (2008) - 87.26
Chen et al. (2009) 92.34 89.91
Chen et al. (2012) - 91.59

Table 2: Comparison of different approach on
CTB4 test set using UAS metric. MaltParser =
Hall et al. (2006); MSTMalt=Nivre and McDon-
ald (2008). Type D = discriminative dependency
parsers without using any external resources; C =
combined parsers (stacked and ensemble parsers);
H = discriminative dependency parsers using ex-
ternal resources derived from heterogeneous tree-
banks, S = discriminative dependency parsers us-
ing external unlabeled data. † The results on CTB4
were not directly reported in these papers, we im-
plemented the experiments in this paper.

(dep1) only incorporates head-modifier depen-
dency part (McDonald et al., 2005). The second-
order parser (dep2) uses the head-modifier and
sibling dependency parts (McDonald and Pereira,
2006), as well as the grandparent dependency
part (Carreras, 2007; Koo et al., 2008). Table 1
shows the experimental results.

As shown in Table 1, we note that adding more
joint inference features incrementally, the depen-
dency parsing performance is improved consis-

tently, for both treebanks (CTB4 or CDT). As a
final note, all comparisons between joint models
and baseline models in Table 1 are statistically sig-
nificant.3 Furthermore, we also present a base-
line method called “CTB4 + CDT” for compari-
son. This method first tags both CTB4 and CDT
with the universal POS tagger trained on the Peo-
ple’s Daily corpus, then simply concatenates the
two corpora and trains a dependency parser, and
finally tests on CTB4 and CDT using this single
model. The comparisons in Table 1 tell us that
very limited information is obtained without con-
sensus features by simply taking a union of the
dependencies and their contexts from the two tree-
banks.

To put our results in perspective, we also com-
pare our second-order joint parser with other best-
performing systems. “≤ 40” refers to the sentence
with the length up to 40 and “Full” refers to all
the sentences in test set. The results are shown
in Table 2, our approach significantly outperforms
many systems evaluated on this data set. Chen
et al. (2009) and Chen et al. (2012) reported a
very high accuracy using subtree-based features
and dependency language model based features
derived from large-scale data. Our systems did not
use such knowledge. Moreover, their technique is
orthogonal to ours, and we suspect that combin-
ing their subtree-based features into our systems
might get an even better performance. We do not
present the comparison of our proposed approach

3We use the sign test at the sentence level. All the com-
parisons are significant at p < 0.05.
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Type Systems UAS DA

D
Duan et al. (2007) 83.88 84.36

Huang and Sagae (2010) 85.20 85.52
Zhang and Nivre (2011) 86.0 -

C Zhang and Clark (2008) - 86.21
Bohnet and Kuhn (2012) 87.5 -

H Li et al. (2012) 86.44 -
Ours 85.88 86.52

S Chen et al. (2009) - 86.70

Table 3: Comparison of different approaches on
CTB5 test set. Abbreviations D, C, H and S are as
in Table 2.

Treebanks #Sen # Better # NoChange # Worse
CTB4 355 74 255 26
CDT 2,000 341 1,562 97

Table 4: Statistics on joint inference output on
CTB4 and CDT development set.

with the state-of-the-art methods on CDT because
there is little work conducted on this treebank.

Some researchers conducted experiments on
CTB5 with a different data split: files 1-815 and
files 1,001-1,136 for training, files 886-931 and
1,148-1,151 for development, files 816-885 and
files 1,137-1,147 for testing. The development
and testing sets were also performed using gold-
standard assigned POS tags. We report the experi-
mental results on CTB5 test set in Table 4. Our re-
sults are better than most systems on this data split,
except Zhang and Nivre (2011), Li et al. (2012)
and Chen et al. (2009).

3.1 Additional Results
To obtain further information about how depen-
dency parsers benefit from the joint inference, we
conduct an initial experiment on CTB4 and CDT.
From Table 4, we find that out of 355 sentences on
the development set of CTB4, 74 sentences ben-
efit from the joint inference, while 26 sentences
suffer from it. For CDT, we also find that out of
2,000 sentences on the development set, 341 sen-
tences benefit from the joint inference, while 97
sentences suffer from it. Although the overall de-
pendency parsing results is improved, joint infer-
ence worsens dependency parsing result for some
sentences. In order to obtain further information
about the error sources, it is necessary to investi-
gate why joint inference gives negative results, we
will leave it for future work.

4 Conclusion and Future Work

We proposed a novel framework of joint infer-
ence, in which multiple dependency parsing mod-

els were coordinated to search for better depen-
dency parses by leveraging the consensus infor-
mation between heterogeneous treebanks. Exper-
imental results showed that joint inference signif-
icantly outperformed the state-of-the-art baseline
models.

There are some ways in which this research
could be continued. First, recall that the joint in-
ference scheme involves an iterative algorithm by
using bootstrapping. Intuitively, there is a lack of
formal guarantee. A natural avenue for further re-
search would be the use of more powerful algo-
rithms that provide certificates of optimality; e.g.,
dual decomposition that aims to develop decod-
ing algorithms with formal guarantees (Rush et
al., 2010). Second, we would like to combine our
heterogeneous treebank annotations into a unified
representation in order to make dependency pars-
ing results comparable across different annotation
guidelines (e.g., Tsarfaty et al. (2011)).
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Abstract 

In this paper, we combine easy-first de-

pendency parsing and POS tagging algo-

rithms with beam search and structured 

perceptron. We propose a simple variant 

of “early-update” to ensure valid update 

in the training process. The proposed so-

lution can also be applied to combine 

beam search and structured perceptron 

with other systems that exhibit spurious 

ambiguity. On CTB, we achieve 94.01% 

tagging accuracy and 86.33% unlabeled 

attachment score with a relatively small 

beam width. On PTB, we also achieve 

state-of-the-art performance. 

1 Introduction 

The easy-first dependency parsing algorithm 

(Goldberg and Elhadad, 2010) is attractive due to 

its good accuracy, fast speed and simplicity. The 

easy-first parser has been applied to many appli-

cations (Seeker et al., 2012; Søggard and Wulff, 

2012). By processing the input tokens in an easy-

to-hard order, the algorithm could make use of 

structured information on both sides of the hard 

token thus making more indicative predictions. 

However, rich structured information also causes 

exhaustive inference intractable. As an alterna-

tive, greedy search which only explores a tiny 

fraction of the search space is adopted (Goldberg 

and Elhadad, 2010). 

 To enlarge the search space, a natural exten-

sion to greedy search is beam search. Recent 

work also shows that beam search together with 

perceptron-based global learning (Collins, 2002) 

enable the use of non-local features that are help-

ful to improve parsing performance without 

overfitting (Zhang and Nivre, 2012). Due to the-

se advantages, beam search and global learning 

has been applied to many NLP tasks (Collins and 

Roark 2004; Zhang and Clark, 2007). However, 

to the best of our knowledge, no work in the lit-

erature has ever applied the two techniques to 

easy-first dependency parsing.  

While applying beam-search is relatively 

straightforward, the main difficulty comes from 

combining easy-first dependency parsing with 

perceptron-based global learning. In particular, 

one needs to guarantee that each parameter up-

date is valid, i.e., the correct action sequence has 

lower model score than the predicted one
1
. The 

difficulty in ensuring validity of parameter up-

date for the easy-first algorithm is caused by its 

spurious ambiguity, i.e., the same result might be 

derived by more than one action sequences.  

For algorithms which do not exhibit spurious 

ambiguity, “early update” (Collins and Roark 

2004) is always valid: at the k-th step when the 

single correct action sequence falls off the beam, 

                                                 
1 As shown by (Huang et al., 2012), only valid update guar-

antees the convergence of any perceptron-based training. 

Invalid update may lead to bad learning or even make the 

learning not converge at all. 

Figure 1: Example of cases without/with spurious 

ambiguity. The 3 × 1 table denotes a beam. “C/P” 

denotes correct/predicted action sequence. The 

numbers following C/P are model scores. 
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its model score must be lower than those still in 

the beam (as illustrated in figure 1, also see the 

proof in (Huang et al., 2012)). While for easy-

first dependency parsing, there could be multiple 

action sequences that yield the gold result (C1 and 

C2 in figure 1). When all correct sequences fall 

off the beam, some may indeed have higher 

model score than those still in the beam (C2 in 

figure 1), causing invalid update. 

For the purpose of valid update, we present a 

simple solution which is based on early update. 

The basic idea is to use one of the correct action 

sequences that were pruned right at the k-th step 

(C1 in figure 1) for parameter update.  

The proposed solution is general and can also 

be applied to other algorithms that exhibit spuri-

ous ambiguity, such as easy-first POS tagging 

(Ma et al., 2012) and transition-based dependen-

cy parsing with dynamic oracle (Goldberg and 

Nivre, 2012). In this paper, we report experi-

mental results on both easy-first dependency 

parsing and POS tagging (Ma et al., 2012). We 

show that both easy-first POS tagging and de-

pendency parsing can be improved significantly 

from beam search and global learning. Specifi-

cally, on CTB we achieve 94.01% tagging accu-

racy which is the best result to date
2
 for a single 

tagging model. With a relatively small beam, we 

achieve 86.33% unlabeled score (assume gold 

tags), better than state-of-the-art transition-based 

parsers (Huang and Sagae, 2010; Zhang and 

Nivre, 2011). On PTB, we also achieve good 

results that are comparable to the state-of-the-art. 

2 Easy-first dependency parsing 

The easy-first dependency parsing algorithm 

(Goldberg and Elhadad, 2010) builds a depend-

ency tree by performing two types of actions 

LEFT(i) and RIGHT(i) to a list of sub-tree struc-

tures p1,…, pr. pi is initialized with the i-th word  

                                                 
2 Joint tagging-parsing models achieve higher accuracy, but 

those models are not directly comparable to ours.  

Algorithm 1: Easy-first with beam search 

Input:     sentence   of n words,  beam width s 

Output:  one best dependency tree 
     (     )        

         ( )   

    (  ) 

            // top s extensions from the beam 

1                     // initially, empty beam 
2 for    1   1 do 

3             (        ) 
4 return        ( )   // tree built by the best sequence  

 

of the input sentence. Action LEFT(i)/RIGHT(i) 

attaches pi to its left/right neighbor and then re-

moves pi from the sub-tree list. The algorithm 

proceeds until only one sub-tree left which is the 

dependency tree of the input sentence (see the 

example in figure 2). Each step, the algorithm 

chooses the highest score action to perform ac-

cording to the linear model: 

     ( )     ( ) 

Here,   is the weight vector and   is the feature 

representation. In particular,  (    ( ) 
     ( )) denotes features extracted from pi. 

The parsing algorithm is greedy which ex-

plores a tiny fraction of the search space. Once 

an incorrect action is selected, it can never yield 

the correct dependency tree. To enlarge the 

search space, we introduce the beam-search ex-

tension in the next section. 

3 Easy-first with beam search  

In this section, we introduce easy-first with beam 

search in our own notations that will be used 

throughout the rest of this paper.  

For a sentence x of n words, let   be the action 

(sub-)sequence that can be applied, in sequence, 

to x and the result sub-tree list is denoted by 

 ( )  For example, suppose x is “I am valid” and 

y is [RIGHT(1)], then y(x) yields figure 2(b). Let 

   to be LEFT(i)/RIGHT(i) actions where    1   . 
Thus, the set of all possible one-action extension 

of   is: 

     ( )            ( )   

Here, ‘ ’ means insert   to the end of  . Follow-

ing (Huang et al., 2012), in order to formalize 

beam search, we also use the          
    ( ) 

operation which returns the top s action sequenc-

es in   according to    ( ). Here,  denotes a 

set of action sequences,   ( ) denotes the sum of 

feature vectors of each action in    

Pseudo-code of easy-first with beam search is 

shown in algorithm 1. Beam search grows s 

(beam width) action sequences in parallel using a  

Figure 2: An example of parsing “I am valid”. Spu-

rious ambiguity: (d) can be derived by both 

[RIGHT(1), LEFT(2)] and [LEFT(3), RIGHT(1)]. 
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Algorithm 2: Perceptron-based training over one 

training sample (   ) 
Input:    (   ), s, parameter   

Output: new parameter    

    (       )        
     (      ( ))

   

   (  ) 

 // top correct extension from the beam 

1         

2 for    1   1 do 

3     ̂      (          ) 

4            (        ) 

5    if           // all correct seq. falls off the beam 

6              ( ̂)   (     ) 

7         break 

8 if        ( )      // full update 

9          ( ̂)   (       )  

10 return   

 

beam  , (sequences in   are sorted in terms of 

model score, i.e.,    (    )      (  1 ) ). 

At each step, the sequences in   are expanded in 

all possible ways and then   is filled up with the 

top s newly expanded sequences (line 2 ~ line 3). 

Finally, it returns the dependency tree built by 

the top action sequence in      . 

4 Training  

To learn the weight vector  , we use the percep-

tron-based global learning
3
 (Collins, 2002) which 

updates   by rewarding the feature weights fired 

in the correct action sequence and punish those 

fired in the predicted incorrect action sequence. 

Current work (Huang et al., 2012) rigorously 

explained that only valid update ensures conver-

gence of any perceptron variants. They also justi-

fied that the popular “early update” (Collins and  

Roark, 2004) is valid for the systems that do not 

exhibit spurious ambiguity
4
.  

However, for the easy-first algorithm or more 

generally, systems that exhibit spurious ambigui-

ty, even “early update” could fail to ensure valid-

ity of update (see the example in figure 1). For 

validity of update, we propose a simple solution 

which is based on “early update” and which can 

accommodate spurious ambiguity. The basic idea 

is to use the correct action sequence which was  

                                                 
3 Following (Zhang and Nivre, 2012), we say the training 

algorithm is global if it optimizes the score of an entire ac-

tion sequence. A local learner trains a classifier which dis-

tinguishes between single actions. 
4 As shown in (Goldberg and Nivre 2012), most transition-

based dependency parsers (Nivre et al., 2003; Huang and 

Sagae 2010;Zhang and Clark 2008) ignores spurious ambi-

guity by using a static oracle which maps a dependency tree 

to a single action sequence.  

Features of (Goldberg and Elhadad, 2010) 
for p in pi-1, pi, pi+1 wp-vlp, wp-vrp, tp-vlp,  

tp-vrp, tlcp, trcp, wlcp, wlcp 
for p in pi-2, pi-1, pi, pi+1, pi+2 tp-tlcp,  tp-trcp, tp-tlcp-trcp 
for p, q, r in (pi-2, pi-1, pi), (pi-

1, pi+1, pi), (pi+1, pi+2 ,pi) 
tp-tq-tr, tp-tq-wr 

for p, q in (pi-1, pi) tp-tlcp-tq,   tp-trcp-tq,   ,tp-tlcp-wq,, 

 tp-trcp-wq,   tp-wq-tlcq,  tp-wq-trcq 

 
Table 1: Feature templates for English dependency 

parsing. wp denotes the head word of p, tp denotes the 

POS tag of wp. vlp/vrp denotes the number p’s of 

left/right child. lcp/rcp denotes p’s leftmost/rightmost 

child. pi denotes partial tree being considered. 

 

pruned right at the step when all correct sequence 

falls off the beam (as C1 in figure 1).  

Algorithm 2 shows the pseudo-code of the 

training procedure over one training sample 

(   ), a sentence-tree pair. Here we assume   to 

be the set of all correct action sequences/sub-

sequences. At step k, the algorithm constructs a 

correct action sequence  ̂ of length k by extend-

ing those in      (line 3). It also checks whether 

   no longer contains any correct sequence. If so, 

 ̂ together with       are used for parameter up-

date (line 5 ~ line 6). It can be easily verified that 

each update in line 6 is valid. Note that both 

‘TOPC’ and the operation in line 5 use   to check 

whether an action sequence y is correct or not. 

This  can  be  efficiently  implemented   (without 

explicitly enumerating  ) by checking if each 

LEFT(i)/RIGHT(i) in y are compatible with (   ): 
pi already collected all its dependents according 

to t; pi is attached to the correct neighbor sug-

gested by t.  

5 Experiments 

For English, we use PTB as our data set. We use 

the standard split for dependency parsing and the 

split used by (Ratnaparkhi, 1996) for POS tag-

ging. Penn2Malt
5
 is used to convert the bracket-

ed structure into dependencies. For dependency 

parsing, POS tags of the training set are generat-

ed using 10-fold jack-knifing.  

For Chinese, we use CTB 5.1 and the split 

suggested by (Duan et al., 2007) for both tagging 

and dependency parsing. We also use Penn2Malt 

and the head-finding rules of (Zhang and Clark 

2008) to convert constituency trees into depend-

encies. For dependency parsing, we assume gold 

segmentation and POS tags for the input.  

                                                 
5 http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html 
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Features used in English dependency parsing 

are listed in table 1. Besides the features in 

(Goldberg and Elhadad, 2010), we also include 

some trigram features and valency features 

which are useful for transition-based dependency 

parsing (Zhang and Nivre, 2011). For English 

POS tagging, we use the same features as in 

(Shen et al., 2007). For Chinese POS tagging and 

dependency parsing, we use the same features as 

(Ma et al., 2012). All of our experiments are 

conducted on a Core i7 (2.93GHz) machine, both 

the tagger and parser are implemented using C++.  

5.1 Effect of beam width 

Tagging/parsing performances with different 

beam widths on the development set are listed in 

table 2 and table 3. We can see that Chinese POS  

tagging, dependency parsing as well as English 

dependency parsing greatly benefit from beam 

search. While tagging accuracy on English only 

slightly improved. This may because that the 

accuracy of the greedy baseline tagger is already 

very high and it is hard to get further improve-

ment. Table 2 and table 3 also show that the 

speed of both tagging and dependency parsing 

drops linearly with the growth of beam width. 

5.2 Final results 

Tagging results on the test set together with some 

previous results are listed in table 4. Dependency 

parsing results on CTB and PTB are listed in ta-

ble 5 and table 6, respectively. 

On CTB, tagging accuracy of our greedy base-

line is already comparable to the state-of-the-art. 

As the beam size grows to 5, tagging accuracy 

increases to 94.01% which is 2.3% error reduc-

tion. This is also the best tagging accuracy com-

paring with previous single tagging models (For 

limited space, we do not list the performance of 

joint tagging-parsing models).  

Parsing performances on both PTB and CTB 

are significantly improved with a relatively small 

beam width (s = 8). In particular, we achieve 

86.33% uas on CTB which is 1.54% uas im-

provement over the greedy baseline parser. 

Moreover, the performance is better than the best 

transition-based parser (Zhang and Nivre, 2011) 

which adopts a much larger beam width (s = 64).  

6 Conclusion and related work 

This work directly extends (Goldberg and El-

hadad, 2010) with beam search and global learn-

ing. We show that both the easy-first POS tagger 

and dependency parser can be significantly impr- 

s PTB CTB speed  

1 97.17 93.91 1350 

3 97.20 94.15 560 

5 97.22 94.17 385 

 

Table 2: Tagging accuracy vs beam width vs. Speed is 

evaluated using the number of sentences that can be 

processed in one second 

 

s 
PTB CTB 

speed 
uas compl uas compl 

1 91.77 45.29 84.54 33.75 221 

2 92.29 46.28 85.11 34.62 124 

4 92.50 46.82 85.62 37.11 71 

8 92.74 48.12 86.00 35.87 39 

 
Table 3: Parsing accuracy vs beam width. ‘uas’ and 

‘compl’ denote unlabeled score and complete match 

rate respectively (all excluding punctuations). 

 
PTB CTB 

(Collins, 2002) 97.11 (Hatori et al., 2012) 93.82 

(Shen et al., 2007) 97.33 (Li et al., 2012) 93.88 

(Huang et al., 2012) 97.35 (Ma et al., 2012) 93.84 

this work   1 97.22 this work   1 93.87 

this work     97.28 this work     94.01
†
 

 
Table 4: Tagging results on the test set. ‘

†
’ denotes 

statistically significant over the greedy baseline by 

McNemar’s test (      ) 
 

Systems s uas compl 

(Huang and Sagae, 2010) 8 85.20 33.72 

(Zhang and Nivre, 2011) 64 86.00 36.90 

(Li et al., 2012) － 86.55 － 

this work 1 84.79 32.98 

this work 8 86.33
†
 36.13 

 

Table 5: Parsing results on CTB test set. 

  

Systems s uas compl 

(Huang and Sagae, 2010) 8 92.10 － 

(Zhang and Nivre, 2011) 64 92.90 48.50 

(Koo and Collins, 2010) － 93.04 － 

this work 1 91.72 44.04 

this work 8 92.47
†
 46.07 

 

Table 6: Parsing results on PTB test set.  

 

oved using beam search and global learning. 

This work can also be considered as applying 

(Huang et al., 2012) to the systems that exhibit 

spurious ambiguity. One future direction might 

be to apply the training method to transition-

based parsers with dynamic oracle (Goldberg and 

Nivre, 2012) and potentially further advance per-

formances of state-of-the-art transition-based 

parsers. 
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Shen et al., (2007) and (Shen and Joshi, 2008) 

also proposed bi-directional sequential classifica-

tion with beam search for POS tagging and 

LTAG dependency parsing, respectively. The 

main difference is that their training method aims 

to learn a classifier which distinguishes between 

each local action while our training method aims 

to distinguish between action sequences. Our 

method can also be applied to their framework. 
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Abstract

We present a model for inducing sen-
tential argument structure, which distin-
guishes arguments from optional modi-
fiers. We use this model to study whether
representing an argument/modifier distinc-
tion helps in learning argument structure,
and whether a linguistically-natural argu-
ment/modifier distinction can be induced
from distributional data alone. Our results
provide evidence for both hypotheses.

1 Introduction

A fundamental challenge facing the language
learner is to determine the content and structure
of the stored units in the lexicon. This problem is
made more difficult by the fact that many lexical
units have argument structure. Consider the verb
put. The sentence, John put the socks is incom-
plete; when hearing such an utterance, a speaker
of English will expect a location to also be speci-
fied: John put the socks in the drawer. Facts such
as these can be captured if the lexical entry for put
also specifies that the verb has three required ar-
guments: (i) who is doing the putting (ii) what is
being put (iii) and the destination of the putting.

The problem of acquiring argument structure is
further complicated by the fact that not all phrases
in a sentence fill an argument role. Instead, many
are modifiers. Consider the sentence John put the
socks in the drawer at 5 o’clock. The phrase at
5 o’clock occurs here with the verb put, but it is
not an argument. Removing this phrase does not
change the core structure of the PUTTING event,
nor is the sentence incomplete without this phrase.

The distinction between arguments and mod-
ifiers has a long history in traditional grammar
and is leveraged in many modern theories of syn-
tax (Haegeman, 1994; Steedman, 2001; Sag et
al., 2003). Despite the ubiquity of the distinc-
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Figure 1: The VP’s in these sentences only share
structure if we separate arguments from modifiers.

tion in syntax, however, there is a lack of consen-
sus on the necessary and sufficient conditions for
argumenthood (Schütze, 1995; Schütze and Gib-
son, 1999). It remains unclear whether the argu-
ment/modifier distinction is purely semantic or is
also represented in syntax, whether it is binary or
graded, and what effects argument/modifierhood
have on the distribution of linguistic forms.

In this work, we take a new approach to these
problems. We propose that the argument/modifier
distinction is inferred on a phrase–by–phrase basis
using probabilistic inference. Crucially, allowing
the learner to separate the core argument structure
of phrases from peripheral modifier content in-
creases the generalizability of argument construc-
tions. For example, the two sentences in Figure 1
intuitively share the same argument structures, but
this overlap can only be identified if the preposi-
tional phrase, “at 5 o’clock,” is treated as a modi-
fier. Thus representing the argument/modifier dis-
tinction can help the learner find useful argument
structures which generalize robustly.

Although, like the majority of theorists, we
agree that the argument/adjunct distinction is fun-
damentally semantic, in this work we focus on its
distributional correlates. Does the optionality of
modifier phrases help the learner acquire lexical
items with the right argument structure?

2 Approach

We adopt an approach where the lexicon consists
of an inventory of stored tree fragments. These
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tree fragments encode the necessary phrase types
(i.e., arguments) that must be present in a struc-
ture before it is complete. In this system, sen-
tences are generated by recursive substitution of
tree fragments at the frontier argument nodes of
other tree fragments. This approach extends work
on learning probabilistic Tree–Substitution Gram-
mars (TSGs) (Post and Gildea, 2009; Cohn et al.,
2010; O’Donnell, 2011; O’Donnell et al., 2011).1

To model modification, we introduce a second
structure–building operation, adjunction. While
substitution must be licensed by the existence
of an argument node, adjunction can insert con-
stituents into well–formed trees. Many syntactic
theories have made use of an adjunction operation
to model modification. Here, we adopt the variant
known as sister–adjunction (Rambow et al., 1995;
Chiang and Bikel, 2002) which can insert a con-
stituent as the sister to any node in an existing tree.

In order to derive the complete tree for a sen-
tence, starting from an S root node, we recursively
sample arguments and modifiers as follows.2 For
every nonterminal node on the frontier of our
derivation, we sample an elementary tree from our
lexicon to substitute into this node. As already
noted, these elementary trees represent the argu-
ment structure of our tree. Then, for each argu-
ment nonterminal on the tree’s interior, we sister–
adjoin one or more modifier nodes, which them-
selves are built by the same recursive process.

Figure 2 illustrates two derivations of the
same tree, one in standard TSG without sister–
adjunction, and one in our model. In the TSG
derivation, at top, an elementary tree with four ar-
guments – including the intuitively optional tem-
poral PP – is used as the backbone for the deriva-
tion. The four phrases filling these arguments
are then substituted into the elementary tree, as
indicated by arrows. In the bottom derivation,
which uses sister–adjunction, an elementary tree
with only three arguments is used as the back-
bone. While the right-most temporal PP needed
to be an argument of the elementary tree in the
TSG derivation, the bottom derivation uses sister–
adjunction to insert this PP as a child of the VP.
Sister–adjunction therefore allows us to use an ar-

1Note that we depart from many discussions of argument
structure in that we do not require that every stored fragment
has a head word. In effect, we allow completely abstract
phrasal constructions to also have argument structures.

2Our generative model is related to the generative model
for Tree–Adjoining Grammars proposed in (Chiang, 2000)
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Figure 2: The first part of the figure shows how
to derive the tree in TSG, while the second part
shows how to use sister-adjunction to derive the
same tree in our model.

gument structure that matches the true argument
structure of the verb “put.”

This figure illustrates how derivations in our
model can have a greater degree of generalizabil-
ity than those in a standard TSG. Sister–adjunction
will be used to derive children which are not part
of the core argument structure, meaning that a
greater variety of structures can be derived by a
combination of common argument structures and
sister-adjoined modifiers. Importantly, this makes
the learning problem for our model less sparse
than for TSGs; our model can derive the trees in a
corpus using fewer types of elementary trees than
a TSG. As a result, the distribution over these ele-
mentary trees is easier to estimate.

To understand what role modifiers play during
learning, we will develop a learning model that
can induce the lexicon and modifier contexts used
by our generative model.

3 Model

Our model extends earlier work on induction
of Bayesian TSGs (Post and Gildea, 2009;
O’Donnell, 2011; Cohn et al., 2010). The model
uses a Bayesian non–parametric distribution—the
Pitman-Yor Process, to place a prior over the lex-
icon of elementary trees. This distribution allows
the complexity of the lexicon to grow to arbitrary
size with the input, while still enforcing a bias for
more compact lexicons.
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For each nonterminal c, we define:

Gc|ac, bc, PE ∼ PYP(ac, bc, PE(·|c)) (1)

e|c,Gc ∼ Gc, (2)

where PE(·|c) is a context free distribution over
elementary trees rooted at c, and e is an elementary
tree.

The context-free distribution over elementary
trees PE(e|c) is defined by:

PE(e|c) =
∏

i∈I(e)
(1−sci)

∏

f∈F (e)

scf
∏

c′→α∈e
Pc′(α|c′),

(3)
where I(e) is the set of internal nodes in e, F (e) is
the set of frontier nodes, ci is the nonterminal cat-
egory associated with node i, and sc is the proba-
bility that we stop expanding at a node c. For this
paper, the parameters sc are set to 0.5.

In addition to defining a distribution over ele-
mentary trees, we also define a distribution which
governs modification via sister–adjunction. To
sample a modifier, we first decide whether or not
to sister–adjoin into location l in a tree. Following
this step, we sample a modifier category (e.g., a
PP) conditioned on the location l’s context: its par-
ent and left siblings. Because contexts are sparse,
we use a backoff scheme based on hierarchical
Dirichlet processes similar to the ngram backoff
schemes defined in (Teh, 2006; Goldwater et al.,
2006). Let c be a nonterminal node in a tree de-
rived by substitution into argument positions. The
node c will have n ≥ 1 children derived by ar-
gument substitution: d0, ..., dn. In order to sister–
adjoin between two of these children di, di+1, we
recursively sample nonterminals si,1, ..., si,k until
we hit a STOP symbol:

Pa(si,1, ..., si,k, STOP |C0) (4)

=
k∏

j=1

Pa(si,j |Cj) · (1− PCj (STOP ))

· PCk+1
(STOP )

where Cj = d1, s1,1, ..., di, si,1, ..., si,j−1, c is the
context for the j’th modifier between these chil-
dren. The distribution over sister–adjoined non-
terminals is defined using a hierarchical Dirichlet
process to implement backoff in a prefix tree over
contexts. We define the distribution G(ql, ..., q1)
over sister–adjoined nonterminals si,j given the
context ql, ..., q1 by:

G(ql, ..., q1) ∼ DP(α,G(ql−1, ..., q1)). (5)

The distribution G at the root of the hierarchy is
not conditioned on any prior context. We define G
by:

G ∼ DP(α,Multinomial(m)) (6)

where m is a vector with entries for each nonter-
minal, and where we sample m ∼ Dir(1,...,1).

To perform inference, we developed a local
Gibbs sampler which generalizes the one proposed
by (Cohn et al., 2010).

4 Results

We evaluate our model in two ways. First,
we examine whether representing the argu-
ment/modifier distinction increases the ability of
the model to learn highly generalizable elemen-
tary trees that can be used as argument structures
across a variety of sentences. Second, we ask
whether our model is able to induce the correct
argument/modifier distinction according to a lin-
guistic gold–standard. We trained our model on
sections 2–21 of the WSJ part of the Penn Tree-
bank (Marcus et al., 1999). The model was trained
on the trees in this corpus, without any further an-
notations for substitution or modification.

To address the first question, we compared the
structure of the grammar learned by our model to
a grammar learned by a version of our model with-
out sister–adjunction (i.e., a TSG similar to the
one used in Cohn et al.). Our model should find
more common structure among the trees in the in-
put corpus, and therefore it should learn a set of el-
ementary trees which are more complex and more
widely shared across sentences. We evaluated this
hypothesis by analyzing the average complexity
of the most probable elementary trees learned by
these models. As Table 1 shows, our model dis-
covers elementary trees that have greater depth
and more nodes than those found by the TSG. In
addition, our model accounts for a larger portion
of the corpus with fewer rules: the top 50, 100, and
200 most common elementary trees in our model’s
lexicon account for a greater portion of the corpus
than the corresponding sets in the TSG.

Figure 3 illustrates a representative example
from the corpus. By using sister-adjuntion to sepa-
rate the ADVP node from the rest of the sentence’s
derivation, our model was able to use a common
depth-3 elementary tree to derive the backbone of
the sentence. In contrast, the TSG cannot give the
same derivation, as it needs to include the ADVP
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Figure 3: Part of a derivation found by our model.

Model Rank Avg tree
depth

Avg tree
size

#Tokens

Modifier 50 1.59 3.42 97282
TSG 50 1.38 2.98 88023
Modifier 100 1.84 3.98 134205
TSG 100 1.58 3.38 116404
Modifier 200 1.97 4.27 170524
TSG 200 1.77 3.84 146040

Table 1: This table shows the average depth and
node count for elementary trees in our model and
the TSG. The results are shown for the 50, 100,
and 200 most frequent types of elementary trees.

node in the elementary tree; this wider elementary
tree is much less common in the corpus.

We next examined whether our model learned
to correctly identify modifiers in the corpus. Un-
fortunately, marking for argument/modifiers in the
Penn Treebank is incomplete, and is limited to
certain adverbials, e.g. locative and temporal
PP’s. To supplement this markup, we made use of
the corpus of (Kaeshammer and Demberg, 2012).
This corpus adds annotations indicating, for each
node in the Penn Treebank, whether that node is
a modifier. This corpus was compiled by com-
bining information from Propbank (Palmer et al.,
2005) with a set of heuristics, as well as the NP-
branching structures proposed in (Vadas and Cur-
ran, 2007). It is important to note that this corpus
can only serve as a rough benchmark for evalua-
tion of our model, as the heuristics used in its de-
velopment did not always follow the correct lin-
guistic analysis; the corpus was originally con-
structed for an alternative application in compu-
tational linguistics, for which non–linguistically–
natural analyses were sometimes convenient. Our
model was trained on this corpus, after it had been
stripped of argument/modifier annotations.

We compare our model’s performance to a ran-
dom baseline. Our model constrains every non-
terminal to have at least one argument child, and
our Gibbs sampler initializes argument/modifier
choices randomly subject to this constraint. We

Model Precision Recall #Guessed #Correct
Random 0.27 0.19 298394 82702
Modifier 0.62 0.15 108382 67516

Table 2: This table shows precision and recall in
identifying modifier nodes in the corpus.

therefore calculated the probability that a node
that was randomly initialized as a modifier was in
fact a modifier, i.e. the precision of random ini-
tialization. Next, we looked at the precision of
our model following training. Table 2 shows that
among nodes that were labeled as modifiers, 0.27
were labeled correctly before training and 0.62
were labeled correctly after. This table also shows
the recall performance for our model decreased by
0.04. Some of this decrease is due to limitations of
the gold standard; for example, our model learns
to classify infinitives and auxiliary verbs as argu-
ments — consistent with standard linguistic anal-
yses — whereas the gold standard classifies these
as modifiers. Future work will investigate how the
metric used for evaluation can be improved.

5 Summary

We have investigated the role of the argu-
ment/modifier distinction in learning. We first
looked at whether introducing this distinction
helps in generalizing from an input corpus.
Our model, which represents modification using
sister–adjunction, learns a richer lexicon than a
model without modification, and its lexicon pro-
vides a more compact representation of the in-
put corpus. We next looked at whether the tra-
ditional linguistic classification of arguments and
modifiers can be induced from distributional in-
formation. Without supervision from the correct
labelings of modifiers, our model learned to iden-
tify modifiers more accurately than chance. This
suggests that although the argument/modifier dis-
tinction is traditionally drawn without reference to
distributional properties, the distributional corre-
lates of this distinction are sufficient to partially
reconstruct it from a corpus. Taken together, these
results suggest that representing the difference be-
tween arguments and modifiers may make it easier
to acquire a language’s argument structure.
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Abstract

This paper presents an annotation scheme
for events that negatively or positively
affect entities (benefactive/malefactive
events) and for the attitude of the writer
toward their agents and objects. Work on
opinion and sentiment tends to focus on
explicit expressions of opinions. However,
many attitudes are conveyed implicitly,
and benefactive/malefactive events are
important for inferring implicit attitudes.
We describe an annotation scheme and
give the results of an inter-annotator
agreement study. The annotated corpus is
available online.

1 Introduction

Work in NLP on opinion mining and sentiment
analysis tends to focus on explicit expressions of
opinions. Consider, however, the following sen-
tence from the MPQA corpus (Wiebe et al., 2005)
discussed by (Wilson and Wiebe, 2005):

(1) I think people are happy because
Chavez has fallen.

The explicit sentiment expression, happy, is pos-
itive. Yet (according to the writer), the people
are negative toward Chavez. As noted by (Wil-
son and Wiebe, 2005), the attitude toward Chavez
is inferred from the explicit sentiment toward the
event. An opinion-mining system that recognizes
only explicit sentiments would not be able to per-
ceive the negative attitude toward Chavez con-
veyed in (1). Such inferences must be addressed
for NLP systems to be able to recognize the full
range of opinions conveyed in language.

The inferences arise from interactions be-
tween sentiment expressions and events such as
fallen, which negatively affect entities (malefac-
tive events), and events such as help, which pos-
itively affect entities (benefactive events). While
some corpora have been annotated for explicit
opinion expressions (for example, (Kessler et
al., 2010; Wiebe et al., 2005)), there isn’t a
previously published corpus annotated for bene-
factive/malefactive events. While (Anand and
Reschke, 2010) conducted a related annotation
study, their data are artificially constructed sen-
tences incorporating event predicates from a fixed
list, and their annotations are of the writer’s
attitude toward the events. The scheme pre-
sented here is the first scheme for annotating, in
naturally-occurring text, benefactive/malefactive
events themselves as well as the writer’s attitude
toward the agents and objects of those events.

2 Overview

For ease of communication, we use the terms
goodFor and badFor for benefactive and malefac-
tive events, respectively, and use the abbreviation
gfbf for an event that is one or the other. There are
many varieties of gfbf events, including destruc-
tion (as in kill Bill, which is bad for Bill), cre-
ation (as in bake a cake, which is good for the
cake), gain or loss (as in increasing costs, which
is good for the costs), and benefit or injury (as in
comforted the child, which is good for the child)
(Anand and Reschke, 2010).

The scheme targets clear cases of gfbf events.
The event must be representable as a triple of con-
tiguous text spans, 〈agent, gfbf, object〉. The
agent must be a noun phrase, or it may be implicit
(as in the constituent will be destroyed). The ob-
ject must be a noun phrase.
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Another component of the scheme is the influ-
encer, a word whose effect is to either retain or
reverse the polarity of a gfbf event. For example:

(2) Luckily Bill didn’t kill him.
(3) The reform prevented companies
from hurting patients.
(4) John helped Mary to save Bill.

In (2) and (3), didn’t and prevented, respectively,
reverse the polarity from badFor to goodFor (not
killing Bill is good for Bill; preventing companies
from hurting patients is good for the patients). In
(4), helped is an influencer which retains the polar-
ity (i.e., helping Mary to save Bill is good for Bill).
Examples (3) and (4) illustrate the case where an
influencer introduces an additional agent (reform
in (3) and John in (4)).

The agent of an influencer must be a noun
phrase or implicit. The object must be another in-
fluencer or a gfbf event.

Note that, semantically, an influencer can be
seen as good for or bad for its object. A reverser
influencer makes its object irrealis (i.e., not hap-
pen). Thus, it is bad for it. In (3), for example,
prevent is bad for the hurting event. A retainer in-
fluencer maintains its object, and thus is good for
it. In (4), for example, helped maintains the sav-
ing event. For this reason, influencers and gfbf
events are sometimes combined in the evaluations
presented below (see Section 4.2).

Finally, the annotators are asked to mark the
writer’s attitude towards the agents of the influ-
encers and gfbf events and the objects of the gfbf
events. For example:

(5) GOP Attack on Reform Is a Fight
Against Justice.
(6) Jettison any reference to end-of-life
counselling.

In (5), there are two badFor events: 〈GOP, Attack
on, Reform〉 and 〈GOP Attack on Reform,Fight
Against, Justice〉. The writer’s attitude toward
both agents is negative, and his or her attitude
toward both objects is positive. In (6), the
writer conveys a negative attitude toward end-of-
life counselling. The coding manual instructs the
annotators to consider whether an attitude of the
writer is communicated or revealed in the particu-
lar sentence which contains the gfbf event.

3 Annotation Scheme

There are four types of annotations: gfbf event,
influencer, agent, and object. For gfbf events, the
agent, object, and polarity (goodFor or badFor) are
identified. For influencers, the agent, object and
effect (reverse or retain) are identified. For agents
and objects, the writer’s attitude is marked (posi-
tive, negative, or none). The annotator links agents
and objects to their gfbf and influencer annotations
via explicit IDs. When an agent is not mentioned
explicitly, the annotator should indicate that it is
implicit. For any span the annotator is not certain
about, he or she can set the uncertain option to be
true.

The annotation manual includes guidelines to
help clarify which events should be annotated.

Though it often is, the gfbf span need not be a
verb or verb phrase. We saw an example above,
namely (5). Even though attack on and fight
against are not verbs, we still mark them because
they represent events that are bad for the object.
Note that, Goyal et al. (2012) present a method for
automatically generating a lexicon of what they
call patient polarity verbs. Such verbs correspond
to gfbf events, except that gfbf events are, concep-
tually, events, not verbs, and gfbf spans are not
limited to verbs (as just noted).

Recall from Section 2 that annotators should
only mark gfbf events that may be represented as a
triple, 〈agent,gfbf,object〉. The relationship should
be perceptible by looking only at the spans in the
triple. If, for example, another argument of the
verb is needed to perceive the relationship, the an-
notators should not mark that event.

(7) His uncle left him a massive amount
of debt.
(8) His uncle left him a treasure.

There is no way to break these sentences into
triples that follow our rules. 〈His uncle, left, him〉
doesn’t work because we cannot perceive the po-
larity looking only at the triple; the polarity de-
pends on what his uncle left him. 〈His uncle, left
him, a massive amount of debt〉 isn’t correct: the
event is not bad for the debt, it is bad for him. Fi-
nally, 〈His uncle, left him a massive amount of
debt, Null〉 isn’t correct, since no object is iden-
tified.

Note that him in (7) and (8) are both consid-
ered benefactive semantic roles (Zúñiga and Kit-
tilä, 2010). In general, gfbf objects are not equiva-
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lent to benefactive/malefactive semantic roles. For
example, in our scheme, (7) is a badFor event and
(8) is a goodFor event, while him fills the benefac-
tive semantic role in both. Further, according to
(Zúñiga and Kittilä, 2010), me is the filler of the
benefactive role in She baked a cake for me. Yet,
in our scheme, a cake is the object of the good-
For event; me is not included in the annotations.
The objects of gfbf events are what (Zúñiga and
Kittilä, 2010) refer to as the primary targets of the
events, whereas, they state, beneficiary semantic
roles are typically optional arguments. The reason
we annotate only the primary objects (and agents)
is that the clear cases of attitude implicatures mo-
tivating this work (see Section 1) are inferences
toward agents and primary objects of gfbf events.

Turning to influencers, there may be chains of
them, where the ultimate polarity and agent must
be determined compositionally. For example, the
structure of Jack stopped Mary from trying to kill
Bill is a reverser influencer (stopped) whose object
is a retainer influencer (trying) whose object is, in
turn, a badFor event (kill). The ultimate polarity of
this event is goodFor and the “highest level” agent
is Jack. In our scheme, all such chains of lengthN
are treated as N − 1 influencers followed by a sin-
gle gfbf event. It will be up to an automatic system
to calculate the ultimate polarity and agent using
rules such as those presented in, e.g., (Moilanen
and Pulman, 2007; Neviarouskaya et al., 2010).

To save some effort, the annotators are not
asked to mark retainer influencers which do not in-
troduce new agents. For example, for Jack stopped
trying to kill Bill, there is no need to mark “trying.”
Of course, all reverser influencers must be marked.

4 Agreement Study

To validate the reliability of the annotation
scheme, we conducted an agreement study. In this
section we introduce how we designed the agree-
ment study, present the evaluation method and
give the agreement results. Besides, we conduct
a second-step consensus study to further analyze
the disagreement.

4.1 Data and Agreement Study Design

For this study, we want to use data that is rich in
opinions and implicatures. Thus we used the cor-
pus from (Conrad et al., 2012), which consists of
134 documents from blogs and editorials about a
controversial topic, “the Affordable Care Act”.

To measure agreement on various aspects of
the annotation scheme, two annotators, who are
co-authors, participated in the agreement study;
one of the two wasn’t involved in developing the
scheme. The new annotator first read the anno-
tation manual and discussed it with the first an-
notator. Then, the annotators labelled 6 docu-
ments and discussed their disagreements to recon-
cile their differences. For the formal agreement
study, we randomly selected 15 documents, which
have a total of 725 sentences. These documents do
not contain any examples in the manual, and they
are different from the documents discussed during
training. The annotators then independently anno-
tated the 15 selected documents.

4.2 Agreement Study Evaluation

We annotate four types of items (gfbf event, influ-
encer, agent, and object) and their corresponding
attributes. As noted above in Section 2, influencers
can also be viewed as gfbf events. Also, the two
may be combined together in chains. Thus, we
measure agreement for gfbf and influencer spans
together, treating them as one type. Then we
choose the subset of gfbf and influencer annota-
tions that both annotators identified, and measure
agreement on the corresponding agents and ob-
jects.

Sometimes the annotations differ even though
the annotators recognize the same gfbf event.
Consider the following sentence:

(9) Obama helped reform curb costs.

Suppose the annotations given by the annotators
were:

Ann 1. 〈Obama, helped, curb〉
〈reform, curb, costs〉

Ann 2. 〈Obama, helped, reform〉

The two annotators do agree on the 〈Obama,
helped, reform〉 triple, the first one marking helped
as a retainer and the other marking it as a goodFor
event. To take such cases into consideration in our
evaluation of agreement, if two spans overlap and
one is marked as gfbf and the other as influencer,
we use the following rules to match up their agents
and objects:

• for a gfbf event, consider its agent and object
as annotated;
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• for an influencer, assign the agent of the in-
fluencer’s object to be the influencer’s object,
and consider its agent as annotated and the
newly-assigned object. In (9), Ann 2’s anno-
tations remain the same and Ann 1’s become
〈Obama, helped, reform〉 and 〈reform, curb,
costs〉.

We use the same measurement for agreement
for all types of spans. Suppose A is a set of an-
notations of a particular type and B is the set of
annotations of the same type from the other anno-
tator. For any text span a ∈ A and b ∈ B, the span
coverage c measures the overlap between a and b.
Two measures of c are adopted here.

Binary: As in (Wilson and Wiebe, 2003), if two
spans a and b overlap, the pair is counted as 1,
otherwise 0.

c1(a, b) = 1 if |a ∩ b| > 0

Numerical: (Johansson and Moschitti, 2013)
propose, for the pairs that are counted as 1 by c1, a
measure of the percentage of overlapping tokens,

c2(a, b) =
|a ∩ b|
|b|

where |a| is the number of tokens in span a, and ∩
gives the tokens that two spans have in common.
As (Breck et al., 2007) point out, c2 avoids the
problem of c1, namely that c1 does not penalize a
span covering the whole sentence, so it potentially
inflates the results.

Following (Wilson and Wiebe, 2003), treat-
ing each set A and B in turn as the gold-
standard, we calculate the average F-measure, de-
noted agr(A,B). agr(A,B) is calculated twice,
once with c = c1 and once with c = c2.

match(A,B) =
∑

a∈A,b∈B,
|a∩b|>0

c(a, b)

agr(A||B) =
match(A,B)

|B|

agr(A,B) =
agr(A||B) + agr(B||A)

2

Now that we have the sets of annotations on
which the annotators agree, we use κ (Artstein
and Poesio, 2008) to measure agreement for the
attributes. We report two κ values: one for the
polarities of the gfbf events, together with the ef-
fects of the influencers, and one for the writer’s

gfbf & agent object
influencer

all anno- c1 0.70 0.92 1.00
tations c2 0.69 0.87 0.97
only c1 0.75 0.92 1.00
certain c2 0.72 0.87 0.98
consensus c1 0.85 0.93 0.99
study c2 0.81 0.88 0.98

Table 1: Span overlapping agreement agr(A,B)
in agreement study and consensus study.

polarity & effect attitude
all 0.97 0.89
certain 0.97 0.89

Table 2: κ for attribute agreement.

attitude toward the agents and objects. Note that,
as in Example (9), sometimes one annotator marks
a span as gfbf and the other marks it as an influ-
encer; in such cases we regard retain and goodfor
as the same attribute value and reverse and badfor
as the same value. Table 1 gives the agr values
and Table 2 gives the κ values.

4.3 Agreement Study Results

Recall that the annotator could choose whether
(s)he is certain about the annotation. Thus, we
evaluate two sets: all annotations and only those
annotations that both annotators are certain about.
The results are shown in the top four rows in Table
1.

The results for agents and objects in Table 1 are
all quite good, indicating that, given a gfbf or in-
fluencer, the annotators are able to correctly iden-
tify the agent and object.

Table 1 also shows that results are not signifi-
cantly worse when measured using c2 rather than
c1. This suggests that, in general, the annotators
have good agreement concerning the boundaries
of spans.

Table 2 shows that the κ values are high for both
sets of attributes.

4.4 Consensus Analysis

Following (Medlock and Briscoe, 2007), we ex-
amined what percentage of disagreement is due to
negligence on behalf of one or the other annota-
tor (i.e., cases of clear gfbfs or influencers that
were missed), though we conducted our consensus
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study in a more independent manner than face-to-
face discussion between the annotators. For anno-
tator Ann1, we highlighted sentences for which
only Ann2 marked a gfbf event, and gave Ann1’s
annotations back to him or her with the highlights
added on top. For Ann2 we did the same thing.
The annotators reconsidered their highlighted sen-
tences, making any changes they felt they should,
without communicating with each other. There
could be more than one annotation in a highlighted
sentence; the annotators were not told the specific
number.

After re-annotating the highlighted sentences,
we calculate the agreement score for all the an-
notations. As shown in the last two rows in Table
1, the agreement for gfbf and influencer annota-
tions increases quite a bit. Similar to the claim
in (Medlock and Briscoe, 2007), it is reasonable
to conclude that the actual agreement is approx-
imately lower bounded by the initial values and
upper bounded by the consensus values, though,
compared to face-to-face consensus, we provide a
tighter upper bound.

5 Corpus and Examples

Recall from in Section 4.1 that we use the corpus
from (Conrad et al., 2012), which consists of 134
documents with a total of 8,069 sentences from
blogs and editorials about “the Affordable Care
Act”. There are 1,762 gfbf and influencer annota-
tions. On average, more than 20 percent of the sen-
tences contain a gfbf event or an influencer. Out of
all gfbf and influencer annotations, 40 percent are
annotated as goodFor or retain and 60 percent are
annotated as badFor or reverse. For agents and ob-
jects, 52 percent are annotated as positive and 47
percent as negative. Only 1 percent are annotated
as none, showing that almost all the sentences (in
this corpus of editorials and blogs) which con-
tain gfbf annotations are subjective. The annotated
corpus is available online1.

To illustrate various aspects of the annotation
scheme, in this section we give several examples
from the corpus. In the examples below, words
in square brackets are agents or objects, words in
italics are influencers, and words in boldface are
gfbf events.

1. And [it] will enable [Obama and the
Democrats] - who run Washington - to get

1http://mpqa.cs.pitt.edu/

back to creating [jobs].
(a) Creating is goodFor jobs; the agent is
Obama and the Democrats.
(b) The phrase to get back to is a retainer in-
fluencer. But, the agent span is also Obama
and the Democrats, as the same with the
goodFor, so we don’t have to give an anno-
tation for it.
(c) The phrase enable is a retainer influencer.
Since its agent span is different (namely, it),
we do create an annotation for it.

2. [Repealing [the Affordable Care Act]] would
hurt [families, businesses, and our econ-
omy].
(a) Repealing is a badFor event since it de-
prives the object, the Affordable Care Act, of
its existence. In this case the agent is implicit.
(b) The agent of the badFor event hurt is the
whole phrase Repealing the Affordable Care
Act. Note that the agent span is in fact a noun
phrase (even though it refers to an event).
Thus, it doesn’t break the rule that all agent
gfbf spans should be noun phrases.

3. It is a moral obligation to end this indefensi-
ble neglect of [hard-working Americans].
(a) This example illustrates a gfbf that cen-
ters on a noun (neglect) rather than on a verb.
(b) It also illustrates the case when two words
can be seen as gfbf events: both end and ne-
glect of can be seen as badFor events. Fol-
lowing our specification, they are annotated
as a chain ending in a single gfbf event: end
is an influencer that reverses the polarity of
the badFor event neglect of.

6 Conclusion

Attitude inferences arise from interactions
between sentiment expressions and benefac-
tive/malefactive events. Corpora have been
annotated in the past for explicit sentiment ex-
pressions; this paper fills in a gap by presenting
an annotation scheme for benefactive/malefactive
events and the writer’s attitude toward the agents
and objects of those events. We conducted an
agreement study, the results of which are positive.
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Abstract 

This paper attempts to use an off-the-shelf 
anaphora resolution (AR) system for Bengali. 
The language specific preprocessing modules 
of GuiTAR (v3.0.3) are identified and suitably 
designed for Bengali. Anaphora resolution 
module is also modified or replaced in order to 
realize different configurations of GuiTAR. 
Performance of each configuration is evaluat-
ed and experiment shows that the off-the-shelf 
AR system can be effectively used for Indic 
languages.  

1 Introduction 

Little computational linguistics research has been 
done for anaphora resolution (AR) in Indic lan-
guages. Notable research efforts in this area are 
conducted by Shobha et al. (2000), Prasad et al. 
(2000), Jain et al. (2004), Agrawal et al. (2007), 
Uppalapu et al. (2009). These works address AR 
problem in language like Hindi, some South In-
dian languages including Tamil. Dhar et al. 
(2008) reported a research on Bengali. Progress 
of the research through these works was difficult 
to quantify as most of the authors used their self-
generated datasets and in some cases algorithms 
lack in required details to make them reproduci-
ble.  

First rigorous effort was taken in ICON 2011 
(ICON 2011) where a shared task was conducted 
on AR in  three Indic languages (Hindi, Bengali, 
and Tamil). Training and test datasets were pro-
vided, both the machine learning (WEKA and 
SVM based classification) and rule-based ap-
proaches are used and the participating systems 
(4 teams for Bengali, and 2 teams each for Hindi 
and Tamil) were evaluated using five different 
metrics (MUC, B3, CEAFM, CEAFE, and 
BLANC). However, no team attempted to reuse 
any of the off-the-shelf AR systems. This paper 
aims to explore this issue to investigate how far 
useful such a system is for AR in Indic lan-
guages. Bengali has been taken as the reference 

language and GuiTAR (Poesio, 2004) has been 
considered as the reference off-the-shelf system.    

GuiTAR is primarily designed for English 
language and therefore, its direct application for 
Bengali is not possible for grammatical varia-
tions and resource limitations. Therefore, the 
central contribution of this paper is to develop 
required resources for Bengali and thereby 
providing them to GuiTAR for anaphora resolu-
tion. Our contribution also includes extension of 
the ICON2011 AR dataset for Bengali so that 
evaluation could be done on a bigger sized da-
taset. Finally, GuiTAR anaphora resolution 
module is replaced by a previously developed 
approach (which is primarily rule-based, 
Senapati, 2011; Senapati, 2012a) and perfor-
mances of different configurations are compared.     

2 Language specific issues in GuiTAR 

GuiTAR has two major modules namely, prepro-
cessing and anaphora resolution (Kabadjov, 
2007). In both of these modules modifications 
are required to fit it to Bengali. Let's first identify 
the components in both of these two modules 
where replacement/modifications are needed.  
Pre-processing:  The purpose of this module is 
to make GuiTAR independent from input format 
specifications and variations. It takes as input in 
XML or text format. In case of text input, XML 
file generated by the LT-XML tool. The XML 
file contains the information like word bounda-
ries (tokens), grammatical classes (part-of-
speech), and chunking information. From the 
XML format MAS-XML (Minimum Anaphoric 
Syntax - XML) is produced to include minimal 
information namely, noun phrase boundaries, 
utterance boundaries, categories of pronoun, 
number information, gender information, etc.  
All these aspects are to be addressed for Bengali 
so that for a given input discourse in Bengali, 
MAS-XML file can be generated correctly. Next 
section explains how this issue.     
Anaphora resolution: The GuiTAR system re-
solves four types of anaphoras. The pronouns 
(personal and possessive) are resolved by using 
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an implementation of MARS (Mitkov, 2002), 
whereas different algorithms are used for resolv-
ing definite descriptions, and proper nouns. In 
Mitkov’s algorithm whenever a pronoun is to be 
resolved, it finds a list of potential antecedents 
within a given ‘window’ and checks three types 
of syntactic agreements (i.e., person, number and 
gender) between an antecedent and the pronoun. 
In case of more than one potential antecedent 
exists in the list it would be recursively filtered 
applying sequentially five different antecedent 
indicators (aggregate score, immediate reference, 
collocational pattern, indicating verbs and refer-
ential distance) until there is only one element in 
the list, i.e., the selected antecedent. We intro-
duce suitable modifications in this module so 
that the same implementation of MARS can 
work for Bengali. This is explained in Sec. 4.    

3 Bengali NLP Resources 

Pronouns in Bengali has been studied before 
(linguistically by Majumdar, 2000; Sengupta, 
2000 and for computational linguistics: Senapati, 
2012a). Table-1 categorizes all pronouns (522 in 
number) available in Bengali as observed in a 
corpus (Bengali corpus, undated) of 35 million 
words.  
          

Category Permissible Pronouns 
Honorific Singular 

তাঁর,তাঁেক, িতিন, তাঁরই, িতিনই,.. 
Honorific Plural    

তাঁরা, তাঁরাই, যাঁরা, উনারা,.. 
1st Person Singular    

আিম, আমােক, ĺমার,.. 
1st Person Plural    

আমরা, আমােদরেক, ĺমােদর,.. 
2nd Person Singular   

ĺতার, ĺতামার, আপনার,.. 
2nd Person Plural 

ĺতারা, ĺতামরা, আপনারা,.. 
3rd Person Singular    

এ, এর, ও, ĺস, তারও, তার,..  
3rd Person Plural 

এরা, ওরা, তারা, তােদর,..  
Reflexive Pronoun 

িনেজ, িনেজই, িনেজেক, িনেজর,.. 
 

Table 1: Language resource 

3.1 Number Acquisition for Nouns  
In Bengali, a set of nominal suffixes 
(Bhattacharya, 1993) (inflections and classifier) 
are used to recognize the number (singu-
lar/plural) of noun. To identify the number of a 
noun, we check whether any of the nominal suf-
fixes (indicating plurality) are attached with the 
noun. If found, the number of the noun is tagged 

as plural. From the corpus, we identified 17 such 
suffixes (e.g. ĺদর /der, রা /ra, িদেগর /diger, িদগেক 
/digke, গুিল /guli, etc.) which are used for number 
acquisition for nouns.   

3.2 Honorificity of Nouns 
The honorific agreement exists in Bengali. 
Honorificity of a noun is indicated by a word or 
expression with connotations conveying esteem 
or respect when used in addressing or referring to 
a person. In Bengali three degree of honorificity 
are observed for the second person and two for 
the third person (Majumdar, 2000; Sengupta, 
2000). The second and third person pronouns 
have distinct forms for different degrees of 
honorificity. Honorificity information is applica-
ble for proper nouns (person) and nouns indicat-
ing relations like father, mother, teacher, etc.  

The honorificity information is identified by 
maintaining a list of terms which can be consid-
ered as honorific addressing terms (e.g. 
ভƲেলাক/bhadrolok, বাবু/babu, ডঃ/Dr., 
মহাশয়/mohashoy, ডা./Dr.,  etc.). About 20 such 
terms are there in the list and we get these terms 
from analysis of the Bengali corpus. When these 
terms are used to add honorificity of a noun they 
appear either before or after the noun. Another 
additional way for identifying the honorificity 
information is to look at the inflection of the 
main verb which is inflected with ন/n (i.e. 
বেলন/bolen, কেরন/koren etc.).  

Honorificity is extracted during the pre-
processing phase and added with the attribute 
hon = <value>. The value is set ‘sup’ (superior 
i.e. highest degree of honor), ‘neu’ (neutral i.e. 
medium degree of honor) or ‘inf’ (inferior i.e. 
lowest degree of honor) based on their degree of 
honorificity.  For pronouns, this information is 
available from the pronoun list (honorific singu-
lar and honorific plural) as shown in Table-1.   

4 GuiTAR for Bengali 

The following sections explain the modifications 
needed to configure GuiTAR for Bengali. 

4.1 GuiTAR Preprocessing for Bengali 
For getting part-of-speech information, the Stan-
ford POS tagger has been retrained for Bengali 
language. The tagger is trained with about tagged 
10,000 sentences and is found to produce about 
92% accuracy while tested on 2,000 sentences. A 
rule based Bengali chunker (De, 2011) is used to 
get chunking information. NEIs and their classes 
(person, location, and organization) are tagged 
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manually (we did not get any Bengali NEI tool). 
After adding all these information, the input text 
is formatted into GuiTAR specified input XML 
file and is converted into MAS-XML. This file 
contains other syntactic information: person, 
types of pronouns, number and honorificity. In-
formation on person and types of pronouns 
comes from Table-1. Number and honorificity 
are identified as explained before. Gender infor-
mation has little role in Bengali anaphora resolu-
tion and hence is not considered. Types of pro-
nouns are taken from Table-1.   

4.2 GuiTAR-based Pronoun Resolution for 
Bengali 

GuiTAR resolves pronouns using MARS ap-
proach (Mitkov, 2002) that makes use of several 
agreements (based on person, number and gen-
der). Certain changes are required here as gender 
agreement has no role. This agreement has been 
replaced by the honorific agreement. Moreover, 
the way pronouns are divided in MARS imple-
mentation is not always relevant for Bengali pro-
nouns. For example, we do not differentiate be-
tween personal and possessive pronouns but they 
are separately treated in MARS. In our case, we 
have only considered the personal and reflexive 
pronouns while applying MARS based imple-
mentation for anaphora resolution. 

In case of more than one antecedent found, 
GuiTAR resolves it by using five antecedent in-
dicators namely, aggregate score, immediate ref-
erence, collocational pattern, indicating verbs 
and referential distance. For Bengali, the indicat-
ing verb indicator has no role in filtering the an-
tecedents and hence removed.  

5 Data and data format 

To evaluate the configured GuiTAR system the 
dataset provided by ICON 2011(ICON 2011) has 
been used. They provided annotated data (POS 
tagged, chunked and name entity tagged) for 
three Indian languages including Bengali. The 
annotated data is represented by a column format. 
Figure 1 shows a sample of the annotated data 
and the details description of the data is given in 
Table - 2.  
 

 
Figure 2. ICON 2011 data format.  

We have changed this format into GuiTAR spec-
ified XML format and finally checked/corrected 
manually. GuiTAR Preprocessor converts this 
XML into MAS-XML which looks like some-
thing as shown in Figure 3.   
 

 
Figure 3. Sample GuiTAR MAS-XML file for 

Bengali text.  
 

Column  Type  Description 
1 Document Id Contains the file-

name  
2 Part number File are divided 

into part numbered  
3 Word num-

ber 
Word index in the 
sentence 

4 Word  Word itself 
4 POS POS of the word 
5 Chunking Chunking infor-

mation using IOB 
format 

6 NE tags Name Entity In-
formation is given 

7 Description Description 
8 Co-reference Co-reference  

information 

Table 2: Description of ICON 2011 data format 
 

The ICON 2011 data contains nine texts from 
different domains (Tourism, Story, News article, 
Sports). We have extended this dataset by adding 
four more texts in the same format. Among these 
four pieces, three are short stories and one is tak-
en from newspaper articles. Table 3 shows the 
distribution of pronouns in the whole test data set 
for Bengali. 

 
Data ICON2011 Extended  
#text 9 4 
#words 22,531 4,923 
#pronouns 1,325 322 
#anaphoric 1,019 253 

Table 3: Coverage of ICON 2011 dataset 
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6 Evaluation  

The modified GuiTAR system has been evaluat-
ed by the dataset as described above. The dataset 
contains 1647 pronouns out of them 706 are per-
sonal pronouns (including reflexive pronouns). 
As the MARS in GuiTAR resolves only personal 
pronouns, we have used only these personal pro-
nouns for evaluation. Three different systems are 
configured as described below:  
System-1 (Baseline): A baseline system is con-
figured by considering the most recent noun 
phrase as the referent of a pronoun (the first noun 
phrase in the backward direction is the anteced-
ent of a pronoun).  
System-2 (GuiTAR with MARS): In this config-
uration, GuiTAR is used with the modifications 
(as described in Sec. 4.1) in its preprocessing 
module and the modified MARS (as described in 
Sec. 4.2) is used for pronominal anaphora resolu-
tion (PAR). 
System-3 (GuiTAR with new a PAR module): 
Under this configuration, GuiTAR is used with 
the modifications (as described in Sec. 4.1) in its 
pre-processing module but MARS is replaced by 
a previously developed system (Senapati, 2011; 
Senapati, 2012a) for pronominal anaphora reso-
lution in Bengali. This is basically a rule-based 
system. For every noun phrase (i.e. a possible 
antecedent) the method first maintains a list of 
possible pronouns which the antecedent could 
attach with (note that any noun phrase cannot be 
referred by any pronoun). On encountering a 
pronoun, the method searches for the antecedents 
for which the pronoun is in the respective pro-
noun-lists. If there is more than one such ante-
cedent, a set of rules is applied to resolve. The 
approach for applying the rules is similar to the 
one proposed by Baldwin (1997).    

The evaluation has used five metrics namely, 
MUC, B3, CEAFM, CEAFE and BLANC.  The 
experimental results are reported in Table 4. Re-
sults show that GuiTAR with MARS gives better 
result than the situation where the most recent 
antecedent is picked (i.e. the baseline system). 
This improvement is statistically significant 
(p<0.03 in a two-sided t-test). When MARS is 
replaced by system-3, further improvement is 
achieved which is also statistically significant 
(p<0.01). 

6.1 Error analysis 
Analysis of errors shows that errors in number 
acquisition and identification of the honorificity 
are two major errors during preprocessing phase. 

These errors propagate and result in further er-
rors during resolution. Resolution process itself 
introduces some new errors. For example, some 
Bengali personal pronouns are ambiguous 
(sometimes they are anaphoric whereas in other 
cases they may appear as non-anaphoric too). 
তার/tar, ĺস/se are two examples of such pronouns 
in Bengali (Senapati, 2012b) and the present res-
olution system is not able to resolve such cases.       

 System System-1 
(Baseline)  

GuiTAR 
Metric System-2 

(MARS) 
Sys-
tem-3 

 
MUC 

P 0.453 0.516 0.538 
R 0.550 0.536 0.579 
F1 0.497 0.526 0.558 

 
B3 

P 0.766 0.828 0.921 
R 0.771 0.824 0.911 
F1 0.769 0.826 0.916 

 
CEAFM 

P 0.785 0.800 0.885 
R 0.632 0.622 0.784 
F1 0.700 0.700 0.832 

 
CEAFE 

P 0.797 0.825 0.921 
R 0.552 0.571 0.731 
F1 0.652 0.675 0.815 

 
BLANC 

P 0.688 0.700 0.732 
R 0.735 0.736 0.741 
F1 0.711 0.718 0.736 

Avg. F1 0.666 0.689 0.771 

Table 4: Experimental results 

7 Conclusion 

The present experiment shows that GuiTAR 
which is one of the off-the-shelf anaphora resolu-
tion systems can be effectively configured for 
Bengali. Basic NLP information required by 
GuiTAR pre-processing module has been sup-
plied mostly through automatic tools. A suitable 
tool is needed for NEI in Bengali. This can be 
explored in future. It is also revealed that MARS 
based implementation in GuiTAR is not very 
suitable for Bengali because the antecedent indi-
cators used by MARS are probably not very ef-
fective for Bengali. Suitably designed rule based 
system could produce better result as shown in 
the experiment. Addition of other resolution al-
gorithms is definitely a future extension of this 
study. Resolution of non-personal pronouns 
(which were not considered here) would be ad-
dressed next. In future, the similar experiment 
can be easily extended to other Indic languages 
(especially for Hindi and Tamil for which anno-
tated data is available).  
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Abstract

How good are automatic content metrics
for news summary evaluation? Here we
provide a detailed answer to this question,
with a particular focus on assessing the
ability of automatic evaluations to identify
statistically significant differences present
in manual evaluation of content. Using
four years of data from the Text Analysis
Conference, we analyze the performance
of eight ROUGE variants in terms of ac-
curacy, precision and recall in finding sig-
nificantly different systems. Our exper-
iments show that some of the neglected
variants of ROUGE, based on higher or-
der n-grams and syntactic dependencies,
are most accurate across the years; the
commonly used ROUGE-1 scores find
too many significant differences between
systems which manual evaluation would
deem comparable. We also test combina-
tions of ROUGE variants and find that they
considerably improve the accuracy of au-
tomatic prediction.

1 Introduction

ROUGE (Lin, 2004) is a suite of automatic eval-
uations for summarization and was introduced a
decade ago as a reasonable substitute for costly
and slow human evaluation. The scores it pro-
duces are based on n-gram or syntactic overlap be-
tween an automatic summary and a set of human
reference summaries. However, the field does not
have a good grasp of which of the many evalua-
tion scores is most accurate in replicating human
judgements. This state of uncertainty has led to
problems in comparing published work, as differ-

ent researchers choose to publish different variants
of scores.

In this paper we reassess the strengths of
ROUGE variants using the data from four years
of Text Analysis Conference (TAC) evaluations,
2008 to 2011. To assess the performance of the au-
tomatic evaluations, we focus on determining sta-
tistical significance1 between systems, where the
gold-standard comes from comparing the systems
using manual pyramid and responsiveness evalu-
ations. In this setting, computing correlation co-
efficients between manual and automatic scores is
not applicable as it does not take into account the
statistical significance of the differences nor does
it allow the use of more powerful statistical tests
which use pairwise comparisons of performance
on individual document sets. Instead, we report
on the accuracy of decisions on pairs of systems,
as well as the precision and recall of identifying
pairs of systems which exhibit statistically signifi-
cant differences in content selection performance.

2 Background

During 2008–2011, automatic summarization sys-
tems at TAC were required to create 100-word
summaries. Each year there were two multi-
document summarization sub-tasks, the initial
summary and the update summary, usually re-
ferred to as task A and task B, respectively. The
test inputs in each consisted of about 10 docu-
ments and the type of summary varied between
query-focused and guided. There are between 44
and 48 test inputs on which systems are compared
for each task.

In 2008 and 2009, task A was to produce a
1For the purpose of this study, we define a difference as

significant when the test statistic attains a value correspond-
ing to a p-value less than 0.05.
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query-focused summary in response to a user in-
formation need stated both as a brief statement
and a paragraph-long description of the informa-
tion the user seeks to find. In 2010 and 2011 task
A was “guided summarization”, where the test in-
puts came from a small set of predefined domains.
These domains included accidents and natural dis-
asters, attacks, health and safety, endangered re-
sources, investigations and trials. Systems were
provided with a list of important aspects of infor-
mation for each domain and were asked to cover as
many of these aspects as possible. The writers of
the reference summaries for evaluation were given
similar instructions. In all four years, task B was
to produce an update summary for each of the in-
puts given in task A (query-focused or guided). In
each case, a new, subsequent set of documents re-
lated to the topic of the respective test set for task
A was provided to the system. The task was to
generate an update summary aimed at a user who
has already read all documents in the inputs for
task A.

The two manual evaluation approaches used in
TAC 2008–2011 are modified pyramid (Nenkova
et al., 2007) and overall responsiveness. The pyra-
mid method requires several reference summaries
for each input. These are manually analyzed to
discover content units based on meaning rather
than specific wording. Each content unit is as-
signed a weight equal to the number of reference
summaries that included that content unit. The
modified pyramid score is defined as the sum of
weights of the content units in the summary nor-
malized by the weight of an ideally informative
summary which expresses n content units, where
n is equal to the average of content units in the ref-
erence summaries. Responsiveness, on the other
hand, is based on direct human judgements, with-
out the need for reference summaries. Assessors
are presented with a statement of the user’s infor-
mation need and the summary they need to evalu-
ate. Then they rate how well they think the sum-
mary responds to the information need contained
in the topic statement. Responsiveness was rated
on a ten-point scale in 2009, and on a five-point
scale in all other years.

For each sub-task during 2008–2011, we ana-
lyze the performance of only the top 30 systems,
which roughly corresponds to the systems that per-
formed better than or around the median according
to each manual metric. Table 1 gives the number

of significant differences among the top 30 partici-
pating systems. We keep only the best performing
systems for the analysis because we are interested
in studying how well automatic evaluation metrics
can correctly compare very good systems.

Year Pyr A Pyr B Resp A Resp B
2008 82 109 68 105
2009 146 190 106 92
2010 165 139 150 128
2011 39 83 5 11

Table 1: Number of pairs of significantly different
systems among the top 30 across the years. There
is a total of 435 pairs in each year.

3 Which ROUGE is best?

In this section, we study the performance of
several ROUGE variants, including ROUGE-n,
for n = 1, 2, 3, 4, ROUGE-L, ROUGE-W-1.2,
ROUGE-SU4, and ROUGE-BE-HM (Hovy et al.,
2006). ROUGE-n measures the n-gram recall of
the evaluated summary compared to the available
reference summaries. ROUGE-L is the ratio of
the number of words in the longest common sub-
sequence between the reference and the evaluated
summary and the number of words in the refer-
ence. ROUGE-W-1.2 is a weighted version of
ROUGE-L. ROUGE-SU4 is a combination of skip
bigrams and unigrams, where the skip bigrams are
formed for all words that appear in the text with
no more than four intervening words in between.
ROUGE-BE-HM computes recall of dependency
syntactic relations between the summary and the
reference.

To evaluate how well an automatic evalua-
tion metric reproduces human judgments, we use
prediction accuracy similar to Owczarzak et al.
(2012). For each pair of systems in each subtask,
we compare the results of two Wilcoxon signed-
rank tests, one using the manual evaluation scores
for each system and one using the automatic evalu-
ation scores for each system (Rankel et al., 2011).2

The accuracy then is simply the percent agreement
between the results of these two tests.

2We use the Wilcoxon test as it was demonstrated by
Rankel et al. (2011) to give more statistical power than un-
paired tests. As reported by Yeh (2000), other tests such as
randomized testing, may also be appropriate. There is con-
siderable variation in system performance for different inputs
(Nenkova and Louis, 2008) and paired tests remove the effect
of the input.
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Responsiveness Pyramid
Metric Acc P R BA Acc P R BA
R1 0.58 (0.61) 0.24 0.64 0.57 0.62 (0.66) 0.37 0.67 0.61
R2 0.64 (0.63) 0.28 0.60 0.59 0.68 (0.69) 0.43 0.63 0.64
R3 0.70 (0.63) 0.31 0.48 0.60 0.73 (0.68) 0.49 0.53 0.66
R4 0.73 (0.64) 0.33 0.40 0.60 0.74 (0.65) 0.50 0.45 0.65
RL 0.50 (0.59) 0.20 0.56 0.54 0.54 (0.63) 0.29 0.60 0.55
R-SU4 0.61(0.62) 0.26 0.61 0.58 0.65 (0.68) 0.40 0.65 0.63
R-W-1.2 0.52(0.62) 0.21 0.54 0.55 0.57(0.64) 0.32 0.62 0.57
R-BE-HM 0.70 (0.63) 0.30 0.49 0.59 0.74(0.68) 0.49 0.56 0.66

Table 2: Accuracy, Precision, Recall, and Balanced Accuracy of each ROUGE variant, averaged across
all eight tasks in 2008-2011, with and (without) significance.

As can be seen in Table 1, the manual evalua-
tion metrics often did not show many significant
differences between systems.3 Thus, it is clear
that the percent agreement will be high for an ap-
proach for automatic evaluation that always pre-
dicts zero significant differences. As traditionally
done when dealing which such skewed distribu-
tions of classes, we also examine the precision
and recall with respect to finding significant dif-
ferences of several ROUGE variants, to better as-
sess the quality of their prediction. To identify a
measure that is strong at both predicting signifi-
cant and non-significant differences we compute
balanced accuracy, the mean of the accuracy of
predicting significant differences and the accuracy
of predicting no significant difference.4

Each of these four measures for judging the per-
formance of ROUGE variants has direct intuitive
interpretation, unlike other opaque measures such
as correlation coefficients and F-measure which
have formal definitions which do not readily yield
to intuitive understanding.

3This is a somewhat surprising finding which may warrant
further investigation. One possible explanation is that differ-
ent systems generate similar summaries. Recent work has
shown that this is unlikely to be the case because the collec-
tion of summaries from several systems indicates better what
content is important than the single best summary (Louis and
Nenkova, 2013). The short summary length for which the
summarizers are compared may also contribute to the fact
that there are few significant difference. In early NIST eval-
uations manual evaluations could not distinguish automatic
and human summaries based on summaries of length 50 and
100 words and there were more significant differences be-
tween systems for 200-word summaries than for 100-word
summaries (Nenkova, 2005).

4More generally, one could define a utility function which
gives costs associated with errors and benefits to correct pre-
diction. Balanced accuracy weighs all errors as equally bad
and all correct prediction as equally good (von Neumann and
Morgenstern, 1953).

Few prior studies have taken statistical signifi-
cance into account during the assessment of auto-
matic metrics for evaluation. For this reason we
first briefly discuss ROUGE accuracy without tak-
ing significance into account. In this special case,
agreement simply means that the automatic and
manual evaluations agree on which of two systems
is better, based on each system’s average score for
all test inputs for a given task. It is very rare that
the average scores of two systems are equal, so
there is always a better system in each pair, and
random prediction would have 50% accuracy.

Many papers do not report the significance of
differences in ROUGE scores (for the ROUGE
variant of their choice), but simply claim that their
system X with higher average ROUGE score than
system Y is better than system Y . Table 2 lists
the average accuracy with significance taken into
account and then in parentheses, accuracy without
taking significance into account. The data demon-
strate that the best accuracy of the eight ROUGE
metrics is a meager 64% for responsiveness when
significance is not taken into account. So the con-
clusion about the relative merit of systems would
be different from that based on manual evaluation
in one out of three comparisons. However, the
best accuracy rises to 73% when significance is
taken into account; an incorrect conclusion will be
drawn in one out of four comparisons. The reduc-
tion in error is considerable.

Furthermore, ROUGE-3 and ROUGE-4, which
are rarely reported, are among the most accurate.
Note also, these results differ considerably from
those reported by Owczarzak et al. (2012), where
ROUGE-2 was shown to have accuracy of 81% for
responsiveness and 89% for pyramid. The wide
differences are due to the fact we are only consid-
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ering systems which scored in the top 30. This il-
lustrates that our automatic metrics are not as good
at discriminating systems near the top. These find-
ings give strong support for the idea of requiring
authors to report the significance of the difference
between their summarization system and the cho-
sen baseline; the conclusions about relative merits
of the system would be more similar to those one
would draw from manual evaluation.

In addition to accuracy, Table 2 gives precision,
recall and balanced accuracy for each of the eight
ROUGE measures when significance is taken into
account. ROUGE-1 is arguably the most widely
used score in the literature and Table 2 reveals an
interesting property: ROUGE-1 has high recall but
low precision. This means that it reports many sig-
nificant differences, most of which do not exist ac-
cording to the manual evaluations.

Balanced accuracy helps us identify which
ROUGE variants are most accurate in finding
statistical significance and correctly predicting
that two systems are not significantly different.
For the pyramid evaluation, the variants with
best balanced accuracy (66%) are ROUGE-3 and
ROUGE-BE, with ROUGE-4 just a percent lower
at 65%. For responsiveness the configuration is
similar, with ROUGE-3 and ROUGE-4 tied for
best (60%), and ROUGE-BE just a percent lower.

The good performance of higher-order n-grams
is quite surprising because these are practically
never used for reporting results in the literature.
Based on our results however, they are much more
likely to accurately reproduce conclusions that
would have been drawn from manual evaluation
of top-performing systems.

4 Multiple hypothesis tests to combine
ROUGE variants

We now consider a method to combine multiple
evaluation scores in order to obtain a stronger en-
semble metric. The idea of combining ROUGE
variants has been explored in the prior litera-
ture. Conroy and Dang (2008), for example, pro-
posed taking linear combinations of ROUGE met-
rics. This approach was extended by Rankel et al.
(2012) by including measures of linguistic quality.
Recently, Amigó et al. (2012) applied the “hetero-
geneity principle” and combined ROUGE scores
to improve the precision relative to a human evalu-
ation metric. Their results demonstrate that a con-
sensus among ROUGE scores can predict more ac-

curately if an improvement in a human evaluation
metric will be achieved.

Along the lines of these investigations, we ex-
amine the performance of a simple combination
of variants: Call the difference between two sys-
tems significant only when all the variants in the
combination indicate significance. As in the sec-
tion above, a paired Wilcoxon signed-rank test is
used to determine the level of significance.

ROUGE Combination Acc Prec Rec BA
R1 R2 R4 RBE 0.76 0.77 0.36 0.76
R1 R4 RBE 0.76 0.76 0.36 0.76
R2 R4 RBE 0.76 0.74 0.40 0.75
R4 RBE 0.76 0.73 0.41 0.75
R1 R2 R4 0.76 0.71 0.40 0.74
R1 R4 0.75 0.70 0.40 0.73
R2 R4 0.75 0.68 0.44 0.73
R1 R2 RBE 0.75 0.66 0.48 0.72
R2 RBE 0.75 0.64 0.52 0.72
R4 0.74 0.62 0.47 0.70
R1 RBE 0.74 0.62 0.49 0.70
R1 R2 0.73 0.57 0.62 0.70
RBE 0.73 0.57 0.58 0.68
R2 0.71 0.53 0.69 0.68
R1 0.62 0.43 0.69 0.63

Table 3: Accuracy, Precision, Recall, and Bal-
anced Accuracy of each ROUGE combination on
TAC 2008-2010 pyramid.

We considered all possible combinations of four
ROUGE metrics that exhibited good properties
in the analyses presented so far: ROUGE-1 (be-
cause of its high recall), ROUGE-2 (because of
high accuracy when significance is not taken into
account) and ROUGE-4 and ROUGE-BE, which
showed good balanced accuracy.

The performance of these combinations for re-
producing the decisions in TAC 2008-2010 based
on the pyramid5 evaluation are given in Table 3.
The best balanced accuracy (76%) is for the com-
bination of all four variants. As more variants are
combined, precision increases but recalls drops.

5 Comparison with automatic
evaluations from AESOP 2011

In 2009-2011, TAC ran the task of Automatically
Evaluating Summaries of Peers (AESOP), to com-

5The ordering of the metric combinations relative to re-
sponsiveness was almost identical to the ordering relative to
the pyramid evaluation, and precision and recall exhibited the
same trend as more metrics were added to the combination.
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Pyramid A Pyramid B Responsiveness A Responsiveness B
Evaluation Metric Acc P R BA Acc P R BA Acc P R BA Acc P R BA
CLASSY1 0.60 0.02 0.60 0.50 0.84 0.03 0.18 0.50 0.61 0.14 0.64 0.54 0.70 0.21 0.22 0.52
DemokritosGR1 0.59 0.01 0.20 0.50 0.79 0.07 0.55 0.53 0.66 0.18 0.79 0.58 0.64 0.17 0.24 0.49
uOttawa3 0.44 0.01 0.60 0.50 0.48 0.02 0.36 0.50 0.52 0.13 0.77 0.55 0.43 0.13 0.36 0.46
DemokritosGR2 0.78 0.01 0.20 0.50 0.76 0.06 0.55 0.52 0.76 0.23 0.69 0.60 0.67 0.22 0.29 0.52
C-S-IIITH4 0.69 0.01 0.20 0.50 0.77 0.07 0.64 0.53 0.82 0.29 0.74 0.63 0.60 0.15 0.24 0.47
C-S-IIITH1 0.60 0.01 0.40 0.50 0.70 0.06 0.82 0.53 0.69 0.20 0.79 0.59 0.60 0.22 0.42 0.52
BEwT-E 0.73 0.01 0.20 0.50 0.80 0.01 0.09 0.49 0.79 0.25 0.72 0.61 0.72 0.31 0.39 0.58
R1-R2-R4-RBE 0.89 0.40 0.44 0.67 0.76 0.27 0.17 0.55 0.88 0.00 0.00 0.49 0.91 0.03 0.09 0.50
R1-R4-RBE 0.89 0.40 0.44 0.67 0.77 0.35 0.24 0.59 0.88 0.00 0.00 0.49 0.90 0.03 0.09 0.50
All ROUGEs 0.89 0.40 0.44 0.67 0.75 0.26 0.16 0.54 0.88 0.00 0.00 0.49 0.91 0.04 0.09 0.51

Table 4: Best performing AESOP systems from TAC 2011; Scores within the 95% confidence interval
of the best are in bold face.

pare automatic evaluation methods for automatic
summarization. Here we show how the submit-
ted AESOP metrics compare to the best ROUGE
variants that we have established so far. We report
the results on 2011 only, because even when the
same team participated in more than one year, the
metrics submitted were different and the 2011 re-
sults represent the best effort of these teams. How-
ever, as we saw in Table 1, in 2011 there were very
few significant differences between the top sum-
marization systems. In this sense the tasks that
year represent a challenging dataset for testing au-
tomatic evaluations.

The results for the best AESOP systems (ac-
cording to one or more measures), and the cor-
responding results for the ROUGE combinations
are shown in Table 4. These AESOP systems are:
CLASSY1 (Conroy et al., 2011; Rankel et al.,
2012), DemokritosGR1 and 2 (Giannakopoulos et
al., 2008; Giannakopoulos et al., 2010), uOttawa3
(Kennedy et al., 2011), C-S-IITH1 and 4 (Kumar
et al., 2011; Kumar et al., 2012), and BEwT-E
(Tratz and Hovy, 2008).6 The combination metrics
achieve the highest accuracy by generally predict-
ing correctly when there are no significant differ-
ences between the systems. In addition, for 2008-
2010, where far more differences between systems
occur, the results of Table 3 show the combina-
tion metrics outperformed use of a single metric
and are competitive with the best metrics of AE-
SOP 2011. Thus, the combination metrics have
the ability to discriminate under both conditions
giving good prediction of human evaluation.

6To perform the comparison in the table the scores for
each system and document set were needed. Some systems
have changed after TAC 2011, but the data needed for these
comparisons were not available. BEwT-E did not participate
in AESOP 2011 and these data were provided by Stephen
Tratz. Special thanks to Stephen for providing these data.

6 Conclusion

We have tested the best-known automatic evalu-
ation metrics (ROUGE) on several years of TAC
data and compared their performance with re-
cently developed AESOP metrics. We discovered
that some of the rarely used variants of ROUGE
perform surprisingly well, and that by combin-
ing different ROUGEs together, one can create
an evaluation metric that is extremely competi-
tive with metrics submitted to the latest AESOP
task. Our results were reported in terms of sev-
eral different measures, and in each case, com-
pared how well the automatic metric predicted sig-
nificant differences found in manual evaluation.
We believe strongly that developers should include
statistical significance when reporting differences
in ROUGE scores of theirs and other systems,
as this improves the accuracy and credibility of
their results. Significant improvement in multi-
ple ROUGE scores is a significantly stronger in-
dicator that the developers have made a notewor-
thy improvement in text summarization. Systems
that report significant improvement using a com-
bination of ROUGE-BE (or its improved version
BEwT-E) in conjunction with ROUGE-1, 2, and
4, are more likely to give rise to summaries that
humans would judge as significantly better.
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sociation for Computational Linguistics.

Peter Rankel, John Conroy, Eric Slud, and Dianne
O’Leary. 2011. Ranking human and machine sum-
marization systems. In Proceedings of the 2011
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 467–473, Edinburgh, Scot-
land, UK., July. Association for Computational Lin-
guistics.

Peter A. Rankel, John M. Conroy, and Judith D.
Schlesinger. 2012. Better metrics to automatically
predict the quality of a text summary. Algorithms,
5(4):398–420.

Stephen Tratz and Eduard Hovy. 2008. Summarisa-
tion evaluation using transformed basic elements. In
Proceedings TAC 2008. NIST.

John von Neumann and Oskar Morgenstern. 1953.
Theory of games and economic behavior. Princeton
Univ. Press, Princeton, NJ, 3. ed. edition.

Alexander Yeh. 2000. More accurate tests for the sta-
tistical significance of result differences. In Pro-
ceedings of the 18th conference on Computational
linguistics - Volume 2, COLING ’00, pages 947–
953, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

136



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 137–142,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

On the Predictability of Human Assessment: when Matrix Completion
Meets NLP Evaluation

Guillaume Wisniewski
Université Paris Sud
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Abstract

This paper tackles the problem of collect-
ing reliable human assessments. We show
that knowing multiple scores for each ex-
ample instead of a single score results in
a more reliable estimation of a system
quality. To reduce the cost of collect-
ing these multiple ratings, we propose to
use matrix completion techniques to pre-
dict some scores knowing only scores of
other judges and some common ratings.
Even if prediction performance is pretty
low, decisions made using the predicted
score proved to be more reliable than de-
cision based on a single rating of each ex-
ample.

1 Introduction

Human assessment is often considered as the best,
if not the only, way to evaluate ‘subjective’ NLP
tasks like MT or speech generation. However,
human evaluations are doomed to be noisy and,
sometimes, even contradictory as they depend on
individual perception and understanding of the
score scale that annotators generally use in re-
markably different ways (Koehn and Monz, 2006).
Moreover, annotation is known to be a long and
frustrating process and annotator fatigue has been
identified as another source of noise (Pighin et al.,
2012).

In addition to defining and enforcing stricter
guidelines, several solutions have been proposed
to reduce the annotation effort and produce more
reliable ratings. For instance, to limit the impact
of the score scale interpretation, in the WMT eval-
uation campaign (Callison-Burch et al., 2012), an-
notators are asked to rank translation hypotheses

from best to worst instead of providing absolute
scores (e.g. in terms of adequacy or fluency). Gen-
eralizing this approach, several works (Pighin et
al., 2012; Lopez, 2012) have defined novel annota-
tion protocols to reduce the number of judgments
that need to be collected. However, all these meth-
ods suffer from several limitations: first, they pro-
vide no interpretable information about the quality
of the system (only a relative comparison between
two systems is possible); second, (Koehn, 2012)
has recently shown that the ranking they induce is
not reliable.

In this work, we study an alternative approach
to the problem of collecting reliable human as-
sessments. Our basic assumption, motivated by
the success of ensemble methods, is that hav-
ing several judgments for each example, even if
they are noisy, will result in a more reliable de-
cision than having a single judgment. An evalu-
ation campaign should therefore aim at gathering
a score matrix, in which each example is rated by
all judges instead of having each judge rate only
a small subset of examples, thereby minimizing
redundancy. Obviously, the former approach re-
quires a large annotation effort and is, in practice,
not feasible. That is why, to reduce the number
of judgments that must be collected, we propose
to investigate the possibility of using matrix com-
pletion techniques to recover the entire score ma-
trix from a sample of its entries. The question
we try to answer is whether the missing scores of
one judge can be predicted knowing only scores of
other judges and some shared ratings.

The contributions of this paper are twofold: i)
we show how knowing the full score matrix in-
stead of a single score for each example provides a
more reliable estimation of a system quality (Sec-
tion 3); ii) we present preliminary experiments
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showing that missing data techniques can be used
to recover the score matrix from a sample of its
entries despite the low inter-rater agreement (Sec-
tion 4).

2 Matrix Completion

The recovering of a matrix from a sampling of its
entries is a task of considerable interest (Candès
and Recht, 2012). It can be used, for instance, in
recommender systems: rows of the matrix repre-
sent users that are rating movies (columns of the
matrix); the resulting matrix is mostly unknown
(each user only rates a few movies) and the task
consists in completing the matrix so that movies
that any user is likely to like can be predicted.

Matrix completion generally relies on the low
rank hypothesis: because of hidden factors be-
tween the observations (the columns of the ma-
trix), the matrix has a low rank. For instance,
in recommender systems it is commonly believed
that only a few factors contribute to an individual’s
tastes. Formally, recovering a matrix M amounts
at solving:

minimize rank X

subject to Xij = Mij (i, j) ∈ Ω
(1)

where X is the decision variable and Ω is the set of
known entries. This optimization problem seeks
the simplest explanation fitting the observed data.

Solving the rank minimization problem has
been proved to be NP-hard (Chistov and
Grigor’ev, 1984). However several convex relax-
ations of this program have been proposed. In
this work, we will consider the relaxation of the
rank by the nuclear norm1 that can be efficiently
solved by semidefinite programming (Becker et
al., 2011). This relaxation enjoys many theoret-
ical guarantees with respect to the optimality of
its solution (under mild assumptions its solution is
also the solution of the original problem), the con-
ditions under which the matrix can be recovered
and the number of entries that must be sampled
to recover the original matrix. In our experiments
we used TFOCS,2 a free implementation of this
method.

1The nuclear norm of a matrix is the sum of its singular
values; the relation between rank an nuclear norm is similar
to the one between `0 and `1 norms.

2http://cvxr.com/tfocs/

3 Corpora

For our experiments we considered two publicly
available corpora in which multiple human ratings
(i.e. scores on an ordinal scale) were available.

The CE Corpus The first corpus of human judg-
ments we have considered has been collected
for the WMT12 shared task on quality estima-
tion (Callison-Burch et al., 2012).3 The data set is
made of 2, 254 English sentences and their auto-
matic translations in Spanish predicted by a stan-
dard Moses system. Each sentence pair is accom-
panied by three estimates in the range 1 to 5 of
its translation quality expressed in terms of post-
editing effort. These human grades are in the range
1 to 5, the latter standing for a very good trans-
lation that hardly requires post-editing, while the
former identifies very poor automatic translations
that are not deemed to be worth the post-editing
effort.

As pointed out by the task organizers, despite
the special care that was taken to ensure the quality
of the data, the inter-raters agreement was much
lower than what is typically observed in NLP
tasks (Artstein and Poesio, 2008): the weighted
κ ranged from 0.39 to 0.50 depending on the pair
of annotators considered4; the Fleiss coefficient (a
generalization of κ to multi-raters) was 0.25 and
the Kendall τb correlation coefficient5 between
0.64 and 0.68, meaning that, on average, two raters
do not agree on the relative order of two transla-
tions almost two out of five times. In fact, as of-
ten observed for the sentence level human evalua-
tion of MT outputs, the different judges have used
the score scale differently: the second judge had
a clear tendency to give more ‘medium’ scores
than the others, and the variance of her scores
was low. Because theirs distributions are differ-
ent, standardizing the scores has only a very lim-
ited impact on the agreement.

If, as in many manual evaluations, each exam-
ple had been rated by a single judge chosen ran-
domly, the resulting scores would have been only
moderately correlated with the average of the three
scores which is, intuitively, a better estimate of the
‘true’ quality: the 95% confidence interval of the

3The corpus is available from http://www.statmt.
org/wmt12/quality-estimation-task.html

4The weighted κ is a generalization of the κ to ordinal
data; a linear weighting schema was used.

5Note that, in statistics, agreement is a stronger notion
than correlation, as the former compare the actual values.
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τb between the averaged scores and the ‘sampled’
score is 0.754–0.755.

TIDES The second corpus considered was col-
lected for the DARPA TIDES program: a team of
human judges provided multiple assessments of
adequacy and fluency for Arabic to English and
Chinese to English automatic translations.6 For
space reasons, only results on the Chinese to En-
glish fluency corpus will be presented; similar re-
sults were achieved on the other corpora.

In the considered corpus, 31 sets of automatic
translations, generated by three systems, have
been rated by two judges on a scale of 1 to 5. The
inter-rater agreement is very low: depending on
the pair of judges, the weighted κ is between -0.05
and 0.2, meaning that agreement occurs less of-
ten than predicted by chance alone. More impor-
tantly, if the ratings of a pair of judges were used
to decide which is the best system among two, the
two judges will disagree 36% of the time. This
‘agreement’ score is computed as follows: if mA,i

is the mean of the scores given to system A by
the i-th annotator, we say that there is no agree-
ment in a pairwise comparison if mA,i > mB,i

and mA,j < mB,j , i.e. if two judges rank two sys-
tems in a different order; the score is then the per-
centage of agreement when considering all pairs
of systems and judges.

Considering the full scoring matrix instead of
single scores has a large impact: if each example is
rated by a single judge (chosen randomly), the re-
sulting comparison between the two systems will
be different from the decision made by averaging
the two scores of the full score matrix in almost
20% of the comparisons.

4 Experimental Results

4.1 Testing the Low-Rank Hypothesis

Matrix completion relies on the hypothesis that
the matrix has a low rank. We first propose to
test this hypothesis on simulated data, using a
method similar to the one proposed in (Mathet
et al., 2012), to evaluate the impact of noise in
human judgments on the score matrix rank. Ar-
tificial ratings are generated as follows: a MT
system is producing n translations the quality of
which, qi, is estimated by a continuous value,
that represents, for instance, a hTER score. This

6These corpora are available from LDC under the refer-
ences ldc2003t17 and ldc2003t18

value is drawn from N
(
µ, σ2

)
. Based on this

‘intrinsic’ quality, two ratings, ai and bi, are
generated according to three strategies: in the
first, ai and bi are sampled from N (qi, θ); in
the second, ai ∼ N

(
qi + θ

2 , σ
′2) and bi ∼

N
(
qi − θ

2 , σ
′2) and in the third, ai ∼ N

(
qi, σ

′2)

and the bi is drawn from a bimodal distribu-
tion 1

2

(
N
(
qi − θ

2 , σ
′2)+N

(
qi + θ

2 , σ
′2)) (with

σ′2 < θ
2 ). θ describes the noise level.

Each of these strategies models a different kind
of noise that has been observed in different evalua-
tion campaigns (Koehn and Monz, 2006): the first
one describes random noise in the ratings; the sec-
ond a systematic difference in the annotators’ in-
terpretation of the score scale and the third, the sit-
uation in which one annotator gives medium score
while the other one tend to commit more strongly
to whether she considered the translation good or
bad. Stacking all these judgments results in a n×2
score matrix. To test whether this matrix has a low
rank or not, we assess how close it is to its ap-
proximation by a rank 1 matrix. A well-known
result (Lawson and Hanson, 1974) states that the
Frobenius norm of the difference of these matri-
ces is equal to the 2nd singular value of the orig-
inal matrix; the quality of the approximation can
thus be estimated by ρ, defined as the 2nd eigen-
value of the matrix normalized by its norm (Leon,
1994). Intuitively, the smaller ρ, the better the ap-
proximation.

Figure 1 represents the impact of the noise level
on the condition number. As a baseline, we have
also represented ρ for a random matrix. All values
are averaged over 100 simulations. As it could be
expected, ρ is close to 0 for small noise level; but
even for moderate noise level, the second eigen-
value continue to be small, suggesting that the ma-
trix can still be approximated by a matrix of rank 1
without much loss of information. As a compari-
son, on average, ρ = 0.08 for the CE score matrix,
in spite of the low inter-rater agreement.

4.2 Prediction Performance

We conducted several experiments to evaluate the
possibility to use matrix completion to recover a
score matrix. Experiments consist in choosing
randomly k% of the entries of a matrix; these en-
tries are considered unknown and predicted using
the method introduced in Section 2 denoted pred
in the following. In our experiments k varies from
10% to 40%. Note that, when, as in our exper-
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Figure 1: Evolution of the condition number ρ
with the noise level θ for the different strategies
(see text for details)

iments, only two judges are involved, k = 50%
would mean that each example is rated by a sin-
gle judge. Two simple methods for handling miss-
ing data are used as baselines: in the first one, de-
noted rand, missing scores are chosen randomly;
the second one, denoted mean, predicts for all the
missing scores of a judge the mean of her known
scores.

We propose to evaluate the quality of the recov-
ery, first by comparing the predicted score to their
true value and then by evaluating the decision that
will be made when considering the recovered ma-
trix instead of the full matrix.

Prediction Performance Comparing the com-
pleted matrix to the original score matrix can be
done in terms of Mean Absolute Error (MAE) de-
fined as 1

N

∑N
i=1 |yi − ŷi|where ŷi is the predicted

value and yi the corresponding ‘true’ value; the
sum runs over all unknown values of the matrix.

Table 1 presents the results achieved by the dif-
ferent methods. All reported results are averaged
over 10 runs (i.e.: sampling of the score matrix
and prediction of the missing scores) and over all
pairs of judges. All tables also report the 95% con-
fidence interval. The MAE of the rand method is
almost constant, whatever the number of samples
is. Performance of the matrix completion tech-
nique is not so good: predicted scores are quite
different than true scores. In particular, perfor-
mance falls quickly when the number of missing
data increases. This observation is not surprising:
when 40% of the scores are missing, only a few
examples have more than a single score and many
have no score at all. In these conditions recovering

missing data pred mean

40% 0.78 ±6.21 × 10−3 0.72 ±8.86 × 10−3

30% 0.83 ±3.19 × 10−3 0.80 ±5.42 × 10−3

20% 0.88 ±2.49 × 10−3 0.87 ±3.54 × 10−3

10% 0.93 ±1.76 × 10−3 0.92 ±1.51 × 10−3

Table 2: Correlation between the rankings induced
by the recovered matrix and the original score ma-
trix for the CE corpus

the matrix is almost impossible. The performance
of the simple mean technique is, comparatively,
pretty good, especially when only a few entries
are known. However, the pred method always
outperform the rand method showing that there
are dependencies between the two ratings even if
statistical measures of agreement are low.

Impact on the Decision The negative results of
the previous paragraph only provide indirect mea-
sure of the recovery quality as it is not the value of
the score that is important but the decision that it
will support. That is why, we also evaluated ma-
trix recovery in a more task-oriented way by com-
paring the decision made when considering the re-
covered score matrix instead of the ‘true’ score
matrix.

For the CE corpus, a task-oriented evaluation
can be done by comparing the rankings induced
by the recovered matrix and by the original matrix
when examples are ordered according to their av-
eraged score. Such a ranking can be used by a MT
user to set a quality threshold granting her con-
trol over translation quality (Soricut and Echihabi,
2010). Table 2 shows the correlation between the
two rankings as evaluated by τb. The two rankings
appear to be highly correlated, the matrix comple-
tion technique outperforming slightly the mean
baseline. More importantly, even when 40% of
the data are missing, the ranking induced by the
true scores is better correlated to the ranking in-
duced by the predicted scores than to the ranking
induced when each example is only rated once: as
reported in Section 3, the τb is, in this case, 0.75.

For the TIDES corpus, we computed the num-
ber of pairs of judges for which the results of a
pairwise comparison between two systems is dif-
ferent when the systems are evaluated using the
predicted scores and the true scores. Results pre-
sented in Table 3 show that considering the pre-
dicted matrix is far better than having judges rate
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QE TIDES

k pred mean rand pred mean rand

40% 1.14 ±2.9 · 10−2 0.78 ±6.6 · 10−3 1.45 — — —
30% 0.94 ±2.9 · 10−2 0.78 ±7.4 · 10−3 1.44 0.95 ±2.7 · 10−2 0.43 ±2.6 · 10−2 1.37
20% 0.77 ±3.4 · 10−2 0.78 ±1.0 · 10−2 1.45 0.76 ±2.6 · 10−2 0.41 ±2.5 · 10−2 1.38
10% 0.65 ±2.1 · 10−2 0.79 ±1.9 · 10−2 1.47 0.48 ±3.0 · 10−2 0.41 ±2.5 · 10−2 1.36

Table 1: Completion performance as evaluated by the MAE for the three prediction methods and the
three corpora considered.

random samples of the examples: the number of
disagreement falls from 20% (Sect. 3) to less than
4%. While the mean method outperforms the
pred method, this result shows that, even in case
of low inter-rater agreement, there is still enough
information to predict the score of one annotator
knowing only the score of the others.

For the tasks considered, decisions based on a
recovered matrix are therefore more similar to de-
cisions made considering the full score matrix than
decisions based on a single rating of each example.

5 Conclusion

This paper proposed a new way of collecting reli-
able human assessment. We showed, on two cor-
pora, that knowing multiple scores for each exam-
ple instead of a single score results in a more reli-
able estimation of the quality of a NLP system. We
proposed to used matrix completion techniques
to reduce the annotation effort required to collect
these multiple ratings. Our experiments showed
that while scores predicted using these techniques
are pretty different from the true scores, decisions
considering them are more reliable than decisions
based on a single score.

Even if it can not predict scores accurately, we
believe that the connection between NLP evalua-
tion and matrix completion has many potential ap-
plications. For instance, it can be applied to iden-
tify errors made when collecting scores by com-
paring the predicted and actual scores.
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% missing data pred mean

30% 9.24% 3.53 %
20% 6.45% 2.10 %
10% 3.66% 1.20 %

Table 3: Disagreements in a pairwise comparison
of two systems of the TIDES corpus, when the
systems are evaluated using the predicted scores
and the true scores
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Montréal, Canada, June. ACL.

Emmanuel Candès and Benjamin Recht. 2012. Exact
matrix completion via convex optimization. Com-
mun. ACM, 55(6):111–119, June.

A. Chistov and D. Grigor’ev. 1984. Complexity of
quantifier elimination in the theory of algebraically
closed fields. In M. Chytil and V. Koubek, editors,
Math. Found. of Comp. Science, volume 176, pages
17–31. Springer Berlin / Heidelberg.

Philipp Koehn and Christof Monz. 2006. Manual and
automatic evaluation of machine translation between
european languages. In Proc. WMT, pages 102–121,
New York City, June. ACL.

Philipp Koehn. 2012. Simulating human judgment in
machine translation evaluation campaigns. In Proc.
of IWSLT.

Charles L. Lawson and Richard J. Hanson. 1974. Solv-
ing Least Squares Problems. Prentice Hall.

141



Stephen J: Leon. 1994. Linear Algebra with Applica-
tions. Macmillan,.

Adam Lopez. 2012. Putting human assessments of
machine translation systems in order. In Proc. of
WMT, pages 1–9, Montréal, Canada, June. ACL.
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2012. A graph-based strategy to streamline trans-
lation quality assessments. In Proc. of AMTA.

Matthew Snover, Nitin Madnani, Bonnie Dorr, and
Richard Schwartz. 2009. Fluency, adequacy, or
HTER? Exploring different human judgments with
a tunable MT metric. In Proc. of WMT, pages 259–
268, Athens, Greece, March. ACL.

Radu Soricut and Abdessamad Echihabi. 2010.
Trustrank: Inducing trust in automatic translations
via ranking. In Proc. of ACL, pages 612–621, Upp-
sala, Sweden, July. ACL.

142



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 143–147,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Automated Pyramid Scoring of Summaries using Distributional Semantics

Rebecca J. Passonneau∗ and Emily Chen† and Weiwei Guo† and Dolores Perin‡
∗Center for Computational Learning Systems, Columbia University

†Department of Computer Science, Columbia University
‡Teachers College, Columbia University

(becky@ccls.|ec2805@|weiwei@cs.)columbia.edu, perin@tc.edu

Abstract
The pyramid method for content evaluation of auto-
mated summarizers produces scores that are shown
to correlate well with manual scores used in edu-
cational assessment of students’ summaries. This
motivates the development of a more accurate auto-
mated method to compute pyramid scores. Of three
methods tested here, the one that performs best re-
lies on latent semantics.

1 Introduction
The pyramid method is an annotation and scor-
ing procedure to assess semantic content of sum-
maries in which the content units emerge from
the annotation. Each content unit is weighted
by its frequency in human reference summaries.
It has been shown to produce reliable rank-
ings of automated summarization systems, based
on performance across multiple summarization
tasks (Nenkova and Passonneau, 2004; Passon-
neau, 2010). It has also been applied to assessment
of oral narrative skills of children (Passonneau et
al., 2007). Here we show its potential for assess-
ment of the reading comprehension of community
college students. We then present a method to au-
tomate pyramid scores based on latent semantics.

The pyramid method depends on two phases of
manual annotation, one to identify weighted con-
tent units in model summaries written by profi-
cient humans, and one to score target summaries
against the models. The first annotation phase
yields Summary Content Units (SCUs), sets of
text fragments that express the same basic content.
Each SCU is weighted by the number of model
summaries it occurs in.

Figure 1 illustrates a Summary Content Unit
taken from pyramid annotation of five model sum-
maries of an elementary physics text. The ele-
ments of an SCU are its index; a label, created by
the annotator; contributors (Ctr.), or text fragments
from the model summaries; and the weight (Wt.),
corresponding to the number of contributors from
distinct model summaries. Four of the five model

Index 105
Label Matter is what makes up all objects or substances
Ctr. 1 Matter is what makes up all objects or substances
Ctr. 2 matter as the stuff that all objects and substances

in the universe are made of
Ctr. 3 Matter is identified as being present everywhere

and in all substances
Ctr. 4 Matter is all the objects and substances around us
Wt. 4

Figure 1: A Summary Content Unit (SCU)

summaries contribute to SCU 105 shown here.
The four contributors have lexical items in com-
mon (matter, objects, substances), and many dif-
ferences (makes up, being present). SCU weights,
which range from 1 to the number of model sum-
maries M , induce a partition on the set of SCUs
in all summaries into subsets Tw, w ∈ 1, . . . ,M .
The resulting partition is referred to as a pyramid
because, starting with the subset for SCUs with
weight 1, each next subset has fewer SCUs.

To score new target summaries, they are first
annotated to identify which SCUs they express.
Application of the pyramid method to assessment
of student reading comprehension is impractical
without an automated method to annotate target
summaries. Previous work on automated pyramid
scores of automated summarizers performs well
at ranking systems on many document sets, but
is not precise enough to score human summaries
of a single text. We test three automated pyramid
scoring procedures, and find that one based on dis-
tributional semantics correlates best with manual
pyramid scores, and has higher precision and re-
call for content units in students’ summaries than
methods that depend on string matching.

2 Related Work
The most prominent NLP technique applied to
reading comprehension is LSA (Landauer and Du-
mais, 1997), an early approach to latent semantic
analysis claimed to correlate with reading compre-
hension (Foltz et al., 2000). More recently, LSA
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has been incorporated with a suite of NLP metrics
to assess students’ strategies for reading compre-
hension using think-aloud protocols (Boonthum-
Denecke et al., 2011). The resulting tool, and sim-
ilar assesment tools such as Coh-Metrix, assess
aspects of readability of texts, such as coherence,
but do not assess students’ comprehension through
their writing (Graesser et al., 2004; Graesser et al.,
2011). E-rater is an automated essay scorer for
standardized tests such as GMAT that also relies
on a suite of NLP techniques (Burstein et al., 1998;
Burstein, 2003). The pyramid method (Nenkova
and Passonneau, 2004), was inspired in part by
work in reading comprehension that scores con-
tent using human annotation (Beck et al., 1991).

An alternate line of research attempts to repli-
cate human reading comprehension. An auto-
mated tool to read and answer questions relies on
abductive reasoning over logical forms extracted
from text (Wellner et al., 2006). One of the perfor-
mance issues is resolving meanings of words: re-
moval of WordNet features degraded performance.

The most widely used automated content evalu-
ation is ROUGE (Lin, 2004; Lin and Hovy, 2003).
It relies on model summaries, and depends on
ngram overlap measures of different types. Be-
cause of its dependence on strings, it performs bet-
ter with larger sets of model summaries. In con-
trast to ROUGE, pyramid scoring is robust with as
few as four or five model summaries (Nenkova and
Passonneau, 2004). A fully automated approach
to evaluation for ranking systems that requires no
model summaries incorporates latent semantic dis-
tributional similarities across words (Louis and
Nenkova, 2009). The authors note, however, it
does not perform well on individual summaries.

3 Criteria for Automated Scoring
Pyramid scores of students’ summaries correlate
well with a manual main ideas score developed
for an intervention study with community college
freshmen who attended remedial classes (Perin et
al., In press). Twenty student summaries by stu-
dents who attended the same college and took the
same remedial course were selected from a larger
set of 322 that summarized an elementary physics
text. All were native speakers of English, and
scored within 5 points of the mean reading score
for the larger sample. For the intervention study,
student summaries had been assigned a score to
represent how many main ideas from the source
text were covered (Perin et al., In press). Inter-

rater reliability of the main ideas score, as given
by the Pearson correlation coefficient, was 0.92.

One of the co-authors created a model pyra-
mid from summaries written by proficient Masters
of Education students, annotated 20 target sum-
maries against this pyramid, and scored the re-
sult. The raw score of a target summary is the
sum of its SCU weights. Pyramid scores have
been normalized by the number of SCUs in the
summary (analogous to precision), or the average
number of SCUs in model summaries (analogous
to recall). We normalized raw scores as the aver-
age of the two previous normalizations (analogous
to F-measure). The resulting scores have a high
Pearson’s correlation of 0.85 with the main idea
score (Perin et al., In press) that was manually as-
signed to the students’ summaries.

To be pedagogically useful, an automated
method to assign pyramid scores to students’ sum-
maries should meet the following criteria: 1) reli-
ably rank students’ summaries of a source text, 2)
assign correct pyramid scores, and 3) identify the
correct SCUs. A method could do well on crite-
rion 1 but not 2, through scores that have uniform
differences from corresponding manual pyramid
scores. Also, since each weight partition will have
more than one SCU, it is possible to produce the
correct numeric score by matching incorrect SCUs
that have the correct weights. Our method meets
the first two criteria, and has superior performance
on the third to other methods.

4 Approach: Dynamic Programming
Previous work observed that assignment of SCUs
to a target summary can be cast as a dynamic
programming problem (Harnly et al., 2005). The
method presented there relied on unigram overlap
to score the closeness of the match of each eli-
gible substring in a summary against each SCU
in the pyramid. It returned the set of matches
that yielded the highest score for the summary.
It produced good rankings across summarization
tasks, but assigned scores much lower than those
assigned by humans. Here we extend the DP ap-
proach in two ways. We test two new semantic
text similarities, a string comparison method and a
distributional semantic method, and we present a
general mechanism to set a threshold value for an
arbitrary computation of text similarity.

Unigram overlap ignores word order, and can-
not consider the latent semantic content of a
string, only the observed unigram tokens. To
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take order into account, we use Ratcliff/Obershelp
(R/O), which measures overlap of common sub-
sequences (Ratcliff and Metzener, 1988). To take
the underlying semantics into account, we use co-
sine similarity of 100-dimensional latent vectors
of the candidate substrings and of the textual com-
ponents of the SCU (label and contributors). Be-
cause the algorithm optimizes for the total sum of
all SCUs, when there is no threshold similarity to
count as a match, it favors matching shorter sub-
strings to SCUs with higher weights. Therefore,
we add a threshold to the algorithm, below which
matches are not considered. Because each sim-
ilarity metric has different properties and distri-
butions, a single absolute value threshhold is not
comparable across metrics. We present a method
to set comparable thresholds across metrics.

4.1 Latent Vector Representations

To represent the semantics of SCUs and candidate
substrings of target summaries, we applied the la-
tent vector model of Guo and Diab (2012).1 Guo
and Diab find that it is very hard to learn a 100-
dimension latent vector based only on the lim-
ited observed words in a short text. Hence they
include unobserved words that provide thousands
more features for a short text. This produces more
accurate results for short texts, which makes the
method suitable for our problem. Weighted ma-
trix factorization (WMF) assigns a small weight
for missing words so that latent semantics depends
largely on observed words.

A 100-dimension latent vector representation
was learned for every span of contiguous words
within sentence bounds in a target summary, for
the 20 summaries. The training data was selected
to be domain independent, so that our model could
be used for summaries across domains. Thus we
prepared a corpus that is balanced across topics
and genres. It is drawn from from WordNet sense
definitions, Wiktionary sense definitions, and the
Brown corpus. It yields a co-occurrence matrix
M of unique words by sentences of size 46,619
× 393,666. Mij holds the TF-IDF value of word
wi in sentence sj . Similarly, the contributors
to and the label for an SCU were given a 100-
dimensional latent vector representation. These
representations were then used to compare candi-
dates from a summary to SCUs in the pyramid.

1http://www.cs.columbia.edu/˜weiwei/
code.html#wtmf.

4.2 Three Comparison Methods
An SCU consists of at least two text strings: the
SCU label and one contributor. As in Harnly et
al. (2005), we use three similarity comparisons
scusim(X,SCU), where X is the target summary
string. When the comparison parameter is set to
min (max, or mean), the similarity of X to
each SCU contributor and the label is computed
in turn, and the minimum (max, or mean) is re-
turned.

4.3 Similarity Thresholds
We define a threshold parameter for a target SCU
to match a pyramid SCU based on the distributions
of scores each similarity method gives to the target
SCUs identified by the human annotator. Annota-
tion of the target summaries yielded 204 SCUs.
The similarity score being a continuous random
variable, the empirical sample of 204 scores is
very sparse. Hence, we use a Gaussian kernel den-
sity estimator to provide a non-parametric estima-
tion of the probability densities of scores assigned
by each of the similarity methods to the manually
identified SCUs. We then select five threshold val-
ues corresponding to those for which the inverse
cumulative density function (icdf) is equal to 0.05,
0.10, 0.15, 0.20 and 0.25. Each threshold rep-
resents the probability that a manually identified
SCU will be missed.

5 Experiment
The three similarity computations, three methods
to compare against SCUs, and five icdf thresh-
olds yield 45 variants, as shown in Figure 2. Each
variant was evaluated by comparing the unnormal-
ized automated variant, e.g., Lvc, max, 0.64 (its
0.15 icdf) to the human gold scores, using each of
the evaluation metrics described in the next sub-
section. To compute confidence intervals for the
evaluation metrics for each variant, we use boot-
strapping with 1000 samples (Efron and Tibshi-
rani, 1986).

To assess the 45 variants, we compared their
scores to the manual scores. We also compared
the sets of SCUs retrieved. By our criterion 1), an
automated score that correlates well with manual
scores for summaries of a given text could be used

(3 Similarities) × (3 Comparisons) × (5 Thresholds) = 45

(Uni, R/O, Lvc) × (min, mean, max) × (0.05, . . . , 0.25)

Figure 2: Notation used for the 45 variants

145



Variant (with icdf) P (95% conf.), rank S (95% conf.), rank K (95% conf.), rank µ Diff. T test
LVc, max, 0.64 (0.15) 0.93 (0.94, 0.92), 1 0.94 (0.93, 0.97), 1 0.88 (0.85, 0.91), 1 49.9 15.65 0.0011
R/O, mean, 0.23 (0.15) 0.92 (0.91, 0.93), 3 0.93 (0.91,0.95), 2 0.83 (0.80, 0.86), 3 49.8 15.60 0.0012
R/O, mean, 0.26 (0.20) 0.92 (0.90, 0.93), 4 0.92 (0.90, 0.94) 4 0.80 (0.78, 0.83), 5 47.7 13.45 0.0046
LVc, max, 0.59 (0.10) 0.91 (0.89, 0.92), 8 0.93 (0.91, 0.95) 3 0.83 (0.80, 0.87), 2 52.7 18.50 0.0002
LVc, min, 0.40 (0.20) 0.92 (0.90,0.93), 2 0.87 (0.84, 0.91) 11 0.74 (0.69, 0.79), 11 37.5 3.30 0.4572

Table 1: Five variants from the top twelve of all correlations, with confidence interval and rank (P=Pearson’s, S=Spearman,
K=Kendall’s tau), mean summed SCU weight, difference of mean from mean gold score, T test p-value.

to indicate how well students rank against other
students. We report several types of correlation
tests. Pearsons tests the strength of a linear cor-
relation between the two sets of scores; it will be
high if the same order is produced, with the same
distance between pairs of scores. The Spearman
rank correlation is said to be preferable for ordi-
nal comparisons, meaning where the unit interval
is less relevant. Kendall’s tau, an alternative rank
correlation, is less sensitive to outliers and more
intuitive. It is the proportion of concordant pairs
(pairs in the same order) less the proportion of dis-
cordant pairs. Since correlations can be high when
differences are uniform, we use Student’s T to test
whether differences score means statistically sig-
nificant. Criterion 2) is met if the correlations are
high and the means are not significantly different.

6 Results
The correlation tests indicate that several variants
achieve sufficiently high correlations to rank stu-
dents’ summaries (criterion 2). On all correla-
tion tests, the highest ranking automated method
is LVc, max, 0.64; this similarity threshold corre-
sponds to the 0.15 icdf. As shown in Table 1, the
Pearson correlation is 0.93. Note, however, that it
is not significantly higher than many of its com-
petitors. LVc, min, 0.40 did not rank as highly for
Speaman and Kendall’s tau correlations, but the
Student’s T result in column 3 of Table 1 shows
that this is the only variant in the table that yields
absolute scores that are not significantly different
from the human annotated scores. Thus this vari-
ant best balances criteria 1 and 2.

The differences in the unnormalized score com-
puted by the automated systems from the score as-
signed by human annotation are consistently posi-
tive. Inspection of the SCUs retrieved by each au-
tomated variant reveals that the automated systems
lean toward the tendency to identify false posi-
tives. This may result from the DP implementation
decision to maximize the score. To get a measure
of the degree of overlap between the SCUs that
were selected automatically versus manually (cri-

terion 4), we computed recall and precision for the
various methods. Table 2 shows the mean recall
and precision (with standard deviations) across all
five thresholds for each combination of similarity
method and method of comparison to the SCU.
The low standard deviations show that the recall
and precision are relatively similar across thresh-
olds for each variant. The LVc methods outper-
form R/O and unigram overlap methods, particu-
larly for the precision of SCUs retrieved, indicat-
ing the use of distributional semantics is a supe-
rior approach for pyramid summary scoring than
methods based on string matching.

The unigram overlap and R/O methods show the
least variation across comparison methods (min,
mean, max). LVc methods outperform them, on
precision (Table 2). Meeting all three criteria is
difficult, and the LVc method is clearly superior.

7 Conclusion
We extended a dynamic programming frame-
work (Harnly et al., 2005) to automate pyramid
scores more accurately. Improvements resulted
from principled thresholds for similarity, and from
a vector representation (LVc) to capture the latent
semantics of short spans of text (Guo and Diab,
2012). The LVc methods perform best at all three
criteria for a pedagogically useful automatic met-
ric. Future work will address how to improve pre-
cision and recall of the gold SCUs.
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Variant µ Recall (std) µ Precision (std) F score
Uni, min 0.69 (0.08) 0.35 (0.02) 0.52
Uni, max 0.70 (0.03) 0.35 (0.04) 0.53
Uni, mean 0.69 (0.02) 0.39 (0.04) 0.54
R/O, min 0.69 (0.08) 0.34 (0.01) 0.51
R/O, max 0.72 (0.03) 0.33 (0.04) 0.52
R/O, mean 0.71 (0.06) 0.38 (0.02) 0.54
LVc, min 0.61 (0.03) 0.38 (0.04) 0.49
LVc, max 0.74 (0.06) 0.48 (0.01) 0.61
LVc, mean 0.75 (0.06) 0.50 (0.02) 0.62

Table 2: Recall and precision for SCU selection
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Abstract
The current topic modeling approaches for
Information Retrieval do not allow to ex-
plicitly model query-oriented latent top-
ics. More, the semantic coherence of the
topics has never been considered in this
field. We propose a model-based feedback
approach that learns Latent Dirichlet Al-
location topic models on the top-ranked
pseudo-relevant feedback, and we mea-
sure the semantic coherence of those top-
ics. We perform a first experimental eval-
uation using two major TREC test collec-
tions. Results show that retrieval perfor-
mances tend to be better when using topics
with higher semantic coherence.

1 Introduction

Representing documents as mixtures of “topics”
has always been a challenge and an objective for
researchers working in text-related fields. Based
on the words used within a document, topic mod-
els learn topic level relations by assuming that the
document covers a small set of concepts. Learn-
ing the topics from a document collection can help
to extract high level semantic information, and
help humans to understand the meaning of doc-
uments. Latent Semantic Indexing (Deerwester
et al., 1990) (LSI), probabilistic Latent Seman-
tic Analysis (Hofmann, 2001) (pLSA) and Latent
Dirichlet Allocation (Blei et al., 2003) (LDA) are
the most famous approaches that tried to tackle
this problem throughout the years. Topics pro-
duced by these methods are generally fancy and
appealing, and often correlate well with human
concepts. This is one of the reasons of the inten-
sive use of topic models (and especially LDA) in
current research in Natural Language Processing
(NLP) related areas.

One main problem in ad hoc Information Re-
trieval (IR) is the difficulty for users to translate a

complex information need into a keyword query.
The most popular and effective approach to over-
come this problem is to improve the representa-
tion of the query by adding query-related “con-
cepts”. This approach mostly relies on pseudo-
relevance feedback, where these so-called “con-
cepts” are the most frequent words occurring in the
top-ranked documents retrieved by the retrieval
system (Lavrenko and Croft, 2001). From that
perspective, topic models seem attractive in the
sense that they can provide a descriptive and intu-
itive representation of concepts. But how can we
quantify the usefulness of these topics with respect
to an IR system? Recently, researchers developed
measures which evaluate the semantic coherence
of topic models (Newman et al., 2010; Mimno et
al., 2011; Stevens et al., 2012). We adopt their
view of semantic coherence and apply one of these
measures to query-oriented topics.

Several studies concentrated on improving the
quality of document ranking using topic models,
especially probabilistic ones. The approach by
Wei and Croft (2006) was the first to leverage
LDA topics to improve the estimate of document
language models and achieved good empirical re-
sults. Following this pioneering work, several
studies explored the use of pLSA and LDA un-
der different experimental settings (Park and Ra-
mamohanarao, 2009; Yi and Allan, 2009; Andrze-
jewski and Buttler, 2011; Lu et al., 2011). The re-
ported results suggest that the words and the prob-
ability distributions learned by probabilistic topic
models are effective for query expansion. The
main drawback of these approaches is that topics
are learned on the whole target document collec-
tion prior to retrieval, thus leading to a static top-
ical representation of the collection. Depending
on the query and on its specificity, topics may ei-
ther be too coarse or too fine to accurately rep-
resent the latent concepts of the query. Recently,
Ye et al. (2011) proposed a method which uses
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LDA and learns topics directly on a limited set
of documents. While this approach is a first step
towards modeling query-oriented topics, it lacks
some theoretic principles and only aims to heuris-
tically construct a “best” topic (from all learned
topics) before expanding the query with its most
probable words. More, none of the aforemen-
tioned works studied the semantic coherence of
those generated topics. We tackle these issues by
making the following contributions:

• we introduce Topic-Driven Relevance Mod-
els, a model-based feedback approach (Zhai
and Lafferty, 2001) for integrating topic mod-
els into relevance models by learning topics
on pseudo-relevant feedback documents (as
opposed to the entire document collection),

• we explore the coherence of those generated
topics using the queries of two major and
well-established TREC test collections,

• we evaluate the effects coherent topics have
on ad hoc IR using the same test collections.

2 Topic-Driven Relevance Models

2.1 Relevance Models
The goal of relevance models is to improve
the representation of a query Q by selecting
terms from a set of initially retrieved docu-
ments (Lavrenko and Croft, 2001). As the concen-
tration of relevant documents is usually higher in
the top ranks of the ranking list, this is constituted
by a number N of top-ranked documents. Rele-
vance models usually perform better when com-
bined with the original query model (or maxi-
mum likelihood estimate). Let θ̃Q be this maxi-
mum likelihood query estimate and θ̂Q a relevance
model, the updated new query model is given by:

P (w|θQ) = λ P (w|θ̃Q) + (1− λ)P (w|θ̂Q) (1)

where λ ∈ [0, 1] is a parameter that controls the
tradeoff between the original query model and the
relevance model. One of the most robust variants
of the relevance models is computed as follows:

P (w|θ̂Q) ∝
∑

θD∈Θ

P (θD)P (w|θD)
∏

t∈Q
P (t|θD)

(2)
where Θ is a set of pseudo-relevant feedback doc-
uments and θD is the language model of document
D. This notion of estimating a query model is

often referred to as model-based feedback (Zhai
and Lafferty, 2001). We assume P (θD) to be uni-
form, resulting in an estimated relevance model
based on a sum of document models weighted
by the query likelihood score. The final, inter-
polated, estimate expressed in equation (1) is of-
ten referred in the literature as RM3. We tackle
the null probabilities problem by smoothing the
document language model using the well-known
Dirichlet smoothing (Zhai and Lafferty, 2004).

2.2 LDA-based Feedback Model
The estimation of the feedback model θ̂Q consti-
tutes the first contribution of this work. We pro-
pose to explicitly model the latent topics (or con-
cepts) that exist behind an information need, and
to use them to improve the query representation.
We consider Θ as the set of pseudo-relevant feed-
back documents from which the latent concepts
would be extracted. The retrieval algorithm used
to obtain these documents can be of any kind, the
important point is that Θ is a reduced collection
that contains the top documents ranked by an au-
tomatic and state-of-the-art retrieval process.

Instead of viewing Θ as a set of document lan-
guage models that are likely to contain topical in-
formation about the query, we take a probabilistic
topic modeling approach. We specifically focus
on Latent Dirichlet Allocation (LDA), since it is
currently one of the most representative. In LDA,
each topic multinomial distribution φk is gener-
ated by a conjugate Dirichlet prior with parame-
ter β, while each document multinomial distribu-
tion θd is generated by a conjugate Dirichlet prior
with parameter α. In other words, θd,k is the prob-
ability of topic k occurring in document D (i.e.
P (k|D)). Respectively, φk,w is the probability of
wordw belonging to topic k (i.e. P (w|k)). We use
variational inference implemented in the LDA-C
software1 to overcome intractability issues (Blei et
al., 2003; Griffiths and Steyvers, 2004). Under this
setting, we compute the topic-driven estimation of
the query model using the following equation:

P (w|θ̂Q) ∝
∑

θD∈Θ

(
P (θD)P (w|θD)

PTM (w|D)
∏

t∈Q
P (t|θD)

)
(3)

where PTM (w|D) is the probability of word w
occurring in document D using the previously

1www.cs.princeton.edu/˜blei/lda-c
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Figure 1: Semantic coherence of the topic models for different values of K, in function of the number
N of feedback documents.

learned multinomial distributions. Let TΘ be a
topic model learned on the Θ set of feedback doc-
uments, this probability is given by:

PTM (w|D) =
∑

k∈TΘ
φk,w · θD,k (4)

High probabilities are thus given to words that are
important in topic k, when k is an important topic
in document D. In the remainder of this paper, we
refer to this general approach as TDRM for Topic-
Driven Relevance Models.

2.3 Measuring the coherence of
query-oriented topics

TDRM relies on two important parameters: the
number of topics K that we want to learn, and
the number of feedback documents N from which
LDA learns the topics. Varying these two param-
eters can help to capture more information and to
model finer topics, but how about their global se-
mantic coherence?

Term similarities measured in restricted do-
mains was the first step for evaluating seman-
tic coherence (Gliozzo et al., 2007), and was a
first basis for the development of several topic
coherence evaluation measures (Newman et al.,
2010). Computing the Pointwise Mutual Informa-
tion (PMI) of all word pairs over Wikipedia was
found to be an effective metric using news and
books corpora. Recently, Stevens et al. (2012)
used (among others) an aggregate version of this
metric to evaluate large amounts of topic models.
We use this method to evaluate the coherence of
query-oriented topics. Specifically, the coherence

of a topic model T KΘ composed of K topics is:

c(T KΘ ) =
1

K

K∑

i=1

∑

(w,w′)∈ki
log

P (w,w′) + ε

P (w)P (w′)
(5)

where probabilities of word occurrences and co-
occurrences are estimated using an external refer-
ence corpus. Following Newman et al. (2010), we
use Wikipedia to compute PMI and set ε = 1 as
in (Stevens et al., 2012).

3 Evaluation

3.1 Experimental setup
We performed our evaluation using two main
TREC2 collections: Robust04 and WT10g. Ro-
bust04 is composed 528,155 of news articles com-
ing from three newspapers and the FBIS. It sup-
ported the TREC 2004 Robust track, from which
we used the 250 query topics (numbers: 301-450,
601-700). The WT10g collection is composed of
1,692,096 web pages, and supported the TREC
Web track for four years (2001-2004). We focus
on the 2000 and 2001 ad-hoc query topics (num-
bers: 451-550). We used the open-source index-
ing and retrieval system Indri3 to run our exper-
iments. We indexed the two collections with the
exact same parameters: tokens were stemmed with
the well-known light Krovetz stemmer and stop-
words were removed using the standard English
stoplist embedded with Indri (417 words).

3.2 Semantic coherence evaluation
Most coherent topics are composed of rare words
that do not often occur in the reference corpus, but

2trec.nist.gov
3lemurproject.org/indri.php
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Figure 2: Retrieval performance in terms of Mean Average Precision (MAP) of the TDRM approach.
Each line represent a different number of topics K, and the performance are reported in function the
number N of feedback documents. The black, plain line represents the RM3 baseline.

co-occur at lot together. We see on Figure 1 that
very coherent topics are identified in the top 5 and
10 feedback documents for the WT10g collection,
suggesting that closely related documents are re-
trieved in the top ranks. Results are quite different
on the Robust04 collection, where topic models
with 20 topics on 5 documents are the least co-
herent. However, when looking at the Robust04
documents, we see that they are on average almost
twice smaller than the WT10g web pages. We hy-
pothesize that the heterogeneous nature of the web
allows to model very different topics covering sev-
eral aspects of the query, while news articles are
contributions focused on a single subject.

Overall, the more coherent topic models contain
a reasonable amount of topics (10-15), thus allow-
ing to fit with variable amounts of documents. The
attentive reader will notice that the topic coher-
ence scores are very high compared to those pre-
viously reported in the literature (Stevens et al.,
2012). The TDRM approach captures topics that
are centered around a specific information need,
often with a limited vocabulary, which favors word
co-occurrence. On the other hand, topics learned
on entire collections are coarser than ours, which
leads to lower coherence scores.

3.3 Document retrieval results

Since TDRM is based on Relevance Mod-
els (Lavrenko and Croft, 2001), we take the RM3
approach presented in Section 2.1 as baseline. The
λ parameter is common between RM3 and TDRM
and is determined for each query using leave-
one-query-out cross-validation (that is: learn the

best parameter setting for all queries but one, and
evaluate the held-out query using the previously
learned parameter).

We report ad hoc document retrieval perfor-
mances in Figure 2. We noticed in the previous
section that the most coherent topic models were
modeled using 5 feedback documents and 20 top-
ics for the WT10g collection, and this parame-
ter combination also achieves the best retrieval re-
sults. Overall, using 10, 15 or 20 topics allow it
to achieve high and similar performance from 5 to
20 documents. We observe than using 20 topics
for the Robust04 collection consistently achieves
the highest results, with the topic model coherence
growing as the number of feedback documents in-
creases. Although topics coming from news ar-
ticles may be limited, they benefit from the rich
vocabulary of professional writers who are trained
to avoid repetition. Their use of synonyms allows
TDRM to model deep topics, with a comprehen-
sive description of query aspects. Since synonyms
are less likely to co-occur in encyclopedic articles
like Wikipedia, we think that, in our case, the se-
mantic coherence measure could be more accurate
using other textual resources. This measure seems
however to be effective when dealing with hetero-
geneously structured documents.

4 Conclusions & Future Work

Overall, modeling query-oriented topic models
and estimating the feedback query model using
these topics greatly improves ad hoc Information
Retrieval, compared to state-of-the-art relevance
models. While semantically coherent topic mod-
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els do not seem to be effective in the context of a
news articles search task, they are a good indica-
tor of effectiveness in the context of web search.
Measuring the semantic coherence of query top-
ics could help predict query effectiveness or even
choose the best query-representative topic model.
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Abstract

Post-retrieval clustering is the task of clus-
tering Web search results. Within this
context, we propose a new methodology
that adapts the classical K-means algo-
rithm to a third-order similarity measure
initially developed for NLP tasks. Results
obtained with the definition of a new stop-
ping criterion over the ODP-239 and the
MORESQUE gold standard datasets evi-
dence that our proposal outperforms all re-
ported text-based approaches.

1 Introduction

Post-retrieval clustering (PRC), also known as
search results clustering or ephemeral clustering,
is the task of clustering Web search results. For
a given query, the retrieved Web snippets are au-
tomatically clustered and presented to the user
with meaningful labels in order to minimize the
information search process. This technique can
be particularly useful for polysemous queries but
it is hard to implement efficiently and effectively
(Carpineto et al., 2009). Indeed, as opposed to
classical text clustering, PRC must deal with small
collections of short text fragments (Web snippets)
and be processed in run-time.

As a consequence, most of the successful
methodologies follow a monothetic approach (Za-
mir and Etzioni, 1998; Ferragina and Gulli, 2008;
Carpineto and Romano, 2010; Navigli and Crisa-
fulli, 2010; Scaiella et al., 2012). The underlying
idea is to discover the most discriminant topical
words in the collection and group together Web
snippets containing these relevant terms. On the
other hand, the polythetic approach which main
idea is to represent Web snippets as word feature
vectors has received less attention, the only rele-
vant work being (Osinski and Weiss, 2005). The
main reasons for this situation are that (1) word

feature vectors are hard to define in small collec-
tions of short text fragments (Timonen, 2013), (2)
existing second-order similarity measures such as
the cosine are unadapted to capture the seman-
tic similarity between small texts, (3) Latent Se-
mantic Analysis has evidenced inconclusive re-
sults (Osinski and Weiss, 2005) and (4) the la-
beling process is a surprisingly hard extra task
(Carpineto et al., 2009).

This paper is motivated by the fact that the poly-
thetic approach should lead to improved results if
correctly applied to small collections of short text
fragments. For that purpose, we propose a new
methodology that adapts the classical K-means
algorithm to a third-order similarity measure ini-
tially developed for Topic Segmentation (Dias et
al., 2007). Moreover, the adapted K-means algo-
rithm allows to label each cluster directly from its
centroids thus avoiding the abovementioned extra
task. Finally, the evolution of the objective func-
tion of the adapted K-means is modeled to auto-
matically define the “best” number of clusters.

Finally, we propose different experiments over
the ODP-239 (Carpineto and Romano, 2010)
and MORESQUE (Navigli and Crisafulli, 2010)
datasets against the most competitive text-based
PRC algorithms: STC (Zamir and Etzioni, 1998),
LINGO (Osinski and Weiss, 2005), OPTIMSRC
(Carpineto and Romano, 2010) and the classical
bisecting incremental K-means (which may be
seen as a baseline for the polythetic paradigm)1.
A new evaluation measure called the b-cubed F -
measure (Fb3) and defined in (Amigó et al., 2009)
is then calculated to evaluate both cluster homo-
geneity and completeness. Results evidence that
our proposal outperforms all state-of-the-art ap-
proaches with a maximum Fb3 = 0.452 for ODP-
239 and Fb3 = 0.490 for MORESQUE.

1The TOPICAL algorithm proposed by (Scaiella et
al., 2012) is a knowledge-driven methodology based on
Wikipedia.
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2 Polythetic Post-Retrieval Clustering

The K-means is a geometric clustering algorithm
(Lloyd, 1982). Given a set of n data points, the
algorithm uses a local search approach to partition
the points into K clusters. A set of K initial clus-
ter centers is chosen. Each point is then assigned
to the center closest to it and the centers are recom-
puted as centers of mass of their assigned points.
The process is repeated until convergence. To as-
sure convergence, an objective function Q is de-
fined which decreases at each processing step. The
classical objective function is defined in Equation
(1) where πk is a cluster labeled k, xi ∈ πk is
an object in the cluster, mπk is the centroid of the
cluster πk and E(., .) is the Euclidean distance.

Q =

K∑

k=1

∑

xi∈πk

E(xi,mπk )
2. (1)

Within the context of PRC, the K-means algo-
rithm needs to be adapted to integrate third-order
similarity measures (Mihalcea et al., 2006; Dias
et al., 2007). Third-order similarity measures,
also called weighted second-order similarity mea-
sures, do not rely on exact matches of word fea-
tures as classical second-order similarity measures
(e.g. the cosine metric), but rather evaluate simi-
larity based on related matches. In this paper, we
propose to use the third-order similarity measure
called InfoSimba introduced in (Dias et al., 2007)
for Topic Segmentation and implement its simpli-
fied version S3

s in Equation 2.

S3
s (Xi, Xj) =

1

p2

p∑

k=1

p∑

l=1

Xik ∗Xjl ∗ S(Wik,Wjl). (2)

Given two Web snippets Xi and Xj , their sim-
ilarity is evaluated by the similarity of its con-
stituents based on any symmetric similarity mea-
sure S(., .) where Wik (resp. Wjl) corresponds to
the word at the kth (resp. lth) position in the vector
Xi (resp. Xj) and Xik (resp. Xjl) is the weight of
word Wik (resp. Wjl) in the set of retrieved Web
snippets. A direct consequence of the change in
similarity measure is the definition of a new ob-
jective function QS3

s
to ensure convergence. This

function is defined in Equation (3) and must be
maximized2.

2A maximization process can easily be transformed into a
minimization one

QS3
s
=

K∑

k=1

∑

xi∈πk

S3
s (xi,mπk ). (3)

A cluster centroid mπk is defined by a vector of
p words (wπk1 , . . . , wπkp ). As a consequence, each
cluster centroid must be instantiated in such a way
that QS3

s
increases at each step of the clustering

process. The choice of the best p words repre-
senting each cluster is a way of assuring conver-
gence. For that purpose, we define a procedure
which consists in selecting the best p words from
the global vocabulary V in such a way that QS3

s

increases. The global vocabulary is the set of all
words which appear in any context vector.

So, for each word w ∈ V and any symmet-
ric similarity measure S(., .), its interestingness
λk(w) is computed as regards to cluster πk. This
operation is defined in Equation (4) where si ∈ πk
is any Web snippet from cluster πk. Finally, the p
words with higher λk(w) are selected to construct
the cluster centroid. In such a way, we can easily
prove that QS3

s
is maximized. Note that a word

which is not part of cluster πk may be part of the
centroid mπk .

λk(w) =
1

p

∑

si∈πk

∑

wi
q∈si

S(wiq, w). (4)

Finally, we propose to rely on a modified ver-
sion of the K-means algorithm called Global K-
means (Likasa et al., 2003), which has proved to
lead to improved results. To solve a clustering
problem with M clusters, all intermediate prob-
lems with 1, 2, ...,M − 1 clusters are sequentially
solved. The underlying idea is that an optimal so-
lution for a clustering problem with M clusters
can be obtained using a series of local searches us-
ing the K-means algorithm. At each local search,
the M − 1 cluster centers are always initially
placed at their optimal positions corresponding to
the clustering problem with M − 1 clusters. The
remaining M th cluster center is initially placed at
several positions within the data space. In addi-
tion to effectiveness, the method is deterministic
and does not depend on any initial conditions or
empirically adjustable parameters. Moreover, its
adaptation to PRC is straightforward.

3 Stopping Criterion

Once clustering has been processed, selecting the
best number of clusters still remains to be decided.
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For that purpose, numerous procedures have been
proposed (Milligan and Cooper, 1985). However,
none of the listed methods were effective or adapt-
able to our specific problem. So, we proposed
a procedure based on the definition of a ratio-
nal function which models the quality criterion
QS3

s
. To better understand the behaviour of QS3

s

at each step of the adapted GK-means algorithm,
we present its values for K = 10 in Figure 1.

Figure 1: QS3
s

and its modelisation.

QS3
s

can be modelled as in Equation (5) which
converges to a limit α whenK increases and starts
from Q1

S3
s

(i.e. QS3
s

at K = 1). The underlying
idea is that the best number of clusters is given by
the β value which maximizes the difference with
the average βmean. So, α, β and γ need to be
expressed independently of unknown variables.

∀K, f(K) = α− γ

Kβ
. (5)

As α can theoretically or operationally be de-
fined and it can easily be proved that γ = α−Q1

S3
s
,

β needs to be defined based on γ or α. This can
also be easily proved and the given result is ex-
pressed in Equation (6).

β =
log(α−Q1

S3
s
)− log(α−QKS3

s
)

log(K)
. (6)

Now, the value of α which best approximates
the limit of the rational function must be defined.
For that purpose, we computed its maximum theo-
retical and experimental values as well as its ap-
proximated maximum experimental value based
on the δ2-Aitken (Aitken, 1926) procedure to ac-
celerate convergence as explained in (Kuroda et
al., 2008). Best results were obtained with the
maximum experimental value which is defined as
building the cluster centroid mπk for each Web

snippet individually. Finally, the best number of
clusters is defined as in Algorithm (1) and each
one receives its label based on the p words with
greater interestingness of its centroid mπk .

Algorithm 1 The best K selection procedure.
1. Calculate βK for each K
2. Evaluate the mean of all βK i.e. βmean

3. Select βK which maximizes βK − βmean
4. Return K as the best number of partitions

This situation is illustrated in Figure (1) where
the red line corresponds to the rational functional
for βmean and the blue line models the best β
value (i.e. the one which maximizes the difference
with βmean). In this case, the best number would
correspond to β6 and as a consequence, the best
number of clusters would be 6. In order to illus-
trate the soundness of the procedure, we present
the different values for β at each K iteration and
the differences between consecutive values of β at
each iteration in Figure 2. We clearly see that the
highest inclination of the curve is between clus-
ter 5 and 6 which also corresponds to the highest
difference between two consecutive values of β.

Figure 2: Values of β (on the left) and differences
between consecutive values of β (on the right).

4 Evaluation

Evaluating PRC systems is a difficult task as stated
in (Carpineto et al., 2009). Indeed, a successful
PRC system must evidence high quality level clus-
tering. Ideally, each query subtopic should be rep-
resented by a unique cluster containing all the rel-
evant Web pages inside. However, this task is far
from being achievable. As such, this constraint
is reformulated as follows: the task of PRC sys-
tems is to provide complete topical cluster cov-
erage of a given query, while avoiding excessive
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Fb3 K Stop Criterion
2 3 4 5 6 7 8 9 10 Fb3 Avg. K

SCP p

2 0.387 0.396 0.398 0.396 0.391 0.386 0.382 0.378 0.374 0.395 4.799
3 0.400 0.411 0.412 0.409 0.406 0.400 0.397 0.391 0.388 0.411 4.690
4 0.405 0.416 0.423 0.425 0.423 0.420 0.416 0.414 0.411 0.441 4.766
5 0.408 0.422 0.431 0.431 0.429 0.429 0.423 0.422 0.421 0.452 4.778

PMI p

2 0.391 0.399 0.397 0.393 0.388 0.383 0.377 0.373 0.366 0.393 4.778
3 0.408 0.418 0.422 0.418 0.414 0.410 0.405 0.398 0.392 0.416 4.879
4 0.420 0.434 0.439 0.439 0.435 0.430 0.425 0.420 0.412 0.436 4.874
5 0.423 0.444 0.451 0.451 0.451 0.445 0.441 0.434 0.429 0.450 4.778

Table 1: Fb3 for SCP and PMI for the global search and the stopping criterion for the ODP-239 dataset.

Adapated GK-means

STC LINGO BIK OPTIMSRCSCP PMI

ODP-239

p p
2 3 4 5 2 3 4 5

F1 0.312 0.341 0.352 0.366 0.332 0.358 0.378 0.390 0.324 0.273 0.200 0.313
F2 0.363 0.393 0.404 0.416 0.363 0.395 0.421 0.435 0.319 0.167 0.173 0.341
F5 0.411 0.441 0.453 0.462 0.390 0.430 0.459 0.476 0.322 0.153 0.165 0.380
Fb3 0.395 0.411 0.441 0.452 0.393 0.416 0.436 0,450 0.403 0.346 0.307 N/A

MORESQUE

F1 0.627 0.649 0.665 0.664 0.615 0.551 0.543 0.571 0.455 0.326 0.317 N/A
F2 0.685 0.733 0.767 0.770 0.644 0.548 0.521 0.551 0.392 0.260 0.269 N/A
F5 0.747 0.817 0.865 0.872 0.679 0.563 0.519 0.553 0.370 0.237 0.255 N/A
Fb3 0.482 0.482 0.473 0.464 0.490 0.465 0.462 0.485 0.460 0.399 0.315 N/A

Table 2: PRC comparative results for Fβ and Fb3 over the ODP-239 and MORESQUE datasets.

redundancy of the subtopics in the result list of
clusters. So, in order to evaluate our methodol-
ogy, we propose two different evaluations. First,
we want to evidence the quality of the stopping
criterion when compared to an exhaustive search
over all tunable parameters. Second, we propose a
comparative evaluation with existing state-of-the-
art algorithms over gold standard datasets and re-
cent clustering evaluation metrics.

4.1 Text Processing

Before the clustering process takes place, Web
snippets are represented as word feature vectors.
In order to define the set of word features, the
Web service proposed in (Machado et al., 2009) is
used3. In particular, it assigns a relevance score to
any token present in the set of retrieved Web snip-
pets based on the analysis of left and right token
contexts. A specific threshold is then applied to
withdraw irrelevant tokens and the remaining ones
form the vocabulary V . Then, each Web snippet is
represented by the set of its p most relevant to-
kens in the sense of the W (.) value proposed in
(Machado et al., 2009). Note that within the pro-
posed Web service, multiword units are also iden-
tified. They are exclusively composed of relevant
individual tokens and their weight is given by the
arithmetic mean of their constituents scores.

3Access to this Web service is available upon request.

4.2 Intrinsic Evaluation
The first set of experiments focuses on understand-
ing the behaviour of our methodology within a
greedy search strategy for different tunable param-
eters defined as a tuple < p,K, S(Wik,Wjl) >.
In particular, p is the size of the word feature vec-
tors representing both Web snippets and centroids
(p = 2..5), K is the number of clusters to be
found (K = 2..10) and S(Wik,Wjl) is the col-
location measure integrated in the InfoSimba sim-
ilarity measure. In these experiments, two asso-
ciation measures which are known to have dif-
ferent behaviours (Pecina and Schlesinger, 2006)
are tested. We implement the Symmetric Condi-
tional Probability (Silva et al., 1999) in Equation
(7) which tends to give more credits to frequent as-
sociations and the Pointwise Mutual Information
(Church and Hanks, 1990) in Equation (8) which
over-estimates infrequent associations. Then, best
< p,K, S(Wik,Wjl) > configurations are com-
pared to our stopping criterion.

SCP (Wik,Wjl) =
P (Wik,Wjl)

2

P (Wik)× P (Wjl)
. (7)

PMI(Wik,Wjl) = log2
P (Wik,Wjl)

P (Wik)× P (Wjl)
. (8)

In order to perform this task, we evaluate per-
formance based on the Fb3 measure defined in
(Amigó et al., 2009) over the ODP-239 gold stan-
dard dataset proposed in (Carpineto and Romano,
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2010). In particular, (Amigó et al., 2009) indi-
cate that common metrics such as the Fβ-measure
are good to assign higher scores to clusters with
high homogeneity, but fail to evaluate cluster com-
pleteness. First results are provided in Table 1 and
evidence that the best configurations for different
< p,K, S(Wik,Wjl) > tuples are obtained for
high values of p, K ranging from 4 to 6 clusters
and PMI steadily improving over SCP . How-
ever, such a fuzzy configuration is not satisfac-
tory. As such, we proposed a new stopping cri-
terion which evidences coherent results as it (1)
does not depend on the used association measure
(FSCPb3 = 0.452 and FPMI

b3 = 0.450), (2) discov-
ers similar numbers of clusters independently of
the length of the p-context vector and (3) increases
performance with high values of p.

4.3 Comparative Evaluation

The second evaluation aims to compare our
methodology to current state-of-the-art text-based
PRC algorithms. We propose comparative exper-
iments over two gold standard datasets (ODP-239
(Carpineto and Romano, 2010) and MORESQUE
(Di Marco and Navigli, 2013)) for STC (Za-
mir and Etzioni, 1998), LINGO (Osinski and
Weiss, 2005), OPTIMSRC (Carpineto and Ro-
mano, 2010) and the Bisecting Incremental K-
means (BIK) which may be seen as a baseline for
the polythetic paradigm. A brief description of
each PRC algorithm is given as follows.

STC: (Zamir and Etzioni, 1998) defined the
Suffix Tree Clustering algorithm which is still a
difficult standard to beat in the field. In partic-
ular, they propose a monothetic clustering tech-
nique which merges base clusters with high string
overlap. Indeed, instead of using the classical Vec-
tor Space Model (VSM) representation, they pro-
pose to represent Web snippets as compact tries.

LINGO: (Osinski and Weiss, 2005) proposed a
polythetic solution called LINGO which takes into
account the string representation proposed by (Za-
mir and Etzioni, 1998). They first extract frequent
phrases based on suffix-arrays. Then, they reduce
the term-document matrix (defined as a VSM) us-
ing Single Value Decomposition to discover latent
structures. Finally, they match group descriptions
with the extracted topics and assign relevant doc-
uments to them.

OPTIMSRC: (Carpineto and Romano, 2010)
showed that the characteristics of the outputs re-
turned by PRC algorithms suggest the adoption of
a meta clustering approach. As such, they intro-
duce a novel criterion to measure the concordance
of two partitions of objects into different clusters
based on the information content associated to the
series of decisions made by the partitions on single
pairs of objects. Then, the meta clustering phase
is casted to an optimization problem of the concor-
dance between the clustering combination and the
given set of clusterings.

With respect to implementation, we used the
Carrot2 APIs4 which are freely available for STC,
LINGO and the classical BIK. It is worth notic-
ing that all implementations in Carrot2 are tuned
to extract exactly 10 clusters. For OPTIMSRC,
we reproduced the results presented in the paper
of (Carpineto and Romano, 2010) as no imple-
mentation is freely available. The results are il-
lustrated in Table 2 including both Fβ-measure
and Fb3 . They evidence clear improvements of
our methodology when compared to state-of-the-
art text-based PRC algorithms, over both datasets
and all evaluation metrics. But more important,
even when the p-context vector is small (p = 3),
the adapted GK-means outperforms all other ex-
isting text-based PRC which is particularly impor-
tant as they need to perform in real-time.

5 Conclusions

In this paper, we proposed a new PRC ap-
proach which (1) is based on the adaptation of
the K-means algorithm to third-order similar-
ity measures and (2) proposes a coherent stop-
ping criterion. Results evidenced clear improve-
ments over the evaluated state-of-the-art text-
based approaches for two gold standard datasets.
Moreover, our best F1-measure over ODP-239
(0.390) approximates the highest ever-reached F1-
measure (0.413) by the TOPICAL knowledge-
driven algorithm proposed in (Scaiella et al.,
2012)5. These results are promising and in future
works, we propose to define new knowledge-based
third-order similarity measures based on studies in
entity-linking (Ferragina and Scaiella, 2010).

4http://search.carrot2.org/stable/search [Last access:
15/05/2013].

5Notice that the authors only propose the F1-measure al-
though different results can be obtained for different Fβ-
measures and Fb3 as evidenced in Table 2.
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Abstract

Information Retrieval (IR) and Answer
Extraction are often designed as isolated
or loosely connected components in Ques-
tion Answering (QA), with repeated over-
engineering on IR, and not necessarily per-
formance gain for QA. We propose to
tightly integrate them by coupling auto-
matically learned features for answer ex-
traction to a shallow-structured IR model.
Our method is very quick to implement,
and significantly improves IR for QA
(measured in Mean Average Precision and
Mean Reciprocal Rank) by 10%-20%
against an uncoupled retrieval baseline
in both document and passage retrieval,
which further leads to a downstream 20%
improvement in QA F1.

1 Introduction

The overall performance of a Question Answer-
ing system is bounded by its Information Re-
trieval (IR) front end, resulting in research specif-
ically on Information Retrieval for Question An-
swering (IR4QA) (Greenwood, 2008; Sakai et al.,
2010). Common approaches such as query expan-
sion, structured retrieval, and translation models
show patterns of complicated engineering on the
IR side, or isolate the upstream passage retrieval
from downstream answer extraction. We argue
that: 1. an IR front end should deliver exactly
what a QA1 back end needs; 2. many intuitions
employed by QA should be and can be re-used in
IR, rather than re-invented. We propose a coupled
retrieval method with prior knowledge of its down-
stream QA component, that feeds QA with exactly
the information needed.

1After this point in the paper we use the term QA in a
narrow sense: QA without the IR component, i.e., answer
extraction.

As a motivating example, using the ques-
tion When was Alaska purchased from
the TREC 2002 QA track as the query to the In-
dri search engine, the top sentence retrieved from
the accompanying AQUAINT corpus is:
Eventually Alaska Airlines will

allow all travelers who have
purchased electronic tickets
through any means.

While this relates Alaska and purchased, it
is not a useful passage for the given question.2 It
is apparent that the question asks for a date. Prior
work proposed predictive annotation (Prager et al.,
2000; Prager et al., 2006): text is first annotated in
a predictive manner (of what types of questions it
might answer) with 20 answer types and then in-
dexed. A question analysis component (consisting
of 400 question templates) maps the desired an-
swer type to one of the 20 existing answer types.
Retrieval is then performed with both the question
and predicated answer types in the query.

However, predictive annotation has the limita-
tion of being labor intensive and assuming the un-
derlying NLP pipeline to be accurate. We avoid
these limitations by directly asking the down-
stream QA system for the information about which
entities answer which questions, via two steps:
1. reusing the question analysis components from
QA; 2. forming a query based on the most relevant
answer features given a question from the learned
QA model. There is no query-time overhead and
no manual template creation. Moreover, this ap-
proach is more robust against, e.g., entity recog-
nition errors, because answer typing knowledge is
learned from how the data was actually labeled,
not from how the data was assumed to be labeled
(e.g., manual templates usually assume perfect la-
beling of named entities, but often it is not the case

2Based on a non-optimized IR configuration, none of the
top 1000 returned passages contained the correct answer:
1867.
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in practice).

We use our statistically-trained QA system (Yao
et al., 2013) that recognizes the association be-
tween question type and expected answer types
through various features. The QA system employs
a linear chain Conditional Random Field (CRF)
(Lafferty et al., 2001) and tags each token as either
an answer (ANS) or not (O). This will be our off-
the-shelf QA system, which recognizes the associ-
ation between question type and expected answer
types through various features based on e.g., part-
of-speech tagging (POS) and named entity recog-
nition (NER).

With weights optimized by CRF training (Ta-
ble 1), we can learn how answer features are cor-
related with question features. These features,
whose weights are optimized by the CRF train-
ing, directly reflect what the most important an-
swer types associated with each question type are.
For instance, line 2 in Table 1 says that if there is a
when question, and the current token’s NER label
is DATE, then it is likely that this token is tagged
as ANS. IR can easily make use of this knowledge:
for a when question, IR retrieves sentences with
tokens labeled as DATE by NER, or POS tagged as
CD. The only extra processing is to pre-tag and
index the text with POS and NER labels. The ana-
lyzing power of discriminative answer features for
IR comes for free from a trained QA system. Un-
like predictive annotation, statistical evidence de-
termines the best answer features given the ques-
tion, with no manual pattern or templates needed.

To compare again predictive annotation with
our approach: predictive annotation works in a
forward mode, downstream QA is tailored for up-
stream IR, i.e., QA works on whatever IR re-
trieves. Our method works in reverse (backward):
downstream QA dictates upstream IR, i.e., IR re-
trieves what QA wants. Moreover, our approach
extends easily beyond fixed answer types such as
named entities: we are already using POS tags as a
demonstration. We can potentially use any helpful
answer features in retrieval. For instance, if the
QA system learns that in order to is highly
correlated with why question through lexicalized
features, or some certain dependency relations are
helpful in answering questions with specific struc-
tures, then it is natural and easy for the IR compo-
nent to incorporate them.

There is also a distinction between our method
and the technique of learning to rank applied in

feature label weight
qword=when|POS0=CD ANS 0.86

qword=when|NER0=DATE ANS 0.79

qword=when|POS0=CD O -0.74

Table 1: Learned weights for sampled features with respect
to the label of current token (indexed by [0]) in a CRF. The
larger the weight, the more “important” is this feature to help
tag the current token with the corresponding label. For in-
stance, line 1 says when answering a when question, and
the POS of current token is CD (cardinal number), it is likely
(large weight) that the token is tagged as ANS.

QA (Bilotti et al., 2010; Agarwal et al., 2012). Our
method is a QA-driven approach that provides su-
pervision for IR from a learned QA model, while
learning to rank is essentially an IR-driven ap-
proach: the supervision for IR comes from a la-
beled ranking list of retrieval results.

Overall, we make the following contributions:
• Our proposed method tightly integrates QA

with IR and the reuse of analysis from QA does
not put extra overhead on the IR queries. This
QA-driven approach provides a holistic solution
to the task of IR4QA.

• We learn statistical evidence about what the
form of answers to different questions look like,
rather than using manually authored templates.
This provides great flexibility in using answer
features in IR queries.
We give a full spectrum evaluation of all three

stages of IR+QA: document retrieval, passage re-
trieval and answer extraction, to examine thor-
oughly the effectiveness of the method.3 All of
our code and datasets are publicly available.4

2 Background

Besides Predictive Annotation, our work is closest
to structured retrieval, which covers techniques of
dependency path mapping (Lin and Pantel, 2001;
Cui et al., 2005; Kaisser, 2012), graph matching
with Semantic Role Labeling (Shen and Lapata,
2007) and answer type checking (Pinchak et al.,
2009), etc. Specifically, Bilotti et al. (2007) pro-
posed indexing text with their semantic roles and
named entities. Queries then include constraints
of semantic roles and named entities for the pred-
icate and its arguments in the question. Improve-
ments in recall of answer-bearing sentences were
shown over the bag-of-words baseline. Zhao and

3Rarely are all three aspects presented in concert (see §2).
4http://code.google.com/p/jacana/
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Callan (2008) extended this work with approx-
imate matching and smoothing. Most research
uses parsing to assign deep structures. Com-
pared to shallow (POS, NER) structured retrieval,
deep structures need more processing power and
smoothing, but might also be more precise. 5

Most of the above (except Kaisser (2012)) only
reported on IR or QA, but not both, assuming that
improvement in one naturally improves the other.
Bilotti and Nyberg (2008) challenged this assump-
tion and called for tighter coupling between IR and
QA. This paper is aimed at that challenge.

3 Method

Table 1 already shows some examples of features
associating question types with answer types. We
store the features and their learned weights from
the trained model for IR usage.

We let the trained QA system guide the query
formulation when performing coupled retrieval
with Indri (Strohman et al., 2005), given a corpus
already annotated with POS tags and NER labels.
Then retrieval runs in four steps (Figure 1):
1. Question Analysis. The question analysis com-

ponent from QA is reused here. In this imple-
mentation, the only information we have cho-
sen to use from the question is the question
word (e.g., how, who) and the lexical answer
types (LAT) in case of what/which questions.

2. Answer Feature Selection. Given the question
word, we select the 5 highest weighted features
(e.g., POS[0]=CD for a when question).

3. Query Formulation. The original question is
combined with the top features as the query.

4. Coupled Retrieval. Indri retrieves a ranked list
of documents or passages.

As motivated in the introduction, this framework
is aimed at providing the following benefits:
Reuse of QA components on the IR side. IR
reuses both code for question analysis and top
weighted features from QA.
Statistical selection of answer features. For in-
stance, the NER tagger we used divides location
into two categories: GPE (geo locations) and LOC

5Ogilvie (2010) showed in chapter 4.3 that keyword and
named entities based retrieval actually outperformed SRL-
based structured retrieval in MAP for the answer-bearing sen-
tence retrieval task in their setting. In this paper we do not
intend to re-invent another parse-based structure matching al-
gorithm, but only use shallow structures to show the idea of
coupling QA with IR; in the future this might be extended to
incorporate “deeper” structure.

(non-GPE ). Both of them are learned to be impor-
tant to where questions.
Error tolerance along the NLP pipeline. IR
and QA share the same processing pipeline. Sys-
tematic errors made by the processing tools are
tolerated, in the sense that if the same pre-
processing error is made on both the question
and sentence, an answer may still be found.
Take the previous where question, besides
NER[0]=GPE and NER[0]=LOC, we also found
oddly NER[0]=PERSON an important feature, due
to that the NER tool sometimes mistakes PERSON

for LOC. For instance, the volcano name Mauna
Loa is labeled as a PERSON instead of a LOC. But
since the importance of this feature is recognized
by downstream QA, the upstream IR is still moti-
vated to retrieve it.

Queries were lightly optimized using the fol-
lowing strategies:
Query Weighting In practice query words are
weighted:

#weight(1.0 When 1.0 was 1.0 Alaska 1.0 purchased
α #max(#any:CD #any:DATE))

with a weight α for the answer types tuned via
cross-validation.

Since NER and POS tags are not lexicalized
they accumulate many more counts (i.e. term fre-
quency) than individual words, thus we in gen-
eral downweight by setting α < 1.0, giving the
expected answer types “enough say” but not “too
much say”:
NER Types First We found NER labels better in-
dicators of expected answer types than POS tags.
The reasons are two-fold: 1. In general POS tags
are too coarse-grained in answer types than NER

labels. E.g., NNP can answer who and where
questions, but is not as precise as PERSON and
GPE. 2. POS tags accumulate even more counts
than NER labels, thus they need separate down-
weighting. Learning the interplay of these weights
in a joint IR/QA model, is an interesting path for
future work. If the top-weighted features are based
on NER, then we do not include POS tags for that
question. Otherwise POS tags are useful, for in-
stance, in answering how questions.
Unigram QA Model The QA system uses up to
trigram features (Table 1 shows examples of uni-
gram and bigram features). Thus it is able to learn,
for instance, that a POS sequence of IN CD NNS

is likely an answer to a when question (such as:
in 5 years). This requires that the IR queries
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When was Alaska purchased?

qword=when

qword=when|POS[0]=CD → ANS: 0.86
qword=when|NER[0]=DATE → ANS: 0.79

...

#combine(Alaska purchased 
#max(#any:CD  #any:DATE))

1. Simple question analysis
(reuse from QA)

2. Get top weighted 
features w.r.t qword

(from trained QA model)

3. Query formulation

4. Coupled retrieval

On <DATE>March 30, <CD> 1867 </CD> </DATE>, 
U.S. ... reached agreement ... to purchase ... Alaska ...
The islands were sold to the United States in 
<CD>1867</CD> with the purchase of Alaska.

…
...

Eventually Alaska Airlines will allow all travelers who 
have purchased electronic tickets ...

1

2

...

50

Figure 1: Coupled retrieval with queries directly con-
structed from highest weighted features of downstream QA.
The retrieved and ranked list of sentences is POS and NER
tagged, but only query-relevant tags are shown due to space
limit. A bag-of-words retrieval approach would have the sen-
tence shown above at rank 50 at its top position instead.

look for a consecutive IN CD NNS sequence. We
drop this strict constraint (which may need further
smoothing) and only use unigram features, not by
simply extracting “good” unigram features from
the trained model, but by re-training the model
with only unigram features. In answer extraction,
we still use up to trigram features. 6

4 Experiments

We want to measure and compare the performance
of the following retrieval techniques:
1. uncoupled retrieval with an off-the-shelf IR en-

gine by using the question as query (baseline),
2. QA-driven coupled retrieval (proposed), and
3. answer-bearing retrieval by using both the

question and known answer as query, only eval-
uated for answer extraction (upper bound),

at the three stages of question answering:
1. Document retrieval (for relevant docs from cor-

pus), measured by Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR).

2. Passage retrieval (finding relevant sentences
from the document), also by MAP and MRR.

3. Answer extraction, measured by F1.
6This is because the weights of unigram to trigram fea-

tures in a loglinear CRF model is a balanced consequence for
maximization. A unigram feature might end up with lower
weight because another trigram containing this unigram gets
a higher weight. Then we would have missed this feature
if we only used top unigram features. Thus we re-train the
model with only unigram features to make sure weights are
“assigned properly” among only unigram features.

set questions sentences
#all #pos. #all #pos.

TRAIN 2205 1756 (80%) 22043 7637 (35%)

TESTgold 99 88 (89%) 990 368 (37%)

Table 2: Statistics for AMT-collected data (total cost was
around $800 for paying three Turkers per sentence). Positive
questions are those with an answer found. Positive sentences
are those bearing an answer.

All coupled and uncoupled queries are performed
with Indri v5.3 (Strohman et al., 2005).

4.1 Data
Test Set for IR and QA The MIT109 test col-
lection by Lin and Katz (2006) contains 109
questions from TREC 2002 and provides a near-
exhaustive judgment of relevant documents for
each question. We removed 10 questions that do
not have an answer by matching the TREC answer
patterns. Then we call this test set MIT99.
Training Set for QA We used Amazon Mechani-
cal Turk to collect training data for the QA system
by issuing answer-bearing queries for TREC1999-
2003 questions. For the top 10 retrieved sen-
tences for each question, three Turkers judged
whether each sentence contained the answer. The
inter-coder agreement rate was 0.81 (Krippen-
dorff, 2004; Artstein and Poesio, 2008).

The 99 questions of MIT99 were extracted from
the Turk collection as our TESTgold with the re-
maining as TRAIN, with statistics shown in Table
2. Note that only 88 questions out of MIT99 have
an answer from the top 10 query results.

Finally both the training and test data were
sentence-segmented and word-tokenized by
NLTK (Bird and Loper, 2004), dependency-
parsed by the Stanford Parser (Klein and
Manning, 2003), and NER-tagged by the Illinois
Named Entity Tagger (Ratinov and Roth, 2009)
with an 18-label type set.
Corpus Preprocessing for IR The AQUAINT
(LDC2002T31) corpus, on which the MIT99
questions are based, was processed in exactly the
same manner as was the QA training set. But
only sentence boundaries, POS tags and NER la-
bels were kept as the annotation of the corpus.

4.2 Document and Passage Retrieval
We issued uncoupled queries consisting of ques-
tion words, and QA-driven coupled queries con-
sisting of both the question and expected answer
types, then retrieved the top 1000 documents, and
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type
coupled uncoupled

MAP MRR MAP MRR
document 0.2524 0.4835 0.2110 0.4298

sentence 0.1375 0.2987 0.1200 0.2544

Table 3: Coupled vs. uncoupled document/sentence re-
trieval in MAP and MRR on MIT99. Significance level
(Smucker et al., 2007) for both MAP: p < 0.001 and for
both MRR: p < 0.05.

finally computed MAP and MRR against the gold-
standard MIT99 per-document judgment.

To find the best weighting α for coupled re-
trieval, we used 5-fold cross-validation and final-
ized at α = 0.1. Table 3 shows the results.
Coupled retrieval outperforms (20% by MAP with
p < 0.001 and 12% by MRR with p < 0.01) un-
coupled retrieval significantly according to paired
randomization test (Smucker et al., 2007).

For passage retrieval, we extracted relevant sin-
gle sentences. Recall that MIT99 only contains
document-level judgment. To generate a test set
for sentence retrieval, we matched each sentence
from relevant documents provided by MIT99 for
each question against the TREC answer patterns.

We found no significant difference between re-
trieving sentences from the documents returned
by document retrieval or directly from the corpus.
Numbers of the latter are shown in Table 3. Still,
coupled retrieval is significantly better by about
10% in MAP and 17% in MRR.

4.3 Answer Extraction

Lastly we sent the sentences to the downstream
QA engine (trained on TRAIN) and computed F1

per K for the top K retrieved sentences, 7 shown
in Figure 2. The best F1 with coupled sentence re-
trieval is 0.231, 20% better than F1 of 0.192 with
uncoupled retrieval, both at K = 1.

The two descending lines at the bottom reflect
the fact that the majority-voting mechanism from
the QA system was too simple: F1 drops as K in-
creases. Thus we also computed F1’s assuming
perfect voting: a voting oracle that always selects
the correct answer as long as the QA system pro-
duces one, thus the two ascending lines in the cen-
ter of Figure 2. Still, F1 with coupled retrieval is
always better: reiterating the fact that coupled re-
trieval covers more answer-bearing sentences.

7Lin (2007), Zhang et al. (2007), and Kaisser (2012) also
evaluated on MIT109. However their QA engines used web-
based search engines, thus leading to results that are neither
reproducible nor directly comparable with ours.

Finally, to find the upper bound for QA, we
drew the two upper lines, testing on TESTgold de-
scribed in Table 2. The test sentences were ob-
tained with answer-bearing queries. This is as-
suming almost perfect IR. The gap between the
top two and other lines signals more room for im-
provements for IR in terms of better coverage and
better rank for answer-bearing sentences.
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F1

Coupled (0.231)
Uncoupled (0.192)

Gold Oracle (0.755)
Gold (0.596)
Coupled Oracle (0.609)
Uncoupled Oracle (0.569)

Figure 2: F1 values for answer extraction on MIT99. Best
F1’s for each method are parenthesized in the legend. “Or-
acle” methods assumed perfect voting of answer candidates
(a question is answered correctly if the system ever produced
one correct answer for it). “Gold” was tested on TESTgold.

5 Conclusion

We described a method to perform coupled in-
formation retrieval with a prior knowledge of the
downstream QA system. Specifically, we coupled
IR queries with automatically learned answer fea-
tures from QA and observed significant improve-
ments in document/passage retrieval and boosted
F1 in answer extraction. This method has the mer-
its of not requiring hand-built question and answer
templates and being flexible in incorporating vari-
ous answer features automatically learned and op-
timized from the downstream QA system.
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Abstract
We study the mathematical properties of
a recently proposed MDL-based unsuper-
vised word segmentation algorithm, called
regularized compression. Our analysis
shows that its objective function can be
efficiently approximated using the nega-
tive empirical pointwise mutual informa-
tion. The proposed extension improves the
baseline performance in both efficiency
and accuracy on a standard benchmark.

1 Introduction

Hierarchical Bayes methods have been main-
stream in unsupervised word segmentation since
the dawn of hierarchical Dirichlet process (Gold-
water et al., 2009) and adaptors grammar (Johnson
and Goldwater, 2009). Despite this wide recog-
nition, they are also notoriously computational
prohibitive and have limited adoption on larger
corpora. While much effort has been directed
to mitigating this issue within the Bayes frame-
work (Borschinger and Johnson, 2011), many
have found minimum description length (MDL)
based methods more promising in addressing the
scalability problem.

MDL-based methods (Rissanen, 1978) rely on
underlying search algorithms to segment the text
in as many possible ways and use description
length to decide which to output. As differ-
ent algorithms explore different trajectories in
the search space, segmentation accuracy depends
largely on the search coverage. Early work in this
line focused more on existing segmentation algo-
rithm, such as branching entropy (Tanaka-Ishii,
2005; Zhikov et al., 2010) and bootstrap voting ex-
perts (Hewlett and Cohen, 2009; Hewlett and Co-
hen, 2011). A recent study (Chen et al., 2012) on
a compression-based algorithm, regularized com-
pression, has achieved comparable performance
result to hierarchical Bayes methods.

Along this line, in this paper we present a novel
extension to the regularized compressor algorithm.
We propose a lower-bound approximate to the
original objective and show that, through analy-
sis and experimentation, this amendment improves
segmentation performance and runtime efficiency.

2 Regularized Compression

The dynamics behind regularized compression is
similar to digram coding (Witten et al., 1999). One
first breaks the text down to a sequence of char-
acters (W0) and then works from that represen-
tation up in an agglomerative fashion, iteratively
removing word boundaries between the two se-
lected word types. Hence, a new sequence Wi

is created in the i-th iteration by merging all the
occurrences of some selected bigram (x, y) in the
original sequence Wi−1. Unlike in digram cod-
ing, where the most frequent pair of word types is
always selected, in regularized compression a spe-
cialized decision criterion is used to balance com-
pression rate and vocabulary complexity:

min. −αf(x, y) + |Wi−1|∆H̃(Wi−1,Wi)
s.t. either x or y is a character

f(x, y) > nms.

Here, the criterion is written slightly differ-
ently. Note that f(x, y) is the bigram fre-
quency, |Wi−1| the sequence length of Wi−1, and
∆H̃(Wi−1,Wi) = H̃(Wi)− H̃(Wi−1) is the dif-
ference between the empirical Shannon entropy
measured on Wi and Wi−1, using maximum like-
lihood estimates. Specifically, this empirical esti-
mate H̃(W ) for a sequence W corresponds to:

log |W | − 1

|W |
∑

x:types

f(x) log f(x).

For this equation to work, one needs to estimate
other model parameters. See Chen et al. (2012)
for a comprehensive treatment.
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f(x) f(y) f(z) |W |
Wi−1 k l 0 N
Wi k −m l −m m N −m

Table 1: The change between iterations in word
frequency and sequence length in regularized
compression. In the new sequence Wi, each oc-
currence of the x-y bigram is replaced with a new
(conceptually unseen) word z. This has an effect
of reducing the number of words in the sequence.

3 Change in Description Length

The second term of the aforementioned objective
is in fact an approximate to the change in descrip-
tion length. This is made obvious by coding up a
sequence W using the Shannon code, with which
the description length ofW is equal to |W |H̃(W ).
Here, the change in description length between se-
quences Wi−1 and Wi is written as:

∆L = |Wi|H̃(W )− |Wi−1|H̃(Wi−1). (1)

Let us focus on this equation. Suppose that the
original sequence Wi−1 is N -word long, the se-
lected word type pair x and y each occurs k and l
times, respectively, and altogether x-y bigram oc-
curs m times in Wi−1. In the new sequence Wi,
each of the m bigrams is replaced with an un-
seen word z = xy. These altogether have reduced
the sequence length by m. The end result is that
compression moves probability masses from one
place to the other, causing a change in descrip-
tion length. See Table 1 for a summary to this
exchange.

Now, as we expand Equation (1) and reorganize
the remaining, we find that:

∆L = (N −m) log(N −m)−N logN

+ k log k − (k −m) log(k −m)

+ l log l − (l −m) log(l −m)

+ 0 log 0−m logm

(2)

Note that each line in Equation (2) is of the form
x1 log x1 − x2 log x2 for some x1, x2 ≥ 0. We
exploit this pattern and derive a bound for ∆L
through analysis. Consider g(x) = x log x. Since
g′′(x) > 0 for x ≥ 0, by the Taylor series we have
the following relations for any x1, x2 ≥ 0:

g(x1)− g(x2) ≤ (x1 − x2)g′(x1),
g(x1)− g(x2) ≥ (x1 − x2)g′(x2).

Plugging these into Equation (2), we have:

m log
(k −m)(l −m)

Nm
≤ ∆L ≤ ∞. (3)

The lower bound1 at the left-hand side is a best-
case estimate. As our aim is to minimize ∆L, we
use this quantity to serve as an approximate.

4 Proposed Method

Based on this finding, we propose the following
two variations (see Figure 1) for the regularized
compression framework:

• G1: Replacing the second term in the origi-
nal objective with the lower bound in Equa-
tion (3). The new objective function is writ-
ten out as Equation (4).

• G2: Same as G1 except that the lower bound
is divided by f(x, y) beforehand. The nor-
malized lower bound approximates the per-
word change in description length, as shown
in Equation (5). With this variation, the func-
tion remains in a scalarized form as the orig-
inal does.

We use the following procedure to compute de-
scription length. Given a word sequence W , we
write out all the induced word types (say, M types
in total) entry by entry as a character sequence, de-
noted as C. Then the overall description length is:

|W |H̃(W ) + |C|H̃(C) +
M − 1

2
log |W |. (6)

Three free parameters, α, ρ, and nms remain to
be estimated. A detailed treatment on parameter
estimation is given in the following paragraphs.

Trade-off α This parameter controls the bal-
ance between compression rate and vocabulary
complexity. Throughout this experiment, we es-
timated this parameter using MDL-based grid
search. Multiple search runs at different granular-
ity levels were employed as necessary.

Compression rate ρ This is the minimum
threshold value for compression rate. The com-
pressor algorithm would go on as many iteration
as possible until the overall compression rate (i.e.,

1Sharp-eyed readers may have noticed the similarity be-
tween the lower bound and the negative (empirical) point-
wise mutual information. In fact, when f(z) > 0 in Wi−1, it
can be shown that limm→0 ∆L/m converges to the empirical
pointwise mutual information (proof omitted here).
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G1 ≡ f(x, y)

(
log

(f(x)− f(x, y))(f(y)− f(x, y))

|Wi−1|f(x, y)
− α

)
(4)

G2 ≡ −αf(x, y) + log
(f(x)− f(x, y))(f(y)− f(x, y))

|Wi−1|f(x, y)
(5)

Figure 1: The two newly-proposed objective functions.

word/character ratio) is lower than ρ. Setting this
value to 0 forces the compressor to go on until
no more can be done. In this paper, we exper-
imented with predetermined ρ values as well as
those learned from MDL-based grid search.

Minimum support nms We simply followed the
suggested setting nms = 3 (Chen et al., 2012).

5 Evaluation

5.1 Setup

In the experiment, we tested our methods on
Brent’s derivation of the Bernstein-Ratner cor-
pus (Brent and Cartwright, 1996; Bernstein-
Ratner, 1987). This dataset is distributed via the
CHILDES project (MacWhinney and Snow, 1990)
and has been commonly used as a standard bench-
mark for phonetic segmentation. Our baseline
method is the original regularized compressor al-
gorithm (Chen et al., 2012). In our experiment, we
considered the following three search settings for
finding the model parameters:

(a) Fix ρ to 0 and vary α to find the best value (in
the sense of description length);

(b) Fix α to the best value found in setting (a)
and vary ρ;

(c) Set ρ to a heuristic value 0.37 (Chen et al.,
2012) and vary α.

Settings (a) and (b) can be seen as running a
stochastic grid searcher one round for each param-
eter2. Note that we tested (c) here only to compare
with the best baseline setting.

5.2 Result

Table 2 summarizes the result for each objective
and each search setting. The best (α, ρ) pair for

2A more formal way to estimate both α and ρ is to run
a stochastic searcher that varies between settings (a) and (b),
fixing the best value found in the previous run. Here, for
simplicity, we leave this to future work.

Run P R F
Baseline 76.9 81.6 79.2
G1 (a) α : 0.030 76.4 79.9 78.1
G1 (b) ρ : 0.38 73.4 80.2 76.8
G1 (c) α : 0.010 75.7 80.4 78.0
G2 (a) α : 0.002 82.1 80.0 81.0
G2 (b) ρ : 0.36 79.1 81.7 80.4
G2 (c) α : 0.004 79.3 84.2 81.7

Table 2: The performance result on the Bernstein-
Ratner corpus. Segmentation performance is mea-
sured using word-level precision (P), recall (R),
and F-measure (F).

G1 is (0.03, 0.38) and the best for G2 is (0.002,
0.36). On one hand, the performance ofG1 is con-
sistently inferior to the baseline across all settings.
Although approximation error was one possible
cause, we noticed that the compression process
was no longer properly regularized, since f(x, y)
and the ∆L estimate in the objective are intermin-
gled. In this case, adjusting α has little effect in
balancing compression rate and complexity.

The second objective G2, on the other hand,
did not suffer as much from the aforementioned
lack of regularization. We found that, in all three
settings, G2 outperforms the baseline by 1 to 2
percentage points in F-measure. The best perfor-
mance result achieved by G2 in our experiment is
81.7 in word-level F-measure, although this was
obtained from search setting (c), using a heuristic
ρ value 0.37. It is interesting to note that G1 (b)
and G2 (b) also gave very close estimates to this
heuristic value. Nevertheless, it remains an open
issue whether there is a connection between the
optimal ρ value and the true word/token ratio (≈
0.35 for Bernstein-Ratner corpus).

The result has led us to conclude that MDL-
based grid search is efficient in optimizing seg-
mentation accuracy. Minimization of descrip-
tion length is in general aligned with perfor-
mance improvement, although under finer gran-
ularity MDL-based search may not be as effec-
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Method P R F
Adaptors grammar, colloc3-syllable Johnson and Goldwater (2009) 86.1 88.4 87.2
Regularized compression + MDL, G2 (b) — 79.1 81.7 80.4
Regularized compression + MDL Chen et al. (2012) 76.9 81.6 79.2
Adaptors grammar, colloc Johnson and Goldwater (2009) 78.4 75.7 77.1
Particle filter, unigram Börschinger and Johnson (2012) – – 77.1
Regularized compression + MDL, G1 (b) — 73.4 80.2 76.8
Bootstrap voting experts + MDL Hewlett and Cohen (2011) 79.3 73.4 76.2
Nested Pitman-Yor process, bigram Mochihashi et al. (2009) 74.8 76.7 75.7
Branching entropy + MDL Zhikov et al. (2010) 76.3 74.5 75.4
Particle filter, bigram Börschinger and Johnson (2012) – – 74.5
Hierarchical Dirichlet process Goldwater et al. (2009) 75.2 69.6 72.3

Table 3: The performance chart on the Bernstein-Ratner corpus, in descending order of word-level F-
measure. We deliberately reproduced the results for adaptors grammar and regularized compression. The
other measurements came directly from the literature.

tive. In our experiment, search setting (b) won
out on description length for both objectives, while
the best performance was in fact achieved by the
others. It would be interesting to confirm this
by studying the correlation between description
length and word-level F-measure.

In Table 3, we summarize many published re-
sults for segmentation methods ever tested on the
Bernstein-Ratner corpus. Of the proposed meth-
ods, we include only setting (b) since it is more
general than the others. From Table 3, we find that
the performance of G2 (b) is competitive to other
state-of-the-art hierarchical Bayesian models and
MDL methods, though it still lags 7 percentage
points behind the best result achieved by adap-
tors grammar with colloc3-syllable. We also com-
pare adaptors grammar to regularized compressor
on average running time, which is shown in Ta-
ble 4. On our test machine, it took roughly 15
hours for one instance of adaptors grammar with
colloc3-syllable to run to the finish. Yet an im-
proved regularized compressor could deliver the
result in merely 1.25 second. In other words, even
in an 100 × 100 grid search, the regularized com-
pressor algorithm can still finish 4 to 5 times ear-
lier than one single adaptors grammar instance.

6 Concluding Remarks

In this paper, we derive a new lower-bound ap-
proximate to the objective function used in the
regularized compression algorithm. As computing
the approximate no longer relies on the change in
lexicon entropy, the new compressor algorithm is
made more efficient than the original. Besides run-

Method Time (s)
Adaptors grammar, colloc3-syllable 53826
Adaptors grammar, colloc 10498
Regularized compressor 1.51
Regularized compressor, G1 (b) 0.60
Regularized compressor, G2 (b) 1.25

Table 4: The average running time in seconds on
the Bernstein-Ratner corpus for adaptors grammar
(per fold, based on trace output) and regularized
compressors, tested on an Intel Xeon 2.5GHz 8-
core machine with 8GB RAM.

time efficiency, our experiment result also shows
improved performance. Using MDL alone, one
proposed method outperforms the original regu-
larized compressor (Chen et al., 2012) in preci-
sion by 2 percentage points and in F-measure by 1.
Its performance is only second to the state of the
art, achieved by adaptors grammar with colloc3-
syllable (Johnson and Goldwater, 2009).

A natural extension of this work is to repro-
duce this result on some other word segmenta-
tion benchmarks, specifically those in other Asian
languages (Emerson, 2005; Zhikov et al., 2010).
Furthermore, it would be interesting to investigate
stochastic optimization techniques for regularized
compression that simultaneously fit both α and ρ.
We believe this would be the key to adapt the al-
gorithm to larger datasets.
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Abstract

This paper presents a semi-supervised
Chinese word segmentation (CWS) ap-
proach that co-regularizes character-based
and word-based models. Similarly to
multi-view learning, the “segmentation
agreements” between the two differen-
t types of view are used to overcome the
scarcity of the label information on unla-
beled data. The proposed approach train-
s a character-based and word-based mod-
el on labeled data, respectively, as the ini-
tial models. Then, the two models are con-
stantly updated using unlabeled examples,
where the learning objective is maximiz-
ing their segmentation agreements. The a-
greements are regarded as a set of valuable
constraints for regularizing the learning of
both models on unlabeled data. The seg-
mentation for an input sentence is decod-
ed by using a joint scoring function com-
bining the two induced models. The e-
valuation on the Chinese tree bank reveals
that our model results in better gains over
the state-of-the-art semi-supervised mod-
els reported in the literature.

1 Introduction

Chinese word segmentation (CWS) is a critical
and a necessary initial procedure with respect to
the majority of high-level Chinese language pro-
cessing tasks such as syntax parsing, informa-
tion extraction and machine translation, since Chi-
nese scripts are written in continuous characters
without explicit word boundaries. Although su-
pervised CWS models (Xue, 2003; Zhao et al.,
2006; Zhang and Clark, 2007; Sun, 2011) pro-
posed in the past years showed some reasonably
accurate results, the outstanding problem is that
they rely heavily on a large amount of labeled da-

ta. However, the production of segmented Chi-
nese texts is time-consuming and expensive, since
hand-labeling individual words and word bound-
aries is very hard (Jiao et al., 2006). So, one can-
not rely only on the manually segmented data to
build an everlasting model. This naturally pro-
vides motivation for using easily accessible raw
texts to enhance supervised CWS models, in semi-
supervised approaches. In the past years, however,
few semi-supervised CWS models have been pro-
posed. Xu et al. (2008) described a Bayesian semi-
supervised model by considering the segmentation
as the hidden variable in machine translation. Sun
and Xu (2011) enhanced the segmentation result-
s by interpolating the statistics-based features de-
rived from unlabeled data to a CRFs model. An-
other similar trial via “feature engineering” was
conducted by Wang et al. (2011).

The crux of solving semi-supervised learning
problem is the learning on unlabeled data. In-
spired by multi-view learning that exploits redun-
dant views of the same input data (Ganchev et
al., 2008), this paper proposes a semi-supervised
CWS model of co-regularizing from two dif-
ferent views (intrinsically two different models),
character-based and word-based, on unlabeled da-
ta. The motivation comes from that the two types
of model exhibit different strengths and they are
mutually complementary (Sun, 2010; Wang et al.,
2010). The proposed approach begins by train-
ing a character-based and word-based model on
labeled data respectively, and then both models
are regularized from each view by their segmen-
tation agreements, i.e., the identical outputs, of
unlabeled data. This paper introduces segmenta-
tion agreements as gainful knowledge for guiding
the learning on the texts without label information.
Moreover, in order to better combine the strengths
of the two models, the proposed approach uses a
joint scoring function in a log-linear combination
form for the decoding in the segmentation phase.
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2 Segmentation Models

There are two classes of CWS models: character-
based and word-based. This section briefly re-
views two supervised models in these categories,
a character-based CRFs model, and a word-based
Perceptrons model, which are used in our ap-
proach.

2.1 Character-based CRFs Model
Character-based models treat word segmentation
as a sequence labeling problem, assigning label-
s to the characters in a sentence indicating their
positions in a word. A 4 tag-set is used in this
paper: B (beginning), M (middle), E (end) and
S (single character). Xue (2003) first proposed
the use of CRFs model (Lafferty et al., 2001) in
character-based CWS. Let x = (x1x2...x|x|) ∈ X
denote a sentence, where each character and y =
(y1y2...y|y|) ∈ Y denote a tag sequence, yi ∈ T
being the tag assigned to xi. The goal is to achieve
a label sequence with the best score in the form,

pθc(y|x) =
1

Z(x; θc)
exp{f(x, y) · θc} (1)

where Z(x; θc) is a partition function that normal-
izes the exponential form to be a probability distri-
bution, and f(x, y) are arbitrary feature functions.
The aim of CRFs is to estimate the weight param-
eters θc that maximizes the conditional likelihood
of the training data:

θ̂c = argmax
θc

l∑

i=1

log pθc(y
i|xi)− γ‖θc‖22 (2)

where γ‖θc‖22 is a regularizer on parameters to
limit overfitting on rare features and avoid degen-
eracy in the case of correlated features. In this
paper, this objective function is optimized by s-
tochastic gradient method. For the decoding, the
Viterbi algorithm is employed.

2.2 Word-based Perceptrons Model
Word-based models read a input sentence from left
to right and predict whether the current piece of
continuous characters is a word. After one word
is identified, the method moves on and searches
for a next possible word. Zhang and Clark (2007)
first proposed a word-based segmentation mod-
el using a discriminative Perceptrons algorithm.
Given a sentence x, let us denote a possible seg-
mented sentence as w ∈ w, and the function that

enumerates a set of segmentation candidates as
GEN:w = GEN(x) for x. The objective is to
maximize the following problem for all sentences:

θ̂w = argmax
w=GEN(x)

|w|∑

i=1

φ(x,wi) · θw (3)

where it maps the segmented sentencew to a glob-
al feature vector φ and denotes θw as its cor-
responding weight parameters. The parameter-
s θw can be estimated by using the Perceptron-
s method (Collins, 2002) or other online learning
algorithms, e.g., Passive Aggressive (Crammer et
al., 2006). For the decoding, a beam search decod-
ing method (Zhang and Clark, 2007) is used.

2.3 Comparison Between Both Models
Character-based and word-based models present
different behaviors and each one has its own
strengths and weakness. Sun (2010) carried out a
thorough survey that includes theoretical and em-
pirical comparisons from four aspects. Here, two
critical properties of the two models supporting
the co-regularization in this study are highlight-
ed. Character-based models present better predic-
tion ability for new words, since they lay more
emphasis on the internal structure of a word and
thereby express more nonlinearity. On the oth-
er side, it is easier to define the word-level fea-
tures in word-based models. Hence, these models
have a greater representational power and conse-
quently better recognition performance for in-of-
vocabulary (IV) words.

3 Semi-supervised Learning via
Co-regularizing Both Models

As mentioned earlier, the primary challenge of
semi-supervised CWS concentrates on the unla-
beled data. Obviously, the learning on unlabeled
data does not come for “free”. Very often, it is
necessary to discover certain gainful information,
e.g., label constraints of unlabeled data, that is in-
corporated to guide the learner toward a desired
solution. In our approach, we believe that the seg-
mentation agreements (§ 3.1) from two differen-
t views, character-based and word-based models,
can be such gainful information. Since each of the
models has its own merits, their consensuses signi-
fy high confidence segmentations. This naturally
leads to a new learning objective that maximizes
segmentation agreements between two models on
unlabeled data.
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This study proposes a co-regularized CWS
model based on character-based and word-based
models, built on a small amount of segmented sen-
tences (labeled data) and a large amount of raw
sentences (unlabeled data). The model induction
process is described in Algorithm 1: given labeled
dataset Dl and unlabeled dataset Du, the first t-
wo steps are training a CRFs (character-based) and
Perceptrons (word-based) model on the labeled
data Dl , respectively. Then, the parameters of
both models are continually updated using unla-
beled examples in a learning cycle. At each iter-
ation, the raw sentences in Du are segmented by
current character-based model θc and word-based
model θw. Meanwhile, all the segmentation agree-
ments A are collected (§ 3.1). Afterwards, the
agreements A are used as a set of constraints to
bias the learning of CRFs (§ 3.2) and Perceptron
(§ 3.3) on the unlabeled data. The convergence
criterion is the occurrence of a reduction of seg-
mentation agreements or reaching the maximum
number of learning iterations. In the final segmen-
tation phase, given a raw sentence, the decoding
requires both induced models (§ 3.4) in measuring
a segmentation score.

Algorithm 1 Co-regularized CWS model induction

Require: n labeled sentencesDl;m unlabeled sentencesDu

Ensure: θc and θw
1: θ0c ← crf train(Dl)
2: θ0w ← perceptron train(Dl)
3: for t = 1...Tmax do
4: At ← agree(Du, θ

t−1
c , θt−1

w )
5: θtc ← crf train constraints(Du,At, θt−1

c )
6: θtw ← perceptron train constraints(Du,At, θt−1

w )
7: end for

3.1 Agreements Between Two Models

Given a raw sentence, e.g., “我正在北京看奥运
会开幕式。(I am watching the opening ceremony
of the Olympics in Beijing.)”, the two segmenta-
tions shown in Figure 1 are the predictions from
a character-based and word-based model. The
segmentation agreements between the two mod-
els correspond to the identical words. In this ex-
ample, the five words, i.e. “我 (I)”, “北京 (Bei-
jing)”, “看 (watch)”, “开幕式 (opening ceremony)”
and “。(.)”, are the agreements.

3.2 CRFs with Constraints

For the character-based model, this paper fol-
lows (Täckström et al., 2013) to incorporate the
segmentation agreements into CRFs. The main

idea is to constrain the size of the tag sequence
lattice according to the agreements for achieving
simplified learning. Figure 2 demonstrates an ex-
ample of the constrained lattice, where the bold
node represents that a definitive tag derived from
the agreements is assigned to the current charac-
ter, e.g., “我 (I)” has only one possible tag “S”
because both models segmented it to a word with
a single character. Here, if the lattice of all admis-
sible tag sequences for the sentence x is denoted
as Y(x), the constrained lattice can be defined by
Ŷ(x, ỹ), where ỹ refers to tags inferred from the
agreements. Thus, the objective function on unla-
beled data is modeled as:

θ̂′c = argmax
θc

m∑

i=1

log pθc(Ŷ(xi, ỹi)|xi)− γ‖θc‖22
(4)

It is a marginal conditional probability given by
the total probability of all tag sequences consistent
with the constrained lattice Ŷ(x, ỹ). This objec-
tive can be optimized by using LBFGS-B (Zhu et
al., 1997), a generic quasi-Newton gradient-based
optimizer.

Figure 1: The segmentations given by character-
based and word-based model, where the words in
“2” refer to the segmentation agreements.

Figure 2: The constrained lattice representation
for a given sentence, “我正在北京看奥运会开幕
式。”.

3.3 Perceptrons with Constraints
For the word-based model, this study incorporates
segmentation agreements by a modified parame-
ter update criterion in Perceptrons online training,
as shown in Algorithm 2. Because there are no
“gold segmentations” for unlabeled sentences, the
output sentence predicted by the current model is
compared with the agreements instead of the “an-
swers” in the supervised case. At each parameter
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update iteration k, each raw sentence xu is decod-
ed with the current model into a segmentation zu.
If the words in output zu do not match the agree-
ments A(xu) of the current sentence xu, the pa-
rameters are updated by adding the global feature
vector of the current training example with the a-
greements and subtracting the global feature vec-
tor of the decoder output, as described in lines 3
and 4 of Algorithm 2.

Algorithm 2 Parameter update in word-based model

1: for k = 1...K, u = 1...m do
2: calculate zu = argmax

w=GEN(x)

∑|w|
i=1 φ(xu, wi) · θk−1

w

3: if zu 6= A(xu)
4: θkw = θk−1

w + φ(A(xu))− φ(zu)
5: end for

3.4 The Joint Score Function for Decoding
There are two co-regularized models as results of
the previous induction steps. An intuitive idea is
that both induced models are combined to conduct
the segmentation, for the sake of integrating their
strengths. This paper employs a log-linear inter-
polation combination (Bishop, 2006) to formulate
a joint scoring function based on character-based
and word-based models in the decoding:

Score(w) = α · log(pθc(y|x))
+(1− α) · log(φ(x,w) · θw) (5)

where the two terms of the logarithm are the s-
cores of character-based and word-based model-
s, respectively, for a given segmentation w. This
composite function uses a parameter α to weight
the contributions of the two models. The α value
is tuned using the development data.

4 Experiment

4.1 Setting
The experimental data is taken from the Chinese
tree bank (CTB). In order to make a fair compar-
ison with the state-of-the-art results, the versions
of CTB-5, CTB-6, and CTB-7 are used for the e-
valuation. The training, development and testing
sets are defined according to the previous works.
For CTB-5, the data split from (Jiang et al., 2008)
is employed. For CTB-6, the same data split as
recommended in the CTB-6 official document is
used. For CTB-7, the datasets are formed accord-
ing to the way in (Wang et al., 2011). The cor-
responding statistic information on these data s-
plits is reported in Table 1. The unlabeled data in

our experiments is from the XIN CMN portion of
Chinese Gigaword 2.0. The articles published in
1991-1993 and 1999-2004 are used as unlabeled
data, with 204 million words.

The feature templates in (Zhao et al., 2006)
and (Zhang and Clark, 2007) are used in train-ing
the CRFs model and Perceptrons model, respec-
tively. The experimental platform is implement-
ed based on two popular toolkits: CRF++ (Kudo,
2005) and Zpar (Zhang and Clark, 2011).

Data
#Sent-
train

#Sent-
dev

#Sent-
test

OOV-
dev

OOV-
test

CTB-5 18,089 350 348 0.0811 0.0347
CTB-6 23,420 2,079 2,796 0.0545 0.0557
CTB-7 31,131 10,136 10,180 0.0549 0.0521

Table 1: Statistics of CTB-5, CTB-6 and CTB-7
data.

4.2 Main Results

The development sets are mainly used to tune the
values of the weight factor α in Equation 5. We
evaluated the performance (F-score) of our model
on the three development sets by using differen-
t α values, where α is progressively increased in
steps of 0.1 (0 < α < 1.0). The best performed
settings of α for CTB-5, CTB-6 and CTB-7 on de-
velopment data are 0.7, 0.6 and 0.6, respectively.
With the chosen parameters, the test data is used
to measure the final performance.

Table 2 shows the F-score results of word seg-
mentation on CTB-5, CTB-6 and CTB-7 testing
sets. The line of “ours” reports the performance
of our semi-supervised model with the tuned pa-
rameters. We first compare it with the supervised
“baseline” method which joints character-based
and word-based model trained only on the training
set1. It can be observed that our semi-supervised
model is able to benefit from unlabeled data and
greatly improves the results over the supervised
baseline. We also compare our model with two
state-of-the-art semi-supervised methods of Wang
’11 (Wang et al., 2011) and Sun ’11 (Sun and X-
u, 2011). The performance scores of Wang ’11 are
directly taken from their paper, while the results of
Sun ’11 are obtained, using the program provided
by the author, on the same experimental data. The

1The “baseline” uses a different training configuration so
that the α values in the decoding are also need to be tuned on
the development sets. The tuned α values are {0.6, 0.6, 0.5}
for CTB-5, CTB-6 and CTB-7.
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bold scores indicate that our model does achieve
significant gains over these two semi-supervised
models. This outcome can further reveal that us-
ing the agreements from these two views to regu-
larize the learning can effectively guide the mod-
el toward a better solution. The third compari-
son candidate is Hatori ’12 (Hatori et al., 2012)
which reported the best performance in the litera-
ture on these three testing sets. It is a supervised
joint model of word segmentation, POS tagging
and dependency parsing. Impressively, our model
still outperforms Hatori ’12 on all three datasets.
Although there is only a 0.01 increase on CTB-5,
it can be seen as a significant improvement when
considering Hatori ’12 employs much richer train-
ing resources, i.e., sentences tagged with syntactic
information.

Method CTB-5 CTB-6 CTB-7
Ours 98.27 96.33 96.72

Baseline 97.58 94.71 94.87
Wang ’11 98.11 95.79 95.65
Sun ’11 98.04 95.44 95.34

Hatori ’12 98.26 96.18 96.07

Table 2: F-score (%) results of five CWS models
on CTB-5, CTB-6 and CTB-7.

5 Conclusion

This paper proposed an alternative semi-
supervised CWS model that co-regularizes a
character- and word-based model by using their
segmentation agreements on unlabeled data. We
perform the agreements as valuable knowledge
for the regularization. The experiment results
reveal that this learning mechanism results in a
positive effect to the segmentation performance.
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Abstract

Micro-blog is a new kind of medium
which is short and informal. While no
segmented corpus of micro-blogs is avail-
able to train Chinese word segmentation
model, existing Chinese word segmenta-
tion tools cannot perform equally well
as in ordinary news texts. In this pa-
per we present an effective yet simple ap-
proach to Chinese word segmentation of
micro-blog. In our approach, we incor-
porate punctuation information of unla-
beled micro-blog data by introducing char-
acters behind or ahead of punctuations,
for they indicate the beginning or end of
words. Meanwhile a self-training frame-
work to incorporate confident instances is
also used, which prove to be helpful. Ex-
periments on micro-blog data show that
our approach improves performance, espe-
cially in OOV-recall.

1 INTRODUCTION

Micro-blog (also known as tweets in English) is
a new kind of broadcast medium in the form of
blogging. A micro-blog differs from a traditional
blog in that it is typically smaller in size. Further-
more, texts in micro-blogs tend to be informal and
new words occur more frequently. These new fea-
tures of micro-blogs make the Chinese Word Seg-
mentation (CWS) models trained on the source do-
main, such as news corpus, fail to perform equally
well when transferred to texts from micro-blogs.
For example, the most widely used Chinese seg-
menter ”ICTCLAS” yields 0.95 f-score in news
corpus, only gets 0.82 f-score on micro-blog data.
The poor segmentation results will hurt subse-
quent analysis on micro-blog text.

∗Corresponding author

Manually labeling the texts of micro-blog is
time consuming. Luckily, punctuations provide
useful information because they are used as indi-
cators of the end of previous sentence and the be-
ginning of the next one, which also indicate the
start and the end of a word. These ”natural bound-
aries” appear so frequently in micro-blog texts that
we can easily make good use of them. TABLE 1
shows some statistics of the news corpus vs. the
micro-blogs. Besides, English letters and digits
are also more than those in news corpus. They
all are natural delimiters of Chinese characters and
we treat them just the same as punctuations.

We propose a method to enlarge the training
corpus by using punctuation information. We
build a semi-supervised learning (SSL) framework
which can iteratively incorporate newly labeled in-
stances from unlabeled micro-blog data during the
training process. We test our method on micro-
blog texts and experiments show good results.

This paper is organized as follows. In section 1
we introduce the problem. Section 2 gives detailed
description of our approach. We show the experi-
ment and analyze the results in section 3. Section
4 gives the related works and in section 5 we con-
clude the whole work.

2 Our method

2.1 Punctuations

Chinese word segmentation problem might be
treated as a character labeling problem which
gives each character a label indicating its position
in one word. To be simple, one can use label ’B’
to indicate a character is the beginning of a word,
and use ’N’ to indicate a character is not the be-
ginning of a word. We also use the 2-tag in our
work. Other tag sets like the ’BIES’ tag set are not
suiteable because the puctuation information can-
not decide whether a character after punctuation
should be labeled as ’B’ or ’S’(word with Single
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Chinese English Number Punctuation
News 85.7% 0.6% 0.7% 13.0%

micro-blog 66.3% 11.8% 2.6% 19.3%

Table 1: Percentage of Chinese, English, number, punctuation in the news corpus vs. the micro-blogs.

character).
Punctuations can serve as implicit labels for the

characters before and after them. The character
right after punctuations must be the first character
of a word, meanwhile the character right before
punctuations must be the last character of a word.
An example is given in TABLE 2.

2.2 Algorithm

Our algorithm “ADD-N” is shown in TABLE 3.
The initially selected character instances are those
right after punctuations. By definition they are all
labeled with ’B’. In this case, the number of train-
ing instances with label ’B’ is increased while the
number with label ’N’ remains unchanged. Be-
cause of this, the model trained on this unbal-
anced corpus tends to be biased. This problem can
become even worse when there is inexhaustible
supply of texts from the target domain. We as-
sume that labeled corpus of the source domain can
be treated as a balanced reflection of different la-
bels. Therefore we choose to estimate the bal-
anced point by counting characters labeling ’B’
and ’N’ and calculate the ratio which we denote
asη. We assume the enlarged corpus is also bal-
anced if and only if the ratio of ’B’ to ’N’ is just
the same toη of the source domain.

Our algorithm uses data from source domain to
make the labels balanced. When enlarging corpus
using characters behind punctuations from texts
in target domain, only characters labeling ’B’ are
added. We randomly reuse some characters label-
ing ’N’ from labeled data until ratioη is reached.
We do not use characters ahead of punctuations,
because the single-character words ahead of punc-
tuations take the label of ’B’ instead of ’N’. In
summary our algorithm tackles the problem by du-
plicating labeled data in source domain. We de-
note our algorithm as ”ADD-N”.

We also use baseline feature templates include
the features described in previous works (Sun and
Xu, 2011; Sun et al., 2012). Our algorithm is not
necessarily limited to a specific tagger. For sim-
plicity and reliability, we use a simple Maximum-
Entropy tagger.

3 Experiment

3.1 Data set

We evaluate our method using the data from
weibo.com, which is the biggest micro-blog ser-
vice in China. We use the API provided by
weibo.com1 to crawl 500,000 micro-blog texts of
weibo.com, which contains 24,243,772 charac-
ters. To keep the experiment tractable, we first ran-
domly choose 50,000 of all the texts as unlabeled
data, which contain 2,420,037 characters. We
manually segment 2038 randomly selected micro-
blogs.We follow the segmentation standard as the
PKU corpus.

In micro-blog texts, the user names and URLs
have fixed format. User names start with ’@’, fol-
lowed by Chinese characters, English letters, num-
bers and ’ ’, and terminated when meeting punc-
tuations or blanks. URLs also match fixed pat-
terns, which are shortened using ”http://t.
cn/” plus six random English letters or numbers.
Thus user names and URLs can be pre-processed
separately. We follow this principle in following
experiments.

We use the benchmark datasets provided by the
second International Chinese Word Segmentation
Bakeoff2 as the labeled data. We choose the PKU
data in our experiment because our baseline meth-
ods use the same segmentation standard.

We compare our method with three baseline
methods. The first two are both famous Chinese
word segmentation tools: ICTCLAS3 and Stan-
ford Chinese word segmenter4, which are widely
used in NLP related to word segmentation. Stan-
ford Chinese word segmenter is a CRF-based seg-
mentation tool and its segmentation standard is
chosen as the PKU standard, which is the same
to ours. ICTCLAS, on the other hand, is a HMM-
based Chinese word segmenter. Another baseline
is Li and Sun (2009), which also uses punctua-
tion in their semi-supervised framework. F-score

1http://open.weibo.com/wiki
2http://www.sighan.org/bakeoff2005/
3http://ictclas.org/
4http://nlp.stanford.edu/projects/

chinese-nlp.shtml\#cws
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评 论 是 风 格 ， 评 论 是 能 力 。
B - - - - - B - - - - -
B N B B N B B N B B N B

Table 2: The first line represents the original text. The second line indicates whether each character is
the Beginning of sentence. The third line is the tag sequence using ”BN” tag set.

ADD-N algorithm
Input: labeled data {(xi, yi)li−1}, unlabeled data {xj}l+uj=l+1.

1. Initially, let L = {(xi, yi)li−1} and U = {xj}l+uj=l+1.
2. Label instances behind punctuations in U as ’B’ and add them into
L.

3. Calculate ’B’, ’N’ ratio η in labeled data.
4. Randomly duplicate characters whose labels are ’N’ in L to make

’B’/’N’= η
5. Repeat:

5.1 Train a classifier f from L using supervised learning.
5.2 Apply f to tag the unlabeled instances in U .
5.3 Add confident instances from U to L.

Table 3: ADD-N algorithm.

is used as the accuracy measure. The recall of
out-of-vocabulary is also taken into consideration,
which measures the ability of the model to cor-
rectly segment out of vocabulary words.

3.2 Main results

Method P R F OOV-R
Stanford 0.861 0.853 0.857 0.639
ICTCLAS 0.812 0.861 0.836 0.602
Li-Sun 0.707 0.820 0.760 0.734
Maxent 0.868 0.844 0.856 0.760
No-punc 0.865 0.829 0.846 0.760
No-balance 0.869 0.877 0.873 0.757
Our method 0.875 0.875 0.875 0.773

Table 4: Segmentation performance with different
methods on the development data.

TABLE 4 summarizes the segmentation results.
In TABLE 4, Li-Sun is the method in Li and
Sun (2009). Maxent only uses the PKU data for
training, with neither punctuation information nor
self-training framework incorporated. The next 4
methods all require a 100 iteration of self-training.
No-punc is the method that only uses self-training
while no punctuation information is added. No-
balance is similar to ADD N. The only difference
between No-balance and ADD-N is that the for-
mer does not balance label ’B’ and label ’N’.

The comparison of Maxent and No-punctuation

shows that naively adding confident unlabeled in-
stances does not guarantee to improve perfor-
mance. The writing style and word formation of
the source domain is different from target domain.
When segmenting texts of the target domain using
models trained on source domain, the performance
will be hurt with more false segmented instances
added into the training set.

The comparison of Maxent, No-balance and
ADD-N shows that considering punctuation as
well as self-training does improve performance.
Both the f-score and OOV-recall increase. By
comparing No-balance and ADD-N alone we can
find that we achieve relatively high f-score if we
ignore tag balance issue, while slightly hurt the
OOV-Recall. However, considering it will im-
prove OOV-Recall by about +1.6% and the f-
score +0.2%.

We also experimented on different size of un-
labeled data to evaluate the performance when
adding unlabeled target domain data. TABLE 5
shows different f-scores and OOV-Recalls on dif-
ferent unlabeled data set.

We note that when the number of texts changes
from 0 to 50,000, the f-score and OOV both are
improved. However, when unlabeled data changes
to 200,000, the performance is a bit decreased,
while still better than not using unlabeled data.
This result comes from the fact that the method
’ADD-N’ only uses characters behind punctua-
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Size P R F OOV-R
0 0.864 0.846 0.855 0.754
10000 0.872 0.869 0.871 0.765
50000 0.875 0.875 0.875 0.773
100000 0.874 0.879 0.876 0.772
200000 0.865 0.865 0.865 0.759

Table 5: Segmentation performance with different
size of unlabeled data

tions from target domain. Taking more texts into
consideration means selecting more characters la-
beling ’N’ from source domain to simulate those
in target domain. If too many ’N’s are introduced,
the training data will be biased against the true dis-
tribution of target domain.

3.3 Characters ahead of punctuations

In the ”BN” tagging method mentioned above,
we incorporate characters after punctuations from
texts in micro-blog to enlarge training set.We also
try an opposite approach, ”EN” tag, which uses
’E’ to represent ”End of word”, and ’N’ to rep-
resent ”Not the end of word”. In this contrasting
method, we only use characters just ahead of punc-
tuations. We find that the two methods show sim-
ilar results. Experiment results with ADD-N are
shown in TABLE 6 .

Unlabeled ”BN” tag ”EN” tag
Data size F OOV-R F OOV-R
50000 0.875 0.773 0.870 0.763

Table 6: Comparison of BN and EN.

4 Related Work

Recent studies show that character sequence la-
beling is an effective formulation of Chinese
word segmentation (Low et al., 2005; Zhao et al.,
2006a,b; Chen et al., 2006; Xue, 2003). These
supervised methods show good results, however,
are unable to incorporate information from new
domain, where OOV problem is a big challenge
for the research community. On the other hand
unsupervised word segmentation Peng and Schu-
urmans (2001); Goldwater et al. (2006); Jin and
Tanaka-Ishii (2006); Feng et al. (2004); Maosong
et al. (1998) takes advantage of the huge amount
of raw text to solve Chinese word segmentation
problems. However, they usually are less accurate
and more complicated than supervised ones.

Meanwhile semi-supervised methods have been
applied into NLP applications. Bickel et al. (2007)
learns a scaling factor from data of source domain
and use the distribution to resemble target do-
main distribution. Wu et al. (2009) uses a Domain
adaptive bootstrapping (DAB) framework, which
shows good results on Named Entity Recognition.
Similar semi-supervised applications include Shen
et al. (2004); Daumé III and Marcu (2006); Jiang
and Zhai (2007); Weinberger et al. (2006). Be-
sides, Sun and Xu (2011) uses a sequence labeling
framework, while unsupervised statistics are used
as discrete features in their model, which prove to
be effective in Chinese word segmentation.

There are previous works using punctuations as
implicit annotations. Riley (1989) uses it in sen-
tence boundary detection. Li and Sun (2009) pro-
posed a compromising solution to by using a clas-
sifier to select the most confident characters. We
do not follow this approach because the initial er-
rors will dramatically harm the performance. In-
stead, we only add the characters after punctua-
tions which are sure to be the beginning of words
(which means labeling ’B’) into our training set.
Sun and Xu (2011) uses punctuation information
as discrete feature in a sequence labeling frame-
work, which shows improvement compared to the
pure sequence labeling approach. Our method
is different from theirs. We use characters after
punctuations directly.

5 Conclusion

In this paper we have presented an effective yet
simple approach to Chinese word segmentation on
micro-blog texts. In our approach, punctuation in-
formation of unlabeled micro-blog data is used,
as well as a self-training framework to incorpo-
rate confident instances. Experiments show that
our approach improves performance, especially in
OOV-recall. Both the punctuation information and
the self-training phase contribute to this improve-
ment.
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Abstract
Transliterated compound nouns not
separated by whitespaces pose diffi-
culty on word segmentation (WS). Of-
fline approaches have been proposed to
split them using word statistics, but
they rely on static lexicon, limiting
their use. We propose an online ap-
proach, integrating source LM, and/or,
back-transliteration and English LM.
The experiments on Japanese and Chi-
nese WS have shown that the pro-
posed models achieve significant im-
provement over state-of-the-art, reduc-
ing 16% errors in Japanese.

1 Introduction
Accurate word segmentation (WS) is the

key components in successful language pro-
cessing. The problem is pronounced in lan-
guages such as Japanese and Chinese, where
words are not separated by whitespaces. In
particular, compound nouns pose difficulties
to WS since they are productive, and often
consist of unknown words.

In Japanese, transliterated foreign com-
pound words written in Katakana are ex-
tremely difficult to split up into components
without proper lexical knowledge. For ex-
ample, when splitting a compound noun ブ
ラキッシュレッド burakisshureddo, a traditional
word segmenter can easily segment this as ブ
ラキッ/シュレッド “*blacki shred” since シュレッ
ド shureddo “shred” is a known, frequent word.
It is only the knowledge that ブラキッburaki
(*“blacki”) is not a valid word which prevents
this. Knowing that the back-transliterated un-
igram “blacki” and bigram “blacki shred” are
unlikely in English can promote the correct
WS, ブラキッシュ/レッド “blackish red”. In Chi-
nese, the problem can be more severe since

the language does not have a separate script
to represent transliterated words.
Kaji and Kitsuregawa (2011) tackled

Katakana compound splitting using back-
transliteration and paraphrasing. Their ap-
proach falls into an offline approach, which
focuses on creating dictionaries by extract-
ing new words from large corpora separately
before WS. However, offline approaches have
limitation unless the lexicon is constantly
updated. Moreover, they only deal with
Katakana, but their method is not directly ap-
plicable to Chinese since the language lacks a
separate script for transliterated words.
Instead, we adopt an online approach, which

deals with unknown words simultaneously as
the model analyzes the input. Our ap-
proach is based on semi-Markov discrimina-
tive structure prediction, and it incorporates
English back-transliteration and English lan-
guage models (LMs) into WS in a seamless
way. We refer to this process of transliterat-
ing unknown words into another language and
using the target LM as LM projection. Since
the model employs a general transliteration
model and a general English LM, it achieves
robust WS for unknown words. To the best
of our knowledge, this paper is the first to use
transliteration and projected LMs in an online,
seamlessly integrated fashion for WS.
To show the effectiveness of our approach,

we test our models on a Japanese balanced cor-
pus and an electronic commerce domain cor-
pus, and a balanced Chinese corpus. The re-
sults show that we achieved a significant im-
provement in WS accuracy in both languages.

2 Related Work
In Japanese WS, unknown words are usu-

ally dealt with in an online manner with the
unknown word model, which uses heuristics
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depending on character types (Kudo et al.,
2004). Nagata (1999) proposed a Japanese un-
known word model which considers PoS (part
of speech), word length model and orthog-
raphy. Uchimoto et al. (2001) proposed a
maximum entropy morphological analyzer ro-
bust to unknown words. In Chinese, Peng et
al. (2004) used CRF confidence to detect new
words.

For offline approaches, Mori and Nagao
(1996) extracted unknown word and estimated
their PoS from a corpus through distributional
analysis. Asahara and Matsumoto (2004)
built a character-based chunking model using
SVM for Japanese unknown word detection.

Kaji and Kitsuregawa (2011)’s approach is
the closest to ours. They built a model
to split Katakana compounds using back-
transliteration and paraphrasing mined from
large corpora. Nakazawa et al. (2005) is
a similar approach, using a Ja-En dictionary
to translate compound components and check
their occurrence in an English corpus. Sim-
ilar approaches are proposed for other lan-
guages, such as German (Koehn and Knight,
2003) and Urdu-Hindi (Lehal, 2010). Correct
splitting of compound nouns has a positive ef-
fect on MT (Koehn and Knight, 2003) and IR
(Braschler and Ripplinger, 2004).

A similar problem can be seen in Korean,
German etc. where compounds may not be
explicitly split by whitespaces. Koehn and
Knight (2003) tackled the splitting problem in
German, by using word statistics in a mono-
lingual corpus. They also used the informa-
tion whether translations of compound parts
appear in a German-English bilingual corpus.
Lehal (2010) used Urdu-Devnagri translitera-
tion and a Hindi corpus for handling the space
omission problem in Urdu compound words.

3 Word Segmentation Model

Out baseline model is a semi-Markov struc-
ture prediction model which estimates WS and
the PoS sequence simultaneously (Kudo et al.,
2004; Zhang and Clark, 2008). This model
finds the best output y∗ from the input sen-
tence string x as: y∗ = argmaxy∈Y (x) w ·φ(y).
Here, Y (x) denotes all the possible sequences
of words derived from x. The best analysis is
determined by the feature function φ(y) the
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Table 1: Features for WS & PoS tagging

weight vector w. WS is conducted by stan-
dard Viterbi search based on lattice, which
is illustrated in Figure 1. We limit the fea-
tures to word unigram and bigram features,
i.e., φ(y) =

∑
i[φ1(wi) + φ2(wi−1, wi)] for y =

w1...wn. By factoring the feature function into
these two subsets, argmax can be efficiently
searched by the Viterbi algorithm, with its
computational complexity proportional to the
input length. We list all the baseline features
in Table 11. The asterisks (*) indicate the fea-
ture is used for Japanese (JA) but not for Chi-
nese (ZH) WS. Here, wi and wi−1 denote the
current and previous word in question, and tji
and tji−1 are level-j PoS tags assigned to them.
l(w) and c(w) are the length and the set of
character types of word w.
If there is a substring for which no dic-

tionary entries are found, the unknown word
model is invoked. In Japanese, our unknown
word model relies on heuristics based on char-
acter types and word length to generate word
nodes, similar to that of MeCab (Kudo et
al., 2004). In Chinese, we aggregated con-
secutive 1 to 4 characters add them as “n
(common noun)”, “ns (place name)”, “nr (per-
sonal name)”, and “nz (other proper nouns),”
since most of the unknown words in Chinese
are proper nouns. Also, we aggregated up to
20 consecutive numerical characters, making
them a single node, and assign “m” (number).
For other character types, a single node with
PoS “w (others)” is created.

1The Japanese dictionary and the corpus we used
have 6 levels of PoS tag hierarchy, while the Chinese
ones have only one level, which is why some of the
PoS features are not included in Chinese. As character
type, Hiragana (JA), Katakana (JA), Latin alphabet,
Number, Chinese characters, and Others, are distin-
guished. Word length is in Unicode.
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Input: 大 人 気 色 ブ ラ キ ッ シ ュ レ ッ ド

ブ ラ キ ッ シ ュ

ブ

ブ ラ

キ ッ

レ ッ ド
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キ ッ シ ュ
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blaki

brackish
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led
read

red

shread
shred

node (a)

node (b)

edge (c)

Transliteration

Model

EnglishLM
Figure 1: Example lattice with LM projection

4 Use of Language Model
Language Model Augmentation Analo-
gous to Koehn and Knight (2003), we can ex-
ploit the fact that レッド reddo (red) in the
example ブラキッシュレッド is such a common
word that one can expect it appears frequently
in the training corpus. To incorporate this
intuition, we used log probability of n-gram
as features, which are included in Table 1
(ID 19 and 20): φLMS

1 (wi) = log p(wi) and
φLMS

2 (wi−1, wi) = log p(wi−1, wi). Here the
empirical probability p(wi) and p(wi−1, wi) are
computed from the source language corpus. In
Japanese, we applied this source language aug-
mentation only to Katakana words. In Chi-
nese, we did not limit the target.

4.1 Language Model Projection
As we mentioned in Section 2, English

LM knowledge helps split transliterated com-
pounds. We use (LM) projection, which is
a combination of back-transliteration and an
English model, by extending the normal lat-
tice building process as follows:

Firstly, when the lattice is being built, each
node is back-transliterated and the resulting
nodes are associated with it, as shown in
Figure 1 as the shaded nodes. Then, edges
are spanned between these extended English
nodes, instead of between the original nodes,
by additionally taking into consideration En-
glish LM features (ID 21 and 22 in Table 1):
φLMP

1 (wi) = log p(wi) and φLMP
2 (wi−1, wi) =

log p(wi−1, wi). Here the empirical probabil-
ity p(wi) and p(wi−1, wi) are computed from
the English corpus. For example, Feature 21
is set to φLMP

1 (“blackish”) for node (a), to
φLMP

1 (“red”) for node (b), and Feature 22 is
set to φLMP

2 (“blackish”, “red”) for edge (c) in
Figure 1. If no transliterations were generated,
or the n-grams do not appear in the English

corpus, a small frequency ε is assumed.
Finally, the created edges are traversed from

EOS, and associated original nodes are chosen
as the WS result. In Figure 1, the bold edges
are traversed at the final step, and the corre-
sponding nodes “大 - 人気 - 色 - ブラキッシュ-
レッド” are chosen as the final WS result.
For Japanese, we only expand and project

Katakana noun nodes (whether they are
known or unknown words) since transliterated
words are almost always written in Katakana.
For Chinese, only “ns (place name)”, “nr (per-
sonal name)”, and “nz (other proper noun)”
nodes whose surface form is more than 1-
character long are transliterated. As the En-
glish LM, we used Google Web 1T 5-gram Ver-
sion 1 (Brants and Franz, 2006), limiting it to
unigrams occurring more than 2000 times and
bigrams occurring more than 500 times.

5 Transliteration
For transliterating Japanese/Chinese words

back to English, we adopted the Joint Source
Channel (JSC) Model (Li et al., 2004), a gen-
erative model widely used as a simple yet pow-
erful baseline in previous research e.g., (Hagi-
wara and Sekine, 2012; Finch and Sumita,
2010).2 The JSC model, given an input
of source word s and target word t, de-
fines the transliteration probability based on
transliteration units (TUs) ui = 〈si, ti〉 as:
PJSC(〈s, t〉) =

∏f
i=1 P (ui|ui−n+1, ..., ui−1),

where f is the number of TUs in a given source
/ target word pair. TUs are atomic pair units
of source / target words, such as “la/ラ” and
“ish/ッシュ”. The TU n-gram probabilities are
learned from a training corpus by following it-
erative updates similar to the EM algorithm3.
In order to generate transliteration candidates,
we used a stack decoder described in (Hagi-
wara and Sekine, 2012). We used the training
data of the NEWS 2009 workshop (Li et al.,
2009a; Li et al., 2009b).
As reference, we measured the performance

on its own, using NEWS 2009 (Li et al., 2009b)
data. The percentage of correctly transliter-
ated words are 37.9% for Japanese and 25.6%

2Note that one could also adopt other generative /
discriminative transliteration models, such as (Jiampo-
jamarn et al., 2007; Jiampojamarn et al., 2008).

3We only allow TUs whose length is shorter than or
equal to 3, both in the source and target side.
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for Chinese. Although the numbers seem low
at a first glance, Chinese back-transliteration
itself is a very hard task, mostly because
Chinese phonology is so different from En-
glish that some sounds may be dropped when
transliterated. Therefore, we can regard this
performance as a lower bound of the translit-
eration module performance we used for WS.

6 Experiments

6.1 Experimental Settings
Corpora For Japanese, we used (1) EC

corpus, consists of 1,230 product titles and
descriptions randomly sampled from Rakuten
(Rakuten-Inc., 2012). The corpus is manually
annotated with the BCCWJ style WS (Ogura
et al., 2011). It consists of 118,355 tokens, and
has a relatively high percentage of Katakana
words (11.2%). (2) BCCWJ (Maekawa, 2008)
CORE (60,374 sentences, 1,286,899 tokens,
out of which approx. 3.58% are Katakana
words). As the dictionary, we used UniDic
(Den et al., 2007). For Chinese, we used
LCMC (McEnery and Xiao, 2004) (45,697 sen-
tences and 1,001,549 tokens). As the dictio-
nary, we used CC-CEDICT (MDGB, 2011)4.

Training and Evaluation We used Aver-
aged Perceptron (Collins, 2002) (3 iterations)
for training, with five-fold cross-validation. As
for the evaluation metrics, we used Precision
(Prec.), Recall (Rec.), and F-measure (F). We
additionally evaluated the performance lim-
ited to Katakana (JA) or proper nouns (ZH)
in order to see the impact of compound split-
ting. We also used word error rate (WER) to
see the relative change of errors.

6.2 Japanese WS Results
We compared the baseline model, the

augmented model with the source language
(+LM-S) and the projected model (+LM-P).
Table 3 shows the result of the proposed mod-
els and major open-source Japanese WS sys-
tems, namely, MeCab 0.98 (Kudo et al., 2004),
JUMAN 7.0 (Kurohashi and Nagao, 1994),

4Since the dictionary is not explicitly annotated
with PoS tags, we firstly took the intersection of the
training corpus and the dictionary words, and assigned
all the possible PoS tags to the words which appeared
in the corpus. All the other words which do not appear
in the training corpus are discarded.

and KyTea 0.4.2 (Neubig et al., 2011) 5. We
observed slight improvement by incorporat-
ing the source LM, and observed a 0.48 point
F-value increase over baseline, which trans-
lates to 4.65 point Katakana F-value change
and 16.0% (3.56% to 2.99 %) WER reduc-
tion, mainly due to its higher Katakana word
rate (11.2%). Here, MeCab+UniDic achieved
slightly better Katakana WS than the pro-
posed models. This may be because it is
trained on a much larger training corpus (the
whole BCCWJ). The same trend is observed
for BCCWJ corpus (Table 2), where we gained
statistically significant 1 point F-measure in-
crease on Katakana word.
Many of the improvements of +LM-S over

Baseline come from finer grained splitting,
for example, * レインスーツ reinsuutsu “rain
suits” to レイン/スーツ, while there is wrong
over-splitting, e.g., テレキャスターterekyasutaa
“Telecaster” to * テレ/キャスター. This type of
error is reduced by +LM-P, e.g., * プラス/チッ
ク purasu chikku “*plus tick” to プラスチック
purasuchikku “plastic” due to LM projection.
+LM-P also improved compounds whose com-
ponents do not appear in the training data,
such as * ルーカスフィルム ruukasufirumu to
ルーカス/フィルム “Lucus Film.” Indeed, we
randomly extracted 30 Katakana differences
between +LM-S and +LM-P, and found out
that 25 out of 30 (83%) are true improvement.
One of the proposed method’s advantages is
that it is very robust to variations, such as
アクティベイティッド akutibeitiddo “activated,”
even though only the original form, アクティベ
イト akutibeito “activate” is in the dictionary.
One type of errors can be attributed

to non-English words such as スノコベッド
sunokobeddo, which is a compound of Japanese
word スノコ sunoko “duckboard” and an En-
glish word ベッド beddo “bed.”

6.3 Chinese WS Results
We compare the results on Chinese WS,

with Stanford Segmenter (Tseng et al., 2005)
(Table 4) 6. Including +LM-S decreased the

5Because MeCab+UniDic and KyTea models are
actually trained on BCCWJ itself, this evaluation is
not meaningful but just for reference. The WS granu-
larity of IPADic, JUMAN, and KyTea is also different
from the BCCWJ style.

6Note that the comparison might not be fair since
(1) Stanford segmenter’s criteria are different from

186



Model Prec. (O) Rec. (O) F (O) Prec. (K) Rec. (K) F (K) WER
MeCab+IPADic 91.28 89.87 90.57 88.74 82.32 85.41 12.87
MeCab+UniDic* (98.84) (99.33) (99.08) (96.51) (97.34) (96.92) (1.31)
JUMAN 85.66 78.15 81.73 91.68 88.41 90.01 23.49
KyTea* (81.84) (90.12) (85.78) (99.57) (99.73) (99.65) (20.02)
Baseline 96.36 96.57 96.47 84.83 84.36 84.59 4.54
+LM-S 96.36 96.57 96.47 84.81 84.36 84.59 4.54
+LM-S+LM-P 96.39 96.61 96.50 85.59 85.40 85.50 4.50

Table 2: Japanese WS Performance (%) on BCCWJ — Overall (O) and Katakana (K)
Model Prec. (O) Rec. (O) F (O) Prec. (K) Rec. (K) F (K) WER
MeCab+IPADic 84.36 87.31 85.81 86.65 73.47 79.52 20.34
MeCab+UniDic 95.14 97.55 96.33 93.88 93.22 93.55 5.46
JUMAN 90.99 87.13 89.2 92.37 88.02 90.14 14.56
KyTea 82.00 86.53 84.21 93.47 90.32 91.87 21.90
Baseline 97.50 97.00 97.25 89.61 85.40 87.45 3.56
+LM-S 97.79 97.37 97.58 92.58 88.99 90.75 3.17
+LM-S+LM-P 97.90 97.55 97.73 93.62 90.64 92.10 2.99

Table 3: Japanese WS Performance (%) on the EC domain corpus
Model Prec. (O) Rec. (O) F (O) Prec. (P) Rec. (P) F (P) WER
Stanford Segmenter 87.06 86.38 86.72 — — — 17.45
Baseline 90.65 90.87 90.76 83.29 51.45 63.61 12.21
+LM-S 90.54 90.78 90.66 72.69 43.28 54.25 12.32
+LM-P 90.90 91.48 91.19 75.04 52.11 61.51 11.90

Table 4: Chinese WS Performance (%) — Overall (O) and Proper Nouns (P)

performance, which may be because one can-
not limit where the source LM features are
applied. This is why the result of +LM-
S+LM-P is not shown for Chinese. On the
other hand, replacing LM-S with LM-P im-
proved the performance significantly. We
found positive changes such as * 欧麦/尔
萨利赫 oumai/ersalihe to 欧麦尔/萨利赫
oumaier/salihe “Umar Saleh” and * 领导/人
曼德拉 lingdao/renmandela to 领导人/曼德拉
lingdaoren/mandela“Leader Mandela”. How-
ever, considering the overall F-measure in-
crease and proper noun F-measure decrease
suggests that the effect of LM projection is
not limited to proper nouns but also promoted
finer granularity because we observed proper
noun recall increase.

One of the reasons which make Chinese LM
projection difficult is the corpus allows sin-
gle tokens with a transliterated part and Chi-
nese affices, e.g., 马克思主义者 makesizhuy-
izhe “Marxists” (马克思 makesi “Marx” + 主
义者 zhuyizhe “-ist (believers)”) and 尼罗河
niluohe “Nile River” ( 尼罗 niluo “Nile” +
河 he “-river”). Another source of errors is
transliteration accuracy. For example, no ap-

ours, and (2) our model only uses the intersection of
the training set and the dictionary. Proper noun per-
formance for the Stanford segmenter is not shown since
it does not assign PoS tags.

propriate transliterations were generated for
维娜斯 weinasi “Venus,” which is commonly
spelled 维纳斯 weinasi. Improving the JSC
model could improve the LM projection per-
formance.

7 Conclusion and Future Works
In this paper, we proposed a novel, on-

line WS model for the Japanese/Chinese
compound word splitting problem, by seam-
lessly incorporating the knowledge that back-
transliteration of properly segmented words
also appear in an English LM. The experi-
mental results show that the model achieves
a significant improvement over the baseline
and LM augmentation, achieving 16% WER
reduction in the EC domain.
The concept of LM projection is general

enough to be used for splitting other com-
pound nouns. For example, for Japanese per-
sonal names such as 仲里依紗 Naka Riisa, if
we could successfully estimate the pronuncia-
tion Nakariisa and look up possible splits in
an English LM, one is expected to find a cor-
rect WS Naka Riisa because the first and/or
the last name are mentioned in the LM. Seek-
ing broader application of LM projection is a
future work.
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Abstract
We present an efficient approach for
broadcast news story segmentation using a
manifold learning algorithm on latent top-
ic distributions. The latent topic distribu-
tion estimated by Latent Dirichlet Alloca-
tion (LDA) is used to represent each text
block. We employ Laplacian Eigenmap-
s (LE) to project the latent topic distribu-
tions into low-dimensional semantic rep-
resentations while preserving the intrinsic
local geometric structure. We evaluate t-
wo approaches employing LDA and prob-
abilistic latent semantic analysis (PLSA)
distributions respectively. The effects of
different amounts of training data and dif-
ferent numbers of latent topics on the two
approaches are studied. Experimental re-
sults show that our proposed LDA-based
approach can outperform the correspond-
ing PLSA-based approach. The proposed
approach provides the best performance
with the highest F1-measure of 0.7860.

1 Introduction
Story segmentation refers to partitioning a mul-
timedia stream into homogenous segments each
embodying a main topic or coherent story (Allan,
2002). With the explosive growth of multimedia
data, it becomes difficult to retrieve the most rel-
evant components. For indexing broadcast news
programs, it is desirable to divide each of them
into a number of independent stories. Manual seg-
mentation is accurate but labor-intensive and cost-
ly. Therefore, automatic story segmentation ap-
proaches are highly demanded.

Lexical-cohesion based approaches have been
widely studied for automatic broadcast news story
segmentation (Beeferman et al., 1997; Choi, 1999;
Hearst, 1997; Rosenberg and Hirschberg, 2006;

∗corresponding author

Lo et al., 2009; Malioutov and Barzilay, 2006;
Yamron et al., 1999; Tur et al., 2001). In this
kind of approaches, the audio portion of the da-
ta stream is passed to an automatic speech recog-
nition (ASR) system. Lexical cues are extracted
from the ASR transcripts. Lexical cohesion is the
phenomenon that different stories tend to employ
different sets of terms. Term repetition is one of
the most common appearances.

These rigid lexical-cohesion based approach-
es simply take term repetition into consideration,
while term association in lexical cohesion is ig-
nored. Moreover, polysemy and synonymy are not
considered. To deal with these problems, some
topic model techniques which provide conceptu-
al level matching have been introduced to text and
story segmentation task (Hearst, 1997). Proba-
bilistic latent semantic analysis (PLSA) (Hofman-
n, 1999) is a typical instance and used widely.
PLSA is the probabilistic variant of latent seman-
tic analysis (LSA) (Choi et al., 2001), and offers a
more solid statistical foundation. PLSA provides
more significant improvement than LSA for story
segmentation (Lu et al., 2011; Blei and Moreno,
2001).

Despite the success of PLSA, there are con-
cerns that the number of parameters in PLSA
grows linearly with the size of the corpus. This
makes PLSA not desirable if there is a consid-
erable amount of data available, and causes seri-
ous over-fitting problems (Blei, 2012). To deal
with this issue, Latent Dirichlet Allocation (L-
DA) (Blei et al., 2003) has been proposed. LDA
has been proved to be effective in many segmenta-
tion tasks (Arora and Ravindran, 2008; Hall et al.,
2008; Sun et al., 2008; Riedl and Biemann, 2012;
Chien and Chueh, 2012).

Recent studies have shown that intrinsic di-
mensionality of natural text corpus is significant-
ly lower than its ambient Euclidean space (Belkin
and Niyogi, 2002; Xie et al., 2012). Therefore,
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Laplacian Eigenmaps (LE) was proposed to com-
pute corresponding natural low-dimensional struc-
ture. LE is a geometrically motivated dimen-
sionality reduction method. It projects data into
a low-dimensional representation while preserv-
ing the intrinsic local geometric structure infor-
mation (Belkin and Niyogi, 2002). The locali-
ty preserving property attempts to make the low-
dimensional data representation more robust to the
noise from ASR errors (Xie et al., 2012).

To further improve the segmentation perfor-
mance, using latent topic distributions and LE in-
stead of term frequencies to represent text blocks
is studied in this paper. We study the effects of
the size of training data and the number of latent
topics on the LDA-based and the PLSA-based ap-
proaches. Another related work (Lu et al., 2013)
is to use local geometric information to regularize
the log-likelihood computation in PLSA.

2 Our Proposed Approach
In this paper, we propose to apply LE on the L-
DA topic distributions, each of which is estimat-
ed from a text block. The low-dimensional vec-
tors obtained by LE projection are used to detect
story boundaries through dynamic programming.
Moreover, as in (Xie et al., 2012), we incorporate
the temporal distances between block pairs as a
penalty factor in the weight matrix.

2.1 Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) (Blei et al.,
2003) is a generative probabilistic model of a cor-
pus. It considers that documents are represented
as random mixtures over latent topics, where each
topic is characterized by a distribution over terms.

In LDA, given a corpus D = {d1, d2, . . . , dM}
and a set of terms W = (w1, w2, . . . , wV ), the
generative process can be summarized as follows:

1) For each document d, pick a multinomial dis-
tribution θ from a Dirichlet distribution parameter
α, denoted as θ ∼ Dir(α).

2) For each term w in document d, select a topic
z from the multinomial distribution θ, denoted as
z ∼ Multinomial(θ).

3) Select a term w from P (w|z, β), which is a
multinomial probability conditioned on the topic.

An LDA model is characterized by two sets of
prior parameters α and β. α = (α1, α2, . . . , αK)
represents the Dirichlet prior distributions for each
K latent topics. β is a K×V matrix, which defines
the latent topic distributions over terms.

2.2 Construction of weight matrix in
Laplacian Eigenmaps

Laplacian Eigenmaps (LE) is introduced to project
high-dimensional data into a low-dimensional rep-
resentation while preserving its locality property.
Given the ASR transcripts of N text blocks, we ap-
ply LDA algorithm to compute the corresponding
latent topic distributions X = [x1, x2, . . . , xN ] in
RK , where K is the number of latent topics, name-
ly the dimensionality of LDA distributions.

We use G to denote an N-node (N is number of
LDA distributions) graph which represents the re-
lationship between all the text block pairs. If dis-
tribution vectors xi and xj come from the same
story, we put an edge between nodes i and j. We
define a weight matrix S of the graph G to denote
the cohesive strength between the text block pairs.
Each element of this weight matrix is defined as:

sij = cos(xi, xj)µ
|i−j|, (1)

where µ|i−j| serves the penalty factor for the dis-
tance between i and j. µ is a constant lower than
1.0 that we tune from a set of development data.
It makes the cohesive strength of two text blocks
dramatically decrease when their distance is much
larger than the normal length of a story.

2.3 Data projection in Laplacian Eigenmaps
Given the weight matrix S, we define C as the di-
agonal matrix with its element:

cij =
∑K

i=1
sij . (2)

Finally, we obtain the Laplacian matrix L, which
is defined as:

L = C − S. (3)

We use Y = [y1, y2, . . . , yN ] (yi is a column
vector) to indicate the low-dimensional represen-
tation of the latent topic distributions X. The pro-
jection from the latent topic distribution space to
the target space can be defined as:

f : xi ⇒ yi. (4)

A reasonable criterion for computing an optimal
mapping is to minimize the objective as follows:

K∑

i=1

K∑

j=1

∥ yi − yj ∥2 sij . (5)

Under this constraint condition, we can preserve
the local geometrical property in LDA distribu-
tions. The objective function can be transformed
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as:
K∑

i=1

K∑

j=1

(yi − yj)sij = tr(YT LY). (6)

Meanwhile, zero matrix and matrices with it-
s rank less than K are meaningless solutions for
our task. We impose YT LY = I to prevent this
situation, where I is an identity matrix. By the
Reyleigh-Ritz theorem (Lutkepohl, 1997), the so-
lution can obtained by the Q smallest eigenvalues
of the generalized eigenmaps problem:

XLXT y = λXCXT y. (7)

With this formula, we calculate the mapping ma-
trix Y, and its row vectors y′

1, y′
2, . . . , y′

Q are in the
order of their eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λQ.
y′

i is a Q-dimensional (Q<K) eigenvectors.

2.4 Story boundary detection
In story boundary detection, dynamic program-
ming (DP) approach is adopted to obtain the glob-
al optimal solution. Given the low-dimensional se-
mantic representation of the test data, an objective
function can be defined as follows:

ℑ =

Ns∑

t=1

(
∑

i,j∈Segt

∥ yi − yj ∥2), (8)

where yi and yj are the latent topic distributions of
text blocks i and j respectively, and ∥ yi − yj ∥2

is the Euclidean distance between them. Segt in-
dicates these text blocks assigned to a certain hy-
pothesized story. Ns is the number of hypothe-
sized stories.

The story boundaries which minimize the ob-
jective function ℑ in Eq.(8) form the optimal re-
sult. Compared with classical local optimal ap-
proach, DP can more effectively capture the s-
mooth story shifts, and achieve better segmenta-
tion performance.

3 Experimental setup
Our experiments were evaluated on the ASR tran-
scripts provided in TDT2 English Broadcast news
corpus1, which involved 1033 news programs. We
separated this corpus into three non-overlapping
sets: a training set of 500 programs for parameter
estimation in topic modeling and LE, a develop-
ment set of 133 programs for empirical tuning and
a test set of 400 programs for performance evalu-
ation.

In the training stage, ASR transcripts with man-
ually labeled boundary tags were provided. Text

1http://projects.ldc.upenn.edu/TDT2/

streams were broken into block units according to
the given boundary tags, with each text block be-
ing a complete story. In the segmentation stage,
we divided test data into text blocks using the time
labels of pauses in the transcripts. If the pause du-
ration between two blocks last for more than 1.0
sec, it was considered as a boundary candidate. To
avoid the segmentation being suffered from ASR
errors and the out-of-vocabulary issue, phoneme
bigram was used as the basic term unit (Xie et al.,
2012). Since the ASR transcripts were at word lev-
el, we performed word-to-phoneme conversion to
obtain the phoneme bigram basic units. The fol-
lowing approaches, in which DP was used in story
boundary detection, were evaluated in the experi-
ments:

• PLSA-DP: PLSA topic distributions were
used to compute sentence cohesive strength.

• LDA-DP: LDA topic distributions were used
to compute sentence cohesive strength.

• PLSA-LE-DP: PLSA topic distributions fol-
lowed by LE projection were used to com-
pute sentence cohesive strength.

• LDA-LE-DP: LDA topic distributions fol-
lowed by LE projection were used to com-
pute sentence cohesion strength.

For LDA, we used the implementation from
David M. Blei’s webpage2. For PLSA, we used
the Lemur Toolkit3.

F1-measure was used as the evaluation crite-
rion.We followed the evaluation rule: a detected
boundary candidate is considered correct if it lies
within a 15 sec tolerant window on each side of a
reference boundary. A number of parameters were
set through empirical tuning on the developent set.
The penalty factor was set to 0.8. When evaluating
the effects of different size of the training set, the
number of latent topics in topic modeling process
was set to 64. After the number of latent topics
was fixed, the dimensionality after LE projection
was set to 32. When evaluating the effects of d-
ifferent number of latent topics in topic modeling
computation, we fixed the size of the training set
to 500 news programs and changed the number of
latent topics from 16 to 256.

4 Experimental results and analysis
4.1 Effect of the size of training dataset
We used the training set from 100 programs to 500
programs (adding 100 programs in each step) to e-

2http://www.cs.princeton.edu/ blei/lda-c/
3http://www.lemurproject.org/
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valuate the effects of different size of training data
in both PLSA-based and LDA-based approaches.
Figure 1 shows the results on the development set
and the test set.
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Figure 1: Segmentation performance with differ-
ent amounts of training data

LDA-LE-DP approach achieved the best result
(0.7927 and 0.7860) on both the development and
the test sets, when there were 500 programs in the
training set. This demonstrates that LDA model
and LE projection used in combination is excellent
for the story segmentation task. The LE projection
applied on the latent topic representations made
relatively 9.88% and 10.93% improvement over
the LDA-based approach and the PLSA-based ap-
proach, respectively on the test set. We can reveal
that employing LE on PLSA and LDA topic dis-
tributions achieves much better performance than
the corresponding approaches without using LE.

We have compared the performances between
PLSA and LDA. We found that when the train-
ing data size was small, PLSA performed better
than LDA. Both PLSA-based and LDA-based ap-
proaches got better with the increase in the size of
the training data set. All the four approaches had
similar performances on the development set and
the test set.

With the increase in the size of the training da-
ta, the LDA-based approaches were improved dra-
matically. They even outperformed the PLSA-
based approaches when the training data contained
more than 300 programs. This may be attributed
to the fact that LDA needs more training data to
estimate the parameters. When the training data is
not enough, its parameters estimated in the train-
ing stage is not stable for the development and the

test data. Moreover, compared with PLSA, the pa-
rameters in LDA do not grow linearly with the size
of the corpus.

4.2 Effect of the number of latent topics
We evaluated the F1-measure of the four ap-
proaches with different number of latent topics
prior to LE projection. Figure 2 shows the cor-
responding results.
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Figure 2: Segmentation performance with differ-
ent numbers of latent topics

The best performances (0.7816-0.7847) were
achieved at the number of latent topics between
64 and 96. When the number of latent topics was
increased from 16 to 64, F1-measure increased.
When the number of latent topics was larger than
96, F1-measure decreased gradually. We found
that the best results were achieved when the num-
ber of topics was close to the real number of top-
ics. There are 80 manually labeled main topics in
the test set.

We observe that LE projection makes the topic
model more stable with different numbers of latent
topics. The best and the worst performances dif-
fered by relatively 9.12% in LDA-DP and 7.97%
in PLSA-DP. However, the relative difference of
2.79% and 2.46% were observed in LDA-LE-DP
and PLSA-LE-DP respectively.

5 Conclusions

Our proposed approach achieves the best F1-
measure of 0.7860. In the task of story segmen-
tation, we believe that LDA can avoid data overfit-
ting problem when there is a sufficient amount of
training data. This is also applicable to LDA-LE-
LP. Moreover, we find that when we apply LE pro-
jection to latent topic distributions, the segmen-
tation performances become less sensitive to the
predefined number of latent topics.
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Abstract

In this paper, we relook at the problem
of pronunciation of English words using
native phone set. Specifically, we in-
vestigate methods of pronouncing English
words using Telugu phoneset in the con-
text of Telugu Text-to-Speech. We com-
pare phone-phone substitution and word-
phone mapping for pronunciation of En-
glish words using Telugu phones. We are
not considering other than native language
phoneset in all our experiments. This dif-
ferentiates our approach from other works
in polyglot speech synthesis.

1 Introduction

The objective of a Text-to-Speech (TTS) system is
to convert a given text input into a spoken wave-
form. Text processing and waveform generation
are the two main components of a TTS system.
The objective of the text processing component is
to convert the given input text into an appropriate
sequence of valid phonemic units. These phone-
mic units are then realized by the waveform gener-
ation component. For high quality speech synthe-
sis, it is necessary that the text processing unit pro-
duce the appropriate sequence of phonemic units,
for the given input text.

There has been a rise in the phenomenon of
“code mixing” (Romaine and Kachru, 1992). This
is a phenomenon where lexical items of two lan-
guages appear in a single sentence. In a multi-
lingual country such as India, we commonly find
Indian language text being freely interspersed with
English words and phrases. This is particularly no-
ticeable in the case of text from web sources like

blogs, tweets etc. An informal analysis of a Telugu
blog on the web showed that around 20-30% of the
text is in English (ASCII) while the remaining is
in Telugu (Unicode). Due to the growth of “code
mixing” it has become necessary to develop strate-
gies for dealing with such multilingual text in TTS
systems. These multilingual TTS systems should
be capable of synthesizing utterances which con-
tain foreign language words or word groups, with-
out sounding unnatural.

The different ways of achieving multilingual
TTS synthesis are as follows (Traber et al., 1999;
Latorre et al., 2006; Campbell, 1998; Campbell,
2001).

1. Separate TTS systems for each language:
In this paradigm, a seperate TTS system is
built for each language under consideration.
When the language of the input text changes,
the TTS system also has to be changed.
This can only be done between two sen-
tences/utterances and not in the middle of a
sentence.

2. Polyglot speech synthesis:
This is a type of multilingual speech syn-
thesis achieved using a single TTS system.
This method involves recording a multi lan-
guage speech corpus by someone who is flu-
ent in multiple languages. This speech cor-
pus is then used to build a multilingual TTS
system. The primary issue with polyglot
speech synthesis is that it requires develop-
ment of a combined phoneset, incorporating
phones from all the languages under consid-
eration. This is a time consuming process
requiring linguistic knowledge of both lan-
guages. Also, finding a speaker fluent in mul-
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tiple languages is not an easy task.

3. Phone mapping:
This type of multilingual synthesis is based
upon phone mapping, whereby the phones
of the foreign language are substituted with
the closest sounding phones of the primary
language. This method results in a strong
foreign accent while synthesizing the foreign
words. This may not always be acceptable.
Also, if the sequence of the mapped phones
does not exist or is not frequently occurring
in the primary language, then the synthesized
output quality would be poor. Hence, an aver-
age polyglot synthesis technique using HMM
based synthesis and speaker adaptation has
been proposed (Latorre et al., 2006). Such
methods make use of speech data from dif-
ferent languages and different speakers.

In this paper, we relook at the problem of pro-
nunciation of English words using native phone
set. Specifically, we investigate methods of pro-
nouncing English words using Telugu phoneset in
the context of Telugu Text-to-Speech. Our moti-
vation for doing so, comes from our understand-
ing of how humans pronounce foreign words while
speaking. The speaker maps the foreign words to
a sequence of phones of his/her native language
while pronouncing that foreign word. For exam-
ple, a native speaker of Telugu, while pronounc-
ing an English word, mentally maps the English
word to a sequence of Telugu phones as opposed
to simply substituting English phones with the cor-
responding Telugu phones. Also, the receiver of
the synthesized speech would be a Telugu native
speaker, who may not have the knowledge of En-
glish phone set. Hence, approximating an English
word using Telugu phone sequence may be more
acceptable for a Telugu native speaker.

We compare phone-phone substitution and
word-phone mapping (also referred to LTS rules)
for the pronunciation of English words using Tel-
ugu phones. We are not considering other than
native language phoneset in all our experiments.
This differentiates our work from other works in
polyglot speech synthesis.

2 Comparison of word-phone and
phone-phone mapping

Table 1 shows an example of the word computer
represented as a US English phone sequence, En-

Computer

US English Phones
/k ax m p y uw t er/

[k @ m p j u t 3~]

phone-phone mapping
/k e m p y uu t: r/
[k e m p j u: ú r]

word-phone mapping
/k a m p y uu t: a r/
[k a m p j u: ú a r]

Table 1: English word computer represented as
US English phone sequence, US English phone-
Telugu phone mapping and English word-Telugu
phone mapping

glish phone-Telugu phone mapping and English
word-Telugu phone mapping, along with the cor-
responding IPA transcription. The English word-
Telugu phone mapping is not a one to one map-
ping, as it is in the case of English phone-Telugu
phone mapping. Each letter has a correspondence
with one or more than one phones. As some let-
ters do not have a equivalent pronunciation sound
(the letter is not mapped to any phone) the term
epsilon is used whenever there is a letter which

does not have a mapping with a phone.
To compare word-phone (W-P) mapping and

phone-phone (P-P) mapping, we manually pre-
pared word-phone and phone-phone mappings for
10 bilingual utterances and synthesized them us-
ing our baseline Telugu TTS system. We then per-
formed perceptual listening evaluations on these
synthesized utterances, using five native speakers
of Telugu as the subjects of the evaluations. The
perceptual listening evaluations were setup both
as MOS (mean opinion score) evaluations and as
ABX evaluations. An explanation of MOS and
ABX evaluations is given in Section 4. Table 2
shows that results of these evaluations.

MOS ABX
W-P P-P W-P P-P No. Pref
3.48 2.66 32/50 4/50 14/50

Table 2: Perceptual evaluation scores for baseline
Telugu TTS system with different pronunciation
rules for English
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An examination of the results in Table 2 shows
that manually prepared word-phone mapping is
preferred perceptually when compared to manual
phone-phone mapping. The MOS score of 3.48
indicates that native speakers accept W-P mapping
for pronouncing English words in Telugu TTS.

For the remainder of this paper, we focus ex-
clusively on word-phone mapping. We propose a
method of automatically generating these word-
phone mapping from data. We experiment our
approach by generating a word-phone mapping
which maps each English word to a Telugu phone
sequence (henceforth called EW-TP mapping).
We report the accuracy of learning the word-phone
mappings both on a held out test set and on a test
set from a different domain. Finally, we incorpo-
rate this word-phone mapping in our baseline Tel-
ugu TTS system and demonstrate its usefulness by
means of perceptual listening tests.

3 Automatic generation of word-phone
mapping

We have previously mentioned that letter to phone
mapping is not a one to one mapping. Each let-
ter may have a correspondence with one or more
than one phones, or it may not have correspon-
dence with any phone. As we require a fixed sized
learning vector to build a model for learning word-
phone mapping rules, we need to align the letter
(graphemic) and phone sequences. For this we use
the automatic epsilon scattering method.

3.1 Automatic Epsilon Scattering Method

The idea in automatic epsilon scattering is to esti-
mate the probabilities for one letter (grapheme) G
to match with one phone P , and then use string
alignment to introduce epsilons maximizing the
probability of the word’s alignment path. Once
the all the words have been aligned, the associa-
tion probability is calculated again and so on until
convergence. The algorithm for automatic epsilon
scattering is given below (Pagel et al., 1998).

3.2 Evaluation and Results

Once the alignment between the each word and the
corresponding phone sequence was complete, we
built two phone models using Classification and
Regression Trees (CART). For the first model, we
used data from the CMU pronunciation dictionary
where each English word had been aligned to a se-
quence of US English phones (EW-EP mapping).

Algorithm for Epsilon Scattering :
/*Initialize prob(G,P ) the probability of G
matching P*/
1. for each wordi in training set
count with string alignment all possible G/P
association for all possible epsilon positions in the
phonetic transcription
/* EM loop */
2. for each wordi in training set
alignment path = argmax

∏

i,j

P (Gi, Pj)

compute probnew(G,P ) on alignment path
3. if(prob 6= probnew) go to 2

The second model was the EW-TP mapping.
Once both the models had been built, they were

used to predict the mapped phone sequences for
each English word in the test data. For the pur-
poses of testing, we performed the prediction on
both held out test data as well as on test data from
a different domain. The held out test data was pre-
pared by removing every ninth word from the lex-
icon.

As we knew the correct phone sequence for
each word in the test data, a ground truth against
which to compute the accuracy of prediction was
available. We measured the accuracy of the pre-
diction both at the letter level and at the word level.
At the letter level, the accuracy was computed by
counting the number of times the predicted letter
to phone mapping matched with the ground truth.
For computing the accuracy at the word level, we
counted the number of times the predicted phone
sequence of each word in the test data matched
with the actual phone sequence for that word (de-
rived from the ground truth). We also varied the
size of the training data and then computed the
prediction accuracy for each model. We did so in
order to study the effect of training data size on the
prediction accuracy.

Tables 3, 4 show the accuracy of the models.
An examination of the results in the two tables
shows that incrementally increasing the size of the
training data results in an increase of the predic-
tion accuracy. The native speakers of Indian lan-
guages prefer to speak what is written. As a result
there are fewer variations in word-phone mapping
as compared to US English. This is reflected in
our results, which show that the word level pre-
diction accuracy is higher for EW-TP mapping as
compared to EW-EP mapping.
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Training set Held-out(%) Testing(%)
size

Letters words Letters words
1000 92.04 39 81.43 16.6
2000 94.25 44.98 82.47 17.5
5000 94.55 47 84.40 25.1
10000 95.82 59.86 89.46 44.7
100000 94.09 56.37 93.27 55.10

Table 3: Accuracy of prediction for English word
- English phone mapping

Training set Held-out(%) Testing(%)
size

Letters words Letters words
1000 92.37 28 82.22 18.8
2000 94.34 45.45 83.79 25.1
5000 95.89 68.2 88.40 42.7
10000 96.54 71.67 94.74 70.9

Table 4: Accuracy of prediction for English word-
Telugu phone mapping

4 Integrating word-phone mapping rules
in TTS

For the purpose of perceptual evaluations we built
a baseline TTS systems for Telugu using the
HMM based speech synthesis technique (Zen et
al., 2007).

To conduct perceptual evaluations of the word-
phone mapping rules built from data in 3.2, we
incorporated these rules in our Telugu TTS sys-
tem. This system is henceforth refered to as T A.
A set of 25 bilingual sentences were synthesized
by the Telugu TTS, and ten native speakers of Tel-
ugu performed perceptual evaluations on the syn-
thesized utterances. As a baseline, we also synthe-
sized the same 25 sentences by incorporating man-
ually written word-phone mapping for the English
words, instead of using the automatically gener-
ated word-phone mapping rules. We refer to this
system as T M.

The perceptual evaluations were set up both
as MOS (mean opinion score) evaluations and as
ABX evaluations. In the MOS evaluations, the
listeners were asked to rate the synthesized utter-
ances from all systems on a scale of 1 to 5 (1 being
worst and 5 best), and the average scores for each
system was calculated. This average is the MOS
score for that system. In a typical ABX evalua-
tion, the listeners are presented with the the same

set of utterances synthesized using two systems A
and B, and are asked to mark their preference for
either A or B. The listeners also have an option of
marking no preference. In this case, the listeners
were asked to mark their preference between T A
and T M. The results of the perceptual evaluations
are shown in Table 5.

MOS ABX Test
T M T A T M T A No. Pref
3.48 3.43 51/250 38/250 161/250

Table 5: Perceptual results comparing systems
T M and T A

An examination of the results shows that per-
ceptually there is no significant preference for the
manual system over the automated system. The
MOS scores also show that there is not much sig-
nificant difference between the ratings of the man-
ual and the automated system.

5 Conclusions

In this paper we present a method of automati-
cally learning word-phone mapping rules for syn-
thesizing foreign words occurring in text. We
show the effectiveness of the method by com-
puting the accuracy of prediction and also by
means of perceptual evaluations. The synthe-
sized multilingual wave files are available for
download at https://www.dropbox.com/
s/7hja51r5rpkz5mz/ACL-2013.zip.

6 Acknowledgements

This work is partially supported by MCIT-TTS
consortium project funded by MCIT, Government
of India. The authors would also like to thank all
the native speakers who participated in the percep-
tual evaluations.

References
A.W. Black and K. Lenzo. 2004. Multilingual Text to

Speech synthesis. In Proceedings of ICASSP, Mon-
treal, Canada.

N. Campbell. 1998. Foreign language speech synthe-
sis. In Proceedings ESCA/COCOSDA workshop on
speech synthesis, Jenolan Caves, Australia.

N. Campbell. 2001. Talking foreign. Concatena-
tive speech synthesis and the language barrier. In
Proceedings Eurospeech, pages 337–340, Aalborg,
Denmark.

199



J. Latorre, K. Iwano, and S. Furui. 2006. New ap-
proach to polygot speech generation by means of an
HMM based speaker adaptable synthesizer. Speech
Communication, 48:1227–1242.

V. Pagel, K. Lenzo, and A.W. Black. 1998. Letter to
sound rules for accented lexicon compression. In
Proceedings of ICSLP 98, volume 5, Sydney, Aus-
tralia.

Suzzane Romaine and Braj Kachru. 1992. The Ox-
ford Companion to the English Language. Oxford
University Press.

C. Traber, K. Huber, K. Nedir, B. Pfister, E. Keller,
and B. Zellner. 1999. From multilingual to polyglot
speech synthesis. In Proceedings of Eurospeech 99,
pages 835–838.

H. Zen, T. Nose, J. Yamagishi, S. Sako, T. Masuko,
A.W. Black, and K. Tokuda. 2007. The HMM-
based speech synthesis system version 2.0. In Pro-
ceedings of ISCA SSW6, Bonn, Germany.

200



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 201–205,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Enriching Entity Translation Discovery using Selective Temporality

Gae-won You, Young-rok Cha, Jinhan Kim, and Seung-won Hwang
Pohang University of Science and Technology, Republic of Korea
{gwyou, line0930, wlsgks08, swhwang}@postech.edu

Abstract

This paper studies named entity trans-
lation and proposes “selective temporal-
ity” as a new feature, as using temporal
features may be harmful for translating
“atemporal” entities. Our key contribution
is building an automatic classifier to dis-
tinguish temporal and atemporal entities
then align them in separate procedures to
boost translation accuracy by 6.1%.

1 Introduction

Named entity translation discovery aims at map-
ping entity names for people, locations, etc. in
source language into their corresponding names in
target language. As many new named entities ap-
pear every day in newspapers and web sites, their
translations are non-trivial yet essential.

Early efforts of named entity translation have
focused on using phonetic feature (called PH)
to estimate a phonetic similarity between two
names (Knight and Graehl, 1998; Li et al., 2004;
Virga and Khudanpur, 2003). In contrast, some
approaches have focused on using context feature
(called CX) which compares surrounding words
of entities (Fung and Yee, 1998; Diab and Finch,
2000; Laroche and Langlais, 2010).

Recently, holistic approaches combining such
similarities have been studied (Shao and Ng, 2004;
You et al., 2010; Kim et al., 2011). (Shao and
Ng, 2004) rank translation candidates using PH
and CX independently and return results with the
highest average rank. (You et al., 2010) compute
initial translation scores using PH and iteratively
update the scores using relationship feature (called
R). (Kim et al., 2011) boost You’s approach by ad-
ditionally leveraging CX.

More recent approaches consider temporal fea-
ture (called T) of entities in two corpora (Klemen-
tiev and Roth, 2006; Tao et al., 2006; Sproat et
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(a) Temporal entity: “Usain Bolt”
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(b) Atemporal entity: “Hillary Clinton”

Figure 1: Illustration on temporality

al., 2006; Kim et al., 2012). T is computed us-
ing frequency vectors for entities and combined
with PH (Klementiev and Roth, 2006; Tao et al.,
2006). (Sproat et al., 2006) extend Tao’s approach
by iteratively updating overall similarities using R.
(Kim et al., 2012) holistically combine all the fea-
tures: PH, CX, T, and R.

However, T used in previous approaches is a
good feature only if temporal behaviors are “sym-
metric” across corpora. In contrast, Figure 1 il-
lustrates asymmetry, by showing the frequencies
of “Usain Bolt,” a Jamaican sprinter, and “Hillary
Clinton,” an American politician, in comparable
news articles during the year 2008. The former is
mostly mentioned in the context of some temporal
events, e.g., Beijing Olympics, while the latter is
not. In such case, as Hillary Clinton is a famous fe-
male leader, she may be associated with other Chi-
nese female leaders in Chinese corpus, while such
association is rarely observed in English corpus,
which causes asymmetry. That is, Hillary Clin-
ton is “atemporal,” as Figure 1(b) shows, such that
using such dissimilarity against deciding this pair
as a correct translation would be harmful. In clear
contrast, for Usain Bolt, similarity of temporal dis-
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tributions in Figure 1(a) is a good feature for con-
cluding this pair as a correct one.

To overcome such problems, we propose a new
notion of “selective temporality” (called this fea-
ture ST to distinguish from T) to automatically
distinguish temporal and atemporal entities. To-
ward this goal, we design a classifier to distinguish
temporal entities from atemporal entities, based
on which we align temporal projections of entity
graphs for the temporal ones and the entire entity
graphs for the atemporal ones. We also propose
a method to identify the optimal window size for
temporal entities. We validate this “selective” use
of temporal features boosts the accuracy by 6.1%.

2 Preliminaries

Our approach follows a graph alignment frame-
work proposed in (You et al., 2010). Our graph
alignment framework consists of 4 steps.

2.1 Step 1: Graph Construction

We first build a graph G = (V,E) from each lan-
guage corpus, where V is a set of entities (nodes)
and E is a set of co-occurrence relationships (un-
weighted edges) between entities. We consider en-
tities occurring more than η times as nodes and en-
tity pairs co-occurring more than σ times as edges.

To identify entities, we use a CRF-based named
entity tagger (Finkel et al., 2005) and a Chinese
word breaker (Gao et al., 2003) for English and
Chinese corpora, respectively.

2.2 Step 2: Initialization

Given two graphs Ge = (Ve, Ee) and Gc =
(Vc, Ec), we initialize |Ve|-by-|Vc| initial similar-
ity matrix R0 using PH and CX for every pair
(e, c) where e ∈ Ve and c ∈ Vc.

For PH, we use a variant of Edit-Distance (You
et al., 2010) between English entity and a ro-
manized representation of Chinese entity called
Pinyin. For CX, the context similarity is computed
based on entity context which is defined as a set of
words near to the entity (we ignore some words
such as stop words and other entities). We com-
pute similarity of the most frequent 20 words for
each entity using a variant of Jaccard index. To in-
tegrate two similarity scores, we adopt an average
as a composite function.

We finally compute initial similarity scores for
all pairs (e, c) where e ∈ Ve and c ∈ Vc, and build
the initial similarity matrix R0.

2.3 Step 3: Reinforcement

We reinforce R0 by leveraging R and obtain a con-
verged matrix R∞ using the following model:

Rt+1
(i,j) = λR0

(i,j) + (1 − λ)
∑

(u,v)k∈Bt(i,j,θ)

Rt
(u,v)

2k

This model is a linear combination of (a) the initial
similarity R0

(i,j) of entity pair (i, j) ∈ Ve × Vc and
(b) the similarities Rt

(u,v) of their matched neigh-
bors (u, v) ∈ Ve × Vc where t indicates iteration,
Bt(i, j, θ) is an ordered set of the matched neigh-
bors, and k is the rank of the matched neighbors.
λ is the coefficient for balancing two terms.

However, as we cannot assure the correctly
matched neighbors (u, v), a chicken-and-egg
dilemma, we take advantage of the current simi-
larity Rt to estimate the next similarity Rt+1. Al-
gorithm 1 describes the process of matching the
neighbors where N(i) and N(j) are the sets of
neighbor nodes of i ∈ Ve and j ∈ Vc, respectively,
and H is a priority queue sorting the matched pairs
in non-increasing order of similarities. To guaran-
tee that the neighbors are correctly matched, we
use only the matches such that Rt

(u,v) ≥ θ.

Algorithm 1 Bt(i, j, θ)

1: M ← {}; H ← {}
2: ∀u ∈ N(i), ∀v ∈ N(j) H.push(u, v) such that

Rt
(u,v) ≥ θ

3: while H is not empty do
4: (u, v)← H.pop()
5: if neither u nor v are matched yet then
6: M ←M ∪ {(u, v)}
7: end if
8: end while
9: return M

2.4 Step 4: Extraction

From R∞, we finally extract one-to-one matches
by using simple greedy approach of three steps:
(1) choosing the pair with the highest similarity
score; (2) removing the corresponding row and
column from R∞; (3) repeating (1) and (2) until
the matching score is not less than a threshold δ.

3 Entity Translation Discovery using
Selective Temporality

Overall Framework: We propose our framework
by putting together two separate procedures for
temporal and atemporal entities to compute the
overall similarity matrix R
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We first build two temporal graphs from the cor-
pora within every time window, optimized in Sec-
tion 3.1. We then compute the reinforced matrix
R∞

s obtained from the window starting at the time-
stamp s. To keep the best match scores among
all windows, we update R using the best similar-
ity among ∀s,R∞

s . we then extract the candidate
translation pairs Mours by running step 4.

As there can exist atemporal entities in Mours,
we classify them (Section 3.2). Specifically, we
build two entire graphs and compute R∞. We then
distinguish temporal entities from atemporal ones
using our proposed metric for each matched pair
(i, j) ∈ Mours and, if the pair is atemporal, R(i,j)

is updated as the atemporal similarity R∞
(i,j).

From the final matrix R, we extract the matched
pairs by running step 4 with R once again.

3.1 Projecting Graph for Temporal Entities
We first project graphs temporally to improve
translation quality for temporal entities. As the
optimal projection would differ across entities, we
generate many projected graphs by shifting time
window over all periods, and then identify the best
window for each entity.

The rest of this section describes how we set
the right window size w. Though each entity may
have its own optimal w, we find optimizing for
each entity may negatively influence on consider-
ing relationships with entities of different window
sizes. Thus, we instead find the optimal window
size ŵ to maximize the global “symmetry” of the
given two graphs.

We now define “symmetry” with respect to the
truth translation pair M . We note it is infeasi-
ble to assume we have M during translation, and
will later relax to consider how M can be approx-
imated.

Given a set of graph pairs segmented by the
shifted windows

{(G(0,w)
e , G(0,w)

c ), · · · , (G(s,s+w)
e , G(s,s+w)

c ),

(G(s+∆s,s+∆s+w)
e , G(s+∆s,s+∆s+w)

c ), · · · },

where s is the time-stamp, our goal is to find the
window size ŵ maximizing the average symmetry
S of graph pairs:

ŵ = arg max
∀w

(∑
s S(G

(s,s+w)
e , G

(s,s+w)
c ; M)

N

)

Given M , symmetry S can be defined for (1)
node and (2) edge respectively. We first define the

node symmetry Sn as follows:

Sn(Ge, Gc; M) =

∑
(e,c)∈Ve×Vc

I(e, c;M)

max{|Ve|, |Vc|}

where I(u, v; M) to be 1 if (u, v) ∈ M , 0 other-
wise. High node symmetry leads to accurate trans-
lation in R0 (Initialization step). Similarly, we de-
fine the edge symmetry Se as follows:

Se(Ge, Gc; M) =∑
(e1,e2)∈Ee

∑
(c1,c2)∈Ec

I(e1, c1; M)I(e2, c2; M)

max{|Ee|, |Ec|}

In contrast, high edge symmetry leads to accurate
translation in R∞ (Reinforcement step).

We finally define the symmetry S as the
weighted sum of Sn and Se with parameter α (em-
pirically tuned to 0.8 in our experiment).

S(Ge, Gc; M) =

αSn(Ge, Gc; M) + (1 − α)Se(Ge, Gc; M)

However, as it is infeasible to assume we have
the truth translation pair M , we approximate M
using intermediate translation results Mours com-
puted at step 4. To insert only true positive pairs in
Mours, we set threshold higher than the optimized
value from the step 4. We found out that symmetry
from Mours closely estimates that from M :

S(Ge, Gc; M) ≈ S(Ge, Gc; Mours)

Specifically, observe from Table 1 that, given a
manually built ground-truth set Mg ⊂ M as de-
scribed in Section 4.1, S(Ge, Gc; Mours) returns
the best symmetry value in two weeks for person
entities, which is expectedly the same as the result
of S(Ge, Gc; Mg). This suggests that we can use
Mours for optimizing window size.

Weeks 26 13 4 2 1
Mg .0264 .0276 .0303 .0318 .0315

Mours .0077 .0084 .0102 .0113 .0107

Table 1: Symmetry of window size

3.2 Building Classifier
We then classify temporal/atemporal entities. As
a first step, we observe their characteristics: Tem-
poral entities have peaks in the frequency distri-
bution of both corpora and these peaks are aligned,
while such distribution of atemporal entities are
more uniform and less aligned.
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Based on these observations, we identify the
following criteria for temporal entities: (1) Their
two distributions m in English corpus and n in
Chinese corpus should have aligned peaks. (2)
Frequencies at the peaks are the higher the better.

For the first criterion, we first normalize the two
vectors m̂ and n̂ since two corpora have different
scales, i.e., different number of documents. We
then calculate the inner product of the two vectors
x = ⟨m̂, n̂⟩, such that this aggregated distribution
x peaks, only if both m̂ and n̂ peak at the same
time.

For the second criterion, we have a spectrum
of option from taking the frequencies at all peaks
in one extreme, to taking only the maximum fre-
quency in another extreme. A metric representing
such a spectrum is p-norm, which represents sum
when p = 1 and maximum when p = ∞. We em-
pirically tune the right balance to distinguish tem-
poral and atemporal entities, which turns out to be
p = 2.2.

Overall, we define a metric d(m,n) which sat-
isfies both criteria as follow:

d(m,n) =

(
n∑

i=1

(m̂in̂i)
p

) 1
p

For instance, this measure returns 0.50 and 0.03
for the distributions in Figure 1(a) and (b), respec-
tively, from which we can determine the transla-
tion of Figure 1(a) is temporal and the one of Fig-
ure 1(b) is atemporal.

4 Experimental Evaluation

4.1 Experimental Settings

We obtained comparable corpora from English
and Chinese Gigaword Corpora (LDC2009T13
and LDC2009T27) published by the Xinhua News
Agency during the year 2008. From them, we ex-
tracted person entities and built two graphs, Ge =
(Ve, Ee) and Gc = (Vc, Ec) by setting η = 20
which was used in (Kim et al., 2011).

Next, we built a ground truth translation pair
set Mg for person entities. We first selected 500
person names randomly from English corpus. We
then hired a Chinese annotator to translate them
into their Chinese names. Among them, only 201
person names were matched to our Chinese cor-
pus. We used all such pairs to identify the best
parameters and compute the evaluation measures.

We implemented and compared the following
approaches denoted as the naming convention of
listing of the used features in a parenthesis ():

• (PH+R) in (You et al., 2010).

• (PH+CX+R) in (Kim et al., 2011).

• (PH+CX+R+T) in (Kim et al., 2012).

• (PH+CX+R+ST): This is our approach.

We evaluated the effectiveness of our new ap-
proach using four measures: MRR, precision, re-
call, and F1-score, where MRR (Voorhees, 2001)
is the average of the reciprocal ranks of the query
results defined as follows:

MRR =
1

|Q|
∑

(u,v)∈Q

1

rank(u,v)
,

where Q is a set of ground-truth matched pairs
(u, v) such that u ∈ Ve and v ∈ Vc, and rank(u,v)

is the rank of R(u,v) among all R(u,w)’s such that
w ∈ Vc. We performed a 5-fold cross validation
by dividing ground truth into five groups. We used
four groups to training the parameters to maximize
F1-scores, used the remaining group as a test-set
using trained parameters, and computed average
of five results. (bold numbers indicate the best
performance for each metric.)

4.2 Experimental Results

Effect of window size
We first validated the effectiveness of our ap-
proach for various window sizes (Table 2). Ob-
serve that it shows the best performance in two
weeks for MRR and F1 measures. Interestingly,
this result also corresponds to our optimization re-
sult ŵ of Table 1 in Section 3.1.

Weeks 26 13 4 2 1
MRR .7436 .8066 .8166 .8233 .8148

Precision .7778 .7486 .8126 .8306 .8333
Recall .6617 .6875 .7320 .7295 .7214

F1 .7151 .7165 .7701 .7765 .7733

Table 2: Optimality of window size

Overall performance
Table 3 shows the results of four measures. Ob-
serve that (PH+CX+R+T) and (PH+CX+R+ST)
outperform the others in all our settings. We
can also observe the effect of selective temporal-
ity, which maximizes the symmetry between two
graphs as shown in Table 1, i.e., (PH+CX+R+ST)
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Method MRR Precision Recall F1
(PH+R) .6500 .7230 .4548 .5552
(PH+CX+R) .7499 .7704 .6623 .7120
(PH+CX+R+T) .7658 .8223 .6608 .7321
(PH+CX+R+ST) .8233 .8306 .7295 .7765

Table 3: MRR, Precision, Recall, and F1-score

Figure 2: The translation examples where shaded
cells indicate the correctly translated pairs.

outperforms (PH+CX+R+T) by 6.1%. These im-
provements were statistically significant according
to the Student’s t-test at P < 0.05 level.

Figure 2 shows representative translation exam-
ples. All approaches found famous entities such
as “Hu Jintao,” a former leader of China, but
(PH+CX+R) failed to find translation of lesser
known entities, such as “Kim Yong Nam.” Using
temporal features help both (PH+CX+R+T) and
(PH+CX+R+ST) identify the right translation, as
Kim’s temporal occurrence is strong and symmet-
ric in both corpora. In contrast, (PH+CX+R+T)
failed to find the translation of “Karzai”, the presi-
dent of Afghanistan, as it only appears weakly and
transiently during a short period time, for which
only (PH+CX+R+ST) applying varying sizes of
window per entity is effective.

5 Conclusion

This paper validated that considering temporal-
ity selectively is helpful for improving the trans-
lation quality. We developed a classifier to dis-
tinguish temporal/atemporal entities and our pro-
posed method outperforms the state-of-the-art ap-
proach by 6.1%.
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Abstract

In this paper, we investigate the appli-
cation of recurrent neural network lan-
guage models (RNNLM) and factored
language models (FLM) to the task of
language modeling for Code-Switching
speech. We present a way to integrate part-
of-speech tags (POS) and language in-
formation (LID) into these models which
leads to significant improvements in terms
of perplexity. Furthermore, a comparison
between RNNLMs and FLMs and a de-
tailed analysis of perplexities on the dif-
ferent backoff levels are performed. Fi-
nally, we show that recurrent neural net-
works and factored language models can
be combined using linear interpolation to
achieve the best performance. The final
combined language model provides 37.8%
relative improvement in terms of perplex-
ity on the SEAME development set and
a relative improvement of 32.7% on the
evaluation set compared to the traditional
n-gram language model.

Index Terms: multilingual speech processing,
code switching, language modeling, recurrent
neural networks, factored language models

1 Introduction

Code-Switching (CS) speech is defined as speech
that contains more than one language (’code’). It
is a common phenomenon in multilingual com-
munities (Auer, 1999a). For the automated pro-
cessing of spoken communication in these sce-
narios, a speech recognition system must be able
to handle code switches. However, the compo-
nents of speech recognition systems are usually
trained on monolingual data. Furthermore, there
is a lack of bilingual training data. While there

have been promising research results in the area
of acoustic modeling, only few approaches so far
address Code-Switching in the language model.
Recently, it has been shown that recurrent neu-
ral network language models (RNNLMs) can im-
prove perplexity and error rates in speech recogni-
tion systems in comparison to traditional n-gram
approaches (Mikolov et al., 2010; Mikolov et al.,
2011). One reason for that is their ability to han-
dle longer contexts. Furthermore, the integration
of additional features as input is rather straight-
forward due to their structure. On the other hand,
factored language models (FLMs) have been used
successfully for languages with rich morphology
due to their ability to process syntactical features,
such as word stems or part-of-speech tags (Bilmes
and Kirchhoff, 2003; El-Desoky et al., 2010).
The main contribution of this paper is the appli-
cation of RNNLMs and FLMs to the challenging
task of Code-Switching. Furthermore, the two dif-
ferent models are combined using linear interpo-
lation. In addition, a comparison between them is
provided including a detailed analysis to explain
their results.

2 Related Work

For this work, three different topics are investi-
gated and combined: linguistic investigation of
Code-Switching, recurrent neural network lan-
guage modeling and factored language models.
In (Muysken, 2000; Poplack, 1978; Bokamba,
1989), it is observed that code switches occur at
positions in an utterance where they do not violate
the syntactical rules of the involved languages. On
the one hand, Code-Switching can be regarded as
a speaker dependent phenomenon (Auer, 1999b;
Vu, Adel et al., 2013). On the other hand, par-
ticular Code-Switching patterns are shared across
speakers (Poplack, 1980). It can be observed that
part-of-speech tags may predict Code-Switching
points more reliable than words themselves. The
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authors of (Solorio et al., 2008a) predict Code-
Switching points using several linguistic features,
such as word form, language ID, part-of-speech
tags or the position of the word relative to the
phrase (BIO). The best result is obtained by com-
bining those features. In (Chan et.al., 2006), four
different kinds of n-gram language models are
compared to predict Code-Switching. It is dis-
covered that clustering all foreign words into their
part-of-speech classes leads to the best perfor-
mance.
In the last years, neural networks have been used
for a variety of tasks, including language model-
ing (Mikolov et al., 2010). Recurrent neural net-
works are able to handle long-term contexts since
the input vector does not only contain the cur-
rent word but also the previous hidden layer. It
is shown that these networks outperform tradi-
tional language models, such as n-grams which
only contain very limited histories. In (Mikolov
et al., 2011), the network is extended by factoriz-
ing the output layer into classes to accelerate the
training and testing processes. The input layer
can be augmented to model features, such as part-
of-speech tags (Shi et al., 2011; Adel, Vu et al.,
2013). In (Adel, Vu et al., 2013), recurrent neural
networks are applied to Code-Switching speech. It
is shown that the integration of POS tags into the
neural network, which predicts the next language
as well as the next word, leads to significant per-
plexity reductions.
A factored language model refers to a word as a
vector of features, such as the word itself, morpho-
logical classes, POS tags or word stems. Hence, it
provides another possibility to integrate syntacti-
cal features into the language modeling process.
In (Bilmes and Kirchhoff, 2003), it is shown that
factored language models are able to outperform
standard n-gram techniques in terms of perplexity.
In the same paper, generalized parallel backoff is
introduced. This technique can be used to general-
ize traditional backoff methods and to improve the
performance of factored language models. Due to
the integration of various features, it is possible to
handle rich morphology in languages like Arabic
or Turkish (Duh and Kirchhoff, 2004; El-Desoky
et al., 2010).

3 Code-Switching Language Modeling

3.1 Motivation

Since there is a lack of Code-Switching data, lan-
guage modeling is a challenging task. Traditional
n-gram approaches may not provide reliable esti-
mates. Hence, more general features than words
should be integrated into the language models.
Therefore, we apply recurrent neural networks and
factored language models. As features, we use
part-of-speech tags and language identifiers.

3.2 Using Recurrent Neural Networks As
Language Model

This section describes the structure of the recur-
rent neural network (RNNLM) that we use as
Code-Switching language model. It has been pro-
posed in (Adel, Vu et al., 2013) and is illustrated
in figure 1.

w(t)

 f(t)

s(t)

 y(t)

 c(t)

U
1  V

WU
2

Figure 1: RNNLM for Code-Switching
(based upon a figure in (Mikolov et al., 2011))

Vectorw(t), which represents the current word us-
ing 1-of-N coding, forms the input of the recur-
rent neural network. Thus, its dimension equals
the size of the vocabulary. Vector s(t) con-
tains the state of the network and is called ’hid-
den layer’. The network is trained using back-
propagation through time (BPTT), an extension of
the back-propagation algorithm for recurrent neu-
ral networks. With BPTT, the error is propagated
through recurrent connections back in time for a
specific number of time steps t. Hence, the net-
work is able to remember information for several
time steps. The matrices U1, U2, V , and W con-
tain the weights for the connections between the
layers. These weights are learned during the train-
ing phase. Moreover, the output layer is factorized
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into classes which provide language information.
In this work, four classes are used: English, Man-
darin, other languages and particles. Vector c(t)
contains the probabilities for each class and vector
y(t) provides the probabilities for each word given
its class. Hence, the probability P (wi|history) is
computed as shown in equation 1.

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (1)

It is intended to not only predict the next word but
also the next language. Hence according to equa-
tion 1, the probability of the next language is com-
puted first and then the probability of each word
given the language. Furthermore, a vector f(t)
is added to the input layer. It provides features
(in this work part-of-speech tags) corresponding
to the current word. Thus, not only the current
word is activated but also its features. Since the
POS tags are integrated into the input layer, they
are also propagated into the hidden layer and back-
propagated into its history s(t). Hence, not only
the previous feature is stored in the history but also
features from several time steps in the past.

3.3 Using Factored Language Models
Factored language models (FLM) are another ap-
proach to integrate syntactical features, such as
part-of-speech tags or language identifiers into the
language modeling process. Each word is re-
garded as a sequence of features which are used
for the computation of the n-gram probabilities.
If a particular sequence of features has not been
detected in the training data, backoff techniques
will be applied. For our task of Code-Switching,
we develop two different models: One model with
only part-of-speech tags as features and one model
including also language information tags. Un-
fortunately, the number of possible parameters is
rather high: Different feature combinations from
different time steps can be used to predict the
next word (conditioning factors), different back-
off paths and different smoothing methods may
be applied. To detect useful parameters, the ge-
netic algorithm described in (Duh and Kirchhoff,
2004) is used. It is an evolution-inspired technique
that encodes the parameters of an FLM as binary
strings (genes). First, an initializing set of genes is
generated. Then, a loop follows that evaluates the
fitness of the genes and mutates them until their
average fitness is not improved any more. As fit-
ness value, the inverse perplexity of the FLM cor-
responding to the gene on the development set is

W
t-1       

 P
t-1

     P
t-2

W
t-1       

 P
t-2

W
t-1       

 P
t-1

P
t-2

W
t-1

P
t-1

unigram

Figure 2: Backoff graph of the FLM

used. Hence, parameter solutions with lower per-
plexities are preferred in the selection of the genes
for the following iteration. In (Duh and Kirch-
hoff, 2004), it is shown that this genetic method
outperforms both knowledge-based and random-
ized choices. For the case of part-of-speech tags
as features, the method results in three condition-
ing factors: the previous word Wt−1 and the two
previous POS tags Pt−1 and Pt−2. The backoff
graph obtained by the algorithm is illustrated in
figure 2. According to the result of the genetic al-
gorithm, different smoothing methods are used at
different backoff levels: For the backoff from three
factors to two factors, Kneser-Ney discounting is
applied. If the probabilities for the factor combi-
nation Wt−1Pt−2 could not be estimated reliably,
absolute discounting is used. In all other cases,
Witten-Bell discounting is applied. An overview
of the different smoothing methods can be found
in (Rosenfeld, 2000).

4 Experiments and Results

4.1 Data Corpus
SEAME (South East Asia Mandarin-English) is a
conversational Mandarin-English Code-Switching
speech corpus recorded from Singaporean and
Malaysian speakers (D.C. Lyu et al., 2011). It
was used for the research project ’Code-Switch’
jointly performed by Nanyang Technological Uni-
versity (NTU) and Karlsruhe Institute of Technol-
ogy (KIT). The recordings consist of spontanously
spoken interviews and conversations of about 63
hours of audio data. For this task, we deleted all
hesitations and divided the transcribed words into
four categories: English words, Mandarin words,
particles (Singaporean and Malaysian discourse
particles) and others (other languages). These cat-
egories are used as language information in the
language models. The average number of Code-
Switching points between Mandarin and English
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is 2.6 per utterance and the duration of monolin-
gual segments is quite short: The average dura-
tion of English and Mandarin segments is only
0.67 seconds and 0.81 seconds respectively. In to-
tal, the corpus contains 9,210 unique English and
7,471 unique Mandarin vocabulary words. We di-
vided the corpus into three disjoint sets (training,
development and test set) and assigned the data
based on several criteria (gender, speaking style,
ratio of Singaporean and Malaysian speakers, ra-
tio of the four categories, and the duration in each
set). Table 1 lists the statistics of the corpus in
these sets.

Train set Dev set Eval set
# Speakers 139 8 8
Duration(hrs) 59.2 2.1 1.5
# Utterances 48,040 1,943 1,018
# Token 525,168 23,776 11,294

Table 1: Statistics of the SEAME corpus

4.2 POS Tagger for Code-Switching Speech

To be able to assign part-of-speech tags to our
bilingual text corpus, we apply the POS tagger
described in (Schultz et al., 2010) and (Adel, Vu
et al., 2013). It consists of two different mono-
lingual (Stanford log-linear) taggers (Toutanova
et al., 2003; Toutanova et al., 2000) and a com-
bination of their results. While (Solorio et al.,
2008b) passes the whole Code-Switching text to
both monolingual taggers and combines their re-
sults using different heuristics, in this work, the
text is splitted into different languages first. The
tagging process is illustrated in figure 3.
Mandarin is determined as matrix language (the
main language of an utterance) and English as em-
bedded language. If three or more words of the
embedded language are detected, they are passed
to the English tagger. The rest of the text is passed
to the Mandarin tagger, even if it contains foreign
words. The idea is to provide the tagger as much
context as possible. Since most English words in
the Mandarin segments are falsely tagged as nouns
by the Mandarin tagger, a postprocessing step is
applied. It passes all foreign words of the Man-
darin segments to the English tagger in order to
replace the wrong tags with the correct ones.

„Matrix language“ = Mandarin

„Embedded language“ = English

CS-text

Language islands
(> 2 embedded

words)

Remaining
text

POS
tagger for 
Mandarin

POS
tagger for 

English

Output
Output

English
segments

in
remaining

text

Postprocessing:

Figure 3: Tagging of Code-Switching speech

4.3 Evaluation

For evaluation, we compute the perplexity of each
language model on the SEAME development and
evaluation set und perform an analysis of the dif-
ferent back-off levels to understand in detail the
behavior of each language model. A traditional 3-
gram LM trained with the SEAME transcriptions
serves as baseline.

4.3.1 LM Performance

The language models are evaluated in terms of per-
plexity. Table 2 presents the results on the devel-
opment and test set.

Model dev set test set
Baseline 3-gram 285.87 285.25
FLM (pos) 263.57 271.57
FLM (pos + lid) 263.84 276.99
RNNLM (pos) 233.50 268.05
RNNLM (pos + lid) 219.85 239.21

Table 2: Perplexity results

It can be noticed that both the RNNLM and the
FLM model outperform the traditional 3-gram
model. Hence, adding syntactical features im-
proves the word prediction. For the FLM, it leads
to no improvement to add the language identifier
as feature. In contrast, clustering the words into
their languages on the output layer of the RNNLM
leads to lower perplexities.
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4.3.2 Backoff Level Analysis
To understand the different results of the RNNLM
and the FLM, an analysis similar to the one de-
scribed in (Oparin et al., 2012) is performed. For
each word, the backoff-level of the n-gram model
is observed. Then, a level-dependent perplexity is
computed for each model as shown in equation 2.

PPLk = 10
− 1

Nk

∑
wk

log10P (wk|hk) (2)

In the equation, k denotes the backoff-level, Nk

the number of words on this level, wk the current
word and hk its history. Table 3 shows how often
each backoff-level is used and presents the level-
dependent perplexities of each model on the de-
velopment set.

1-gram 2-gram 3-gram
# occurences 6894 11628 6226
Baseline 3-gram 5,786.24 165.82 28.28
FLM (pos) 4,950.31 147.70 30.99
RNNLM 3,231.02 151.67 21.24

Table 3: Backoff-level-dependent PPLs

In case of backoff to the 2-gram, the FLM pro-
vides the best perplexity, while for the 3-gram and
backoff to the 1-gram, the RNNLM performs best.
This may be correlated with the better over-all per-
plexity of the RNNLM in comparison to the FLM.
Nevertheless, the backoff to the 2-gram is used
about twice as often as the backoff to the 1-gram
or the 3-gram.

4.4 LM Interpolation
The different results of RNNLM and FLM show
that they provide different estimates of the next
word. Thus, a combination of them may reduce
the perplexities of table 2. Hence, we apply lin-
ear interpolation to the probabilities of each two
models as shown in equation 3.

P (w|h) = λ·PM1(w|h)+(1−λ)·PM2(w|h) (3)

The equation shows the computation of the pob-
ability for word w given its history h. PM1 de-
notes the probability provided by the first model
and PM2 the probability from the second model.
Table 4 shows the results of this experiment. The
weights are optimized on the development set.
The interpolation of RNNLM and FLM leads to
the best results. This may be caused by the supe-
rior backoff-level-dependent PPLs in comparison

PPL PPL
Model weight on dev on eval
FLM + 3-gram 0.7, 0.3 211.13 227.57
RNNLM + 3-gram 0.8, 0.2 206.49 227.08
RNNLM + FLM 0.6, 0.4 177.79 192.08

Table 4: Perplexities after interpolation

to the 3-gram model. While the RNNLM performs
better for the 3-gram and for the backoff to the 1-
gram, the FLM performs the best in case of back-
off to the 2-gram which is used more often than
the other levels (table 3).

5 Conclusions

In this paper, we presented two different methods
for language modeling of Code-Switching speech:
Recurrent neural networks and factored language
models. We integrated part-of-speech tags and
language information to improve the performance
of the language models. In addition, we ana-
lyzed their behavior on the different backoff lev-
els. While the FLM performed better in case of
backoff to the 2-gram, the RNNLM led to a bet-
ter over-all performance. Finally, the models were
combined using linear interpolation. The com-
bined language model provided 37.8% relative im-
provement in terms of perplexity on the SEAME
development set and a relative improvement of
32.7% on the evaluation set compared to the tra-
ditional n-gram LM.
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Abstract

Unsupervised object matching (UOM) is
a promising approach to cross-language
natural language processing such as bilin-
gual lexicon acquisition, parallel corpus
construction, and cross-language text cat-
egorization, because it does not require
labor-intensive linguistic resources. How-
ever, UOM only finds one-to-one corre-
spondences from data sets with the same
number of instances in source and target
domains, and this prevents us from ap-
plying UOM to real-world cross-language
natural language processing tasks. To al-
leviate these limitations, we proposes la-
tent semantic matching, which embeds
objects in both source and target lan-
guage domains into a shared latent topic
space. We demonstrate the effectiveness
of our method on cross-language text cat-
egorization. The results show that our
method outperforms conventional unsu-
pervised object matching methods.

1 Introduction

Unsupervised object matching is a method for
finding one-to-one correspondences between ob-
jects across different domains without knowledge
about the relation between the domains. Kernel-
ized sorting (Novi et al., 2010) and canonical cor-
relation analysis based methods (Haghighi et al.,
2008; Tripathi et al., 2010) are two such exam-
ples of unsupervised object matching, which have
been shown to be quite useful for cross-language
natural language processing (NLP) tasks. One of
the most important properties of the unsupervised
object matching is that it does not require any lin-
guistic resources which connects between the lan-
guages. This distinguishes it from other cross-
language NLP methods such as machine transla-

tion based and projection based approaches (Du-
mais et al., 1996; Gliozzo and Strapparava, 2005;
Platt et al., 2010), which we need bilingual dictio-
naries or parallel sentences.

When we apply unsupervised object matching
methods to cross-language NLP tasks, there are
two critical problems. The first is that they only
find one-to-one matching. The second is they re-
quire the same size of source- and target-data. For
example, the correct translation of a word is not
always unique. French words ‘maison’, ‘appart-
ment’ and ‘domicile’ can be regarded as transla-
tion of an English word ‘home’. In addition, En-
glish vocabulary size is not equal to that of French.

These discussions motivate us to introduce a
shared space in which both source and target do-
main objects will reside. If we can obtain such
a shared space, we can match objects within the
space, because we can use standard distance met-
rics on this space. This will also enable us to use
various kinds of non-strict matching. For exam-
ple, k-nearest objects in the source domain will be
retrieved for a query object in the target domain.
In this paper, we propose a simple but effective
method to find the shared space by assuming that
two languages have common latent topics, which
we call latent semantic matching. With latent se-
mantic matching, we first find latent topics in two
domains independently. Then, the topics in two
domains are aligned by kernelized sorting, and ob-
jects are embedded in a shared latent topic space.
Latent topic representations are successfully used
in a wide range of NLP tasks, such as information
retrieval and text classification, because they rep-
resent intrinsic information of documents (Deer-
wester et al., 1990). By matching latent topics,
we can find relation between source and target do-
mains, and additionally we can handle different
numbers of objects in two domains.

We compared latent semantic matching with
conventional unsupervised object matching meth-
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ods on the task of cross-language text categoriza-
tion, i.e. classifying target side unlabeled docu-
ments by label information obtained from source
side documents. The results show that, with more
source side documents, our method achieved the
highest classification accuracy.

2 Related work

Many cross-language text processing methods
have been proposed that require correspondences
between source and target languages. For exam-
ple, (Dumais et al., 1996) proposed cross-lingual
latent semantic indexing, and (Platt et al., 2010)
employed oriented principle component analysis
and canonical correlation analysis (CCA). They
concatenate the document pairs (source document
and its translation) obtained from a document-
level parallel corpus. They then apply multi-
variate analysis to acquire the translingual projec-
tion. There are extensions of latent Dirichlet allo-
cation (LDA) (Blei et al., 2003) for cross-language
analysis, such as multilingual topic models (Boyd-
Graber and Blei, 2009), joint LDA (Jagadeesh
and Daume III, 2010) and multilingual LDA (Xi-
aochuan et al., 2011). They require a bilingual dic-
tionary or document-level parallel corpora.

Unsupervised object matching methods have
been proposed recently (Novi et al., 2010;
Haghighi et al., 2008; Yamada and Sugiyama,
2011). These methods are promising in terms of
language portability because they do not require
external language resources. (Novi et al., 2010)
proposed kernelized sorting (KS); it finds one-to-
one correspondences between objects in different
domains by permuting a set to maximize the de-
pendence between two sets. Here, the Hilbert-
Schmidt independence criterion is used for mea-
suring dependence. (Djuric et al., 2012) proposed
convex kernelized sorting as an extension of KS.
(Yamada and Sugiyama, 2011) proposed least-
squares object matching which maximizes the
squared-loss mutual information between matched
pairs. (Haghighi et al., 2008) proposed another
framework, matching CCA (MCCA), based on a
probabilistic interpretation of CCA (Bach and Jor-
dan, 2005). MCCA simultaneously finds latent
variables that represent correspondences and la-
tent features so that the latent features of corre-
sponding examples exhibit the maximum correla-
tion. However, these unsupervised object match-
ing methods have limitations. They require that

the source and target domains have the same data
size, and they find one-to-one correspondences.
There are critical weaknesses of these methods
when we attempt to apply them to real world
cross-language NLP applications.

3 Latent Semantic Matching

We propose latent semantic matching to find a
shared latent space by assuming that two lan-
guages have common latent topics. Our method
consists of following four steps: (1) for both
source and target domains, we map the documents
to a K-dimensional latent topic space indepen-
dently, (2) we find the one-to-one correspondences
between topics across source and target domains
by unsupervised object matching, (3) we permute
topics of the target side according to the corre-
spondences, while fixing the topics of the source
side, and (4) finally, we map documents in the
source and target domains to a shared latent space
by using permuted and fixed topics.

3.1 Topic Extraction as Dimension Reduction

Suppose that we have N documents in the source
domain. sn=(sni)

I
i=1 is the nth document rep-

resented as a multi-dimensional column vector in
the domain, i.e. each document is represented as
a bag-of-words vector. Here, each element of the
vectors indicates the TF·IDF score of the corre-
sponding word in the document. I is the size of the
feature set, i.e., the vocabulary size in the source
domain. Also, we have M documents in the tar-
get domain. tm=(tmj)

J
j=1 is the mth document

represented as a multi-dimensional vector. J is
the vocabulary size in the target domain. Thus,
the data set in the source domain is represented by
an I × N matrix, S=(s1, · · · , sN ), the data set
in the target is represented by a J × M matrix,
T=(t1, · · · , tM ).

We factorize these matrices using nonnegative
matrix factorization (Lee and Seung, 2000) to find
topics as follows:

S ≈ WSHS , (1)

T ≈ WT HT . (2)

WS is an I ×K matrix that represents a set of top-
ics, i.e. each column vector denotes word weights
for each topic. HS is a K × N matrix that de-
notes a set of latent semantic representations of
documents in the source domain, i.e. each row
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ment. I is the size of feature set, i.e., the size of vocabulary in
the source domain. Also, we have M documents in a target
domain. tm = (tmj)Jj=1 is the m-th document represented
as a multi-dimensional vector. J is the size of vocabulary in
the target domain. Thus, the data set in the source domain is
represented as the I ×N matrix, S, the data set in the target
is represented as the J ×M matrix, T .

Here, we assume that these matrices are approximated as
the product of low rank matrices as follows:

S ≈ WSHS , (1)
T ≈ WTHT (2)

WS is I×K matrix, which represents a set of topic propor-
tions in the source domain, i.e., each column vector denotes
topic proportion. HS is K × N matrix, which denotes a set
of documents in the K-dimensional latent space which cor-
responds to the source domain, i.e., each row vector denotes
the document in the latent space. The k(1 ≤ k ≤ K)-th basis
in the latent space corresponds to the k-th topic proportion.
WT is I × K matrix, which represents a set of topic pro-

portions in the target domain. HT is K × N matrix, which
denotes a set of documents in the latent topic space with di-
mentionaly K. K is less than I , J . In this paper, we employ
Non-negative Matrix Factorization (NMF) [Lee and Seung,
2000] to factorize the original matrices.

According to the factorization of the original matrices, we
can map the documents in the source and target domain to
latent topic space with dimentionaly K, independently.

3.2 Finding Optimal Topic Alignments by
Unsupervised Object Matching

To connect the different latent space, the basis of the space
have to be aligned each other. That is, topic proportion ex-
tracted from the source language must be aligned that from
the target language. This is reasonable consideration because
we can assume the same latent concept for both language.
For example, a topic proportion obtained from English docu-
ments can be aligned a topic proportion obtained from French
documents. For all k and k′, k-th column vector in WS are
aligned k′-th column vector in WT .

However, we can not measure similarity between the topic
proportions because we do not have any language resources
such as dictionary. Therefore, we utilize unsupervised ob-
ject matching method to find one-to-one correspondences be-
tween topic proportions. In this paper, we employ Kernelized
Sorting (KS) [Novi et al., 2010]. Of cource, we can replace
KS to another unsupervised object matching sush as MCCA
[Haghighi et al., 2008], LSOM [Yamada and Sugiyama,
2011].

KS finds the best one-to-one matching by followings:

π∗ = argmax
π∈ΠK

tr(ḠSπ
TḠTπ),

s.t. π1K = 1K and πT1K = 1K . (3)

π is K×K matrix which represents one-to-one correspon-
dence between topic proportion, i.e., πij = 1 indicates i-th
topic proportion in the source language corresponds to j-th

one of the target language. Π indicates set of all possible
K × K matrices which store one-to-one corresponrence. G
denotes K×K kernel matrix obtained from topic proportion,
Gij = K(WT

i,:,W:,j), and Ḡ is the centerd matrix of G. K(, )
is a kernel function. 1K is K-dimensional column vector of
all ones. π∗ is obtained by iterative procedure. According to
π∗, we can permutate the basis of the latent space obtained
from source language. See fig hoge.

S ≈ WSHS . (4)

On the other hand, we can directly fomulate objective func-
tion of unsupervised mapping. If the topic proportions are
aligned each other, the correlation matrix (or gram matrix)
obtained from source language is proportional to one from
target language:

||GS − αGT ||2 = 0. (5)

α denotes the hyperparameter for tuning the socore range be-
tween two gram matrices.

By minimize the error of the matrix factorization (equa-
tion (1),(2)) and the difference between correlation matrices
(equation (6)), the objective function is defined as follow:

E = ‖S −WSHS‖2

+ ‖T −WTHT ‖2

+ β||GS − αGT ||2. (6)

β is cost parameter between first, second argu-
ment and third argument. The optimal parameters
(WS,WT ,HS,HT ) are obtained by minimizing the
objective function. To mimimize the objective, gradient de-
scend can be used. but However that is not convex function,
we only obtained local optimal. Thefore, we employed above
two step procedure??????

This objective function is not convex. That means
we can only obtain local optimal parameters. By min-
imizing equation (6), we can obtain a set of parameter
(WS,WT ,HS,HT ) for unsupervised mapping. we could
be employed gradient based algorithm but, as the first step,
we employ former two step optimization procedure.

3.3 Cross-lingual Text Categorization via
Unsupervised Mapping

m-th document in the target domain (tm) is mapped to the
source domain as follows,

s(tm) = HT
$
:,mWS . (7)

Here, HT :,m denotes the m-th column vector of HT , s(tm)
is I dimentional vector.

When each document in the source domain has a class
label yn, we can train a classifier on the training data set
{sn, yn}Nn=1. Therefore, the class label of the mapped docu-
ment in the target domain s(tm) is assigned by the classifier.
In the later experiments, we employ k(= 10)-NN as a classi-
fier.
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Non-negative Matrix Factorization (NMF) [Lee and Seung,
2000] to factorize the original matrices.
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can map the documents in the source and target domain to
latent topic space with dimentionaly K, independently.

3.2 Finding Optimal Topic Alignments by
Unsupervised Object Matching

To connect the different latent space, the basis of the space
have to be aligned each other. That is, topic proportion ex-
tracted from the source language must be aligned that from
the target language. This is reasonable consideration because
we can assume the same latent concept for both language.
For example, a topic proportion obtained from English docu-
ments can be aligned a topic proportion obtained from French
documents. For all k and k′, k-th column vector in WS are
aligned k′-th column vector in WT .

However, we can not measure similarity between the topic
proportions because we do not have any language resources
such as dictionary. Therefore, we utilize unsupervised ob-
ject matching method to find one-to-one correspondences be-
tween topic proportions. In this paper, we employ Kernelized
Sorting (KS) [Novi et al., 2010]. Of cource, we can replace
KS to another unsupervised object matching sush as MCCA
[Haghighi et al., 2008], LSOM [Yamada and Sugiyama,
2011].

KS finds the best one-to-one matching by followings:

π∗ = argmax
π∈ΠK

tr(ḠSπ
TḠTπ),

s.t. π1K = 1K and πT1K = 1K . (3)

π is K×K matrix which represents one-to-one correspon-
dence between topic proportion, i.e., πij = 1 indicates i-th
topic proportion in the source language corresponds to j-th

one of the target language. Π indicates set of all possible
K × K matrices which store one-to-one corresponrence. G
denotes K×K kernel matrix obtained from topic proportion,
Gij = K(WT

i,:,W:,j), and Ḡ is the centerd matrix of G. K(, )
is a kernel function. 1K is K-dimensional column vector of
all ones. π∗ is obtained by iterative procedure. According to
π∗, we can permutate the basis of the latent space obtained
from source language. See fig hoge.

S ≈ WSHS . (4)

On the other hand, we can directly fomulate objective func-
tion of unsupervised mapping. If the topic proportions are
aligned each other, the correlation matrix (or gram matrix)
obtained from source language is proportional to one from
target language:

||GS − αGT ||2 = 0. (5)

α denotes the hyperparameter for tuning the socore range be-
tween two gram matrices.

By minimize the error of the matrix factorization (equa-
tion (1),(2)) and the difference between correlation matrices
(equation (6)), the objective function is defined as follow:

E = ‖S −WSHS‖2

+ ‖T −WTHT ‖2

+ β||GS − αGT ||2. (6)

β is cost parameter between first, second argu-
ment and third argument. The optimal parameters
(WS,WT ,HS,HT ) are obtained by minimizing the
objective function. To mimimize the objective, gradient de-
scend can be used. but However that is not convex function,
we only obtained local optimal. Thefore, we employed above
two step procedure??????

This objective function is not convex. That means
we can only obtain local optimal parameters. By min-
imizing equation (6), we can obtain a set of parameter
(WS,WT ,HS,HT ) for unsupervised mapping. we could
be employed gradient based algorithm but, as the first step,
we employ former two step optimization procedure.

3.3 Cross-lingual Text Categorization via
Unsupervised Mapping

m-th document in the target domain (tm) is mapped to the
source domain as follows,

s(tm) = HT
$
:,mWS . (7)

Here, HT :,m denotes the m-th column vector of HT , s(tm)
is I dimentional vector.

When each document in the source domain has a class
label yn, we can train a classifier on the training data set
{sn, yn}Nn=1. Therefore, the class label of the mapped docu-
ment in the target domain s(tm) is assigned by the classifier.
In the later experiments, we employ k(= 10)-NN as a classi-
fier.
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Figure 1: Topic alignments.

vector denotes an embedding of a document in the
K-dimensional latent space. Similarly, WT is an
I × K matrix that represents a set of topics in the
target domain, and HT is a K × M matrix that
denotes a set of latent semantic representations of
target documents. K is less than I and J .

By factorizing the original matrices, we can in-
dependently map the documents in the source and
target domains to the latent topic spaces whose di-
mensionality is K.

3.2 Finding Optimal Topic Alignments by
Unsupervised Object Matching

To connect the different latent spaces, topics ex-
tracted from the source language must be aligned
to one from the target language. This is reasonable
because we can assume that both languages share
the same latent concept.

However, we cannot quantify the similarity be-
tween the topics because we do not have any ex-
ternal language resources such as a dictionary.
Therefore, we utilize unsupervised object match-
ing method to find one-to-one correspondences
between topics. In this paper, we employ kernel-
ized sorting (KS) (Novi et al., 2010). KS finds the
best one-to-one matching as follows:

π∗ = arg max
π∈ΠK

tr(GSπ⊤GT π),

s.t. π1K=1K and π⊤1K=1K . (3)

Here, π is a K ×K matrix that represents the one-
to-one correspondence between topics, i.e. πij=1
indicates that the ith topic in the source language
corresponds to the jth one of the target language.

Overall Average
KS 0.252 ± 0.112
CKS 0.249 ± 0.033
LSOM 0.278 ± 0.086
LSM(300) 0.298 ± 0.077
LSM(600) 0.359 ± 0.062

Table 1: Average accuracy over all language pairs

ΠK indicates the set of all possible matrices stor-
ing one-to-one correspondences. G denotes the
K × K kernel matrix obtained from topic pro-
portion, Gij=K(W ⊤

i,: , W:,j), and G is the centered
matrix of G. K(, ) is a kernel function. 1K is a
K-dimensional column vector of all ones. π∗ is
obtained by iterative procedure.

According to π∗, we obtain permuted matrices,
WT =WT π∗ and HT =π∗⊤HT , and the product
of permuted matrices is the same with that of un-
permuted matrices as follows:

T ≈ WT HT =WT HT . (4)

Fig. 1 shows the topic alignment procedure.
Since documents from both domains are repre-

sented in a shared latent space, we can directly cal-
culate the similarity between the nth document in
the source domain and the mth document in the
target domain based on HT :,m (mth column vec-
tor of HT ) and HS:,n (nth column vector of HS).

4 Cross-language Text Categorization
via Latent Semantic Matching

Cross-language text categorization is the task of
exploiting labeled documents in the source lan-
guage (e.g. English) to classify documents in
the target language (e.g. French). Suppose we
have training data set {sn, yn}N

n=1 in the source
language domain. yn ∈ Y is the class label
for the nth document. We can train a classifier
in the K-dimensional latent space with data set
{H⊤

S:,n, yn}N
n=1. H⊤

S:,n is the projected vector of
sn. Also, the mth document in the target language
domain tm is projected into the latent space as
H⊤

T :,m. Here, the documents in both domains are
projected into the same size latent space and the
basis vectors of the spaces are aligned. Therefore,
we can classify a document in the target domain
tm by a classifier trained with {H⊤

S:,n, yn}N
n=1.
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Books
English Hack, Parent, tale, subversion, Interesting, centre, Paper, T., prejudice, Murphy
German Lydia, Sebastian, Seelenbrecher, Patient, Fitzek, Patrick, Fiktion, Patientenakte, Realitt, Klinik

Electronics
English SD800, Angle, Digital, Optical, Silver, understnad, camra, 7.1MP, P3N, 10MP
German *****, 550D, 600D, Objektiv, Canon, ablichten, Body, Werkzeug, Kamera, einliet

Kitchen
English Briel, Electra-Craft, Chamonix, machine, Due, crema, supervisor, technician, espresso, tamp
German ESGE, Prierkopf, Zauberstab, Gummikupplung, Suppe/Sauce, Braun , Bolognese, prieren, Testsieger, Topf

Music
English Amy, Poison, Doherty, Schottin, Mid, Prince, Song, ausdrucksstark , Tempo, knocking
German Norah, mini, ’Little, ’Rome, ’Come, Gardot, Lana, listenings , dreamlike, digipak

Watch
English watch, indicate, timex, HRM, month, icon, Timex, datum, troubleshooting, reasonable
German Orient, Diver, Lnette, Leuchtpunkt, Zahlenringes, Handgelenksdurchmesser, Stoppsekunde, Uhrforum,

Konsumbereiche, Schwingungen/Std

Table 2: Examples of aligned latent topics

5 Experimental Evaluation

5.1 Experimental Settings
We compared our method, latent semantic match-
ing (LSM), with three unsupervised object match-
ing methods: Kernelized Sorting (KS), Convex
Kernelized Sorting (CKS), Least-Squares Object
Matching (LSOM). We set the number of the la-
tent topics K to 100 and employed the k-nearest
neighbor method (k=10) as the classifier.

For, KS, CKS and LSOM, we find the one-
to-one correspondence between documents in the
source language and documents in the target lan-
guage. Then, we assign class labels of the target
documents according to the correspondence.

In order to build a corpus with various lan-
guage pairs for evaluation, we crawled product
reviews from Amazon U.S., German, France and
Japan with five categories: ‘Books’, ‘Electronics’,
‘Music’, ‘Kitchen’, ‘Watch’. The corpus is nei-
ther sentence level parallel nor comparable. For
each category, we randomly select 60 documents
as the test data (M=300) for all methods and 60
documents as the training data (N=300) for KS,
CKS, LSOM and LSM(300). We also compared
latent semantic matching with 120 training docu-
ments for each category (N=600), and called this
method LSM(600). Note that since KS, CKS and
LSOM require that the data sizes are the same for
source and target domains, they cannot use train-
ing data more than test data. To avoid local opti-
mum solutions of NMF, we executed our methods
with 100 different initialization values and chose
the solution that achieved the best objective func-

tion of KS.

5.2 Results and Discussion

Table 1 shows average accuracies with standard
division over all language pairs. From the table,
classification accuracy of all methods significantly
outperformed random classifier (accuracy=0.2).
The results showed the effectiveness of both un-
supervised object matching and latent semantic
matching. When comparing LSM(300) with KS,
CKS and LSOM, LSM(300) obtained better re-
sults than these unsupervised object matching
methods. The result supports the effectiveness of
the latent topic matching. Moreover, LSM(600)
achieved the highest accuracy. There are large dif-
ferences between LSM(600) and the others. This
result implies not only the effectiveness of the la-
tent topic matching but also increasing the number
of source side documents (labeled training data)
contributes to improving classification accuracy.
This is natural in terms of supervised learning but
only our method can deal with source side docu-
ments that are larger in number.

Table 2 shows examples of latent topics in
English and German extracted and aligned by
LSM(600). We can see that some author names,
words related to camera, and cooking equipment
appear in ‘Books’, ‘Electronics’ and ‘Kitchen’
topics, respectively. Similarity, there are some
artists’ names in ‘Music’ and watch brands in
‘Watch’.
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6 Conclusion

As an extension of unsupervised object matching,
this paper proposed latent semantic matching that
considers the shared latent space between two lan-
guage domains. To generate such a space, top-
ics of the target space are permuted by exploit-
ing unsupervised object matching. We can mea-
sure distances between objects by standard met-
rics, which enable us retrieving k-nearest objects
in the source domain for a query object in the tar-
get domain. This is a significant advantage over
conventional unsupervised object matching meth-
ods. We used Amazon review corpus to demon-
strate the effectiveness of our method on cross-
language text categorization. The results showed
that our method outperformed conventional object
matching methods with the same number of train-
ing samples. Moreover, our method achieved even
higher performance by utilizing more documents
in the source domain.

Acknowledgements

The authors would like to thank Nemanja Djuric
for providing code for Convex Kernelized Sorting
and the three anonymous reviewers for thoughtful
suggestions.

References
Francis Bach and Michael Jordan. 2005. A probabilis-

tic interpretation of canonical correlation analysis.
Technical report, Department of Statistics, Univer-
sity of California, Berkeley.

David Blei, Andrew Ng, and Michael Jordan. 2003.
Latent Dirichlet allocation. JMLR, 3(Jan.):993–
1022.

Jordan Boyd-Graber and David Blei. 2009. Multilin-
gual topic model for unaligned text. In Proc. of the
25th UAI, pages 75–82.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science,
41(6):391–407.

Nemanja Djuric, Mihajlo Grbovic, and Slobodan
Vucetic. 2012. Convex kernelized sorting. In Proc.
of the 26th AAAI, pages 893–899.

Susan Dumais, Lanauer Thomas, and Michael Littman.
1996. Automatic cross-linguistic information re-
trieval using latent semantic indexing. In Proc.
of the Workshop on Cross-Linguistic Information
Retieval in SIGIR, pages 16–23.

Alfio Gliozzo and Carlo Strapparava. 2005. Cross lan-
guage text categorization by acquiring multilingual
domain models from comparable corpora. In Proc.
of the ACL Workshop on Building and Using Paral-
lel Texts, pages 9–16.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In Proc. of ACL-08:
HLT, pages 771–779.

Jagarlamudi Jagadeesh and Hal Daume III. 2010. Ex-
tracting multilingual topics from unaligned corpora.
In Proc of the 32nd ECIR, pages 444–456.

Daniel Lee and Sebastian Seung. 2000. Algorithm
for non-negative matrix factorization. In Advances
in Neural Information Processing Systems 13, pages
556–562.

Quadrianto Novi, Smola Alexander, Song Le, and
Tuytelaars Tinne. 2010. Kernelized sorting. IEEE
Trans. on Pattern Analysis and Machine Intelli-
gence, 32(10):1809–1821.

Jhon Platt, Kristina Toutanova, and Wen-tau Yih. 2010.
Translingual document representation from discrim-
inative projections. In Proc. of the 2010 Conference
on EMNLP, pages 251–261.

Abhishek Tripathi, Arto Klami, and Sami Virpioja.
2010. Bilingual sentence matching using kernel
CCA. In Proc. of the 2010 IEEE International
Workshop on MLSP, pages 130–135.

Ni Xiaochuan, Sun Lian-Tao, Hu Jian, and Chen
Zheng. 2011. Cross lingual text classification by
mining multilingual topics from wikipedia. In Proc.
of the 4th WSDM, pages 375–384.

Makoto Yamada and Masashi Sugiyama. 2011. Cross-
domain object matching with model selection. In
Proc. of the 14th AISTATS, pages 807–815.

216



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 217–221,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

TopicSpam: a Topic-Model-Based Approach for Spam Detection

Jiwei Li , Claire Cardie
School of Computer Science

Cornell University
Ithaca, NY, 14853

jl3226@cornell.edu
cardie@cs.cornell.edu

Sujian Li
Laboratory of Computational Linguistics

Peking University
Bejing, P.R.China, 150001
lisujian@pku.edu.cn

Abstract

Product reviews are now widely used by
individuals and organizations for decision
making (Litvin et al., 2008; Jansen, 2010).
And because of the profits at stake, peo-
ple have been known to try to game the
system by writing fake reviews to promote
target products. As a result, the task of de-
ceptive review detection has been gaining
increasing attention. In this paper, we pro-
pose a generative LDA-based topic mod-
eling approach for fake review detection.
Our model can aptly detect the subtle dif-
ferences between deceptive reviews and
truthful ones and achieves about 95% ac-
curacy on review spam datasets, outper-
forming existing baselines by a large mar-
gin.

1 Introduction

Consumers rely increasingly on user-generated
online reviews to make purchase decisions. Pos-
itive opinions can result in significant financial
gains. This gives rise to deceptive opinion spam
(Ott et al., 2011; Jindal et al., 2008), fake reviews
written to sound authentic and deliberately mis-
lead readers. Previous research has shown that
humans have difficulty distinguishing fake from
truthful reviews, operating for the most part at
chance (Ott et al., 2011). Consider, for example,
the following two hotel reviews. One is truthful
and the other is deceptive1:

1. My husband and I stayed for two nights at the Hilton
Chicago. We were very pleased with the accommoda-
tions and enjoyed the service every minute of it! The
bedrooms are immaculate, and the linens are very soft.
We also appreciated the free wifi, as we could stay in
touch with friends while staying in Chicago. The bath-
room was quite spacious, and I loved the smell of the
shampoo they provided. Their service was amazing,

1The first example is a deceptive review.

and we absolutely loved the beautiful indoor pool. I
would recommend staying here to anyone.

2. We stayed at the Sheraton by Navy Pier the first week-
end of November. The view from both rooms was spec-
tacular (as you can tell from the picture attached). They
also left a plate of cookies and treats in the kids room
upon check-in made us all feel very special. The hotel
is central to both Navy Pier and Michigan Ave. so we
walked, trolleyed, and cabbed all around the area. We
ate the breakfast buffet on both mornings and thought
it was pretty good. The eggs were a little runny. Our
six year old ate free and our two eleven year old were
$14 (instead of the adult $20). The rooms were clean,
the concierge and reception staff were both friendly
and helpful...we will definitely visit this Sheraton again
when we stay in Chicago next time.

Because of the difficulty of recognizing deceptive
opinions, there has been a widespread and growing
interest in developing automatic, usually learning-
based methods to help users identify deceptive re-
views (Ott et al., 2011; Jindal et al., 2008; Jindal
et al., 2010; Li et al., 2011; Lim et al., 2011; Wang
et al., 2011).

The state-of-the-art approach treats the task of
spam detection as a text categorization prob-
lem and was first introduced by Jindal and Liu
(2009) who trained a supervised classifier to dis-
tinguish duplicated reviews (assumed deceptive)
from original ones (assumed truthful). Since then,
many supervised approaches have been proposed
for spam detection. Ott et al. (2011) employed
standard word and part-of-speech (POS) n-gram
features for supervised learning and built a gold−
standard opinion dataset of 800 reviews. Lim et
al. (2010) proposed the inclusion of user behavior-
based features and found that behavior abnormali-
ties of reviewers could predict spammers, without
using any textual features. Li et al. (2011) care-
fully explored review-related features based on
content and sentiment, training a semi-supervised
classifier for opinion spam detection. However,
the disadvantages of standard supervised learning
methods are obvious. First, they do not gener-
ally provide readers with a clear probabilistic pre-
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diction of how likely a review is to be deceptive
vs. truthful. Furthermore, identifying features that
provide direct evidence against deceptive reviews
is always a hard problem.

LDA topic models (Blei et al., 2003) have
widely been used for their ability to model latent
topics in document collection. In LDA, each docu-
ment is presented as a mixture distribution of top-
ics and each topic is presented as a mixture distri-
bution of words. Researchers also integrated dif-
ferent levels of information into LDA topic mod-
els to model the specific knowledge that they are
interested in, such as user-specific information
(Rosen-zvi et al., 2006), document-specific infor-
mation (Li et al., 2010) and time-specific infor-
mation (Diao et al., 2012). Ramage et al. (2009)
developed a Labeled LDA model to define a one-
to-one correspondence between LDA latent topics
and tags. Chemudugunta et al. (2008) illustrated
that by considering background information and
document-specific information, we can largely im-
prove the performance of topic modeling.

In this paper, we propose a Bayesian approach
called TopicSpam for deceptive review detection.
Our approach, which is a variation of Latent
Dirichlet Allocation (LDA) (Blei et al., 2003),
aims to detect the subtle differences between the
topic-word distributions of deceptive reviews vs.
truthful ones. In addition, our model can give
a clear probabilistic prediction on how likely a
review should be treated as deceptive or truth-
ful. Performance is tested on dataset from Ott et
al.(2011) that contains 800 reviews of 20 Chicago
hotels. Our model achieves more than 94% accu-
racy on that dataset.

2 TopicSpam
We are presented with four subsets of ho-
tel reviews, M = {Mi}i=4

i=1, representing
deceptive train, truthful train, deceptive test
and truthful test data, respectively. Each re-
view r is comprised of a number of words r =
{wt}t=nr

t=1 . Input for the TopicSpam algorithm is
the datasets M ; output is the label (deceptive,
truthful) for each review inM3 andM4. V denotes
vocabulary size.

2.1 Details of TopicSpam
In TopicSpam, each document is modeled as a
bag of words, which are assumed to be gener-
ated from a mixture of latent topics. Each word
is associated with a latent variable that specifies

Figure 1: Graphical Model for TopicSpam

the topic from which it is generated. Words in a
document are assumed to be conditionally inde-
pendent given the hidden topics. A general back-
ground distribution φB and hotel-specific distri-
butions φHj (j = 1, ..., 20) are first introduced
to capture the background information and hotel-
specific information. To capture the difference
between deceptive reviews and truthful reviews,
TopicSpam also learns a deceptive topic distribu-
tion φD and truthful topic distribution φT . The
generative model of TopicSpam is shown as fol-
lows:

• For a training review in r1j ∈ M1, words are
originated from one of the three different top-
ics: φB , φHj and φD.

• For a training review in r2j ∈ M2, words are
originated from one of the three different top-
ics: φB , φHj and φT .

• For a test review in rmj ∈ Mm,m = 3, 4,
words are originated from one of the four dif-
ferent topics: φB , φHj φD and φT .

The generation process of TopicSpam is shown
in Figure 1 and the corresponding graphical
model is illustrated in Figure 2. We use
λ = (λG, λHi , λD, λT ) to represent the asym-
metric priors for topic-word distribution genera-
tion. In our experiments, we set λG = 0.1,
and λHi = λD = λT = 0.01. The intu-
ition for the asymmetric priors is that there should
be more words assigned to the background topic.
γ = [γB, γHi , γD, γT ] denotes the priors for
the document-level topic distribution in the LDA
model. We set γB = 2 and γT = γD = γHi = 1,
reflecting the intuition that more words in each
document should cover the background topic.

2.2 Inference
We adopt the collapsed Gibbs sampling strategy to
infer the latent parameters in TopicSpam. In Gibbs
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1. sample φG ∼ Dir(λG)
2. sample φD ∼ Dir(λD)
3. sample φT ∼ Dir(λT )
4. for each hotel j ∈ [1, N ]: sample φHj ∼ λH
5. for each review r

if i=1: sample θr ∼ Dir(γB, γHj , γD)
if i=2: sample θr ∼ Dir(γB, γHj , γT )
if i=3: sample θr ∼ Dir(γB, γHj , γD, γT )
if i=4: sample θr ∼ Dir(γB, γHj , γD, γT )
for each word w in R

sample z ∼ θr sample w ∼ φz

Figure 2: Generative Model for TopicSpam

sampling, for each word w in review r, we need
to calculate P (zw|w, z−w, γ, λ) in each iteration,
where z−w denotes the topic assignments for all
words except that of the current word zw.

P (zw = m|z−w, i, j, γ, λ)
Nm
r + γm∑

m′(Nm′
r + γ′m)

· Ewm + λm∑V
w′ Ewm + V λm

(1)

where Nm
r denotes the number of times that topic

m appears in current review r and Ewm denotes the
number of times that word w is assigned to topic
m. After each sampling iteration, the latent pa-
rameters can be estimated using the following for-
mulas:

θmr =
Nm
r + γm∑

m′(Nm′
r + γm)

φ(w)m =
Ewm + λm∑
w′ Ew

′
m + V λm

(2)

2.3 Labeling the Test Data

For each review r in the test data, let ND
r denote

the number of words generated from the decep-
tive topic and NT

r , the number of words generated
from the truthful topic. The decision for whether a
review is deceptive or truthful is made as follows:

• if ND
r > NT

r , r is deceptive.
• if ND

r < NT
r , r is truthful.

• if ND
r = NT

r , it is hard to decide.

Let P(D) denote the probability that r is deceptive
and P(T) denote the probability that r is truthful.

P (D) =
ND
r

ND
r +NT

r

P (T ) =
NT
r

ND
r +NT

r

(3)

3 Experiments

3.1 System Description

Our experiments are conducted on the dataset
from Ott et al.(2011), which contains reviews of
the 20 most popular hotels on TripAdvisor in the
Chicago areas. There are 20 truthful and 20 decep-
tive reviews for each of the chosen hotels (800 re-
views total). Deceptive reviews are gathered using
Amazon Mechanical Turk2. In our experiments,
we adopt the same 5-fold cross-validation strat-
egy as in Ott et al., using the same data partitions.
Words are stemmed using PorterStemmer3.

3.2 Baselines

We employ a number of techniques as baselines:
TopicTD: A topic-modeling approach that only

considers two topics: deceptive and truthful.
Words in deceptive train are all generated from
the deceptive topic and words in truthful train
are generated from the truthful topic. Test docu-
ments are presented with a mixture of the decep-
tive and truthful topics.

TopicTDB: A topic-modeling approach that
only considers background, deceptive and truthful
information.

SVM-Unigram: Using SVMlight(Joachims,
1999) to train linear SVM models on unigram fea-
tures.

SVM-Bigram: Using SVMlight(Joachims,
1999) to train linear SVM models on bigram fea-
tures.

SVM-Unigram-Removal1: In SVM-Unigram-
Removal, we first train TopicSpam. Then words
generated from hotel-specific topics are removed.
We use the remaining words as features in SVM-
light.

SVM-Unigram-Removal2: Same as SVM-
Unigram-removal-1 but removing all background
words and hotel-specific words.

Experimental results are shown in Table 14.
As we can see, the accuracy of TopicSpam is
0.948, outperforming TopicTD by 6.4%. This il-
lustrates the effectiveness of modeling background
and hotel-specific information for the opinion
spam detection problem. We also see that Top-
icSpam slightly outperforms TopicTDB, which

2https://www.mturk.com/mturk/.
3http://tartarus.org/martin/PorterStemmer/
4Reviews with ND

r = NT
r are regarded as incorrectly

classified by TopicSpam.
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Approach Accuracy T-P T-R T-F D-P D-R D-F
TopicSpam 0.948 0.954 0.942 0.944 0.941 0.952 0.946
TopicTD 0.888 0.901 0.878 0.889 0.875 0.897 0.886

TopicTDB 0.931 0.938 0.926 0.932 0.925 0.937 0.930
SVM-Unigram 0.884 0.899 0.865 0.882 0.870 0.903 0.886
SVM-Bigram 0.896 0.901 0.890 0.896 0.891 0.903 0.897

SVM-Unigram-Removal1 0.895 0.906 0.889 0.898 0.887 0.907 0.898
SVM-Unigram-Removal2 0.822 0.852 0.806 0.829 0.793 0.840 0.817

Table 1: Performance for different approaches based on nested 5-fold cross-validation experiments.

neglects hotel-specific information. By check-
ing the results of Gibbs sampling, we find that
this is because only a small number of words
are generated by the hotel-specific topics. Top-
icTD and SVM-Unigram get comparative accu-
racy rates. This can be explained by the fact
that both models use unigram frequency as fea-
tures for the classifier or topic distribution train-
ing. SVM-Unigram-Removal1 is also slightly
better than SVM-Unigram. In SVM-Unigram-
removal1, hotel-specific words are removed for
classifier training. So the first-step LDA model
can be viewed as a feature selection process for the
SVM, giving rise to better results. We can also see
that the performance of SVM-Unigram-removal2
is worse than other baselines. This can be ex-
plained as follows: for example, word ”my” has
large probability to be generated from the back-
ground topic. However it can also be generated by
deceptive topic occasionaly but can hardly be gen-
erated from the truthful topic. So the removal of
these words results in the loss of useful informa-
tion, and leads to low accuracy rate.

Our topic-modeling approach uses word fre-
quency as features and does not involve any fea-
ture selection process. Here we present the re-
sults of the sample reviews from Section 1. Stop
words are labeled in black, background topics (B)
in blue, hotel specific topics (H) in orange, de-
ceptive topics (D) in red and truthful topic (T) in
green.

1. My husband and I stayed for two nights at the Hilton
Chicago. We were very pleased with the accommoda-
tions and enjoyed the service every minute of it! The
bedrooms are immaculate,and the linens are very soft.
We also appreciated the free wifi, as we could stay in
touch with friends while staying in Chicago. The bath-
room was quite spacious, and I loved the smell of the
shampoo they provided not like most hotel shampoos.
Their service was amazing,and we absolutely loved the
beautiful indoor pool. I would recommend staying here
to anyone.

[B,H,D,T]=[41,6,10,1] p(D)=0.909 P(T)=0.091

2. We stayed at the Sheraton by Navy Pier the first week-
end of November. The view from both rooms was spec-

tacular (as you can tell from the picture attached). They
also left a plate of cookies and treats in the kids room
upon check-in made us all feel very special. The ho-
tel is central to both Navy Pier and Michigan Ave. so
we walked, trolleyed, and cabbed all around the area.
We ate the breakfast buffet both mornings and thought
it was pretty good. The eggs were a little runny. Our
six year old ate free and our two eleven year old were
$14 ( instead of the adult $20) The rooms were clean,
the concierge and reception staff were both friendly
and helpful...we will definitely visit this Sheraton again
when we’re in Chicago next time.

[B,H,D,T]=[80,15,3,18] p(D)=0.143 P(T)=0.857

background deceptive truthful Hilton
hotel hotel room Hilton
stay my ) palmer
we chicago ( millennium
room will but lockwood
! room $ park
Chicago very bathroom lobby
my visit location line
great husband night valet
I city walk shampoo
very experience park dog
Omni Amalfi Sheraton James
Omni Amalfi tower James
pool breakfast Sheraton service
plasma view pool spa
sundeck floor river bar
chocolate bathroom lake upgrade
indoor cocktail navy primehouse
request morning indoor design
pillow wine shower overlook
suitable great kid romantic
area room theater home

Table 2: Top words in different topics from Topic-
Spam

4 Conclusion

In this paper, we propose a novel topic model
for deceptive opinion spam detection. Our model
achieves an accuracy of 94.8%, demonstrating its
effectiveness on the task.
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Abstract
Ambiguity preserving representations
such as lattices are very useful in a num-
ber of NLP tasks, including paraphrase
generation, paraphrase recognition, and
machine translation evaluation. Lattices
compactly represent lexical variation, but
word order variation leads to a combina-
torial explosion of states. We advocate
hypergraphs as compact representations
for sets of utterances describing the same
event or object. We present a method
to construct hypergraphs from sets of
utterances, and evaluate this method on
a simple recognition task. Given a set of
utterances that describe a single object or
event, we construct such a hypergraph,
and demonstrate that it can recognize
novel descriptions of the same event with
high accuracy.

1 Introduction

Humans can construct a broad range of descrip-
tions for almost any object or event. In this paper,
we will refer to such objects or events as ground-
ings, in the sense of grounded semantics. Exam-
ples of groundings include pictures (Rashtchian et
al., 2010), videos (Chen and Dolan, 2011), transla-
tions of a sentence from another language (Dreyer
and Marcu, 2012), or even paraphrases of the same
sentence (Barzilay and Lee, 2003).

One crucial problem is recognizing whether
novel utterances are relevant descriptions of those
groundings. In the case of machine translation,
this is the evaluation problem; for images and
videos, this is recognition and retrieval. Generat-
ing descriptions of events is also often an interest-
ing task: we might like to find a novel paraphrase
for a given sentence, or generate a description of a
grounding that meets certain criteria (e.g., brevity,
use of a restricted vocabulary).

Much prior work has used lattices to compactly
represent a range of lexical choices (Pang et al.,
2003). However, lattices cannot compactly repre-
sent alternate word orders, a common occurrence
in linguistic descriptions. Consider the following
excerpts from a video description corpus (Chen
and Dolan, 2011):

• A man is sliding a cat on the floor.
• A boy is cleaning the floor with the cat.
• A cat is being pushed across the floor by a

man.

Ideally we would like to recognize that the fol-
lowing utterance is also a valid description of that
event: A cat is being pushed across the floor by a
boy. That is difficult with lattice representations.

Consider the following context free grammar:

S → X0 X1

| X2 X3

X0 → a man | a boy

X1 → is sliding X2 on X4

| is cleaning X4 with X2

X2 → a cat | the cat

X3 → is being pushed across X4 by X0

X4 → the floor

This grammar compactly captures many lexical
and syntactic variants of the input set. Note how
the labels act as a kind of multiple-sequence-
alignment allowing reordering: spans of tokens
covered by the same label are, in a sense, aligned.
This hypergraph or grammar represents a seman-
tic neighborhood: a set of utterances that describe
the same entity in a semantic space.

Semantic neighborhoods are defined in terms of
a grounding. Two utterances are neighbors with
respect to some grounding (semantic event) if they
are both descriptions of that grounding. Para-
phrases, in contrast, may be defined over all pos-
sible groundings. That is, two words or phrases
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are considered paraphrases if there exists some
grounding that they both describe. The para-
phrase relation is more permissive than the seman-
tic neighbor relation in that regard. We believe that
it is much easier to define and evaluate semantic
neighbors. Human annotators may have difficulty
separating paraphrases from unrelated or merely
related utterances, and this line may not be con-
sistent between judges. Annotating whether an ut-
terance clearly describes a grounding is a much
easier task.

This paper describes a simple method for con-
structing hypergraph-shaped Semantic Neighbor-
hoods from sets of expressions describing the
same grounding. The method is evaluated in
a paraphrase recognition task, inspired by a
CAPTCHA task (Von Ahn et al., 2003).

2 Inducing neighborhoods

Constructing a hypergraph to capture a set of utter-
ances is a variant of grammar induction. Given a
sample of positive examples, we infer a compact
and accurate description of the underlying lan-
guage. Conventional grammar induction attempts
to define the set of grammatical sentences in the
language. Here, we search for a grammar over the
fluent and adequate descriptions of a particular in-
put. Many of the same techniques still apply.

Rather than starting from scratch, we bootstrap
from an existing English parser. We begin by pars-
ing the set of input utterances. This parsed set of
utterances acts as a sort of treebank. Reading off a
grammar from this treebank produces a grammar
that can generate not only the seed sentences, but
also a broad range of nearby sentences. In the case
above with cat, man, and boy, we would be able
to generate cases legitimate variants where man
was replaced by boy as well as undesired variants
where man is replaced by cat or floor. This initial
grammar captures a large neighborhood of nearby
utterances including many such undesirable ones.
Therefore, we refine the grammar.

Refinements have been in common use in syn-
tactic parsing for years now. Inspired by the re-
sult that manual annotations of Treebank cate-
gories can substantially increase parser accuracy
(Klein and Manning, 2003), several approaches
have been introduced to automatically induce la-
tent symbols on existing trees. We use the split-
merge method commonly used in syntactic pars-
ing (Petrov et al., 2006). In its original setting,

the refinements captured details beyond that of the
original Penn Treebank symbols. Here, we cap-
ture both syntactic and semantic regularities in the
descriptions of a given grounding.

As we perform more rounds of refinement, the
grammar becomes tightly constrained to the orig-
inal sentences. Indeed, if we iterated to a fixed
point, the resulting grammar would parse only the
original sentences. This is a common dilemma in
paraphrase learning: the safest meaning preserv-
ing rewrite is to change nothing. We optimize the
number of split-merge rounds for task-accuracy;
two or three rounds works well in practice. Fig-
ure 1 illustrates the process.

2.1 Split-merge induction

We begin with a set of utterances that describe
a specific grounding. They are parsed with a
conventional Penn Treebank parser (Quirk et al.,
2012) to produce a type of treebank. Unlike con-
ventional treebanks which are annotated by human
experts, the trees here are automatically created
and thus are more likely to contain errors. This
treebank is the input to the split-merge process.

Split: Given an input treebank, we propose re-
finements of the symbols in hopes of increasing
the likelihood of the data. For each original sym-
bol in the grammar such as NP, we consider two la-
tent refinements: NP0 and NP1. Each binary rule
then produces 8 possible variants, since the par-
ent, left child, and right child now have two possi-
ble refinements. The parameters of this grammar
are then optimized using EM. Although we do not
know the correct set of latent annotations, we can
search for the parameters that optimize the likeli-
hood of the given treebank. We initialize the pa-
rameters of this refined grammar with the counts
from the original grammar along with a small ran-
dom number. This randomness prevents EM from
starting on a saddle point by breaking symmetries;
Petrov et al. describe this in more detail.

Merge: After EM has run to completion, we
have a new grammar with twice as many symbols
and eight times as many rules. Many of these sym-
bols may not be necessary, however. For instance,
nouns may require substantial refinement to dis-
tinguish a number of different actors and objects,
where determiners might not require much refine-
ment at all. Therefore, we discard the splits that
led to the least increase in likelihood, and then
reestimate the grammar once again.
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(a) Input:

• the man plays the piano
• the guy plays the keyboard

(b) Parses:
• (S (NP (DT the) (NN man))

(VP (VBZ plays)
(NP (DT the) (NN piano)))

• (S (NP (DT the) (NN guy))
(VP (VBZ plays)

(NP (DT the) (NN keyboard)))

(c) Parses with latent annotations:
• (S (NP0 (DT the) (NN0 man))

(VP (VBZ plays)
(NP1 (DT the) (NN1 piano)))

• (S (NP0 (DT the) (NN0 guy))
(VP (VBZ plays)

(NP1 (DT the) (NN1 keyboard)))

(d) Refined grammar:

S → NP0 VP
NP0 → DT NN0

NP1 → DT NN1

NP → VBZ NP1

DT → the
NN0 → man | guy
NN1 → piano | keyboard
VBZ → plays

Figure 1: Example of hypergraph induction. First
a conventional Treebank parser converts input ut-
terances (a) into parse trees (b). A grammar could
be directly read from this small treebank, but it
would conflate all phrases of the same type. In-
stead we induce latent refinements of this small
treebank (c). The resulting grammar (d) can match
and generate novel variants of these inputs, such
as the man plays the keyboard and the buy plays
the piano. While this simplified example sug-
gests a single hard assignment of latent annota-
tions to symbols, in practice we maintain a dis-
tribution over these latent annotations and extract
a weighted grammar.

Iteration: We run this process in series. First
the original grammar is split, then some of the
least useful splits are discarded. This refined
grammar is then split again, with the least useful
splits discarded once again. We repeat for a num-
ber of iterations based on task accuracy.

Final grammar estimation: The EM proce-
dure used during split and merge assigns fractional
counts c(· · · ) to each refined symbol Xi and each
production Xi → Yj Zk. We estimate the final

grammar using these fractional counts.

P (Xi → Yj Zk) =
c(Xi, Yj , Zk)

c(Xi)

In Petrov et al., these latent refinements are later
discarded as the goal is to find the best parse with
the original coarse symbols. Here, we retain the
latent refinements during parsing, since they dis-
tinguish semantically related utterances from un-
related utterances. Note in Figure 1 how NN0

and NN1 refer to different objects; were we to ig-
nore that distinction, the parser would recognize
semantically different utterances such as the piano
plays the piano.

2.2 Pruning and smoothing
For both speed and accuracy, we may also prune
the resulting rules. Pruning low probability rules
increases the speed of parsing, and tends to in-
crease the precision of the matching operation at
the cost of recall. Here we only use an absolute
threshold; we vary this threshold and inspect the
impact on task accuracy. Once the fully refined
grammar has been trained, we only retain those
rules with a probability above some threshold. By
varying this threshold t we can adjust precision
and recall: as the low probability rules are re-
moved from the grammar, precision tends to in-
crease and recall tends to decrease.

Another critical issue, especially in these small
grammars, is smoothing. When parsing with a
grammar obtained from only 20 to 50 sentences,
we are very likely to encounter words that have
never been seen before. We may reasonably re-
ject such sentences under the assumption that they
are describing words not present in the training
corpus. However, this may be overly restrictive:
we might see additional adjectives, for instance.
In this work, we perform a very simple form of
smoothing. If the fractional count of a word given
a pre-terminal symbol falls below a threshold k,
then we consider that instance rare and reserve a
fraction of its probability mass for unseen words.
This accounts for lexical variation of the ground-
ing, especially in the least consistently used words.

Substantial speedups could be attained by us-
ing finite state approximations of this grammar:
matching complexity drops to cubic to linear in
the length of the input. A broad range of approxi-
mations are available (Nederhof, 2000). Since the
small grammars in our evaluation below seldom
exhibit self-embedding (latent state identification
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tends to remove recursion), these approximations
would often be tight.

3 Experimental evaluation

We explore a task in description recognition.
Given a large set of videos and a number of de-
scriptions for each video (Chen and Dolan, 2011),
we build a system that can recognize fluent and
accurate descriptions of videos. Such a recognizer
has a number of uses. One example currently in
evaluation is a novel CAPTCHAs: to differentiate
a human from a bot, a video is presented, and the
response must be a reasonably accurate and fluent
description of this video.

We split the above data into training and test.
From the training sets, we build a set of recogniz-
ers. Then we present these recognizers with a se-
ries of inputs, some of which are from the held out
set of correct descriptions of this video, and some
of which are from descriptions of other videos.
Based on discussions with authors of CAPTCHA
systems, a ratio of actual users to spammers of 2:1
seemed reasonable, so we selected one negative
example for every two positives. This simulates
the accuracy of the system when presented with a
simple bot that supplies random, well-formed text
as CAPTCHA answers.1

As a baseline, we compare against a simple tf-
idf approach. In this baseline we first pool all
the training descriptions of the video into a sin-
gle virtual document. We gather term frequen-
cies and inverse document frequencies across the
whole corpus. An incoming utterance to be classi-
fied is scored by computing the dot product of its
counted terms with each document; it is assigned
to the document with the highest dot product (co-
sine similarity).

Table 2 demonstrates that a baseline tf-idf ap-
proach is a reasonable starting point. An oracle
selection from among the top three is the best per-
formance – clearly this is a reasonable approach.
That said, grammar based approach shows im-
provements over the baseline tf-idf, especially in
recall. Recall is crucial in a CAPTCHA style task:
if we fail to recognize utterances provided by hu-
mans, we risk frustration or abandonment of the
service protected by the CAPTCHA. The relative
importance of false positives versus false negatives

1A bot might perform object recognition on the videos and
supply a stream of object names. We might simulate this by
classifying utterances consisting of appropriate object words
but without appropriate syntax or function words.

Total videos 2,029
Training descriptions 22,198

types 5,497
tokens 159,963

Testing descriptions 15,934
types 4,075
tokens 114,399

Table 1: Characteristics of the evaluation data.
The descriptions from the video description cor-
pus are randomly partitioned into training and test.

(a)
Algorithm S k Prec Rec F-0
tf-idf 99.9 46.6 63.6
tf-idf (top 3 oracle) 99.9 65.3 79.0
grammar 2 1 86.6 51.5 64.6

2 4 80.2 62.6 70.3
2 16 74.2 74.2 74.2
2 32 73.5 76.4 74.9
3 1 91.1 43.9 59.2
3 4 83.7 54.4 65.9
3 16 77.3 65.7 71.1
3 32 76.4 68.1 72.0
4 1 94.1 39.7 55.8
4 4 85.5 51.1 64.0
4 16 79.1 61.5 69.2
4 32 78.2 63.9 70.3

(b)
t S Prec Rec F-0
≥ 4.5× 10−5 2 74.8 73.9 74.4
≥ 4.5× 10−5 3 79.6 60.9 69.0
≥ 4.5× 10−5 4 82.5 53.2 64.7
≥ 3.1× 10−7 2 74.2 75.0 74.6
≥ 3.1× 10−7 3 78.1 64.6 70.7
≥ 3.1× 10−7 4 80.7 58.8 68.1
> 0 2 73.4 76.4 74.9
> 0 3 76.4 68.1 72.0
> 0 4 78.2 63.9 70.3

Table 2: Experimental results. (a) Comparison of
tf-idf baseline against grammar based approach,
varying several free parameters. An oracle checks
if the correct video is in the top three. For the
grammar variants, the number of splits S and the
smoothing threshold k are varied. (b) Variations
on the rule pruning threshold t and number of
split-merge rounds S. > 0 indicates that all rules
are retained. Here the smoothing threshold k is
fixed at 32.
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(a) Input descriptions:

• A cat pops a bunch of little balloons that are on the groung.
• A dog attacks a bunch of balloons.
• A dog is biting balloons and popping them.
• A dog is playing balloons.
• A dog is playing with balloons.
• A dog is playing with balls.
• A dog is popping balloons with its teeth.
• A dog is popping balloons.
• A dog is popping balloons.
• A dog plays with a bunch of balloons.
• A small dog is attacking balloons.
• The dog enjoyed popping balloons.
• The dog popped the balloons.

(b) Top ranked yields from the resulting grammar:

+0.085 A dog is popping balloons.
+0.062 A dog is playing with balloons.
+0.038 A dog is playing balloons.

0.038 A dog is attacking balloons.
+0.023 A dog plays with a bunch of balloons.
+0.023 A dog attacks a bunch of balloons.

0.023 A dog pops a bunch of balloons.
0.023 A dog popped a bunch of balloons.
0.023 A dog enjoyed a bunch of balloons.
0.018 The dog is popping balloons.
0.015 A dog is biting balloons.
0.015 A dog is playing with them.
0.015 A dog is playing with its teeth.

Figure 2: Example yields from a small grammar. The descriptions in (a) were parsed as-is (including the
typographical error “groung”), and a refined grammar was trained with 4 splits. The top k yields from
this grammar along with the probability of that derivation are listed in (b). A ‘+’ symbol indicates that
the yield was in the training set. No smoothing or pruning was performed on this grammar.

may vary depending on the underlying resource.
Adjusting the free parameters of this method al-
lows us to achieve different thresholds. We can
see that rule pruning does not have a large impact
on overall results, though it does allow yet another
means of tradiing off precision vs. recall.

4 Conclusions

We have presented a method for automatically
constructing compact representations of linguis-
tic variation. Although the initial evaluation only
explored a simple recognition task, we feel the
underlying approach is relevant to many linguis-
tic tasks including machine translation evalua-
tion, and natural language command and con-
trol systems. The induction procedure is rather
simple but effective, and addresses some of the
reordering limitations associated with prior ap-
proaches.(Barzilay and Lee, 2003) In effect, we
are performing a multiple sequence alignment that
allows reordering operations. The refined symbols
of the grammar act as a correspondence between
related inputs.

The quality of the input parser is crucial. This
method only considers one possible parse of the
input. A straightforward extension would be to
consider an n-best list or packed forest of input
parses, which would allow the method to move
past errors in the first input process. Perhaps also
this reliance on symbols from the original Tree-
bank is not ideal. We could merge away some or
all of the original distinctions, or explore different
parameterizations of the grammar that allow more
flexibility in parsing.

The handling of unseen words is very simple.
We are investigating means of including addi-
tional paraphrase resources into the training to in-
crease the effective lexical knowledge of the sys-
tem. It is inefficient to learn each grammar inde-
pendently. By sharing parameters across different
groundings, we should be able to identify Seman-
tic Neighborhoods with fewer training instances.
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Abstract

Humor generation is a very hard problem.
It is difficult to say exactly what makes a
joke funny, and solving this problem al-
gorithmically is assumed to require deep
semantic understanding, as well as cul-
tural and other contextual cues. We depart
from previous work that tries to model this
knowledge using ad-hoc manually created
databases and labeled training examples.
Instead we present a model that uses large
amounts of unannotated data to generate I
like my X like I like my Y, Z jokes, where
X, Y, and Z are variables to be filled in.
This is, to the best of our knowledge, the
first fully unsupervised humor generation
system. Our model significantly outper-
forms a competitive baseline and gener-
ates funny jokes 16% of the time, com-
pared to 33% for human-generated jokes.

1 Introduction

Generating jokes is typically considered to be a
very hard natural language problem, as it implies
a deep semantic and often cultural understanding
of text. We deal with generating a particular type
of joke – I like my X like I like my Y, Z – where X
and Y are nouns and Z is typically an attribute that
describes X and Y. An example of such a joke is
I like my men like I like my tea, hot and British –
these jokes are very popular online.

While this particular type of joke is not interest-
ing from a purely generational point of view (the
syntactic structure is fixed), the content selection
problem is very challenging. Indeed, most of the
X, Y, and Z triples, when used in the context of
this joke, will not be considered funny. Thus, the
main challenge in this work is to “fill in” the slots
in the joke template in a way that the whole phrase
is considered funny.

Unlike the previous work in humor generation,
we do not rely on labeled training data or hand-
coded rules, but instead on large quantities of
unannotated data. We present a machine learning
model that expresses our assumptions about what
makes these types of jokes funny and show that by
using this fairly simple model and large quantities
of data, we are able to generate jokes that are con-
sidered funny by human raters in 16% of cases.

The main contribution of this paper is, to the
best of our knowledge, the first fully unsupervised
joke generation system. We rely only on large
quantities of unlabeled data, suggesting that gener-
ating jokes does not always require deep semantic
understanding, as usually thought.

2 Related Work

Related work on computational humor can be di-
vided into two classes: humor recognition and hu-
mor generation. Humor recognition includes dou-
ble entendre identification in the form of That’s
what she said jokes (Kiddon and Brun, 2011),
sarcastic sentence identification (Davidov et al.,
2010), and one-liner joke recognition (Mihalcea
and Strapparava, 2005). All this previous work
uses labeled training data. Kiddon and Brun
(2011) use a supervised classifier (SVM) trained
on 4,000 labeled examples, while Davidov et al.
(2010) and Mihalcea and Strapparava (2005) both
use a small amount of training data followed by a
bootstrapping step to gather more.

Examples of work on humor generation include
dirty joke telling robots (Sjöbergh and Araki,
2008), a generative model of two-liner jokes (Lab-
utov and Lipson, 2012), and a model of punning
riddles (Binsted and Ritchie, 1994). Again, all this
work uses supervision in some form: Sjöbergh and
Araki (2008) use only human jokes collected from
various sources, Labutov and Lipson (2012) use a
supervised approach to learn feasible circuits that
connect two concepts in a semantic network, and
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Figure 1: Our model presented as a factor graph.

Binsted and Ritchie (1994) have a set of six hard-
coded rules for generating puns.

3 Generating jokes

We generate jokes of the form I like my X like I like
my Y, Z, and we assume that X and Y are nouns,
and that Z is an adjective.

3.1 Model

Our model encodes four main assumptions about
I like my jokes: i) a joke is funnier the more often
the attribute is used to describe both nouns, ii) a
joke is funnier the less common the attribute is, iii)
a joke is funnier the more ambiguous the attribute
is, and iv) a joke is funnier the more dissimilar
the two nouns are. A graphical representation of
our model in the form of a factor graph is shown
in Figure 1. Variables, denoted by circles, and fac-
tors, denoted by squares, define potential functions
involving the variables they are connected to.

Assumption i) is the most straightforward, and
is expressed through φ(X,Z) and φ(Y, Z) factors.
Mathematically, this assumption is expressed as:

φ(x, z) = p(x, z) =
f(x, z)∑
x,z f(x, z)

, (1)

where f(x, z)1 is a function that measures the co-
occurrence between x and z. In this work we sim-
ply use frequency of co-occurrence of x and z in
some large corpus, but other functions, e.g., TF-
IDF weighted frequency, could also be used. The
same formula is used for φ(Y,Z), only with dif-
ferent variables. Because this factor measures the

1We use uppercase to denote random variables, and low-
ercase to denote random variables taking on a specific value.

similarity between nouns and attributes, we will
also refer to it as noun-attribute similarity.

Assumption ii) says that jokes are funnier if the
attribute used is less common. For example, there
are a few attributes that are very common and can
be used to describe almost anything (e.g., new,
free, good), but using them would probably lead
to bad jokes. We posit that the less common the
attribute Z is, the more likely it is to lead to sur-
prisal, which is known to contribute to the funni-
ness of jokes. We express this assumption in the
factor φ1(Z):

φ1(z) = 1/f(z) (2)

where f(z) is the number of times attribute z ap-
pears in some external corpus. We will refer to this
factor as attribute surprisal.

Assumption iii) says that more ambiguous at-
tributes lead to funnier jokes. This is based on the
observation that the humor often stems from the
fact that the attribute is used in one sense when
describing noun x, and in a different sense when
describing noun y. This assumption is expressed
in φ2(Z) as:

φ2(z) = 1/senses(z) (3)

where senses(z) is the number of different senses
that attribute z has. Note that this does not exactly
capture the fact that z should be used in different
senses for the different nouns, but it is a reason-
able first approximation. We refer to this factor as
attribute ambiguity.

Finally, assumption iv) says that dissimilar
nouns lead to funnier jokes. For example, if the
two nouns are girls and boys, we could easily find
many attributes that both nouns share. However,
since the two nouns are very similar, the effect of
surprisal would diminish as the observer would ex-
pect us to find an attribute that can describe both
nouns well. We therefore use φ(X,Y ) to encour-
age dissimilarity between the two nouns:

φ(x, y) = 1/sim(x, y), (4)

where sim is a similarity function that measures
how similar nouns x and y are. We call this fac-
tor noun dissimilarity. There are many similar-
ity functions proposed in the literature, see e.g.,
Weeds et al. (2004); we use the cosine between
the distributional representation of the nouns:

sim(x, y) =

∑
z p(z|x)p(z|y)√∑

z p(z|x)2 ∗
∑
z p(z|y)2

(5)

229



Equation 5 computes the similarity between the
nouns by representing them in the space of all at-
tributes used to describe them, and then taking the
cosine of the angle between the noun vectors in
this representation.

To obtain the joint probability for an (x, y, z)
triple we simply multiply all the factors and nor-
malize over all the triples.

4 Data

For estimating f(x, y) and f(z), we use Google
n-gram data (Michel et al., 2010), in particular the
Google 2-grams. We tag each word in the 2-grams
with the part-of-speech (POS) tag that corresponds
to the most common POS tag associated with that
word in Wordnet (Fellbaum, 1998). Once we have
the POS-tagged Google 2-gram data, we extract
all (noun, adjective) pairs and use their counts to
estimate both f(x, z) and f(y, z). We discard 2-
grams whose count in the Google data is less than
1000. After filtering we are left with 2 million
(noun, adjective) pairs. We estimate f(z) by sum-
ming the counts of all Google 2-grams that con-
tain that particular z. We obtain senses(z) from
Wordnet, which contains the number of senses for
all common words.

It is important to emphasize here that, while we
do use Wordnet in our work, our approach does not
crucially rely on it, and we use it to obtain only
very shallow information. In particular, we use
Wordnet to obtain i) POS tags for Google 2-grams,
and ii) number of senses for adjectives. POS tag-
ging could be easily done using any one of the
readily available POS taggers, but we chose this
approach for its simplicity and speed. The number
of different word senses for adjectives is harder to
obtain without Wordnet, but this is only one of the
four factors in our model, and we do not depend
crucially on it.

5 Experiments

We evaluate our model in two stages. Firstly, using
automatic evaluation with a set of jokes collected
from Twitter, and secondly, by comparing our ap-
proach to human-generated jokes.

5.1 Inference

As the focus of this paper is on the model, not the
inference methods, we use exact inference. While
this is too expensive for estimating the true proba-
bility of any (x, y, z) triple, it is feasible if we fix

one of the nouns, i.e., if we deal with P (Y, Z|X =
x). Note that this is only a limitation of our infer-
ence procedure, not the model, and future work
will look at other ways (e.g., Gibbs sampling) to
perform inference. However, generating Y and
Z given X , such that the joke is funny, is still a
formidable challenge that a lot of humans are not
able to perform successfully (cf. performance of
human-generated jokes in Table 2).

5.2 Automatic evaluation
In the automatic evaluation we measure the effect
of the different factors in the model, as laid out in
Section 3.1. We use two metrics for this evalua-
tion. The first is similar to log-likelihood, i.e., the
log of the probability that our model assigns to a
triple. However, because we do not compute it on
all the data, just on the data that contains the Xs
from our development set, it is not exactly equal
to the log-likelihood. It is a local approximation
to log-likelihood, and we therefore dub it LOcal
Log-likelihood, or LOL-likelihood for short. Our
second metric computes the rank of the human-
generated jokes in the distribution of all possible
jokes sorted decreasingly by their LOL-likelihood.
This Rank OF Likelihood (ROFL) is computed
relative to the number of all possible jokes, and
like LOL-likelihood is averaged over all the jokes
in our development data. One advantage of ROFL
is that it is designed with the way we generate
jokes in mind (cf. Section 5.3), and thus more di-
rectly measures the quality of generated jokes than
LOL-likelihood. For measuring LOL-likelihood
and ROFL we use a set of 48 jokes randomly sam-
pled from Twitter that fit the I like my X like I like
my Y, Z pattern.

Table 1 shows the effect of the different fac-
tors on the two metrics. We use a model with
only noun-attribute similarity (factors φ(X,Z)
and φ(Y, Z)) as the baseline. We see that the sin-
gle biggest improvement comes from the attribute
surprisal factor, i.e., from using rarer attributes.
The best combination of the factors, according to
automatic metrics, is using all factors except for
the noun similarity (Model 1), while using all the
factors is the second best combination (Model 2).

5.3 Human evaluation
The main evaluation of our model is in terms of
human ratings, put simply: do humans find the
jokes generated by our model funny? We compare
four models: the two best models from Section 5.2
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Model LOL-likelihood ROFL

Baseline -225.3 0.1909
Baseline + φ(X,Y ) -227.1 0.2431
Baseline + φ1(Z) -204.9 0.1467
Baseline + φ2(Z) -224.6 0.1625
Baseline + φ1(Z) + φ2(Z) (Model 1) -198.6 0.1002
All factors (Model 2) -203.7 0.1267

Table 1: Effect of different factors.

(one that uses all the factors (Model 2), and one
that uses all factors except for the noun dissimilar-
ity (Model 1)), a baseline model that uses only the
noun-attribute similarity, and jokes generated by
humans, collected from Twitter. We sample a fur-
ther 32 jokes from Twitter, making sure that there
was no overlap with the development set.

To generate a joke for a particular x we keep the
top n most probable jokes according to the model,
renormalize their probabilities so they sum to one,
and sample from this reduced distribution. This al-
lows our model to focus on the jokes that it consid-
ers “funny”. In our experiments, we use n = 30,
which ensures that we can still generate a variety
of jokes for any given x.

In our experiments we showed five native En-
glish speakers the jokes from all the systems in a
random, per rater, order. The raters were asked
to score each joke on a 3-point Likert scale: 1
(funny), 2 (somewhat funny), and 3 (not funny).
Naturally, the raters did not know which approach
each joke was coming from. Our model was used
to sample Y and Z variables, given the same Xs
used in the jokes collected from Twitter.

Results are shown in Table 2. The second col-
umn shows the inter-rater agreement (Randolph,
2005), and we can see that it is generally good, but
that it is lower on the set of human jokes. We in-
spected the human-generated jokes with high dis-
agreement and found that the disagreement may
be partly explained by raters missing cultural ref-
erences in the jokes (e.g., a sonic screwdriver is
Doctor Who’s tool of choice, which might be lost
on those who are not familiar with the show).
We do not explicitly model cultural references,
and are thus less likely to generate such jokes,
leading to higher agreement. The third column
shows the mean joke score (lower is better), and
we can see that human-generated jokes were rated
the funniest, jokes from the baseline model the
least funny, and that the model which uses all the

Model κ Mean % funny jokes

Human jokes 0.31 2.09 33.1
Baseline 0.58 2.78 3.7
Model 1 0.52 2.71 6.3
Model 2 0.58 2.56 16.3

Table 2: Comparison of different models on the
task of generating Y and Z given X.

factors (Model 2) outperforms the model that was
best according to the automatic evaluation (Model
1). Finally, the last column shows the percentage
of jokes the raters scored as funny (i.e., the num-
ber of funny scores divided by the total number of
scores). This is a metric that we are ultimately
interested in – telling a joke that is somewhat
funny is not useful, and we should only reward
generating a joke that is found genuinely funny
by humans. The last column shows that human-
generated jokes are considered funnier than the
machine-generated ones, but also that our model
with all the factors does much better than the other
two models. Model 2 is significantly better than
the baseline at p = 0.05 using a sign test, and
human jokes are significantly better than all three
models at p = 0.05 (because we were testing mul-
tiple hypotheses, we employed Holm-Bonferroni
correction (Holm, 1979)). In the end, our best
model generated jokes that were found funny by
humans in 16% of cases, compared to 33% ob-
tained by human-generated jokes.

Finally, we note that the funny jokes generated
by our system are not simply repeats of the human
jokes, but entirely new ones that we were not able
to find anywhere online. Examples of the funny
jokes generated by Model 2 are shown in Table 3.

6 Conclusion

We have presented a fully unsupervised humor
generation system for generating jokes of the type

231



I like my relationships like I like my source, open
I like my coffee like I like my war, cold
I like my boys like I like my sectors, bad

Table 3: Example jokes generated by Model 2.

I like my X like I like my Y, Z, where X, Y, and Z are
slots to be filled in. To the best of our knowledge,
this is the first humor generation system that does
not require any labeled data or hard-coded rules.
We express our assumptions about what makes a
joke funny as a machine learning model and show
that by estimating its parameters on large quanti-
ties of unlabeled data we can generate jokes that
are found funny by humans. While our experi-
ments show that human-generated jokes are fun-
nier more of the time, our model significantly im-
proves upon a non-trivial baseline, and we believe
that the fact that humans found jokes generated by
our model funny 16% of the time is encouraging.
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Abstract 

In this paper, we explore the use of distance 

and co-occurrence information of word-pairs 

for language modeling. We attempt to extract 

this information from history-contexts of up to 

ten words in size, and found it complements 

well the n-gram model, which inherently suf-

fers from data scarcity in learning long histo-

ry-contexts. Evaluated on the WSJ corpus, bi-

gram and trigram model perplexity were re-

duced up to 23.5% and 14.0%, respectively. 

Compared to the distant bigram, we show that 

word-pairs can be more effectively modeled in 

terms of both distance and occurrence. 

1 Introduction 

Language models have been extensively studied 

in natural language processing. The role of a lan-

guage model is to measure how probably a (tar-

get) word would occur based on some given evi-

dence extracted from the history-context. The 

commonly used n-gram model (Bahl et al. 1983) 

takes the immediately preceding history-word 

sequence, of length � � 1 , as the evidence for 

prediction. Although n-gram models are simple 

and effective, modeling long history-contexts 

lead to severe data scarcity problems. Hence, the 

context length is commonly limited to as short as 

three, i.e. the trigram model, and any useful in-

formation beyond this window is neglected. 

In this work, we explore the possibility of 

modeling the presence of a history-word in terms 

of: (1) the distance and (2) the co-occurrence, 

with a target-word. These two attributes will be 

exploited and modeled independently from each 

other, i.e. the distance is described regardless the 

actual frequency of the history-word, while the 

co-occurrence is described regardless the actual 

position of the history-word. We refer to these 

two attributes as the term-distance (TD) and the 

term-occurrence (TO) components, respectively. 

The rest of this paper is structured as follows. 

The following section presents the most relevant 

related works. Section 3 introduces and moti-

vates our proposed approach. Section 4 presents 

in detail the derivation of both TD and TO model 

components. Section 5 presents some perplexity 

evaluation results. Finally, section 6 presents our 

conclusions and proposed future work. 

2 Related Work 

The distant bigram model (Huang et.al 1993, 

Simon et al. 1997, Brun et al. 2007) disassembles 

the n-gram into (n−1) word-pairs, such that each 

pair is modeled by a distance-k bigram model, 

where 1 � � � � � 1 . Each distance-k bigram 

model predicts the target-word based on the oc-

currence of a history-word located k positions 

behind.  

Zhou & Lua (1998) enhanced the effective-

ness of the model by filtering out those word-

pairs exhibiting low correlation, so that only the 

well associated distant bigrams are retained. This 

approach is referred to as the distance-dependent 

trigger model, and is similar to the earlier pro-

posed trigger model (Lau et al. 1993, Rosenfeld 

1996) that relies on the bigrams of arbitrary dis-

tance, i.e. distance-independent. 

Latent-semantic language model approaches 

(Bellegarda 1998, Coccaro 2005) weight word 

counts with TFIDF to highlight their semantic 

importance towards the prediction. In this type of 

approach, count statistics are accumulated from 

long contexts, typically beyond ten to twenty 

words. In order to confine the complexity intro-

duced by such long contexts, word ordering is 

ignored (i.e. bag-of-words paradigm). 

Other approaches such as the class-based lan-

guage model (Brown 1992, Kneser & Ney 1993) 
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use POS or POS-like classes of the history-words 

for prediction. The structured language model 

(Chelba & Jelinek 2000) determines the “heads” 

in the history-context by using a parsing tree. 

There are also works on skipping irrelevant his-

tory-words in order to reveal more informative n-

grams (Siu & Ostendorf 2000, Guthrie et al. 

2006). Cache language models exploit temporal 

word frequencies in the history (Kuhn & Mori 

1990, Clarkson & Robinson 1997). 

3 Motivation of the Proposed Approach 

The attributes of distance and co-occurrence are 

exploited and modeled differently in each lan-

guage modeling approach. In the n-gram model, 

for example, these two attributes are jointly taken 

into account in the ordered word-sequence. Con-

sequently, the n-gram model can only be effec-

tively implemented within a short history-context 

(e.g. of size of three or four). 

Both, the conventional trigger model and the 

latent-semantic model capture the co-occurrence 

information while ignoring the distance informa-

tion. It is reasonable to assume that distance in-

formation at far contexts is less likely to be in-

formative and, hence, can be discarded. Howev-

er, intermediate distances beyond the n-gram 

model limits can be very useful and should not 

be discarded. 

On the other hand, distant-bigram models and 

distance-dependent trigger models make use of 

both, distance and co-occurrence, information up 

to window sizes of ten to twenty. They achieve 

this by compromising inter-dependencies among 

history-words (i.e. the context is represented as 

separated word-pairs). However, similarly to n-

gram models, distance and co-occurrence infor-

mation are implicitly tied within the word-pairs. 

In our proposed approach, we attempt to ex-

ploit the TD and TO attributes, separately, to in-

corporate distant context information into the n-

gram, as a remedy to the data scarcity problem 

when learning the far context. 

4 Language Modeling with TD and TO 

A language model estimates word probabilities 

given their history, i.e. ��� 	 
�|
 	 
��������� , 

where � denotes the target word and 
 denotes its 

corresponding history. Let the word located at i
th
 

position, 
� , be the target-word and its preceding 

word-sequence 
�������� 	 �
�����…
���
����  of 

length � � 1, be its history-context. Also, in or-

der to alleviate the data scarcity problem, we as-

sume the occurrences of the history-words to be 

independent from each other, conditioned to the 

occurrence of the target-word 
� , i.e.  
��� �
���|
� , where 
��� , 
��� � 
 , and � � � . The 

probability can then be approximated as: 

��� 	 
�|
 	 
���������� ��� 	 
��∏ ��
� 	 
���|� 	 
������!� "�
�  
(1)

where "�
� is a normalizing term, and 
� 	 
��� 
indicates that 
��� is the word at position  k

th
. 

4.1 Derivation of the TD-TO Model 

In order to define the TD and TO components for 

language modeling, we express the observation 

of an arbitrary history-word, 
��� at the k
th
 posi-

tion behind the target-word, as the joint of two 

events: i) the word 
��� occurs within the histo-

ry-context: 
��� � 
, and ii) it occurs at distance �  from the target-word: ∆�
���� 	 � , (∆	 �  for 

brevity); i.e. �
� 	 
���� $ �
��� � 
� % �∆	 ��. 
Thus, the probability in Eq.1 can be written as: 

��� 	 
�|
 	 
���������� ��� 	 
��∏ ��
��� � 
, ∆	 �|� 	 
������!� "�
�  
(2)

where the likelihood ��
��� � 
, ∆	 �|� 	 
�� 
measures how likely the joint event �
��� � 
,∆	 �� would be observed given the target-word 
�. This can be rewritten in terms of the likelih-

ood function of the distance event (i.e.  ∆	 � ) 

and the occurrence event (i.e.  
��� � 
), where 

both of them can be modeled and exploited sepa-

rately, as follows: 

��� 	 
�|
 	 
���������

�
& ��� 	 
��∏ ��∆	 �|
��� � 
, � 	 
������!�∏ ��
��� � 
|� 	 
������!�

'
"�
�  

(3)

The formulation above yields three terms, re-

ferred to as the prior, the TD likelihood, and the 

TO likelihood, respectively. 

In Eq.3, we have decoupled the observation of 

a word-pair into the events of distance and co-

occurrence. This allows for independently mod-

eling and exploiting them. In order to control 

their contributions towards the final prediction of 

the target-word, we weight these components: 

��� 	 
�|
 	 
���������

�
& ��� 	 
��()�∏ ��∆	 �|
��� � 
, � 	 
������!� �(*�∏ ��
��� � 
|� 	 
������!� �(+ '

"�
�  

(4)
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where ,� , ,- , and ,.  are the weights for the 

prior, TD and TO models, respectively. 

Notice that the model depicted in Eq.4 is the 

log-linear interpolation (Klakow 1998) of these 

models. The prior, which is usually implemented 

as a unigram model, can be also replaced with a 

higher order n-gram model as, for instance, the 

bigram model: 

��� 	 
�|
 	 
���������

�
& ��� 	 
�|
 	 
����()�∏ ��∆	 �|
��� � 
, � 	 
������!� �(*�∏ ��
��� � 
|� 	 
������!� �(+ '

"�
�  

(5)

Replacing the unigram model with a higher 

order n-gram model is important to compensate 

the damage incurred by the conditional indepen-

dence assumption made earlier. 

4.2 Term-Distance Model Component 

Basically, the TD likelihood measures how likely 

a given word-pair would be separated by a given 

distance. So, word-pairs possessing consistent 

separation distances will favor this likelihood. 

The TD likelihood for a distance � given the co-

occurrence of the word-pair �
���, 
��  can be 

estimated from counts as follows: 

��∆	 �|
��� � 
, � 	 
��	 C�
��� � 
, � 	 
� , ∆	 ��C�
��� � 
, � 	 
��  
(6)

The above formulation of the TD likelihood 

requires smoothing for resolving two problems: 

i) a word-pair at a particular distance has a zero 

count, i.e. C�
��� � 
, � 	 
� , ∆	 �� 	 0 , which 

results in a zero probability, and ii) a word-pair is 

not seen at any distance within the observation 

window, i.e. zero co-occurrence C�
��� � 
, � 	
�� 	 0, which results in a division by zero. 

For the first problem, we have attempted to 

redistribute the counts among the word-pairs at 

different distances (as observed within the win-

dow). We assumed that the counts of word-pairs 

are smooth in the distance domain and that the 

influence of a word decays as the distance in-

creases. Accordingly, we used a weighted mov-

ing-average filter for performing the smoothing. 

Similar approaches have also been used in other 

works (Coccaro 2005, Lv & Zhai 2009). Notice, 

however, that this strategy is different from other 

conventional smoothing techniques (Chen & 

Goodman 1996), which rely mainly on the count-

of-count statistics for re-estimating and smooth-

ing the original counts. 

For the second problem, when a word-pair 

was not seen at any distance (within the win-

dow), we arbitrarily assigned a small probability 

value, ��∆	 �|
��� � 
, � 	 
�� 	 0.01 , to pro-

vide a slight chance for such a word-pair �
��� , 
�� to occur at close distances. 

4.3 Term-Occurrence Model Component 

During the decoupling operation (from Eq.2 to 

Eq.3), the TD model held only the distance in-

formation while the count information has been 

ignored. Notice the normalization of word-pair 

counts in Eq.6.  

As a complement to the TD model, the TO 

model focuses on co-occurrence, and holds only 

count information. As the distance information is 

captured by the TD model, the co-occurrence 

count captured by the TO model is independent 

from the given word-pair distance. 

In fact, the TO model is closely related to the 

trigger language model (Rosenfeld 1996), as the 

prediction of the target-word (the triggered word) 

is based on the presence of a history-word (the 

trigger). However, differently from the trigger 

model, the TO model considers all the word-

pairs without filtering out the weak associated 

ones. Additionally, the TO model takes into ac-

count multiple co-occurrences of the same histo-

ry-word within the window, while the trigger 

model would count them only once (i.e. consid-

ers binary counts).  

The word-pairs that frequently co-occur at ar-

bitrary distances (within an observation window) 

would favor the TO likelihood. It can be esti-

mated from counts as: 

��
��� � 
|� 	 
�� 	 C�
��� � 
, � 	 
��C�� 	 
��  (7)

When a word-pair did not co-occur (within the 

observation window), we assigned a small prob-

ability value, ��
��� � 
|� 	 
�� 	 0.01, to pro-

vide a slight chance for the history word to occur 

within the history-context of the target word. 

5 Perplexity Evaluation 

A perplexity test was run on the BLLIP WSJ 

corpus (Charniak 2000) with the standard 5K 

vocabulary. The entire WSJ ’87 data (740K sen-

tences 18M words) was used as train-set to train 

the n-gram, TD, and TO models. The dev-set and 

the test-set, each comprising 500 sentences and 

about 12K terms, were selected randomly from 

WSJ ’88 data. We used them for parameter fine-

tuning and performance evaluation. 
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5.1 Capturing Distant Information 

In this experiment, we assessed the effectiveness 

of the TD and TO components in reducing the n-

gram’s perplexity. Following Eq.5, we interpo-

lated n-gram models (of orders from two to six) 

with the TD, TO, and the both of them (referred 

to as TD-TO model).  

By using the dev-set, optimal interpolation 

weights (i.e. ,�, ,-, and ,.) for the three combi-

nations (n-gram with TD, TO, and TD-TO) were 

computed. The resulting interpolation weights 

were as follows: n-gram with TD = (0.85, 0.15), 

n-gram with TO = (0.85, 0.15), and n-gram with 

TD-TO = (0.80, 0.07, 0.13). 

The history-context window sizes were opti-

mized too. Optimal sizes resulted to be 7, 5 and 8 

for TD, TO, and TD-TO models, respectively. In 

fact, we observed that the performance is quite 

robust with respect to the window’s length. De-

viating about two words from the optimum 

length only worsens the perplexity less than 1%.  

Baseline models, in each case, are standard n-

gram models with modified Kneser-Ney interpo-

lation (Chen 1996). The test-set results are de-

picted in Table 1. 

 

N NG NG-

TD 

Red. 

(%) 

NG-

TO 

Red. 

(%) 

NG-

TDTO 

Red. 

(%) 

2 151.7 134.5 11.3 119.9 21.0 116.0 23.5 

3 99.2 92.9 6.3 86.7 12.6 85.3 14.0 

4 91.8 86.1 6.2 81.4 11.3 80.1 12.7 

5 90.1 84.7 6.0 80.2 11.0 79.0 12.3 

6 89.7 84.4 5.9 79.9 10.9 78.7 12.2 

Table 1. Perplexities of the n-gram model (NG) 

of order (N) two to six and their combinations 

with the TD, TO, and TD-TO models. 

 

As seen from the table, for lower order n-gram 

models, the complementary information captured 

by the TD and TO components reduced the per-

plexity up to 23.5% and 14.0%, for bigram and 

trigram models, respectively. Higher order n-

gram models, e.g. hexagram, observe history-

contexts of similar lengths as the ones observed 

by the TD, TO, and TD-TO models. Due to the 

incapability of n-grams to model long history-

contexts, the TD and TO components are still 

effective in helping to enhance the prediction. 

Similar results were obtained by using the stan-

dard back-off model (Katz 1987) as baseline. 

5.2 Benefit of Decoupling Distant-Bigram 

In this second experiment, we examined whether 

the proposed decoupling procedure leads to bet-

ter modeling of word-pairs compared to the dis-

tant bigram model. Here we compare the per-

plexity of both, the distance-k bigram model and 

distance-k TD model (for values of k ranging 

from two to ten), when combined with a standard 

bigram model. 

In order to make a fair comparison, without 

taking into account smoothing effects, we trained 

both models with raw counts and evaluated their 

perplexities over the train-set (so that no zero-

probability will be encountered). The results are 

depicted in Table 2. 

 

k 2 4 6 8 10 

DBG 105.7 112.5 114.4 115.9 116.8 

TD 98.5 106.6 109.1 111.0 112.2 

Table 2. Perplexities of the distant bigram (DBG) 

and TD models when interpolated with a stan-

dard bigram model. 

 

The results from Table 2 show that the TD 

component complements the bigram model bet-

ter than the distant bigram itself. Firstly, these 

results suggest that the distance information (as 

modeled by the TD) offers better cue than the 

count information (as modeled by the distant bi-

gram) to complement the n-gram model.  

The normalization of distant bigram counts, as 

indicated in Eq.6, aims at highlighting the infor-

mation provided by the relative positions of 

words in the history-context. This has been 

shown to be an effective manner to exploit the 

far context. By also considering the results in 

Table 1, we can deduce that better performance 

can be obtained when the TO attribute is also 

involved. Overall, decoupling the word history-

context into the TD and TO components offers a 

good approach to enhance language modeling. 

6 Conclusions 

We have proposed a new approach to compute 

the n-gram probabilities, based on the TD and 

TO model components. Evaluated on the WSJ 

corpus, the proposed TD and TO models reduced 

the bigram’s and trigram’s perplexities up to 

23.5% and 14.0%, respectively. We have shown 

the advantages of modeling word-pairs with TD 

and TO, as compared to the distant bigram. 

As future work, we plan to explore the useful-

ness of the proposed model components in actual 

natural language processing applications such as 

machine translation and speech recognition. Ad-

ditionally, we also plan to develop a more prin-

cipled framework for dealing with TD smoothing. 

236



References  

Bahl, L., Jelinek, F. & Mercer, R. 1983. A statistical 

approach to continuous speech recognition. IEEE 

Trans. Pattern Analysis and Machine Intelligence, 

5:179-190. 

Bellegarda, J. R. 1998. A multispan language model-

ing framework for larfge vocabulary speech recog-

nition. IEEE Trans. on Speech and Audio 

Processing, 6(5): 456-467. 

Brown, P.F. 1992 Class-based n-gram models of natu-

ral language. Computational Linguistics, 18: 467-

479. 

Brun, A., Langlois, D. & Smaili, K. 2007. Improving 

language models by using distant information. In 

Proc. ISSPA 2007, pp.1-4. 

Cavnar, W.B. & Trenkle, J.M. 1994. N-gram-based 

text categorization. Proc. SDAIR-94, pp.161-175. 

Charniak, E., et al. 2000. BLLIP 1987-89 WSJ Cor-

pus Release 1. Linguistic Data Consortium, Phila-

delphia. 

Chen, S.F. & Goodman, J. 1996. An empirical study 

of smoothing techniques for language modeling. 

In. Proc. ACL ’96, pp. 310-318. 

Chelba, C. & Jelinek, F. 2000. Structured language 

modeling. Computer Speech & Language, 14: 283-

332. 

Clarkson, P.R. & Robinson, A.J. 1997. Language 

model adaptation using mixtures and an exponen-

tially decaying cache. In Proc. ICASSP-97, pp.799-

802. 

Coccaro, N. 2005. Latent semantic analysis as a tool 

to improve automatic speech recognition perfor-

mance. Doctoral Dissertation, University of Colo-

rado, Boulder, CO, USA. 

Guthrie, D., Allison, B., Liu, W., Guthrie, L., & 

Wilks, Y. 2006. A closer look at skip-gram model-

ling. In Proc. LREC-2006, pp.1222-1225. 

Huang, X. et al. 1993. The SPHINX-II speech recog-

nition system: an overview. Computer Speech and 

Language, 2: 137-148. 

Katz, S.M. 1987. Estimation of probabilities from 

sparse data for the language model component of a 

speech recognizer. IEEE Trans. on Acoustics, 

Speech, & Signal Processing, 35:400-401. 

Klakow, D. 1998. Log-linear interpolation of lan-

guage model. In Proc. ICSLP 1998, pp.1-4. 

Kneser, R. & Ney, H. 1993. Improving clustering 

techniques for class-based statistical language 

modeling. In Proc. EUROSPEECH ’93, pp.973-

976. 

Kuhn, R. & Mori, R.D. 1990. A cache-based natural 

language model for speech recognition. IEEE 

Trans. Pattern Analysis and Machine Intelligence, 

12(6): 570-583. 

Lau, R. et al. 1993. Trigger-based language models: a 

maximum-entropy approach. In Proc. ICASSP-94, 

pp.45-48. 

Lv Y. & Zhai C. 2009. Positional language models for 

information retrieval. In Proc. SIGIR’09, pp.299-

306. 

Rosenfeld, R. 1996. A maximum entropy approach to 

adaptive statistical language modelling. Computer 

Speech and Language, 10: 187-228. 

Simons, M., Ney, H. & Martin S.C. 1997. Distant 

bigram language modelling using maximum entro-

py. In Proc. ICASSP-97, pp.787-790. 

Siu, M. & Ostendorf, M. 2000. Variable n-grams and 

extensions for conversational speech language 

modeling. IEEE Trans. on Speech and Audio 

Processing, 8(1): 63-75. 

Zhou G. & Lua K.T. 1998. Word association and MI-

trigger-based language modeling. In Proc. COL-

ING-ACL, 1465-1471. 

 

237



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 238–242,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Discriminative Approach to Fill-in-the-Blank Quiz Generation for
Language Learners

Keisuke Sakaguchi1∗ Yuki Arase2 Mamoru Komachi1†
1Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
2Microsoft Research Asia

Bldg.2, No. 5 Danling St., Haidian Dist., Beijing, P. R. China
{keisuke-sa, komachi}@is.naist.jp, yukiar@microsoft.com

Abstract

We propose discriminative methods to
generate semantic distractors of fill-in-the-
blank quiz for language learners using a
large-scale language learners’ corpus. Un-
like previous studies, the proposed meth-
ods aim at satisfying both reliability and
validity of generated distractors; distrac-
tors should be exclusive against answers
to avoid multiple answers in one quiz,
and distractors should discriminate learn-
ers’ proficiency. Detailed user evaluation
with 3 native and 23 non-native speakers
of English shows that our methods achieve
better reliability and validity than previous
methods.

1 Introduction

Fill-in-the-blank is a popular style used for eval-
uating proficiency of language learners, from
homework to official tests, such as TOEIC1 and
TOEFL2. As shown in Figure 1, a quiz is com-
posed of 4 parts; (1) sentence, (2) blank to fill in,
(3) correct answer, and (4) distractors (incorrect
options). However, it is not easy to come up with
appropriate distractors without rich experience in
language education. There are two major require-
ments that distractors should satisfy: reliability
and validity (Alderson et al., 1995). First, distrac-
tors should be reliable; they are exclusive against
the answer and none of distractors can replace the
answer to avoid allowing multiple correct answers
in one quiz. Second, distractors should be valid;
they discriminate learners’ proficiency adequately.

∗ This work has been done when the author was visiting
Microsoft Research Asia.

† Now at Tokyo Metropolitan University (Email: ko-
machi@tmu.ac.jp).

1http://www.ets.org/toeic
2http://www.ets.org/toefl

Each side, government and opposition, is _____   
the other for the political crisis, and for the violence. ���
���
(a) blaming   (b) accusing   (c) BOTH 	



Figure 1: Example of a fill-in-the-blank quiz,
where (a) blaming is the answer and (b) accusing
is a distractor.

There are previous studies on distractor gener-
ation for automatic fill-in-the-blank quiz genera-
tion (Mitkov et al., 2006). Hoshino and Nakagawa
(2005) randomly selected distractors from words
in the same document. Sumita et al. (2005) used
an English thesaurus to generate distractors. Liu et
al. (2005) collected distractor candidates that are
close to the answer in terms of word-frequency,
and ranked them by an association/collocation
measure between the candidate and surrounding
words in a given context. Dahlmeier and Ng
(2011) generated candidates for collocation er-
ror correction for English as a Second Language
(ESL) writing using paraphrasing with native lan-
guage (L1) pivoting technique. This method takes
an sentence containing a collocation error as in-
put and translates it into L1, and then translate it
back to English to generate correction candidates.
Although the purpose is different, the technique is
also applicable for distractor generation. To our
best knowledge, there have not been studies that
fully employed actual errors made by ESL learn-
ers for distractor generation.

In this paper, we propose automated distrac-
tor generation methods using a large-scale ESL
corpus with a discriminative model. We focus
on semantically confusing distractors that measure
learners’ competence to distinguish word-sense
and select an appropriate word. We especially tar-
get verbs, because verbs are difficult for language
learners to use correctly (Leacock et al., 2010).
Our proposed methods use discriminative models
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Orig.	
 I	
 stop	
 company	
 on	
 today	
 .	

Corr.	
 I	
 quit	
 a	
 company	
 today	
 .	

Type	
 NA	
 #REP#	
 #DEL#	
 NA	
 #INS#	
 NA	
 NA	


Figure 2: Example of a sentence correction pair
and error tags (Replacement, Deletion and Inser-
tion).

trained on error patterns extracted from an ESL
corpus, and can generate exclusive distractors with
taking context of a given sentence into considera-
tion.

We conduct human evaluation using 3 native
and 23 non-native speakers of English. The result
shows that 98.3% of distractors generated by our
methods are reliable. Furthermore, the non-native
speakers’ performance on quiz generated by our
method has about 0.76 of correlation coefficient
with their TOEIC scores, which shows that dis-
tractors generated by our methods satisfy validity.

Contributions of this paper are twofold; (1) we
present methods for generating reliable and valid
distractors, (2) we also demonstrate the effective-
ness of ESL corpus and discriminative models on
distractor generation.

2 Proposed Method

To generate distractors, we first need to decide
which word to be blanked. We then generate can-
didates of distractors and rank them based on a
certain criterion to select distractors to output.

In this section, we propose our methods for ex-
tracting target words from ESL corpus and select-
ing distractors by a discriminative model that con-
siders long-distance context of a given sentence.

2.1 Error-Correction Pair Extraction

We use the Lang-8 Corpus of Learner English3 as
a large-scale ESL corpus, which consists of 1.2M
sentence correction pairs. For generating semantic
distractors, we regard a correction as a target and
the misused word as one of the distractor candi-
dates.

In the Lang-8 corpus, there is no clue to align
the original and corrected words. In addition,
words may be deleted and inserted in the corrected
sentence, which makes the alignment difficult.
Therefore, we detect word deletion, insertion, and
replacement by dynamic programming4. We com-

3http://cl.naist.jp/nldata/lang-8/
4The implementation is available at https:

//github.com/tkyf/epair

Feature Example
Word[i-2] ,
Word[i-1] is
Word[i+1] the
Word[i+2] other
Dep[i] child nsubj side, aux is, dobj other, prep for
Class accuse

Table 1: Example of features and class label ex-
tracted from a sentence: Each side, government
and opposition, is *accusing/blaming the other for
the political crisis, and for the violence.

pare a corrected sentence against its original sen-
tence, and when word insertion and deletion er-
rors are identified, we put a spaceholder (Figure
2). We then extract error-correction (i.e. replace-
ment) pairs by comparing trigrams around the re-
placement in the original and corrected sentences,
for considering surrounding context of the target.
These error-correction pairs are a mixture of gram-
matical mistakes, spelling errors, and semantic
confusions. Therefore, we identify pairs due to se-
mantic confusion; we exclude grammatical error
corrections by eliminating pairs whose error and
correction have different part-of-speech (POS)5,
and exclude spelling error corrections based on
edit-distance. As a result, we extract 689 unique
verbs (lemma) and 3,885 correction pairs in total.

Using the error-correction pairs, we calculate
conditional probabilities P (we|wc), which repre-
sent how probable that ESL learners misuse the
word wc as we. Based on the probabilities, we
compute a confusion matrix. The confusion ma-
trix can generate distractors reflecting error pat-
terns of ESL learners. Given a sentence, we iden-
tify verbs appearing in the confusion matrix and
make them blank, then outputs distractor candi-
dates that have high confusion probability. We
rank the candidates by a generative model to
consider the surrounding context (e.g. N-gram).
We refer to this generative method as Confusion-
matrix Method (CFM).

2.2 Discriminative Model for Distractor
Generation and Selection

To generate distractors that considers long-
distance context and reflects detailed syntactic in-
formation of the sentence, we train multiple clas-
sifiers for each target word using error-correction
pairs extracted from ESL corpus. A classifier for

5Because the Lang-8 corpus does not have POS tags, we
assign POS by the NLTK (http://nltk.org/) toolkit.
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a target word takes a sentence (in which the tar-
get word appears) as an input and outputs a verb
as the best distractor given the context using fol-
lowing features: 5-gram (±1 and ±2 words of the
target) lemmas and dependency type with the tar-
get child (lemma). The dependent is normalized
when it is a pronoun, date, time, or number (e.g. he
→ #PRP#) to avoid making feature space sparse.
Table 1 shows an example of features and a class
label for the classifier of a target verb (blame).

These classifiers are based on a discriminative
model: Support Vector Machine (SVM)6 (Vapnik,
1995). We propose two methods for training the
classifiers.

First, we directly use the corrected sentences in
the Lang-8 corpus. As shown in Table 1, we use
the 5-gram and dependency features7, and use the
original word (misused word by ESL learners) as
a class. We refer to this method as DiscESL.

Second, we train classifiers with an ESL-
simulated native corpus, because (1) the number
of sentences containing a certain error-correction
pair is still limited in the ESL corpus and (2)
corrected sentences are still difficult to parse cor-
rectly due to inherent noise in the Lang-8 corpus.
Specifically, we use articles collected from Voice
of America (VOA) Learning English8, which con-
sist of 270k sentences. For each target in a given
sentence, we artificially change the target into an
incorrect word according to the error probabilities
obtained from the learners confusion matrix ex-
plained in Section 2.2. In order to collect a suf-
ficient amount of training data, we generate 100
samples for each training sentence in which the
target word is replaced into an erroneous word.
We refer to this method as DiscSimESL9.

3 Evaluation with Native-Speakers

In this experiment, we evaluate the reliability of
generated distractors. The authors asked the help
of 3 native speakers of English (1 male and 2 fe-
males, majoring computer science) from an au-
thor’s graduate school. We provide each partici-
pant a gift card of $30 as a compensation when
completing the task.

6We use Linear SVM with default settings in the scikit-
learn toolkit 0.13.1. http://scikit-learn.org

7We use the Stanford CoreNLP 1.3.4 http://nlp.
stanford.edu/software/corenlp.shtml

8http://learningenglish.voanews.com/
9The implementation is available at https:

//github.com/keisks/disc-sim-esl

Method Corpus Model
Proposed
CFM ESL Generative
DiscESL ESL Discriminative
DiscSimESL Pseudo-ESL Discriminative
Baseline
THM Native Generative
RTM Native Generative

Table 2: Summary of proposed methods (CFM:
Confusion Matrix Method, DiscESL: Discrimina-
tive model with ESL corpus, DiscSimESL: Dis-
criminative model with simulated ESL corpus)
and baseline (THM: Thesaurus Method, RTM:
Roundtrip Method).

In order to compare distractors generated by dif-
ferent methods, we ask participants to solve the
generated fill-in-the-blank quiz presented in Fig-
ure 1. Each quiz has 3 options: (a) only word A
is correct, (b) only word B is correct, (c) both are
correct. The source sentences to generate a quiz
are collected from VOA, which are not included in
the training dataset of the DiscSimESL. We gen-
erate 50 quizzes using different sentences per each
method to avoid showing the same sentence mul-
tiple times to participants. We randomly ordered
the quizzes generated by different methods for fair
comparison.

We compare the proposed methods to two base-
lines implementing previous studies: Thesaurus-
based Method (THM) and Roundtrip Translation
Method (RTM). Table 2 shows a summary of each
method. The THM is based on (Sumita et al.,
2005) and extract distractor candidates from syn-
onyms of the target extracted from WordNet10.
The RTM is based on (Dahlmeier and Ng, 2011)
and extracts distractor candidates from roundtrip
(pivoting) translation lexicon constructed from the
WIT3 corpus (Cettolo et al., 2012)11, which cov-
ers a wide variety of topics. We build English-
Japanese and Japanese-English word-based trans-
lation tables using GIZA++ (IBM Model4). In
this dictionary, the target word is translated into
Japanese words and they are translated back to En-
glish as distractor candidates. To consider (local)
context, the candidates generated by the THM,
RTM, and CFM are re-ranked by 5-gram language

10WordNet 3.0 http://wordnet.princeton.
edu/wordnet/

11Available at http://wit3.fbk.eu
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Method RAD (%) κ
Proposed
CFM 94.5 (93.1 - 96.0) 0.55
DiscESL 95.0 (93.6 - 96.3) 0.73
DiscSimESL 98.3 (97.5 - 99.1) 0.69
Baseline
THM 89.3 (87.4 - 91.3) 0.57
RTM 93.6 (92.1 - 95.1) 0.53

Table 3: Ratio of appropriate distractors (RAD)
with a 95% confidence interval and inter-rater
agreement statistics κ.

model score trained on Google 1T Web Corpus
(Brants and Franz, 2006) with IRSTLM toolkit12.

As an evaluation metric, we compute the ratio
of appropriate distractors (RAD) by the following
equation: RAD = NAD/NALL, where NALL is
the total number of quizzes and NAD is the num-
ber of quizzes on which more than or equal to 2
participants agree by selecting the correct answer.
When at least 2 participants select the option (c)
(both options are correct), we determine the dis-
tractor as inappropriate. We also compute the av-
erage of inter-rater agreement κ among all partici-
pants for each method.

Table 3 shows the results of the first experiment;
RAD with a 95% confidence interval and inter-
rater agreement κ. All of our proposed methods
outperform baselines regarding RAD with high
inter-rater agreement. In particular, DiscSimESL
achieves 9.0% and 4.7% higher RAD than THM
and RTM, respectively. These results show that
the effectiveness of using ESL corpus to gener-
ate reliable distractors. With respect to κ, our
discriminative models achieve from 0.12 to 0.2
higher agreement than baselines, indicating that
the discriminative models can generate sound dis-
tractors more effectively than generative models.
The lower κ on generative models may be because
the distractors are semantically too close to the tar-
get (correct answer) as following examples:

The coalition has *published/issued a
report saying that ... .

As a result, the quiz from generative models is not
reliable since both published and issued are cor-
rect.

4 Evaluation with ESL Learners

In this experiment, we evaluate the validity of gen-
erated distractors regarding ESL learners’ profi-

12The irstlm toolkit 5.80 http://sourceforge.
net/projects/irstlm/files/irstlm/

Method r Corr Dist Both Std
Proposed
CFM 0.71 56.7 29.6 13.5 11.5
DiscESL 0.48 62.4 27.9 10.4 12.8
DiscSimESL 0.76 64.0 20.7 15.1 13.4
Baseline
THM 0.68 57.2 28.1 14.6 10.7
RTM 0.67 63.4 26.9 9.5 13.2

Table 4: (1) Correlation coefficient r against par-
ticipants’ TOEIC scores, (2) the average percent-
age of correct answer (Corr), incorrect answer of
distractor (Dist), and incorrect answer that both
are correct (Both) chosen by participants, and (3)
standard deviation (Std) of Corr.
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Figure 3: Correlation between the participants’
TOEIC scores and accuracy on THM and Disc-
SimESL.

ciency. Twenty-three Japanese native speakers (15
males and 8 females) are participated. All the par-
ticipants, who have taken at least 8 years of En-
glish education, self-report proficiency levels as
the TOEIC scores from 380 to 99013. All the par-
ticipants are graduate students majoring in science
related courses. We call for participants by e-
mailing to a graduate school. We provide each
participant a gift card of $10 as a compensation
when completing the task. We ask participants
to solve 20 quizzes per each method in the same
manner as Section 3. To evaluate validity of dis-
tractors, we use only reliable quizzes accepted in
Section 3. Namely, we exclude quizzes whose op-
tions are both correct. We evaluate correlation be-
tween learners’ accuracy for the generated quizzes
and the TOEIC score.

Table 4 represents the results; the highest corre-

13The official score range of the TOEIC is from 10 to 990.
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lation coefficient r and standard deviation on Disc-
SimESL shows that its distractors achieve best va-
lidity. Figure 3 depicts the correlations between
the participants’ TOEIC scores and accuracy (i.e.
Corr.) on THM and DiscSimESL. It illustrates that
DiscSimESL achieves higher level of positive cor-
relation than THM. Table 4 also shows high per-
centage of choosing “(c) both are correct” on Disc-
SimESL, which indicates that distractors gener-
ated from DiscSimESL are difficult to distinguish
for ESL learners but not for native speakers as a
following example:

..., she found herself on stage ...
*playing/performing a number one hit.

A relatively lower correlation coefficient on
DiscESL may be caused by inherent noise on pars-
ing the Lang-8 corpus and domain difference from
quiz sentences (VOA).

5 Conclusion

We have presented methods that automatically
generate semantic distractors of a fill-in-the-blank
quiz for ESL learners. The proposed methods em-
ploy discriminative models trained using error pat-
terns extracted from ESL corpus and can gener-
ate reliable distractors by taking context of a given
sentence into consideration. The human evalua-
tion shows that 98.3% of distractors are reliable
when generated by our method (DiscSimESL).
The results also demonstrate 0.76 of correlation
coefficient to their TOEIC scores, indicating that
the distractors have better validity than previous
methods. As future work, we plan to extend
our methods for other POS, such as adjective and
noun. Moreover, we will take ESL learners’ pro-
ficiency into account for generating distractors of
appropriate levels for different learners.
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Abstract

We propose a method for automated gen-
eration of adult humor by lexical replace-
ment and present empirical evaluation re-
sults of the obtained humor. We propose
three types of lexical constraints as build-
ing blocks of humorous word substitu-
tion: constraints concerning the similarity
of sounds or spellings of the original word
and the substitute, a constraint requiring
the substitute to be a taboo word, and con-
straints concerning the position and con-
text of the replacement. Empirical ev-
idence from extensive user studies indi-
cates that these constraints can increase
the effectiveness of humor generation sig-
nificantly.

1 Introduction

Incongruity and taboo meanings are typical ingre-
dients of humor. When used in the proper context,
the expression of contrasting or odd meanings can
induce surprise, confusion or embarrassment and,
thus, make people laugh. While methods from
computational linguistics can be used to estimate
the capability of words and phrases to induce in-
congruity or to evoke taboo meanings, computa-
tional generation of humorous texts has remained
a great challenge.

In this paper we propose a method for auto-
mated generation of adult humor by lexical re-
placement. We consider a setting where a short
text is provided to the system, such as an instant
message, and the task is to make the text funny by
replacing one word in it. Our approach is based

on careful introduction of incongruity and taboo
words to induce humor.

We propose three types of lexical constraints
as building blocks of humorous word substitu-
tion. (1) The form constraints turn the text into
a pun. The constraints thus concern the similarity
of sounds or spellings of the original word and the
substitute. (2) The taboo constraint requires the
substitute to be a taboo word. This is a well-known
feature in some jokes. We hypothesize that the ef-
fectiveness of humorous lexical replacement can
be increased with the introduction of taboo con-
straints. (3) Finally, the context constraints con-
cern the position and context of the replacement.

Our assumption is that a suitably positioned
substitution propagates the tabooness (defined
here as the capability to evoke taboo meanings)
to phrase level and amplifies the semantic con-
trast with the original text. Our second concrete
hypothesis is that the context constraints further
boost the funniness.

We evaluated the above hypotheses empirically
by generating 300 modified versions of SMS mes-
sages and having each of them evaluated by 90
subjects using a crowdsourcing platform. The
results show a statistically highly significant in-
crease of funniness and agreement with the use of
the humorous lexical constraints.

The rest of this paper is structured as follows.
In Section 2, we give a short overview of theoreti-
cal background and related work on humor gener-
ation. In Section 3, we present the three types of
constraints for lexical replacement to induce hu-
mor. The empirical evaluation is presented in Sec-
tion 4. Section 5 contains concluding remarks.
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2 Background

Humor, Incongruity and Tabooness A set of
theories known as incongruity theory is probably
the most influential approach to the study of hu-
mor and laughter. The concept of incongruity, first
described by Beattie (1971), is related to the per-
ception of incoherence, semantic contrast, or inap-
propriateness, even though there is no precise and
agreed definition. Raskin (1985) formulated the
incongruity concept in terms of script opposition.
This has been developed further, into the Gen-
eral Theory of Verbal Humor (Attardo and Raskin,
1991). A cognitive treatment of incongruity in hu-
mor is described by Summerfelt et al. (2010).

One specific form of jokes frequently discussed
in the literature consists of the so called forced
reinterpretation jokes. E.g.:

Alcohol isn’t a problem, it’s a solution...
Just ask any chemist.

In his analysis of forced reinterpretation jokes,
Ritchie (2002) emphasises the distinction between
three different elements of the joke processing:
CONFLICT is the initial perception of incompati-
bility between punchline and setup according to
the initial obvious interpretation; CONTRAST de-
notes the perception of the contrastive connec-
tion between the two interpretations; while INAP-
PROPRIATENESS refers to the intrinsic oddness or
tabooness characterising the funny interpretation.
All three concepts are often connected to the no-
tion of incongruity.

In his integrative approach to humor theories,
Martin (2007) discusses the connection between
tabooness and incongruity resolution. In partic-
ular, he discusses the salience hypothesis (Gold-
stein et al., 1972; Attardo and Raskin, 1991), ac-
cording to which “the purpose of aggressive and
sexual elements in jokes is to make salient the in-
formation needed to resolve the incongruity”.

Humor Generation In previous research on
computational humor generation, puns are often
used as the core of more complex humorous texts,
for example as punchlines of simple jokes (Raskin
and Attardo, 1994; Levison and Lessard, 1992;
Venour, 1999; McKay, 2002). This differs from
our setting, where we transform an existing short
text into a punning statement.

Only few humor generation systems have been

empirically evaluated. The JAPE program (Bin-
sted et al., 1997) produces specific types of pun-
ning riddles. HAHAcronym (Stock and Strap-
parava, 2002) automatically generates humorous
versions of existing acronyms, or produces a new
funny acronym, starting with concepts provided
by the user. The evaluations indicate statistical
significance, but the test settings are relatively spe-
cific. Below, we will present an approach to eval-
uation that allows comparison of different systems
in the same generation task.

3 Lexical Constraints for Humorous
Word Substitution

The procedure gets as input a segment of English
text (e.g.: “Let everything turn well in your life!”).
Then it performs a single word substitution (e.g:
‘life’→ ‘wife’), and returns the resulting text. To
make it funny, the word replacement is performed
according to a number of lexical constraints, to be
described below. Additionally, the text can be ap-
pended with a phrase such as “I mean ‘life’ not
‘wife’.” The task of humor generation is thus re-
duced to a task of lexical selection. The adopted
task for humor generation is an extension of the
one described by Valitutti (2011).

We define three types of lexical constraints for
this task, which will be described next.

3.1 Form Constraints

Form constraints (FORM) require that the original
word and its substitute are similar in form. This
turns the text given as input into a kind of pun,
“text which relies crucially on phonetic similarity
for its humorous effect” (Ritchie, 2005).

Obviously, simply replacing a word potentially
results in a text that induces “conflict” (and con-
fusion) in the audience. Using a phonetically sim-
ilar word as a replacement, however, makes the
statement pseudo-ambiguous, since the original
intended meaning can also be recovered. There
then are two “conflicting” and “contrasting” inter-
pretations — the literal one and the original one —
increasing the likelihood of humorous incongruity.

Requiring the substitute to share part-of-speech
with the original word works in this direction too,
and additionally increases the likelihood that the
resulting text is a valid English statement.
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Implementation We adopt an extended defini-
tion of punning and also consider orthographically
similar or rhyming words as possible substitutes.

Two words are considered orthographically
similar if one word is obtained with a single char-
acter deletion, addition, or replacement from the
other one.

We call two words phonetically similar if their
phonetic transcription is orthographically similar
according to the above definition.

Two words rhyme if they have same positions of
tonic accent, and if they are phonetically identical
from the most stressed syllable to the end of the
word.

Our implementation of these constraints uses
the WordNet lexical database (Fellbaum, 1998)
and CMU pronunciation dictionary1. The lat-
ter also provides a collection of words not nor-
mally contained in standard English dictionaries,
but commonly used in informal language. This in-
creases the space of potential replacements. We
use the TreeTagger2 POS tagger in order to con-
sider only words with the same part-of-speech of
the word to be replaced.

3.2 Taboo Constraint

Taboo constraint (TABOO) requires that the sub-
stitute word is a taboo word or frequently used
in taboo expressions, insults, or vulgar expres-
sions. Taboo words “represent a class of emo-
tionally arousing references with respect to body
products, body parts, sexual acts, ethnic or racial
insults, profanity, vulgarity, slang, and scatology”
(Jay et al., 2008), and they directly introduce “in-
appropriateness” to the text.

Implementation We collected a list of 700
taboo words. A first subset contains words man-
ually selected from the domain SEXUALITY of
WordNet-Domains (Magnini and Cavaglià, 2000).
A second subset was collected from the Web, and
contains words commonly used as insults. Finally,
a third subset was collected from a website post-
ing examples of funny autocorrection mistakes3

and includes words that are not directly referring
to taboos (e.g.: ‘stimulation’) or often retrieved in

1available at http://www.speech.cs.cmu.edu/
cgi-bin/cmudict

2available at http://www.ims.unistuttgart.
de/projekte/corplex/TreeTagger

3http://www.damnyouautocorrect.com

jokes evoking taboo meanings (e.g.: ‘wife’).

3.3 Contextual Constraints

Contextual constraints (CONT) require that the
substitution takes place at the end of the text, and
in a locally coherent manner.

By local coherence we mean that the substitute
word forms a feasible phrase with its immediate
predecessor. If this is not the case, then the text
is likely to make little sense. On the other hand,
if this is the case, then the taboo meaning is po-
tentially expanded to the phrase level. This in-
troduces a stronger semantic “contrast” and thus
probably contributes to making the text funnier.
The semantic contrast is potentially even stronger
if the taboo word comes as a surprise in the end
of a seemingly innocent text. The humorous effect
then is similar to the one of the forced reinterpre-
tation jokes.

Implementation Local coherence is imple-
mented using n-grams. In the case of languages
that are read from left to right, such as English,
expectations will be built by the left-context of the
expected word. To estimate the level of expecta-
tion triggered by a left-context, we rely on a vast
collection of n-grams, the 2012 Google Books n-
grams collection4 (Michel et al., 2011) and com-
pute the cohesion of each n-gram, by comparing
their expected frequency (assuming word inde-
pence), to their observed number of occurrences.
A subsequent Student t-test allows to assign a
measure of cohesion to each n-gram (Doucet and
Ahonen-Myka, 2006). We use a substitute word
only if its cohesion with the previous word is high.

In order to use consistent natural language and
avoid time or location-based variations, we fo-
cused on contemporary American English. Thus
we only used the subsection of Google bigrams
for American English, and ignored all the statis-
tics stemming from books published before 1990.

4 Evaluation

We evaluated the method empirically using
CrowdFlower5, a crowdsourcing service. The aim
of the evaluation is to measure the potential effect
of the three types of constraints on funniness of
texts. In particular, we test the potential effect of

4available at http://books.google.com/ngrams
5available at http://www.crowdflower.com
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adding the tabooness constraint to the form con-
straints, and the potential effect of further adding
contextual constraints. I.e., we consider three in-
creasingly constrained conditions: (1) substitution
according only to the form constraints (FORM),
(2) substitution according to both form and taboo
constraints (FORM+TABOO), and (3) substitution
according to form, taboo and context constraints
(FORM+TABOO+CONT).

One of the reasons for the choice of taboo words
as lexical constraint is that they allows the system
to generate humorous text potentially appreciated
by young adults, which are the majority of crowd-
sourcing users (Ross et al., 2010). We applied the
humor generation method on the first 5000 mes-
sages of NUS SMS Corpus6, a corpus of real SMS
messages (Chen and Kan, 2012).

We carried out every possible lexical replace-
ment under each of the three conditions mentioned
above, one at a time, so that the resulting mes-
sages have exactly one word substituted. We then
randomly picked 100 such modified messages for
each of the conditions. Table 1 shows two example
outputs of the humor generator under each of the
three experimental conditions. These two exam-
ples are the least funny and the funniest message
according to the empirical evaluation (see below).

For evaluation, this dataset of 300 messages
was randomly divided into groups of 20 mes-
sages each. We recruited 208 evaluators using
the crowdsourcing service, asking each subject to
evaluate one such group of 20 messages. Each
message in each group was judged by 90 different
participants.

We asked subjects to assess individual messages
for their funniness on a scale from 1 to 5. For the
analysis of the results, we then measured the effec-
tiveness of the constraints using two derived vari-
ables: the Collective Funniness (CF) of a message
is its mean funniness, while its Upper Agreement
(UA(t)) is the fraction of funniness scores greater
than or equal to a given threshold t. To rank the
generated messages, we take the product of Col-
lective Funniness and Upper Agreement UA(3)
and call it the overall Humor Effectiveness (HE).

In order to identify and remove potential scam-
mers in the crowdsourcing system, we simply
asked subjects to select the last word in the mes-

6available at http://wing.comp.nus.edu.sg/
SMSCorpus

sage. If a subject failed to answer correctly more
than three times all her judgements were removed.
As a result, 2% of judgments were discarded as
untrusted. From the experiment, we then have
a total of 26 534 trusted assessments of mes-
sages, 8 400 under FORM condition, 8 551 un-
der FORM+TABOO condition, and 8 633 under
FORM+TABOO+CONT condition.

The Collective Funniness of messages in-
creases, on average, from 2.29 under con-
dition FORM to 2.98 when the taboo con-
straint is added (FORM+TABOO), and further to
3.20 when the contextual constraints are added
(FORM+TABOO+CONT) (Table 2). The Upper
Agreement UA(4) increases from 0.18 to 0.36 and
to 0.43, respectively.

We analyzed the distributions of Collective
Funniness values of messages, as well as the
distributions of their Upper Agreements (for
all values from UA(2) to UA(5)) under the
three conditions. According to the one-sided
Wilcoxon rank-sum test, both Collective Funni-
ness and all Upper Agreements increase from
FORM to FORM+TABOO and from FORM+TABOO

to FORM+TABOO+CONT statistically significantly
(in all cases p < .002). Table 3 shows p-values
associated with all pairwise comparisons.

5 Conclusions

We have proposed a new approach for the study
of computational humor generation by lexical re-
placement. The generation task is based on a sim-
ple form of punning, where a given text is modi-
fied by replacing one word with a similar one.

We proved empirically that, in this setting, hu-
mor generation is more effective when using a list
of taboo words. The other strong empirical re-
sult regards the context of substitutions: using bi-
grams to model people’s expectations, and con-
straining the position of word replacement to the
end of the text, increases funniness significantly.
This is likely because of the form of surprise they
induce. At best of our knowledge, this is the first
time that these aspects of humor generation have
been successfully evaluated with a crowdsourcing
system and, thus, in a relatively quick and eco-
nomical way.

The statistical significance is particularly high,
even though there were several limitations in the
experimental setting. For example, as explained
in Section 3.2, the employed word list was built

246



Experimental Condition Text Generated by the System CF UA(3) HE
FORM Oh oh...Den muz change plat liao...Go back have yan jiu again... 1.68 0.26 0.43

Not ‘plat’...’plan’.
FORM Jos ask if u wana melt up? ‘meet’ not ‘melt’! 2.96 0.74 2.19
FORM+TABOO Got caught in the rain.Waited half n hour in the buss stop. 2.06 0.31 0.64

Not ‘buss’...‘bus’!
BASE+TABOO Hey pple... $ 700 or $ 900 for 5 nights...Excellent masturbation 3.98 0.85 3.39

wif breakfast hamper!!! Sorry I mean ‘location’
FORM+TABOO+CONT Nope...Juz off from berk... Sorry I mean ‘work’ 2.25 0.39 0.87
FORM+TABOO+CONT I’ve sent you my fart.. I mean ‘part’ not ‘fart’... 4.09 0.90 3.66

Table 1: Examples of outputs of the system. CF: Collective Funniness; UA(3): Upper Agreement; HE:
Humor Effectiveness.

Experimental Conditions
FORM FORM+TABOO FORM+TABOO+CONT

CF 2.29 ± 0.19 2.98 ± 0.43 3.20 ± 0.40
UA(2) 0.58 ± 0.09 0.78 ± 0.11 0.83 ± 0.09
UA(3) 0.41 ± 0.07 0.62 ± 0.13 0.69 ± 0.12
UA(4) 0.18 ± 0.04 0.36 ± 0.13 0.43 ± 0.13
UA(5) 0.12 ± 0.02 0.22 ± 0.09 0.26 ± 0.09

Table 2: Mean Collective Funniness (CF) and Upper Agreements (UA(·)) under the three experimental
conditions and their standard deviations.

Hypotheses
FORM→ FORM+TABOO FORM+TABOO→ FORM+TABOO+CONT

CF 10−15 9× 10−5

UA(2) 10−15 1× 10−15

UA(3) 10−15 7× 10−5

UA(4) 10−15 2× 10−4

UA(5) 10−15 2× 10−3

Table 3: P-values resulting from the application of one-sided Wilcoxon rank-sum test.

from different sources and contains words not di-
rectly referring to taboo meanings and, thus, not
widely recognizable as “taboo words”. Further-
more, the possible presence of crowd-working
scammers (only partially filtered by the gold stan-
dard questions) could have reduced the statistical
power of our analysis. Finally, the adopted humor
generation task (based on a single word substitu-
tion) is extremely simple and the constraints might
have not been sufficiently capable to produce a de-
tectable increase of humor appreciation.

The statistically strong results that we obtained
can make this evaluation approach attractive for
related tasks. In our methodology, we focused at-
tention to the correlation between the parameters
of the system (in our case, the constraints used in
lexical selection) and the performance of humor
generation. We used a multi-dimensional mea-
sure of humorous effect (in terms of funniness and
agreement) to measure subtly different aspects of
the humorous response. We then adopted a com-
parative setting, where we can measure improve-

ments in the performance across different systems
or variants.

In the future, it would be interesting to use
a similar setting to empirically investigate more
subtle ways to generate humor, potentially with
weaker effects but still recognizable in this set-
ting. For instance, we would like to investigate
the use of other word lists besides taboo domains
and the extent to which the semantic relatedness
itself could contribute to the humorous effect.

The current techniques can be improved, too,
in various ways. In particular, we plan to extend
the use of n-grams to larger contexts and consider
more fine-grained tuning of other constraints, too.
One goal is to apply the proposed methodology
to isolate, on one hand, parameters for inducing
incongruity and, on the other hand, parameters for
making the incongruity funny.

Finally, we are interested in estimating the prob-
ability to induce a humor response by using differ-
ent constraints. This would offer a novel way to
intentionally control the humorous effect.
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Abstract

In this paper, we study the problem of au-
tomatically annotating the factoids present
in collective discourse. Factoids are in-
formation units that are shared between
instances of collective discourse and may
have many different ways of being realized
in words. Our approach divides this prob-
lem into two steps, using a graph-based
approach for each step: (1) factoid dis-
covery, finding groups of words that corre-
spond to the same factoid, and (2) factoid
assignment, using these groups of words
to mark collective discourse units that con-
tain the respective factoids. We study this
on two novel data sets: the New Yorker
caption contest data set, and the crossword
clues data set.

1 Introduction

Collective discourse tends to contain relatively
few factoids, or information units about which the
author speaks, but many nuggets, different ways
to speak about or refer to a factoid (Qazvinian and
Radev, 2011). Many natural language applications
could be improved with good factoid annotation.

Our approach in this paper divides this problem
into two subtasks: discovery of factoids, and as-
signment of factoids. We take a graph-based ap-
proach to the problem, clustering a word graph to
discover factoids and using random walks to as-
sign factoids to discourse units.

We also introduce two new datasets in this pa-
per, covered in more detail in section 3. The
New Yorker cartoon caption dataset, provided
by Robert Mankoff, the cartoon editor at The
New Yorker magazine, is composed of reader-
submitted captions for a cartoon published in the
magazine. The crossword clue dataset consists

∗Cartoon Editor, The New Yorker magazine

Figure 1: The cartoon used for the New Yorker
caption contest #331.

of word-clue pairs used in major American cross-
word puzzles, with most words having several
hundred different clues published for it.

The term “factoid” is used as in (Van Halteren
and Teufel, 2003), but in a slightly more abstract
sense in this paper, denoting a set of related words
that should ideally refer to a real-world entity, but
may not for some of the less coherent factoids.
The factoids discovered using this method don’t
necessarily correspond to the factoids that might
be chosen by annotators.

For example, given two user-submitted cartoon
captions

• “When they said, ‘Take us to your leader,’ I
don’t think they meant your mother’s house,”

• and “You’d better call your mother and tell
her to set a few extra place settings,”

a human may say that they share the factoid called
“mother.” The automatic methods however, might
say that these captions share factoid3, which is
identified by the words “mother,” “in-laws,” “fam-
ily,” “house,” etc.

The layout of this paper is as follows: we review
related work in section 2, we introduce the datasets
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in detail in section 3, we describe our methods in
section 4, and report results in section 5.

2 Related Work

The distribution of factoids present in text collec-
tions is important for several NLP tasks such as
summarization. The Pyramid Evaluation method
(Nenkova and Passonneau, 2004) for automatic
summary evaluation depends on finding and an-
notating factoids in input sentences. Qazvinian
and Radev (2011) also studied the properties of
factoids present in collective human datasets and
used it to create a summarization system. Hennig
et al. (2010) describe an approach for automati-
cally learning factoids for pyramid evaluation us-
ing a topic modeling approach.

Our random-walk annotation technique is sim-
ilar to the one used in (Hassan and Radev, 2010)
to identify the semantic polarity of words. Das
and Petrov (2011) also introduced a graph-based
method for part-of-speech tagging in which edge
weights are based on feature vectors similarity,
which is like the corpus-based lexical similarity
graph that we construct.

3 Data Sets

We introduce two new data sets in this paper, the
New Yorker caption contest data set, and the cross-
word clues data set. Though these two data sets are
quite different, they share a few important char-
acteristics. First, the discourse units tend to be
short, approximately ten words for cartoon cap-
tions and approximately three words for crossword
clues. Second, though the authors act indepen-
dently, they tend to produce surprisingly similar
text, making the same sorts of jokes, or referring
to words in the same sorts of ways. Thirdly, the
authors often try to be non-obvious: obvious jokes
are often not funny, and obvious crossword clues
make a puzzle less challenging.

3.1 New Yorker Caption Contest Data Set
The New Yorker magazine holds a weekly con-
test1 in which they publish a cartoon without
a caption and solicit caption suggestions from
their readers. The three funniest captions are se-
lected by the editor and published in the follow-
ing weeks. Figure 1 shows an example of such
a cartoon, while Table 1 shows examples of cap-
tions, including its winning captions. As part of

1http://www.newyorker.com/humor/caption

I don’t care what planet they are from, they can pass on the
left like everyone else.
I don’t care what planet they’re from, they should have the
common courtesy to dim their lights.
I don’t care where he’s from, you pass on the left.
If he wants to pass, he can use the right lane like everyone
else.
When they said, ’Take us to your leader,’ I don’t think they
meant your mother’s house.
They may be disappointed when they learn that “our leader”
is your mother.
You’d better call your mother and tell her to set a few extra
place settings.
If they ask for our leader, is it Obama or your mother?
Which finger do I use for aliens?
I guess the middle finger means the same thing to them.
I sense somehow that flipping the bird was lost on them.
What’s the Klingon gesture for “Go around us, jerk?”

Table 1: Captions for contest #331. Finalists are
listed in italics.

this research project, we have acquired five car-
toons along with all of the captions submitted in
the corresponding contest.

While the task of automatically identifying the
funny captions would be quite useful, it is well be-
yond the current state of the art in NLP. A much
more manageable task, and one that is quite impor-
tant for the contest’s editor is to annotate captions
according to their factoids. This allows the orga-
nizers of the contest to find the most frequently
mentioned factoids and select representative cap-
tions for each factoid.

On average, each cartoon has 5,400 submitted
captions, but for each of five cartoons, we sam-
pled 500 captions for annotation. The annotators
were instructed to mark factoids by identifying
and grouping events, objects, and themes present
in the captions, creating a unique name for each
factoid, and marking the captions that contain each
factoid. One caption could be given many differ-
ent labels. For example, in cartoon #331, such fac-
toids may be “bad directions”, “police”, “take me
to your leader”, “racism”, or “headlights”. After
annotating, each set of captions contained about
60 factoids on average. On average a caption was
annotated with 0.90 factoids, with approximately
80% of the discourse units having at least one fac-
toid, 20% having at least two, and only 2% hav-
ing more than two. Inter-annotator agreement was
moderate, with an F1-score (described more in
section 5) of 0.6 between annotators.

As van Halteren and Teufel (2003) also found
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Figure 2: Average factoid frequency distributions
for cartoon captions (a) and crossword clues (b).
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Figure 3: Growth of the number of unique factoids
as the size of the corpus grows for cartoon captions
(a) and crossword clues (b).

when examining factoid distributions in human-
produced summaries, we found that the distribu-
tion of factoids in the caption set for each car-
toon seems to follow a power law. Figure 2 shows
the average frequencies of factoids, when ordered
from most- to least-frequent. We also found a
Heap’s law-type effect in the number of unique
factoids compared to the size of the corpus, as in
Figure 3.

3.2 Crossword Clues Data Set

Clues in crossword puzzles are typically obscure,
requiring the reader to recognize double mean-
ings or puns, which leads to a great deal of diver-
sity. These clues can also refer to one or more
of many different senses of the word. Table 2
shows examples of many different clues for the
word “tea”. This table clearly illustrates the differ-
ence between factoids (the senses being referred
to) and nuggets (the realization of the factoids).

The website crosswordtracker.com col-
lects a large number of clues that appear in dif-
ferent published crossword puzzles and aggregates
them according to their answer. From this site, we
collected 200 sets of clues for common crossword
answers.

We manually annotated 20 sets of crossword
clues according to their factoids in the same fash-
ion as described in section 3.1. On average each
set of clues contains 283 clues and 15 different
factoids. Inter-annotator agreement on this dataset
was quite high with an F1-score of 0.96.

Clue Sense
Major Indian export drink
Leaves for a break? drink
Darjeeling, e.g. drink
Afternoon social event
4:00 gathering event
Sympathy partner film
Mythical Irish queen person

Party movement political movement
Word with rose or garden plant and place

Table 2: Examples of crossword clues and their
different senses for the word “tea”.

4 Methods

4.1 Random Walk Method
We take a graph-based approach to the discovery
of factoids, clustering a word similarity graph and
taking the resulting clusters to be the factoids. Two
different graphs, a word co-occurrence graph and
a lexical similarity graph learned from the corpus,
are compared. We also compare the graph-based
methods against baselines of clustering and topic
modeling.

4.1.1 Word Co-occurrence Graph
To create the word co-occurrence graph, we create
a link between every pair of words with an edge
weight proportional to the number of times they
both occur in the same discourse unit.

4.1.2 Corpus-based Lexical Similarity Graph
To build the lexical similarity graph, a lexical sim-
ilarity function is learned from the corpus, that
is, from one set of captions or clues. We do this
by computing feature vectors for each lemma and
using the cosine similarity between these feature
vectors as a lexical similarity function. We con-
struct a word graph with edge weights propor-
tional to the learned similarity of the respective
word pairs.

We use three types of features in these feature
vectors: context word features, context part-of-
speech features, and spelling features. Context
features are the presence of each word in a win-
dow of five words (two words on each side plus the
word in question). Context part-of-speech features
are the part-of-speech labels given by the Stan-
ford POS tagger (Toutanova et al., 2003) within
the same window. Spelling features are the counts
of all character trigrams present in the word.

Table 3 shows examples of similar word pairs
from the set of crossword clues for “tea”. From
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Figure 4: Example of natural clusters in a subsection of the word co-occurrence graph for the crossword
clue “astro”.

Word pair Sim.
(white-gloves, white-glove) 0.74
(may, can) 0.57
(midafternoon, mid-afternoon) 0.55
(company, co.) 0.46
(supermarket, market) 0.53
(pick-me-up, perk-me-up) 0.44
(green, black) 0.44
(lady, earl) 0.39
(kenyan, indian) 0.38

Table 3: Examples of similar pairs of words as cal-
culated on the set of crossword clues for “tea”.

this table, we can see that this method is able
to successfully identify several similar word pairs
that would be missed by most lexical databases:
minor lexical variations, such as “pick-me-up” vs.
“perk-me-up”; abbreviations, such as “company”
and “co.”; and words that are similar only in this
context, such as “lady” and “earl” (referring to
Lady Grey and Earl Grey tea).

4.1.3 Graph Clustering

To cluster the word similarity graph, we use the
Louvain graph clustering method (Blondel et al.,
2008), a hierarchical method that optimizes graph
modularity. This method produces several hierar-
chical cluster levels. We use the highest level, cor-
responding to the fewest number of clusters.

Figure 4 shows an example of clusters found
in the word graph for the crossword clue “as-
tro”. There are three obvious clusters, one for the
Houston Astros baseball team, one for the dog in
the Jetsons cartoon, and one for the lexical prefix
“astro-”. In this example, two of the clusters are
connected by a clue that mentions multiple senses,
“Houston ballplayer or Jetson dog”.

4.1.4 Random Walk Factoid Assignment
After discovering factoids, the remaining task is
to annotate captions according to the factoids they
contain. We approach this problem by taking ran-
dom walks on the word graph constructed in the
previous sections, starting the random walks from
words in the caption and measuring the hitting
times to different clusters.

For each discourse unit, we repeatedly sam-
ple words from it and take Markov random walks
starting from the nodes corresponding to the se-
lected and lasting 10 steps (which is enough to en-
sure that every node in the graph can be reached).
After 1000 random walks, we measure the aver-
age hitting time to each cluster, where a cluster is
considered to be reached by the random walk the
first time a node in that cluster is reached. Heuris-
tically, 1000 random walks was more than enough
to ensure that the factoid distribution had stabi-
lized in development data.

The labels that are applied to a caption are the
labels of the clusters that have a sufficiently low
hitting time. We perform five-fold cross valida-
tion on each caption or set of clues and tune the
threshold on the hitting time such that the aver-
age number of labels per unit produced matches
the average number of labels per unit in the gold
annotation of the held-out portion.

For example, a certain caption may have the fol-
lowing hitting times to the different factoid clus-
ters:

factoid1 0.11
factoid2 0.75
factoid3 1.14
factoid4 2.41

If the held-out portion has 1.2 factoids per cap-
tion, it may be determined that the optimal thresh-
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old on the hitting times is 0.8, that is, a threshold
of 0.8 produces 1.2 factoids per caption in the test-
set on average. In this case factoid1 and factoid2
would be marked for this caption, since the hitting
times fall below the threshold.

4.2 Clustering
A simple baseline that can act as a surrogate for
factoid annotation is clustering of discourse units,
which is equivalent to assigning exactly one fac-
toid (the name of its cluster) to each discourse
unit. As our clustering method, we use C-Lexrank
(Qazvinian and Radev, 2008), a method that has
been well-tested on collective discourse.

4.3 Topic Model
Topic modeling is a natural way to approach the
problem of factoid annotation, if we consider the
topics to be factoids. We use the Mallet (McCal-
lum, 2002) implementation of Latent Dirichlet Al-
location (LDA) (Blei et al., 2003). As with the ran-
dom walk method, we perform five-fold cross val-
idation, tuning the threshold for the average num-
ber of labels per discourse unit to match the aver-
age number of labels in the held-out portion. Be-
cause LDA needs to know the number of topics
a priori, we set the number of topics to be equal
to the true number of factoids. We also use the
average number of unique factoids in the held-out
portion as the number of LDA topics.

5 Evaluation and Results

We evaluate this task in a way similar to pairwise
clustering evaluation methods, where every pair of
discourse units that should share at least one fac-
toid and does is a true positive instance, every pair
that should share a factoid and does not is a false
negative, etc. From this we are able to calculate
precision, recall, and F1-score. This is a reason-
able evaluation method, since the average number
of factoids per discourse unit is close to one. Be-
cause the factoids discovered by this method don’t
necessarily match the factoids chosen by the an-
notators, it doesn’t make sense to try to measure
whether two discourse units share the “correct”
factoid.

Tables 4 and 5 show the results of the various
methods on the cartoon captions and crossword
clues datasets, respectively. On the crossword
clues datasets, the random-walk-based methods
are clearly superior to the other methods tested,
whereas simple clustering is more effective on the

Method Prec. Rec. F1
LDA 0.318 0.070 0.115
C-Lexrank 0.131 0.347 0.183
Word co-occurrence graph 0.115 0.348 0.166
Word similarity graph 0.093 0.669 0.162

Table 4: Performance of various methods annotat-
ing factoids for cartoon captions.

Method Prec. Rec. F1
LDA 0.315 0.067 0.106
C-Lexrank 0.702 0.251 0.336
Word co-occurrence graph 0.649 0.257 0.347
Word similarity graph 0.575 0.397 0.447

Table 5: Performance of various methods annotat-
ing factoids for crossword clues.

cartoon captions dataset.
In some sense, the two datasets in this paper

both represent difficult domains, ones in which
authors are intentionally obscure. The good re-
sults acheived on the crossword clues dataset in-
dicate that this obscurity can be overcome when
discourse units are short. Future work in this
vein includes applying these methods to domains,
such as newswire, that are more typical for sum-
marization, and if necessary, investigating how
these methods can best be applied to domains with
longer sentences.
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Abstract
Here, we introduce a machine learning-
based approach that allows us to identify
light verb constructions (LVCs) in Hun-
garian and English free texts. We also
present the results of our experiments on
the SzegedParalellFX English–Hungarian
parallel corpus where LVCs were manu-
ally annotated in both languages. With
our approach, we were able to contrast
the performance of our method and define
language-specific features for these typo-
logically different languages. Our pre-
sented method proved to be sufficiently ro-
bust as it achieved approximately the same
scores on the two typologically different
languages.

1 Introduction

In natural language processing (NLP), a signifi-
cant part of research is carried out on the English
language. However, the investigation of languages
that are typologically different from English is
also essential since it can lead to innovations that
might be usefully integrated into systems devel-
oped for English. Comparative approaches may
also highlight some important differences among
languages and the usefulness of techniques that are
applied.

In this paper, we focus on the task of identify-
ing light verb constructions (LVCs) in English and
Hungarian free texts. Thus, the same task will be
carried out for English and a morphologically rich
language. We compare whether the same set of
features can be used for both languages, we in-
vestigate the benefits of integrating language spe-
cific features into the systems and we explore how
the systems could be further improved. For this
purpose, we make use of the English–Hungarian
parallel corpus SzegedParalellFX (Vincze, 2012),
where LVCs have been manually annotated.

2 Light Verb Constructions

Light verb constructions (e.g. to give advice) are
a subtype of multiword expressions (Sag et al.,
2002). They consist of a nominal and a verbal
component where the verb functions as the syn-
tactic head, but the semantic head is the noun. The
verbal component (also called a light verb) usu-
ally loses its original sense to some extent. Al-
though it is the noun that conveys most of the
meaning of the construction, the verb itself can-
not be viewed as semantically bleached (Apres-
jan, 2004; Alonso Ramos, 2004; Sanromán Vi-
las, 2009) since it also adds important aspects to
the meaning of the construction (for instance, the
beginning of an action, such as set on fire, see
Mel’čuk (2004)). The meaning of LVCs can be
only partially computed on the basis of the mean-
ings of their parts and the way they are related to
each other, hence it is important to treat them in a
special way in many NLP applications.

LVCs are usually distinguished from productive
or literal verb + noun constructions on the one
hand and idiomatic verb + noun expressions on
the other (Fazly and Stevenson, 2007). Variativ-
ity and omitting the verb play the most significant
role in distinguishing LVCs from productive con-
structions and idioms (Vincze, 2011). Variativity
reflects the fact that LVCs can be often substituted
by a verb derived from the same root as the nomi-
nal component within the construction: productive
constructions and idioms can be rarely substituted
by a single verb (like make a decision – decide).
Omitting the verb exploits the fact that it is the
nominal component that mostly bears the seman-
tic content of the LVC, hence the event denoted
by the construction can be determined even with-
out the verb in most cases. Furthermore, the very
same noun + verb combination may function as an
LVC in certain contexts while it is just a productive
construction in other ones, compare He gave her a
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ring made of gold (non-LVC) and He gave her a
ring because he wanted to hear her voice (LVC),
hence it is important to identify them in context.

In theoretical linguistics, Kearns (2002) distin-
guishes between two subtypes of light verb con-
structions. True light verb constructions such as
to give a wipe or to have a laugh and vague ac-
tion verbs such as to make an agreement or to
do the ironing differ in some syntactic and se-
mantic features and can be separated by various
tests, e.g. passivization, WH-movement, pronom-
inalization etc. This distinction also manifests in
natural language processing as several authors pay
attention to the identification of just true light verb
constructions, e.g. Tu and Roth (2011). However,
here we do not make such a distinction and aim to
identify all types of light verb constructions both
in English and in Hungarian, in accordance with
the annotation principles of SZPFX.

The canonical form of a Hungarian light verb
construction is a bare noun + third person singular
verb. However, they may occur in non-canonical
versions as well: the verb may precede the noun,
or the noun and the verb may be not adjacent due
to the free word order. Moreover, as Hungarian
is a morphologically rich language, the verb may
occur in different surface forms inflected for tense,
mood, person and number. These features will be
paid attention to when implementing our system
for detecting Hungarian LVCs.

3 Related Work

Recently, LVCs have received special interest in
the NLP research community. They have been au-
tomatically identified in several languages such as
English (Cook et al., 2007; Bannard, 2007; Vincze
et al., 2011a; Tu and Roth, 2011), Dutch (Van de
Cruys and Moirón, 2007), Basque (Gurrutxaga
and Alegria, 2011) and German (Evert and Ker-
mes, 2003).

Parallel corpora are of high importance in the
automatic identification of multiword expressions:
it is usually one-to-many correspondence that is
exploited when designing methods for detecting
multiword expressions. Caseli et al. (2010) de-
veloped an alignment-based method for extracting
multiword expressions from Portuguese–English
parallel corpora. Samardžić and Merlo (2010) an-
alyzed English and German light verb construc-
tions in parallel corpora: they pay special attention
to their manual and automatic alignment. Zarrieß

and Kuhn (2009) argued that multiword expres-
sions can be reliably detected in parallel corpora
by using dependency-parsed, word-aligned sen-
tences. Sinha (2009) detected Hindi complex
predicates (i.e. a combination of a light verb and
a noun, a verb or an adjective) in a Hindi–English
parallel corpus by identifying a mismatch of the
Hindi light verb meaning in the aligned English
sentence. Many-to-one correspondences were also
exploited by Attia et al. (2010) when identifying
Arabic multiword expressions relying on asym-
metries between paralell entry titles of Wikipedia.
Tsvetkov and Wintner (2010) identified Hebrew
multiword expressions by searching for misalign-
ments in an English–Hebrew parallel corpus.

To the best of our knowledge, parallel corpora
have not been used for testing the efficiency of an
MWE-detecting method for two languages at the
same time. Here, we investigate the performance
of our base LVC-detector on English and Hungar-
ian and pay special attention to the added value of
language-specific features.

4 Experiments

In our investigations we made use of the Szeged-
ParalellFX English-Hungarian parallel corpus,
which consists of 14,000 sentences and contains
about 1370 LVCs for each language. In addition,
we are aware of two other corpora – the Szeged
Treebank (Vincze and Csirik, 2010) and Wiki50
(Vincze et al., 2011b) –, which were manually an-
notated for LVCs on the basis of similar principles
as SZPFX, so we exploited these corpora when
defining our features.

To automatically identify LVCs in running
texts, a machine learning based approach was ap-
plied. This method first parsed each sentence and
extracted potential LVCs. Afterwards, a binary
classification method was utilized, which can au-
tomatically classify potential LVCs as an LVC or
not. This binary classifier was based on a rich fea-
ture set described below.

The candidate extraction method investi-
gated the dependency relation among the verbs
and nouns. Verb-object, verb-subject, verb-
prepositional object, verb-other argument (in the
case of Hungarian) and noun-modifier pairs were
collected from the texts. The dependency labels
were provided by the Bohnet parser (Bohnet,
2010) for English and by magyarlanc 2.0
(Zsibrita et al., 2013) for Hungarian.
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The features used by the binary classifier can be
categorised as follows:

Morphological features: As the nominal com-
ponent of LVCs is typically derived from a verbal
stem (make a decision) or coincides with a verb
(have a walk), the VerbalStem binary feature fo-
cuses on the stem of the noun; if it had a verbal
nature, the candidates were marked as true. The
POS-pattern feature investigates the POS-tag se-
quence of the potential LVC. If it matched one pat-
tern typical of LVCs (e.g. verb + noun) the
candidate was marked as true; otherwise as false.
The English auxiliary verbs, do and have often
occur as light verbs, hence we defined a feature for
the two verbs to denote whether or not they were
auxiliary verbs in a given sentence.The POS code
of the next word of LVC candidate was also ap-
plied as a feature. As Hungarian is a morpholog-
ically rich language, we were able to define vari-
ous morphology-based features like the case of the
noun or its number etc. Nouns which were histor-
ically derived from verbs but were not treated as
derivation by the Hungarian morphological parser
were also added as a feature.

Semantic features: This feature also exploited
the fact that the nominal component is usually de-
rived from verbs. Consequently, the activity
or event semantic senses were looked for among
the upper level hyperonyms of the head of the
noun phrase in English WordNet 3.11 and in the
Hungarian WordNet (Miháltz et al., 2008).

Orthographic features: The suffix feature is
also based on the fact that many nominal compo-
nents in LVCs are derived from verbs. This feature
checks whether the lemma of the noun ended in
a given character bi- or trigram. The number of
words of the candidate LVC was also noted and
applied as a feature.

Statistical features: Potential English LVCs
and their occurrences were collected from 10,000
English Wikipedia pages by the candidate extrac-
tion method. The number of occurrences was used
as a feature when the candidate was one of the syn-
tactic phrases collected.

Lexical features: We exploit the fact that the
most common verbs are typically light verbs.
Therefore, fifteen typical light verbs were selected
from the list of the most frequent verbs taken from
the Wiki50 (Vincze et al., 2011b) in the case of En-
glish and from the Szeged Treebank (Vincze and

1http://wordnet.princeton.edu

Csirik, 2010) in the case of Hungarian. Then, we
investigated whether the lemmatised verbal com-
ponent of the candidate was one of these fifteen
verbs. The lemma of the noun was also applied
as a lexical feature. The nouns found in LVCs
were collected from the above-mentioned corpora.
Afterwards, we constructed lists of lemmatised
LVCs got from the other corpora.

Syntactic features: As the candidate extraction
methods basically depended on the dependency
relation between the noun and the verb, they could
also be utilised in identifying LVCs. Though the
dobj, prep, rcmod, partmod or nsubjpass
dependency labels were used in candidate extrac-
tion in the case of English, these syntactic relations
were defined as features, while the att, obj,
obl, subj dependency relations were used in the
case of Hungarian. When the noun had a deter-
miner in the candidate LVC, it was also encoded
as another syntactic feature.

Our feature set includes language-independent
and language-specific features as well. Language-
independent features seek to acquire general fea-
tures of LVCs while language-specific features can
be applied due to the different grammatical char-
acteristics of the two languages or due to the avail-
ability of different resources. Table 1 shows which
features were applied for which language.

We experimented with several learning algo-
rithms and decision trees have been proven per-
forming best. This is probably due to the fact that
our feature set consists of compact – i.e. high-
level – features. We trained the J48 classifier of the
WEKA package (Hall et al., 2009). This machine
learning approach implements the decision trees
algorithm C4.5 (Quinlan, 1993). The J48 classi-
fier was trained with the above-mentioned features
and we evaluated it in a 10-fold cross validation.

The potential LVCs which are extracted by the
candidate extraction method but not marked as
positive in the gold standard were classed as neg-
ative. As just the positive LVCs were annotated
on the SZPFX corpus, the Fβ=1 score interpreted
on the positive class was employed as an evalu-
ation metric. The candidate extraction methods
could not detect all LVCs in the corpus data, so
some positive elements in the corpora were not
covered. Hence, we regarded the omitted LVCs
as false negatives in our evaluation.
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Features Base English Hungarian
Orthographical • – –
VerbalStem • – –
POS pattern • – –
LVC list • – –
Light verb list • – –
Semantic features • – –
Syntactic features • – –
Auxiliary verb – • –
Determiner – • –
Noun list – • –
POS After – • –
LVC freq. stat. – • –
Agglutinative morph. – – •
Historical derivation – – •

Table 1: The basic feature set and language-
specific features.

English Hungarian
ML 63.29/56.91/59.93 66.1/50.04/56.96
DM 73.71/29.22/41.67 63.24/34.46/44.59

Table 2: Results obtained in terms of precision, re-
call and F-score. ML: machine learning approach
DM: dictionary matching method.

5 Results

As a baseline, a context free dictionary matching
method was applied. For this, the gold-standard
LVC lemmas were gathered from Wiki50 and the
Szeged Treebank. Texts were lemmatized and if
an item on the list was found in the text, it was
treated as an LVC.

Table 2 lists the results got on the two differ-
ent parts of SZPFX using the machine learning-
based approach and the baseline dictionary match-
ing. The dictionary matching approach yielded the
highest precision on the English part of SZPFX,
namely 73.71%. However, the machine learning-
based approach proved to be the most successful
as it achieved an F-score that was 18.26 higher
than that with dictionary matching. Hence, this
method turned out to be more effective regard-
ing recall. At the same time, the machine learn-
ing and dictionary matching methods got roughly
the same precision score on the Hungarian part of
SZPFX, but again the machine learning-based ap-
proach achieved the best F-score. While in the
case of English the dictionary matching method
got a higher precision score, the machine learning
approach proved to be more effective.

An ablation analysis was carried out to exam-
ine the effectiveness of each individual feature of
the machine learning-based candidate classifica-

Feature English Hungarian
All 59.93 56.96
Lexical -19.11 -14.05
Morphological -1.68 -1.75
Orthographic -0.43 -3.31
Syntactic -1.84 -1.28
Semantic -2.17 -0.34
Statistical -2.23 –
Language-specific -1.83 -1.05

Table 3: The usefulness of individual features in
terms of F-score using the SZPFX corpus.

tion. For each feature type, a J48 classifier was
trained with all of the features except that one. We
also investigated how language-specific features
improved the performance compared to the base
feature set. We then compared the performance to
that got with all the features. Table 3 shows the
contribution of each individual feature type on the
SZPFX corpus. For each of the two languages,
each type of feature contributed to the overall per-
formance. Lexical features were very effective in
both languages.

6 Discussion

According to the results, our base system is ro-
bust enough to achieve approximately the same
results on two typologically different languages.
Language-specific features further contribute to
the performance as shown by the ablation anal-
ysis. It should be also mentioned that some of
the base features (e.g. POS-patterns, which we
thought would be useful for English due to the
fixed word order) were originally inspired by one
of the languages and later expanded to the other
one (i.e. they were included in the base feature set)
since it was also effective in the case of the other
language. Thus, a multilingual approach may be
also beneficial in the case of monolingual applica-
tions as well.

The most obvious difference between the per-
formances on the two languages is the recall scores
(the difference being 6.87 percentage points be-
tween the two languages). This may be related to
the fact that the distribution of light verbs is quite
different in the two languages. While the top 15
verbs covers more than 80% of the English LVCs,
in Hungarian, this number is only 63% (and in or-
der to reach the same coverage, 38 verbs should be
included). Another difference is that there are 102

258



different verbs in English, which follow the Zipf
distribution, on the other hand, there are 157 Hun-
garian verbs with a more balanced distributional
pattern. Thus, fewer verbs cover a greater part of
LVCs in English than in Hungarian and this also
explains why lexical features contribute more to
the overall performance in English. This fact also
indicates that if verb lists are further extended, still
better recall scores may be achieved for both lan-
guages.

As for the effectiveness of morphological and
syntactic features, morphological features perform
better on a language with a rich morphologi-
cal representation (Hungarian). However, syntax
plays a more important role in LVC detection in
English: the added value of syntax is higher for
the English corpora than for the Hungarian one,
where syntactic features are also encoded in suf-
fixes, i.e. morphological information.

We carried out an error analysis in order to see
how our system could be further improved and
the errors reduced. We concluded that there were
some general and language-specific errors as well.
Among the general errors, we found that LVCs
with a rare light verb were difficult to recognize
(e.g. to utter a lie). In other cases, an originally
deverbal noun was used in a lexicalised sense to-
gether with a typical light verb ((e.g. buildings
are given (something)) and these candidates were
falsely classed as LVCs. Also, some errors in
POS-tagging or dependency parsing also led to
some erroneous predictions.

As for language-specific errors, English verb-
particle combinations (VPCs) followed by a noun
were often labeled as LVCs such as make up
his mind or give in his notice. In Hungar-
ian, verb + proper noun constructions (Hamletet
játsszák (Hamlet-ACC play-3PL.DEF) “they are
playing Hamlet”) were sometimes regarded as
LVCs since the morphological analysis does not
make a distinction between proper and common
nouns. These language-specific errors may be
eliminated by integrating a VPC detector and a
named entity recognition system into the English
and Hungarian systems, respectively.

Although there has been a considerable amount
of literature on English LVC identification (see
Section 3), our results are not directly comparable
to them. This may be explained by the fact that dif-
ferent authors aimed to identify a different scope
of linguistic phenomena and thus interpreted the

concept of “light verb construction” slightly dif-
ferently. For instance, Tu and Roth (2011) and Tan
et al. (2006) focused only on true light verb con-
structions while only object–verb pairs are consid-
ered in other studies (Stevenson et al., 2004; Tan et
al., 2006; Fazly and Stevenson, 2007; Cook et al.,
2007; Bannard, 2007; Tu and Roth, 2011). Several
other studies report results only on light verb con-
structions formed with certain light verbs (Steven-
son et al., 2004; Tan et al., 2006; Tu and Roth,
2011). In contrast, we aimed to identify all kinds
of LVCs, i.e. we did not apply any restrictions on
the nature of LVCs to be detected. In other words,
our task was somewhat more difficult than those
found in earlier literature. Although our results are
somewhat lower on English LVC detection than
those attained by previous studies, we think that
despite the difficulty of the task, our method could
offer promising results for identifying all types of
LVCs both in English and in Hungarian.

7 Conclusions

In this paper, we introduced our machine learning-
based approach for identifying LVCs in Hungar-
ian and English free texts. The method proved
to be sufficiently robust as it achieved approxi-
mately the same scores on two typologically dif-
ferent languages. The language-specific features
further contributed to the performance in both lan-
guages. In addition, some language-independent
features were inspired by one of the languages, so
a multilingual approach proved to be fruitful in the
case of monolingual LVC detection as well.

In the future, we would like to improve our sys-
tem by conducting a detailed analysis of the effect
of each feature on the results. Later, we also plan
to adapt the tool to other types of multiword ex-
pressions and conduct further experiments on lan-
guages other than English and Hungarian, the re-
sults of which may further lead to a more robust,
general LVC system. Moreover, we can improve
the method applied in each language by imple-
menting other language-specific features as well.
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Abstract

This paper presents the settings and the re-
sults of the ROMIP 2013 MT shared task
for the English→Russian language direc-
tion. The quality of generated translations
was assessed using automatic metrics and
human evaluation. We also discuss ways
to reduce human evaluation efforts using
pairwise sentence comparisons by human
judges to simulate sort operations.

1 Introduction

Machine Translation (MT) between English and
Russian was one of the first translation directions
tested at the dawn of MT research in the 1950s
(Hutchins, 2000). Since then the MT paradigms
changed many times, many systems for this lan-
guage pair appeared (and disappeared), but as far
as we know there was no systematic quantitative
evaluation of a range of systems, analogous to
DARPA’94 (White et al., 1994) and later evalua-
tion campaigns. The Workshop on Statistical MT
(WMT) in 2013 has announced a Russian evalua-
tion track for the first time.1 However, this evalu-
ation is currently ongoing, it should include new
methods for building statistical MT (SMT) sys-
tems for Russian from the data provided in this
track, but it will not cover the performance of ex-
isting systems, especially rule-based (RBMT) or
hybrid ones.

Evaluation campaigns play an important role
in promotion of the progress for MT technolo-
gies. Recently, there have been a number of
MT shared tasks for combinations of several Eu-
ropean, Asian and Semitic languages (Callison-
Burch et al., 2011; Callison-Burch et al., 2012;
Federico et al., 2012), which we took into account
in designing the campaign for the English-Russian
direction. The evaluation has been held in the

1http://www.statmt.org/wmt13/

context of ROMIP,2 which stands for Russian In-
formation Retrieval Evaluation Seminar and is a
TREC-like3 Russian initiative started in 2002.

One of the main challenges in developing MT
systems for Russian and for evaluating them is the
need to deal with its free word order and com-
plex morphology. Long-distance dependencies
are common, and this creates problems for both
RBMT and SMT systems (especially for phrase-
based ones). Complex morphology also leads
to considerable sparseness for word alignment in
SMT.

The language direction was chosen to be
English→Russian, first because of the availabil-
ity of native speakers for evaluation, second be-
cause the systems taking part in this evaluation are
mostly used in translation of English texts for the
Russian readers.

2 Corpus preparation

In designing the set of texts for evaluation, we
had two issues in mind. First, it is known that
the domain and genre can influence MT perfor-
mance (Langlais, 2002; Babych et al., 2007), so
we wanted to control the set of genres. Second,
we were aiming at using sources allowing distri-
bution of texts under a Creative Commons licence.
In the end two genres were used coming from two
sources. The newswire texts were collected from
the English Wikinews website.4 The second genre
was represented by ‘regulations’ (laws, contracts,
rules, etc), which were collected from the Web
using a genre classification method described in
(Sharoff, 2010). The method provided a sufficient
accuracy (74%) for the initial selection of texts un-
der the category of ‘regulations,’ which was fol-
lowed by a manual check to reject texts clearly
outside of this genre category.

2http://romip.ru/en/
3http://trec.nist.gov/
4http://en.wikinews.org/
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The initial corpus consists of 8,356 original
English texts that make up 148,864 sentences.
We chose to retain the entire texts in the cor-
pus rather than individual sentences, since some
MT systems may use information beyond isolated
sentences. 100,889 sentences originated from
Wikinews; 47,975 sentences came from the ‘reg-
ulations’ corpus. The first 1,002 sentences were
published in advance to allow potential partici-
pants time to adjust their systems to the corpus for-
mat. The remaining 147,862 sentences were the
corpus for testing translation into Russian. Two
examples of texts in the corpus:
90237 Ambassadors from the United States of

America, Australia and Britain have all met
with Fijian military officers to seek insur-
ances that there wasn’t going to be a coup.

102835 If you are given a discount for booking
more than one person onto the same date and
you later wish to transfer some of the dele-
gates to another event, the fees will be recal-
culated and you will be asked to pay addi-
tional fees due as well as any administrative
charge.

For automatic evaluation we randomly selected
947 ‘clean’ sentences, i.e. those with clear sen-
tence boundaries, no HTML markup remains, etc.
(such flaws sometimes occur in corpora collected
from the Web). 759 sentences originated from
the ‘news’ part of the corpus, the remaining 188
came from the ‘regulations’ part. The sentences
came from sources without published translations
into Russian, so that some of the participating sys-
tems do not get unfair advantage by using them for
training. These sentences were translated by pro-
fessional translators. For manual evaluation, we
randomly selected 330 sentences out of 947 used
for automatic evaluation, specifically, 190 from
the ‘news’ part and 140 from the ‘regulations’ part.

The organisers also provided participants with
access to the following additional resources:
• 1 million sentences from the English-Russian

parallel corpus released by Yandex (the same
as used in WMT13)5;
• 119 thousand sentences from the English-

Russian parallel corpus from the TAUS Data
Repository.6

These resources are not related to the test corpus
of the evaluation campaign. Their purpose was

5https://translate.yandex.ru/corpus?
lang=en

6https://www.tausdata.org

to make it easier to participate in the shared task
for teams without sufficient data for this language
pair.

3 Evaluation methodology

The main idea of manual evaluation was (1) to
make the assessment as simple as possible for a
human judge and (2) to make the results of evalu-
ation unambiguous. We opted for pairwise com-
parison of MT outputs. This is different from
simultaneous ranking of several MT outputs, as
commonly used in WMT evaluation campaigns.
In case of a large number of participating sys-
tems each assessor ranks only a subset of MT out-
puts. However, a fair overall ranking cannot be al-
ways derived from such partial rankings (Callison-
Burch et al., 2012). The pairwise comparisons
we used can be directly converted into unambigu-
ous overall rankings. This task is also much sim-
pler for human judges to complete. On the other
hand, pairwise comparisons require a larger num-
ber of evaluation decisions, which is feasible only
for few participants (and we indeed had relatively
few submissions in this campaign). Below we also
discuss how to reduce the amount of human efforts
for evaluation.

In our case the assessors were asked to make a
pairwise comparison of two sentences translated
by two different MT systems against a gold stan-
dard translation. The question for them was to
judge translation adequacy, i.e., which MT output
conveys information from the reference translation
better. The source English sentence was not pre-
sented to the assessors, because we think that we
can have more trust in understanding of the source
text by a professional translator. The translator
also had access to the entire text, while the asses-
sors could only see a single sentence.

For human evaluation we employed the multi-
functional TAUS DQF tool7 in the ‘Quick Com-
parison’ mode.

Assessors’ judgements resulted in rankings for
each sentence in the test set. In case of ties the
ranks were averaged, e.g. when the ranks of the
systems in positions 2-4 and 7-8 were tied, their
ranks became: 1 3 3 3 5 6 7.5 7.5. To
produce the final ranking, the sentence-level ranks
were averaged over all sentences.

Pairwise comparisons are time-consuming: n

7https://tauslabs.com/dynamic-quality/
dqf-tools-mt
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Metric OS1 OS2 OS3 OS4 P1 P2 P3 P4 P5 P6 P7
Automatic metrics ALL (947 sentences)

BLEU 0.150 0.141 0.133 0.124 0.157 0.112 0.105 0.073 0.094 0.071 0.073
NIST 5.12 4.94 4.80 4.67 5.00 4.46 4.11 2.38 4.16 3.362 3.38
Meteor 0.258 0.240 0.231 0.240 0.251 0.207 0.169 0.133 0.178 0.136 0.149
TER 0.755 0.766 0.764 0.758 0.758 0.796 0.901 0.931 0.826 0.934 0.830
GTM 0.351 0.338 0.332 0.336 0.349 0.303 0.246 0.207 0.275 0.208 0.230

Automatic metrics NEWS (759 sentences)
BLEU 0.137 0.131 0.123 0.114 0.153 0.103 0.096 0.070 0.083 0.066 0.067
NIST 4.86 4.72 4.55 4.35 4.79 4.26 3.83 2.47 3.90 3.20 3.19
Meteor 0.241 0.224 0.214 0.222 0.242 0.192 0.156 0.127 0.161 0.126 0.136
TER 0.772 0.776 0.784 0.777 0.768 0.809 0.908 0.936 0.844 0.938 0.839
GTM 0.335 0.324 0.317 0.320 0.339 0.290 0.233 0.201 0.257 0.199 0.217

Table 1: Automatic evaluation results

cases require n(n−1)
2 pairwise decisions. In this

study we also simulated a ‘human-assisted’ in-
sertion sort algorithm and its variant with binary
search. The idea is to run a standard sort algo-
rithm and ask a human judge each time a compar-
ison operation is required. This assumes that hu-
man perception of quality is transitive: if we know
that A < B and B < C, we can spare evaluation
of A and C. This approach also implies that sen-
tence pairs to judge are generated and presented to
assessors on the fly; each decision contributes to
selection of the pairs to be judged in the next step.
If the systems are pre-sorted in a reasonable way
(e.g. by an MT metric, under assumption that au-
tomatic pre-ranking is closer to the ‘ideal’ ranking
than a random one), then we can potentially save
even more pairwise comparison operations. Pre-
sorting makes ranking somewhat biased in favour
of the order established by an MT metric. For ex-
ample, if it favours one system against another,
while in human judgement they are equal, the final
ranking will preserve the initial order. Insertion
sort of n sentences requires n− 1 comparisons in
the best case of already sorted data and n(n−1)

2 in
the worst case (reversely ordered data). Insertion
sort with binary search requires∼ n log n compar-
isons regardless of the initial order. For this study
we ran exhaustive pairwise evaluation and used its
results to simulate human-assisted sorting.

In addition to human evaluation, we also ran
system-level automatic evaluations using BLEU
(Papineni et al., 2001), NIST (Doddington,
2002), METEOR (Banerjee and Lavie, 2005),
TER (Snover et al., 2009), and GTM (Turian et
al., 2003). We also wanted to estimate the correla-

tions of these metrics with human judgements for
the English→Russian pair on the corpus level and
on the level of individual sentences.

4 Results

We received results from five teams, two teams
submitted two runs each, which totals seven par-
ticipants’ runs (referred to as P1..P7 in the pa-
per). The participants represent SMT, RBMT,
and hybrid approaches. They included established
groups from academia and industry, as well as new
research teams. The evaluation runs also included
the translations of the 947 test sentences produced
by four free online systems in their default modes
(referred to as OS1..OS4). For 11 runs automatic
evaluation measures were calculated; eight runs
underwent manual evaluation (four online systems
plus four participants’ runs; no manual evaluation
was done by agreement with the participants for
the runs P3, P6, and P7 to reduce the workload).

ID Name and information
OS1 Phrase-based SMT
OS2 Phrase-based SMT
OS3 Hybrid (RBMT+statistical PE)
OS4 Dependency-based SMT
P1 Compreno, Hybrid, ABBYY Corp
P2 Pharaon, Moses, Yandex&TAUS data
P3,4 Balagur, Moses, Yandex&news data
P5 ETAP-3, RBMT, (Boguslavsky, 1995)
P6,7 Pereved, Moses, Internet data

OS3 is a hybrid system based on RBMT with
SMT post-editing (PE). P1 is a hybrid system with
analysis and generation driven by statistical evalu-
ation of hypotheses.
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All (330 sentences)
OS3 (highest) P1 OS1 OS2 OS4 P5 P2 P4 (lowest)

3.159 3.350 3.530 3.961 4.082 5.447 5.998 6.473
News (190 sentences)

OS3 (highest) P1 OS1 OS2 OS4 P5 P2 P4 (lowest)
2.947 3.450 3.482 4.084 4.242 5.474 5,968 6,353

Regulations (140 sentences)
P1 (highest) OS3 OS1 OS2 OS4 P5 P2 P4 (lowest)

3.214 3.446 3.596 3.793 3.864 5.411 6.039 6.636
Simulated dynamic ranking (insertion sort)

P1 (highest) OS1 OS3 OS2 OS4 P5 P4 P2 (lowest)
3.318 3.327 3.588 4.221 4.300 5.227 5.900 6.118

Simulated dynamic ranking (binary insertion sort)
OS1 (highest) P1 OS3 OS2 OS4 P5 P2 P4 (lowest)

2.924 3.045 3.303 3.812 4.267 5.833 5.903 6.882

Table 2: Human evaluation results

Table 1 gives the automatic scores for each
of participating runs and four online systems.
OS1 usually has the highest overall score (except
BLEU), it also has the highest scores for ‘regula-
tions’ (more formal texts), P1 scores are better for
the news documents.

14 assessors were recruited for evaluation (par-
ticipating team members and volunteers); the to-
tal volume of evaluation is 10,920 pairwise sen-
tence comparisons. Table 2 presents the rankings
of the participating systems using averaged ranks
from the human evaluation. There is no statisti-
cally significant difference (using Welch’s t-test at
p ≤ 0.05) in the overall ranks within the follow-
ing groups: (OS1, OS3, P1) < (OS2, OS4) < P5
< (P2, P4). OS3 (mostly RBMT) belongs to the
troika of leaders in human evaluation contrary to
the results of its automatic scores (Table 1). Sim-
ilarly, P5 is consistently ranked higher than P2 by
the assessors, while the automatic scores suggest
the opposite. This observation confirms the well-
known fact that the automatic scores underesti-
mate RBMT systems, e.g., (Béchar et al., 2012).

To investigate applicability of the automatic
measures to the English-Russian language direc-
tion, we computed Spearman’s ρ correlation be-
tween the ranks given by the evaluators and by
the respective measures. Because of the amount
of variation for each measure on the sentence
level, robust estimates, such as the median and
the trimmed mean, are more informative than
the mean, since they discard the outliers (Huber,
1996). The results are listed in Table 3. All mea-

sures exhibit reasonable correlation on the corpus
level (330 sentences), but the sentence-level re-
sults are less impressive. While TER and GTM
are known to provide better correlation with post-
editing efforts for English (O’Brien, 2011), free
word order and greater data sparseness on the sen-
tence level makes TER much less reliable for Rus-
sian. METEOR (with its built-in Russian lemma-
tisation) and GTM offer the best correlation with
human judgements.

The lower part of Table 2 also reports the results
of simulated dynamic ranking (using the NIST
rankings as the initial order for the sort operation).
It resulted in a slightly different final ranking of
the systems since we did not account for ties and
‘averaged ranks’. However, the ranking is prac-
tically the same up to the statistically significant
rank differences in reference ranking (see above).
The advantage is that it requires a significantly
lower number of pairwise comparisons. Insertion
sort yielded 5,131 comparisons (15.5 per sentence;
56% of exhaustive comparisons for 330 sentences
and 8 systems); binary insertion sort yielded 4,327
comparisons (13.1 per sentence; 47% of exhaus-
tive comparisons).

Out of the original set of 330 sentences for
human evaluation, 60 sentences were evaluated
by two annotators (which resulted in 60*28=1680
pairwise comparisons), so we were able to calcu-
late the standard Kohen’s κ and Krippendorff’s α
scores (Artstein and Poesio, 2008). The results of
inter-annotator agreement are: percentage agree-
ment 0.56, κ = 0.34, α = 0.48, which is simi-
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Sentence level Corpus
Metric Median Mean Trimmed level
BLEU 0.357 0.298 0.348 0.833
NIST 0.357 0.291 0.347 0.810
Meteor 0.429 0.348 0.393 0.714
TER 0.214 0.186 0.204 0.619
GTM 0.429 0.340 0.392 0.714

Table 3: Correlation to human judgements

lar to sentence ranking reported in other evaluation
campaigns (Callison-Burch et al., 2012; Callison-
Burch et al., 2011). It was interesting to see the
agreement results distinguishing the top three sys-
tems against the rest, i.e. by ignoring the assess-
ments for the pairs within each group, α = 0.53,
which indicates that the judges agree on the dif-
ference in quality between the top three systems
and the rest. On the other hand, the agreement re-
sults within the top three systems are low: κ =
0.23, α = 0.33, which is again in line with the re-
sults for similar evaluations between closely per-
forming systems (Callison-Burch et al., 2011).

5 Conclusions and future plans

This was the first attempt at making proper
quantitative and qualitative evaluation of the
English→Russian MT systems. In the future edi-
tions, we will be aiming at developing a new
test corpus with a wider genre palette. We
will probably complement the campaign with
Russian→English translation direction. We hope
to attract more participants, including interna-
tional ones and plan to prepare a ‘light version’
for students and young researchers. We will also
address the problem of tailoring automatic evalu-
ation measures to Russian — accounting for com-
plex morphology and free word order. To this
end we will re-use human evaluation data gath-
ered within the 2013 campaign. While the cam-
paign was based exclusively on data in one lan-
guage direction, the correlation results for auto-
matic MT quality measures should be applicable
to other languages with free word order and com-
plex morphology.

We have made the corpus comprising the source
sentences, their human translations, translations
by participating MT systems and the human eval-
uation data publicly available.8

8http://romip.ru/mteval/
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Abstract

We present IndoNet, a multilingual lexi-
cal knowledge base for Indian languages.
It is a linked structure of wordnets of
18 different Indian languages, Universal
Word dictionary and the Suggested Up-
per Merged Ontology (SUMO). We dis-
cuss various benefits of the network and
challenges involved in the development.
The system is encoded in Lexical Markup
Framework (LMF) and we propose mod-
ifications in LMF to accommodate Uni-
versal Word Dictionary and SUMO. This
standardized version of lexical knowledge
base of Indian Languages can now easily
be linked to similar global resources.

1 Introduction

Lexical resources play an important role in nat-
ural language processing tasks. Past couple of
decades have shown an immense growth in the de-
velopment of lexical resources such as wordnet,
Wikipedia, ontologies etc. These resources vary
significantly in structure and representation for-
malism.

In order to develop applications that can make
use of different resources, it is essential to link
these heterogeneous resources and develop a com-
mon representation framework. However, the dif-
ferences in encoding of knowledge and multilin-
guality are the major road blocks in development
of such a framework. Particularly, in a multilin-
gual country like India, information is available in
many different languages. In order to exchange in-
formation across cultures and languages, it is es-
sential to create an architecture to share various
lexical resources across languages.

In this paper we present IndoNet, a lexical re-
source created by merging wordnets of 18 dif-

ferent Indian languages1, Universal Word Dictio-
nary (Uchida et al., 1999) and an upper ontology,
SUMO (Niles and Pease, 2001).

Universal Word (UW), defined by a headword
and a set of restrictions which give an unambigu-
ous representation of the concept, forms the vo-
cabulary of Universal Networking Language. Sug-
gested Upper Merged Ontology (SUMO) is the
largest freely available ontology which is linked
to the entire English WordNet (Niles and Pease,
2003). Though UNL is a graph based repre-
sentation and SUMO is a formal ontology, both
provide language independent conceptualization.
This makes them suitable candidates for interlin-
gua.

IndoNet is encoded in Lexical Markup Frame-
work (LMF), an ISO standard (ISO-24613) for
encoding lexical resources (Francopoulo et al.,
2009).

The contribution of this work is twofold,

1. We propose an architecture to link lexical re-
sources of Indian languages.

2. We propose modifications in Lexical Markup
Framework to create a linked structure of
multilingual lexical resources and ontology.

2 Related Work

Over the years wordnet has emerged as the most
widely used lexical resource. Though most of the
wordnets are built by following the standards laid
by English Wordnet (Fellbaum, 1998), their con-
ceptualizations differ because of the differences in
lexicalization of concepts across languages. ‘Not

1Wordnets for Indian languages are developed in In-
doWordNet project. Wordnets are available in following
Indian languages: Assamese, Bodo, Bengali, English, Gu-
jarati, Hindi, Kashmiri, Konkani, Kannada, Malayalam, Ma-
nipuri, Marathi, Nepali, Punjabi, Sanskrit, Tamil, Telugu and
Urdu. These languages covers 3 different language families,
Indo Aryan, Sino-Tebetian and Dravidian.http://www.
cfilt.iitb.ac.in/indowordnet
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only that, there exist lexical gaps where a word
in one language has no correspondence in another
language, but there are differences in the ways lan-
guages structure their words and concepts’. (Pease
and Fellbaum, 2010).

The challenge of constructing a unified multi-
lingual resource was first addressed in EuroWord-
Net (Vossen, 1998). EuroWordNet linked word-
nets of 8 different European languages through
a common interlingual index (ILI). ILI consists
of English synsets and serves as a pivot to link
other wordnets. While ILI allows each language
wordnet to preserve its semantic structure, it has
two basic drawbacks as described in Fellbaum and
Vossen (2012),

1. An ILI tied to one specific language clearly
reflects only the inventory of the language it
is based on, and gaps show up when lexicons
of different languages are mapped to it.

2. The semantic space covered by a word in one
language often overlaps only partially with a
similar word in another language, resulting in
less than perfect mappings.

Subsequently in KYOTO project2, ontologies are
preferred over ILI for linking of concepts of dif-
ferent languages. Ontologies provide language in-
dpendent conceptualization, hence the linking re-
mains unbiased to a particular language. Top level
ontology SUMO is used to link common base
concepts across languages. Because of the small
size of the top level ontology, only a few wordnet
synsets can be linked directly to the ontological
concept and most of the synsets get linked through
subsumption relation. This leads to a significant
amount of information loss.

KYOTO project used Lexical Markup Frame-
work (LMF) (Francopoulo et al., 2009) as a rep-
resentation language. ‘LMF provides a com-
mon model for the creation and use of lexical re-
sources, to manage the exchange of data among
these resources, and to enable the merging of a
large number of individual electronic resources to
form extensive global electronic resources’ (Fran-
copoulo et al., 2009). Soria et al. (2009) proposed
WordNet-LMF to represent wordnets in LMF for-
mat. Henrich and Hinrichs (2010) have further
modified Wordnet-LMF to accommodate lexical

2http://kyoto-project.eu/xmlgroup.iit.
cnr.it/kyoto/index.html

relations. LMF also provides extensions for multi-
lingual lexicons and for linking external resources,
such as ontology. However, LMF does not explic-
itly define standards to share a common ontology
among multilingual lexicons.

Our work falls in line with EuroWordNet and
Kyoto except for the following key differences,

• Instead of using ILI, we use a ‘common con-
cept hierarchy’ as a backbone to link lexicons
of different languages.

• In addition to an upper ontology, a concept in
common concept hierarchy is also linked to
Universal Word Dictionary. Universal Word
dictionary provides additional semantic in-
formation regarding argument types of verbs,
that can be used to provide clues for selec-
tional preference of a verb.

• We refine LMF to link external resources
(e.g. ontologies) with multilingual lexicon
and to represent Universal Word Dictionary.

3 IndoNet

IndoNet uses a common concept hierarchy to
link various heterogeneous lexical resources. As
shown in figure 1, concepts of different wordnets,
Universal Word Dictionary and Upper Ontology
are merged to form the common concept hierar-
chy. Figure 1 shows how concepts of English
WordNet (EWN), Hindi Wordnet (HWN), upper
ontology (SUMO) and Universal Word Dictionary
(UWD) are linked through common concept hier-
archy (CCH).

This section provides details of Common Con-
cept Hierarcy and LMF encoding for different re-
sources.

Figure 1: An Example of Indonet Structure
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Figure 2: LMF representation for Universal Word Dictionary

3.1 Common Concept Hierarchy (CCH)

The common concept hierarchy is an abstract pivot
index to link lexical resources of all languages. An
element of a common concept hierarchy is defined
as < sinid1, sinid2, ..., uwid, sumoid > where,
sinidi is synset id of ith wordnet, uw id is univer-
sal word id, and sumo id is SUMO term id of the
concept. Unlike ILI, the hypernymy-hyponymy
relations from different wordnets are merged to
construct the concept hierarchy. Each synset of
wordnet is directly linked to a concept in ‘com-
mon concept hierarchy’.

3.2 LMF for Wordnet

We have adapted the Wordnet-LMF, as specified
in Soria et al. (2009). However IndoWordnet
encodes more lexical relations compared to Eu-
roWordnet. We enhanced the Wordnet-LMF to ac-
commodate the following relations: antonym, gra-
dation, hypernymy, meronym, troponymy, entail-
ment and cross part of speech links for ability and
capability.

3.3 LMF for Universal Word Dictionary

A Universal Word is composed of a headword and
a list of restrictions, that provide unique meaning
of the UW. In our architecture we allow each sense
of a headword to have more than one set of restric-
tions (defined by different UW dictionaries) and
be linked to lemmas of multiple languages with a
confidence score. This allows us to merge multiple

UW dictionaries and represent it in LMF format.
We introduce four new LMF classes; Restrictions,
Restriction, Lemmas and Lemma and add new at-
tributes; headword and mapping score to existing
LMF classes.

Figure 2 shows an example of LMF represen-
tation of UW Dictionary. At present, the dic-
tionary is created by merging two dictionaries,
UW++ (Boguslavsky et al., 2007) and CFILT
Hin-UW3. Lemmas from different languages are
mapped to universal words and stored under the
Lemmas class.

3.4 LMF to link ontology with Common
Concept Hierarchy

Figure 3 shows an example LMF representation
of CCH. The interlingual pivot is represented
through SenseAxis. Concepts in different re-
sources are linked to the SenseAxis in such a way
that concepts linked to same SenseAxis convey the
same Sense.

Using LMF class MonolingualExternalRefs,
ontology can be integrated with a monolingual
lexicon. In order to share an ontology among mul-
tilingual resources, we modify the original core
package of LMF.

As shown in figure 3, a SUMO term is shared
across multiple lexicons via the SenseAxis. SUMO
is linked with concept hierarchy using the follow-

3http://www.cfilt.iitb.ac.in/˜hdict/
webinterface_user/
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Figure 3: LMF representation for Common Concept Hierarchy

ing relations: antonym, hypernym, instance and
equivalent. In order to support these relations,
Reltype attribute is added to the interlingual Sense
class.

4 Observation

Table 1 shows part of speech wise status of linked
concepts4. The concept hierarchy contains 53848
concepts which are shared among wordnets of In-
dian languages, SUMO and Universal Word Dic-
tionary. Out of the total 53848 concepts, 21984 are
linked to SUMO, 34114 are linked to HWN and
44119 are linked to UW. Among these, 12,254 are
common between UW and SUMO and 21984 are
common between wordnet and SUMO.

POS HWN UW SUMO CCH
adjective 5532 2865 3140 5193
adverb 380 2697 249 2813
noun 25721 32831 16889 39620
verb 2481 5726 1706 6222
total 34114 44119 21984 53848

Table 1: Details of the concepts linked

This creates a multilingual semantic lexicon
that captures semantic relations between concepts
of different languages. Figure 1 demonstrates
this with an example of ‘kinship relation’. As

4Table 1 shows data for Hindi Wordnet. Statistics for
other wordnets can be found at http://www.cfilt.
iitb.ac.in/wordnet/webhwn/iwn_stats.php

shown in Figure 1, ‘uncle’ is an English lan-
guage concept defined as ‘the brother of your fa-
ther or mother’. Hindi has no concept equivalent
to ‘uncle’ but there are two more specific concepts
‘kaka’, ‘brother of father.’ and ‘mama’, ‘brother
of mother.’

The lexical gap is captured when these con-
cepts are linked to CCH. Through CCH, these con-
cepts are linked to SUMO term ‘FamilyRelation’
which shows relation between these concepts.
Universal Word Dictionary captures exact rela-
tion between these concepts by applying restric-
tions [chacha] uncle(icl>brother (mod>father))
and [mama] uncle(icl>brother (mod>mother)).
This makes it possible to link concepts across lan-
guages.

5 Conclusion

We have presented a multilingual lexical resource
for Indian languages. The proposed architecture
handles the ‘lexical gap’ and ‘structural diver-
gence’ among languages, by building a common
concept hierarchy. In order to encode this resource
in LMF, we developed standards to represent UW
in LMF.

IndoNet is emerging as the largest multilingual
resource covering 18 languages of 3 different lan-
guage families and it is possible to link or merge
other standardized lexical resources with it.

Since Universal Word dictionary is an integral
part of the system, it can be used for UNL based
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Machine Translation tasks. Ontological structure
of the system can be used for multilingual infor-
mation retrieval and extraction.

In future, we aim to address ontological issues
of the common concept hierarchy and integrate
domain ontologies with the system. We are also
aiming to develop standards to evaluate such mul-
tilingual resources and to validate axiomatic foun-
dation of the same. We plan to make this resource
freely available to researchers.
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Abstract

This paper proposes a methodology for
generating specialized Japanese data sets
for textual entailment, which consists of
pairs decomposed into basic sentence rela-
tions. We experimented with our method-
ology over a number of pairs taken from
the RITE-2 data set. We compared
our methodology with existing studies
in terms of agreement, frequencies and
times, and we evaluated its validity by in-
vestigating recognition accuracy.

1 Introduction

In recognizing textual entailment (RTE), auto-
mated systems assess whether a human reader
would consider that, given a snippet of text t1 and
some unspecified (but restricted) world knowl-
edge, a second snippet of text t2 is true. An ex-
ample is given below.

Ex. 1) Example of a sentence pair for RTE
• Label: Y
• t1: Shakespeare wrote Hamlet and Macbeth.
• t2: Shakespeare is the author of Hamlet.

“Label” on line 1 shows whether textual entail-
ment (TE) holds between t1 and t2. The pair is
labeled ‘Y’ if the pair exhibits TE and ‘N’ other-
wise.

It is difficult for computers to make such as-
sessments because pairs have multiple interrelated
basic sentence relations (BSRs, for detailed in-
formation on BSRs, see section 3). Recognizing
each BSRs in pairs exactly is difficult for com-
puters. Therefore, we should generate special-
ized data sets consisting of t1-t2 pairs decomposed
into BSRs and a methodology for generating such
data sets since such data and methodologies for
Japanese are unavailable at present.

This paper proposes a methodology for gener-
ating specialized Japanese data sets for TE that

consist of monothematic t1-t2 pairs (i.e., pairs in
which only one BSR relevant to the entailment
relation is highlighted and isolated). In addition,
we compare our methodology with existing stud-
ies and analyze its validity.

2 Existing Studies

Sammons et al.(2010) point out that it is necessary
to establish a methodology for decomposing pairs
into chains of BSRs, and that establishing such
methodology will enable understanding of how
other existing studies can be combined to solve
problems in natural language processing and iden-
tification of currently unsolvable problems. Sam-
mons et al. experimented with their methodology
over the RTE-5 data set and showed that the recog-
nition accuracy of a system trained with their spe-
cialized data set was higher than that of the system
trained with the original data set. In addition, Ben-
tivogli et al.(2010) proposed a methodology for
classifying more details than was possible in the
study by Sammons et al..

However, these studies were based on only En-
glish data sets. In this regard, the word-order
rules and the grammar of many languages (such
as Japanese) are different from those of English.
We thus cannot assess the validity of methodolo-
gies for any Japanese data set because each lan-
guage has different usages. Therefore, it is neces-
sary to assess the validity of such methodologies
with specialized Japanese data sets.

Kotani et al. (2008) generated specialized
Japanese data sets for RTE that were designed
such that each pair included only one BSR. How-
ever, in that approach the data set is generated ar-
tificially, and BSRs between pairs of real world
texts cannot be analyzed.

We develop our methodology by generating
specialized data sets from a collection of pairs
from RITE-21 binary class (BC) subtask data sets
containing sentences from Wikipedia. RITE-2 is
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an evaluation-based workshop focusing on RTE.
Four subtasks are available in RITE-2, one of
which is the BC subtask whereby systems assess
whether there is TE between t1 and t2. The rea-
son why we apply our methodology to part of the
RITE-2 BC subtask data set is that we can con-
sider the validity of the methodology in view of
the recognition accuracy by using the data sets
generated in RITE-2 tasks, and that we can an-
alyze BSRs in real texts by using sentence pairs
extracted from Wikipedia.

3 Methodology

In this study, we extended and refined the method-
ology defined in Bentivogli et al.(2010) and devel-
oped a methodology for generating Japanese data
sets broken down into BSRs and non-BSRs as de-
fined below.

Basic sentence relations (BSRs):
－ Lexical: Synonymy, Hypernymy, Entailment,

Meronymy;
－ Phrasal: Synonymy, Hypernymy, Entailment,

Meronymy, Nominalization, Corference;
－ Syntactic: Scrambling, Case alteration, Modi-

fier, Transparent head, Clause, List, Apposi-
tion, Relative clause;

－ Reasoning: Temporal, Spatial, Quantity, Im-
plicit relation, Inference;

Non-basic sentence relations (non-BSRs)：
－ Disagreement: Lexical, Phrasal, Modal, Mod-

ifier, Temporal, Spatial, Quantity;

Mainly, we used relations defined in Bentivogli
et al.(2010) and divided Synonymy, Hypernymy,
Entailment and Meronymy into Lexical and
Phrasal. The differences between our study and
Bentivogli et al.(2010) are as follows. Demonymy
and Statements in Bentivogli et al.(2010) were
not considered in our study because they were
not necessary for Japanese data sets. In addi-
tion, Scrambling, Entailment, Disagreement:
temporal, Disagreement: spatial and Disagree-
ment: quantity were newly added in our study.
Scrambling is a rule for changing the order of
phrases and clauses. Entailment is a rule whereby
the latter sentence is true whenever the former is
true (e.g., “divorce”→ “marry”). Entailment is a
rule different from Synonymy, Hypernymy and
Meronymy.

The rules for decomposition are schematized as
follows:

1http://www.cl.ecei.tohoku.ac.jp/rite2/doku.php

－ Break down pairs into BSRs in order to bring
t1 close to t2 gradually, as the interpretation
of the converted sentence becomes wider

－ Label each pair of BSRs or non-BSRs
such that each pair is decomposed to ensure
that there are not multiple BSRs

An example is shown below, where the underlined
parts represent the revised points.

t1： シェイクスピアは ハムレット や マクベスを 書いた。
Shakespearenom Hamlet com Macbethacc writepast

‘Shakespeare wrote Hamlet and Macbeth.’
[List] シェイクスピアは ハムレットを 書いた。

Shakespearenom Hamletacc writepast

‘Shakespeare wrote Hamlet.’
t2：[Synonymy] シェイクスピアは ハムレットの 作者 である。

：phrasal Shakespearenom Hamletgen authorcomp becop

‘Shakespeare is the author of Hamlet.’

Table 1: Example of a pair with TE

An example of a pair without TE is shown below.

t1： ブルガリアは ユーラシア大陸に ある。
Bulgarianom Eurasia.continentdat becop

‘Bulgaria is on the Eurasian continent.’
[Entailment] ブルガリアは 大陸国家 である。
： phrasal Bulgarianom continental.statecomp becop

‘Bulgaria is a continental state.’
t2：[Disagreement] ブルガリアは 島国 である。

：lexical Bulgarianom island.countrycomp becop

‘Bulgaria is an island country.’

Table 2: Example of a pair without TE (Part 1)

To facilitate TE assessments like Table 3, non-
BSR labels were used in decomposing pairs. In
addition, we allowed labels to be used several
times when some BSRs in a pair are related to ‘N’
assessments.

t1： ブルガリアは ユーラシア大陸に ある。
Bulgarianom Eurasia.continentdat becop

‘Bulgaria is on the Eurasian continent.’
[Disagreement] ブルガリアは ユーラシア大陸に ない。

：modal Bulgarianom Eurasia.continentdat becop−neg

‘Bulgaria is not on the Eurasian continent.’
t2：[Synonymy] ブルガリアは ヨーロッパに 属さない。

：lexical Bulgarianom Europedat belongcop−neg

‘Bulgaria does not belong to Europe.’

Table 3: Example of a pair without TE (Part 2)

As mentioned above, the idea here is to decom-
pose pairs in order to bring t1 closer to t2, the
latter of which in principle has a wider semantic
scope. We prohibited the conversion of t2 because
it was possible to decompose the pairs such that
they could be true even if there was no TE. Never-
theless, since it is sometimes easier to convert t2,
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we allowed the conversion of t2 in only the case
that t1 contradicted t2 and the scope of t2 did not
overlap with that of t1 even if t2 was converted and
TE would be unchanged. An example in case that
we allowed to convert t2 is shown below. Bold-
faced types in Table 4 shows that it becomes easy
to compare t1 with t2 by converting to t2.

t1： トムは 今日、朝食を 食べなかった。
Tomnom today breakfastacc eatpast−neg

‘Tom didn’t eat breakfast today.’
[Scrambling] 今日、 トムは 朝食を 食べなかった。

today Tomnom breakfastacc eatpast−neg

‘Today, Tom didn’t eat breakfast.’
t2： 今朝、 トムは パンを 食べた。

this.morning Tomnom breadacc eatpast

‘This morning, Tom ate bread and salad.’
[Entailment] 今日、 トムは 朝食を 食べた。
：phrasal today Tomnom breakfastacc eatpast

‘Today, Tom ate breakfast.’
[Disagreement] 今日、トムは朝食を食べた。

：modal ‘Today, Tom ate breakfast.’

Table 4: Example of conversion of t2

4 Results

4.1 Comparison with Existing Studies
We applied our methodology to 173 pairs from the
RITE-2 BC subtask data set. The pairs were de-
composed by one annotator, and the decomposed
pairs were assigned labels by two annotators. Dur-
ing labeling, we used the labels presented in Sec-
tion 3 and “unknown” in cases where pairs could
not be labeled. Our methodology was developed
based on 112 pairs, and by using the other 61 pairs,
we evaluated the inter-annotator agreement as well
as the frequencies and times of decomposition.

The agreement for 241 monothematic pairs gen-
erated from 61 pairs amounted to 0.83 and was
computed as follows. The kappa coefficient for
them amounted 0.81.

Agreement = “Agreed′′ labels/Total 2

Bentivogli et al. (2010) reported an agreement
rate of 0.78, although they computed the agree-
ment by using the Dice coefficient (Dice, 1945),
and therefore the results are not directly compara-
ble to ours. Nevertheless, the close values suggest

2Because the “Agreed” pairs were clear to be classi-
fied as “Agreed”, where “Total” is the number of pairs la-
beled “Agreed” subtracted from the number of labeled pairs.
“Agreed” labels is the number of pairs labeled “Agreed” sub-
tract from the number of pairs with the same label assigned
by the two annotators.

that our methodology is comparable to that in Ben-
tivogli’s study in terms of agreement.

Table 5 shows the distribution of monothematic
pairs with respect to original Y/N pairs.

O
rig

in
al

pa
irs Monothematic pairs

Y N Total
Y (32) 116 – 116
N (29) 96 29 125

Total (61) 212 29 241

Table 5: Distribution of monothematic pairs with
respect to original Y/N pairs

When the methodology was applied to 61 pairs,
a total of 241 and an average of 3.95 monothe-
matic pairs were derived. The average was slightly
greater than the 2.98 reported in (Bentivogli et al.,
2010). For pairs originally labeled ‘Y’ and ‘N’, an
average of 3.62 and 3.31 monothematic pairs were
derived, respectively. Both average values were
slightly higher than the values of 3.03 and 2.80 re-
ported in (Bentivogli et al., 2010). On the basis of
the small differences between the average values
in our study and those in (Bentivogli et al., 2010),
we are justified in saying that our methodology is
valid.

Table 6 3 shows the distribution of BSRs in t1-
t2 pairs in an existing study and the present study.
We can see from Table 6 that Corference was seen
more frequently in Bentivogli’s study than in our
study, while Entailment and Scrambling were
seen more frequently in our study. This demon-
strates that differences between languages are rele-
vant to the distribution and classification of BSRs.

An average of 5 and 4 original pairs were de-
composed per hour in our study and Bentivogli’s
study, respectively. This indicates that the com-
plexity of our methodology is not much different
from that in Bentivogli et al.(2010).

4.2 Evaluation of Accuracy in BSR
In the RITE-2 formal run4, 15 teams used our spe-
cialized data set for the evaluation of their systems.
Table 7 shows the average of F1 scores5 for each
BSR.

Scrambling and Modifier yielded high scores
(close to 90%). The score of List was also

3Because “lexical” and “phrasal” are classified together
in Bentivogli et al.(2010), they are not shown separately in
Table 6.

4In RITE-2, data generated by our methodology were re-
leased as “unit test data”.

5The traditional F1 score is the harmonic mean of preci-
sion and recall.
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BSR Monothematic pairs
Bentivogli et al. Present study
Total Y N Total Y N

Synonymy 25 22 3 45 45 0
Hypernymy 5 3 2 5 5 0
Entailment - - - 44 44 0
Meronymy 7 4 3 1 1 0

Nominalization 9 9 0 1 1 0
Corference 49 48 1 3 3 0
Scrambling - - - 15 15 0

Case alteration 7 5 2 7 7 0
Modifier 25 15 10 42 42 0

Transparent head 6 6 0 1 1 0
Clause 5 4 1 14 14 0

List 1 1 0 3 3 0
Apposition 3 2 1 1 1 0

Relative clause 1 1 0 8 8 0
Temporal 2 1 1 1 1 0

Spatial 1 1 0 1 1 0
Quantity 6 0 6 0 0 0

Implicit relation 7 7 0 18 18 0
Inference 40 26 14 2 2 0

Disagreement: lexical/phrasal 3 0 3 27 0 27
Disagreement: modal 1 0 1 1 0 1

Disagreement: temporal - - - 1 0 1
Disagreement: spatial - - - 0 0 0

Disagreement: quantity - - - 0 0 0
Demonymy 1 1 0 - - -
Statements 1 1 0 - - -

total 205 157 48 241 212 29

Table 6: Distribution of BSRs in t1-t2 pairs in an
existing study and in the present study using our
methodology

BSR F1(%) Monothematic Miss
Pairs

Scrambling 89.6 15 4
Modifier 88.8 42 0

List 88.6 3 0
Temporal 85.7 1 1

Relative clause 85.4 8 2
Clause 85.0 14 2

Hypernymy: lexical 85.0 5 1
Disagreement: phrasal 80.1 25 0

Case alteration 79.9 7 2
Synonymy: lexical 79.7 9 6
Transparent head 78.6 1 2
Implicit relation 75.7 18 2

Synonymy: phrasal 73.6 36 9
Corference 70.9 3 1

Entailment: phrasal 70.2 44 7
Disagreement: lexical 69.0 2 0

Meronymy: lexical 64.3 1 1
Nominalization 64.3 1 0

Apposition 50.0 1 1
Spatial 50.0 1 1

Inference 40.5 2 2
Disagreement: modal 35.7 1 0

Disagreement: temporal 28.6 1 1
Total - 241 41

Table 7: Average F1 scores in BSR and frequen-
cies of misclassifications by annotators

nearly 90%, although the data sets included only
3 instances. These scores were high because
pairs with these BSRs are easily recognized in
terms of syntactic structure. By contrast, Dis-
agreement: temporal, Disagreement: modal,
Inference, Spatial and Apposition yielded low
scores (less than 50%). The scores of Disagree-
ment: lexical, Nominalization and Disagree-
ment: Meronymy were about 50-70%. BSRs
that yielded scores of less than 70% occurred less
than 3 times, and those that yielded scores of not

more than 70% occurred 3 times or more, except
for Temporal and Transparent head. Therefore,
the frequencies of BSRs are related to F1 scores,
and we should consider how to build systems that
recognize infrequent BSRs accurately. In addi-
tion, F1 scores in Synonymy: phrasal and En-
tailment: phrasal are low, although these are la-
beled frequently. This is one possible direction of
future work.

Table 7 also shows the number of pairs in BSR
to which the two annotators assigned different la-
bels. For example, one annotator labeled t2 [Ap-
position] while the other labeled t2 [Spatial] in
the following pair:

Ex. 2) Example of a pair for RTE
• t1: Tokyo, the capital of Japan, is in Asia.
• t2: The capital of Japan is in Asia.

We can see from Table 7 that the F1 scores for
BSRs, which are often assessed as different by dif-
ferent people, are generally low, except for several
labels, such as Synonymy: lexical and Scram-
bling. For this reason, we can conjecture that
cases in which computers experience difficulty de-
termining the correct labels are correlated with
cases in which humans also experience such dif-
ficulty.

5 Conclusions

This paper presented a methodology for generat-
ing Japanese data sets broken down into BSRs
and Non-BSRs, and we conducted experiments in
which we applied our methodology to 61 pairs
extracted from the RITE-2 BC subtask data set.
We compared our method with that of Bentivogli
et al.(2010) in terms of agreement as well as
frequencies and times of decomposition, and we
obtained similar results. This demonstrated that
our methodology is as feasible as Bentivogli et
al.(2010) and that differences between languages
emerge only as the different sets of labels and the
different distributions of BSRs. In addition, 241
monothematic pairs were recognized by comput-
ers, and we showed that both the frequencies of
BSRs and the rate of misclassification by humans
are relevant to F1 scores.

Decomposition patterns were not empirically
compared in the present study and will be investi-
gated in future work. We will also develop an RTE
inference system by using our specialized data set.

276



References
Bentivogli, L., Cabrio, E., Dagan, I, Giampiccolo, D.,

Leggio, M. L., Magnini,B. 2010. Building Textual
Entailment Specialized Data Sets: a Methodology
for Isolating Linguistic Phenomena Relevant to In-
ference. In Proceedings of LREC 2010, Valletta,
Malta.

Dagan, I, Glickman, O., Magnini, B. 2005. Recog-
nizing Textual Entailment Challenge. In Proc. of
the First PASCAL Challenges Workshop on RTE.
Southampton, U.K.

Kotani, M., Shibata, T., Nakata, T, Kurohashi, S. 2008.
Building Textual Entailment Japanese Data Sets and
Recognizing Reasoning Relations Based on Syn-
onymy Acquired Automatically. In Proceedings of
the 14th Annual Meeting of the Association for Nat-
ural Language Processing, Tokyo, Japan.

Magnini, B., Cabrio, E. 2009. Combining Special-
izedd Entailment Engines. In Proceedings of LTC
’09. Poznan, Poland.

Dice, L. R. 1945. Measures of the amount of ecologic
association between species. Ecology, 26(3):297-
302.

Mark Sammons, V.G.Vinod Vydiswaran, Dan Roth.
2010. ”Ask not what textual entailment can do for
you...”. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics, Uppsala, Sweden, pp. 1199-1208.

277



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 278–282,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Building Comparable Corpora Based on Bilingual LDA Model 

 Zede Zhu 
University of Science and Technology 
of China, Institute of Intelligent Ma-
chines Chinese Academy of Sciences 

Hefei, China 
zhuzede@mail.ustc.edu.cn 

Miao Li, Lei Chen, Zhenxin Yang 
Institute of Intelligent Machines Chinese 

Academy of Sciences 
Hefei, China 

mli@iim.ac.cn,alan.cl@163.com, 
xinzyang@mail.ustc.edu.cn 

 
  

Abstract 

Comparable corpora are important basic re-
sources in cross-language information pro-
cessing. However, the existing methods of 
building comparable corpora, which use inter-
translate words and relative features, cannot 
evaluate the topical relation between document 
pairs. This paper adopts the bilingual LDA 
model to predict the topical structures of the 
documents and proposes three algorithms of 
document similarity in different languages. 
Experiments show that the novel method can 
obtain similar documents with consistent top-
ics own better adaptability and stability per-
formance.  

1 Introduction 

Comparable corpora can be mined fine-grained 
translation equivalents, such as bilingual termi-
nologies, named entities and parallel sentences, 
to support the bilingual lexicography, statistical 
machine translation and cross-language infor-
mation retrieval (AbduI-Rauf et al., 2009). Com-
parable corpora are defined as pairs of monolin-
gual corpora selected according to the criteria of 
content similarity but non-direct translation in 
different languages, which reduces limitation of 
matching source language and target language 
documents. Thus comparable corpora have the 
advantage over parallel corpora in which they are 
more up-to-date, abundant and accessible (Ji, 
2009). 

Many works, which focused on the exploita-
tion of building comparable corpora, were pro-
posed in the past years. Tao et al. (2005) ac-
quired comparable corpora based on the truth 
that terms are inter-translation in different lan-
guages if they have similar frequency correlation 
at the same time periods. Talvensaari et al. (2007) 
extracted appropriate keywords from the source 
language documents and translated them into the 
target language, which were regarded as the que-

ry words to retrieve similar target documents. 
Thuy et al. (2009) analyzed document similarity 
based on the publication dates, linguistic inde-
pendent units, bilingual dictionaries and word 
frequency distributions. Otero et al. (2010) took 
advantage of the translation equivalents inserted 
in Wikipedia by means of interlanguage links to 
extract similar articles. Bo et al. (2010) proposed 
a comparability measure based on the expecta-
tion of finding the translation for each word.  

The above studies rely on the high coverage of 
the original bilingual knowledge and a specific 
data source together with the translation vocabu-
laries, co-occurrence information and language 
links. However, the severest problem is that they 
cannot understand semantic information. The 
new studies seek to match similar documents on 
topic level to solve the traditional problems. Pre-
iss (2012) transformed the source language topi-
cal model to the target language and classified 
probability distribution of topics in the same lan-
guage, whose shortcoming is that the effect of 
model translation seriously hampers the compa-
rable corpora quality. Ni et al. (2009) adapted 
monolingual topic model to bilingual topic mod-
el in which the documents of a concept unit in 
different languages were assumed to share iden-
tical topic distribution. Bilingual topic model is 
widely adopted to mine translation equivalents 
from multi-language documents (Mimno et al., 
2009; Ivan et al., 2011).  

Based on the bilingual topic model, this paper 
predicts the topical structure of documents in 
different languages and calculates the similarity 
of topics over documents to build comparable 
corpora. The paper concretely includes: 1) Intro-
duce the Bilingual LDA (Latent Dirichlet Alloca-
tion) model  which builds comparable corpora 
and improves the efficiency of matching similar 
documents; 2) Design a novel method of TFIDF 
(Topic Frequency-Inverse Document Frequency) 
to enhance the distinguishing ability of topics 
from different documents; 3) Propose a tailored 

278



method of conditional probability to calculate 
document similarity; 4) Address a language-
independent study which isn’t limited to a par-
ticular data source in any language. 

2 Bilingual LDA Model 

2.1 Standard LDA 

LDA model (Blei et al., 2003) represents the la-
tent topic of the document distribution by Di-
richlet distribution with a K-dimensional implicit 
random variable, which is transformed into a 
complete generative model when   is exerted to 
Dirichlet distribution (Griffiths et al., 2004) 
(Shown in Fig. 1), 

 m ,m n ,m n 
[1, ]mn N

[1, ]m M

k

[1, ]k K

 

Figure 1: Standard LDA model 

where  and   denote the parameters distribut-

ed by Dirichlet; K denotes the topic numbers; k  
denotes the vocabulary probability distribution in 
the topic k; M denotes the document number; m  
denotes the topic probability distribution in the 
document m; Nm denotes the length of m; ,m n

 
and ωm,n 

denote the topic and the word in m re-
spectively. 

2.2 Bilingual LDA 

Bilingual LDA is a bilingual extension of a 
standard LDA model. It takes advantage of the 
document alignment which shares the same topic 
distribution m  and uses different word distribu-

tions for each topic (Shown in Fig. 2), where S 
and T denote source language and target lan-
guage respectively.  


,

S
m n

,
T
m n

,
S
m n

,
T
m n T

k

S
k S

m

[1, ]m M

[1, ]S S
mn N

[1, ]T T
mn N [1, ]k K

T

 

Figure 2: Bilingual LDA model 

For each language l ( { , }l S T ), ,
l
m n and 

,
l
m n are drawn using , ( | )l l

m n n mP  
 
and 

, ,( | , )l l l l
m n n m nP   . 

Giving the comparable corpora M, the distri-
bution ,k v  can be obtained by sampling a new 

token as word v from a topic k. For new collec-

tion of documents M , keeping ,k v , the distri-

bution 
,lm k

  of sampling a topic k from document 

m  can be obtained as follows: 
( )

,
( )

1

( | )
( )

l

l

l

k
kl m

k Km k
k

km
k

n
P m

n








  








 ,     (1) 

where ( )
l

k

m
n  

denotes the total number of times 

that the document m  is assigned to the topic k. 

3 Building comparable corpora  

Based on the bilingual LDA model, building 
comparable corpora includes several steps to 
generate the bilingual topic model ,k v

 
from the 

given
 
bilingual corpora, predict the topic distri-

bution 
,lm k

  of the new documents, calculate the 

similarity of documents and select the largest 
similar document pairs. The key step is that the 
document similarity is calculated to align the 

source language document Sm  with relevant 

target language document Tm .  
As one general way of expressing similarity, 

the Kullback-Leibler (KL) Divergence is adopted 
to measure the document similarity by topic dis-
tributions  ,

S
m k

 and  ,
T

m k
 as follows: 

   , , ,
1

( , ) [ ( | ), ( | )]

log . (2)S S T

S T S T
KL

K

m k m k m k
k

Sim m m KL P m P m

  


  
    
   

 

The remainder section focuses on other two 
methods of calculating document similarity. 

3.1 Cosine Similarity 

The similarity between Sm and Tm can be meas-
ured by Topic Frequency-Inverse Document 
Frequency. It gives high weights to the topic 
which appears frequently in a specific document 
and rarely appears in other documents. Then the 
relation between 

,Sm
TFIDF

 and 
,Tm

TFIDF
  is 

measured by Cosine Similarity (CS). 
Similar to Term Frequency-Inverse Document 

Frequency (Manning et al.,1999), Topic Fre-
quency (TF) denoting frequency of topic   for 

the document lm is denoted by ( | )lP m  . Given 

a constant value , Inverse Document Frequency 
(IDF) is defined as the total number of docu-

ments M divided by the number of documents 
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: ( | )l lm P m   
 
containing a particular topic, 

and then taking the logarithm, which is calculat-
ed as follows: 

log
1 : ( | )l l

M
IDF

m P m 


  



 
.      (3) 

The TFIDF is calculated as follows: 
*

( | ) log
1 : ( | )

l

l l

TFIDF TF IDF
M

P m
m P m 



 
  




 
.   (4) 

Thus, the TFIDF score of the topic k over 

document lm  is given by: 

,

,

,

( | ) log
1 : ( | )

log . (5)
1 :

l

l

l

m k
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k l l

k

m k l

m k
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


 

 
  


 








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


 

The similarity between Sm and Tm is given by: 

, ,

, ,
1

2 2

, ,
1 1

( , ) ( , )

. (6)
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S T

S T
CS m m

K

m k m k
k

K K

m k m k
k k

Sim m m Cos TFIDF TFIDF

TFIDF TFIDF

TFIDF TFIDF

 



 






 

 
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 
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 3.2 Conditional Probability 

The similarity between Sm and Tm is defined as 
the Conditional Probability (CP) of documents 

( | )T SP m m   that 
Tm will be generated as a re-

sponse to the cue Sm . 
( )P   as prior topic distribution is assumed a 

uniform distribution and satisfied the condition 
( ) ( )kP P   . According to the total probabil-

ity formula, the document Tm is given as: 

1

1

( ) ( | ) ( )

( ) ( | ).

K
T T

k k
k

K
T

k
k

P m P m P

P P m





  

  





 

          (7)
 

Based on the Bayesian formula, the probabil-
ity that a given topic   is assigned to a particu-

lar target language document Tm  is expressed: 

1

( | ) ( | ) ( ) ( )

= ( | ) ( | ).

T T T

K
T T

k
k

P m P m P m P

P Z m P m


     


  

    (8)
 

The sum of all probabilities 
1

( | )
K

T
k

k

P m


 
 

that all topics   are assigned to a particular doc-

ument Tm  is a constant , thus equation (8) is 
converted as follows: 

( | ) ( | )T TP m P m     .             (9) 
According to the total probability formula, the 

similarity between Sm and Tm  is given by: 

 

1

1

, ,
1

(10)
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4 Experiments and analysis 

4.1 Datasets and Evaluation 

The experiments are conducted on two sets of 
Chinese-English comparable corpora. The first 
dataset is news corpora with 3254 comparable 
document pairs, from which 200 pairs are ran-
domly selected as the test dataset News-Test and 
the remainder is the training dataset News-Train. 
The second dataset contains 8317 bilingual Wik-
ipedia entry pairs, from which 200 pairs are ran-
domly selected as the test dataset Wiki-Test and 
the remainder is the training dataset Wiki-Train. 
Then News-Train and Wiki-Train are merged 
into the training dataset NW-Train. And the 
hand-labeled gold standard namely NW-Test is 
composed of News-Test and Wiki-Test.  

Braschler et al. (1998) used five levels of rele-
vance to assess the alignments as follows: Same 
Story, Related Story, Shared Aspect, Common 
Terminology and Unrelated. The paper selects 
the documents with Same Story and Related Sto-
ry as comparable corpora. Let Cp be the compa-
rable corpora in the building result and Cl be the 
comparable corpora in the labeled result. The 
Precision (P), Recall (R) and F-measure (F) are 
defined as: 

= ,
p l p l

lp

C C C C
P R

CC


 
,

2PR
F

P R



. (11) 

4.2 Results and analysis 

Two groups of validation experiments are set 
with sampling frequency of 1000, parameter   
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of 50/K, parameter   of 0.01 and topic number 
K of 600. 

Group 1: Different data source 

We learn bilingual LDA models by taking differ-
ent training datasets. The performance of three 
approaches (KL, CS and CP) is examined on dif-
ferent test datasets. Tab. 1 demonstrates these 
results with the winners for each algorithm in 
bold. 

Train Test 
KL CS CP 

P F P F P F 

News News 0.62 0.52 0.73 0.59 0.69 0.56

News Wiki 0.60 0.47 0.68 0.56 0.66 0.52

Wiki News 0.61 0.48 0.71 0.58 0.68 0.55

Wiki Wiki 0.63 0.50 0.75 0.60 0.71 0.59

NW NW 0.66 0.55 0.76 0.62 0.73 0.60

Table 1: Sensitivity of Data Source 

The results indicate the robustness and effec-
tiveness of these algorithms. The performance of 
algorithms on Wiki-Train is much better than 
News-Train. The main reason is that Wiki-Train 
is an extensive snapshot of human knowledge 
which can cover most topics talked in News-
Train. The probability of vocabularies among the 
test dataset which have not appeared in the train-
ing data is very low. And then the document top-
ic can effectively concentrate all the vocabular-
ies’ expressions. The topic model slightly faces 
with the problem of knowledge migration issue, 
so the performance of the topic model trained by 
Wiki-Train shows a slight decline in the experi-
ments on News-Test.  

CS shows the strongest performance among 
the three algorithms to recognize the document 
pairs with similar topics. CP has almost equiva-
lent performance with CS. Comparing the equa-
tion (5) and (6) with (10), we can find out that 
CP is similar to a simplified CS. CP can improve 
the operating efficiency and decrease the perfor-
mance. The performance achieved by KL is the 
weakest and there is a large gap between KL and 
others. In addition, the shortage of KL is that 
when the exchange between the source language 
and the target language documents takes place, 
different evaluations will occur in the same doc-
ument pairs. 

Group 2: Existing Methods Comparison 

We adopt the NW-Train and NW-Test as training 
set and test set respectively, and utilize the CS 
algorithm to calculate the document similarity to 

verify the excellence of methods in the study. 
Then we compare its performance with the exist-
ing representative approaches proposed by Thuy 
et al. (2009) and Preiss (2012) (Shown in Tab. 2).  

Algorithm P R F 

Thuy 0.45 0.32 0.37 

Preiss 0.67 0.44 0.53 

CS 0.76 0.53 0.62 

Table 2: Existing Methods Comparison 

The table shows CS outperforms other algo-
rithms, which indicates that bilingual LDA is 
valid to construct comparable corpora. Thuy et al. 
(2009) matches similar documents in the view of 
inter-translated vocabulary and co-occurrence 
information features, which cannot understand 
the content effectively. Preiss (2012) uses mono-
lingual training dataset to generate topic model 
and translates source language topic model into 
target language topic model respectively. Yet the 
translation accuracy constrains the matching ef-
fectiveness of similar documents, and the cosine 
similarity is directly used to calculate document-
topic similarity failing to highlight the topic con-
tributions of different documents. 

5 Conclusion  

This study proposes a new method of using bi-
lingual topic to match similar documents. When 
CS is used to match the documents, TFIDF is 
proposed to enhance the topic discrepancies 
among different documents. The method of CP is 
also addressed to measure document similarity. 

Experimental results show that the matching 
algorithm is superior to the existing algorithms. 
It can utilize comprehensively large scales of 
document information in training set to avoid the 
information deficiency of the document itself and 
over-reliance on bilingual knowledge. The algo-
rithm makes the document match on the basis of 
understanding the document. This study does not 
calculate similar contents existed in the monolin-
gual documents. However, a large number of 
documents in the same language describe the 
same event. We intend to incorporate monolin-
gual document similarity into bilingual topics 
analysis to match multi-documents in different 
languages perfectly. 
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Abstract

Automatic acquisition of inference rules
for predicates is widely addressed by com-
puting distributional similarity scores be-
tween vectors of argument words. In
this scheme, prior work typically refrained
from learning rules for low frequency
predicates associated with very sparse ar-
gument vectors due to expected low reli-
ability. To improve the learning of such
rules in an unsupervised way, we propose
to lexically expand sparse argument word
vectors with semantically similar words.
Our evaluation shows that lexical expan-
sion significantly improves performance
in comparison to state-of-the-art baselines.

1 Introduction

The benefit of utilizing template-based inference
rules between predicates was demonstrated in
NLP tasks such as Question Answering (QA)
(Ravichandran and Hovy, 2002) and Information
Extraction (IE) (Shinyama and Sekine, 2006). For
example, the inference rule ‘X treat Y → X relieve
Y’, between the templates ‘X treat Y’ and ‘X re-
lieve Y’ may be useful to identify the answer to
“Which drugs relieve stomach ache?”.

The predominant unsupervised approach for
learning inference rules between templates is via
distributional similarity (Lin and Pantel, 2001;
Ravichandran and Hovy, 2002; Szpektor and Da-
gan, 2008). Specifically, each argument slot in
a template is represented by an argument vector,
containing the words (or terms) that instantiate this
slot in all of the occurrences of the template in a
learning corpus. Two templates are then deemed
semantically similar if the argument vectors of
their corresponding slots are similar.

Ideally, inference rules should be learned for
all templates that occur in the learning corpus.

However, many templates are rare and occur only
few times in the corpus. This is a typical NLP
phenomenon that can be associated with either a
small learning corpus, as in the cases of domain
specific corpora and resource-scarce languages, or
with templates with rare terms or long multi-word
expressions such as ‘X be also a risk factor to Y’
or ‘X finish second in Y’, which capture very spe-
cific meanings. Due to few occurrences, the slots
of rare templates are represented with very sparse
argument vectors, which in turn lead to low relia-
bility in distributional similarity scores.

A common practice in prior work for learn-
ing predicate inference rules is to simply disre-
gard templates below a minimal frequency thresh-
old (Lin and Pantel, 2001; Kotlerman et al., 2010;
Dinu and Lapata, 2010; Ritter et al., 2010). Yet,
acquiring rules for rare templates may be benefi-
cial both in terms of coverage, but also in terms
of more accurate rule application, since rare tem-
plates are less ambiguous than frequent ones.

We propose to improve the learning of rules be-
tween infrequent templates by expanding their ar-
gument vectors. This is done via a “dual” distribu-
tional similarity approach, in which we consider
two words to be similar if they instantiate similar
sets of templates. We then use these similarities
to expand the argument vector of each slot with
words that were identified as similar to the original
arguments in the vector. Finally, similarities be-
tween templates are computed using the expanded
vectors, resulting in a ‘smoothed’ version of the
original similarity measure.

Evaluations on a rule application task show
that our lexical expansion approach significantly
improves the performance of the state-of-the-art
DIRT algorithm (Lin and Pantel, 2001). In addi-
tion, our approach outperforms a similarity mea-
sure based on vectors of latent topics instead of
word vectors, a common way to avoid sparseness
issues by means of dimensionality reduction.

283



2 Technical Background

The distributional similarity score for an inference
rule between two predicate templates, e.g. ‘X re-
sign Y→ X quit Y’, is typically computed by mea-
suring the similarity between the argument vec-
tors of the corresponding X slots and Y slots of
the two templates. To this end, first the argument
vectors should be constructed and then a similarity
measure between two vectors should be provided.
We note that we focus here on binary templates
with two slots each, but this approach can be ap-
plied to any template.

A common starting point is to compute a
co-occurrence matrix M from a learning cor-
pus. M ’s rows correspond to the template slots
and the columns correspond to the various terms
that instantiate the slots. Each entry Mi,j , e.g.
Mx quit,John, contains a count of the number of
times the term j instantiated the template slot i in
the corpus. Thus, each row Mi,∗ corresponds to
an argument vector for slot i. Next, some func-
tion of the counts is used to assign weights to all
Mi,j entries. In this paper we use pointwise mu-
tual information (PMI), which is common in prior
work (Lin and Pantel, 2001; Szpektor and Dagan,
2008).

Finally, rules are assessed using some similar-
ity measure between corresponding argument vec-
tors. The state-of-the-art DIRT algorithm (Lin and
Pantel, 2001) uses the highly cited Lin similarity
measures (Lin, 1998) to score rules between bi-
nary templates as follows:

(1)Lin(v, v′) =

∑
w∈v∩v′ [v(w) + v′(w)]∑
w∈v∪v′ [v(w) + v′(w)]

(2)
DIRT (l → r)

=
√
Lin(vl:x, vr:x) · Lin(vl:y, vr:y)

where v and v′ are two argument vectors, l and
r are the templates participating in the inference
rule and vl:x corresponds to the argument vector
of slot X of template l, etc. While the original
DIRT algorithm utilizes the Lin measure, one can
replace it with any other vector similarity measure.

A separate line of research for word simi-
larity introduced directional similarity measures
that have a bias for identifying generaliza-
tion/specification relations, i.e. relations be-
tween predicates with narrow (or specific) seman-
tic meanings to predicates with broader meanings

inferred by them (unlike the symmetric Lin). One
such example is the Cover measure (Weeds and
Weir, 2003):

(3)Cover(v, v′) =

∑
w∈v∩v′ [v(w)]∑
w∈v∪v′ [v(w)]

As can be seen, in the core of the Lin and Cover
measures, as well as in many other well known
distributional similarity measures such as Jaccard,
Dice and Cosine, stand the number of shared ar-
guments vs. the total number of arguments in the
two vectors. Therefore, when the argument vec-
tors are sparse, containing very few non-zero fea-
tures, these scores become unreliable and volatile,
changing greatly with every inclusion or exclusion
of a single shared argument.

3 Lexical Expansion Scheme

We wish to overcome the sparseness issues in rare
feature vectors, especially in cases where argu-
ment vectors of semantically similar predicates
comprise similar but not exactly identical argu-
ments. To this end, we propose a three step
scheme. First, we learn lexical expansion sets for
argument words, such as the set {euros, money}
for the word dollars. Then we use these sets to ex-
pand the argument word vectors of predicate tem-
plates. For example, given the template ‘X can
be exchanged for Y’, with the following argument
words instantiating slot X {dollars, gold}, and
the expansion set above, we would expand the ar-
gument word vector to include all the following
words {dollars, euros, money, gold}. Finally, we
use the expanded argument word vectors to com-
pute the scores for predicate inference rules with a
given similarity measure.

When a template is instantiated with an ob-
served word, we expect it to also be instantiated
with semantically similar words such as the ones
in the expansion set of the observed word. We
“blame” the lack of such template occurrences
only on the size of the corpus and the sparseness
phenomenon in natural languages. Thus, we uti-
lize our lexical expansion scheme to synthetically
add these expected but missing occurrences, ef-
fectively smoothing or generalizing over the ex-
plicitly observed argument occurrences. Our ap-
proach is inspired by query expansion (Voorhees,
1994) in Information Retrieval (IR), as well as by
the recent lexical expansion framework proposed
in (Biemann and Riedl, 2013), and the work by
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Miller et al. (2012) on word sense disambigua-
tion. Yet, to the best of our knowledge, this is the
first work that applies lexical expansion to distri-
butional similarity feature vectors. We next de-
scribe our scheme in detail.

3.1 Learning Lexical Expansions

We start by constructing the co-occurrence matrix
M (Section 2), where each entry Mt:s,w indicates
the number of times that word w instantiates slot
s of template t in the learning corpus, denoted by
’t:s’, where s can be either X or Y.

In traditional distributional similarity, the rows
Mt:s,∗ serve as argument vectors of template slots.
However, to learn expansion sets we take a “dual”
view and consider each matrix columnM∗:∗,w (de-
noted vw) as a feature vector for the argument
word w. Under this view, templates (or more
specifically, template slots) are the features. For
instance, for the word dollars the respective fea-
ture vector may include entries such as ‘X can be
exchanged for’, ‘can be exchanged for Y’, ‘pur-
chase Y’ and ‘sell Y’.

We next learn an expansion set per each word
w by computing the distributional similarity be-
tween the vectors of w and any other argument
word w′, sim(vw, vw′). Then we take the N most
similar words as w’s expansion set with degree
N , denoted by LNw = {w′1, ..., w′N}. Any simi-
larity measure could be used, but as our experi-
ments show, different measures generate sets with
different properties, and some may be fitter for ar-
gument vector expansion than others.

3.2 Expanding Argument Vectors

Given a row count vector Mt:s,∗ for slot s of tem-
plate t, we enrich it with expansion sets as fol-
lows. For each w in Mt:s,∗, the original count in
vt:s(w) is redistributed equally between itself and
all words in w’s expansion set, i.e. all w′ ∈ LNw ,
(possibly yielding fractional counts) where N is a
global parameter of the model. Specifically, the
new count that is assigned to each word w is its
remaining original count after it has been redis-
tributed (or zero if no original count), plus all the
counts that were distributed to it from other words.

Next, PMI weights are recomputed according to
the new counts, and the resulting expanded vector
is denoted by v+t:s. Similarity between template
slots is now computed over the expanded vectors
instead of the original ones, e.g. Lin(v+l:x, v

+
r:x).

4 Experimental Settings

We constructed a relatively small learning corpus
for investigating the sparseness issues of such cor-
pora. To this end, we used a random sample from
the large scale web-based ReVerb corpus1 (Fader
et al., 2011), comprising tuple extractions of pred-
icate templates with their argument instantiations.
We applied some clean-up preprocessing to these
extractions, discarding stop words, rare words and
non-alphabetical words that instantiated either the
X or the Y argument slots. In addition, we dis-
carded templates that co-occur with less than 5
unique argument words in either of their slots, as-
suming that such few arguments cannot convey re-
liable semantic information, even with expansion.
Our final corpus consists of around 350,000 ex-
tractions and 14,000 unique templates. In this cor-
pus around one third of the extractions refer to
templates that co-occur with at most 35 unique ar-
guments in both their slots.

We evaluated the quality of inference
rules using the dataset constructed by Zeich-
ner et al. (2012)2, which contains about 6,500
manually annotated template rule applications,
each labeled as correct or not. For example,
‘The game develop eye-hand coordination 9 The
game launch eye-hand coordination’ is a rule
application in this dataset of the rule ‘X develop
Y → X launch Y’, labeled as incorrect, and
‘Captain Cook sail to Australia→ Captain Cook
depart for Australia’ is a rule application of the
rule ‘X sail to Y → X depart for Y’, labeled as
correct. Specifically, we induced two datasets
from Zeichner et al.’s dataset, denoted DS-5-35
and DS-5-50, which consist of all rule applica-
tions whose templates are present in our learning
corpus and co-occurred with at least 5 and at
most 35 and 50 unique argument words in both
their slots, respectively. DS-5-35 includes 311
rule applications (104 correct and 207 incorrect)
and DS-5-50 includes 502 rule applications (190
correct and 312 incorrect).

Our evaluation task is to rank all rule applica-
tions in each test set based on the similarity scores
of the applied rules. Optimal performance would
rank all correct rule applications above the in-
correct ones. As a baseline for rule scoring we

1http://reverb.cs.washington.edu/
2http://www.cs.biu.ac.il/nlp/

downloads/annotation-rule-application.
htm
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used the DIRT algorithm scheme, denoted DIRT-
LE-None. We then compared between the perfor-
mance of this baseline and its expanded versions,
testing two similarity measures for generating the
expansion sets of arguments: Lin and Cover. We
denote these expanded methods DIRT-LE-SIM-N,
where SIM is the similarity measure used to gen-
erate the expansion sets and N is the lexical expan-
sion degree, e.g. DIRT-LE-Lin-2.

We remind the reader that our scheme utilizes
two similarity measures. The first measure as-
sesses the similarity between the argument vectors
of the two templates in the rule. This measure
is kept constant in our experiments and is iden-
tical to DIRT’s similarity measure (Lin). 3 The
second measure assesses the similarity between
words and is used for the lexical expansion of ar-
gument vectors. Since this is the research goal
of this paper, we experimented with two different
measures for lexical expansion: a symmetric mea-
sure (Lin) and an asymmetric measure (Cover).
To this end we evaluated their effect on DIRT’s
rule ranking performance and compared them to a
vanilla version of DIRT without lexical expansion.

As another baseline, we follow Dinu and La-
pata (2010) inducing LDA topic vectors for tem-
plate slots and computing predicate template infer-
ence rule scores based on similarity between these
vectors. We use standard hyperparameters for
learning the LDA model (Griffiths and Steyvers,
2004). This method is denoted LDA-K, where K is
the number of topics in the model.

5 Results

We evaluated the performance of each tested
method by measuring Mean Average Precision
(MAP) (Manning et al., 2008) of the rule applica-
tion ranking computed by this method. In order
to compute MAP values and corresponding sta-
tistical significance, we randomly split each test
set into 30 subsets. For each method we com-
puted Average Precision on every subset and then
took the average as the MAP value. We varied
the degree of the lexical expansion in our model
and the number of topics in the topic model base-
line to analyze their effect on the performance of
these methods on our datasets. We note that in our
model a greater degree of lexical expansion cor-

3Experiments with Cosine as the template similarity mea-
sure instead of Lin for both DIRT and its expanded versions
yielded similar results. We omit those for brevity.

responds to more aggressive smoothing (or gen-
eralization) of the explicitly observed data, while
the same goes for a lower number of topics in the
topic model. The results on DS-5-35 and DS-5-50
are illustrated in Figure 1.

The most dramatic improvement over the base-
lines is evident in DS-5-35, where DIRT-LE-
Cover-2 achieves a MAP score of 0.577 in com-
parison to 0.459 achieved by its DIRT-LE-None
baseline. This is indeed the dataset where we ex-
pected expansion to affect most due the extreme
sparseness of argument vectors. Both DIRT-LE-
Cover-N and DIRT-LE-Lin-N outperform DIRT-
LE-None for all tested values of N , with statisti-
cal significance via a paired t-test at p < 0.05 for
DIRT-LE-Cover-N where 1 ≤ N ≤ 5, and p <
0.01 for DIRT-LE-Cover-2. On DS-5-50, improve-
ment over the DIRT-LE-None baseline is still sig-
nificant with both DIRT-LE-Cover-N and DIRT-
LE-Lin-N outperforming DIRT-LE-None. DIRT-
LE-Cover-N again performs best and achieves a
relative improvement of over 10% with statistical
significance at p < 0.05 for 2 ≤ N ≤ 3.

The above shows that expansion is effective for
improving rule learning between infrequent tem-
plates. Furthermore, the fact that DIRT-LE-Cover-
N outperforms DIRT-LE-Lin-N suggests that us-
ing directional expansions, which are biased to
generalizations of the observed argument words,
e.g. vehicle as an expansion for car, is more ef-
fective than using symmetrically related words,
such as bicycle or automobile. This conclusion
appears also to be valid from a semantic reason-
ing perspective, as given an observed predicate-
argument occurrence, such as ‘drive car’ we can
more likely infer that a presumed occurrence of
the same predicate with a generalization of the ar-
gument, such as ‘drive vehicle’, is valid, i.e. ‘drive
car → drive vehicle’. On the other hand while
‘drive car → drive automobile’ is likely to be
valid, ‘drive car → drive bicycle’ and ‘drive ve-
hicle→ drive bicycle’ are not.

Figure 1 also depicts the performance of LDA
as a vector smoothing approach. LDA-K out-
performs the DIRT-LE-None baseline under DS-
5-35 but with no statistical significance. Under
DS-5-50 LDA-K performs worst, slightly outper-
forming DIRT-LE-None only for K=450. Further-
more, under both datasets, LDA-K is outperformed
by DIRT-LE-Cover-N. These results indicate that
LDA is less effective than our expansion approach.
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Figure 1: MAP scores on DS-5-35 and DS-5-50 for the original DIRT scheme, denoted DIRT-LE-None,
and for the compared smoothing methods as follows. DIRT with varied degrees of lexical expansion
is denoted as DIRT-LE-Lin-N and DIRT-LE-Cover-N. The topic model with varied number of topics is
denoted as LDA-K. Data labels indicate the expansion degree (N) or the number of LDA topics (K),
depending on the tested method.

One reason may be that in our model, every expan-
sion set may be viewed as a cluster around a spe-
cific word, an outstanding difference in compari-
son to topics, which provide a global partition over
all words. We note that performance improve-
ment of singleton document clusters over global
partitions was also shown in IR (Kurland and Lee,
2009).

In order to further illustrate our lexical expan-
sion scheme we focus on the rule application
‘Captain Cook sail to Australia→ Captain Cook
depart for Australia’, which is labeled as correct
in our test set and corresponds to the rule ‘X sail
to Y → X depart for Y’. There are 30 words in-
stantiating the X slot of the predicate ‘sail to’
in our learning corpus including {Columbus, em-
peror, James, John, trader}. On the other hand,
there are 18 words instantiating the X slot of the
predicate ‘depart for’ including {Amanda, Jerry,
Michael, mother, queen}. While semantic simi-
larity between these two sets of words is evident,
they share no words in common, and therefore the
original DIRT algorithm, DIRT-LE-None, wrongly
assigns a zero score to the rule.

The following are descriptions of some of the
argument word expansions performed by DIRT-
LE-Cover-2 (using the notationLNw defined in Sec-
tion 3.1) for the X slot of ‘sail to’ L2

John = {mr.,
dr.}, L2

trader = {people, man}, and for the X slot
of ‘depart for’, L2

Michael = {John, mr.}, L2
mother =

{people, woman}. Given these expansions the two
slots now share the following words {mr. ,people,
John} and the rule score becomes positive.

It is also interesting to compare the expansions

performed by DIRT-LE-Lin-2 to the above. For
instance in this case L2

mother = {father, sarah},
which does not identify people as a shared argu-
ment for the rule.

6 Conclusions

We propose to improve the learning of infer-
ence rules between infrequent predicate templates
with sparse argument vectors by utilizing a novel
scheme that lexically expands argument vectors
with semantically similar words. Similarities be-
tween argument words are discovered using a dual
distributional representation, in which templates
are the features.

We tested the performance of our expansion
approach on rule application datasets that were
biased towards rare templates. Our evaluation
showed that rule learning with expanded vectors
outperformed the baseline learning with original
vectors. It also outperformed an LDA-based simi-
larity model that overcomes sparseness via dimen-
sionality reduction.

In future work we plan to investigate how our
scheme performs when integrated with manually
constructed resources for lexical expansion, such
as WordNet (Fellbaum, 1998).
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Abstract 

Linking heterogeneous resources is a major re-

search challenge in the Semantic Web. This 

paper studies the task of mining equivalent re-

lations from Linked Data, which was insuffi-

ciently addressed before. We introduce an un-

supervised method to measure equivalency of 

relation pairs and cluster equivalent relations. 

Early experiments have shown encouraging 

results with an average of 0.75~0.87 precision 

in predicting relation pair equivalency and 

0.78~0.98 precision in relation clustering. 

1 Introduction 

Linked Data defines best practices for exposing, 

sharing, and connecting data on the Semantic 

Web using uniform means such as URIs and 

RDF. It constitutes the conjunction between the 

Web and the Semantic Web, balancing the rich-

ness of semantics offered by Semantic Web with 

the easiness of data publishing. For the last few 

years Linked Open Data has grown to a gigantic 

knowledge base, which, as of 2013, comprised 

31 billion triples in 295 datasets
1
.  

A major research question concerning Linked 

Data is linking heterogeneous resources, the fact 

that publishers may describe analogous infor-

mation using different vocabulary, or may assign 

different identifiers to the same referents. Among 

such work, many study mappings between ontol-

ogy concepts and data instances (e.g., Isaac et al, 

2007; Mi et al., 2009; Le et al., 2010; Duan et al., 

2012). An insufficiently addressed problem is 

linking heterogeneous relations, which is also 

widely found in data and can cause problems in 

information retrieval (Fu et al., 2012). Existing 

work in linking relations typically employ string 

similarity metrics or semantic similarity mea-

                                                 
1
 http://lod-cloud.net/state/ 

sures that require a-priori domain knowledge and 

are limited in different ways (Zhong et al., 2002; 

Volz et al., 2009; Han et al., 2011; Zhao and 

Ichise, 2011; Zhao and Ichise, 2012).  

This paper introduces a novel method to dis-

cover equivalent groups of relations for Linked 

Data concepts. It consists of two components: 1) 

a measure of equivalency between pairs of rela-

tions of a concept and 2) a clustering process to 

group equivalent relations. The method is unsu-

pervised; completely data-driven requiring no a-

priori domain knowledge; and also language in-

dependent. Two types of experiments have been 

carried out using two major Linked Data sets: 1) 

evaluating the precision of predicting equivalen-

cy of relation pairs and 2) evaluating the preci-

sion of clustering equivalent relations. Prelimi-

nary results have shown encouraging results as 

the method achieves between 0.75~0.85 preci-

sion in the first set of experiments while 

0.78~0.98 in the latter. 

2 Related Work  

Research on linking heterogeneous ontological 

resources mostly addresses mapping classes (or 

concepts) and instances (Isaac et al, 2007; Mi et 

al., 2009; Le et al., 2010; Duan et al., 2012; 

Schopman et al., 2012), typically based on the 

notions of similarity. This is often evaluated by 

string similarity (e.g. string edit distance), se-

mantic similarity (Budanitsky and Hirst, 2006), 

and distributional similarity based on the overlap 

in data usage (Duan et al., 2012; Schopman et 

al., 2012). There have been insufficient studies 

on mapping relations (or properties) across on-

tologies. Typical methods make use of a combi-

nation of string similarity and semantic similarity 

metrics (Zhong et al., 2002; Volz et al., 2009; 

Han et al., 2011; Zhao and Ichise, 2012). While 

string similarity fails to identify equivalent rela-

tions if their lexicalizations are distinct, semantic 

similarity often depends on taxonomic structures 
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in existing ontologies (Budanitsky and Hirst, 

2006). Unfortunately many Linked Data instanc-

es use relations that are invented arbitrarily or 

originate in rudimentary ontologies (Parundekar 

et al., 2012). Distributional similarity has also 

been used to discover equivalent or similar rela-

tions. Mauge et al. (2012) extract product proper-

ties from an e-commerce website and align 

equivalent properties using a supervised maxi-

mum entropy classification method. We study 

linking relations on Linked Data and propose an 

unsupervised method. Fu et al. (2012) identify 

similar relations using the overlap of the subjects 

of two relations and the overlap of their objects. 

On the contrary, we aim at identifying strictly 

equivalent relations rather than similarity in gen-

eral. Additionally, the techniques introduced our 

work is also related to work on aligning multilin-

gual Wikipedia resources (Adar et al., 2009; 

Bouma et al., 2009) and semantic relatedness 

(Budanitsky and Hirst, 2006). 

3 Method 

Let t denote a 3-tuple (triple) consisting of a sub-

ject (ts), predicate (tp) and object (to). Linked Da-

ta resources are typed and its type is called class. 

We write type (ts) = c meaning that ts is of class c. 

p denotes a relation and rp is a set of triples 

whose tp=p, i.e., rp={t | tp = p}. 

Given a specific class c, and its pairs of rela-

tions (p, p’) such that rp={t|tp=p, type(ts)=c} and 

rp’={t|tp=p’, type (ts)=c}, we measure the equiv-

alency of p and p’ and then cluster equivalent 

relations. The equivalency is calculated locally 

(within same class c) rather than globally (across 

all classes) because two relations can have iden-

tical meaning in specific class context but not 

necessarily so in general. For example, for the 

class Book, the relations dbpp:title and foaf:name 

are used with the same meaning, however for 

Actor, dbpp:title is used interchangeably with 

awards dbpp:awards (e.g., Oscar best actor). 

In practice, given a class c, our method starts 

with retrieving all t from a Linked Data set 

where type(ts)=c, using the universal query lan-

guage SPARQL with any SPARQL data end-

point. This data is then used to measure equiva-

lency for each pair of relations (Section 3.1). The 

equivalence scores are then used to group rela-

tions in equivalent clusters (Section 3.2). 

3.1 Measure of equivalence 

The equivalence for each distinct pair of rela-

tions depends on three components. 

Triple overlap evaluates the degree of over-

lap
2
 in terms of the usage of relations in triples. 

Let SO(p) be the collection of subject-object 

pairs from rp and SOint the intersection 

)r(SO)r(SO)'p,p(SO 'ppint             [1] 

then the triple overlap TO(p, p’) is calculated as 

}
|r|

|)r,r(SO|
,

|r|

|)r,r(SO|
{MAX

'p

'ppint

p

'ppint
        [2] 

Intuitively, if two relations p and p’ have a 

large overlap of subject-object pairs in their data 

instances, they are likely to have identical mean-

ing. The MAX function allows addressing infre-

quently used, but still equivalent relations (i.e., 

where the overlap covers most triples of an in-

frequently used relation but only a very small 

proportion of a much more frequently used).  

Subject agreement While triple overlap looks 

at the data in general, subject agreement looks at 

the overlap of subjects of two relations, and the 

degree to which these subjects have overlapping 

objects. Let S(p) return the set of subjects of rela-

tion p, and O(p|s) returns the set of objects of 

relation p whose subjects are s, i.e.: 

}st,pt|t{)s|r(O)s|p(O spop          [3] 

we define: 

)r(S)r(S)'p,p(S 'ppint           [4] 

|)'p,p(S|

otherwise,

|)s|'p(O)s|p(O|if,

int

)'p,p(Ss int







0

01

         [5] 

|)'p(S)p(S|/|)'p,p(S| int          [6] 

then the agreement AG(p, p’) is  

)'p,p(AG            [7] 

Equation [5] counts the number of overlapping 

subjects whose objects have at least one overlap. 

The higher the value of α, the more the two rela-

tions “agree” in terms of their shared subjects. 

For each shared subject of p and p’ we count 1 if 

they have at least 1 overlapping object and 0 oth-

erwise. This is because both p and p’ can be 

1:many relations and a low overlap value could 

mean that one is densely populated while the 

other is not, which does not necessarily mean 

they do not “agree”. Equation [6] evaluates the 

degree to which two relations share the same set 

of subjects. The agreement AG(p, p’) balances 

the two factors by taking the product. As a result, 

                                                 
2
 In this paper overlap is based on “exact” match. 
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relations that have high level of agreement will 

have more subjects in common, and higher pro-

portion of shared subjects with shared objects. 

Cardinality ratio is a ratio between cardinali-

ty of the two relations. Cardinality of a relation 

CD(p) is calculated based on data: 

|)r(S|

|r|
)p(CD

p

p
          [8] 

and the cardinality ratio is calculated as 

)}'p(CD),p(CD{MAX

)}'p(CD),p(CD{MIN
)'p,p(CDR         [9] 

The final equivalency measure integrates all 

the three components to return a value in [0, 2]: 

)'p,p(CDR

)'p,p(AG)'p,p(TO
)'p,p(E


               [10] 

The measure will favor two relations that have 

similar cardinality.  

3.2 Clustering 

We apply the measure to every pair of relations 

of a concept, and keep those with a non-zero 

equivalence score. The goal of clustering is to 

create groups of equivalent relations based on the 

pair-wise equivalence scores. We use a simple 

rule-based agglomerative clustering algorithm 

for this purpose. First, we rank all relation pairs 

by their equivalence score, then we keep a pair if 

(i) its score and (ii) the number of triples covered 

by each relation are above a certain threshold, 

TminEqvl and TminTP respectively. Each pair forms 

an initial cluster. To merge clusters, given an 

existing cluster c and a new pair (p, p’) where 

either pc or p’c, the pair is added to c if E(p, 

p’) is close (as a fractional number above the 

threshold TminEqvlRel) to the average scores of all 

connected pairs in c. This preserves the strong 

connectivity in a cluster. This is repeated until no 

merge action is taken. Adjusting these thresholds 

allows balancing between precision and recall. 

4 Experiment Design 

To our knowledge, there is no publically availa-

ble gold standard for relation equivalency using 

Linked Data. We randomly selected 21 concepts 

(Figure 1) from the DBpedia ontology (v3.8): 

Actor, Aircraft, Airline, Airport, Automobile, 

Band, BasketballPlayer, Book, Bridge, Comedian, 

Film, Hospital, Magazine, Museum, Restaurant, 

Scientist, TelevisionShow, TennisPlayer, Theatre, 

University, Writer 

Figure 1. Concepts selected for evaluation. 

We apply our method to each concept to dis-

cover clusters of equivalent relations, using as 

SPARQL endpoint both DBpedia
3
 and Sindice

4
 

and report results separately. This is to study 

how the method performs in different conditions: 

on one hand on a smaller and cleaner dataset 

(DBpedia); on the other hand on a larger and 

multi-lingual dataset (Sindice) to also test cross-

lingual capability of our method. We chose rela-

tively low thresholds, i.e. TminEqvl=0.1, TminTP= 

0.01% and TminEqvlRel=0.6, in order to ensure high 

recall without sacrificing much precision.  

Four human annotators manually annotated 

the output for each concept. For this preliminary 

evaluation, we have limited the amount of anno-

tations to a maximum of 100 top scoring pairs of 

relations per concept, resulting in 16~100 pairs 

per concept (avg. 40) for DBpedia experiment 

and 29~100 pairs for Sindice (avg. 91). The an-

notators were asked to rate each edge in each 

cluster with -1 (wrong), 1 (correct) or 0 (cannot 

decide). Pairs with 0 are ignored in the evalua-

tion (about 12% for DBpedia; and 17% for Sin-

dice mainly due to unreadable encoded URLs for 

certain languages). To evaluate cross-lingual 

pairs, we asked annotators to use translation 

tools. Inter-Annotator-Agreement (observed 

IAA) is shown in Table 1. Also using this data, 

we derived a gold standard for clustering based 

on edge connectivity and we evaluate (i) the pre-

cision of top n% (p@n%) ranked equivalent rela-

tion pairs and (ii) the precision of clustering for 

each concept.  

 Mean High Low 

DBpedia 0.79 0.89 0.72 

Sindice 0.75 0.82 0.63 

Table 1. IAA on annotating pair equivalency 

So far the output of 13 concepts has been an-

notated. This dataset
5
 contains ≈1800 relation 

pairs and is larger than the one by Fu et al. 

(2012). Annotation process shows that over 75% 

of relation pairs in the Sindice experiment con-

tain non-English relations and mostly are cross-

lingual. We used this data to report performance, 

although the method has been applied to all the 

21 concepts, and the complete results can be vis-

ualized at our demo website link. Some examples 

are shown in Figure 2.  

                                                 
3
 http://dbpedia.org/sparql 

4
 http://sparql.sindice.com/ 

5
 http://staffwww.dcs.shef.ac.uk/people/Z.Zhang/ re-

sources/paper/acl2013short/web/ 
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Figure 2. Examples of visualized clusters 

5 Result and Discussion 

Figure 3 shows p@n% for pair equivalency
6
 and 

Figure 4 shows clustering precision.  

 
Figure 3. p@n%. The box plots show the ranges of 

precision at each n%; the lines show the average. 

 
Figure 4. Clustering precision  

As it is shown in Figure 2, Linked Data rela-

tions are often heterogeneous. Therefore, finding 

equivalent relations to improve coverage is im-

portant. Results in Figure 3 show that in most 

cases the method identifies equivalent relations 

with high precision. It is effective for both sin-

gle- and cross-language relation pairs. The worst 

performing case for DBpedia is Aircraft (for all 

n%), mostly due to duplicating numeric valued 

objects of different relations (e.g., weight, length, 

capacity). The decreasing precision with respect 

to n% suggests the measure effectively ranks 

correct pairs to the top. This is a useful feature 

from IR point of view. Figure 4 shows that the 

method effectively clusters equivalent relations 

with very high precision: 0.8~0.98 in most cases. 

                                                 
6
 Per-concept results are available on our website. 

Overall we believe the results of this early proof-

of-concept are encouraging. As a concrete exam-

ple to compare against Fu et al. (2012), for Bas-

ketballPlayer, our method creates separate clus-

ters for relations meaning “draft team” and “for-

mer team” because although they are “similar” 

they are not “equivalent”. 

We noticed that annotating equivalent rela-

tions is a non-trivial task. Sometimes relations 

and their corresponding schemata (if any) are 

poorly documented and it is impossible to under-

stand the meaning of relations (e.g., due to acro-

nyms) and even very difficult to reason based on 

data. Analyses of the evaluation output show that 

errors are typically found between highly similar 

relations, or whose object values are numeric 

types. In both cases, there is a very high proba-

bility of having a high overlap of subject-object 

pairs between relations. For example, for Air-

craft, the relations dbpp:heightIn and dbpp: 

weight are predicted to be equivalent because 

many instances have the same numeric value for 

the properties. Another example are the Airport 

properties dbpp:runwaySurface, dbpp:r1Surface, 

dbpp:r2Surface etc., which according to the data 

seem to describe the construction material (e.g., 

concrete, asphalt) of airport runways. The rela-

tions are semantically highly similar and the ob-

ject values have a high overlap. A potential solu-

tion to such issues is incorporating ontological 

knowledge if available. For example, if an ontol-

ogy defines the two distinct properties of Airport 

without explicitly defining an “equivalence” re-

lation between them, they are unlikely to be 

equivalent even if the data suggests the opposite.  

6 Conclusion 

This paper introduced a data-driven, unsuper-

vised and domain and language independent 

method to learn equivalent relations for Linked 

Data concepts. Preliminary experiments show 

encouraging results as it effectively discovers 

equivalent relations in both single- and multi-

lingual settings. In future, we will revise the 

equivalence measure and also experiment with 

clustering algorithms such as (Beeferman et al., 

2000). We will also study the contribution of 

individual components of the measure in such 

task. Large scale comparative evaluations (incl. 

recall) are planned and this work will be extend-

ed to address other tasks such as ontology map-

ping and ontology pattern mining (Nuzzolese et 

al., 2011).  
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Abstract

Current approaches for word sense dis-
ambiguation and translation selection typ-
ically require lexical resources or large
bilingual corpora with rich information
fields and annotations, which are often
infeasible for under-resourced languages.
We extract translation context knowledge
from a bilingual comparable corpora of a
richer-resourced language pair, and inject
it into a multilingual lexicon. The multilin-
gual lexicon can then be used to perform
context-dependent lexical lookup on texts
of any language, including under-resourced
ones. Evaluations on a prototype lookup
tool, trained on a English–Malay bilingual
Wikipedia corpus, show a precision score
of 0.65 (baseline 0.55) and mean recip-
rocal rank score of 0.81 (baseline 0.771).
Based on the early encouraging results,
the context-dependent lexical lookup tool
may be developed further into an intelligent
reading aid, to help users grasp the gist of
a second or foreign language text.

1 Introduction

Word sense disambiguation (WSD) is the task of
assigning sense tags to ambiguous lexical items
(LIs) in a text. Translation selection chooses target
language items for translating ambiguous LIs in a
text, and can therefore be viewed as a kind of WSD
task, with translations as the sense tags. The trans-
lation selection task may also be modified slightly
to output a ranked list of translations. This then re-
sembles a dictionary lookup process as performed
by a human reader when reading or browsing a text
written in a second or foreign language. For conve-
nience’s sake, we will call this task (as performed

via computational means) context-dependent lexi-
cal lookup. It can also be viewed as a simplified
version of the Cross-Lingual Lexical Substitution
(Mihalcea et al., 2010) and Cross-Lingual Word
Sense Disambiguation (Lefever and Hoste, 2010)
tasks, as defined in SemEval-2010.

There is a large body of work around WSD and
translation selection. However, many of these ap-
proaches require lexical resources or large bilin-
gual corpora with rich information fields and an-
notations, as reviewed in section 2. Unfortunately,
not all languages have equal amounts of digital re-
sources for developing language technologies, and
such requirements are often infeasible for under-
resourced languages.

We are interested in leveraging richer-resourced
language pairs to enable context-dependent lexical
lookup for under-resourced languages. For this pur-
pose, we model translation context knowledge as a
second-order co-occurrence bag-of-words model.
We propose a rapid approach for acquiring them
from an untagged, comparable bilingual corpus
of a (richer-resourced) language pair in section 3.
This information is then transferred into a multilin-
gual lexicon to perform context-dependent lexical
lookup on input texts, including those in an under-
resourced language (section 4). Section 5 describes
a prototype implementation, where translation con-
text knowledge is extracted from a English–Malay
bilingual corpus to enrich a multilingual lexicon
with six languages. Results from a small experi-
ment are presented in 6 and discussed in section 7.
The approach is briefly compared with some related
work in section 8, before concluding in section 9.

2 Typical Resource Requirements for
Translation Selection

WSD and translation selection approaches may be
broadly classified into two categories depending
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on the type of learning resources used: knowledge-
and corpus-based. Knowledge-based approaches
make use of various types of information from
existing dictionaries, thesauri, or other lexical re-
sources. Possible knowledge sources include defi-
nition or gloss text (Banerjee and Pedersen, 2003),
subject codes (Magnini et al., 2001), semantic net-
works (Shirai and Yagi, 2004; Mahapatra et al.,
2010) and others.

Nevertheless, lexical resources of such rich con-
tent types are usually available for medium- to rich-
resourced languages only, and are costly to build
and verify by hand. Some approaches therefore
turn to corpus-based approaches, use bilingual cor-
pora as learning resources for translation selection.
(Ide et al., 2002; Ng et al., 2003) used aligned cor-
pora in their work. As it is not always possible to
acquire parallel corpora, comparable corpora, or
even independent second-language corpora have
also been shown to be suitable for training pur-
poses, either by purely numerical means (Li and Li,
2004) or with the aid of syntactic relations (Zhou
et al., 2001). Vector-based models, which capture
the context of a translation or meaning, have also
been used (Schütze, 1998; Papp, 2009). For under-
resourced languages, however, bilingual corpora of
sufficient size may still be unavailable.

3 Enriching Multilingual Lexicon with
Translation Context Knowledge

Corpus-driven translation selection approaches typ-
ically derive supporting semantic information from
an aligned corpus, where a text and its translation
are aligned at the sentence, phrase and word level.
However, aligned corpora can be difficult to ob-
tain for under-resourced language pairs, and are
expensive to construct.

On the other hand, documents in a comparable
corpus comprise bilingual or multilingual text of
a similar nature, and need not even be exact trans-
lations of each other. The texts are therefore un-
aligned except at the document level. Comparable
corpora are relatively easier to obtain, especially
for richer-resourced languages.

3.1 Overview of Multilingual Lexicon

Entries in our multilingual lexicon are organised as
multilingual translation sets, each corresponding to
a coarse-grained concept, and whose members are
LIs from different languages {L1, . . . , LN} con-
veying the same concept. We denote an LI as

«item», sometimes with the 3-letter ISO language
code in underscript when necessary: «item»eng. A
list of 3-letter ISO language codes used in this pa-
per is given in Appendix A.

For example, following are two translation sets
containing different senses of English «bank» (‘fi-
nancial institution’ and ‘riverside land’):

TS 1 = {«bank»eng, «bank»msa, «银行»zho, . . .}
TS 2 = {«bank»eng, «tebing»msa, «岸»zho, . . .}.

Multilingual lexicons with under-resourced lan-
guages can be rapidly bootstrapped from simple
bilingual translation lists (Lim et al., 2011). Our
multilingual lexicon currently contains 24371 En-
glish, 13226 Chinese, 35640 Malay, 17063 French,
14687 Thai and 5629 Iban LIs.

3.2 Extracting Translation Context
Knowledge from Comparable Corpus

We model translation knowledge as a bag-of-words
consisting of the context of a translation equiva-
lence in the corpus. We then run latent seman-
tic indexing (LSI) (Deerwester et al., 1990) on a
comparable bilingual corpora. A vector is then ob-
tained for each LI in both languages, which may
be regarded as encoding some translation context
knowledge.

While LSI is more frequently used in informa-
tion retrieval, the translation knowledge acquisi-
tion task can be recast as a cross-lingual indexing
task, following (Dumais et al., 1997). The underly-
ing intuition is that in a comparable bilingual cor-
pus, a document pair about finance would be more
likely to contain English «bank»eng and Malay
«bank»msa (‘financial institution’), as opposed to
Malay «tebing»msa (‘riverside’). The words ap-
pearing in this document pair would then be an
indicative context for the translation equivalence
between «bank»eng and «bank»msa. In other words,
the translation equivalents present serve as a kind
of implicit sense tag.

Briefly, a translation knowledge vector is ob-
tained for each multilingual translation set from a
bilingual comparable corpus as follows:

1. Each bilingual pair of documents is merged
as one single document, with each LI tagged
with its respective language code.

2. Pre-process the corpus, e.g. remove closed-
class words, perform stemming or lemmati-
sation, and word segmentation for languages
without word boundaries (Chinese, Thai).
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3. Construct a term-document matrix (TDM), us-
ing the frequency of terms (each made up by
a LI and its language tag) in each document.
Apply further weighting, e.g. TF-IDF, if nec-
essary.

4. Perform LSI on the TDM. A vector is then
obtained for every LI in both languages.

5. Set the vector associated with each translation
set to be the sum of all available vectors of its
member LIs.

4 Context-Dependent Lexical Lookup

Given an input text in language Li (1 ≤ i ≤ N ),
the lookup module should return a list of multilin-
gual translation set entries, which would contain
L1, L2, . . . , LN translation equivalents of LIs in
the input text, wherever available. For polysemous
LIs, the lookup module should return translation
sets that convey the appropriate meaning in context.

For each input text segment Q (typically a sen-
tence), a ‘query vector’, VQ is computed by taking
the vectorial sum of all open class LIs in the in-
put Q. For each LI l in the input, the list of all
translation sets containing l, is retrieved into TS l.
TS l is then sorted in descending order of

CSim(Vt, VQ) =
Vt · VQ
|Vt| × |VQ|

(i.e. the cosine similarity between the query vector
VQ and the translation set candidate t’s vector) for
all t ∈ TS l.

If the language of input Q is not present in
the bilingual training corpus (e.g. Iban, an under-
resourced language spoken in Borneo), VQ is then
computed as the sum of all vectors associated with
all translation sets in TS l. For example, given the
Iban sentence ‘Lelaki nya tikah enggau emperaja
iya, siko dayang ke ligung’ (‘he married his sweet-
heart, a pretty girl’), VQ would be computed as

VQ =
∑

V (lookup(«lelaki»iba))

+
∑

V (lookup(«tikah»iba))

+
∑

V (lookup(«emperaja»iba))

+
∑

V (lookup(«dayang»iba))

+
∑

V (lookup(«ligung»iba))

where the function lookup(w) returns the transla-
tion sets containing LI w.

5 Prototype Implementation

We have implemented LEXICALSELECTOR, a pro-
totype context-dependent lexical lookup tool in
Java, trained on a English–Malay bilingual cor-
pus built from Wikipedia articles. Wikipedia ar-
ticles are freely available under a Creative Com-
mons license, thus providing a convenient source
of bilingual comparable corpus. Note that while
the training corpus is English–Malay, the trained
lookup tool can be applied to texts of any language
included in the multilingual dictionary.

Malay Wikipedia articles1 and their correspond-
ing English articles of the same topics2 were first
downloaded. To form the bilingual corpus, each
Malay article is concatenated with its correspond-
ing English article as one document.

The TDM constructed from this corpus con-
tains 62 993 documents and 67 499 terms, includ-
ing both English and Malay items. The TDM is
weighted by TF-IDF, then processed by LSI using
the Gensim Python library3. The indexing process,
using 1000 factors, took about 45 minutes on a
MacBook Pro with a 2.3GHz processor and 4GB
RAM. The vectors obtained for each English and
Malay LIs were then used to populate the transla-
tion context knowledge vectors of translation set
in a multilingual lexicon, which comprise six lan-
guages: English, Malay, Chinese, French, Thai and
Iban.

As mentioned earlier, LEXICALSELECTOR can
process texts in any member languages of the mul-
tilingual lexicon, instead of only the languages of
the training corpus (English and Malay). Figure 1
shows the context-depended lexical lookup out-
puts for the Iban input ‘Lelaki nya tikah enggau
emperaja iya, siko dayang ke ligung’. Note that
«emperaja» is polysemous (‘rainbow’ or ‘lover’),
but is successfully identified as meaning ‘lover’ in
this sentence.

6 Early Experimental Results

80 input sentences containing LIs with translation
ambiguities were randomly selected from the Inter-
net (English, Malay and Chinese) and contributed
by a native speaker (Iban). The test words are:

• English «plant» (vegetation or factory),

1http://dumps.wikimedia.org/mswiki/
2http://en.wikipedia.org/wiki/Special:

Export
3http://radimrehurek.com/gensim/
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Figure 1: LEXICALSELECTOR output for Iban input ‘Lelaki nya tikah enggau emperaja iya, siko dayang
ke ligung’. Only top ranked translation sets are shown.

• English «bank» (financial institution or river-
side land),

• Malay «kabinet» (governmental Cabinet or
household furniture),

• Malay «mangga» (mango or padlock),
• Chinese «谷» (gù, valley or grain) and
• Iban «emperaja» (rainbow or lover).
Each test sentence was first POS-tagged auto-

matically based on the Penn Treebank tagset. The
English test sentences were lemmatised and POS-
tagged with the Stanford Parser.4 The Chinese test
sentences segmented with the Stanford Chinese
Word Segmenter tool.5 For Malay POS-tagging,
we trained the QTag tagger6 on a hand-tagged
Malay corpus, and applied the trained tagger on our
test sentences. As we lacked a Iban POS-tagger,
the Iban test sentences were tagged by hand. LIs
of each language and their associated vectors can
then be retrieved from the multilingual lexicon.

The prototype tool LEXICALSELECTOR then
computes the CSim score and ranks potential trans-
lation sets for each LI in the input sentences
(ranking strategy wiki-lsi). The baseline strat-
egy (base-freq) selects the translation set whose
members occur most frequently in the bilingual
Wikipedia corpus.

As a comparison, the English, Chinese and
Malay test sentences were fed to Google Trans-
late7 and translated into Chinese, Malay and En-
glish. (Google Translate does not support Iban
currently.) The Google Translate interface makes
available the ranked list of translation candidates
for each word in an input sentence, one language

4http://www-nlp.stanford.edu/software/
lex-parser.shtml

5http://nlp.stanford.edu/software/segmenter.
shtml

6http://phrasys.net/uob/om/software
7http://translate.google.com on 3 October 2012

at a time.The translated word for each of the input
test word can therefore be noted. The highest rank
of the correct translation for the test words in En-
glish/Chinese/Malay are used to evaluate goog-tr.

Two metrics were used in this quick evaluation.
The first metric is by taking the precision of the first
translation set returned by each ranking strategy,
i.e. whether the top ranked translation set contains
the correct translation of the ambiguous item. The
precision metric is important for applications like
machine translation, where only the top-ranked
meaning or translation is considered.

The results may also be evaluated similar to a
document retrieval task, i.e. as a ranked lexical
lookup for human consumption. This is measured
by the mean reciprocal rank (MRR), the average
of the reciprocal ranks of the correct translation set
for each input sentence in the test set T :

MRR =
1

|T |

|T |∑

i=1

1

ranki

The results for the three ranking strategies are
summarised in Table 1. For the precision metric,
wiki-lsi scored 0.650 when all 80 input sen-
tences are tested, while the base-freq baseline
scored 0.550. goog-tr has the highest precision
at 0.797. However, if only the Chinese and Malay
inputs — which has less presence on the Inter-
net and ‘less resource-rich’ than English — were
tested (since goog-tr cannot accept Iban inputs),
wiki-lsi and goog-tr actually performs equally
well at 0.690 precision.

In our evaluation, the MRR score of wiki-lsi
is 0.810, while base-freq scored 0.771.
wiki-lsi even outperforms goog-tr when
only the Chinese and Malay test sentences are
considered for the MRR metric, as goog-tr
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Table 1: Precision and MRR scores of context-
dependent lexical lookup

Incl. Eng. & Iban W/o Eng. & Iban
Strategy

Precision MRR Precision MRR

wiki-lsi 0.650 0.810 0.690 0.845
base-freq 0.550 0.771 0.524 0.762
goog-tr 0.797 0.812 0.690 0.708

did not present the correct translation in its list
of alternative translation candidates for some
test sentences. This suggests that the LSI-based
translation context knowledge vectors would be
helpful in building an intelligent reading aid.

7 Discussion

wiki-lsi performed better than base-freq for
both the precision and the MRR metrics, although
further tests is warranted, given the small size of
the current test set. While wiki-lsi is not yet
sufficiently accurate to be used directly in an MT
system, it is helpful in producing a list of ranked
multilingual translation sets depending on the input
context, as part of an intelligent reading aid. Specif-
ically, the lookup module would have benefited if
syntactic information (e.g. syntactic relations and
parse trees) was incorporated during the training
and testing phase. This would require more time
in parsing the training corpus, as well as assuming
that syntactic analysis tools are available to pro-
cess test sentences of all languages, including the
under-resourced ones.

Note that even though the translation context
knowledge vectors were extracted from an English–
Malay corpus, the same vectors can be applied on
Chinese and Iban input sentences as well. This
is especially significant for Iban, which otherwise
lacks resources from which a lookup or disambigua-
tion tool can be trained. Translation context knowl-
edge vectors mined via LSI from a bilingual com-
parable corpus, therefore offers a fast, low cost and
efficient fallback strategy for acquiring multilin-
gual translation equivalence context information.

8 Related Work

Basile and Semeraro (2010) also used Wikipedia
articles as a parallel corpus for their participation
in the SemEval 2010 Cross-Lingual Lexical Sub-
stitution task. Both training and test data were for
English–Spanish. The idea behind their system

is to count, for each potential Spanish candidate,
the number of documents in which the target En-
glish word and the Spanish candidate occurs in
an English–Spanish document pair. In the task’s
‘best’ evaluation (which is comparable to our ‘Preci-
sion’ metric), Basile and Semeraro’s system scored
26.39 precision on the trial data and 19.68 preci-
sion on the SemEval test data. This strategy of
selecting the most frequent translation is similar to
our base-freq baseline strategy.

Sarrafzadeh et al. (2011) also tackled the prob-
lem of cross-lingual disambiguation for under-
resourced language pairs (English–Persian) using
Wikipedia articles, by applying the one sense per
collocation and one sense per discourse heuristics
on a comparable corpus. The authors incorporated
English and Persian wordnets in their system, thus
achieving 0.68 for the ‘best sense’ (‘Precision’)
evaluation. However, developing wordnets for new
languages is no trivial effort, as acknowledged by
the authors.

9 Conclusion

We extracted translation context knowledge from a
bilingual comparable corpus by running LSI on the
corpus. A context-dependent multilingual lexical
lookup module was implemented, using the cosine
similarity score between the vector of the input
sentence and those of candidate translation sets to
rank the latter in order of relevance. The precision
and MRR scores outperformed Google Translate’s
lexical selection for medium- and under-resourced
language test inputs. The LSI-backed translation
context knowledge vectors, mined from bilingual
comparable corpora, thus provide an fast and af-
fordable data source for building intelligent reading
aids, especially for under-resourced languages.
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Abstract

Resource scarcity along with diversity–
both in dialect and script–are the two pri-
mary challenges in Kurdish language pro-
cessing. In this paper we aim at addressing
these two problems by (i) building a text
corpus for Sorani and Kurmanji, the two
main dialects of Kurdish, and (ii) high-
lighting some of the orthographic, phono-
logical, and morphological differences be-
tween these two dialects from statistical
and rule-based perspectives.

1 Introduction

Despite having 20 to 30 millions of native speak-
ers (Haig and Matras, 2002; Hassanpour et al.,
2012; Thackston, 2006b; Thackston, 2006a), Kur-
dish is among the less-resourced languages for
which the only linguistic resource available on the
Web is raw text (Walther and Sagot, 2010).

Apart from the resource-scarcity problem, its
diversity –in both dialect and writing systems–
is another primary challenge in Kurdish language
processing (Gautier, 1998; Gautier, 1996; Esmaili,
2012). In fact, Kurdish is considered a bi-standard
language (Gautier, 1998; Hassanpour et al., 2012):
the Sorani dialect written in an Arabic-based al-
phabet and the Kurmanji dialect written in a Latin-
based alphabet. The features distinguishing these
two dialects are phonological, lexical, and mor-
phological.

In this paper we report on the first outcomes of
a project1 at University of Kurdistan (UoK) that
aims at addressing these two challenges of the
Kurdish language processing. More specifically,
in this paper:

1. we report on the construction of the first
relatively-large and publicly-available text
corpus for the Kurdish language,

1http://eng.uok.ac.ir/esmaili/research/klpp/en/main.htm

2. we present some insights into the ortho-
graphic, phonological, and morphological
differences between Sorani Kurdish and Kur-
manji Kurdish.

The rest of this paper is organized as follows.
In Section 2, we first briefly introduce the Kurdish
language and its two main dialects then underline
their differences from a rule-based (a.k.a. corpus-
independent) perspective. Next, after presenting
the Pewan text corpus in Section 3, we use it to
conduct a statistical comparison of the two dialects
in Section 4. The paper is concluded in Section 5.

2 The Kurdish Language and Dialects

Kurdish belongs to the Indo-Iranian family of
Indo-European languages. Its closest better-
known relative is Persian. Kurdish is spoken in
Kurdistan, a large geographical area spanning the
intersections of Turkey, Iran, Iraq, and Syria. It is
one of the two official languages of Iraq and has a
regional status in Iran.

Kurdish is a dialect-rich language, sometimes
referred to as a dialect continuum (Matras and
Akin, 2012; Shahsavari, 2010). In this paper,
however, we focus on Sorani and Kurmanji which
are the two closely-related and widely-spoken di-
alects of the Kurdish language. Together, they ac-
count for more than 75% of native Kurdish speak-
ers (Walther and Sagot, 2010).

As summarized below, these two dialects differ
not only in some linguistics aspects, but also in
their writing systems.

2.1 Morphological Differences
The important morphological differences
are (MacKenzie, 1961; Haig and Matras,
2002; Samvelian, 2007):

1. Kurmanji is more conservative in retaining
both gender (feminine:masculine) and case
opposition (absolute:oblique) for nouns and
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Arabic‐based  ز  خ  ڤ  وو  ت  ش  س  ر  ق  پ  ۆ  ن  م  ل  ک  ژ  گ  ف  ێ  د  چ  ج  ب  ا  
Latin‐based A B C Ç D Ê F G J K L M N O P Q R S Ş T Û V X Z

(a) One-to-One Mappings
25 26 27 28

Arabic‐based ه ی و  ئ /  
Latin‐based I  U / W  Y / Î  E / H 

(b) One-to-Two Mappings

29 30 31 32 33

Arabic‐based  ح  غ  ع  ڵ  ڕ 
Latin‐based (RR) - (E) (X) (H)

(c) One-to-Zero Mappings

Figure 1: The Two Standard Kurdish Alphabets

pronouns2. Sorani has largely abandoned this
system and uses the pronominal suffixes to
take over the functions of the cases,

2. in the past-tense transitive verbs, Kurmanji
has the full ergative alignment3 but Sorani,
having lost the oblique pronouns, resorts to
pronominal enclitics,

3. in Sorani, passive and causative are created
via verb morphology, in Kurmanji they can
also be formed with the helper verbs hatin
(“to come”) and dan (“to give”) respectively,
and

4. the definite marker -aka appears only in So-
rani.

2.2 Scriptural Differences
Due to geopolitical reasons (Matras and Reer-
shemius, 1991), each of the two dialects has been
using its own writing system: while Sorani uses
an Arabic-based alphabet, Kurmanji is written in a
Latin-based one.

Figure 1 shows the two standard alphabets and
the mappings between them which we have cate-
gorized into three classes:

• one-to-one mappings (Figure 1a), which
cover a large subset of the characters,

• one-to-two mappings (Figure 1b); they re-
flect the inherent ambiguities between the
two writing systems (Barkhoda et al., 2009).
While transliterating between these two al-
phabets, the contextual information can pro-
vide hints in choosing the right counterpart.

2Although there is evidence of gender distinctions weak-
ening in some varieties of Kurmanji (Haig and Matras, 2002).

3Recent research suggests that ergativity in Kurmanji is
weakening due to either internally-induced change or contact
with Turkish (Dixon, 1994; Dorleijn, 1996; Mahalingappa,
2010), perhaps moving towards a full nominative-accusative
system.

• one-to-zero mappings (Figure 1c); they can
be further split into two distinct subcate-
gories: (i) the strong L and strong R char-
acters ({ } and { }) are used only in Sorani
Kurdish4 and demonstrate some of the inher-
ent phonological differences between Sorani
and Kurmanji, and (ii) the remaining three
characters are primarily used in the Arabic
loanwords in Sorani (in Kurmanji they are
approximated with other characters).

It should be noted that both of these writing sys-
tems are phonetic (Gautier, 1998); that is, vowels
are explicitly represented and their use is manda-
tory.

3 The Pewan Corpus

Text corpora are essential to Computational Lin-
guistics and Natural Language Processing. In spite
the few attempts to build corpus (Gautier, 1998)
and lexicon (Walther and Sagot, 2010), Kurdish
still does not have any large-scale and reliable gen-
eral or domain-specific corpus.

At UoK, we followed TREC (TREC, 2013)’s
common practice and used news articles to build
a text corpus for the Kurdish language. After sur-
veying a range of options we chose two online
news agencies: (i) Peyamner (Peyamner, 2013), a
popular multi-lingual news agency based in Iraqi
Kurdistan, and (ii) the Sorani (VOA, 2013b) and
the Kurmanji (VOA, 2013a) websites of Voice Of
America. Our main selection criteria were: (i)
number of articles, (ii) subject diversity, and (iii)
crawl-friendliness.

For each agency, we developed a crawler to
fetch the articles and extract their textual content.
In case of Peyamner, since articles have no lan-
guage label, we additionally implemented a sim-
ple classifier that decides each page’s language

4Although there are a handful of words with the latter in
Kurmanji too.
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Property Sorani
Corpus

Kurmanji
Corpus

No. of Articles
from VOA 18,420 5,699
from Peyamner 96,920 19,873
total 115,340 25,572

No. of distinct words 501,054 127,272
Total no. of words 18,110,723 4,120,027
Total no. of characters 101,564,650 20,138,939
Average word length 5.6 4.8

Table 1: The Pewan Corpus’s Basic Statistics

based on the occurrence of language-specific char-
acters.

Overall, 115,340 Sorani articles and 25,572
Kurmanji articles were collected5 . The articles
are dated between 2003 and 2012 and their sizes
range from 1KB to 154KB (on average 2.6KB).
Table 1 summarizes the important properties of
our corpus which we named Pewan –a Kurdish
word meaning “measurement.”

Using Pewan and similar to the approach em-
ployed in (Savoy, 1999), we also built a list of
Kurdish stopwords. To this end, we manually ex-
amined the top 300 frequent words of each di-
alect and removed the corpus-specific biases (e.g.,
“Iraq”, “Kurdistan”, “Regional”, “Government”,
“Reported” and etc). The final Sorani and Kur-
manji lists contain 157 and 152 words respec-
tively, and as in other languages, they mainly con-
sist of prepositions.

Pewan, as well as the stopword lists can be ob-
tained from (Pewan, 2013). We hope that making
these resources publicly available, will bolster fur-
ther research on Kurdish language.

4 Empirical Study

In the first part of this section, we first look at the
character and word frequencies and try to obtain
some insights about the phonological and lexical
correlations and discrepancies between Sorani and
Kurmanji.

In the second part, we investigate two well-
known linguistic laws –Heaps’ and Zipf’s. Al-
though these laws have been observed in many
of the Indo-European languages (Lü et al., 2013),
the their coefficients depend on language (Gel-
bukh and Sidorov, 2001) and therefore they can be

5The relatively small size of the Kurmanji collection is
part of a more general trend. In fact, despite having a larger
number of speakers, Kurmanji has far fewer online sources
with raw text readily available and even those sources do not
strictly follow its writing standards. This is partly a result of
decades of severe restrictions on use of Kurdish language in
Turkey, where the majority of Kurmanji speakers live (Has-
sanpour et al., 2012).
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Figure 2: Relative Frequencies of Sorani and Kur-
manji Characters in the Pewan Corpus

 

# 
English 
Trans. 

Freq. 
Sorani 
Word  

Kurmanji 
Word 

Freq. 
English 
Trans. 

# 

1 from 859694 له 
 

û 166401 and 1 

2 and 653876 و 
 

ku 112453 which 2 

3 with 358609 به 
 

li 107259 from 3 

4 for 270053 بۆ 
 

de 82727 - 4 

5 which 241046 که 
 

bi 79422 with 5 

6 that 170096 و‌ئه 
 

di 77690 at 6 

7 this 83445 م‌ئه 
 

ji 75064 from 7 

8 of 74917 ی 
 

jî 57655 too 8 

9 together  58963 ڵ‌گه‌له 
 

xwe 35579 oneself 9 

11 made/did 55138 کرد 
 

ya 31972 of 11 

 

Figure 3: The Top 10 Most-Frequent Sorani and
Kurmanji Words in Pewan

used a tool to measure similarity/dissimilarity of
languages. It should also be noted that in practice,
knowing the coefficients of these laws is important
in, for example, full-text database design, since it
allows predicting some properties of the index as
a function of the size of the database.

4.1 Character Frequencies
In this experiment we measure the character fre-
quencies, as a phonological property of the lan-
guage. Figure 2 shows the frequency-ranked lists
(from left to right, in decreasing order) of charac-
ters of both dialects in the Pewan corpus. Note that
for a fairer comparison, we have excluded charac-
ters with 1-to-0 and 1-to-2 mappings as well as
three characters from the list of 1-to-1 mappings:
A, Ê, and Û. The first two have a skewed frequency
due to their role as Izafe construction6 marker. The
third one is mapped to a double-character ( ) in
the Sorani alphabet.

Overall, the relative positions of the equivalent
characters in these two lists are comparable (Fig-
ure 2). However, there are two notable discrepan-
cies which further exhibit the intrinsic phonologi-
cal differences between Sorani and Kurmanji:

• use of the character J is far more common
in Kurmanji (e.g., in prepositions such as ji
“from” and jı̂ “too”),

• same holds for the character V; this is, how-
6Izafe construction is a shared feature of several West-

ern Iranian languages (Samvelian, 2006). It, approximately,
corresponds to the English preposition “of ” and is added be-
tween prepositions, nouns and adjectives in a phrase (Shams-
fard, 2011).
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(b) Non-logarithmic Representation

Figure 4: Heaps’ Law for Sorani and Kurmanji Kurdish, Persian, and English.

ever, due to Sorani’s phonological tendency
to use the phoneme W instead of V.

4.2 Word Frequencies
Figure 3 shows the most frequent Sorani and Kur-
manji words in the Pewan corpus. This figure
also contains the links between the words that are
transliteration-equivalent and again shows a high
level of correlation between the two dialects. A
thorough examination of the longer version of the
frequent terms’ lists, not only further confirms this
correlation but also reveals some other notable pat-
terns:

• the Sorani generic preposition (“from”) has
a very wide range of use; in fact, as shown in
Figure 3, it is the semantic equivalent of three
common Kurmanji prepositions (li, ji, and
di),

• in Sorani, a number of the common prepo-
sitions (e.g., “too”) as well as the verb

“to be” are used as suffix,

• in Kurmanji, some of the most common
prepositions are paired with a postposition
(mostly da, de, and ve) and form circum-
positions,

• the Kurmanji’s passive/accusative helper
verbs (hatin and dan) are among its most
frequently used words.

4.3 Heaps’ Law
Heaps’s law (Heaps, 1978) is about the growth
of distinct words (a.k.a vocabulary size). More
specifically, the number of distinct words in a text
is roughly proportional to an exponent of its size:

log ni ≈ D + h log i (1)

Language log ni h

Sorani 1.91 + 0.78 log i 0.78
Kurmanji 2.15 + 0.74 log i 0.74
Persian 2.66 + 0.70 log i 0.70
English 2.68 + 0.69 log i 0.69

Table 2: Heaps’ Linear Regression

where ni is the number of distinct words occur-
ring before the running word number i, h is the
exponent coefficient (between 0 and 1), and D is
a constant. In a logarithmic scale, it is a straight
line with about 45◦ angle (Gelbukh and Sidorov,
2001).

We carried out an experiment to measure the
growth rate of distinct words for both of the Kur-
dish dialects as well as the Persian and English
languages. In this experiment, the Persian cor-
pus was drawn from the standard Hamshahri Col-
lection (AleAhmad et al., 2009) and The English
corpus consisted of the Editorial articles of The
Guardian newspaper7 (Guardian, 2013).

As the curves in Figure 4 and the linear re-
gression coefficients in Table 2 show, the growth
rate of distinct words in both Sorani and Kur-
manji Kurdish are higher than Persian and English.
This result demonstrates the morphological com-
plexity of the Kurdish language (Samvelian, 2007;
Walther, 2011). One of the driving factors be-
hind this complexity, is the wide use of suffixes,
most notably as: (i) the Izafe construction marker,
(ii) the plural noun marker, and (iii) the indefinite
marker.

Another important observation from this exper-
iment is that Sorani has a higher growth rate com-
pared to Kurmanji (h = 0.78 vs. h = 0.74).

7Since they are written by native speakers, cover a wide
spectrum of topics between 2006 and 2013, and have clean
HTML sources.
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Figure 5: Zipf’s Laws for Sorani and Kurmanji
Kurdish, Persian, and English.

Language log fr z

Sorani 7.69− 1.33 log r 1.33
Kurmanji 6.48− 1.31 log r 1.31
Persian 9.57− 1.51 log r 1.51
English 9.37− 1.85 log r 1.85

Table 3: Zipf’s Linear Regression

Two primary sources of these differences are: (i)
the inherent linguistic differences between the two
dialects as mentioned earlier (especially, Sorani’s
exclusive use of definite marker), (ii) the general
tendency in Sorani to use prepositions and helper
verbs as suffix.

4.4 Zipf’s Law

The Zipf’s law (Zipf, 1949) states that in any
large-enough text, the frequency ranks of the
words are inversely proportional to the corre-
sponding frequencies:

log fr ≈ C − z log r (2)

where fr is the frequency of the word having the
rank r, z is the exponent coefficient, and C is a
constant. In a logarithmic scale, it is a straight
line with about 45◦ angle (Gelbukh and Sidorov,
2001).

The results of our experiment–plotted curves in
Figure 5 and linear regression coefficients in Ta-
ble 3– show that: (i) the distribution of the top
most frequent words in Sorani is uniquely differ-
ent; it first shows a sharper drop in the top 10
words and then a slower drop for the words ranked
between 10 and 100, and (ii) in the remaining parts
of the curves, both Kurmanji and Sorani behave
similarly; this is also reflected in their values of
coefficient z (1.33 and 1.31).

5 Conclusions and Future Work

In this paper we took the first steps towards ad-
dressing the two main challenges in Kurdish lan-
guage processing, namely, resource scarcity and
diversity. We presented Pewan, a text corpus for
Sorani and Kurmanji, the two principal dialects of
the Kurdish language. We also highlighted a range
of differences between these two dialects and their
writing systems.

The main findings of our analysis can be sum-
marized as follows: (i) there are phonological
differences between Sorani and Kurmanji; while
some phonemes are non-existent in Kurmanji,
some others are less-common in Sorani, (ii) they
differ considerably in their vocabulary growth
rates, (iii) Sorani has a peculiar frequency distribu-
tion w.r.t. its highly-common words. Some of the
discrepancies are due to the existence of a generic
preposition ( ) in Sorani, as well as the general
tendency in its writing system and style to use
prepositions as suffix.

Our project at UoK is a work in progress. Re-
cently, we have used the Pewan corpus to build
a test collection to evaluate Kurdish Information
Retrieval systems (Esmaili et al., 2013). In future,
we plan to first develop stemming algorithms for
both Sorani and Kurmanji and then leverage those
algorithms to examine the lexical differences be-
tween the two dialects. Another avenue for future
work is to build a transliteration/translation engine
between Sorani and Kurmanji.
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Pollet Samvelian. 2007. A Lexical Account of So-
rani Kurdish Prepositions. In The Proceedings of
the 14th International Conference on Head-Driven
Phrase Structure Grammar, pages 235–249, Stan-
ford. CSLI Publications.

Jacques Savoy. 1999. A Stemming Procedure and
Stopword List for General French Corpora. JASIS,
50(10):944–952.

Faramarz Shahsavari. 2010. Laki and Kurdish. Iran
and the Caucasus, 14(1):79–82.

Mehrnoush Shamsfard. 2011. Challenges and Open
Problems in Persian Text Processing. In Proceed-
ings of LTC’11.

Wheeler M. Thackston. 2006a. Kurmanji Kurdish: A
Reference Grammar with Selected Readings. Har-
vard University.

Wheeler M. Thackston. 2006b. Sorani Kurdish: A Ref-
erence Grammar with Selected Readings. Harvard
University.

TREC. 2013. Text REtrieval Conference.
http://trec.nist.gov/.

VOA. 2013a. Voice of America - Kurdish (Kurmanji)
. http://www.dengeamerika.com/.

VOA. 2013b. Voice of America - Kurdish (Sorani).
http://www.dengiamerika.com/.
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Abstract

As most of the world’s languages are
under-resourced, projection algorithms
offer an enticing way to bootstrap the
resources available for one resource-
poor language from a resource-rich lan-
guage by means of parallel text and
word alignment. These algorithms,
however, make the strong assumption
that the language pairs share common
structures and that the parse trees will
resemble one another. This assump-
tion is useful but often leads to errors
in projection. In this paper, we will
address this weakness by using trees
created from instances of Interlinear
Glossed Text (IGT) to discover pat-
terns of divergence between the lan-
guages. We will show that this method
improves the performance of projection
algorithms significantly in some lan-
guages by accounting for divergence be-
tween languages using only the partial
supervision of a few corrected trees.

1 Introduction
While thousands of languages are spoken
in the world, most of them are considered
resource-poor in the sense that they do not
have a large number of electronic resources
that can be used to build NLP systems. For
instance, some languages may lack treebanks,
thus making it difficult to build a high-quality
statistical parser.

One common approach to address this prob-
lem is to take advantage of bitext between a
resource-rich language (e.g., English) and a
resource-poor language by projecting informa-
tion from the former to the latter (Yarowsky
and Ngai, 2001; Hwa et al., 2004). While pro-

jection methods can provide a great deal of in-
formation at minimal cost to the researchers,
they do suffer from structural divergence be-
tween the language-poor language (aka target
language) and the resource-rich language (aka
source language).
In this paper, we propose a middle ground

between manually creating a large-scale tree-
bank (which is expensive and time-consuming)
and relying on the syntactic structures pro-
duced by a projection algorithm alone (which
are error-prone).
Our approach has several steps. First, we

utilize instances of Interlinear Glossed Text
(IGT) following Xia and Lewis (2007) as seen
in Figure 1(a) to create a small set of parallel
dependency trees through projection and then
manually correct the dependency trees. Sec-
ond, we automatically analyze this small set
of parallel trees to find patterns where the cor-
rected data differs from the projection. Third,
those patterns are incorporated to the projec-
tion algorithm to improve the quality of pro-
jection. Finally, the features extracted from
the projected trees are added to a statisti-
cal parser to improve parsing quality. The
outcome of this work are both an enhanced
projection algorithm and a better parser for
resource-poor languages that require a mini-
mal amount of manual effort.

2 Previous Work
For this paper, we will be building upon
the standard projection algorithm for depen-
dency structures as outlined in Quirk et al.
(2005) and illustrated in Figure 1. First, a
sentence pair between resource-rich (source)
and resource-poor (target) languages is word
aligned [Fig 1(a)]. Second, the source sen-
tence is parsed by a dependency parser for
the source language [Fig 1(b)]. Third, sponta-
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siwA ne pAnI se GadZe ko BarA

Sita filled the clay-pot with water

Sita erg water with clay-pot acc filled

(a) An Interlinear Glossed Text (IGT) instance in Hindi
and word alignment between the gloss line and the
English translation.

Sita

filled

the

clay-pot with

water
(b) Dependency parse of English translation.

siwA

BarA

the

GadZe se

pAnI
(c) English words are replaced with Hindi words and

spontaneous word “the” are removed from the tree.

siwA

BarA

GadZese

pAnIne ko

(d) Siblings in the tree are reordered based on the word
order of the Hindi sentence and spontaneous Hindi
words are attached as indicated by dotted lines. The
words pAnI and se are incorrectly inverted, as indi-
cated by the curved arrow.

Figure 1: An example of projecting a depen-
dency tree from English to Hindi.

neous (unaligned) source words are removed,
and the remaining words are replaced with
corresponding words in the target side [Fig
1(c)]. Finally, spontaneous target words are
re-attached heuristically and the children of a
head are ordered based on the word order in
the target sentence [Fig 1(d)]. The resulting
tree may have errors (e.g., pAni should depend
on se in Figure 1(d)), and the goal of this study
is to reduce common types of projection errors.
In Georgi et al. (2012a), we proposed a

method for analyzing parallel dependency cor-
pora in which word alignment between trees
was used to determine three types of edge con-
figurations: merged, swapped, and spon-
taneous. Merged alignments were those in
which multiple words in the target tree aligned
to a single word in the source tree, as in Figure
2. Swapped alignments were those in which
a parent node in the source tree aligned to a

child in the target tree and vice-versa. Finally,
spontaneous alignments were those for which
a word did not align to any word on the other
side. These edge configurations could be de-
tected from simple parent–child edges and the
alignment (or lack of) between words in the
language pairs. Using these simple, language-
agnostic measures allows one to look for diver-
gence types such as those described by Dorr
(1994).
Georgi et al. (2012b) described a method

in which new features were extracted from
the projected trees and added to the feature
vectors for a statistical dependency parser.
The rationale was that, although the projected
trees were error-prone, the parsing model
should be able to set appropriate weights of
these features based on how reliable these fea-
tures were in indicating the dependency struc-
ture. We started with the MSTParser (Mc-
Donald et al., 2005) and modified it so that the
edges from the projected trees could be used
as features at parse time. Experiments showed
that adding new features improved parsing
performance.
In this paper, we use the small training cor-

pus built in Georgi et al. (2012b) to improve
the projection algorithm itself. The improved
projected trees are in turn fed to the statistical
parser to further improve parsing results.

3 Enhancements to the projection
algorithm

We propose to enhance the projection algo-
rithm by addressing the three alignment types
discussed earlier:
1. Merge: better informed choice for head

for multiply-aligned words.
2. Swap: post-projection correction of fre-

quently swapped word pairs.
3. Spontaneous: better informed attach-

ment of target spontaneous words.

The detail of the enhancements are ex-
plained below.

3.1 Merge Correction
“Merged” words, or multiple words on the tar-
get side that align to a single source word, are
problematic for the projection algorithm be-
cause it is not clear which target word should
be the head and which word should be the
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rAma buxXimAna lagawA hE
Ram intelligent seem be-Pres
“Ram seems intelligent”

seems
VBZ

Ram
NNP

intelligent
JJ

lagawA
seems

ram
Ram

buxXimAna
intelligent

hE
be-Pres

Figure 2: An example of merged alignment,
where the English word seems align to two
Hindi words hE and lagawA. Below the IGT
are the dependency trees for English and
Hindi. Dotted arrows indicate word align-
ment, and the solid arrow indicates that hE
should depend on lagawA.

dependent. An example is given in Figure 2,
where the English word seems align to two
Hindi words hE and lagawA.

On the other hand, from the small amount
of labeled training data (i.e., a set of hand-
corrected tree pairs), we can learn what kind
of source words are likely to align to multiple
target words, and which target word is likely to
the head. The process is illustrated in Figure
3. In this example, the target words tm and
tn are both aligned with the source word si

whose POS tag is POSi, and tm appears before
tn in the target sentence. Going through the
examples of merged alignments in the training
data, we keep a count for the POS tag of the
source word and the position of the head on
the target side.1 Based on these counts, our
system will generate rules such as the ones in
Figure 3(c) which says if a source word whose
POS is POSi aligns to two target words, the
probability of the right target word depending
on the left one is 75%, and the probability of
the left target word depending on the right one
is 25%. We use maximum likelihood estimate
(MLE) to calculate the probability.

The projection algorithm will use those rules
to handle merged alignment; that is, when a
source word aligns to multiple target words,
the algorithm determines the direction of de-
pendency edge based on the direction prefer-
ence stored in the rules. In addition to rules for

1We use the position of the head, not the POS tag of
the head, because the POS tags of the target words are
not available when running the projection algorithm on
the test data.

si
POSi

tm

tn

(a) Alignment between a source word and two target
words, and one target word tm is the parent of the
other word tn.

tm tn to ... tp
(b) Target sentence showing the “left” dependency be-

tween tm and tn.

POSi → left 0.75
POSi → right 0.25

(c) Rules for handling merged alignment

Figure 3: Example of merged alignment and
rules derived from such an example

an individual source POS tag, our method also
keeps track of the overall direction preference
for all the merged examples in that language.
For merges in which the source POS tag is un-
seen or there are no rules for that tag, this
language-wide preference is used as a backoff.

3.2 Swap Correction
An example of swapped alignment is in Figure
4(a), where (sj , si) is an edge in the source
tree, (tm, tn) is an edge in the target tree, and
sj aligns to tn and si aligns to tm. Figure
1(d) shows an error made by the projection
algorithm due to swapped alignment. In order
to correct such errors, we count the number
of (POSchild, POSparent) dependency edges in
the source trees, and the number of times that
the directions of the edges are reversed on the
target side. Figure 4(b) shows a possible set of
counts resulting from this approach. Based on
the counts, we keep only the POS pairs that
appear in at least 10% of training sentences
and the percentage of swap for the pairs are
no less than 70%.2 We say that those pairs
trigger a swap operation.
At the test time, swap rules are applied as a

post-processing step to the projected tree. Af-
ter the projected tree is completed, our swap
handling step checks each edge in the source
tree. If the POS tag pair for the edge triggers

2These thresholds are set empirically.
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si
POSi

tm

tn

sj
POSj

(a) A swapped alignment between source words sj and
si and target words tm and tn.

POS Pair Swaps Total %
(POSi, POSj) → 16 21 76
(POSk, POSl) → 1 1 100
(POSn, POSo) → 1 10 10

(b) Example set of learned swap rules. Swaps counts the
number of times the given (child, parent) pair is seen
in a swap configuration in the source side, and total
is the number of times said pair occurs overall.

Figure 4: Example swap configuration and col-
lected statistics.

j

l m n

o p

h

i k l

m n

o p

h

i k

j

Figure 5: Swap operation: on the left is the
original tree; on the right is the tree after
swapping node l with its parent j.

a swap operation, the corresponding nodes in
the projected tree will be swapped, as illus-
trated in Figure 5.

3.3 Spontaneous Reattachment
Target spontaneous words are difficult to han-
dle because they do not align to any source
word and thus there is nothing to project to
them. To address this problem, we collect two
types of information from the training data.
First, we keep track of all the lexical items
that appear in the training trees, and the rel-
ative position of their head. This lexical ap-
proach may be useful in handling closed-class
words which account for a large percentage of
spontaneous words. Second, we use the train-
ing trees to determine the favored attachment
direction for the language as a whole.
At the test time, for each spontaneous word

in the target sentence, if it is one of the words
for which we have gathered statistics from the
training data, we attach it to the next word
in the preferred direction for that word. If the

word is unseen, we attach it using the overall
language preference as a backoff.

3.4 Parser Enhancements
In addition to above enhancements to the pro-
jection algorithm itself, we train a dependency
parser on the training data, with new features
from the projected trees following Georgi et al.
(2012b). Furthermore, we add features that
indicate whether the current word appears in
a merge or swap configuration. The results
of this combination of additional features and
improved projection is shown in Table 1(b).

4 Results

For evaluation, we use the same data sets as
in Georgi et al. (2012b), where there is a small
number (ranging from 46 to 147) of tree pairs
for each of the eight languages. The IGT
instances for those tree pairs come from the
Hindi Treebank (Bhatt et al., 2009) and the
Online Database of Interlinear Text (ODIN)
(Lewis and Xia, 2010).
We ran 10-fold cross validation and reported

the average of 10 runs in Table 1. The top ta-
ble shows the accuracy of the projection algo-
rithm, and the bottom table shows parsing ac-
curacy of MSTParser with or without adding
features from the projected trees. In both ta-
bles, the Best row uses the enhanced projec-
tion algorithm. The Baseline rows use the
original projection algorithm in Quirk et al.
(2005) where the word in the parentheses in-
dicates the direction of merge. The Error Re-
duction row shows the error reduction of the
Best system over the best performing baseline
for each language. The No Projection row in
the second table shows parsing results when
no features from the projected trees are added
to the parser, and the last row in that table
shows the error reduction of the Best row over
the No Projection row.
Table 1 shows that using features from the

projected trees provides a big boost to the
quality of the statistical parser. Furthermore,
the enhancements laid out in Section 3 im-
prove the performance of both the projection
algorithm and the parser that uses features
from projected trees. The degree of improve-
ment may depend on the properties of a par-
ticular language pair and the labeled data we
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(a) The accuracies of the original projection algorithm (the Baselin rows) and the enhanced algorithm (the Best
row) on eight language pairs. For each language, the best performing baseline is in italic. The last row shows
the error reduction of the Best row over the best performing baseline, which is calculated by the formula
ErrorRate = Best−BestBaseline

100−BestBaseline
× 100

YAQ WLS HIN KKN GLI HUA GER MEX
Best 88.03 94.90 77.44 91.75 87.70 90.11 88.71 93.05
Baseline (Right) 87.28 89.80 57.48 90.34 86.90 79.31 88.03 89.57
Baseline (Left) 84.29 89.80 68.11 88.93 76.98 79.54 88.03 89.57
Error Reduction 5.90 50.00 29.26 14.60 6.11 51.66 5.68 33.37

(b) The parsing accuracies of the MSTParser with or without new features extracted from projected trees. There
are two error reduction rows: one is with respect to the best performing baseline for each language, the other
is with respect to No Projection where the parser does not use features from projected trees.

YAQ WLS HIN KKN GLI HUA GER MEX
Best 89.28 94.90 81.35 92.96 81.35 88.74 92.93 93.05
Baseline (Right) 88.28 94.22 78.03 92.35 80.95 87.59 90.48 92.43
Baseline (Left) 87.88 94.22 79.64 90.95 80.95 89.20 90.48 92.43
No Projection 66.08 91.32 65.16 80.75 55.16 72.22 62.72 73.03
Error Reduction (BestBaseline) 8.53 11.76 8.40 7.97 2.10 -4.26 25.74 8.19
Error Reduction (No Projection) 68.39 41.24 46.47 63.43 58.41 59.47 81.04 74.23

Table 1: System performance on eight languages: Yaqui (YAQ), Welsh (WLS), Hindi (HIN),
Korean (KKN), Gaelic (GLI), Hausa (HUA), German (GER), and Malagasy (MEX).

have for that language pair. For instance,
swap is quite common for the Hindi-English
pair because postpositions depend on nouns
in Hindi whereas nouns depend on preposi-
tions in English. As a result, the enhancement
for the swapped alignment alone results in a
large error reduction, as in Table 2. This ta-
ble shows the projection accuracy on the Hindi
data when each of the three enhancements is
turned on or off. The rows are sorted by de-
scending overall accuracy, and the row that
corresponds to the system labeled “Best” in
Table 1 is in bold.

5 Conclusion

Existing projection algorithms suffer from the
effects of structural divergence between lan-
guage pairs. We propose to learn common di-
vergence types from a small number of tree
pairs and use the learned rules to improve pro-
jection accuracy. Our experiments show no-
table gains for both projection and parsing
when tested on eight language pairs. As IGT
data is available for hundreds of languages
through the ODIN database and other sources,
one could produce a small parallel treebank
for a language pair after spending a few hours
manually correcting the output of a projec-
tion algorithm. From the treebank, a bet-
ter projection algorithm and a better parser
can be built automatically using our approach.

Spont Swap Merge Direction Accuracy
X X Left 78.07
X X Informed 77.44

X Left 76.69
X Informed 76.06

X Left 69.49
X Informed 68.96

Left 68.11
Informed 67.58

X X Right 66.32
X Right 64.97

X Right 58.84
Right 57.48

Table 2: Projection accuracy on the Hindi
data, with the three enhancements turning
on or off. The “spont” and “swap” columns
show a checkmark when the enhancements
are turned on. The merge direction indicates
whether a left or right choice was made as a
baseline, or whether the choice was informed
by the rules learned from the training data.

While the improvements for some languages
are incremental, the scope of coverage for this
method is potentially enormous, enabling the
rapid creation of tools for under-resourced lan-
guages of all kinds at a minimal cost.

Acknowledgment

This work is supported by the National Sci-
ence Foundation Grant BCS-0748919. We
would also like to thank the reviewers for help-
ful comments.

310



References

Rajesh Bhatt, Bhuvana Narasimhan, Martha
Palmer, Owen Rambow, Dipti Misra
Sharma, and Fei Xia. A multi-
representational and multi-layered treebank
for Hindi/Urdu. In ACL-IJCNLP ’09: Pro-
ceedings of the Third Linguistic Annotation
Workshop. Association for Computational
Linguistics, August 2009.

Bonnie Jean Dorr. Machine translation di-
vergences: a formal description and pro-
posed solution. Computational Linguistics,
20:597–633, December 1994.

R Georgi, F Xia, and W D Lewis. Measur-
ing the Divergence of Dependency Struc-
tures Cross-Linguistically to Improve Syn-
tactic Projection Algorithms. In Proceedings
of the Sixth International Conference on
Language Resources and Evaluation (LREC
2012), Istanbul, Turkey, May 2012a.

Ryan Georgi, Fei Xia, and William D Lewis.
Improving Dependency Parsing with Inter-
linear Glossed Text and Syntactic Projec-
tion. In Proceedings of the 24th Interna-
tional Conference on Computational Lin-
guistics (COLING 2012), Mumbai, India,
December 2012b.

Rebecca Hwa, Philip Resnik, Amy Weinberg,
Clara Cabezas, and Okan Kolak. Bootstrap-
ping parsers via syntactic projection across
parallel texts. Natural Language Engineer-
ing, 1(1):1–15, 2004.

William D Lewis and Fei Xia. Developing
ODIN: A Multilingual Repository of Anno-
tated Language Data for Hundreds of the
World’s Languages. 2010.

R. McDonald, F. Pereira, K. Ribarov, and
J. Hajič. Non-projective dependency parsing
using spanning tree algorithms. Proceedings
of the conference on Human Language Tech-
nology and Empirical Methods in Natural
Language Processing, pages 523–530, 2005.

Chris Quirk, Arul Menezes, and Colin Cherry.
Dependency treelet translation: Syntacti-
cally informed phrasal SMT. In Proceed-
ings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics. Mi-
crosoft Research, 2005.

Fei Xia and William D Lewis. Multilin-
gual Structural Projection across Interlin-
ear Text. In Human Language Technologies:
The Annual Conference of the North Amer-
ican Chapter of the Association for Compu-
tational Linguistics (NAACL), 2007.

David Yarowsky and Grace Ngai. Inducing
multilingual POS taggers and NP bracketers
via robust projection across aligned corpora.
In Second meeting of the North American
Association for Computational Linguistics
(NAACL), Stroudsburg, PA, 2001. Johns
Hopkins University.

311



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 312–317,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Cross-lingual Projections between Languages from Different Families

Mo Yu1 Tiejun Zhao1 Yalong Bai1 Hao Tian2 Dianhai Yu2

1School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
{yumo,tjzhao,ylbai}@mtlab.hit.edu.cn

2Baidu Inc., Beijing, China
{tianhao,yudianhai}@baidu.com

Abstract

Cross-lingual projection methods can ben-
efit from resource-rich languages to im-
prove performances of NLP tasks in
resources-scarce languages. However,
these methods confronted the difficulty of
syntactic differences between languages
especially when the pair of languages
varies greatly. To make the projection
method well-generalize to diverse lan-
guages pairs, we enhance the projec-
tion method based on word alignments
by introducing target-language word rep-
resentations as features and proposing a
novel noise removing method based on
these word representations. Experiments
showed that our methods improve the per-
formances greatly on projections between
English and Chinese.

1 Introduction

Most NLP studies focused on limited languages
with large sets of annotated data. English and
Chinese are examples of these resource-rich lan-
guages. Unfortunately, it is impossible to build
sufficient labeled data for all tasks in all lan-
guages. To address NLP tasks in resource-scarce
languages, cross-lingual projection methods were
proposed, which make use of existing resources
in resource-rich language (also called source lan-
guage) to help NLP tasks in resource-scarce lan-
guage (also named as target language).

There are several types of projection methods.
One intuitive and effective method is to build a
common feature space for all languages, so that
the model trained on one language could be di-
rectly used on other languages (McDonald et al.,
2011; Täckström et al., 2012). We call it di-
rect projection, which becomes very popular re-
cently. The main limitation of these methods is

that target language has to be similar to source
language. Otherwise the performance will de-
grade especially when the orders of phrases be-
tween source and target languages differ a lot.

Another common type of projection methods
map labels from resource-rich language sentences
to resource-scarce ones in a parallel corpus us-
ing word alignment information (Yarowsky et al.,
2001; Hwa et al., 2005; Das and Petrov, 2011).
We refer them as projection based on word align-
ments in this paper. Compared to other types of
projection methods, this type of methods is more
robust to syntactic differences between languages
since it trained models on the target side thus fol-
lowing the topology of the target language.

This paper aims to build an accurate projec-
tion method with strong generality to various pairs
of languages, even when the languages are from
different families and are typologically divergent.
As far as we know, only a few works focused
on this topic (Xia and Lewis 2007; Täckström
et al., 2013). We adopted the projection method
based on word alignments since it is less affected
by language differences. However, such methods
also have some disadvantages. Firstly, the models
trained on projected data could only cover words
and cases appeared in the target side of parallel
corpus, making it difficult to generalize to test data
in broader domains. Secondly, the performances
of these methods are limited by the accuracy of
word alignments, especially when words between
two languages are not one-one aligned. So the ob-
tained labeled data contains a lot of noises, making
the models built on them less accurate.

This paper aims to build an accurate projection
method with strong generality to various pairs of
languages. We built the method on top of projec-
tion method based on word alignments because of
its advantage of being less affected by syntactic
differences, and proposed two solutions to solve
the above two difficulties of this type of methods.
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Firstly, we introduce Brown clusters of target
language to make the projection models cover
broader cases. Brown clustering is a kind of word
representations, which assigns word with similar
functions to the same cluster. They can be ef-
ficiently learned on large-scale unlabeled data in
target language, which is much easier to acquire
even when the scales of parallel corpora of minor
languages are limited. Brown clusters have been
first introduced to the field of cross-lingual projec-
tions in (Täckström et al., 2012) and have achieved
great improvements on projection between Euro-
pean languages. However, their work was based
on the direct projection methods so that it do not
work very well between languages from different
families as will be shown in Section 3.

Secondly, to reduce the noises in projection, we
propose a noise removing method to detect and
correct noisy projected labels. The method was
also built on Brown clusters, based on the assump-
tion that instances with similar representations of
Brown clusters tend to have similar labels. As far
as we know, no one has done any research on re-
moving noises based on the space of word repre-
sentations in the field of NLP.

Using above techniques, we achieved a projec-
tion method that adapts well on different language
pairs even when the two languages differ enor-
mously. Experiments of NER and POS tagging
projection from English to Chinese proved the ef-
fectiveness of our methods.

In the rest of our paper, Section 2 describes the
proposed cross-lingual projection method. Evalu-
ations are in Section 3. Section 4 gives concluding
remarks.

2 Proposed Cross-lingual Projection
Methods

In this section, we first briefly introduce the cross-
lingual projection method based on word align-
ments. Then we describe how the word represen-
tations (Brown clusters) were used in the projec-
tion method. Section 2.3 describes the noise re-
moving methods.

2.1 Projection based on word alignments

In this paper we consider cross-lingual projec-
tion based on word alignment, because we want
to build projection methods that can be used be-
tween language pairs with large differences. Fig-
ure 1 shows the procedure of cross-lingual projec-

tion methods, taking projection of NER from En-
glish to Chinese as an example. Here English is
the resource-rich language and Chinese is the tar-
get language. First, sentences from the source side
of the parallel corpus are labeled by an accurate
model in English (e.g., ”Rongji Zhu” and ”Gan
Luo” were labeled as ”PER”), since the source
language has rich resources to build accurate NER
models. Then word alignments are generated from
the parallel corpus and serve as a bridge, so that
unlabeled words in the target language will get the
same labels with words aligning to them in the
source language, e.g. the first word ‘朱(金容)基’
in Chinese gets the projected label ‘PER’, since it
is aligned to “Rongji” and “Zhu”. In this way, la-
bels in source language sentences are projected to
the target sentences.

... ...
... ...O inspected

视察 (O)O have
等 (O)O others
吴仪 (O)O and

PER Yi 、 (O)
PER Wu 罗干 (PER)

O ,
PER Gan

、 (O)

PER Luo
朱(金容)基 (PER)

O ,
PER Rongji
PER Zhu

Figure 1: An example of projection of NER. La-
bels of Chinese sentence (right) in brackets are
projected from the source sentence.

From the projection procedure we can see that a
labeled dataset of target language is built based on
the projected labels from source sentences. The
projected dataset has a large size, but with a lot
of noises. With this labeled dataset, models of the
target language can be trained in a supervised way.
Then these models can be used to label sentences
in target language. Since the models are trained
on the target language, this projection approach is
less affected by language differences, comparing
with direct projection methods.

2.2 Word Representation features for
Cross-lingual Projection

One disadvantage of above method is that the cov-
erage of projected labeled data used for training
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Words wi,i∈{−2:2}, wi−1/wi,i∈{0,1}
Cluster ci,i∈{−2:2}, ci−1/ci,i∈{−1,2}, c−1/c1

Transition y−1/y0/{w0, c0, c−1/c1}

Table 1: NER features. ci is the cluster id of wi.

target language models are limited by the cover-
age of parallel corpora. For example in Figure 1,
some Chinese politicians in 1990’s will be learned
as person names, but some names of recent politi-
cians such as “Obama”, which did not appeared in
the parallel corpus, would not be recognized.

To broader the coverage of the projected data,
we introduced word representations as features.
Same or similar word representations will be as-
signed to words appearing in similar contexts,
such as person names. Since word representations
are trained on large-scale unlabeled sentences in
target language, they cover much more words than
the parallel corpus does. So the information of a
word in projected labeled data will apply to other
words with the same or similar representations,
even if they did not appear in the parallel data.

In this work we use Brown clusters as word rep-
resentations on target languages. Brown clustering
assigns words to hierarchical clusters according to
the distributions of words before and after them.
Taking NER as an example, the feature template
may contain features shown in Table 1. The cluster
id of the word to predict (c0) and those of context
words (ci, i ∈ {−2,−1, 1, 2}), as well as the con-
junctions of these clusters were used as features in
CRF models in the same way the traditional word
features were used. Since Brown clusters are hi-
erarchical, the cluster for each word can be rep-
resented as a binary string. So we also use prefix
of cluster IDs as features, in order to compensate
for clusters containing small number of words. For
languages lacking of morphological changes, such
as Chinese, there are no pre/suffix or orthography
features. However the cluster features are always
available for any languages.

2.3 Noise Removing in Word Representation
Space

Another disadvantage of the projection method is
that the accuracy of projected labels is badly af-
fected by non-literate translation and word align-
ment errors, making the data contain many noises.
For example in Figure 1, the word “吴仪(Wu Yi)”
was not labeled as a named entity since it was

not aligned to any words in English due to the
alignment errors. A more accurate model will be
trained if such noises can be reduced.

A direct way to remove the noises is to mod-
ify the label of a word to make it consistent with
the majority of labels assigned to the same word in
the parallel corpus. The method is limited when a
word with low frequency has many of its appear-
ances incorrectly labeled because of alignment er-
rors. In this situation the noises are impossible to
remove according to the word itself. The error in
Figure 1 is an example of this case since the other
few occurrences of the word “吴仪(Wu Yi)” also
happened to fail to get the correct label.

Such difficulties can be easily solved when we
turned to the space of Brown clusters, based on
the observation that words in a same cluster tend
to have same labels. For example in Figure 1, the
word “吴仪(Wu Yi)”, “朱(金容)基(Zhu Rongji)”
and “罗干(Luo Gan)” are in the same cluster, be-
cause they are all names of Chinese politicians
and usually appear in similar contexts. Having ob-
served that a large portion of words in this cluster
are person names, it is reasonable to modified the
label of “吴仪(Wu Yi)” to “PER”.

The space of clusters is also less sparse so it is
also possible to use combination of the clusters to
help noise removing, in order to utilize the context
information of data instances. For example, we
could represent a instance as bigram of the cluster
of target word and that of the previous word. And
it is reasonable that its label should be same with
other instances with the same cluster bigrams.

The whole noise removing method can be rep-
resented as following: Suppose a target word wi
was assigned label yi during projection with prob-
ability of alignment pi. From the whole projected
labeled data, we can get the distribution pw(y) for
the word wi, the distribution pc(y) for its cluster
ci and the distribution pb(y) for the bigram ci−1ci.
We choose y′i = y′, which satisfies

y′ = argmaxy(δy,yipi + Σx∈{w,c,b}px(y)) (1)

δy,yi is an indicator function, which is 1 when
y equals to yi. In practices, we set pw/c/b(y) to 0
for the ys that make the probability less than 0.5.
With the noise removing method, we can build a
more accurate labeled dataset based on the pro-
jected data and then use it for training models.
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3 Experimental Results

3.1 Data Preparation
We took English as resource-rich language and
used Chinese to imitate resource-scarce lan-
guages, since the two languages differ a lot. We
conducted experiments on projections of NER and
POS tagging. The resource-scarce languages were
assumed to have no training data. For the NER
experiments, we used data from People’s Daily
(April. 1998) as test data (55,177 sentences). The
data was converted following the style of Penn
Chinese Treebank (CTB) (Xue et al., 2005). For
evaluation of projection of POS tagging, we used
the test set of CTB. Since English and Chinese
have different annotation standards, labels in the
two languages were converted to the universal
POS tag set (Petrov et al., 2011; Das and Petrov,
2011) so that the labels between the source and tar-
get languages were consistent. The universal tag
set made the task of POS tagging easier since the
fine-grained types are no more cared.

The Brown clusters were trained on Chinese
Wikipedia. The bodies of all articles are retained
to induce 1000 clusters using the algorithm in
(Liang, 2005) . Stanford word segmentor (Tseng
et al., 2005) was used for Chinese word segmenta-
tion. When English Brown clusters were in need,
we trained the word clusters on the tokenized En-
glish Wikipedia.

We chose LDC2003E14 as the parallel corpus,
which contains about 200,000 sentences. GIZA++
(Och and Ney, 2000) was used to generate word
alignments. It is easier to obtain similar amount
of parallel sentences between English and minor
languages, making the conclusions more general
for problems of projection in real applications.

3.2 Performances of NER Projection
Table 2 shows the performances of NER projec-
tion. We re-implemented the direct projection
method with projected clusters in (Täckström et
al., 2012). Although their method was proven to
work well on European language pairs, the results
showed that projection based on word alignments
(WA) worked much better since the source and tar-
get languages are from different families.

After we add the clusters trained on Chinese
Wikipedia as features as in Section 2.2, a great
improvement of about 9 points on the average F1-
score of the three entity types was achieved, show-
ing that the word representation features help to

System avg
Prec

avg
Rec

avg
F1

Direct projection 47.48 28.12 33.91
Proj based on WA 71.6 37.84 47.66
+clusters(from en) 63.96 46.59 53.75
+clusters(ch wiki) 73.44 47.63 56.60

Table 2: Performances of NER projection.

recall more named entities in the test set. The per-
formances of all three categories of named entities
were improved greatly after adding word repre-
sentation features. Larger improvements were ob-
served on person names (14.4%). One of the rea-
sons for the improvements is that in Chinese, per-
son names are usually single words. Thus Brown-
clustering method can learn good word representa-
tions for those entities. Since in test set, most enti-
ties that are not covered are person names, Brown
clusters helped to increase the recall greatly.

In (Täckström et al., 2012), Brown clusters
trained on the source side were projected to the
target side based on word alignments. Rather than
building a same feature space for both the source
language and the target language as in (Täckström
et al., 2012), we tried to use the projected clus-
ters as features in projection based on word align-
ments. In this way the two methods used exactly
the same resources. In the experiments, we tried
to project clusters trained on English Wikipedia
to Chinese words. They improved the perfor-
mance by about 6.1% and the result was about
20% higher than that achieved by the direct pro-
jection method, showing that even using exactly
the same resources, the proposed method out-
performed that in (Täckström et al., 2012) much
on diverse language pairs.

Next we studied the effects of noise removing
methods. Firstly, we removed noises according to
Eq(1), which yielded another huge improvement
of about 6% against the best results based on clus-
ter features. Moreover, we conducted experiments
to see the effects of each of the three factors. The
results show that both the noise removing methods
based on words and on clusters achieved improve-
ments between 1.5-2 points. The method based on
bigram features got the largest improvement of 3.5
points. It achieved great improvement on person
names. This is because a great proportion of the
vocabulary was made up of person names, some of
which are mixed in clusters with common nouns.
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While noise removing method based on clusters
failed to recognize them as name entities, cluster
bigrams will make use of context information to
help the discrimination of these mixed clusters.

System PER LOC ORG AVG
By Eq(1) 59.77 55.56 72.26 62.53

By clusters 49.75 53.10 72.46 58.44
By words 49.00 54.69 70.59 58.09

By bigrams 58.39 55.01 66.88 60.09

Table 3: Performances of noise removing methods

3.3 Performances of POS Projection

In this section we test our method on projection
of POS tagging from English to Chinese, to show
that our methods can well extend to other NLP
tasks. Unlike named entities, POS tags are asso-
ciated with single words. When one target word
is aligned to more than one words with different
POS tags on the source side, it is hard to decide
which POS tag to choose. So we only retained the
data labeled by 1-to-1 alignments, which also con-
tain less noises as pointed out by (Hu et al., 2011).
The same feature template as in the experiments
of NER was used for training POS taggers.

The results are listed in Table 4. Because of the
great differences between English and Chinese,
projection based on word alignments worked bet-
ter than direct projection did. After adding word
cluster features and removing noises, an error re-
duction of 12.7% was achieved.

POS tagging projection can benefit more from
our noise removing methods than NER projection
could, i.e. noise removing gave rise to a higher
improvement (2.7%) than that achieved by adding
cluster features on baseline system (1.5%). One
possible reason is that our noise removing meth-
ods assume that labels are associated with single
words, which is more suitable for POS tagging.

Methods Accuracy
Direct projection (Täckström) 62.71

Projection based on WA 66.68
+clusters (ch wiki) 68.23

+cluster(ch)&noise removing 70.92

Table 4: Performances of POS tagging projection.

4 Conclusion and perspectives

In this paper we introduced Brown clusters of
target languages to cross-lingual projection and
proposed methods for removing noises on pro-
jected labels. Experiments showed that both the
two techniques could greatly improve the perfor-
mances and could help the projection method well
generalize to languages differ a lot.

Note that although projection methods based on
word alignments are less affected by syntactic dif-
ferences, the topological differences between lan-
guages still remain an importance reason for the
limitation of performances of cross-lingual projec-
tion. In the future we will try to make use of repre-
sentations of sub-structures to deal with syntactic
differences in more complex tasks such as projec-
tion of dependency parsing. Future improvements
also include combining the direct projection meth-
ods based on joint feature representations with the
proposed method as well as making use of pro-
jected data from multiple languages.
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O Täckström, R McDonald, and J Nivre. 2013. Tar-
get language adaptation of discriminative transfer
parsers. Proceedings of NAACL-HLT.

H. Tseng, P. Chang, G. Andrew, D. Jurafsky, and
C. Manning. 2005. A conditional random field
word segmenter for sighan bakeoff 2005. In Pro-
ceedings of the Fourth SIGHAN Workshop on Chi-
nese Language Processing, volume 171. Jeju Island,
Korea.

F Xia and W Lewis. 2007. Multilingual struc-
tural projection across interlinear text. In Proc. of
the Conference on Human Language Technologies
(HLT/NAACL 2007), pages 452–459.

N. Xue, F. Xia, F.D. Chiou, and M. Palmer. 2005. The
penn chinese treebank: Phrase structure annotation
of a large corpus. Natural Language Engineering,
11(2):207.

D. Yarowsky, G. Ngai, and R. Wicentowski. 2001.
Inducing multilingual text analysis tools via robust
projection across aligned corpora. In Proceedings
of the first international conference on Human lan-
guage technology research, pages 1–8. Association
for Computational Linguistics.

317



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 318–322,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Using Context Vectors in Improving a Machine Translation System 
with Bridge Language 

Samira Tofighi Zahabi       Somayeh Bakhshaei       Shahram Khadivi 
Human Language Technology Lab 
Amirkabir University of Technology 

Tehran, Iran 
{Samiratofighi,bakhshaei,khadivi}@aut.ac.ir 

 
 

 

Abstract 

Mapping phrases between languages as 
translation of each other by using an intermediate 
language (pivot language) may generate 
translation pairs that are wrong. Since a word or a 
phrase has different meanings in different 
contexts, we should map source and target 
phrases in an intelligent way. We propose a 
pruning method based on the context vectors to 
remove those phrase pairs that connect to each 
other by a polysemous pivot phrase or by weak 
translations. We use context vectors to implicitly 
disambiguate the phrase senses and to recognize 
irrelevant phrase translation pairs. 
Using the proposed method a relative 
improvement of 2.8 percent in terms of BLEU 
score is achieved. 

 

1 Introduction 

Parallel corpora as an important component of a 
statistical machine translation system are 
unfortunately unavailable for all pairs of 
languages, particularly in low resource languages 
and also producing it consumes time and cost. 
So, new ideas have been developed about how to 
make a MT system which has lower dependency 
on parallel data like using comparable corpora 
for improving performance of a MT system with 
small parallel corpora or making a MT system 
without parallel corpora. Comparable corpora 
have segments with the same translations. These 
segments might be in the form of words, phrases 
or sentences. So, this extracted information can 
be added to the parallel corpus or might be used 
for adaption of the language model or translation 
model. 
Comparable corpora are easily available 
resources. All texts that are about the same topic 
can be considered as comparable corpora. 
Another idea for solving the scarce resource 

problem is to use a high resource language as a 
pivot to bridge between source and target 
languages. In this paper we use the bridge 
technique to make a source-target system and we 
will prune the phrase table of this system. In 
Section 2, the related works of the bridge 
approach are considered, in Section 3 the 
proposed approach will be explained and it will 
be shown how to prune the phrase table using 
context vectors, and experiments on German-
English-Farsi systems will be presented in 
Section 4. 

2 Related Works 

There are different strategies of bridge 
techniques to make a MT system. The simplest 
way is to build two MT systems in two sides: one 
system is source-pivot and the other is pivot-
target system, then in the translation stage the 
output of the first system is given to the second 
system as an input and the output of the second 
system is the final result. The disadvantage of 
this method is its time consuming translation 
process, since until the first system’s output is 
not ready; the second system cannot start the 
translation process. This method is called 
cascading of two translation systems. 

In the other approach the target side of the 
training corpus of the source-pivot system is 
given to the pivot-target system as its input. The 
output of the pivot-target system is parallel with 
the source side of the training corpus of the 
source-pivot system. A source-to-target system 
can be built by using this noisy parallel corpus 
which in it each source sentence is directly 
translated to a target sentence. This method is 
called the pseudo corpus approach. 
  Another way is combining the phrase tables of 
the source-pivot and pivot-target systems to 
directly make a source-target phrase table. This 
combination is done if the pivot phrase is 
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identical in both phrase tables. Since one phrase 
has many translations in the other language, a 
large phrase table will be produced. This method 
is called combination of phrase tables approach. 

Since in the bridge language approach two 
translation systems are used to make a final 
translation system, the errors of these two 
translation systems will affect the final output. 
Therefore in order to decrease the propagation of 
these errors, a language should be chosen as 
pivot which its structure is similar to the source 
and target languages. But even by choosing a 
good language as pivot there are some other 
errors that should be handled or decreased such 
as the errors of ploysemous words and etc. 

For making a MT system using pivot language 
several ideas have been proposed. Wu and Wang 
(2009) suggested a cascading method which is 
explained in Section 1. 

Bertoldi (2008) proposed his method in 
bridging at translation time and bridging at 
training time by using the cascading method and 
the combination of phrase tables. 

Bakhshaei (2010) used the combination of 
phrase tables of source-pivot and pivot-target 
systems and produced a phrase table for the 
source-target system. 

Paul (2009) did several experiments to show 
the effect of pivot language in the final 
translation system. He showed that in some cases 
if training data is small the pivot should be more 
similar to the source language, and if training 
data is large the pivot should be more similar to 
the target language. In Addition, it is more 
suitable to use a pivot language that its structure 
is similar to both of source and target languages. 

Saralegi (2011) showed that there is not 
transitive property between three languages. So 
many of the translations produced in the final 
phrase table might be wrong. Therefore for 
pruning wrong and weak phrases in the phrase 
table two methods have been used. One method 
is based on the structure of source dictionaries 
and the other is based on distributional similarity.  

Rapp (1995) suggested his idea about the 
usage of context vectors in order to find the 
words that are the translation of each other in 
comparable corpora. 

In this paper the combination of phrase tables 
approach is used to make a source-target system. 
We have created a base source-target system just 
similar to previous works. But the contribution of 
our work compared to other works is that here 
we decrease the size of the produced phrase table 
and improve the performance of the system. Our 

pruning method is different from the method that 
Saralegi (2011) has used. He has pruned the 
phrase table by computing distributional 
similarity from comparable corpora or by the 
structure of source dictionaries. Here we use 
context vectors to determine the concept of 
phrases and we use the pivot language to 
compare source and target vectors. 

3 Approach 

For the purpose of showing how to create a 
pruned phrase table, in Section 3.1 we will 
explain how to create a simple source-to-target 
system. In Section 3.2 we will explain how to 
remove wrong and weak translations in the 
pruning step. Figure 1 shows the pseudo code of 
the proposed algorithm. 

In the following we have used these 
abbreviations: f, e stands for source and target 
phrases. pl, src-pl, pl-trg, src-trg respectively 
stand for pivot phrase, source-pivot phrase table, 
pivot-target phrase table and source-target 
phrase table.  

3.1 Creating source-to-target system 

At first, we assume that there is transitive 
property between three languages in order to 
make a base system, and then we will show in 
different ways that there is not transitive property 
between three languages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1. Pseudo code for proposed method 

 

for each source phrase f 
     pls = {translations of f in src-pl } 
     for each pl in pls 
        Es ={ translations of pl in pl-trg } 
        for each e in Es 
            p(e|f) =p(pl|f)*p(e|pl) and add (e,f) to src-
trg 
create source-to-destination system with src-trg 
create context vector V for each source phrase f 
using source corpora 
create context vector V’ for each target phrase e 
using target corpora 
convert Vs to pivot language vectors using src-pl 
system 
convert V’ s to pivot language vectors using pl-trg 
system 
for each f in src-trg 
Es = {translations of f in src-trg} 
For each e in Es calculate similarity of its context 
vector with f context vector 
     Select k top similar as translations of f 
      delete other translations of f in src-trg 
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For each phrase f in src-pl phrase table, all the 
phrases pl which are translations of f, are 
considered. Then for each of these pls every 
phrase e from the pl-trg phrase table that are 
translations of pl, are found. Finally f is mapped 
to all of these es in the new src-trg phrase table. 

The probability of these new phrases is 
calculated using equation (1) through the 
algorithm that is shown in figure 1. 

( | ) ( | ) ( | )p e f p pl f p e pl= ×            (1)  
A simple src-trg phrase table is created by 

this approach. Pl phrases might be ploysemous 
and produce target phrases that have different 
meaning in comparison to each other. The 
concept of some of these target phrases are 
similar to the corresponding source phrase and 
the concept of others are irrelevant to the source 
phrase.  

The language model can ignore some of these 
wrong translations. But it cannot ignore these 
translations if they have high probability. 

Since the probability of translations is 
calculated using equation (1), therefore wrong 
translations have high probability in three cases: 
first when p(pl|f) is high, second when p(e|pl) is 
high and third when p(pl|f) and p(e|pl) are high. 

In the first case pl might be a good translation 
for f and refers to concept c, but pl and e refer to 
concept 𝑐′ so mapping f to e as a translation of 
each other is wrong. The second case is similar 
to the first case but e might be a good translation 
for pl. The third case is also similar to the first 
case, but pl is a good translation for both f and e. 

The pruning method that is explained in 
Section 3.2, tries to find these translations and 
delete them from the src-trg phrase table. 

3.2 Pruning method 

To determine the concept of each phrase (p) in 
language L at first a vector (V) with length N is 
created. Each element of V is set to zero and N is 
the number of unique phrases in language L. 

In the next step all sentences of the corpus in 
language L are analyzed. For each phrase p if p 
occurs with 𝑝′ in the same sentence the element 
of context vector 𝑉 that corresponds to 𝑝′ is 
pulsed by 1. This way of calculating context 
vectors is similar to Rapp (1999), but here the 
window length of phrase co-occurrence is 
considered a sentence. Two phrases are 
considered as co-occurrence if they occur in the 
same sentence. The distance between them does 
not matter. In other words phrase 𝑝 might be at 
the beginning of the sentence while 𝑝′ being at 

the end of the sentence, but they are considered 
as co-occurrence phrases. 
    For each source (target) phrase its context 
vector should be calculated within the source 
(target) corpus as shown in figure 1. 

The number of unique phrases in the source 
(target) language is equal to the number of 
unique source (target) phrases in the src-trg 
phrase table that are created in the last Section.  

So, the length of source context vectors is m 
and the length of target context vectors is n. 
These variables (m and n) might not be equal. In 
addition to this, source vectors and target vectors 
are in two different languages, so they are not 
comparable. 

One method to translate source context vectors 
to target context vectors is using an additional 
source-target dictionary. But instead here, source 
and target context vectors are translated to pivot 
context vectors. In other words if source context 
vectors have length m and target context vectors 
have length n, they are converted to pivot 
context vectors with length z. The variable z is 
the number of unique pivot phrases in src-pl or 
pl-trg phrase tables.  

To map the source context vector 
𝑆(𝑠1, 𝑠2, … , 𝑠𝑚) to the pivot context vector, we 
use a fixed size vector 𝑉1𝑧. Elements of vector 
𝑉1𝑧 = (𝑣1,𝑣2, … , 𝑣𝑧) are the unique phrases 
extracted from src-pl or pl-trg phrase tables. 

𝑉1𝑧 = (𝑣1,𝑣2, … , 𝑣𝑧) = (0, 0, … , 0) 
 In the first step 𝒗𝒊s are set to 0. For each 

element, 𝑠𝑖, of vector S if 𝑠𝑖 > 0 it will be 
translated to k pivot phrases. These phrases are 
the output of k-best translations of 𝑠𝑖 by using 
the src-pl phrase table.  

{ }
 1 1 2( , ,..., )

phrase ta

k

ei b kl
s V v v v

−
′ ′ ′ ′=

src pl


 
For each element 𝑣′of 𝑉1′𝑘 its corresponding 

element 𝑣 of 𝑉1𝑧 which are equal, will be found, 
then the amount of 𝑣 will be increased by 𝑠𝑖. 

∀ 𝑣′  ∈  𝑉1′𝑘 𝑓𝑖𝑛𝑑 (𝑣 ∈  𝑉1𝑧) ∋ 𝑣 = 𝑣′ 
𝑣𝑎𝑙(𝑣) ← 𝑣𝑎𝑙(𝑣) + 𝑠𝑖 

Using K-best translations as middle phrases is 
for reducing the effect of translation errors that 
cause wrong concepts. This work is done for 
each target context vector. Source and target 
context vectors will be mapped to identical 
length vectors and are also in the same language 
(pivot language).Now source and target context 
vectors are comparable, so with a simple 
similarity metric their similarity can be 
calculated. 

Here we use cosine similarity. The similarity 
between each source context vector and each 
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target context vector that are translations of the 
source phrase in src-trg, are calculated. For 
each source phrase, the N-most similar target 
phrases are kept as translations of the source 
phrase. These translations are also similar in 
context. Therefore this pruning method deletes 
irrelevant translations form the src-trg phrase 
table. The size of the phrase table is decreased 
very much and the system performance is 
increased. Reduction of the phrase table size is 
considerable while its performance is increased. 

4 Experiments 

In this work, we try to make a German-Farsi 
system without using parallel corpora. We use 
English language as a bridge between German 
and Farsi languages because English language is 
a high resource language and parallel corpora of 
German-English and English-Farsi are available. 

We use Moses0F

1 (Koehn et al., 2007) as the MT 
decoder and IRSTLM1F

2 tools for making the 
language model. Table 1 shows the statistics of 
the corpora that we have used in our 
experiments. The German-English corpus is from 
Verbmobil project (Ney et al., 2000). We 
manually translate 22K English sentences to 
Farsi to build a small Farsi-English-German 
corpus. Therefore, we have a small English-
German corpus as well. 

With the German-English parallel corpus and 
an additional German-English dictionary with 
118480 entries we have made a German-English 
(De-En) system and with English-Farsi parallel 
corpus we have made a German-Farsi (En-Fa) 
system. The BLEU score of these systems are 
shown in Table 1. 

Now, we create a translation system by 
combining phrase tables of De-En and En-Fa 
systems. Details of creating the source-target 
system are explained in Section 3.1. The size of 
this phrase table is very large because of 
ploysemous and some weak translations.  

 
 Sentences BLEU 
German-English 58,073 40.1 
English-Farsi 22,000  31.6 

Table 1. Information of two parallel systems that 
are used in our experiments. 
 

The size of the phrase table is about 55.7 MB. 
Then, we apply the pruning method that we 
                                                           
1Available under the LGPL from 
http://sourceforge.net/projects/mosesdecoder/ 
2Available under the LGPL from 
http://hlt.fbk.eu/en/irstlm 

explained in Section 3.2. With this method only 
the phrases are kept that their context vectors are 
similar to each other. For each source phrase the 
35-most similar target translations are kept. The 
number of phrases in the phrase table is 
decreased dramatically while the performance of 
the system is increased by 2.8 percent BLEU. 
The results of these experiments are shown in 
Table 2. The last row in this table is the result of 
using small parallel corpus to build German-
Farsi system. We observe that the pruning 
method has gain better results compared to the 
system trained on the parallel corpus. This is 
maybe because of some translations that are 
made in the parallel system and do not have 
enough training data and their probabilities are 
not precise. But when we use context vectors to 
measure the contextual similarity of phrases and 
their translations, the impact of these training 
samples are decreased. In Table 3, two wrong 
phrase pairs that pruning method has removed 
them are shown. 

 
 BLEU # of phrases 
Base bridge system 25.1   500,534 
Pruned system 27.9   26,911 
Parallel system 27.6   348,662 

Table 2. The MT results of the base system, the 
pruned system and the parallel system. 
 

German phrase Wrong 
translation 

Correct 
translation 

vorschlagen , wir پيشنهاد ميکنيم به تاتر 
um neun Uhr 
morgens 

 ساعت نه صبح ده

Table 3. Sample wrong translations that the 
prunning method removed them. 
 

In Table 4, we extend the experiments with 
two other methods to build German- 
Farsi system using English as bridging language. 
We see that the proposed method obtains 
competitive result with the pseudo parallel 
method. 

 
System BLEU size (MB) 
Phrase tables combination 25.1 55.7  
Cascade method 25.2 NA 
Pseudo parallel corpus  28.2 73.2  
Phrase tables comb.+prune 27.9 3.0  

Table 4. Performance results of different ways of 
bridging 
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Now, we run a series of significance tests to 
measure the superiority of each method. In the 
first significance test, we set the pruned system 
as our base system and we compare the result of 
the pseudo parallel corpus system with it, the 
significance level is 72%. For another 
significance test we set the combined phrase 
table system without pruning as our base system 
and we compare the result of the pruned system 
with it, the significance level is 100%. In the last 
significance test we set the combined phrase 
table system without pruning as our base system 
and we compare the result of the pseudo system 
with it, the significance level is 99%. Therefore, 
we can conclude the proposed method obtains 
the best results and its difference with pseudo 
parallel corpus method is not significant. 

5 Conclusion and future work 

With increasing the size of the phrase table, the 
MT system performance will not necessarily 
increase. Maybe there are wrong translations 
with high probability which the language model 
cannot remove them from the best translations. 
By removing these translation pairs, the 
produced phrase table will be more consistent, 
and irrelevant words or phrases are much less. In 
addition, the performance of the system will be 
increased by about 2.8% BLEU. 
In the future work, we investigate how to use the 
word alignments of the source-to-pivot and 
pivot-to-target systems to better recognize good 
translation pairs. 
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Abstract

We present an approach to mine com-
parable data for parallel sentences us-
ing translation-based cross-lingual infor-
mation retrieval (CLIR). By iteratively al-
ternating between the tasks of retrieval
and translation, an initial general-domain
model is allowed to adapt to in-domain
data. Adaptation is done by training the
translation system on a few thousand sen-
tences retrieved in the step before. Our
setup is time- and memory-efficient and of
similar quality as CLIR-based adaptation
on millions of parallel sentences.

1 Introduction

Statistical Machine Translation (SMT) crucially
relies on large amounts of bilingual data (Brown et
al., 1993). Unfortunately sentence-parallel bilin-
gual data are not always available. Various ap-
proaches have been presented to remedy this prob-
lem by mining parallel sentences from comparable
data, for example by using cross-lingual informa-
tion retrieval (CLIR) techniques to retrieve a target
language sentence for a source language sentence
treated as a query. Most such approaches try to
overcome the noise inherent in automatically ex-
tracted parallel data by sheer size. However, find-
ing good quality parallel data from noisy resources
like Twitter requires sophisticated retrieval meth-
ods. Running these methods on millions of queries
and documents can take weeks.

Our method aims to achieve improvements sim-
ilar to large-scale parallel sentence extraction ap-
proaches, while requiring only a fraction of the ex-
tracted data and considerably less computing re-
sources. Our key idea is to extend a straightfor-
ward application of translation-based CLIR to an
iterative method: Instead of attempting to retrieve
in one step as many parallel sentences as possible,

we allow the retrieval model to gradually adapt to
new data by using an SMT model trained on the
freshly retrieved sentence pairs in the translation-
based retrieval step. We alternate between the
tasks of translation-based retrieval of target sen-
tences, and the task of SMT, by re-training the
SMT model on the data that were retrieved in the
previous step. This task alternation is done itera-
tively until the number of newly added pairs stabi-
lizes at a relatively small value.

In our experiments on Arabic-English Twitter
translation, we achieved improvements of over 1
BLEU point over a strong baseline that uses in-
domain data for language modeling and parameter
tuning. Compared to a CLIR-approach which ex-
tracts more than 3 million parallel sentences from
a noisy comparable corpus, our system produces
similar results in terms of BLEU using only about
40 thousand sentences for training in each of a
few iterations, thus being much more time- and
resource-efficient.

2 Related Work

In the terminology of semi-supervised learning
(Abney, 2008), our method resembles self-training
and co-training by training a learning method on
its own predictions. It is different in the aspect of
task alternation: The SMT model trained on re-
trieved sentence pairs is not used for generating
training data, but for scoring noisy parallel data
in a translation-based retrieval setup. Our method
also incorporates aspects of transductive learning
in that candidate sentences used as queries are fil-
tered for out-of-vocabulary (OOV) words and sim-
ilarity to sentences in the development set in or-
der to maximize the impact of translation-based
retrieval.

Our work most closely resembles approaches
that make use of variants of SMT to mine com-
parable corpora for parallel sentences. Recent
work uses word-based translation (Munteanu and
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Marcu, 2005; Munteanu and Marcu, 2006), full-
sentence translation (Abdul-Rauf and Schwenk,
2009; Uszkoreit et al., 2010), or a sophisticated
interpolation of word-based and contextual trans-
lation of full sentences (Snover et al., 2008; Jehl
et al., 2012; Ture and Lin, 2012) to project source
language sentences into the target language for re-
trieval. The novel aspect of task alternation in-
troduced in this paper can be applied to all ap-
proaches incorporating SMT for sentence retrieval
from comparable data.

For our baseline system we use in-domain lan-
guage models (Bertoldi and Federico, 2009) and
meta-parameter tuning on in-domain development
sets (Koehn and Schroeder, 2007).

3 CLIR for Parallel Sentence Retrieval

3.1 Context-Sensitive Translation for CLIR

Our CLIR model extends the translation-based re-
trieval model of Xu et al. (2001). While transla-
tion options in this approach are given by a lexical
translation table, we also select translation options
estimated from the decoder’s n-best list for trans-
lating a particular query. The central idea is to let
the language model choose fluent, context-aware
translations for each query term during decoding.

For mapping source language query terms to
target language query terms, we follow Ture et
al. (2012a; 2012). Given a source language query
Q with query terms qj , we project it into the tar-
get language by representing each source token qj
by its probabilistically weighted translations. The
score of target documentD, given source language
query Q, is computed by calculating the Okapi
BM25 rank (Robertson et al., 1998) over projected
term frequency and document frequency weights
as follows:

score(D|Q) =

|Q|∑

j=1

bm25(tf(qj , D), df(qj))

tf(q,D) =

|Tq|∑

i=1

tf(ti, D)P (ti|q)

df(q) =

|Tq|∑

i=1

df(ti)P (ti|q)

where Tq = {t|P (t|q) > L} is the set of trans-
lation options for query term q with probability
greater than L. Following Ture et al. (2012a;
2012) we impose a cumulative thresholdC, so that
only the most probable options are added until C
is reached.

Like Ture et al. (2012a; 2012) we achieved best
retrieval performance when translation probabil-
ities are calculated as an interpolation between
(context-free) lexical translation probabilities Plex
estimated on symmetrized word alignments, and
(context-aware) translation probabilities Pnbest es-
timated on the n-best list of an SMT decoder:

P (t|q) = λPnbest(t|q) + (1− λ)Plex(t|q) (1)

Pnbest(t|q) is the decoder’s confidence to trans-
late q into t within the context of query Q. Let
ak(t, q) be a function indicating an alignment of
target term t to source term q in the k-th deriva-
tion of query Q. Then we can estimate Pnbest(t|q)
as follows:

Pnbest(t|q) =
∑n

k=1 ak(t, q)D(k,Q)∑n
k=1 ak(·, q)D(k,Q)

(2)

D(k,Q) is the model score of the k-th derivation
in the n-best list for query Q.

In our work, we use hierarchical phrase-based
translation (Chiang, 2007), as implemented in the
cdec framework (Dyer et al., 2010). This allows
us to extract word alignments between source and
target text for Q from the SCFG rules used in the
derivation. The concept of self-translation is cov-
ered by the decoder’s ability to use pass-through
rules if words or phrases cannot be translated.

3.2 Task Alternation in CLIR

The key idea of our approach is to iteratively al-
ternate between the tasks of retrieval and trans-
lation for efficient mining of parallel sentences.
We allow the initial general-domain CLIR model
to adapt to in-domain data over multiple itera-
tions. Since our set of in-domain queries was
small (see 4.2), we trained an adapted SMT model
on the concatenation of general-domain sentences
and in-domain sentences retrieved in the step be-
fore, rather than working with separate models.

Algorithm 1 shows the iterative task alternation
procedure. In terms of semi-supervised learning,
we can view algorithm 1 as non-persistent as we
do not keep labels/pairs from previous iterations.
We have tried different variations of label persis-
tency but did not find any improvements. A sim-
ilar effect of preventing the SMT model to “for-
get” general-domain knowledge across iterations
is achieved by mixing models from current and
previous iterations. This is accomplished in two
ways: First, by linearly interpolating the transla-
tion option weights P (t|q) from the current and
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Algorithm 1 Task Alternation
Require: source language TweetsQsrc, target language TweetsDtrg , general-domain parallel sentences Sgen, general-domain

SMT model Mgen, interpolation parameter θ

procedure TASK-ALTERNATION(Qsrc, Dtrg, Sgen,Mgen, θ)
t← 1
while true do

Sin ← ∅ . Start with empty parallel in-domain sentences
if t == 1 then

M
(t)
clir ←Mgen . Start with general-domain SMT model for CLIR

else
M

(t)
clir ← θM

(t−1)
smt + (1− θ)M (t)

smt . Use mixture of previous and current SMT model for CLIR
end if
Sin ← CLIR(Qsrc, Dtrg,M

(t)
clir) . Retrieve top 1 target language Tweets for each source language query

M
(t+1)
smt ← TRAIN(Sgen + Sin) . Train SMT model on general-domain and retrieved in-domain data

t← t+ 1
end while

end procedure

BLEU (test) # of in-domain sents

Standard DA 14.05 -
Full-scale CLIR 14.97 3,198,913
Task alternation 15.31 ∼40k

Table 1: Standard Domain Adaptation with in-domain LM
and tuning; Full-scale CLIR yielding over 3M in-domain par-
allel sentences; Task alternation (θ = 0.1, iteration 7) using
∼40k parallel sentences per iteration.

previous model with interpolation parameter θ.
Second, by always using Plex(t|q) weights esti-
mated from word alignments on Sgen.

We experimented with different ways of using
the ranked retrieval results for each query and
found that taking just the highest ranked docu-
ment yielded the best results. This returns one pair
of parallel Twitter messages per query, which are
then used as additional training data for the SMT
model in each iteration.

4 Experiments

4.1 Data

We trained the general domain model Mgen on
data from the NIST evaluation campaign, includ-
ing UN reports, newswire, broadcast news and
blogs. Since we were interested in relative im-
provements rather than absolute performance, we
sampled 1 million parallel sentences Sgen from the
originally over 5.8 million parallel sentences.

We used a large corpus of Twitter messages,
originally created by Jehl et al. (2012), as com-
parable in-domain data. Language identification
was carried out with an off-the-shelf tool (Lui and
Baldwin, 2012). We kept only Tweets classified
as Arabic or English with over 95% confidence.
After removing duplicates, we obtained 5.5 mil-

lion Arabic Tweets and 3.7 million English Tweets
(Dtrg). Jehl et al. (2012) also supply a set of 1,022
Arabic Tweets with 3 English translations each for
evaluation purposes, which was created by crowd-
sourcing translation on Amazon Mechanical Turk.
We randomly split the parallel sentences into 511
sentences for development and 511 sentences for
testing. All URLs and user names in Tweets were
replaced by common placeholders. Hashtags were
kept, since they might be helpful in the retrieval
step. Since the evaluation data do not contain any
hashtags, URLs or user names, we apply a post-
processing step after decoding in which we re-
move those tokens.

4.2 Transductive Setup

Our method can be considered transductive in two
ways. First, all Twitter data were collected by
keyword-based crawling. Therefore, we can ex-
pect a topical similarity between development, test
and training data. Second, since our setup aims
for speed, we created a small set of queries Qsrc,
consisting of the source side of the evaluation data
and similar Tweets. Similarity was defined by
two criteria: First, we ranked all Arabic Tweets
with respect to their term overlap with the devel-
opment and test Tweets. Smoothed per-sentence
BLEU (Lin and Och, 2004) was used as a similar-
ity metric. OOV-coverage served as a second cri-
terion to remedy the problem of unknown words
in Twitter translation. We first created a general
list of all OOVs in the evaluation data under Mgen

(3,069 out of 7,641 types). For each of the top 100
BLEU-ranked Tweets, we counted OOV-coverage
with respect to the corresponding source Tweet
and the general OOV list. We only kept Tweets
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Figure 1: Learning curves for varying θ parameters. (a) BLEU scores and (b) number of new pairs added per iteration.

containing at least one OOV term from the corre-
sponding source Tweet and two OOV terms from
the general list, resulting in 65,643 Arabic queries
covering 86% of all OOVs. Our query set Qsrc
performed better (14.76 BLEU) after one iteration
than a similar-sized set of random queries (13.39).

4.3 Experimental Results

We simulated the full-scale retrieval approach by
Jehl et al. (2012) with the CLIR model described
in section 3. It took 14 days to run 5.5M Arabic
queries on 3.7M English documents. In contrast,
our iterative approach completed a single iteration
in less than 24 hours.1

In the absence of a Twitter data set for re-
trieval, we selected the parameters λ = 0.6 (eq.1),
L = 0.005 and C = 0.95 in a mate-finding
task on Wikipedia data. The n-best list size for
Pnbest(t|q) was 1000. All SMT models included
a 5-gram language model built from the English
side of the NIST data plus the English side of the
Twitter corpus Dtrg. Word alignments were cre-
ated using GIZA++ (Och and Ney, 2003). Rule
extraction and parameter tuning (MERT) was car-
ried out with cdec, using standard features. We
ran MERT 5 times per iteration, carrying over the
weights which achieved median performance on
the development set to the next iteration.

Table 1 reports median BLEU scores on test of
our standard adaptation baseline, the full-scale re-
trieval approach and the best result from our task
alternation systems. Approximate randomization
tests (Noreen, 1989; Riezler and Maxwell, 2005)
showed that improvements of full-scale retrieval
and task alternation over the baseline were statis-

1Retrieval was done in 4 batches on a Hadoop cluster us-
ing 190 mappers at once.

tically significant. Differences between full-scale
retrieval and task alternation were not significant.2

Figure 1 illustrates the impact of θ, which con-
trols the importance of the previous model com-
pared to the current one, on median BLEU (a) and
change of Sin (b) over iterations. For all θ, few
iterations suffice to reach or surpass full-scale re-
trieval performance. Yet, no run achieved good
performance after one iteration, showing that the
transductive setup must be combined with task al-
ternation to be effective. While we see fluctuations
in BLEU for all θ-values, θ = 0.1 achieves high
scores faster and more consistently, pointing to-
wards selecting a bolder updating strategy. This
is also supported by plot (b), which indicates that
choosing θ = 0.1 leads to faster stabilization in
the pairs added per iteration (Sin). We used this
stabilization as a stopping criterion.

5 Conclusion

We presented a method that makes translation-
based CLIR feasible for mining parallel sentences
from large amounts of comparable data. The key
of our approach is a translation-based high-quality
retrieval model which gradually adapts to the tar-
get domain by iteratively re-training the underly-
ing SMT model on a few thousand parallel sen-
tences retrieved in the step before. The number
of new pairs added per iteration stabilizes to a
few thousand after 7 iterations, yielding an SMT
model that improves 0.35 BLEU points over a
model trained on millions of retrieved pairs.

2Note that our full-scale results are not directly compara-
ble to those of Jehl et al. (2012) since our setup uses less than
one fifth of the NIST data, a different decoder, a new CLIR
approach, and a different development and test split.
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Abstract

This paper explores the use of Proposi-
tional Dynamic Logic (PDL) as a suit-
able formal framework for describing
Sign Language (SL), the language of
deaf people, in the context of natu-
ral language processing. SLs are vi-
sual, complete, standalone languages
which are just as expressive as oral lan-
guages. Signs in SL usually correspond
to sequences of highly specific body
postures interleaved with movements,
which make reference to real world ob-
jects, characters or situations. Here we
propose a formal representation of SL
signs, that will help us with the analysis
of automatically-collected hand track-
ing data from French Sign Language
(FSL) video corpora. We further show
how such a representation could help us
with the design of computer aided SL
verification tools, which in turn would
bring us closer to the development of an
automatic recognition system for these
languages.

1 Introduction

Sign languages (SL), the vernaculars of deaf
people, are complete, rich, standalone commu-
nication systems which have evolved in paral-
lel with oral languages (Valli and Lucas, 2000).
However, in contrast to the last ones, research
in automatic SL processing has not yet man-
aged to build a complete, formal definition ori-
ented to their automatic recognition (Cuxac
and Dalle, 2007). In SL, both hands and non-
manual features (NMF), e.g. facial muscles,
can convey information with their placements,
configurations and movements. These particu-
lar conditions can difficult the construction of

a formal description with common natural lan-
guage processing (NLP) methods, since the ex-
isting modeling techniques are mostly designed
to work with one-channel sound productions
inherent to oral languages, rather than with
the multi-channel partially-synchronized infor-
mation induced by SLs.

Our research strives to address the formal-
ization problem by introducing a logical lan-
guage that lets us represent SL from the lowest
level, so as to render the recognition task more
approachable. For this, we use an instance of
a formal logic, specifically Propositional Dy-
namic Logic (PDL), as a possible description
language for SL signs.

For the rest of this section, we will present a
brief introduction to current research efforts in
the area. Section 2 presents a general descrip-
tion of our formalism, while section 3 shows
how our work can be used when confronted
with real world data. Finally, section 4 present
our final observations and future work.

Images for the examples where taken from
(DictaSign, 2012) corpus.

1.1 Current Sign Language Research

Extensive efforts have been made to achieve
efficient automatic capture and representation
of the subtle nuances commonly present in
sign language discourse (Ong and Ranganath,
2005). Research ranges from the development
of hand and body trackers (Dreuw et al., 2009;
Gianni and Dalle, 2009), to the design of high
level SL representation models (Lejeune, 2004;
Lenseigne and Dalle, 2006). Linguistic re-
search in the area has focused on the character-
ization of corporal expressions into meaning-
ful transcriptions (Dreuw et al., 2010; Stokoe,
2005) or common patterns across SL (Aronoff
et al., 2005; Meir et al., 2006; Wittmann,
1991), so as to gain understanding of the un-
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derlying mechanisms of SL communication.

Works like (Losson and Vannobel, 1998) deal
with the creation of a lexical description ori-
ented to computer-based sign animation. Re-
port (Filhol, 2009) describes a lexical specifi-
cation to address the same problem. Both pro-
pose a thoroughly geometrical parametric en-
coding of signs, thus leaving behind meaning-
ful information necessary for recognition and
introducing data beyond the scope of recog-
nition. This complicates the reutilization of
their formal descriptions. Besides, they don’t
take in account the presence of partial informa-
tion. Treating partiality is important for us,
since it is often the case with automatic tools
that incomplete or unrecognizable information
arises. Finally, little to no work has been di-
rected towards the unification of raw collected
data from SL corpora with higher level descrip-
tions (Dalle, 2006).

2 Propositional Dynamic Logic for
SL

Propositional Dynamic Logic (PDL) is a multi-
modal logic, first defined by (Fischer and Lad-
ner, 1979). It provides a language for describ-
ing programs, their correctness and termina-
tion, by allowing them to be modal operators.
We work with our own variant of this logic,
the Propositional Dynamic Logic for Sign Lan-
guage (PDLSL), which is just an instantiation
of PDL where we take signers’ movements as
programs.

Our sign formalization is based on the ap-
proach of (Liddell and Johnson, 1989) and (Fil-
hol, 2008). They describe signs as sequences of
immutable key postures and movement transi-
tions.

In general, each key posture will be charac-
terized by the concurrent parametric state of
each body articulator over a time-interval. For
us, a body articulator is any relevant body part
involved in signing. The parameters taken in
account can vary from articulator to articula-
tor, but most of the time they comprise their
configurations, orientations and their place-
ment within one or more places of articulation.
Transitions will correspond to the movements
executed between fixed postures.

2.1 Syntax

We need to define some primitive sets that will
limit the domain of our logical language.

Definition 2.1 (Sign Language primi-
tives). Let BSL = {D,W,R,L} be the set of
relevant body articulators for SL, where D, W,
R and L represent the dominant, weak, right
and left hands, respectively. Both D and W
can be aliases for the right or left hands, but
they change depending on whether the signer
is right-handed or left-handed, or even depend-
ing on the context.
Let Ψ be the two-dimensional projection of

a human body skeleton, seen by the front. We
define the set of places of articulation for SL as
ΛSL = {HEAD, CHEST, NEUTRAL, . . .}, such that
for each λ ∈ ΛSL, λ is a sub-plane of Ψ, as
shown graphically in figure 1.
Let CSL be the set of possible morphological

configurations for a hand.
Let ∆ = {↑,↗,→,↘, ↓,↙,←,↖} be the set

of relative directions from the signer’s point of
view, where each arrow represents one of eight
possible two-dimensional direction vectors that
share the same origin. For vector δ ∈ ∆, we
define vector

←−
δ as the same as δ but with the

inverted abscissa axis, such that
←−
δ ∈ ∆. Let

vector δ̂ indicate movement with respect to the
dominant or weak hand in the following man-
ner:

δ̂ =

{
δ if D ≡ R or W ≡ L←−
δ if D ≡ L or W ≡ R

Finally, let −→v1 and −→v2 be any two vectors with
the same origin. We denote the rotation angle
between the two as θ(−→v1 ,

−→v2).

Now we define the set of atomic propositions
that we will use to characterize fixed states,
and a set of atomic actions to describe move-
ments.

Definition 2.2 (Atomic Propositions for
SL Body Articulators ΦSL). The set of
atomic propositions for SL articulators (ΦSL)
is defined as:

ΦSL = {β1
δ
β2 ,Ξ

β1
λ , T

β1
β2
,Fβ1c ,∠δβ1}

where β1, β2 ∈ BSL, δ ∈ ∆, λ ∈ ΛSL and
c ∈ CSL.
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Figure 1: Possible places of articulation in BSL.

Intuitively, β1
δ
β2 indicates that articulator β1

is placed in relative direction δ with respect
to articulator β2. Let the current place of
articulation of β2 be the origin point of β2’s
Cartesian system (Cβ2). Let vector

−→
β1 de-

scribe the current place of articulation of β1

in Cβ2. Proposition β1
δ
β2 holds when ∀−→v ∈ ∆,

θ(
−→
β1, δ) ≤ θ(

−→
β1,
−→v ).

Ξβ1λ asserts that articulator β1 is located in
λ.
T β1β2 is active whenever articulator β1 physi-

cally touches articulator β2.
Fβ1c indicates that c is the morphological

configuration of articulator β1.
Finally, ∠δβ1 means that an articulator β1 is

oriented towards direction δ ∈ ∆. For hands,
∠δβ1 will hold whenever the vector perpendicu-
lar to the plane of the palm has the smallest
rotation angle with respect to δ.

Definition 2.3 (Atomic Actions for SL
Body Articulators ΠSL). The atomic ac-
tions for SL articulators ( ΠSL) are given by
the following set:

ΠSL = {δβ1 ,!β1}

where δ ∈ ∆ and β1 ∈ BSL.
Let β1’s position before movement be the ori-

gin of β1’s Cartesian system (Cβ1) and
−→
β1 be

the position vector of β1 in Cβ1 after moving.
Action δβ1 indicates that β1 moves in relative
direction δ in Cβ1 if ∀−→v ∈ ∆, θ(

−→
β1, δ) ≤

θ(
−→
β1,
−→v ).

Action !β1 occurs when articulator β1

moves rapidly and continuously (thrills) with-

out changing it’s current place of articulation.

Definition 2.4 (Action Language for SL
Body Articulators ASL). The action lan-
guage for body articulators (ASL) is given by
the following rule:

α ::= π | α ∩ α | α ∪ α | α;α | α∗

where π ∈ ΠSL.
Intuitively, α ∩ α indicates the concurrent

execution of two actions, while α ∪ α means
that at least one of two actions will be non-
deterministically executed. Action α;α de-
scribes the sequential execution of two actions.
Finally, action α∗ indicates the reflexive tran-
sitive closure of α.

Definition 2.5 (Language PDLSL ). The
formulae ϕ of PDLSL are given by the following
rule:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [α]ϕ

where p ∈ ΦSL, α ∈ ASL.

2.2 Semantics

PDLSL formulas are interpreted over labeled
transition systems (LTS), in the spirit of the
possible worlds model introduced by (Hin-
tikka, 1962). Models correspond to connected
graphs representing key postures and transi-
tions: states are determined by the values of
their propositions, while edges represent sets
of executed movements. Here we present only
a small extract of the logic semantics.

Definition 2.6 (Sign Language Utterance
Model USL). A sign language utterance model
(USL), is a tuple USL = (S,R, J·KΠSL

, J·KΦSL
)

where:

• S is a non-empty set of states

• R is a transition relation R ⊆ S×S where,
∀s ∈ S, ∃s′ ∈ S such that (s, s′) ∈ R.

• J·KΠSL
: ΠSL → R, denotes the function

mapping actions to the set of binary rela-
tions.

• J·KΦSL
: S → 2ΦSL , maps each state to a

set of atomic propositions.
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We also need to define a structure over se-
quences of states to model internal dependen-
cies between them, nevertheless we decided to
omit the rest of our semantics, alongside satis-
faction conditions, for the sake of readability.

3 Use Case: Semi-Automatic Sign
Recognition

We now present an example of how we can use
our formalism in a semi-automatic sign recog-
nition system. Figure 2 shows a simple module
diagram exemplifying information flow in the
system’s architecture. We proceed to briefly
describe each of our modules and how they
work together.

Corpus

Tracking
and Seg-
mentation
Module

Key
postures &
transitions

PDLSL

Model
Extraction
Module

PDLSL

Verification
Module

PDLSL

Graph
Sign

Formulæ
User
Input

Sign
Proposals

Figure 2: Information flow in a semi-automatic
SL lexical recognition system.

3.1 Tracking and Segmentation
Module

The process starts by capturing relevant infor-
mation from video corpora. We use an exist-
ing head and hand tracker expressly developed
for SL research (Gonzalez and Collet, 2011).
This tool analyses individual video instances,
and returns the frame-by-frame positions of
the tracked articulators. By using this infor-
mation, the module can immediately calculate
speeds and directions on the fly for each hand.

The module further employs the method
proposed by the authors in (Gonzalez and
Collet, 2012) to achieve sub-lexical segmenta-
tion from the previously calculated data. Like
them, we use the relative velocity between
hands to identify when hands either move at
the same time, independently or don’t move at
all. With these, we can produce a set of possi-
ble key postures and transitions that will serve
as input to the modeling module.

3.2 Model Extraction Module

This module calculates a propositional state
for each static posture, where atomic PDLSL

formulas codify the information tracked in the
previous part. Detected movements are inter-
preted as PDLSL actions between states.

...

R↗L
ΞL
TORSE

ΞR
R_SIDEOFBODY

¬FR
L_CONFIG

¬FL
FIST_CONFIG

¬T R
L

...

...
R←L

ΞL
L_SIDEOFBODY

ΞR
R_SIDEOFBODY

FR
KEY_CONFIG

FL
KEY_CONFIG

¬T R
L

...

↗L

!D ∩ !G

...
R←L

ΞL
CENTEROFBODY

ΞR
R_SIDEOFHEAD

FR
BEAK_CONFIG

FL
INDEX_CONFIG

¬T R
L

...

↙L ...
R←L

ΞL
L_SIDEOFBODY

ΞR
R_SIDEOFBODY

FR
OPENPALM_CONFIG

FL
OPENPALM_CONFIG

¬T R
L

...

↗L

Figure 3: Example of modeling over four auto-
matically identified frames as possible key pos-
tures.

Figure 3 shows an example of the process.
Here, each key posture is codified into propo-
sitions acknowledging the hand positions with
respect to each other (R←L ), their place of artic-
ulation (e.g. “left hand floats over the torse”
with ΞL

TORSE), their configuration (e.g. “right
hand is open” with FR

OPENPALM_CONFIG) and their
movements (e.g. “left hand moves to the up-
left direction” with ↗L).

This module also checks that the generated
graph is correct: it will discard simple track-
ing errors to ensure that the resulting LTS will
remain consistent.

3.3 Verification Module

First of all, the verification module has to be
loaded with a database of sign descriptions en-
coded as PDLSL formulas. These will charac-
terize the specific sequence of key postures that
morphologically describe a sign. For exam-
ple, let’s take the case for sign “route” in FSL,
shown in figure 4, with the following PDLSL

formulation,

Example 3.1 (ROUTEFSL formula).

(ΞR
FACE ∧ ΞL

FACE ∧ L→R ∧ FR
CLAMP ∧ FL

CLAMP ∧ T R
L )→

[←R ∩ →L](L→R ∧ FR
CLAMP ∧ FL

CLAMP ∧ ¬T R
L )

(1)

331



Figure 4: ROUTEFSL production.

Formula (1) describes ROUTEFSL as a sign
with two key postures, connected by a two-
hand simultaneous movement (represented
with operator ∩). It also indicates the posi-
tion of each hand, their orientation, whether
they touch and their respective configurations
(in this example, both hold the same CLAMP
configuration).

The module can then verify whether a sign
formula in the lexical database holds in any
sub-sequence of states of the graph generated
in the previous step. Algorithm 1 sums up the
process.

Algorithm 1 PDLSL Verification Algorithm
Require: SL modelMSL

Require: connected graph GSL
Require: lexical database DBSL
1: Proposals_For[state_qty]
2: for state s ∈ GSL do
3: for sign ϕ ∈ DBSL where s ∈ ϕ do
4: if MSL, s |= ϕ then
5: Proposals_For[s].append(ϕ)
6: end if
7: end for
8: end for
9: return Proposals_For

For each state, the algorithm returns a set
of possible signs. Expert users (or higher level
algorithms) can further refine the process by
introducing additional information previously
missed by the tracker.

4 Conclusions and Future Work

We have shown how a logical language can
be used to model SL signs for semi-automatic
recognition, albeit with some restrictions. The
traits we have chosen to represent were im-
posed by the limits of the tracking tools we
had to our disposition, most notably working

with 2D coordinates. With these in mind, we
tried to design something flexible that could
be easily adapted by computer scientists and
linguists alike. Our primitive sets, were inten-
tionally defined in a very general fashion due
to the same reason: all of the perceived di-
rections, articulators and places of articulation
can easily change their domains, depending on
the SL we are modeling or the technological
constraints we have to deal with. Proposi-
tions can also be changed, or even induced, by
existing written sign representation languages
such as Zebedee (Filhol, 2008) or HamNoSys
(Hanke, 2004), mainly for the sake of extend-
ability.

From the application side, we still need to
create an extensive sign database codified in
PDLSL and try recognition on other corpora,
with different tracking information. For ver-
ification and model extraction, further opti-
mizations are expected, including the handling
of data inconsistencies and repairing broken
queries when verifying the graph.

Regarding our theoretical issues, future
work will be centered in improving our lan-
guage to better comply with SL research. This
includes adding new features, like incorpo-
rating probability representation to improve
recognition. We also expect to finish the defini-
tion of our formal semantics, as well as proving
correction and complexity of our algorithms.
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Abstract

We propose the use of stacking, an ensem-
ble learning technique, to the statistical machine
translation (SMT) models. A diverse ensem-
ble of weak learners is created using the same
SMT engine (a hierarchical phrase-based sys-
tem) by manipulating the training data and a
strong model is created by combining the weak
models on-the-fly. Experimental results on two
language pairs and three different sizes of train-
ing data show significant improvements of up
to 4 BLEU points over a conventionally trained
SMT model.

1 Introduction
Ensemble-based methods have been widely used
in machine learning with the aim of reduc-
ing the instability of classifiers and regressors
and/or increase their bias. The idea behind
ensemble learning is to combine multiple mod-
els, weak learners, in an attempt to produce a
strong model with less error. It has also been
successfully applied to a wide variety of tasks in
NLP (Tomeh et al., 2010; Surdeanu and Man-
ning, 2010; F. T. Martins et al., 2008; Sang, 2002)
and recently has attracted attention in the statis-
tical machine translation community in various
work (Xiao et al., 2013; Song et al., 2011; Xiao
et al., 2010; Lagarda and Casacuberta, 2008).

In this paper, we propose a method to adopt
stacking (Wolpert, 1992), an ensemble learning
technique, to SMT. We manipulate the full set of
training data, creating k disjoint sets of held-out
and held-in data sets as in k-fold cross-validation
and build a model on each partition. This creates
a diverse ensemble of statistical machine transla-
tion models where each member of the ensemble
has different feature function values for the SMT
log-linear model (Koehn, 2010). The weights of
model are then tuned using minimum error rate
training (Och, 2003) on the held-out fold to pro-
vide k weak models. We then create a strong

∗This research was partially supported by an NSERC,
Canada (RGPIN: 264905) grant and a Google Faculty Award
to the second author.

model by stacking another meta-learner on top of
weak models to combine them into a single model.
The particular second-tier model we use is a model
combination approach called ensemble decoding
which combines hypotheses from the weak mod-
els on-the-fly in the decoder.

Using this approach, we take advantage of the
diversity created by manipulating the training data
and obtain a significant and consistent improve-
ment over a conventionally trained SMT model
with a fixed training and tuning set.

2 Ensemble Learning Methods

Two well-known instances of general framework
of ensemble learning are bagging and boosting.
Bagging (Breiman, 1996a) (bootstrap aggregat-
ing) takes a number of samples with replacement
from a training set. The generated sample set
may have 0, 1 or more instances of each origi-
nal training instance. This procedure is repeated
a number of times and the base learner is ap-
plied to each sample to produce a weak learner.
These models are aggregated by doing a uniform
voting for classification or averaging the predic-
tions for regression. Bagging reduces the vari-
ance of the base model while leaving the bias rela-
tively unchanged and is most useful when a small
change in the training data affects the prediction
of the model (i.e. the model is unstable) (Breiman,
1996a). Bagging has been recently applied to
SMT (Xiao et al., 2013; Song et al., 2011)

Boosting (Schapire, 1990) constructs a strong
learner by repeatedly choosing a weak learner
and applying it on a re-weighted training set. In
each iteration, a weak model is learned on the
training data, whose instance weights are modi-
fied from the previous iteration to concentrate on
examples on which the model predictions were
poor. By putting more weight on the wrongly
predicted examples, a diverse ensemble of weak
learners is created. Boosting has also been used in
SMT (Xiao et al., 2013; Xiao et al., 2010; Lagarda
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Algorithm 1: Stacking for SMT

Input: D = {〈fj , ej〉}Nj=1 . A parallel corpus
Input: k . # of folds (i.e. weak learners)
Output: STRONGMODEL s

1: D1, . . . ,Dk ← SPLIT(D, k)
2: for i = 1→ k do
3: T i ← D −Di . Use all but current partition as

training set.
4: φi← TRAIN(T i) . Train feature functions.
5: Mi← TUNE(φi, Di) . Tune the model on the

current partition.
6: end for
7: s← COMBINEMODELS(M1 , . . .,Mk) . Combine all

the base models to produce a strong stacked model.

and Casacuberta, 2008).
Stacking (or stacked generalization) (Wolpert,

1992) is another ensemble learning algorithm that
uses a second-level learning algorithm on top of
the base learners to reduce the bias. The first
level consists of predictors g1, . . . , gk where gi :
Rd → R, receiving input x ∈ Rd and produc-
ing a prediction gi(x). The next level consists
of a single function h : Rd+k → R that takes
〈x, g1(x), . . . , gk(x)〉 as input and produces an en-
semble prediction ŷ = h(x, g1(x), . . . , gk(x)).

Two categories of ensemble learning are ho-
mogeneous learning and heterogeneous learning.
In homogeneous learning, a single base learner
is used, and diversity is generated by data sam-
pling, feature sampling, randomization and pa-
rameter settings, among other strategies. In het-
erogeneous learning different learning algorithms
are applied to the same training data to create a
pool of diverse models. In this paper, we focus on
homogeneous ensemble learning by manipulating
the training data.

In the primary form of stacking (Wolpert,
1992), the training data is split into multiple dis-
joint sets of held-out and held-in data sets using
k-fold cross-validation and k models are trained
on the held-in partitions and run on held-out par-
titions. Then a meta-learner uses the predictions
of all models on their held-out sets and the actual
labels to learn a final model. The details of the
first-layer and second-layer predictors are consid-
ered to be a “black art” (Wolpert, 1992).

Breiman (1996b) linearly combines the weak
learners in the stacking framework. The weights
of the base learners are learned using ridge regres-
sion: s(x) =

∑
k αkmk(x), where mk is a base

model trained on the k-th partition of the data and
s is the resulting strong model created by linearly
interpolating the weak learners.

Stacking (aka blending) has been used in the
system that won the Netflix Prize1, which used a
multi-level stacking algorithm.

Stacking has been actively used in statistical
parsing: Nivre and McDonald (2008) integrated
two models for dependency parsing by letting one
model learn from features generated by the other;
F. T. Martins et al. (2008) further formalized the
stacking algorithm and improved on Nivre and
McDonald (2008); Surdeanu and Manning (2010)
includes a detailed analysis of ensemble models
for statistical parsing: i) the diversity of base
parsers is more important than the complexity of
the models; ii) unweighted voting performs as well
as weighted voting; and iii) ensemble models that
combine at decoding time significantly outperform
models that combine multiple models at training
time.

3 Our Approach
In this paper, we propose a method to apply stack-
ing to statistical machine translation (SMT) and
our method is the first to successfully exploit
stacking for statistical machine translation. We
use a standard statistical machine translation en-
gine and produce multiple diverse models by par-
titioning the training set using the k-fold cross-
validation technique. A diverse ensemble of weak
systems is created by learning a model on each
k−1 fold and tuning the statistical machine trans-
lation log-linear weights on the remaining fold.
However, instead of learning a model on the output
of base models as in (Wolpert, 1992), we combine
hypotheses from the base models in the decoder
with uniform weights. For the base learner, we
use Kriya (Sankaran et al., 2012), an in-house hier-
archical phrase-based machine translation system,
to produce multiple weak models. These mod-
els are combined together using Ensemble Decod-
ing (Razmara et al., 2012) to produce a strong
model in the decoder. This method is briefly ex-
plained in next section.

3.1 Ensemble Decoding

SMT Log-linear models (Koehn, 2010) find the
most likely target language output e given the
source language input f using a vector of feature
functions φ:

p(e|f) ∝ exp
(
w · φ

)

1http://www.netflixprize.com/
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Ensemble decoding combines several models
dynamically at decoding time. The scores are
combined for each partial hypothesis using a
user-defined mixture operation ⊗ over component
models.

p(e|f) ∝ exp
(
w1 · φ1 ⊗w2 · φ2 ⊗ . . .

)

We previously successfully applied ensemble
decoding to domain adaptation in SMT and
showed that it performed better than approaches
that pre-compute linear mixtures of different mod-
els (Razmara et al., 2012). Several mixture oper-
ations were proposed, allowing the user to encode
belief about the relative strengths of the compo-
nent models. These mixture operations receive
two or more probabilities and return the mixture
probability p(ē | f̄) for each rule ē, f̄ used in the
decoder. Different options for these operations
are:

• Weighted Sum (wsum) is defined as:

p(ē | f̄) ∝
M∑

m

λm exp
(
wm · φm

)

where m denotes the index of component
models, M is the total number of them and
λm is the weight for component m.

• Weighted Max (wmax) is defined as:

p(ē | f̄) ∝ max
m

(
λm exp

(
wm · φm

))

• Prod or log-wsum is defined as:

p(ē | f̄) ∝ exp
( M∑

m

λm (wm · φm)
)

• Model Switching (Switch): Each cell in the
CKY chart is populated only by rules from
one of the models and the other models’ rules
are discarded. Each component model is con-
sidered as an expert on different spans of the
source. A binary indicator function δ(f̄ ,m)
picks a component model for each span:

δ(f̄ ,m) =





1, m = argmax
n∈M

ψ(f̄ , n)

0, otherwise

The criteria for choosing a model for each
cell, ψ(f̄ , n), could be based on max

Train size Src tokens Tgt tokens

Fr - En
0+dev 67K 58K
10k+dev 365K 327K
100k+dev 3M 2.8M

Es - En
0+dev 60K 58K
10k+dev 341K 326K
100k+dev 2.9M 2.8M

Table 1: Statistics of the training set for different systems and
different language pairs.

(SW:MAX), i.e. for each cell, the model that
has the highest weighted score wins:

ψ(f̄ , n) = λn max
e

(wn · φn(ē, f̄))

Alternatively, we can pick the model with
highest weighted sum of the probabilities of
the rules (SW:SUM). This sum has to take into
account the translation table limit (ttl), on the
number of rules suggested by each model for
each cell:

ψ(f̄ , n) = λn
∑

ē

exp
(
wn · φn(ē, f̄)

)

The probability of each phrase-pair (ē, f̄) is
then:

p(ē | f̄) =

M∑

m

δ(f̄ ,m) pm(ē | f̄)

4 Experiments & Results

We experimented with two language pairs: French
to English and Spanish to English on the Europarl
corpus (v7) (Koehn, 2005) and used ACL/WMT
2005 2 data for dev and test sets.

For the base models, we used an in-house
implementation of hierarchical phrase-based sys-
tems, Kriya (Sankaran et al., 2012), which uses
the same features mentioned in (Chiang, 2005):
forward and backward relative-frequency and lex-
ical TM probabilities; LM; word, phrase and glue-
rules penalty. GIZA++ (Och and Ney, 2003) has
been used for word alignment with phrase length
limit of 10. Feature weights were optimized using
MERT (Och, 2003). We built a 5-gram language
model on the English side of Europarl and used the
Kneser-Ney smoothing method and SRILM (Stol-
cke, 2002) as the language model toolkit.

2http://www.statmt.org/wpt05/mt-shared-task/
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Direction k-fold Resub Mean WSUM WMAX PROD SW:MAX SW:SUM

Fr - En
2 18.08 19.67 22.32 22.48 22.06 21.70 21.81
4 18.08 21.80 23.14 23.48 23.55 22.83 22.95
8 18.08 22.47 23.76 23.75 23.78 23.02 23.47

Es - En
2 18.61 19.23 21.62 21.33 21.49 21.48 21.51
4 18.61 21.52 23.42 22.81 22.91 22.81 22.92
8 18.61 22.20 23.69 23.89 23.51 22.92 23.26

Table 2: Testset BLEU scores when applying stacking on the devset only (using no specific training set).

Direction Corpus k-fold Baseline BMA WSUM WMAX PROD SW:MAX SW:SUM

Fr - En 10k+dev 6 28.75 29.49 29.87 29.78 29.21 29.69 29.59
100k+dev 11 / 51 29.53 29.75 34.00 34.07 33.11 34.05 33.96

Es - En 10k+dev 6 28.21 28.76 29.59 29.51 29.15 29.10 29.21
100k+dev 11 / 51 33.25 33.44 34.21 34.00 33.17 34.19 34.22

Table 3: Testset BLEU scores when using 10k and 100k sentence training sets along with the devset.

4.1 Training on devset

We first consider the scenario in which there is
no parallel data between a language pair except
a small bi-text used as a devset. We use no spe-
cific training data and construct a SMT system
completely on the devset by using our approach
and compare to two different baselines. A natu-
ral baseline when having a limited parallel text is
to do re-substitution validation where the model
is trained on the whole devset and is tuned on the
same set. This validation process suffers seriously
from over-fitting. The second baseline is the mean
of BLEU scores of all base models.

Table 2 summarizes the BLEU scores on the
testset when using stacking only on the devset on
two different language pairs. As the table shows,
increasing the number of folds results in higher
BLEU scores. However, doing such will generally
lead to higher variance among base learners.

Figure 1 shows the BLEU score of each of the
base models resulted from a 20-fold partitioning
of the devset along with the strong models’ BLEU
scores. As the figure shows, the strong models are
generally superior to the base models whose mean
is represented as a horizontal line.

4.2 Training on train+dev

When we have some training data, we can use
the cross-validation-style partitioning to create k
splits. We then train a system on k − 1 folds and
tune on the devset. However, each system eventu-
ally wastes a fold of the training data. In order to
take advantage of that remaining fold, we concate-
nate the devset to the training set and partition the
whole union. In this way, we use all data available
to us. We experimented with two sizes of train-

ing data: 10k sentence pairs and 100k, that with
the addition of the devset, we have 12k and 102k
sentence-pair corpora.

Table 1 summarizes statistics of the data sets
used in this scenario. Table 3 reports the BLEU
scores when using stacking on these two corpus
sizes. The baselines are the conventional systems
which are built on the training-set only and tuned
on the devset as well as Bayesian Model Averaging
(BMA, see §5). For the 100k+dev corpus, we sam-
pled 11 partitions from all 51 possible partitions
by taking every fifth partition as training data. The
results in Table 3 show that stacking can improve
over the baseline BLEU scores by up to 4 points.

Examining the performance of the different
mixture operations, we can see that WSUM and
WMAX typically outperform other mixture oper-
ations. Different mixture operations can be domi-
nant in different language pairs and different sizes
of training sets.

5 Related Work

Xiao et al. (2013) have applied both boosting
and bagging on three different statistical machine
translation engines: phrase-based (Koehn et al.,
2003), hierarchical phrase-based (Chiang, 2005)
and syntax-based (Galley et al., 2006) and showed
SMT can benefit from these methods as well.

Duan et al. (2009) creates an ensemble of mod-
els by using feature subspace method in the ma-
chine learning literature (Ho, 1998). Each mem-
ber of the ensemble is built by removing one non-
LM feature in the log-linear framework or varying
the order of language model. Finally they use a
sentence-level system combination on the outputs
of the base models to pick the best system for each
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Figure 1: BLEU scores for all the base models and stacked models on the Fr-En devset with 20-fold cross validation. The
horizontal line shows the mean of base models’ scores.

sentence. Though, they do not combine the hy-
potheses search spaces of individual base models.

Our work is most similar to that of Duan et
al. (2010) which uses Bayesian model averaging
(BMA) (Hoeting et al., 1999) for SMT. They used
sampling without replacement to create a num-
ber of base models whose phrase-tables are com-
bined with that of the baseline (trained on the full
training-set) using linear mixture models (Foster
and Kuhn, 2007).

Our approach differs from this approach in a
number of ways: i) we use cross-validation-style
partitioning for creating training subsets while
they do sampling without replacement (80% of the
training set); ii) in our approach a number of base
models are trained and tuned and they are com-
bined on-the-fly in the decoder using ensemble de-
coding which has been shown to be more effective
than offline combination of phrase-table-only fea-
tures; iii) in Duan et al. (2010)’s method, each sys-
tem gives up 20% of the training data in exchange
for more diversity, but in contrast, our method not
only uses all available data for training, but pro-
motes diversity through allowing each model to
tune on a different data set; iv) our approach takes
advantage of held out data (the tuning set) in the
training of base models which is beneficial espe-
cially when little parallel data is available or tun-
ing/test sets and training sets are from different do-
mains.

Empirical results (Table 3) also show that our
approach outperforms the Bayesian model averag-
ing approach (BMA).

6 Conclusion & Future Work
In this paper, we proposed a novel method on ap-
plying stacking to the statistical machine transla-
tion task. The results when using no, 10k and 100k
sentence-pair training sets (along with a develop-
ment set for tuning) show that stacking can yield
an improvement of up to 4 BLEU points over con-
ventionally trained SMT models which use a fixed
training and tuning set.

Future work includes experimenting with larger
training sets to investigate how useful this ap-
proach can be when having different sizes of train-
ing data.
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Abstract

The quality of bilingual data is a key factor
in Statistical Machine Translation (SMT).
Low-quality bilingual data tends to pro-
duce incorrect translation knowledge and
also degrades translation modeling per-
formance. Previous work often used su-
pervised learning methods to filter low-
quality data, but a fair amount of human
labeled examples are needed which are
not easy to obtain. To reduce the re-
liance on labeled examples, we propose
an unsupervised method to clean bilin-
gual data. The method leverages the mu-
tual reinforcement between the sentence
pairs and the extracted phrase pairs, based
on the observation that better sentence
pairs often lead to better phrase extraction
and vice versa. End-to-end experiments
show that the proposed method substan-
tially improves the performance in large-
scale Chinese-to-English translation tasks.

1 Introduction

Statistical machine translation (SMT) depends on
the amount of bilingual data and its quality. In
real-world SMT systems, bilingual data is often
mined from the web where low-quality data is in-
evitable. The low-quality bilingual data degrades
the quality of word alignment and leads to the in-
correct phrase pairs, which will hurt the transla-
tion performance of phrase-based SMT systems
(Koehn et al., 2003; Och and Ney, 2004). There-
fore, it is very important to exploit data quality in-
formation to improve the translation modeling.

Previous work on bilingual data cleaning often
involves some supervised learning methods. Sev-
eral bilingual data mining systems (Resnik and

∗This work has been done while the first author was visit-
ing Microsoft Research Asia.

Smith, 2003; Shi et al., 2006; Munteanu and
Marcu, 2005; Jiang et al., 2009) have a post-
processing step for data cleaning. Maximum en-
tropy or SVM based classifiers are built to filter
some non-parallel data or partial-parallel data. Al-
though these methods can filter some low-quality
bilingual data, they need sufficient human labeled
training instances to build the model, which may
not be easy to acquire.

To this end, we propose an unsupervised ap-
proach to clean the bilingual data. It is intuitive
that high-quality parallel data tends to produce
better phrase pairs than low-quality data. Mean-
while, it is also observed that the phrase pairs that
appear frequently in the bilingual corpus are more
reliable than less frequent ones because they are
more reusable, hence most good sentence pairs are
prone to contain more frequent phrase pairs (Fos-
ter et al., 2006; Wuebker et al., 2010). This kind of
mutual reinforcement fits well into the framework
of graph-based random walk. When a phrase pair
p is extracted from a sentence pair s, s is consid-
ered casting a vote for p. The higher the number
of votes a phrase pair has, the more reliable of the
phrase pair. Similarly, the quality of the sentence
pair s is determined by the number of votes casted
by the extracted phrase pairs from s.

In this paper, a PageRank-style random walk al-
gorithm (Brin and Page, 1998; Mihalcea and Ta-
rau, 2004; Wan et al., 2007) is conducted to itera-
tively compute the importance score of each sen-
tence pair that indicates its quality: the higher the
better. Unlike other data filtering methods, our
proposed method utilizes the importance scores
of sentence pairs as fractional counts to calculate
the phrase translation probabilities based on Maxi-
mum Likelihood Estimation (MLE), thereby none
of the bilingual data is filtered out. Experimen-
tal results show that our proposed approach sub-
stantially improves the performance in large-scale
Chinese-to-English translation tasks.
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2 The Proposed Approach

2.1 Graph-based random walk
Graph-based random walk is a general algorithm
to approximate the importance of a vertex within
the graph in a global view. In our method, the ver-
tices denote the sentence pairs and phrase pairs.
The importance of each vertex is propagated to
other vertices along the edges. Depending on dif-
ferent scenarios, the graph can take directed or
undirected, weighted or un-weighted forms. Start-
ing from the initial scores assigned in the graph,
the algorithm is applied to recursively compute the
importance scores of vertices until it converges, or
the difference between two consecutive iterations
falls below a pre-defined threshold.

2.2 Graph construction
Given the sentence pairs that are word-aligned
automatically, an undirected, weighted bipartite
graph is constructed which maps the sentence
pairs and the extracted phrase pairs to the ver-
tices. An edge between a sentence pair vertex and
a phrase pair vertex is added if the phrase pair can
be extracted from the sentence pair. Mutual re-
inforcement scores are defined on edges, through
which the importance scores are propagated be-
tween vertices. Figure 1 illustrates the graph struc-
ture. Formally, the bipartite graph is defined as:

G = (V,E)

where V = S ∪ P is the vertex set, S = {si|1 ≤
i ≤ n} is the set of all sentence pairs. P =
{pj |1 ≤ j ≤ m} is the set of all phrase pairs
which are extracted from S based on the word
alignment. E is the edge set in which the edges
are between S and P , thereby E = {〈si, pj〉|si ∈
S, pj ∈ P, φ(si, pj) = 1}.

φ(si, pj) =

{
1 if pj can be extracted from si

0 otherwise

2.3 Graph parameters
For sentence-phrase mutual reinforcement, a non-
negative score r(si, pj) is defined using the stan-
dard TF-IDF formula:

r(si, pj) =
{ PF (si,pj)×IPF (pj)∑

p′∈{p|φ(si,p)=1} PF (si,p′)×IPF (p′) if φ(si, pj) = 1

0 otherwise

Sentence Pair Vertices

Phrase Pair Vertices

s1

s2

s3

p1

p3

p4

p5

p6

p2

Figure 1: The circular nodes stand for S and
square nodes stand for P . The lines capture the
sentence-phrase mutual reinforcement.

where PF (si, pj) is the phrase pair frequency in
a sentence pair and IPF (pj) is the inverse phrase
pair frequency of pj in the whole bilingual corpus.
r(si, pj) is abbreviated as rij .

Inspired by (Brin and Page, 1998; Mihalcea
and Tarau, 2004; Wan et al., 2007), we com-
pute the importance scores of sentence pairs and
phrase pairs using a PageRank-style algorithm.
The weights rij are leveraged to reflect the rela-
tionships between two types of vertices. Let u(si)
and v(pj) denote the scores of a sentence pair ver-
tex and a phrase pair vertex. They are computed
iteratively by:

u(si) = (1−d)+d×
∑

j∈N(si)

rij∑
k∈M(pj)

rkj
v(pj)

v(pj) = (1−d) +d×
∑

j∈M(pj)

rij∑
k∈N(si)

rik
u(si)

where d is empirically set to the default value 0.85
that is same as the original PageRank, N(si) =
{j|〈si, pj〉 ∈ E}, M(pj) = {i|〈si, pj〉 ∈ E}.
The detailed process is illustrated in Algorithm 1.
Algorithm 1 iteratively updates the scores of sen-
tence pairs and phrase pairs (lines 10-26). The
computation ends when difference between two
consecutive iterations is lower than a pre-defined
threshold δ (10−12 in this study).

2.4 Parallelization

When the random walk runs on some large bilin-
gual corpora, even filtering phrase pairs that ap-
pear only once would still require several days of
CPU time for a number of iterations. To over-
come this problem, we use a distributed algorithm
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Algorithm 1 Modified Random Walk
1: for all i ∈ {0 . . . |S| − 1} do
2: u(si)

(0) ← 1
3: end for
4: for all j ∈ {0 . . . |P | − 1} do
5: v(pj)

(0) ← 1
6: end for
7: δ ← Infinity
8: ε← threshold
9: n← 1

10: while δ > ε do
11: for all i ∈ {0 . . . |S| − 1} do
12: F (si)← 0
13: for all j ∈ N(si) do
14: F (si)← F (si) +

rij∑
k∈M(pj)

rkj
· v(pj)(n−1)

15: end for
16: u(si)

(n) ← (1− d) + d · F (si)
17: end for
18: for all j ∈ {0 . . . |P | − 1} do
19: G(pj)← 0
20: for all i ∈M(pj) do
21: G(pj)← G(pj) +

rij∑
k∈N(si)

rik
· u(si)(n−1)

22: end for
23: v(pj)

(n) ← (1− d) + d ·G(pj)
24: end for
25: δ ← max(4u(si)||S|−1

i=1 ,4v(pj)||P |−1
j=1 )

26: n← n+ 1
27: end while
28: return u(si)

(n)||S|−1
i=0

based on the iterative computation in the Sec-
tion 2.3. Before the iterative computation starts,
the sum of the outlink weights for each vertex
is computed first. The edges are randomly par-
titioned into sets of roughly equal size. Each
edge 〈si, pj〉 can generate two key-value pairs
in the format 〈si, rij〉 and 〈pj , rij〉. The pairs
with the same key are summed locally and ac-
cumulated across different machines. Then, in
each iteration, the score of each vertex is up-
dated according to the sum of the normalized
inlink weights. The key-value pairs are gener-
ated in the format 〈si, rij∑

k∈M(pj)
rkj
· v(pj)〉 and

〈pj , rij∑
k∈N(si)

rik
· u(si)〉. These key-value pairs

are also randomly partitioned and summed across
different machines. Since long sentence pairs usu-
ally extract more phrase pairs, we need to normal-
ize the importance scores based on the sentence
length. The algorithm fits well into the MapRe-
duce programming model (Dean and Ghemawat,
2008) and we use it as our implementation.

2.5 Integration into translation modeling

After sufficient number of iterations, the impor-
tance scores of sentence pairs (i.e., u(si)) are ob-
tained. Instead of simple filtering, we use the

scores of sentence pairs as the fractional counts to
re-estimate the translation probabilities of phrase
pairs. Given a phrase pair p = 〈f̄ , ē〉, A(f̄) and
B(ē) indicate the sets of sentences that f̄ and ē
appear. Then the translation probability is defined
as:

PCW(f̄ |ē) =

∑
i∈A(f̄)∩B(ē) u(si)× ci(f̄ , ē)∑

j∈B(ē) u(sj)× cj(ē)

where ci(·) denotes the count of the phrase or
phrase pair in si. PCW(f̄ |ē) and PCW(ē|f̄) are
named as Corpus Weighting (CW) based transla-
tion probability, which are integrated into the log-
linear model in addition to the conventional phrase
translation probabilities (Koehn et al., 2003).

3 Experiments

3.1 Setup
We evaluated our bilingual data cleaning ap-
proach on large-scale Chinese-to-English machine
translation tasks. The bilingual data we used
was mainly mined from the web (Jiang et al.,
2009)1, as well as the United Nations parallel cor-
pus released by LDC and the parallel corpus re-
leased by China Workshop on Machine Transla-
tion (CWMT), which contain around 30 million
sentence pairs in total after removing duplicated
ones. The development data and testing data is
shown in Table 1.

Data Set #Sentences Source
NIST 2003 (dev) 919 open test
NIST 2005 (test) 1,082 open test
NIST 2006 (test) 1,664 open test
NIST 2008 (test) 1,357 open test
CWMT 2008 (test) 1,006 open test
In-house dataset 1 (test) 1,002 web data
In-house dataset 2 (test) 5,000 web data
In-house dataset 3 (test) 2,999 web data

Table 1: Development and testing data used in the
experiments.

A phrase-based decoder was implemented
based on inversion transduction grammar (Wu,
1997). The performance of this decoder is simi-
lar to the state-of-the-art phrase-based decoder in
Moses, but the implementation is more straight-
forward. We use the following feature functions
in the log-linear model:

1Although supervised data cleaning has been done in the
post-processing, the corpus still contains a fair amount of
noisy data based on our random sampling.
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dev NIST 2005 NIST 2006 NIST 2008 CWMT 2008 IH 1 IH 2 IH 3
baseline 41.24 37.34 35.20 29.38 31.14 24.29 22.61 24.19
(Wuebker et al., 2010) 41.20 37.48 35.30 29.33 31.10 24.33 22.52 24.18
-0.25M 41.28 37.62 35.31 29.70 31.40 24.52 22.69 24.64
-0.5M 41.45 37.71 35.52 29.76 31.77 24.64 22.68 24.69
-1M 41.28 37.41 35.28 29.65 31.73 24.23 23.06 24.20
+CW 41.75 38.08 35.84 30.03 31.82 25.23 23.18 24.80

Table 2: BLEU(%) of Chinese-to-English translation tasks on multiple testing datasets (p < 0.05), where
”-numberM” denotes we simply filter number million low scored sentence pairs from the bilingual data
and use others to extract the phrase table. ”CW” means the corpus weighting feature, which incorporates
sentence scores from random walk as fractional counts to re-estimate the phrase translation probabilities.

• phrase translation probabilities and lexical
weights in both directions (4 features);

• 5-gram language model with Kneser-Ney
smoothing (1 feature);

• lexicalized reordering model (1 feature);

• phrase count and word count (2 features).

The translation model was trained over the
word-aligned bilingual corpus conducted by
GIZA++ (Och and Ney, 2003) in both directions,
and the diag-grow-final heuristic was used to re-
fine the symmetric word alignment. The language
model was trained on the LDC English Gigaword
Version 4.0 plus the English part of the bilingual
corpus. The lexicalized reordering model (Xiong
et al., 2006) was trained over the 40% randomly
sampled sentence pairs from our parallel data.
Case-insensitive BLEU4 (Papineni et al., 2002)
was used as the evaluation metric. The parame-
ters of the log-linear model are tuned by optimiz-
ing BLEU on the development data using MERT
(Och, 2003). Statistical significance test was per-
formed using the bootstrap re-sampling method
proposed by Koehn (2004).

3.2 Baseline

The experimental results are shown in Table 2. In
the baseline system, the phrase pairs that appear
only once in the bilingual data are simply dis-
carded because most of them are noisy. In ad-
dition, the fix-discount method in (Foster et al.,
2006) for phrase table smoothing is also used.
This implementation makes the baseline system
perform much better and the model size is much
smaller. In fact, the basic idea of our ”one count”
cutoff is very similar to the idea of ”leaving-one-
out” in (Wuebker et al., 2010). The results show

未经 探索 的 新 领域

uncharted waters

未经 探索 的 新 领域

unexplored new areas

weijing tansuo de xin lingyu

Figure 2: The left one is the non-literal translation
in our bilingual corpus. The right one is the literal
translation made by human for comparison.

that the ”leaving-one-out” method performs al-
most the same as our baseline, thereby cannot
bring other benefits to the system.

3.3 Results

We evaluate the proposed bilingual data clean-
ing method by incorporating sentence scores into
translation modeling. In addition, we also com-
pare with several settings that filtering low-quality
sentence pairs from the bilingual data based on
the importance scores. The last N = { 0.25M,
0.5M, 1M } sentence pairs are filtered before the
modeling process. Although the simple bilin-
gual data filtering can improve the performance on
some datasets, it is difficult to determine the bor-
der line and translation performance is fluctuated.
One main reason is in the proposed random walk
approach, the bilingual sentence pairs with non-
literal translations may get lower scores because
they appear less frequently compared with those
literal translations. Crudely filtering out these data
may degrade the translation performance. For ex-
ample, we have a sentence pair in the bilingual
corpus shown in the left part of Figure 2. Although
the translation is correct in this situation, translat-
ing the Chinese word ”lingyu” to ”waters” appears
very few times since the common translations are
”areas” or ”fields”. However, simply filtering out
this kind of sentence pairs may lead to some loss
of native English expressions, thereby the trans-
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lation performance is unstable since both non-
parallel sentence pairs and non-literal but parallel
sentence pairs are filtered. Therefore, we use the
importance score of each sentence pair to estimate
the phrase translation probabilities. It consistently
brings substantial improvements compared to the
baseline, which demonstrates graph-based random
walk indeed improves the translation modeling
performance for our SMT system.

3.4 Discussion

In (Goutte et al., 2012), they evaluated phrase-
based SMT systems trained on parallel data with
different proportions of synthetic noisy data. They
suggested that when collecting larger, noisy par-
allel data for training phrase-based SMT, clean-
ing up by trying to detect and remove incor-
rect alignments can actually degrade performance.
Our experimental results confirm their findings
on some datasets. Based on our method, some-
times filtering noisy data leads to unexpected re-
sults. The reason is two-fold: on the one hand,
the non-literal parallel data makes false positive in
noisy data detection; on the other hand, large-scale
SMT systems is relatively robust and tolerant to
noisy data, especially when we remove frequency-
1 phrase pairs. Therefore, we propose to integrate
the importance scores when re-estimating phrase
pair probabilities in this paper. The importance
scores can be considered as a kind of contribution
constraint, thereby high-quality parallel data con-
tributes more while noisy parallel data contributes
less.

4 Conclusion and Future Work

In this paper, we develop an effective approach
to clean the bilingual data using graph-based ran-
dom walk. Significant improvements on several
datasets are achieved in our experiments. For
future work, we will extend our method to ex-
plore the relationships of sentence-to-sentence and
phrase-to-phrase, which is beyond the existing
sentence-to-phrase mutual reinforcement.

Acknowledgments

We are especially grateful to Yajuan Duan, Hong
Sun, Nan Yang and Xilun Chen for the helpful dis-
cussions. We also thank the anonymous reviewers
for their insightful comments.

References
Sergey Brin and Lawrence Page. 1998. The anatomy

of a large-scale hypertextual web search engine.
Computer networks and ISDN systems, 30(1):107–
117.

Jeffrey Dean and Sanjay Ghemawat. 2008. Mapre-
duce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113.

George Foster, Roland Kuhn, and Howard Johnson.
2006. Phrasetable smoothing for statistical machine
translation. In Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 53–61, Sydney, Australia, July. As-
sociation for Computational Linguistics.

Cyril Goutte, Marine Carpuat, and George Foster.
2012. The impact of sentence alignment errors on
phrase-based machine translation performance. In
Proceedings of AMTA 2012, San Diego, California,
October. Association for Machine Translation in the
Americas.

Long Jiang, Shiquan Yang, Ming Zhou, Xiaohua Liu,
and Qingsheng Zhu. 2009. Mining bilingual data
from the web with adaptively learnt patterns. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP, pages 870–878, Suntec, Singapore, August.
Association for Computational Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of HLT-NAACL 2003 Main Papers, pages
48–54, Edmonton, May-June. Association for Com-
putational Linguistics.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Dekang Lin and
Dekai Wu, editors, Proceedings of EMNLP 2004,
pages 388–395, Barcelona, Spain, July. Association
for Computational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. Textrank:
Bringing order into texts. In Dekang Lin and Dekai
Wu, editors, Proceedings of EMNLP 2004, pages
404–411, Barcelona, Spain, July. Association for
Computational Linguistics.

Dragos Stefan Munteanu and Daniel Marcu. 2005. Im-
proving machine translation performance by exploit-
ing non-parallel corpora. Computational Linguis-
tics, 31(4):477–504.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine trans-
lation. Computational Linguistics, 30(4):417–449.

344



Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 160–167, Sap-
poro, Japan, July. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA, July. Association for Computa-
tional Linguistics.

Philip Resnik and Noah A Smith. 2003. The web
as a parallel corpus. Computational Linguistics,
29(3):349–380.

Lei Shi, Cheng Niu, Ming Zhou, and Jianfeng Gao.
2006. A dom tree alignment model for mining paral-
lel data from the web. In Proceedings of the 21st In-
ternational Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 489–496, Sydney,
Australia, July. Association for Computational Lin-
guistics.

Xiaojun Wan, Jianwu Yang, and Jianguo Xiao. 2007.
Towards an iterative reinforcement approach for si-
multaneous document summarization and keyword
extraction. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
pages 552–559, Prague, Czech Republic, June. As-
sociation for Computational Linguistics.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Joern Wuebker, Arne Mauser, and Hermann Ney.
2010. Training phrase translation models with
leaving-one-out. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 475–484, Uppsala, Sweden, July. As-
sociation for Computational Linguistics.

Deyi Xiong, Qun Liu, and Shouxun Lin. 2006. Max-
imum entropy based phrase reordering model for
statistical machine translation. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 521–528,
Sydney, Australia, July. Association for Computa-
tional Linguistics.

345



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 346–351,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Automatically Predicting Sentence Translation Difficulty

Abhijit Mishra∗, Pushpak Bhattacharyya∗, Michael Carl†
∗ Department of Computer Science and Engineering, IIT Bombay, India

{abhijitmishra,pb}@cse.iitb.ac.in

† CRITT, IBC, Copenhagen Business School, Denmark,
mc.ibc@cbs.dk

Abstract
In this paper we introduce Translation Dif-
ficulty Index (TDI), a measure of diffi-
culty in text translation. We first de-
fine and quantify translation difficulty in
terms of TDI. We realize that any mea-
sure of TDI based on direct input by trans-
lators is fraught with subjectivity and ad-
hocism. We, rather, rely on cognitive ev-
idences from eye tracking. TDI is mea-
sured as the sum of fixation (gaze) and
saccade (rapid eye movement) times of
the eye. We then establish that TDI is
correlated with three properties of the in-
put sentence, viz. length (L), degree of
polysemy (DP) and structural complexity
(SC). We train a Support Vector Regres-
sion (SVR) system to predict TDIs for
new sentences using these features as in-
put. The prediction done by our frame-
work is well correlated with the empiri-
cal gold standard data, which is a repos-
itory of < L,DP, SC > and TDI pairs
for a set of sentences. The primary use of
our work is a way of “binning” sentences
(to be translated) in “easy”, “medium” and
“hard” categories as per their predicted
TDI. This can decide pricing of any trans-
lation task, especially useful in a scenario
where parallel corpora for Machine Trans-
lation are built through translation crowd-
sourcing/outsourcing. This can also pro-
vide a way of monitoring progress of sec-
ond language learners.

1 Introduction

Difficulty in translation stems from the fact that
most words are polysemous and sentences can be
long and have complex structure. While length of
sentence is commonly used as a translation diffi-
culty indicator, lexical and structural properties of

a sentence also contribute to translation difficulty.
Consider the following example sentences.

1. The camera-man shot the policeman
with a gun. (length-8)

2. I was returning from my old office
yesterday. (length-8)

Clearly, sentence 1 is more difficult to process
and translate than sentence 2, since it has lexical
ambiguity (“Shoot” as an act of firing a shot or
taking a photograph?) and structural ambiguity
(Shot with a gun or policeman with a gun?). To
produce fluent and adequate translations, efforts
have to be put to analyze both the lexical and syn-
tactic properties of the sentences.

The most recent work on studying translation
difficulty is by Campbell and Hale (1999) who
identified several areas of difficulty in lexis and
grammar. “Reading” researchers have focused on
developing readability formulae, since 1970. The
Flesch-Kincaid Readability test (Kincaid et al.,
1975), the Fry Readability Formula (Fry, 1977)
and the Dale-Chall readability formula (Chall and
Dale, 1999) are popular and influential. These for-
mulae use factors such as vocabulary difficulty (or
semantic factors) and sentence length (or syntac-
tic factors). In a different setting, Malsburg et
al. (2012) correlate eye fixations and scanpaths
of readers with sentence processing. While these
approaches are successful in quantifying readabil-
ity, they may not be applicable to translation sce-
narios. The reason is that, translation is not
merely a reading activity. Translation requires
co-ordination between source text comprehension
and target text production (Dragsted, 2010). To
the best of our knowledge, our work on predicting
TDI is the first of its kind.

The motivation of the work is as follows. Cur-
rently, for domain specific Machine Translation
systems, parallel corpora are gathered through
translation crowdsourcing/outsourcing. In such
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Figure 1: Inherent sentence complexity and per-
ceived difficulty during translation

a scenario, translators are paid on the basis of
sentence length, which ignores other factors con-
tributing to translation difficulty, as stated above.
Our proposed Translation Difficulty Index (TDI)
quantifies the translation difficulty of a sentence
considering both lexical and structural proper-
ties. This measure can, in turn, be used to clus-
ter sentences according to their difficulty levels
(viz. easy, medium, hard). Different payment and
schemes can be adopted for different such clusters.

TDI can also be useful for training and evalu-
ating second language learners. For example, ap-
propriate examples at particular levels of difficulty
can be chosen for giving assignments and monitor-
ing progress.

The rest of the paper is organized in the fol-
lowing way. Section 2 describes TDI as func-
tion of translation processing time. Section 3 is
on measuring translation processing time through
eye tracking. Section 4 gives the correlation of
linguistic complexity with observed TDI. In sec-
tion 5, we describe a technique for predicting TDIs
and ranking unseen sentences using Support Vec-
tor Machines. Section 6 concludes the paper with
pointers to future work.

2 Quantifying Translation Difficulty

As a first approximation, TDI of a sentence can
be the time taken to translate the sentence, which
can be measured through simple translation exper-
iments. This is based on the assumption that more
difficult sentences will require more time to trans-
late. However, “time taken to translate” may not
be strongly related to the translation difficulty for
two reasons. First, it is difficult to know what
fraction of the total translation time is actually
spent on the translation-related-thinking. For ex-

ample, translators may spend considerable amount
of time typing/writing translations, which is ir-
relevant to the translation difficulty. Second, the
translation time is sensitive to distractions from
the environment. So, instead of the “time taken
to translate”, we are more interested in the “time
for which translation related processing is carried
out by the brain”. This can be termed as the Trans-
lation Processing Time (Tp). Mathematically,

Tp = Tp comp + Tp gen (1)

Where Tp comp and Tp gen are the processing times
for source text comprehension and target text gen-
eration respectively. The empirical TDI, is com-
puted by normalizing Tp with sentence length.

TDI =
Tp

sentencelength
(2)

Measuring Tp is a difficult task as translators of-
ten switch between thinking and writing activities.
Here comes the role of eye tracking.

3 Measuring Tp by eye-tracking

We measure Tp by analyzing the gaze behavior
of translators through eye-tracking. The rationale
behind using eye-tracking is that, humans spend
time on what they see, and this “time” is corre-
lated with the complexity of the information being
processed, as shown in Figure 1. Two fundamental
components of eye behavior are (a) Gaze-fixation
or simply, Fixation and (b) Saccade. The former
is a long stay of the visual gaze on a single loca-
tion. The latter is a very rapid movement of the
eyes between positions of rest. An intuitive feel
for these two concepts can be had by consider-
ing the example of translating the sentence The
camera-man shot the policeman with a gun men-
tioned in the introduction. It is conceivable that
the eye will linger long on the word “shot” which
is ambiguous and will rapidly move across “shot”,
“camera-man” and “gun” to ascertain the clue for
disambiguation.

The terms Tp comp and Tp gen in (1) can now be
looked upon as the sum of fixation and saccadic
durations for both source and target sentences re-
spectively.

Modifying 1

Tp =
∑

f∈Fs

dur(f) +
∑

s∈Ss

dur(s)

+
∑

f∈Ft

dur(f) +
∑

s∈St

dur(s)
(3)
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Figure 2: Screenshot of Translog. The circles rep-
resent fixations and arrow represent saccades.

Here, Fs and Ss correspond to sets of fixations and
saccades for source sentence and Ft and St corre-
spond to those for the target sentence respectively.
dur is a function returning the duration of fixations
and saccades.

3.1 Computing TDI using eye-tracking
database

We obtained TDIs for a set of sentences from
the Translation Process Research Database (TPR
1.0)(Carl, 2012). The database contains trans-
lation studies for which gaze data is recorded
through the Translog software1(Carl, 2012). Fig-
ure 2 presents a screendump of Translog. Out of
the 57 available sessions, we selected 40 transla-
tion sessions comprising 80 sentence translations2.
Each of these 80 sentences was translated from
English to three different languages, viz. Span-
ish, Danish and Hindi by at least 2 translators.
The translators were young professional linguists
or students pursuing PhD in linguistics.

The eye-tracking data is noisy and often ex-
hibits systematic errors (Hornof and Halverson,
2002). To correct this, we applied automatic er-
ror correction technique (Mishra et al., 2012) fol-
lowed by manually correcting incorrect gaze-to-
word mapping using Translog. Note that, gaze and
saccadic durations may also depend on the transla-
tor’s reading speed. We tried to rule out this effect
by sampling out translations for which the vari-
ance in participant’s reading speed is minimum.
Variance in reading speed was calculated after tak-
ing a samples of source text for each participant
and measuring the time taken to read the text.

After preprocessing the data, TDI was com-
puted for each sentence by using (2) and (3).The
observed unnormalized TDI score3 ranges from
0.12 to 0.86. We normalize this to a [0,1] scale

1http://www.translog.dk
220% of the translation sessions were discarded as it was

difficult to rectify the gaze logs for these sessions.
3Anything beyond the upper bound is hard to translate and

can be assigned with the maximum score.

Figure 3: Dependency graph used for computing
SC

using MinMax normalization.
If the “time taken to translate” and Tp were

strongly correlated, we would have rather opted
“time taken to translate” for the measurement of
TDI. The reason is that “time taken to translate”
is relatively easy to compute and does not require
expensive setup for conducting “eye-tracking” ex-
periments. But our experiments show that there
is a weak correlation (coefficient = 0.12) between
“time taken to translate” and Tp. This makes us
believe that Tp is still the best option for TDI mea-
surement.

4 Relating TDI to sentence features

Our claim is that translation difficulty is mainly
caused by three features: Length, Degree of Poly-
semy and Structural Complexity.

4.1 Length

It is the total number of words occurring in a sen-
tence.

4.2 Degree of Polysemy (DP)

The degree of polysemy of a sentence is the sum of
senses possessed by each word in the Wordnet nor-
malized by the sentence length. Mathematically,

DPsentence =

∑
w∈W Senses(w)

length(sentence)
(4)

Here, Senses(w) retrieves the total number senses
of a word P from the Wordnet. W is the set of
words appearing in the sentence.

4.3 Structural Complexity (SC)

Syntactically, words, phrases and clauses are at-
tached to each other in a sentence. If the attach-
ment units lie far from each other, the sentence
has higher structural complexity. Lin (1996) de-
fines it as the total length of dependency links in
the dependency structure of the sentence.
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Figure 4: Prediction of TDI using linguistic prop-
erties such as Length(L), Degree of Polysemy
(DP) and Structural Complexity (SC)

Example: The man who the boy attacked
escaped.

Figure 3 shows the dependency graph for the
example sentence. The weights of the edges cor-
respond how far the two connected words lie from
each other in the sentence. Using Lin’s formula,
the SC score for the example sentence turns out to
be 15.

Lin’s way of computing SC is affected by sen-
tence length since the number of dependency links
for a sentence depends on its length. So we nor-
malize SC by the length of the sentence. After
normalization, the SC score for the example given
becomes 15/7 = 2.14

4.4 How are TDI and linguistic features
related

To validate that translation difficulty depends on
the above mentioned linguistic features, we tried
to find out the correlation coefficients between
each feature and empirical TDI. We extracted
three sets of sample sentences. For each sample,
sentence selection was done with a view to vary-
ing one feature, keeping the other two constant.
The Correlation Coefficients between L, DP and
SC and the empirical TDI turned out to be 0.72,
0.41 and 0.63 respectively. These positive correla-
tion coefficients indicate that all the features con-
tribute to the translation difficulty.

5 Predicting TDI

Our system predicts TDI from the linguistic prop-
erties of a sentence as shown in Figure 4.

The prediction happens in a supervised setting
through regression. Training such a system re-
quires a set sentences annotated with TDIs. In
our case, direct annotation of TDI is a difficult and
unintuitive task. So, we annotate TDI by observ-

Kernel(C=3.0) MSE (%) Correlation
Linear 20.64 0.69
Poly (Deg 2) 12.88 0.81
Poly (Deg 3) 13.35 0.78
Rbf (default) 13.32 0.73

Table 1: Relative MSE and Correlation with ob-
served data for different kernels used for SVR.

ing translator’s behavior (using equations (1) and
(2))instead of asking people to rate sentences with
TDI.

We are now prepared to give the regression sce-
nario for predicting TDI.

5.1 Preparing the dataset

Our dataset contains 80 sentences for which TDI
have been measured (Section 3.1). We divided this
data into 10 sets of training and testing datasets in
order to carry out a 10-fold evaluation. DP and SC
features were computed using Princeton Wordnet4

and Stanford Dependence Parser5.

5.2 Applying Support Vector Regression

To predict TDI, Support Vector Regression (SVR)
technique (Joachims et al., 1999) was preferred
since it facilitates multiple kernel-based methods
for regression. We tried using different kernels us-
ing default parameters. Error analysis was done
by means of Mean Squared Error estimate (MSE).
We also measured the Pearson correlation coeffi-
cient between the empirical and predicted TDI for
our test-sets.

Table 1 indicates Mean Square Error percent-
ages for different kernel methods used for SVR.
MSE (%) indicates by what percentage the pre-
dicted TDIs differ from the observed TDIs. In our
setting, quadratic polynomial kernel with c=3.0
outperforms other kernels. The predicted TDIs are
well correlated with the empirical TDIs. This tells
us that even if the predicted scores are not as ac-
curate as desired, the system is capable of ranking
sentences in correct order. Table 2 presents exam-
ples from the test dataset for which the observed
TDI (TDIO) and the TDI predicted by polynomial
kernel based SVR (TDIP ) are shown.

Our larger goal is to group unknown sentences
into different categories by the level of transla-

4http://www.wordnet.princeton.edu
5http://www.nlp.stanford.edu/software/

lex-parser.html
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Example L DP SC TDIO TDIP Error
1. American Express recently
announced a second round
of job cuts. 10 10 1.8 0.24 0.23 4%
2. Sociology is a relatively
new academic discipline. 7 6 3.7 0.49 0.53 8%

Table 2: Example sentences from the test dataset.

tion difficulty. For that, we tried to manually as-
sign three different class labels to sentences viz.
easy, medium and hard based on the empirical
TDI scores. The ranges of scores chosen for easy,
medium and hard categories were [0-0.3], [0.3-
0.75] and [0.75-1.0] respectively (by trial and er-
ror). Then we trained a Support Vector Rank
(Joachims, 2006) with default parameters using
different kernel methods. The ranking framework
achieves a maximum 67.5% accuracy on the test
data. The accuracy should increase by adding
more data to the training dataset.

6 Conclusion

This paper introduces an approach to quantify-
ing translation difficulty and automatically assign-
ing difficulty levels to unseen sentences. It estab-
lishes a relationship between the intrinsic senten-
tial properties, viz., length (L), degree of polysemy
(DP) and structural complexity (SC), on one hand
and the Translation Difficulty Index (TDI), on the
other. Future work includes deeper investigation
into other linguistic factors such as presence of do-
main specific terms, target language properties etc.
and applying more sophisticated cognitive analy-
sis techniques for more reliable TDI score. We
would like to make use of inter-annotator agree-
ment to decide the boundaries for the translation
difficulty categories. Extending the study to differ-
ent language pairs and studying the applicability
of this technique for Machine Translation Quality
Estimation are also on the agenda.

Acknowledgments

We would like to thank the CRITT, CBS group for
their help in manual correction of TPR data. In
particular, thanks to Barto Mesa and Khristina for
helping with Spanish and Danish dataset correc-
tions.

References

Campbell, S., and Hale, S. 1999. What makes a text
difficult to translate? Refereed Proceedings of the
23rd Annual ALAA Congress.

Carl, M. 2012. Translog-II: A Program for Record-
ing User Activity Data for Empirical Reading and
Writing Research In Proceedings of the Eight In-
ternational Conference on Language Resources and
Evaluation, European Language Resources Associ-
ation (ELRA)

Carl, M. 2012 The CRITT TPR-DB 1.0: A Database
for Empirical Human Translation Process Research.
AMTA 2012 Workshop on Post-Editing Technology
and Practice (WPTP-2012).

Chall, J. S., and Dale, E. 1995. Readability revisited:
the new Dale-Chall readability formula Cambridge,
Mass.: Brookline Books.

Dragsted, B. 2010. Co-ordination of reading andwrit-
ing processes in translation. Contribution to Trans-
lation and Cognition, Shreve, G. and Angelone,
E.(eds.)Cognitive Science Society.

Fry, E. 1977 Fry’s readability graph: Clarification,
validity, and extension to level 17 Journal of Read-
ing, 21(3), 242-252.

Hornof, A. J. and Halverson, T. 2002 Cleaning up sys-
tematic error in eye-tracking data by using required
fixation locations. Behavior Research Methods, In-
struments, and Computers, 34, 592604.

Joachims, T., Schlkopf, B. ,Burges, C and A. Smola
(ed.). 1999. Making large-Scale SVM Learning
Practical. Advances in Kernel Methods - Support
Vector Learning. MIT-Press, 1999,

Joachims, T. 2006 Training Linear SVMs in Lin-
ear Time Proceedings of the ACM Conference on
Knowledge Discovery and Data Mining (KDD).

Kincaid, J. P., Fishburne, R. P., Jr., Rogers, R. L., and
Chissom, B. S. 1975. Derivation of New Read-
ability Formulas (Automated Readability Index, Fog
Count and Flesch Reading Ease Formula) for Navy
Enlisted Personnel Millington, Tennessee: Naval
Air Station Memphis,pp. 8-75.

350



Lin, D. 1996 On the structural complexity of natural
language sentences. Proceeding of the 16th Inter-
national Conference on Computational Linguistics
(COLING), pp. 729733.

Mishra, A., Carl, M, Bhattacharyya, P. 2012 A
heuristic-based approach for systematic error cor-
rection of gaze datafor reading. In MichaelCarl, P.B.
and Choudhary, K.K., editors, Proceedings of the
First Workshop on Eye-tracking and Natural Lan-
guage Processing, Mumbai, India. The COLING
2012 Organizing Committee

von der Malsburg, T., Vasishth, S., and Kliegl, R. 2012
Scanpaths in reading are informative about sen-
tence processing. In MichaelCarl, P.B. and Choud-
hary, K.K., editors, Proceedings of the First Work-
shop on Eye-tracking and Natural Language Pro-
cessing, Mumbai, India. The COLING 2012 Orga-
nizing Committee

351



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 352–357,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Learning to Prune: Context-Sensitive Pruning for Syntactic MT

Wenduan Xu
Computer Laboratory

University of Cambridge
wenduan.xu@cl.cam.ac.uk

Yue Zhang
Singapore University of
Technology and Design

yue zhang@sutd.edu.sg

Philip Williams and Philipp Koehn
School of Informatics

University of Edinburgh
p.j.williams-2@sms.ed.ac.uk

pkoehn@inf.ed.ac.uk

Abstract
We present a context-sensitive chart prun-
ing method for CKY-style MT decoding.
Source phrases that are unlikely to have
aligned target constituents are identified
using sequence labellers learned from the
parallel corpus, and speed-up is obtained
by pruning corresponding chart cells. The
proposed method is easy to implement, or-
thogonal to cube pruning and additive to
its pruning power. On a full-scale English-
to-German experiment with a string-to-
tree model, we obtain a speed-up of more
than 60% over a strong baseline, with no
loss in BLEU.

1 Introduction

Syntactic MT models suffer from decoding effi-
ciency bottlenecks introduced by online n-gram
language model integration and high grammar
complexity. Various efforts have been devoted to
improving decoding efficiency, including hyper-
graph rescoring (Heafield et al., 2013; Huang and
Chiang, 2007), coarse-to-fine processing (Petrov
et al., 2008; Zhang and Gildea, 2008) and gram-
mar transformations (Zhang et al., 2006). For
more expressive, linguistically-motivated syntac-
tic MT models (Galley et al., 2004; Galley et
al., 2006), the grammar complexity has grown
considerably over hierarchical phrase-based mod-
els (Chiang, 2007), and decoding still suffers from
efficiency issues (DeNero et al., 2009).

In this paper, we study a chart pruning method
for CKY-style MT decoding that is orthogonal to

cube pruning (Chiang, 2007) and additive to its
pruning power. The main intuition of our method
is to find those source phrases (i.e. any sequence
of consecutive words) that are unlikely to have any
consistently aligned target counterparts according
to the source context and grammar constraints. We
show that by using highly-efficient sequence la-
belling models learned from the bitext used for
translation model training, such phrases can be ef-
fectively identified prior to MT decoding, and cor-
responding chart cells can be excluded for decod-
ing without affecting translation quality.

We call our method context-sensitive pruning
(CSP); it can be viewed as a bilingual adap-
tation of similar methods in monolingual pars-
ing (Roark and Hollingshead, 2008; Zhang et al.,
2010) which improve parsing efficiency by “clos-
ing” chart cells using binary classifiers. Our con-
tribution is that we demonstrate such methods can
be applied to synchronous-grammar parsing by la-
belling the source-side alone. This is achieved
through a novel training scheme where the la-
belling models are trained over the word-aligned
bitext and gold-standard pruning labels are ob-
tained by projecting target-side constituents to the
source words. To our knowledge, this is the first
work to apply this technique to MT decoding.

The proposed method is easy to implement
and effective in practice. Results on a full-scale
English-to-German experiment show that it gives
more than 60% speed-up over a strong cube prun-
ing baseline, with no loss in BLEU. While we use
a string-to-tree model in this paper, the approach
can be adapted to other syntax-based models.
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but we need that reform process .

TOP

S-TOP

KON

denn

NP-OA

PDAT

diesen

NN

Reformprozeß

VVFIN

brauchen

NP-SB

PPER

wir

PUNC.

.

r1 KON → 〈 but, denn 〉
r2 NP-SB → 〈 we, wir 〉
r3 NP-OA → 〈 that reform process,

diesen Reformprozeß 〉
r4 TOP → 〈 X1 . , S-TOP1 . 〉
r5 S-TOP → 〈 but X1 need X2,

denn NP-OA2 brauchen NP-SB1 〉

Figure 1: A selection of grammar rules extractable
from an example word-aligned sentence pair.

2 The Baseline String-to-Tree Model

Our baseline translation model uses the rule ex-
traction algorithm of Chiang (2007) adapted to a
string-to-tree grammar. After extracting phrasal
pairs using the standard approach of Koehn et al.
(2003), all pairs whose target phrases are not ex-
haustively dominated by a constituent of the parse
tree are removed and each remaining pair, 〈f, e〉,
together with its constituent label, C, forms a lex-
ical grammar rule: C → 〈f, e〉. The rules r1, r2,
and r3 in Figure 1 are lexical rules. Non-lexical
rules are generated by eliminating one or more
pairs of terminal substrings from an existing rule
and substituting non-terminals. This process pro-
duces the example rules r4 and r5.

Our decoding algorithm is a variant of CKY

and is similar to other algorithms tailored for spe-
cific syntactic translation grammars (DeNero et
al., 2009; Hopkins and Langmead, 2010). By tak-
ing the source-side of each rule, projecting onto it
the non-terminal labels from the target-side, and
weighting the grammar according to the model’s
local scoring features, decoding is a straightfor-
ward extension of monolingual weighted chart
parsing. Non-local features, such as n-gram lan-
guage model scores, are incorporated through
cube pruning (Chiang, 2007).

3 Chart Pruning

3.1 Motivations

The abstract rules and large non-terminal sets of
many syntactic MT grammars cause translation

productstheofvalue

NP-TOP

NP-AG

NN

Produkte

ART

der

NN

Wert

(a) en-de

productstheofvalue

NP

NN

価値

NP

DEG

の

NN

製品

(b) en-jp

Figure 2: Two example alignments. In (a) “the
products” does not have a consistent alignment on
the target side, while it does in (b).

overgeneration at the span level and render decod-
ing inefficient. Prior work on monolingual syn-
tactic parsing has demonstrated that by exclud-
ing chart cells that are likely to violate constituent
constraints, decoding efficiency can be improved
with no loss in accuracy (Roark and Hollingshead,
2008). We consider a similar mechanism for syn-
tactic MT decoding by prohibiting subtranslation
generation for chart cells violating synchronous-
grammar constraints.

A motivating example is shown in Figure 2a,
where a segment of an English-German sentence
pair from the training data, along with its word
alignment and target-side parse tree is depicted.
The English phrases “value of” and “the products”
do not have corresponding German translations in
this example. Although the grammar may have
rules to translate these two phrases, they can be
safely pruned for this particular sentence pair.

In contrast to chart pruning for monolingual
parsing, our pruning decisions are based on the
source context, its target translation and the map-
ping between the two. This distinction is impor-
tant since the syntactic correspondence between
different language pairs is different. Suppose that
we were to translate the same English sentence
into Japanese (Figure 2a); unlike the English to
German example, the English phrase “the prod-
ucts” will be a valid phrase that has a Japanese
translation under a target constituent, since it is
syntactically aligned to “製品” (Figure 2b).

The key question to consider is how to inject
target syntax and word alignment information into
our labelling models, so that pruning decisions can
be based on the source alone, we address this in the
following two sections.

3.2 Pruning by Labelling
We use binary tags to indicate whether a source
word can start or end a multi-word phrase that has
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(a) b-tags
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(b) e-tags

Figure 3: The pruning effects of two types of bi-
nary tags. The shaded cells are pruned and two
types of tags are assigned independently.

a consistently aligned target constituent. We call
these two types the b-tag and the e-tag, respec-
tively, and use the set of values {0, 1} for both.

Under this scheme, a b-tag value of 1 indi-
cates that a source word can be the start of a
source phrase that has a consistently aligned target
phrase; similarly an e-tag of 0 indicates that a word
cannot end a source phrase. If either the b-tag or
the e-tag of an input phrase is 0, the correspond-
ing chart cells will be pruned. The pruning effects
of the two types of tags are illustrated in Figure 3.
In general, 0-valued b-tags prune a whole column
of chart cells and 0-valued e-tags prune a whole
diagonal of cells; and the chart cells on the first
row and the top-most cell are always kept so that
complete translations can always be found.

We build a separate labeller for each tag type us-
ing gold-standard b- and e-tags, respectively. We
train the labellers with maximum-entropy models
(Curran and Clark, 2003; Ratnaparkhi, 1996), us-
ing features similar to those used for suppertag-
ging for CCG parsing (Clark and Curran, 2004).
In each case, features for a pruning tag consist
of word and POS uni-grams extracted from the 5-
word window with the current word in the middle,
POS trigrams ending with the current word, as well
as two previous tags as a bigram and two separate
uni-grams. Our pruning labellers are highly effi-
cient, run in linear time and add little overhead to
decoding. During testing, in order to prevent over-
pruning, a probability cutoff value θ is used. A tag
value of 0 is assigned to a word only if its marginal
probability is greater than θ.

3.3 Gold-standard Pruning Tags

Gold-standard tags are extracted from the word-
aligned bitext used for translation model train-
ing, respecting rule extraction constraints, which
is crucial for the success of our method.

For each training sentence pair, gold-standard
b-tags and e-tags are assigned separately to the

Algorithm 1 Gold-standard Labelling Algorithm
Input forward alignment Ae∼f , backward align-

ment Âf∼e and 1-best parse tree τ for f
Output Tag sequences b and e for e

1: procedure TAG(e, f , τ,A, Â)
2: l← |e|
3: for i← 0 to l − 1 do
4: b[i]← 0, e[i]← 0

5: for f [i′, j′] in τ do
6: s← {Â[k] | k ∈ [i′, j′]}
7: if |s| ≤ 1 then continue
8: i← min(s), j ← max(s)
9: if CONSISTENT(i, j, i′, j′) then

10: b[i′]← 1, e[j′]← 1

11: procedure CONSISTENT(i, j, i′, j′)
12: t← {A[k] | k ∈ [i, j]}
13: return min(t) ≥ i′ and max(t) ≤ j′

source words. First, we initialize both tags of each
source word to 0s. Then, we iterate through all tar-
get constituent spans, and for each span, we find
its corresponding source phrase, as determined by
the word alignment. If a constituent exists for the
phrase pair, the b-tag of the first word and the e-tag
of the last word in the source phrase are set to 1s,
respectively. Pseudocode is shown in Algorithm 1.

Note that our definition of the gold-standard al-
lows source-side labels to integrate bilingual in-
formation. On line 6, the target-side syntax is
projected to the source; on line 9, consistency is
checked against word alignment.

Consider again the alignment in Figure 2a. Tak-
ing the target constituent span covering “der Pro-
dukte” as an example, the source phrase under a
consistent word alignment is “of the products”.
Thus, the b-tag of “of” and the e-tag of “prod-
ucts” are set to 1s. After considering all target
constituent spans, the complete b- and e-tag se-
quences for the source-side phrase in Figure 2a
are [1, 1, 0, 0] and [0, 0, 1, 1], respectively. Note
that, since we never prune single-word spans, we
ignore source phrases under consistent one-to-one
or one-to-many alignments.

From the gold standard data, we found 73.69%
of the 54M words do not begin a multi-word
aligned phrase and 77.71% do not end a multi-
word aligned phrase; the 1-best accuracies of the
two labellers tested on a held-out 20K sentences
are 82.50% and 88.78% respectively.
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Figure 4: Translation quality comparison with the cube pruning baseline.

4 Experiments

4.1 Setup
A Moses (Koehn et al., 2007) string-to-tree sys-
tem is used as our baseline. The training cor-
pus consists of the English-German sections of
the Europarl (Koehn, 2005) and the News Com-
mentary corpus. Discarding pairs without target-
side parses, the final training data has 2M sen-
tence pairs, with 54M and 52M words on the
English and German sides, respectively. Word-
alignments are obtained by running GIZA++ (Och
and Ney, 2000) in both directions and refined
with “grow-diag-final-and” (Koehn et al., 2003).
For all experiments, a 5-gram language model
with Kneser-Ney smoothing (Chen and Goodman,
1996) built with the SRILM Toolkit (Stolcke and
others, 2002) is used.

The development and test sets are the 2008
WMT newstest (2,051 sentences) and 2009 WMT
newstest (2,525 sentences) respectively. Feature
weights are tuned with MERT (Och, 2003) on
the development set and output is evaluated us-
ing case-sensitive BLEU (Papineni et al., 2002).
For both rule extraction and decoding, up to seven
terminal/non-terminal symbols on the source-side
are allowed. For decoding, the maximum span-
length is restricted to 15, and the grammar is pre-
filtered to match the entire test set for both the
baseline system and the chart pruning decoder.

We use two labellers to perform b- and e-tag la-
belling independently prior to decoding. Training
of the labelling models is able to complete in un-
der 2.5 hours and the whole test set is labelled in
under 2 seconds. A standard perceptron POS tag-
ger (Collins, 2002) trained on Wall Street Journal
sections 2-21 of the Penn Treebank is used to as-

sign POS tags for both our training and test data.

4.2 Results

Figures 4a and 4b compare CSP with the cube
pruning baseline in terms of BLEU. Decoding
speed is measured by the average decoding time
and average number of hypotheses generated per
sentence. We first run the baseline decoder un-
der various beam settings (b = 100 - 2500) un-
til no further increase in BLEU is observed. We
then run the CSP decoder with a range of θ val-
ues (θ = 0.91 − 0.99), at the default beam size
of 1000 of the baseline decoder. The CSP de-
coder, which considers far fewer chart cells and
generates significantly fewer subtranslations, con-
sistently outperforms the slower baseline. It ulti-
mately achieves a BLEU score of 14.86 at a proba-
bility cutoff value of 0.98, slightly higher than the
highest score of the baseline.

At all levels of comparable translation quality,
our decoder is faster than the baseline. On aver-
age, the speed-up gained is 63.58% as measured
by average decoding time, and comparing on a
point-by-point basis, our decoder always runs over
60% faster. At the θ value of 0.98, it yields a
speed-up of 57.30%, compared with a beam size
of 400 for the baseline, where both achieved the
highest BLEU.

Figures 5a and 5b demonstrate the pruning
power of CSP (θ = 0.95) in comparison with the
baseline (beam size = 300); across all the cutoff
values and beam sizes, the CSP decoder considers
54.92% fewer translation hypotheses on average
and the minimal reduction achieved is 46.56%.

Figure 6 shows the percentage of spans of dif-
ferent lengths pruned by CSP (θ = 0.98). As ex-
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Figure 6: Percentage of spans of different lengths pruned at θ = 0.98.

pected, longer spans are pruned more often, as
they are more likely to be at the intersections of
cells pruned by the two types of pruning labels,
thus can be pruned by either type.

We also find CSP does not improve search qual-
ity and it leads to slightly lower model scores,
which shows that some higher scored translation
hypotheses are pruned. This, however, is perfectly
desirable. Since our pruning decisions are based
on independent labellers using contextual infor-
mation, with the objective of eliminating unlikely
subtranslations and rule applications. It may even
offset defects of the translation model (i.e. high-
scored bad translations). The fact that the output
BLEU did not decrease supports this reasoning.

Finally, it is worth noting that our string-to-tree
model does not force complete target parses to be
built during decoding, which is not required in our
pruning method either. We do not use any other
heuristics (other than keeping singleton and the
top-most cells) to make complete translation al-
ways possible. The hypothesis here is that good

labelling models should not affect the derivation
of complete target translations.

5 Conclusion

We presented a novel sequence labelling based,
context-sensitive pruning method for a string-to-
tree MT model. Our method achieves more than
60% speed-up over a state-of-the-art baseline on
a full-scale translation task. In future work, we
plan to adapt our method to models with differ-
ent rule extraction algorithms, such as Hiero and
forest-based translation (Mi and Huang, 2008).
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Abstract

In this paper, we propose a novel compact
representation calledweighted bipartite
hypergraph to exploit the fertility model,
which plays a critical role in word align-
ment. However, estimating the probabili-
ties of rules extracted from hypergraphs is
an NP-complete problem, which is com-
putationally infeasible. Therefore, we pro-
pose a divide-and-conquer strategy by de-
composing a hypergraph into a set of inde-
pendent subhypergraphs. The experiments
show that our approach outperforms both
1-best andn-best alignments.

1 Introduction

Word alignment is the task of identifying trans-
lational relations between words in parallel cor-
pora, in which a word at one language is usually
translated into several words at the other language
(fertility model) (Brown et al., 1993). Given that
many-to-many links are common in natural lan-
guages (Moore, 2005), it is necessary to pay atten-
tion to the relations among alignment links.

In this paper, we have proposed a novel graph-
based compact representation of word alignment,
which takes into account the joint distribution of
alignment links. We first transform each align-
ment to a bigraph that can be decomposed into a
set of subgraphs, where all interrelated links are
in the same subgraph (§ 2.1). Then we employ
a weighted partite hypergraph to encode multiple
bigraphs (§ 2.2).

The main challenge of this research is to effi-
ciently calculate the fractional counts for rules ex-
tracted from hypergraphs. This is equivalent to the
decision version of set covering problem, which is
NP-complete. Observing that most alignments are
not connected, we propose a divide-and-conquer
strategy by decomposing a hypergraph into a set

Figure 1: A bigraph constructed from an align-
ment (a), and its disjoint MCSs (b).

of independent subhypergraphs, which is compu-
tationally feasible in practice (§ 3.2). Experimen-
tal results show that our approach significantly im-
proves translation performance by up to 1.3 BLEU
points over 1-best alignments (§ 4.3).

2 Graph-based Compact Representation

2.1 Word Alignment as a Bigraph

Each alignment of a sentence pair can be trans-
formed to a bigraph, in which the two disjoint ver-
tex setsS andT are the source and target words re-
spectively, and the edges are word-by-word links.
For example, Figure 1(a) shows the corresponding
bigraph of an alignment.

The bigraph usually is not connected. A graph
is called connected if there is a path between every
pair of distinct vertices. In an alignment, words in
a specific portion at the source side (i.e. a verb
phrase) usually align to those in the corresponding
portion (i.e. the verb phrase at the target side), and
would never align to other words; and vice versa.
Therefore, there is no edge that connects the words
in the portion to those outside the portion.

Therefore, a bigraph can be decomposed into
a unique set ofminimum connected subgraphs
(MCSs), where each subgraph is connected and
does not contain any other MCSs. For example,
the bigraph in Figure 1(a) can be decomposed into
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Figure 2: (a) One alignment of a sentence pair; (b) another alignment of the same sentence pair; (c) the
resulting hypergraph that takes the two alignments as samples.

the MCSs in Figure 1(b). We can see that all in-
terrelated links are in the same MCS. These MCSs
work as fundamental units in our approach to take
advantage of the relations among the links. Here-
inafter, we use bigraph to denote the alignment of
a sentence pair.

2.2 Weighted Bipartite Hypergraph

We believe that offering more alternatives to ex-
tracting translation rules could help improve trans-
lation quality. We propose a new structure called
weighted bipartite hypergraph that compactly en-
codes multiple alignments.

We use an example to illustrate our idea. Fig-
ures 2(a) and 2(b) show two bigraphs of the same
sentence pair. Intuitively, we can encode the
union set of subgraphs in a bipartite hypergraph,
in which each MCS serves as a hyperedge, as in
Figure 2(c). Accordingly, we can calculate how
well a hyperedge is by calculating its relative fre-
quency, which is the probability sum of bigraphs
in which the corresponding MCS occurs divided
by the probability sum of all possible bigraphs.
Suppose that the probabilities of the two bigraphs
in Figures 2(a) and 2(b) are 0.7 and 0.3, respec-
tively. Then the weight ofe1 is 1.0 ande2 is
0.7. Therefore, each hyperedge is associated with
a weight to indicate how well it is.

Formally, aweighted bipartite hypergraph H is
a triple 〈S, T,E〉 whereS andT are two sets of
vertices on the source and target sides, andE are
hyperedges associated with weights. Currently,
we estimate the weights of hyperedges from ann-
best list by calculating relative frequencies:

w(ei) =

∑
BG∈N p(BG) × δ(BG, gi)∑

BG∈N p(BG)

HereN is ann-best bigraph (i.e., alignment) list,

p(BG) is the probability of a bigraphBG in then-
best list,gi is the MCS that corresponds toei, and
δ(BG, gi) is an indicator function which equals 1
whengi occurs inBG, and 0 otherwise.

It is worthy mentioning that a hypergraph en-
codes much more alignments than the inputn-best
list. For example, we can construct a new align-
ment by using hyperedges from different bigraphs
that cover all vertices.

3 Graph-based Rule Extraction

In this section we describe how to extract transla-
tion rules from a hypergraph (§ 3.1) and how to
estimate their probabilities (§ 3.2).

3.1 Extraction Algorithm

We extract translation rules from a hypergraph
for the hierarchical phrase-based system (Chiang,
2007). Chiang (2007) describes a rule extrac-
tion algorithm that involves two steps: (1) extract
phrases from 1-best alignments; (2) obtain vari-
able rules by replacing sub-phrase pairs with non-
terminals. Our extraction algorithm differs at the
first step, in which we extract phrases from hyper-
graphs instead of 1-best alignments. Rather than
restricting ourselves by the alignment consistency
in the traditional algorithm, we extract all possible
candidate target phrases for each source phrase.
To maintain a reasonable rule table size, we fil-
ter out less promising candidates that have afrac-
tional count lower than a threshold.

3.2 Calculating Fractional Counts

The fractional count of a phrase pair is the proba-
bility sum of the alignments with which the phrase
pair is consistent (§3.2.2), divided by the probabil-
ity sum of all alignments encoded in a hypergraph
(§3.2.1) (Liu et al., 2009).
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Intuitively, our approach faces two challenges:

1. How to calculate the probability sum of all
alignments encoded in a hypergraph (§3.2.1)?

2. How to efficiently calculate the probability
sum of all consistent alignments for each
phrase pair (§3.2.2)?

3.2.1 Enumerating All Alignments

In theory, a hypergraph can encode all possible
alignments if there are enough hyperedges. How-
ever, since a hypergraph is constructed from ann-
best list, it can only represent partial space of all
alignments (p(A|H) < 1) because of the limiting
size of hyperedges learned from the list. There-
fore, we need to enumerate all possible align-
ments in a hypergraph to obtain the probability
sump(A|H).

Specifically, generating an alignment from a hy-
pergraph can be modelled as finding acomplete
hyperedge matching, which is a set of hyperedges
without common vertices that matches all vertices.
The probability of the alignment is the product of
hyperedge weights. Thus, enumerating all possi-
ble alignments in a hypergraph is reformulated as
finding allcomplete hypergraph matchings, which
is an NP-complete problem (Valiant, 1979).

Similar to the bigraph, a hypergraph is also usu-
ally not connected. To make the enumeration prac-
tically tractable, we propose adivide-and-conquer
strategy by decomposing a hypergraphH into a set
of independent subhypergraphs{h1, h2, . . . , hn}.
Intuitively, the probability of an alignment is the
product of hyperedge weights. According to the
divide-and-conquer strategy, the probability sum
of all alignmentsA encoded in a hypergraphH is:

p(A|H) =
∏

hi∈H

p(Ai|hi)

Here p(Ai|hi) is the probability sum of all sub-
alignmentsAi encoded in the subhypergraphhi.

3.2.2 Enumerating Consistent Alignments

Since a hypergraph encodes many alignments, it is
unrealistic to enumerate all consistent alignments
explicitly for each phrase pair.

Recall that a hypergraph can be decomposed
to a list of independent subhypergraphs, and an
alignment is a combination of the sub-alignments
from the decompositions. We observe that a
phrase pair is absolutely consistent with the sub-
alignments from some subhypergraphs, while pos-
sibly consistent with the others. As an example,
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e2 e3
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e5
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e2 e3
e4
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h3

h2

Figure 3: A hypergraph with a candidate phrase
in the grey shadow (a), and its independent subhy-
pergraphs{h1, h2, h3}.

consider the phrase pair in the grey shadow in Fig-
ure 3(a), it is consistent with all sub-alignments
from bothh1 andh2 because they are outside and
inside the phrase pair respectively, while not con-
sistent with the sub-alignment that contains hyper-
edgee2 from h3 because it contains an alignment
link that crosses the phrase pair.

Therefore, to calculate the probability sum of all
consistent alignments, we only need to consider
the overlap subhypergraphs, which have at least
one hyperedge that crosses the phrase pair. Given
a overlap subhypergraph, the probability sum of
consistent sub-alignments is calculated by sub-
tracting the probability sum of the sub-alignments
that contain crossed hyperedges, from the proba-
bility sum of all sub-alignments encoded in a hy-
pergraph.

Given a phrase pairP , let OS and NS de-
notes the sets of overlap and non-overlap subhy-
pergraphs respectively (NS = H − OS). Then

p(A|H,P ) =
∏

hi∈OS

p(Ai|hi, P )
∏

hj∈NS

p(Aj|hj)

Here the phrase pair is absolutely consistent with
the sub-alignments from non-overlap subhyper-
graphs (NS), and we havep(A|h, P ) = p(A|h).
Then the fractional count of a phrase pair is:

c(P |H) =
p(A|H,P )

p(A|H)
=

∏
hi∈OS p(A|hi, P )
∏

hi∈OS p(A|hi)

After we get the fractional counts of transla-
tion rules, we can estimate theirrelative frequen-
cies (Och and Ney, 2004). We follow (Liu et al.,
2009; Tu et al., 2011) to learn lexical tables from
n-best lists and then calculate the lexical weights.
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Rules from. . . Rules MT03 MT04 MT05 Avg.
1-best 257M 33.45 35.25 33.63 34.11
10-best 427M 34.10 35.71 34.04 34.62

Hypergraph 426M 34.71 36.24 34.41 35.12

Table 1: Evaluation of translation quality.

4 Experiments

4.1 Setup

We carry out our experiments on Chinese-English
translation tasks using a reimplementation of the
hierarchical phrase-based system (Chiang, 2007).
Our training data contains 1.5 million sentence
pairs from LDC dataset.1 We train a 4-gram
language model on the Xinhua portion of the
GIGAWORD corpus using the SRI Language
Toolkit (Stolcke, 2002) with modified Kneser-Ney
Smoothing (Kneser and Ney, 1995). We use min-
imum error rate training (Och, 2003) to optimize
the feature weights on the MT02 testset, and test
on the MT03/04/05 testsets. For evaluation, case-
insensitive NIST BLEU (Papineni et al., 2002) is
used to measure translation performance.

We first follow Venugopal et al. (2008) to pro-
duce n-best lists via GIZA++. We produce 10-best
lists in two translation directions, and use “grow-
diag-final-and” strategy (Koehn et al., 2003) to
generate the finaln-best lists by selecting the
top n alignments. We re-estimated the probabil-
ity of each alignment in then-best list using re-
normalization (Venugopal et al., 2008). Finally we
construct weighted alignment hypergraphs from
thesen-best lists.2 When extracting rules from hy-
pergraphs, we set the pruning thresholdt = 0.5.

4.2 Tractability of Divide-and-Conquer
Strategy

Figure 4 shows the distribution of vertices (hy-
peredges) number of the subhypergraphs. We can
see that most of the subhypergraphs have just less
than two vertices and hyperedges.3 Specifically,
each subhypergraph has 2.0 vertices and 1.4 hy-

1The corpus includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

2Here we only use 10-best lists, because the alignments
beyond top 10 have very small probabilities, thus have negli-
gible influence on the hypergraphs.

3It’s interesting that there are few subhypergraphs that
have exactly 2 hyperedges. In this case, the only two hy-
peredges fully cover the vertices and they differ at the word-
by-word links, which is uncommon inn-best lists.
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Figure 4: The distribution of vertices (hyperedges)
number of the subhypergraphs.

peredges on average. This suggests that the divide-
and-conquer strategy makes the extraction compu-
tationally tractable, because it greatly reduces the
number of vertices and hyperedges. For computa-
tional tractability, we only allow a subhypergraph
has at most 5 hyperedges.4

4.3 Translation Performance

Table 1 shows the rule table size and transla-
tion quality. Usingn-best lists slightly improves
the BLEU score over 1-best alignments, but at
the cost of a larger rule table. This is in ac-
cord with intuition, because all possible transla-
tion rules would be extracted from different align-
ments inn-best lists without pruning. This larger
rule table indeed leads to a high rule coverage, but
in the meanwhile, introduces translation errors be-
cause of the low-quality rules (i.e., rules extracted
only from low-quality alignments inn-best lists).
By contrast, our approach not only significantly
improves the translation performance over 1-best
alignments, but also outperformsn-best lists with
a similar-scale rule table. The absolute improve-
ments of 1.0 BLEU points on average over 1-best
alignments are statistically significant atp < 0.01
usingsign-test (Collins et al., 2005).

4If a subhypergraph has more than 5 hyperedges, we
forcibly partition it into small subhypergraphs by iteratively
removing lowest-probability hyperedges.
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Rules from. . .
Shared Non-shared All

Rules BLEU Rules BLEU Rules BLEU
10-best 1.83M 32.75 2.81M 30.71 4.64M 34.62

Hypergraph 1.83M 33.24 2.89M 31.12 4.72M 35.12

Table 2: Comparison of rule tables learned fromn-best lists and hypergraphs. “All” denotes the full rule
table, “Shared” denotes the intersection of two tables, and“Non-shared” denotes the complement. Note
that the probabilities of “Shared” rules are different for the two approaches.

Why our approach outperformsn-best lists? In
theory, the rule table extracted fromn-best lists
is a subset of that from hypergraphs. In prac-
tice, however, this is not true because we pruned
the rules that have fractional counts lower than a
threshold. Therefore, the question arises as to how
many rules are shared byn-best and hypergraph-
based extractions. We try to answer this ques-
tion by comparing the different rule tables (filtered
on the test sets) learned fromn-best lists and hy-
pergraphs. Table 2 gives some statistics. “All”
denotes the full rule table, “Shared” denotes the
intersection of two tables, and “Non-shared” de-
notes the complement. Note that the probabil-
ities of “Shared” rules are different for the two
approaches. We can see that both the “Shared”
and “Non-shared” rules learned from hypergraphs
outperformn-best lists, indicating: (1) our ap-
proach has a better estimation of rule probabili-
ties because we estimate the probabilities from a
much larger alignment space that can not be rep-
resented byn-best lists, (2) our approach can ex-
tract good rules that cannot be extracted from any
single alignments in then-best lists.

5 Related Work

Our research builds on previous work in the field
of graph models and compact representations.
Graph models have been used before in word
alignment: the search space of word alignment can
be structured as a graph and the search problem
can be reformulated as finding the optimal path
though this graph (e.g., (Och and Ney, 2004; Liu et
al., 2010)). In addition, Kumar and Byrne (2002)
define a graph distance as a loss function for
minimum Bayes-risk word alignment, Riesa and
Marcu (2010) open up the word alignment task to
advances in hypergraph algorithms currently used
in parsing. As opposed to the search problem, we
propose a graph-based compact representation that
encodes multiple alignments for machine transla-
tion.

Previous research has demonstrated that com-
pact representations can produce improved re-
sults by offering more alternatives, e.g., using
forests over 1-best trees (Mi and Huang, 2008;
Tu et al., 2010; Tu et al., 2012a), word lattices
over 1-best segmentations (Dyer et al., 2008),
and weighted alignment matrices over 1-best word
alignments (Liu et al., 2009; Tu et al., 2011; Tu et
al., 2012b). Liu et al., (2009) estimate the link
probabilities fromn-best lists, while Gispert et
al., (2010) learn the alignment posterior probabil-
ities directly from IBM models. However, both of
them ignore the relations among alignment links.
By contrast, our approach takes into account the
joint distribution of alignment links and explores
the fertility model past the link level.

6 Conclusion

We have presented a novel compact representa-
tion of word alignment, named weighted bipar-
tite hypergraph, to exploit the relations among
alignment links. Since estimating the probabil-
ities of rules extracted from hypergraphs is an
NP-complete problem, we propose a computation-
ally tractable divide-and-conquer strategy by de-
composing a hypergraph into a set of independent
subhypergraphs. Experimental results show that
our approach outperforms both 1-best andn-best
alignments.
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Abstract
Current translation models are mainly de-
signed for languages with limited mor-
phology, which are not readily applicable
to agglutinative languages as the differ-
ence in the way lexical forms are gener-
ated. In this paper, we propose a nov-
el approach for translating agglutinative
languages by treating stems and affixes
differently. We employ stem as the atomic
translation unit to alleviate data spare-
ness. In addition, we associate each stem-
granularity translation rule with a distri-
bution of related affixes, and select desir-
able rules according to the similarity of
their affix distributions with given spans to
be translated. Experimental results show
that our approach significantly improves
the translation performance on tasks of
translating from three Turkic languages to
Chinese.

1 Introduction

Currently, most methods on statistical machine
translation (SMT) are developed for translation
of languages with limited morphology (e.g., En-
glish, Chinese). They assumed that word was the
atomic translation unit (ATU), always ignoring the
internal morphological structure of word. This
assumption can be traced back to the original
IBM word-based models (Brown et al., 1993) and
several significantly improved models, including
phrase-based (Och and Ney, 2004; Koehn et al.,
2003), hierarchical (Chiang, 2005) and syntac-
tic (Quirk et al., 2005; Galley et al., 2006; Liu et
al., 2006) models. These improved models worked
well for translating languages like English with
large scale parallel corpora available.

Different from languages with limited morphol-
ogy, words of agglutinative languages are formed
mainly by concatenation of stems and affixes.
Generally, a stem can attach with several affixes,
thus leading to tens of hundreds of possible inflect-
ed variants of lexicons for a single stem. Modeling
each lexical form as a separate word will generate
high out-of-vocabulary rate for SMT. Theoretical-
ly, ways like morphological analysis and increas-
ing bilingual corpora could alleviate the problem
of data sparsity, but most agglutinative languages
are less-studied and suffer from the problem of
resource-scarceness. Therefore, previous research
mainly focused on the different inflected variants
of the same stem and made various transformation
of input by morphological analysis, such as (Lee,
2004; Goldwater and McClosky, 2005; Yang and
Kirchhoff, 2006; Habash and Sadat, 2006; Bisazza
and Federico, 2009; Wang et al., 2011). These
work still assume that the atomic translation unit
is word, stem or morpheme, without considering
the difference between stems and affixes.

In agglutinative languages, stem is the base
part of word not including inflectional affixes.
Affix, especially inflectional affix, indicates dif-
ferent grammatical categories such as tense, per-
son, number and case, etc., which is useful for
translation rule disambiguation. Therefore, we
employ stem as the atomic translation unit and
use affix information to guide translation rule
selection. Stem-granularity translation rules have
much larger coverage and can lower the OOV
rate. Affix based rule selection takes advantage
of auxiliary syntactic roles of affixes to make a
better rule selection. In this way, we can achieve
a balance between rule coverage and matching
accuracy, and ultimately improve the translation
performance.
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zunyi

/STM

i

/SUF

yighin

/STM

gha

/SUF

zunyi yighin ||| ||| i gha

Original:zunyi yighin+i+gha

Meaning:of zunyi conference

(B)Translation rules with affix distribution

zunyi yighin ||| ||| i:0 gha:0.09 zunyi yighin ||| ||| i:0 da:0.24

zunyi

/STM

i

/SUF

yighin

/STM

da

/SUF

zunyi yighin ||| ||| i da

(A) Instances of translation rule

(1) (2)

zunyi

/STM

i

/SUF

yighin

/STM

gha

/SUF

zunyi yighin ||| ||| i gha

(3)

Original:zunyi yighin+i+da

Meaning:on zunyi conference

Original:zunyi yighin+i+gha

Meaning:of zunyi conference

Figure 1: Translation rule extraction from Uyghur to Chinese. Here tag “/STM” represents stem and
“/SUF” means suffix.

2 Affix Based Rule Selection Model

Figure 1 (B) shows two translation rules along
with affix distributions. Here a translation rule
contains three parts: the source part (on stem lev-
el), the target part, and the related affix distribution
(represented as a vector). We can see that, al-
though the source part of the two translation rules
are identical, their affix distributions are quite
different. Affix “gha” in the first rule indicates
that something is affiliated to a subject, similar to
“of” in English. And “da” in second rule implies
location information. Therefore, given a span
“zunyi/STM yighin/STM+i/SUF+da/SUF+...” to
be translated, we hope to encourage our model to
select the second translation rule. We can achieve
this by calculating similarity between the affix
distributions of the translation rule and the span.

The affix distribution can be obtained by keep-
ing the related affixes for each rule instance during
translation rule extraction ((A) in Figure 1). After
extracting and scoring stem-granularity rules in a
traditional way, we extract stem-granularity rules
again by keeping affix information and compute
the affix distribution with tf-idf (Salton and Buck-
ley, 1987). Finally, the affix distribution will be
added to the previous stem-granularity rules.

2.1 Affix Distribution Estimation

Formally, translation rule instances with the same
source part can be treated as a document collec-
tion1, so each rule instance in the collection is

1We employ concepts from text classification to illustrate
how to estimate affix distribution.

some kind of document. Our goal is to classify the
source parts into the target parts on the document
collection level with the help of affix distribu-
tion. Accordingly, we employ vector space model
(VSM) to represent affix distribution of each rule
instance. In this model, the feature weights are
represented by the classic tf-idf (Salton and Buck-
ley, 1987):

tf i,j =
ni,j∑
k nk,j

idf i,j = log
|D|

|j : ai ∈ rj|
tfidf i,j = tf i,j × idf i,j

(1)

where tfidf i,j is the weight of affix ai in transla-
tion rule instance rj . ni,j indicates the number of
occurrence of affix ai in rj . |D| is the number
of rule instance with the same source part, and
|j : ai ∈ rj| is the number of rule instance which
contains affix ai within |D|.

Let’s take the suffix “gha” from (A1) in Figure
1 as an example. We assume that there are only
three instances of translation rules extracted from
parallel corpus ((A) in Figure 1). We can see that
“gha” only appear once in (A1) and also appear
once in whole instances. Therefore, tfgha,(A1) is
0.5 and idfgha,(A1) is log(3/2). tfidfgha,(A1) is
the product of tfgha,(A1) and idfgha,(A1) which
is 0.09.

Given a set of N translation rule instances with
the same source and target part, we define the
centroid vector dr according to the centroid-based
classification algorithm (Han and Karypis, 2000),

dr =
1

N

∑

i∈N

di (2)
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Data set #Sent.
#Type #Token

word stem morph word stem morph
UY-CH-Train. 50K 69K 39K 42K 1.2M 1.2M 1.6M
UY-CH-Dev. 0.7K*4 5.9K 4.1K 4.6K 18K 18K 23.5K
UY-CH-Test. 0.7K*1 4.7K 3.3K 3.8K 14K 14K 17.8K
KA-CH-Train. 50K 62K 40K 42K 1.1M 1.1M 1.3M
KA-CH-Dev. 0.7K*4 5.3K 4.2K 4.5K 15K 15K 18K
KA-CH-Test. 0.2K*1 2.6K 2.0K 2.3K 8.6K 8.6K 10.8K
KI-CH-Train. 50K 53K 27K 31K 1.2M 1.2M 1.5M
KI-CH-Dev. 0.5K*4 4.1K 3.1K 3.5K 12K 12K 15K
KI-CH-Test. 0.2K*4 2.2K 1.8K 2.1K 4.7K 4.7K 5.8K

Table 1: Statistics of data sets. ∗N means the number of reference, morph is short to morpheme. UY,
KA, KI, CH represent Uyghur, Kazakh, Kirghiz and Chinese respectively.

dr is the final affix distribution.
By comparing the similarity of affix distribu-

tions, we are able to decide whether a translation
rule is suitable for a span to be translated. In
this work, similarity is measured using the cosine
distance similarity metric, given by

sim(d1,d2) =
d1 · d2

∥d1∥ × ∥d2∥ (3)

where di corresponds to a vector indicating affix
distribution, and “·” denotes the inner product of
the two vectors.

Therefore, for a specific span to be translated,
we first analyze it to get the corresponding stem
sequence and related affix distribution represented
as a vector. Then the stem sequence is used to
search the translation rule table. If the source part
is matched, the similarity will be calculated for
each candidate translation rule by cosine similarity
(as in equation 3). Therefore, in addition to the
traditional translation features on stem level, our
model also adds the affix similarity score as a
dynamic feature into the log-linear model (Och
and Ney, 2002).

3 Related Work

Most previous work on agglutinative language
translation mainly focus on Turkish and Finnish.
Bisazza and Federico (2009) and Mermer and
Saraclar (2011) optimized morphological analysis
as a pre-processing step to improve the translation
between Turkish and English. Yeniterzi and Oflaz-
er (2010) mapped the syntax of the English side
to the morphology of the Turkish side with the
factored model (Koehn and Hoang, 2007). Yang

and Kirchhoff (2006) backed off surface form to
stem when translating OOV words of Finnish.
Luong and Kan (2010) and Luong et al. (2010)
focused on Finnish-English translation through
improving word alignment and enhancing phrase
table. These works still assumed that the atomic
translation unit is word, stem or morpheme, with-
out considering the difference between stems and
affixes.

There are also some work that employed the
context information to make a better choice of
translation rules (Carpuat and Wu, 2007; Chan et
al., 2007; He et al., 2008; Cui et al., 2010). all the
work employed rich context information, such as
POS, syntactic, etc., and experiments were mostly
done on less inflectional languages (i.e. Chinese,
English) and resourceful languages (i.e. Arabic).

4 Experiments

In this work, we conduct our experiments on
three different agglutinative languages, including
Uyghur, Kazakh and Kirghiz. All of them are
derived from Altaic language family, belonging to
Turkic languages, and mostly spoken by people in
Central Asia. There are about 24 million people
take these languages as mother tongue. All of
the tasks are derived from the evaluation of Chi-
na Workshop of Machine Translation (CWMT)2.
Table 1 shows the statistics of data sets.

For the language model, we use the SRI Lan-
guage Modeling Toolkit (Stolcke, 2002) to train
a 5-gram model with the target side of training
corpus. And phrase-based Moses3 is used as our

2http://mt.xmu.edu.cn/cwmt2011/en/index.html.
3http://www.statmt.org/moses/
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UY-CH KA-CH KI-CH
word 31.74+0.0 28.64+0.0 35.05+0.0

stem 33.74+2.0 30.14+1.5 35.52+0.47

morph 32.69+0.95 29.21+0.57 34.97−0.08

affix 34.34+2.6 30.19+2.27 35.96+0.91

Table 2: Translation results from Turkic languages
to Chinese. word: ATU is surface form,
stem: ATU is represented stem, morph: ATU
denotes morpheme, affix: stem translation with
affix distribution similarity. BLEU scores in
bold means significantly better than the baseline
according to (Koehn, 2004) for p-value less than
0.01.

baseline SMT system. The decoding weights are
optimized with MERT (Och, 2003) to maximum
word-level BLEU scores (Papineni et al., 2002).

4.1 Using Unsupervised Morphological
Analyzer

As most agglutinative languages are resource-
poor, we employ unsupervised learning method
to obtain the morphological structure. Follow-
ing the approach in (Virpioja et al., 2007), we
employ the Morfessor4 Categories-MAP algorith-
m (Creutz and Lagus, 2005). It applies a hierar-
chical model with three categories (prefix, stem,
and suffix) in an unsupervised way. From Table 1
we can see that vocabulary sizes of the three lan-
guages are reduced obviously after unsupervised
morphological analysis.

Table 2 shows the translation results. All the
three translation tasks achieve obvious improve-
ments with the proposed model, which always per-
forms better than only employ word, stem and
morph. For the Uyghur to Chinese translation
(UY-CH) task in Table 2, performances after unsu-
pervised morphological analysis are always better
than the baseline. And we gain up to +2.6 BLEU
points improvements with affix compared to the
baseline. For the Kazakh to Chinese translation
(KA-CH) task, the improvements are also signifi-
cant. We achieve +2.27 and +0.77 improvements
compared to the baseline and stem, respectively.
As for the Kirghiz to Chinese translation (KI-CH)
task, improvements seem relative small compared
to the other two language pairs. However, it also
gains +0.91 BLEU points over the baseline.

4http://www.cis.hut.fi/projects/morpho/

UY Unsup Sup

stem #Type 39K 21K
#Token 1.2M 1.2M

affix #Type 3.0K 0.3K
#Token 0.4M 0.7M

Table 3: Statistics of training corpus after unsuper-
vised(Unsup) and supervised(Sup) morphological
analysis.
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Figure 2: Uyghur to Chinese translation results
after unsupervised and supervised analysis.

4.2 Using Supervised Morphological
Analyzer

Taking it further, we also want to see the effect of
supervised analysis on our model. A generative
statistical model of morphological analysis for
Uyghur was developed according to (Mairehaba
et al., 2012). Table 3 shows the difference of
statistics of training corpus after supervised and
unsupervised analysis. Supervised method gen-
erates fewer type of stems and affixes than the
unsupervised approach. As we can see from
Figure 2, except for the morph method, stem
and affix based approaches perform better after
supervised analysis. The results show that our
approach can obtain even better translation per-
formance if better morphological analyzers are
available. Supervised morphological analysis gen-
erates more meaningful morphemes, which lead to
better disambiguation of translation rules.

5 Conclusions and Future Work

In this paper we propose a novel framework for
agglutinative language translation by treating stem
and affix differently. We employ the stem se-
quence as the main part for training and decod-
ing. Besides, we associate each stem-granularity
translation rule with an affix distribution, which
could be used to make better translation decisions
by calculating the affix distribution similarity be-
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tween the rule and the instance to be translated.
We conduct our model on three different language
pairs, all of which substantially improved the
translation performance. The procedure is totally
language-independent, and we expect that other
language pairs could benefit from our approach.
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Abstract 

Rhetorical structure theory (RST) is widely 

used for discourse understanding, which repre-

sents a discourse as a hierarchically semantic 

structure. In this paper, we propose a novel 

translation framework with the help of RST. In 

our framework, the translation process mainly 

includes three steps: 1) Source RST-tree ac-

quisition: a source sentence is parsed into an 

RST tree; 2) Rule extraction: translation rules 

are extracted from the source tree and the tar-

get string via bilingual word alignment; 3) 

RST-based translation: the source RST-tree 

is translated with translation rules. Experi-

ments on Chinese-to-English show that our 

RST-based approach achieves improvements 

of 2.3/0.77/1.43 BLEU points on 

NIST04/NIST05/CWMT2008 respectively. 

1 Introduction 

For statistical machine translation (SMT), a cru-

cial issue is how to build a translation model to 

extract as much accurate and generative transla-

tion knowledge as possible. The existing SMT 

models have made much progress. However, 

they still suffer from the bad performance of un-

natural or even unreadable translation, especially 

when the sentences become complicated. We 

think the deep reason is that those models only 

extract translation information on lexical or syn-

tactic level, but fail to give an overall under-

standing of source sentences on semantic level of 

discourse. In order to solve such problem, (Gong 

et al., 2011; Xiao et al., 2011; Wong and Kit, 

2012) build discourse-based translation models 

to ensure the lexical coherence or consistency. 

Although some lexicons can be translated better 

by their models, the overall structure still re-

mains unnatural. Marcu et al.  (2000) design a 

discourse structure transferring module, but leave 

much work to do, especially on how to integrate 

this module into SMT and how to automatically 

analyze the structures. Those reasons urge us to 

seek a new translation framework under the idea 

of “translation with overall understanding”. 

Rhetorical structure theory (RST) (Mann and 

Thompson, 1988) provides us with a good per-

spective and inspiration to build such a frame-

work. Generally, an RST tree can explicitly show 

the minimal spans with semantic functional in-

tegrity, which are called elementary discourse 

units (edus) (Marcu et al., 2000), and it also de-

picts the hierarchical relations among edus. Fur-

thermore, since different languages’ edus are 

usually equivalent on semantic level, it is intui-

tive to create a new framework based on RST by 

directly mapping the source edus to target ones. 

Taking the Chinese-to-English translation as 

an example, our translation framework works as 

the following steps:  

1) Source RST-tree acquisition: a source 

sentence is parsed into an RST-tree;  

2) Rule extraction: translation rules are ex-

tracted from the source tree and the target string 

via bilingual word alignment;  

3) RST-based translation:  the source RST-

tree is translated into target sentence with ex-

tracted translation rules. 

Experiments on Chinese-to-English sentence-

level discourses demonstrate that this method 

achieves significant improvements. 

2 Chinese RST Parser  

2.1 Annotation of Chinese RST Tree 

Similar to (Soricut and Marcu, 2003), a node of 

RST tree is represented as a tuple R-[s, m, e], 

which means the relation R controls two seman-

tic spans U1 and U2 , U1 starts from word position 

s and stops at word position m. U2 starts from 

m+1 and ends with e. Under the guidance of def-

inition of RST, Yue (2008) defined 12 groups
1
 of 

                                                 
1They are Parallel, Alternative, Condition, Reason, Elabo-

ration, Means, Preparation, Enablement, Antithesis, Back-

ground, Evidences, Others. 
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rhetorical relations for Chinese particularly, upon 

which our Chinese RST parser is developed. 

Figure 1 illustrates an example of Chinese 

RST tree and its alignment to the English string. 

There are two levels in this tree. The Antithesis 

relation controls U1 from 0 to 9 and U2 from 10 

to 21. Thus it is written as Antithesis-[0,9,21]. 

Different shadow blocks denote the alignments 

of different edus. Links between source and tar-

get words are alignments of cue words. Cue 

words are viewed as the strongest clues for rhe-

torical relation recognition and always found at 

the beginning of text (Reitter, 2003), such as “即

使(although), 由于(because of)”. With the cue 

words included, the relations are much easier to 

be analyzed. So we focus on the explicit relations 

with cue words in this paper as our first try. 

2.2 Bayesian Method for Chinese RST Parser 

For Chinese RST parser, there are two tasks. One 

is the segmentation of edu and the other is the 

relation tagging between two semantic spans. 

Feature Meaning 

F1(F6) left(right) child is a syntactic sub-tree? 

F2(F5) left(right) child ends with a punctuation? 

F3(F4) cue words of left (right) child. 

F7 left and right children are sibling nodes? 

F8(F9) syntactic head symbol of left(right) child. 

Table 1: 9 features used in our Bayesian model 

Inspired by the features used in English RST 

parser (Soricut and Marcu, 2003; Reitter, 2003; 

Duverle and Prendinger, 2009; Hernault et al., 

2010a), we design a Bayesian model to build a 

joint parser for segmentation and tagging simul-

taneously. In this model, 9 features in Table 1 are 

used. In the table, punctuations include comma, 

semicolons, period and question mark. We view 

explicit connectives as cue words in this paper. 

Figure 2 illustrates the conditional independ-

ences of 9 features which are denoted with F1~F9. 

 
The segmentation and parsing conditional 

probabilities are computed as follows: 

P (mjF 9
1 ) = P (mjF 3

1 ; F8) (1)

P (ejF 9
1 ) = P (ejF 7

4 ; F9) (2)

P (ReljF 9
1 ) = P (ReljF 4

3 ) (3) 

where Fn represents the nth  feature , F l
n means 

features from n  to l. Rel is short for relation. (1) 

and (2) describe the conditional probabilities of 

m and e. When using Formula (3) to predict the 

relation, we search all the cue-words pair, as 

shown in Figure 1, to get the best match. When 

training, we use maximum likelihood estimation 

to get all the associated probabilities. For decod-

ing, the pseudo codes are given as below. 

 

m e

F1 F2 F3

Rel

F4 F5 F6 F7F8 F9

 
Figure 2: The graph for conditional independences 

of 9 features. 

1: Nodes={[]} 

2: Parser(0,End)  

3: Parser(s,e): // recursive parser function 

4:    if s > e or e is -1: return -1; 

5:    m = GetMaxM(s,e)  //compute m through Formu-

la(1);if no cue words found, 

then m=-1; 

6:      e’ = GetMaxE(s,m,e)  //compute e’ through F (2); 

7:    if m or e’ equals to -1: return -1; 

8:   Rel=GetRelation(s,m,e’) //compute relation by F 

(3) 
9:    push [Rel,s,m,e’] into Nodes   

10:  Parser(s,m)  

11:  Parser(m+1,e’) 

12:  Parser(e’+1,e) 

13:   Rel=GetRelation(s,e’,e) 

14:   push [Rel,s,e’,e] into Nodes 

15:   return e 

Jíshǐ     lúbù    duì meǐyuán  de míngyì   huìlǜ xiàjiàng  le    ,

即使       卢布       对    美元          的   名义          汇率     下降      了    ，
  0               1           2         3              4        5                6            7          8     9 yóuyú  gāo tōngzhàng ,

 由于       高    通胀            ，
   10          11      12            13

qí    shíjì   huìlǜ    yě  shì  shàngshēng de    .

其    实际      汇率      也   是           上升          的    。
14      15           16        17   18             19            20   21   

Although the rupee's nominal rate against the dollar was held down , India's real exchange rate rose because of  high inflation . 

Reason 

Antithesis
U1:[0,9] U2:[10,21]

U1:[10,13] U2:[14,21]

Cue-words pair matching set of cue words for span [0,9] and [10,21]:{即使/由于,即使/NULL,NULL/由于}

Cue-words pair matching set of cue words for span [10,13] and [14,21]:{由于/NULL}

RST-based Rules:  Antithesis:: 即使[X]/[Y] => Although[X]/[Y] ;  Reason::由于[X]/[Y] => [Y]/because of[X]

Example 1:

Figure 1: An example of Chinese RST tree and its word alignment of the corresponding English string. 
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For example in Figure 1, for the first iteration, 

s=0 and m will be chosen from {1-20}. We get 

m=9 through Formula (1). Then, similar with m, 

we get e=21 through Formula (2). Finally, the 

relation is figured out by Formula (3). Thus, a 

node is generated. A complete RST tree con-

structs until the end of the iterative process for 

this sentence. This method can run fast due to the 

simple greedy algorithm.  It is plausible in our 

cases, because we only have a small scale of 

manually-annotated Chinese RST corpus, which 

prefers simple rather than complicated models.  

3 Translation Model 

3.1 Rule Extraction 

As shown in Figure 1, the RST tree-to-string 

alignment provides us with two types of transla-

tion rules. One is common phrase-based rules, 

which are just like those in phrase-based model 

(Koehn et al., 2003). The other is RST tree-to-

string rule, and it’s defined as, 

relation ::U1(®;X)=U2(°; Y )

) U1(tr(®); tr(X)) » U2(tr(°); tr(Y ))
 

where the terminal characters α and γ represent 

the cue words which are optimum match for 

maximizing Formula (3). While the non-

terminals X and Y represent the rest of the se-

quence. Function tr(· ) means the translation 

of ·. The operator ~ is an operator to indicate 

that the order of tr(U1) and tr(U2) is monotone or 

reverse. During rules’ extraction, if the mean 

position of all the words in tr(U1) precedes that 

in tr(U2), ~ is monotone. Otherwise, ~ is reverse.   

For example in Figure 1, the Reason relation 

controls U1:[10,13] and U2:[14,21]. Because the 

mean position of tr(U2) is before that of tr(U1), 

the reverse order is selected. We list the RST-

based rules for Example 1 in Figure 1. 

3.2 Probabilities Estimation  

For the phrase-based translation rules, we use 

four common probabilities and the probabilities’ 

estimation is the same with those in (Koehn et al., 

2003). While the probabilities of RST-based 

translation rules are given as follows,  

(1) P(rejrf ;Rel) =
Count(re;rf ;relation)

Count(rf ;relation)
:  where re 

is the target side of the rule, ignorance of the or-

der, i.e. U1(tr(®); tr(X)) » U2(tr(°); tr(Y ))  with 

two directions, rf is the source side, i.e. 

U1(®;X)=U2(°;Y ) , and Rel  means the relation 

type.  

(2) P(¿jre; rf ;Rel) =
Count(¿;re;rf ;relation)

Count(re;rf ;relation)
: 

¿ 2 fmonotone; reverseg. It is the conditional 

probability of re-ordering. 

4 Decoding 

The decoding procedure of a discourse can be 

derived from the original decoding formula 

eI
1 = argmaxeI

1
P (eI

1jfJ
1 ) . Given the rhetorical 

structure of a source sentence and the corre-

sponding rule-table, the translating process is to 

find an optimal path to get the highest score un-

der structure constrains, which is, 

argmaxes
fP (esj; ft)g

= argmaxes
f

Y

fn2ft

P (eu1; eu2; ¿ jfn)g 

where ft 
is a source  RST tree combined by a set 

of node fn . es is the target string combined by 

series of en  (translations of fn ).  fn  consists of  

U1 and U2. eu1 and eu2 are translations of U1 and 

U2 respectively. This global optimization prob-

lem is approximately simplified to local optimi-

zation to reduce the complexity,  
Y

fn2ft

argmaxen
fP(eu1; eu2; ¿ jfn)g 

In our paper, we have the following two ways 

to factorize the above formula, 

Decoder 1: 

P (eu1; eu2; ¿ jfn)

= P (ecp; eX
; e

Y
; ¿ jfcp; fX

; f
Y
)

= P (ecpjfcp)P (¿ jecp; fcp)P (e
X
jf

X
)P (e

Y
jf

Y
)

= P (rejrf
;Rel)P (¿ jre; rf

; Rel)P (e
X
jf

X
)P (e

Y
jf

Y
)    

where eX, eY are the translation of non-terminal 

parts. fcp  and ecp  are cue-words pair of source 

and target sides. The first and second factors are 

just the probabilities introduced in Section 3.2. 

After approximately simplified to local optimiza-

tion, the final formulae are re-written as, 

argmaxrfP (rejrf
; Rel)P (¿ jre; rf

; Rel)g (4)

argmaxe
X
fP (e

X
jf

X
)g (5)

argmaxe
Y
fP (e

Y
jf

Y
)g (6) 

Taking the source sentence with its RST tree 

in Figure 1 for instance, we adopt a bottom-up 

manner to do translation recursively. Suppose the 

best rules selected by (4) are just those written in 

the figure, Then span [11,13] and [14,21] are 

firstly translated by (5) and (6). Their translations 

are then re-packaged by the rule of Reason-

[10,13,21]. Iteratively, the translations of span 

[1,9] and [10,21] are re-packaged by the rule of 

Antithesis-[0,9,21] to form the final translation.  

372



Decoder 2 : Suppose that the translating process 

of two spans U1 and U2 are independent of each 

other, we rewrite P(eu1; eu2; ¿ jfn)  as follows, 

P (eu1; eu2; ¿ jfn)

= P (eu1; eu2; ¿ jfu1; fu2)

= P (eu1jfu1)P (eu2jfu2)P (¿ jrf ; Rel)

= P (eu1jfu1)P (eu2jfu2)
X

re

P (¿ jre; rf
; Rel)P (rejrf

; Rel)

after approximately simplified to local optimization, 

the final formulae are re-written as below,

 

argmaxe
u1
fPr(eu1jfu1)g (7)

argmaxe
u2
fPr(eu2jfu2)g (8)

argmaxrf
X

e

Pr(¿ jre; rf
; Rel)Pr(rejrf

; Rel)g (9) 

We also adopt the bottom-up manner similar 

to Decoder 1. In Figure 1, U1 and U2 of Reason 

node are firstly translated. Their translations are 

then re-ordered. Then the translations of two 

spans of Antithesis node are re-ordered and con-

structed into the final translation. In Decoder 2, 

the minimal translation-unit is edu. While in De-

coder 1, an edu is further split into cue-word part 

and the rest part to obtain the respective transla-

tion.  

In our decoders, language model(LM) is used 

for translating edus in Formula(5),(6),(7),(8), but 

not for reordering the upper spans because with 

the bottom-to-up combination, the spans become 

longer and harder to be judged by a traditional 

language model. So we only use RST rules to 

guide the reordering.  But LM will be properly 

considered in our future work. 

5 Experiment 

5.1 Setup 

In order to do Chinese RST parser, we annotated 

over 1,000 complicated sentences on CTB (Xue 

et al., 2005), among which 1,107 sentences are 

used for training, and 500 sentences are used for 

testing. Berkeley parser
2
 is used for getting the 

syntactic trees.  

The translation experiment is conducted on 

Chinese-to-English direction. The bilingual train-

ing data is from the LDC corpus
3
. The training 

corpus contains 2.1M sentence pairs. We obtain 

the word alignment with the grow-diag-final-and 

strategy by GIZA++
4
. A 5-gram language model 

is trained on the Xinhua portion of the English 

                                                 
2
 http://code.google.com/p/berkeleyparser/ 

3
 LDC category number : LDC2000T50, LDC2002E18, 

LDC2003E07, LDC2004T07, LDC2005T06, LDC2002L27, 

LDC2005T10 and LDC2005T34 
4 http://code.google.com/p/giza-pp/ 

Gigaword corpus. For tuning and testing, we use 

NIST03 evaluation data as the development set, 

and extract the relatively long and complicated 

sentences from NIST04, NIST05 and CWMT08
5
  

evaluation data as the test set. The number and 

average word-length of sentences are 511/36, 

320/34, 590/38 respectively. We use case-

insensitive BLEU-4 with the shortest length pen-

alty for evaluation.  

To create the baseline system, we use the 

toolkit Moses
6
 to build a phrase-based translation 

system. Meanwhile, considering that Xiong et al. 

(2009) have presented good results by dividing 

long and complicated sentences into sub-

sentences only by punctuations during decoding, 

we re-implement their method for comparison. 

5.2 Results of Chinese RST Parser 

Table 2 shows the results of RST parsing. On 

average, our RS trees are 2 layers deep. The 

parsing errors mostly result from the segmenta-

tion errors, which are mainly caused by syntactic 

parsing errors. On the other hand, the polyse-

mous cue words, such as “而(but, and, thus)” 

may lead ambiguity for relation recognition, be-

cause they can be clues for different relations.  

Task Precision Recall F1 

Segmentation 0.74 0.83 0.78 

Labeling 0.71 0.78 0.75 

Table 2: Segmentation and labeling result. 

5.3 Results of Translation 

Table 3 presents the translation comparison re-

sults. In this table, XD represents the method in 

(Xiong et al., 2009). D1 stands for Decoder-1, 

and D2 for Decoder-2. Values with boldface are 

the highest scores in comparison. D2 performs 

best on the test data with 2.3/0.77/1.43/1.16 

points. Compared with XD, our results also out-

perform by 0.52 points on the whole test data. 

Observing and comparing the translation re-

sults, we find that our translation results are more 

readable by maintaining the semantic integrality 

of the edus and by giving more appreciate reor-

ganization of the translated edus. 

Testing Set Baseline XD D1 D2 

NIST04 29.39 31.52 31.34 31.69 

NIST05 29.86 29.80 30.28 30.63 

CWMT08 24.31 25.24 25.74 25.74 

ALL 27.85 28.49 28.66 29.01 

Table 3: Comparison with related models. 

                                                 
5
 China Workshop on Machine Translation 2008 

6
 www.statmt.org/moses/index.php?n=Main.HomePage 
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6 Conclusion and Future Work 

In this paper, we present an RST-based transla-

tion framework for modeling semantic structures 

in translation model, so as to maintain the se-

mantically functional integrity and hierarchical 

relations of edus during translating. With respect 

to the existing models, we think our translation 

framework works more similarly to what human 

does, and we believe that this research is a cru-

cial step towards discourse-oriented translation. 

In the next step, we will study on the implicit 

discourse relations for Chinese and further modi-

fy the RST-based framework. Besides, we will 

try to combine other current translation models 

such as syntactic model and hierarchical model 

into our framework. Furthermore, the more accu-

rate evaluation metric for discourse-oriented 

translation will be further studied. 
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Abstract

We present the first ever results show-
ing that tuning a machine translation sys-
tem against a semantic frame based ob-
jective function, MEANT, produces more
robustly adequate translations than tun-
ing against BLEU or TER as measured
across commonly used metrics and human
subjective evaluation. Moreover, for in-
formal web forum data, human evalua-
tors preferredMEANT-tuned systems over
BLEU- or TER-tuned systems by a sig-
nificantly wider margin than that for for-
mal newswire—even though automatic se-
mantic parsing might be expected to fare
worse on informal language. We argue
that by preserving themeaning of the trans-
lations as captured by semantic frames
right in the training process, an MT sys-
tem is constrained to make more accu-
rate choices of both lexical and reorder-
ing rules. As a result, MT systems tuned
against semantic frame based MT evalu-
ation metrics produce output that is more
adequate. Tuning a machine translation
system against a semantic frame based ob-
jective function is independent of the trans-
lation model paradigm, so, any transla-
tion model can benefit from the semantic
knowledge incorporated to improve trans-
lation adequacy through our approach.

1 Introduction

We present the first ever results of tuning a statis-
tical machine translation (SMT) system against a
semantic frame based objective function in order
to produce a more adequate output. We compare
the performance of our system with that of two
baseline SMT systems tuned against BLEU and
TER, the commonly used n-gram and edit distance

based metrics. Our system performs better than
the baseline across seven commonly used evalu-
ation metrics and subjective human evaluation on
adequacy. Surprisingly, tuning against a seman-
tic MT evaluation metric also significantly out-
performs the baseline on the domain of informal
web forum data wherein automatic semantic pars-
ing might be expected to fare worse. These results
strongly indicate that using a semantic frame based
objective function for tuning would drive develop-
ment of MT towards direction of higher utility.
Glaring errors caused by semantic role confu-

sion that plague the state-of-the-art MT systems
are a consequence of using fast and cheap lexi-
cal n-gram based objective functions like BLEU
to drive their development. Despite enforcing flu-
ency it has been established that these metrics do
not enforce translation utility adequately and often
fail to preservemeaning closely (Callison-Burch et
al., 2006; Koehn and Monz, 2006).
We argue that instead of BLEU, a metric that fo-

cuses on getting the meaning right should be used
as an objective function for tuning SMT so as to
drive continuing progress towards higher utility.
MEANT (Lo et al., 2012), is an automatic seman-
tic MT evaluation metric that measures similarity
between the MT output and the reference transla-
tion via semantic frames. It correlates better with
human adequacy judgment than other automatic
MT evaluation metrics. Since a high MEANT
score is contingent on correct lexical choices as
well as syntactic and semantic structures, we be-
lieve that tuning against MEANT would improve
both translation adequacy and fluency.
Incorporating semantic structures into SMT by

tuning against a semantic frame based evaluation
metric is independent of the MT paradigm. There-
fore, systems from different MT paradigms (such
as hierarchical, phrase based, transduction gram-
mar based) can benefit from the semantic informa-
tion incorporated through our approach.
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2 Related Work

Relatively little work has been done towards bi-
asing the translation decisions of an SMT system
to produce adequate translations that correctly pre-
servewho did what to whom, when, where and why
(Pradhan et al., 2004). This is because the devel-
opment of SMT systemswas predominantly driven
by tuning against n-gram based evaluation met-
rics such as BLEU or edit distance based metrics
such as TER which do not sufficiently bias SMT
system’s decisions to produce adequate transla-
tions. Although there has been a recent surge of
work aimed towards incorporating semantics into
the SMT pipeline, none attempt to tune against a
semantic objective function. Below, we describe
some of the attempts to incorporate semantic in-
formation into the SMT and present a brief survey
on evaluation metrics that focus on rewarding se-
mantically valid translations.

Utilizing semantics in SMT In the past few
years, there has been a surge of work aimed at in-
corporating semantics into various stages of the
SMT. Wu and Fung (2009) propose a two-pass
model that reorders the MT output to match the
SRL of the input, which is too late to affect the
translation decisions made by the MT system dur-
ing decoding. In contrast, training against a se-
mantic objective function attempts to improve the
decoding search strategy by incorporating a bias
towards meaningful translations into the model in-
stead of postprocessing its results.
Komachi et al. (2006) and Wu et al. (2011) pre-

process the input sentence to match the verb frame
alternations in the output side. Liu and Gildea
(2010) and Aziz et al. (2011) use input side SRL
to train a tree-to-string SMT system. Xiong et al.
(2012) trained a discriminative model to predict
the position of the semantic roles in the output.
All these approaches are orthogonal to the present
question of whether to train toward a semantic ob-
jective function. Any of the above models could
potentially benefit from tuning with semantic met-
rics.

MT evaluation metrics As mentioned previ-
ously, tuning against n-gram based metrics such
as BLEU (Papineni et al., 2002), NIST (Dod-
dington, 2002), METEOR (Banerjee and Lavie,
2005) does not sufficiently drive SMT into mak-
ing decisions to produce adequate translations
that correctly preserve ”who did what to whom,

when, where and why”. In fact, a number of
large scale meta-evaluations (Callison-Burch et
al., 2006; Koehn and Monz, 2006) report cases
where BLEU strongly disagrees with human judg-
ments of translation accuracy. Tuning against edit
distance based metrics such as CDER (Leusch et
al., 2006), WER (Nießen et al., 2000), and TER
(Snover et al., 2006) also fails to sufficiently bias
SMT systems towards producing translations that
preserve semantic information.
We argue that an SMT system tuned against an

adequacy-oriented metric that correlates well with
human adequacy judgement produces more ade-
quate translations. For this purpose, we choose
MEANT, an automatic semantic MT evaluation
metric that focuses on getting the meaning right by
comparing the semantic structures of the MT out-
put and the reference. We briefly describe some
of the alternative semantic metrics below to justify
our choice.
ULC (Giménez and Màrquez, 2007, 2008) is

an aggregated metric that incorporates several se-
mantic similarity features and shows improved
correlation with human judgement on translation
quality (Callison-Burch et al., 2007; Giménez
and Màrquez, 2007; Callison-Burch et al., 2008;
Giménez and Màrquez, 2008) but no work has
been done towards tuning an MT system against
ULC perhaps due to its expensive running time.
Lambert et al. (2006) did tune on QUEEN, a sim-
plified version of ULC that discards the seman-
tic features and is based on pure lexical features.
Although tuning on QUEEN produced slightly
more preferable translations than solely tuning on
BLEU, themetric does not make use of any seman-
tic features and thus fails to exploit any potential
gains from tuning to semantic objectives.
Although TINE (Rios et al., 2011) is an recall-

oriented automatic evaluation metric which aims
to preserve the basic event structure, no work has
been done towards tuning an SMT system against
it. TINE performs comparably to BLEU andworse
than METEOR on correlation with human ade-
quacy judgment.
In contrast to TINE, MEANT (Lo et al., 2012),

which is the weighted f-score over the matched se-
mantic role labels of the automatically aligned se-
mantic frames and role fillers, outperforms BLEU,
NIST, METEOR, WER, CDER and TER. This
makes it more suitable for tuning SMT systems to
produce much adequate translations.
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newswire BLEU NIST METEOR no_syn METEOR WER CDER TER MEANT
BLEU-tuned 29.85 8.84 52.10 55.42 67.88 55.67 58.40 0.1667
TER-tuned 25.37 6.56 48.26 51.24 66.18 52.58 56.96 0.1578
MEANT-tuned 25.91 7.81 50.15 53.60 67.76 54.56 58.61 0.1676

Table 1: Translation quality of MT system tuned against MEANT, BLEU and TER on newswire data

forum BLEU NIST METEOR no_syn METEOR WER CDER TER MEANT
BLEU-tuned 9.58 4.10 31.77 34.63 80.09 64.54 76.12 0.1711
TER-tuned 6.94 2.21 28.55 30.85 76.15 57.96 74.73 0.1539
MEANT-tuned 7.92 3.11 30.40 33.08 77.32 61.01 74.64 0.1727

Table 2: Translation quality of MT system tuned against MEANT, BLEU and TER on forum data

3 Tuning SMT against MEANT

We now show that using MEANT as an objec-
tive function to drive minimum error rate training
(MERT) of state-of-the-art MT systems improves
MT utility not only on formal newswire text, but
even on informal forum text, where automatic se-
mantic parsing is difficult.
Toward improving translation utility of state-of-

the-art MT systems, we chose to use a strong and
competitive system in the DARPA BOLT program
as our baseline. The baseline system is a Moses
hierarchical model trained on a collection of LDC
newswire and a small portion of Chinese-English
parallel web forum data, together with a 5-gram
language model. For the newswire experiment, we
used a collection of NIST 02-06 test sets as our de-
velopment set and NIST 08 test set for evaluation.
The development and test sets contain 6,331 and
1,357 sentences respectively with four references.
For the forum data experiment, the development
and test sets were a held-out subset of the BOLT
phase 1 training data. The development and test
sets contain 2,000 sentences and 1,697 sentences
with one reference.
We use ZMERT (Zaidan, 2009) to tune the base-

line because it is a widely used, highly competi-
tive, robust, and reliable implementation of MERT
that is also fully configurable and extensible with
regard to incorporating new evaluation metrics. In
this experiment, we use aMEANT implementation
along the lines described in Lo et al. (2012).
In each experiment, we tune two contrastive

conventional 100-best MERT tuned baseline sys-
tems on both newswire and forum data genres; one
tuned against BLEU, an n-gram based evaluation
metric and the other using TER, an edit distance
based metric. As semantic role labeling is expen-
sive we only tuned using 10-best list for MEANT-
tuned system. Tuning against BLEU and TER took

around 1.5 hours and 5 hours per iteration respec-
tively whereas tuning against MEANT took about
1.6 hours per iteration.

4 Results

Of course, tuning against any metric would maxi-
mize the performance of the SMT system on that
particular metric, but would be overfitting. For
example, something would be seriously wrong
if tuning against BLEU did not yield the best
BLEU scores. A far more worthwhile goal would
be to bias the SMT system to produce adequate
translations while achieving the best scores across
all the metrics. With this as our objective, we
present the results of comparing MEANT-tuned
systems against the baselines as evaluated on com-
monly used automatic metrics and human ade-
quacy judgement.

Cross-evaluation using automatic metrics Ta-
bles 1 and 2 show that MEANT-tuned systems
achieve the best scores across all other metrics in
both newswire and forum data genres, when avoid-
ing comparison of the overfit metrics too similar to
the one the system was tuned on (the cells shaded
in grey in the table: NIST and METEOR are n-
gram based metrics, similar to BLEU while WER
and CDER are edit distance based metrics, similar
to TER). In the newswire domain, however, our
system achieves marginally lower TER score than
BLEU-tuned system.
Figure 1 shows an example where the MEANT-

tuned system produced a more adequate transla-
tion that accurately preserves the semantic struc-
ture of the input sentence than the two baseline
systems. The MEANT scores for the MT output
from the BLEU-, TER- and MEANT-tuned sys-
tems are 0.0635, 0.1131 and 0.2426 respectively.
Both the MEANT score and the human evaluators
rank the MT output from the MEANT-tuned sys-
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Figure 1: Examples of machine translation output and the corresponding semantic parses from the [B]
BLEU-, [T] TER-and [M]MEANT-tuned systems together with [IN] the input sentence and [REF] the
reference translation. Note that the MT output of the BLEU-tuned system has no semantic parse output
by the automatic shallow semantic parser.

tem as the most adequate translation. In this exam-
ple, the MEANT-tuned system has translated the
two predicates “攻占” and “施行” in the input sen-
tence into the correct form of the predicates “at-
tack” and “adopted” in theMT output, whereas the
BLEU-tuned system has translated both of them
incorrectly (translates the predicates into nouns)
and the TER-tuned system has correctly translated
only the first predicate (into “seized”) and dropped
the second predicate. Moreover, for the frame “攻
占” in the input sentence, the MEANT-tuned sys-
tem has correctly translated the ARG0 “哈玛斯好战
份子” into “Hamas militants” and the ARG1 “加
萨走廊” into “Gaza”. However, the TER-tuned
system has dropped the predicate “施行” so that
the corresponding arguments “The Palestinian Au-
thority” and “into a state of emergency” have all
been incorrectly associated with the predicate “攻
占 /seized”. This example shows that the transla-
tion adequacy of SMT has been improved by tun-
ing against MEANT because the MEANT-tuned
system is more accurately preserving the semantic
structure of the input sentence.

Our results show that MEANT-tuned system
maintains a balance between lexical choices and
word order because it performs well on n-gram
based metrics that reward lexical matching and
edit distance metrics that penalize incorrect word

order. This is not surprising as a high MEANT
score relies on a high degree of semantic structure
matching, which is contingent upon correct lexi-
cal choices as well as syntactic and semantic struc-
tures.

Human subjective evaluation In line with our
original objective of biasing SMT systems towards
producing adequate translations, we conduct a hu-
man evaluation to judge the translation utility of
the outputs produced by MEANT-, BLEU- and
TER-tuned systems. Following the manual eval-
uation protocol of Lambert et al. (2006), we ran-
domly draw 150 sentences from the test set in each
domain to form the manual evaluation set. Table
3 shows the MEANT scores of the two manual
evaluation sets. In both evaluation sets, like in the
test sets, the output from the MEANT-tuned sys-
tem score slightly higher inMEANT than that from
the BLEU-tuned system and significantly higher
than that from the TER-tuned system. The output
of each tuned MT system along the input sentence
and the reference were presented to human evalu-
ators. Each evaluation set is ranked by two evalu-
ators for measuring inter-evaluator agreement.
Table 4 indicates that output of the MEANT-

tuned system is ranked adequate more frequently
compared to BLEU- and TER-tuned baselines for
both newswire and web forum genres. The inter-
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newswire forum
BLEU-tuned 0.1564 0.1663
TER-tuned 0.1203 0.1453
MEANT-tuned 0.1633 0.1737

Table 3: MEANT scores of each system in the 150-
sentence manual evaluation set.

newswire forum
Eval 1 Eval 2 Eval 1 Eval 2

BLEU-tuned (B) 37 42 47 42
TER-tuned (T) 22 24 28 23
MEANT-tuned (M) 55 56 59 68
B=T 14 12 0 0
M=B 5 4 8 9
M=T 4 4 4 4
M=B=T 13 9 4 4

Table 4: No. of sentences ranked the most ade-
quate by human evaluators for each system.

H1 newswire forum
MEANT-tuned > BLEU-tuned 80% 95%
MEANT-tuned > TER-tuned 99% 99%

Table 5: Significance level of accepting the alter-
native hypothesis.

evaluator agreement is 84% and 70% for newswire
and forum data genres respectively.
We performed the right-tailed two proportion

significance test on human evaluation of the SMT
system outputs for both the genres. Table 5 shows
that the MEANT-tuned system generates more ad-
equate translations than the TER-tuned system at
the 99% significance level for both newswire and
web forum genres. The MEANT-tuned system is
ranked more adequate than the BLEU-tuned sys-
tem at the 95% significance level on the web fo-
rum genre and for the newswire genre the hypoth-
esis is accepted at a significance level of 80%.
The high inter-evaluator agreement and the signif-
icance tests confirm that MEANT-tuned system is
better at producing adequate translations compared
to BLEU- or TER-tuned systems.

Informal vs. formal text The results of table
4 and 5 also show that—surprisingly—the human
evaluators preferred MEANT-tuned system out-
put over BLEU-tuned and TER-tuned system out-
put by a far wider margin on the informal forum
text compared to the formal newswire text. The
MEANT-tuned system is better than both base-
lines at the 80% significance level for the formal
text genre. For the informal text genre, it per-
forms the two baselines at the 95% significance
level. Although one might expect an semantic

frame dependent metric such as MEANT to per-
form poorly on the domain of informal text, sur-
prisingly, it nonetheless significantly outperforms
the baselines at the task of generating adequate out-
put. This indicates that the design of the MEANT
evaluation metric is robust enough to tune an SMT
system towards adequate output on informal text
domains despite the shortcomings of automatic
shallow semantic parsing.

5 Conclusion

We presented the first ever results to demon-
strate that tuning an SMT system against MEANT
produces much adequate translation than tuning
against BLEU or TER, as measured across all
other commonly used metrics and human subjec-
tive evaluation. We also observed that tuning
against MEANT succeeds in producing adequate
output significantly more frequently even on the
informal text such as web forum data. By pre-
serving the meaning of the translations as captured
by semantic frames right in the training process,
an MT system is constrained to make more accu-
rate choices of both lexical and reordering rules.
The performance of our system as measured across
all commonly used metrics indicate that tuning
against a semantic MT evaluation metric does pro-
duce output which is adequate and fluent.
We believe that tuning onMEANTwould prove

equally useful for MT systems based on any
paradigm, especially where the model does not
incorporate semantic information to improve the
adequacy of the translations produced and using
MEANT as an objective function to tune SMT
would drive sustainable development of MT to-
wards the direction of higher utility.
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Abstract

In this paper, we propose a bilingual lexi-
cal cohesion trigger model to capture lex-
ical cohesion for document-level machine
translation. We integrate the model into
hierarchical phrase-based machine trans-
lation and achieve an absolute improve-
ment of 0.85 BLEU points on average over
the baseline on NIST Chinese-English test
sets.

1 Introduction

Current statistical machine translation (SMT) sys-
tems are mostly sentence-based. The major draw-
back of such a sentence-based translation fash-
ion is the neglect of inter-sentential dependencies.
As a linguistic means to establish inter-sentential
links, lexical cohesion ties sentences together in-
to a meaningfully interwoven structure through
words with the same or related meanings (Wong
and Kit, 2012).

This paper studies lexical cohesion devices and
incorporate them into document-level machine
translation. We propose abilingual lexical cohe-
sion trigger model to capture lexical cohesion for
document-level SMT. We consider a lexical co-
hesion item in the source language and its corre-
sponding counterpart in the target language as a
trigger pair, in which we treat the source language
lexical cohesion item as the trigger and its target
language counterpart as the triggered item. Then
we use mutual information to measure the strength
of the dependency between the trigger and trig-
gered item.

We integrate this model into a hierarchical
phrase-based SMT system. Experiment results

∗Corresponding author

show that it is able to achieve substantial improve-
ments over the baseline.

The remainder of this paper proceeds as fol-
lows: Section 2 introduces the related work and
highlights the differences between previous meth-
ods and our model. Section 3 elaborates the pro-
posed bilingual lexical cohesion trigger model, in-
cluding the details of identifying lexical cohesion
devices, measuring dependency strength of bilin-
gual lexical cohesion triggers and integrating the
model into SMT. Section 4 presents experiments
to validate the effectiveness of our model. Finally,
Section 5 concludes with future work.

2 Related Work

As a linguistic means to establish inter-sentential
links, cohesion has been explored in the literature
of both linguistics and computational linguistics.
Cohesion is defined as relations of meaning that
exist within the text and divided into grammatical
cohesion that refers to the syntactic links between
text items and lexical cohesion that is achieved
through word choices in a text by Halliday and
Hasan (1976). In order to improve the quality of
machine translation output, cohesion has served as
a high level quality criterion in post-editing (Vas-
concellos, 1989). As a part of COMTIS project,
grammatical cohesion is integrated into machine
translation models to capture inter-sentential links
(Cartoni et al., 2011). Wong and Kit (2012) in-
corporate lexical cohesion to machine translation
evaluation metrics to evaluate document-level ma-
chine translation quality. Xiong et al. (2013) inte-
grate various target-side lexical cohesion devices
into document-level machine translation. Lexical
cohesion is also partially explored in the cache-
based translation models of Gong et al. (2011) and
translation consistency constraints of Xiao et al.
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(2011).
All previous methods on lexical cohesion for

document-level machine translation as mentioned
above have one thing in common, which is that
they do not use any source language information.
Our work is mostly related to the mutual infor-
mation trigger based lexical cohesion model pro-
posed by Xiong et al. (2013). However, we sig-
nificantly extend their model to a bilingual lexical
cohesion trigger model that captures both source
and target-side lexical cohesion items to improve
target word selection in document-level machine
translation.

3 Bilingual Lexical Cohesion Trigger
Model

3.1 Identification of Lexical Cohesion Devices

Lexical cohesion can be divided into reiteration
and collocation (Wong and Kit, 2012). Reitera-
tion is a form of lexical cohesion which involves
the repetition of a lexical item. Collocation is a
pair of lexical items that have semantic relation-
s, such as synonym, near-synonym, superordinate,
subordinate, antonym, meronym and so on. In
the collocation, we focus on the synonym/near-
synonym and super-subordinate semantic relation-
s 1. We define lexical cohesion devices as content
words that have lexical cohesion relations, namely
the reiteration, synonym/near-synonym and super-
subordinate.

Reiteration is common in texts. Take the fol-
lowing two sentences extracted from a document
for example (Halliday and Hasan, 1976).

1. There is a boy climbing the oldelm.
2. Thatelm is not very safe.

We see that wordelm in the first sentence is re-
peated in the second sentence. Such reiteration de-
vices are easy to identify in texts. Synonym/near-
synonym is a semantic relationship set. We can
use WordNet (Fellbaum, 1998) to identify them.
WordNet is a lexical resource that clusters words
with the same sense into a semantic group called
synset. Synsets in WordNet are organized ac-
cording to their semantic relations. Let s(w) de-
note a function that defines all synonym words of
w grouped in the same synset in WordNet. We
can use the function to compute all synonyms and
near-synonyms for wordw. In order to represen-
t conveniently,s0 denotes the set of synonyms in

1Other collocations are not used frequently, such as
antonyms. So we we do not consider them in our study.

s(w). Near-synonym sets1 is defined as the union
of all synsets that are defined by the function s(w)
wherew∈ s0. It can be formulated as follows.

s1 =
⋃

w∈s0

s(w) (1)

s2 =
⋃

w∈s1

s(w) (2)

s3 =
⋃

w∈s2

s(w) (3)

Similarly sm can be defined recursively as follows.

sm =
⋃

w∈sm−1

s(w) (4)

Obviously, We can find synonyms and near-
synonyms for wordw according to formula (4).

Superordinate and subordinate are formed by
words with an is-a semantic relation in WordNet.
As the super-subordinate relation is also encoded
in WordNet, we can define a function that is simi-
lar to s(w) identify hypernyms and hyponyms.

We userep, syn and hyp to represent the lex-
ical cohesion device reiteration, synonym/near-
synonym and super-subordinate respectively here-
after for convenience.

3.2 Bilingual Lexical Cohesion Trigger
Model

In a bilingual text, lexical cohesion is present in
the source and target language in a synchronous
fashion. We use a trigger model capture such a
bilingual lexical cohesion relation. We define xRy
(R∈{rep, syn, hyp}) as a trigger pair where x is
the trigger in the source language and y the trig-
gered item in the target language. In order to cap-
ture these synchronous relations between lexical
cohesion items in the source language and their
counterparts in the target language, we use word
alignments. First, we identify a monolingual lexi-
cal cohesion relation in the target language in the
form of tRy where t is the trigger, y the triggered
item that occurs in a sentence succeeding the sen-
tence of t, and R∈{rep, syn, hyp}. Second, we
find word x in the source language that is aligned
to t in the target language. We may find multiple
wordsxk

1 in the source language that are aligned
to t. We use all of themxiRt(1≤i≤k) to define
bilingual lexical cohesion relations. In this way,
we can create bilingual lexical cohesion relations
xRy (R∈{rep, syn, hyp}): x being the trigger and
y the triggered item.
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The possibility that y will occur given x is equal
to the chance that x triggers y. Therefore we mea-
sure the strength of dependency between the trig-
ger and triggered item according to pointwise mu-
tual information (PMI) (Church and Hanks, 1990;
Xiong et al., 2011).

The PMI for the trigger pair xRy where x is the
trigger, y the triggered item that occurs in a target
sentence succeeding the target sentence that aligns
to the source sentence of x, and R∈{rep, syn, hyp}
is calculated as follows.

PMI(xRy) = log(
p(x, y,R)

p(x,R)p(y,R)
) (5)

The joint probabilityp(x, y,R) is:

p(x, y,R) =
C(x, y,R)∑
x,y C(x, y,R)

(6)

whereC(x, y,R) is the number of aligned bilin-
gual documents where both x and y occur
with the relation R in different sentences, and∑

x,y C(x, y,R) is the number of bilingual docu-
ments where this relation R occurs. The marginal
probabilities ofp(x,R) andp(y,R) can be calcu-
lated as follows.

p(x,R) =
∑

y

C(x, y,R) (7)

p(y,R) =
∑

x

C(x, y,R) (8)

Given a target sentenceym
1 , our bilingual lexical

cohesion trigger model is defined as follows.

MIR(ym
1 ) =

∏

yi

exp(PMI(·Ryi)) (9)

whereyi are content words in the sentenceym
1 and

PMI(·Ryi)is the maximum PMI value among all
trigger wordsxq

1 from source sentences that have
been recently translated, where trigger wordsxq

1

have an R relation with wordyi.

PMI(·Ryi) = max1≤j≤qPMI(xjRyi) (10)

Three models MIrep(ym
1 ), MIsyn(ym

1 ),
MIhyp(ym

1 ) for the reiteration device, the
synonym/near-synonym device and the super-
subordinate device can be formulated as above.
They are integrated into the log-linear model of
SMT as three different features.

3.3 Decoding

We incorporate our bilingual lexical cohesion trig-
ger model into a hierarchical phrase-based system
(Chiang, 2007). We add three features as follows.

• MIrep(ym
1 )

• MIsyn(ym
1 )

• MIhyp(ym
1 )

In order to quickly calculate the score of each fea-
ture, we calculate PMI for each trigger pair be-
fore decoding. We translate document one by one.
During translation, we maintain a cache to store
source language sentences of recently translated
target sentences and three setsSrep, Ssyn, Shyp

to store source language words that have the re-
lation of {rep, syn, hyp} with content words gen-
erated in target language. During decoding, we
update scores according to formula (9). When one
sentence is translated, we store the corresponding
source sentence into the cache. When the whole
document is translated, we clear the cache for the
next document.

4 Experiments

4.1 Setup

Our experiments were conducted on the NIST
Chinese-English translation tasks with large-scale
training data. The bilingual training data contain-
s 3.8M sentence pairs with 96.9M Chinese word-
s and 109.5M English words from LDC2. The
monolingual data for training data English lan-
guage model includes the Xinhua portion of the
Gigaword corpus. The development set is the
NIST MT Evaluation test set of 2005 (MT05),
which contains 100 documents. We used the sets
of MT06 and MT08 as test sets. The numbers of
documents in MT06, MT08 are 79 and 109 respec-
tively. For the bilingual lexical cohesion trigger
model, we collected data with document bound-
aries explicitly provided. The corpora are select-
ed from our bilingual training data and the whole
Hong Kong parallel text corpus3, which contains
103,236 documents with 2.80M sentences.

2The corpora include LDC2002E18, LDC2003E07, LD-
C2003E14,LDC2004E12,LDC2004T07,LDC2004T08(Only
Hong Kong News), LDC2005T06 and LDC2005T10.

3They are LDC2003E14, LDC2004T07, LDC2005T06,
LDC2005T10 and LDC2004T08 (Hong Kong Hansard-
s/Laws/News).
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We obtain the word alignments by running
GIZA++ (Och and Ney, 2003) in both direction-
s and applying “grow-diag-final-and” refinemen-
t (Koehn et al., 2003). We apply SRI Language
Modeling Toolkit (Stolcke, 2002) to train a 4-
gram language model with Kneser-Ney smooth-
ing. Case-insensitive NIST BLEU (Papineni et
al., 2002) was used to measure translation per-
formance. We used minimum error rate training
MERT (Och, 2003) for tuning the feature weights.

4.2 Distribution of Lexical Cohesion Devices
in the Target Language

Cohesion Device Percentage(%)
rep 30.85
syn 17.58
hyp 18.04

Table 1: Distributions of lexical cohesion devices
in the target language.

In this section we want to study how these
lexical cohesion devices distribute in the train-
ing data before conducting our experiments on
the bilingual lexical cohesion model. Here
we study the distribution of lexical cohesion in
the target language (English). Table 1 shows
the distribution of percentages that are counted
based on the content words in the training da-
ta. From Table 1, we can see that the reitera-
tion cohesion device is nearly a third of all con-
tent words (30.85%), synonym/near-synonym and
super-subordinate devices account for 17.58% and
18.04%. Obviously, lexical cohesion devices are
frequently used in real-world texts. Therefore cap-
turing lexical cohesion devices is very useful for
document-level machine translation.

4.3 Results

System MT06 MT08 Avg
Base 30.43 23.32 26.88
rep 31.24 23.70 27.47
syn 30.92 23.71 27.32
hyp 30.97 23.48 27.23
rep+syn+hyp 31.47 23.98 27.73

Table 2: BLEU scores with various lexical co-
hesion devices on the test sets MT06 and MT08.
“Base” is the traditonal hierarchical system, “Avg”
is the average BLEU score on the two test sets.

Results are shown in Table 2. From the table,
we can see that integrating a single lexical cohe-
sion device into SMT, the model gains an improve-
ment of up to 0.81 BLEU points on the MT06 test
set. Combining all three featuresrep+syn+hyp to-
gether, the model gains an improvement of up to
1.04 BLEU points on MT06 test set, and an av-
erage improvement of 0.85 BLEU points on the
two test sets of MT06 and MT08. These stable
improvements strongly suggest that our bilingual
lexical cohesion trigger model is able to substan-
tially improve the translation quality.

5 Conclusions

In this paper we have presented a bilingual lex-
ical cohesion trigger model to incorporate three
classes of lexical cohesion devices, namely the
reiteration, synonym/near-synonym and super-
subordinate devices into a hierarchical phrase-
based system. Our experimental results show
that our model achieves a substantial improvement
over the baseline. This displays the advantage of
exploiting bilingual lexical cohesion.

Grammatical and lexical cohesion have often
been studied together in discourse analysis. In
the future, we plan to extend our model to cap-
ture both grammatical and lexical cohesion in
document-level machine translation.

Acknowledgments

This work was supported by 863 State Key Project
(No.2011AA01A207) and National Key Technol-
ogy R&D Program(No.2012BAH39B03). Qun
Liu was also partially supported by Science Foun-
dation Ireland (Grant No.07/CE/I1142) as part of
the CNGL at Dublin City University. We would
like to thank the anonymous reviewers for their in-
sightful comments.

References

Bruno Cartoni, Andrea Gesmundo, James Hender-
son, Cristina Grisot, Paola Merlo, Thomas Mey-
er, Jacques Moeschler, Sandrine Zufferey, Andrei
Popescu-Belis, et al. 2011. Improving mt coher-
ence through text-level processing of input texts:
the comtis project. http://webcast. in2p3. fr/videos-
the comtisproject.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. computational linguistics, 33(2):201–228.

Kenneth Ward Church and Patrick Hanks. 1990. Word

385



association norms, mutual information, and lexicog-
raphy.Computational linguistics, 16(1):22–29.

Christine Fellbaum. 1998. Wordnet: An electronic
lexical database.

Zhengxian Gong, Min Zhang, and Guodong Zhou.
2011. Cache-based document-level statistical ma-
chine translation. InProceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 909–919, Edinburgh, Scotland,
UK., July. Association for Computational Linguis-
tics.

M.A.K Halliday and Ruqayia Hasan. 1976. Cohesion
in english.English language series, 9.

Philipp Koehn, Franz Josef Och, and Daniel Mar-
cu. 2003. Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 48–54. Association for Computa-
tional Linguistics.

Franz Josef Och and Hermann Ney. 2003. A systemat-
ic comparison of various statistical alignment mod-
els. Computational linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. InProceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 160–167, S-
apporo, Japan, July. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic e-
valuation of machine translation. InProceedings of
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA, July. Association for Computa-
tional Linguistics.

Andreas Stolcke. 2002. Srilm-an extensible language
modeling toolkit. InProceedings of the internation-
al conference on spoken language processing, vol-
ume 2, pages 901–904.

Muriel Vasconcellos. 1989. Cohesion and coherence
in the presentation of machine translation products.
Georgetown University Round Table on Languages
and Linguistics, pages 89–105.

Billy T. M. Wong and Chunyu Kit. 2012. Extend-
ing machine translation evaluation metrics with lex-
ical cohesion to document level. InProceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1060–1068, Jeju
Island, Korea, July. Association for Computational
Linguistics.

Tong Xiao, Jingbo Zhu, Shujie Yao, and Hao Zhang.
2011. Document-level consistency verification in
machine translation. InMachine Translation Sum-
mit, volume 13, pages 131–138.

Deyi Xiong, Min Zhang, and Haizhou Li. 2011.
Enhancing language models in statistical machine
translation with backward n-grams and mutual in-
formation triggers. InProceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
1288–1297, Portland, Oregon, USA, June. Associa-
tion for Computational Linguistics.

Deyi Xiong, Guosheng Ben, Min Zhang, Yajuan Lv,
and Qun Liu. 2013. Modeling lexical cohesion for
document-level machine translation. InProceedings
of the Twenty-Third international joint conference
on Artificial Intelligence, Beijing,China.

386



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 387–392,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Generalized Reordering Rules for Improved SMT 

 

          Fei Huang Cezar Pendus 
IBM T. J. Watson Research Center IBM T. J. Watson Research Center 

huangfe@us.ibm.com cpendus@us.ibm.com 
  

 

Abstract 

We present a simple yet effective 

approach to syntactic reordering for 
Statistical Machine Translation (SMT). 

Instead of solely relying on the top-1 

best-matching rule for source sentence 
preordering, we generalize fully 

lexicalized rules into partially lexicalized 

and unlexicalized rules to broaden the 

rule coverage. Furthermore, , we consider 
multiple permutations of all the matching 

rules, and select the final reordering path 

based on the weighed sum of reordering 
probabilities of these rules.  Our 

experiments in English-Chinese and 

English-Japanese translations 
demonstrate the effectiveness of the 

proposed approach: we observe 

consistent and significant improvement 

in translation quality across multiple test 
sets in both language pairs judged by 

both humans and automatic metric.  

1 Introduction 

Languages are structured data. The proper 

handling of linguistic structures (such as word 
order) has been one of the most important yet 

most challenging tasks in statistical machine 

translation (SMT). It is important because it has 
significant impact on human judgment of 

Machine Translation (MT) quality: an MT output 

without structure is just like a bag of words. It is 
also very challenging due to the lack of effective 

methods to model the structural difference 

between source and target languages.  
   A lot of research has been conducted in this 

area. Approaches include distance-based penalty 

function (Koehn et. al. 2003) and lexicalized 
distortion models such as (Tillman 2004), (Al-

Onaizan and Papineni 2006). Because these 

models are relatively easy to compute, they are 
widely used in phrase-based SMT systems. 

Hierarchical phrase-based system (Hiero, 

Chiang, 2005) utilizes long range reordering 

information without syntax. Other models use 

more syntactic information (string-to-tree, tree-
to-string, tree-to-tree, string-to-dependency etc.) 

to capture the structural difference between 

language pairs, including (Yamada and Knight, 
2001), (Zollmann and Venugopal, 2006), (Liu et. 

al. 2006), and (Shen et. al. 2008). These models 

demonstrate better handling of sentence 
structures, while the computation is more 

expensive compared with the distortion-based 

models.  
    In the middle of the spectrum, (Xia and 

McCord 2004), (Collins et.  al 2005),  (Wang  et. 

al.  2007), and (Visweswariah et. al. 2010)  
combined the benefits of the above two   

strategies: their approaches  reorder an input  

sentence  based  on  a set  of  reordering  rules  
defined  over  the  source sentence’s  syntax  

parse  tree.  As  a  result,  the  re-ordered  source  

sentence  resembles  the  word  order of  its  
target  translation.  The  reordering  rules  are 

either hand-crafted or automatically learned from 

the training  data  (source  parse  trees  and  
bitext  word alignments). These rules can be 

unlexicalized (only including the constituent    

labels) or fully lexicalized (including both the 
constituent labels and their head words). The  

unlexicalized  reordering  rules are more  general  

and  can be applied  broadly, but sometimes  they  
are  not  discriminative  enough.  In the following 

English-Chinese reordering rules, 

0.44  NP PP → 0 1 
0.56  NP PP → 1 0 

the NP and PP nodes are reordered with close to 

random probabilities. When the constituents are 
attached with their headwords, the reordering 

probability is much higher than that of the 

unlexicalized rules.  

0.20 NP:testimony PP:by --> 0 1  

0.80  NP:testimony PP:by --> 1 0  

   Unfortunately, the application of lexicalized 
reordering rules is constrained by data 

sparseness: it is unlikely to train the NP:<noun> 
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PP:<prep> reordering rules for every noun-

preposition combination. Even  for the  learnt  
lexicalized  rules,  their  counts  are  also 

relatively  small,  thus  the  reordering  

probabilities may  not  be  estimated  reliably,  
which  could lead   to incorrect reordering 

decisions. 

   To alleviate this problem, we generalize fully 
lexicalized rules into partially lexicalized rules, 

which are further generalized into unlexicalized 

rules. Such generalization allows partial match 
when the fully lexicalized rules can not be found, 

thus achieving broader rule coverage.  

   Given a node of a source parse tree, we find all 
the matching rules and consider all their possible 

reorder permutations. Each permutation has a 

reordering score, which is the weighted sum of 
reordering probabilities of all the matching rules. 

We reorder the child nodes based on the 

permutation with the highest reordering score. 
Finally we translate the reordered sentence in a 

phrase-based SMT system. Our experiments in 

English to Chinese (EnZh) and English to 
Japanese (EnJa) translation demonstrate the 

effectiveness of the proposed approach: we 

observe consistent improvements across multiple 
test sets in multiple language pairs and 

significant gain in human judgment of the MT 

quality. 
   This paper is organized as follows: in section 2 

we briefly introduce the syntax-based reordering 

technique. In section 3, we describe our 
approach. In section 4, we show the experiment 

results, which is followed by conclusion in 

section 5.  

2 Baseline Syntax-based Reordering 

In the general syntax-based reordering, 
reordering is achieved by permuting the children 

of any interior node in the source parse tree.  

Although there are cases where reordering is 
needed across multiple constituents, this still is a  

simple and effective technique.  

   Formally, the reordering rule is a triple {p, lhs, 

rhs}, where p is the reordering probability, lhs is 

the left hand side of the rule, i.e., the constituent 

label sequence of a parse tree node, and rhs is the 
reordering permutation derived either from hand-

crafted rules as in (Collins et.  al 2005) and 

(Wang  et. al.  2007), or from training data as in 

(Visweswariah et.  al.  2010). 
   The training data includes bilingual sentence 
pairs with word alignments, as well as the source 

sentences' parse trees. The children’s relative 

order of each node is decided according to their 

average alignment position in the target sentence. 
Such relative order is a permutation of the 

integer sequence [0, 1, … N-1], where N is the 

number of children of the given parse node. The 
counts of each permutation of each parse label 

sequence will be collected from the training data 

and converted to probabilities as shown in the 
examples in Section 1. Finally, only the 

permutation with the highest probability is 

selected to reorder the matching parse node. The 
SMT system is re-trained on reordered training 

data to translate reordered input sentences. 

   Following the above approach, only the 
reordering rule [0.56 NP PP � 1 0] is kept in the 

above example. In other words, all the NP PP 

phrases will be reordered, even though the 
reordering is only slightly preferred in all the 

training data.  

3 Generalized Syntactic Reordering  

As shown in the previous examples, reordering 

depends not only on the constituents’ parse 
labels, but also on the headwords of the 

constituents. Such fully lexicalized rules suffer 

from data sparseness: there is either no matching 
lexicalized rule for a given parse node or the 

matching rule’s reordering probability is 

unreliable.  We address the above issues with 
rule generalization, then consider all the 

permutations from multi-level rule matching. 

3.1 Rule Generalization 

Lexicalized rules are applied only when both the 
constituent labels and headwords match. When 

only the labels match, these reordering rules are 

not used. To increase the rule coverage, we 
generalize the fully lexicalized rules into 

partially lexicalized and unlexicalized rules.  

   We notice that many lexicalized rules share 
similar reordering permutations, thus it is 

possible to merge them to form a partially 
lexicalized rule, where lexicalization only 

appears at selected constituent’s headword. 

Although it is possible to have multiple 
lexicalizations in a partially lexicalized rule 

(which will exponentially increase the total 

number of rules), we observe that most of the 
time reordering is triggered by a single 

constituent. Therefore we keep one lexicalization 

in the partially lexicalized rules. For example, the 
following lexicalized rule: 

  

VB:appeal PP-MNR:by PP-DIR:to --> 1 2 0 
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will be converted into the following 3 partially 

lexicalized rules: 
 

VB:appeal PP-MNR PP-DIR --> 1 2 0 

VB PP-MNR:by PP-DIR    --> 1 2 0 

VB PP-MNR PP-DIR:to    --> 1 2 0 
 

 

The count of each rule will be the sum of the 

fully lexicalized rules which can derive the given 
partially lexicalized rule. In the above 

preordering rules, “MNR” and “DIR” are 

functional labels, indicating the semantic labels 
(“manner”, “direction”) of the parse node. 

We could go even further, converting the 

partially lexicalized rules into unlexicalized 
rules. This is similar to the baseline syntax 

reordering model, although we will keep all their 

possible permutations and counts for rule 
matching, as shown below. 

5   VB PP-MNR PP-DIR --> 2 0 1 

22  VB PP-MNR PP-DIR --> 2 1 0 
21  VB PP-MNR PP-DIR --> 0 1 2 

41  VB PP-MNR PP-DIR --> 1 2 0 

35  VB PP-MNR PP-DIR --> 1 0 2 

   Note that to reduce the noise from paring and 

word alignment errors, we only keep the 

reordering rules that appear at least 5 times. Then 
we convert the counts into probabilities: 
 

∑
=

)(*,

),(
)|(

ii

ii
ii

lhsC

lhsrhsC
lhsrhsp  

where },,{ upfi ∈ represents the fully, partially 

and un-lexicalized rules, and ),(
ii

lhsrhsC  is the 

count of rule (lhsi � rhs) in type i rules.  

   When we convert the most specific fully 

lexicalized rules to the more general partially 

lexicalized rules and then to the most general 

unlexicalized rules, we increase the rule coverage 

while keep their discriminative power at different 
levels as much as possible. 

3.2 Multiple Permutation Multi-level Rule 

Matching 

When applying the three types of reordering 
rules to reorder a parse tree node, we find all the 

matching rules and consider all possible 

permutations. As multiple levels of rules can lead 
to the same permutation with different 

probabilities, we take the weighted sum of 

probabilities from all matching rules (with the 
same rhs). Therefore, the permutation decision is 

not based on any particular rule, but the 

combination of all the rules matching different 

levels of context. As opposed to the general 

syntax-based reordering approaches, this strategy 
achieves a desired balance between broad rule 

coverage and specific rule match: when a fully 

lexicalized rule matches, it has strong influence 
on the permutation decision given the richer 

context. If such specific rule is unavailable or has  

low probability, more general (partial and 
unlexicalized) rules will have higher weights. For 

each permutation we compute the weighted 

reordering probability, then select the 
permutation that has the highest score.  

   Formally, given a parse tree node T, let lhsf be 

the label:head_word sequence of the fully 
lexicalized rules matching T. Similarly, lhsp and 

lhsu are the sequences of the matching partially 

lexicalized and unlexicalized rules, respectively, 
and let rhs be their possible permutations. The 

top-score permutation is computed as: 

∑
∈

=

},,{

* )|(maxarg
upfi

iiirhs lhsrhspwrhs  

where wi’s are the weights of different kind of 

rules and pi is reordering probability of each rule. 

The weights are chosen empirically based on the 
performance on a held-out tuning set. In our 

experiments, wf=1.0, wp=0.5, and wu=0.2, where 

higher weights are assigned to more specific 
rules. 

   For each parse tree node, we identify the top 

permutation choice and reorder its children 
accordingly.      The source parse tree is traversed 

breadth-first.  

4 Experiments 

We applied the generalized syntax-based 

reordering on both English-Chinese (EnZh) and 
English-Japanese (EnJa) translations. Our 

English parser is IBM’s maximum entropy 

constituent parser (Ratnaparkhi 1999) trained on 
Penn Treebank. Experiments in (Visweswariah 

et. al. 2010) indicated that minimal difference 

was observed using Berkeley’s parser or IBM’s 
parser for reordering. 

   Our EnZh training data consists of 20 million 

sentence pairs (~250M words), half of which are 
from LDC released bilingual corpora and the 

other half are from technical domains (e.g., 

software manual). We first trained automatic 
word alignments (HMM alignments in both 

directions and a MaxEnt alignment (Ittycheriah 

and Roukos, 2005)), then parsed the English 
sentences with the IBM parser. We extracted 

different reordering rules from the word 

alignments and the English parse trees. After 
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frequency-based pruning, we obtained 12M 

lexicalized rules, 13M partially lexicalized rules 
and 600K unlexicalized rules. Using these rules, 

we applied preordering on the English sentences 

and then built an SMT system with the reordered 
training data. Our decoder is a phrase-based 

decoder (Tillman 2006), where various features 

are combined within the log-linear framework. 
These features include source-to-target phrase 

translation score based on relative frequency, 

source-to-target and target-to-source word-to-
word translation scores, a 5-gram language 

model score, distortion model scores and word 

count. 
 

 Tech1 Tech2 MT08 

# of sentences 582 600 1859 

PBMT  33.08 31.35 36.81 

UnLex 33.37 31.38 36.39 

FullLex  34.12 31.62 37.14 

PartLex 34.13 32.58 37.60 

MPML 34.34 32.64 38.02 

Table 1: MT experiment comparison using different 

syntax-based reordering techniques on English-
Chinese test sets.  

 

   We selected one tuning set from software 

manual domain (Tech1), and used PRO tuning 
(Hopkins and May 2011) to select decoder 

feature weights. Our test sets include one from 

the online technical support domain (Tech2) and 
one from the news domain: the NIST MT08 

English-Chinese evaluation test data. The 

translation quality is measured by BLEU score 
(Papineni et. al., 2001). Table 1 shows the BLEU 

score of the baseline phrase-based system 

(PBMT) that  
uses lexicalized reordering at decoding time 

rather than preordering. Next, Table 1 shows the 

translation results with several preordered 
systems that use unlexicalized (UnLex), fully 

lexicalized (FullLex) and partially lexicalized 

(PartLex) rules, respectively. The lexicalized 
reordering model is still applicable for 

preordered systems so that some preordering 

errors can be recovered at run time. 
   First we observed that the UnLex preordering 

model on average does not improve over the 

typical phrase-based MT baseline due to its 
limited discriminative power. When the 

preordering decision is conditioned on the head 

word, the FullLex model shows some gains 
(~0.3 pt) thanks to the richer matching context, 

while the PartLex model improves further over 

the FullLex model because of its broader 

coverage. Combining all three with multi-

permutation, multi-level rule matching (MPML) 
brings the most gains, with consistent (~1.3 Bleu 

points) improvement over the baseline system on 

all the test sets. Note that the Bleu scores on the 
news domain (MT08) are higher than those on 

the tech domain. This is because the Tech1 and 

Tech2 have one reference translation while 
MT08 has 4 reference translations.  

   In addition to the automatic MT evaluation, we 

also used human judgment of quality of the MT 
translation on a set of randomly selected 125 

sentences from the baseline and improved 

reordering systems. The human judgment score 
is 2.82 for the UnLex system output, and 3.04 

for the improved MPML reordering output. The 

0.2 point improvement on the 0-5 scale is 
considered significant.  
 

 Tech1 Tech2 News 

# of sentences 1000 600 600 

PBMT 56.45 35.45 21.70 

UnLex 59.22 38.36 23.08 

FullLex 57.55 36.56 22.23 

PartLex 59.80 38.47 23.13 

MPML 59.94 38.62 23.31 

Table 2: MT experiment comparison using 

generalized syntax-based reordering techniques on 

English-Japanese test sets.  

 
   We also apply the same generalized reordering 

technique on English-Japanese (EnJa) 

translation. As there is very limited publicly 
available English-Japanese parallel data, most 

our training data (20M sentence pairs) is from 

the in-house software manual domain. We use 
the same English parser and phrase-based 

decoder as in EnZh experiment. Table 2 shows 

the translation results on technical and news 
domain test sets. All the test sets have single 

reference translation.     

   First, we observe that the improvement from 
preordering is larger than that in EnZh MT (1.6-3 

pts vs. 1 pt). This is because the word order 

difference between English and Japanese is 
larger than that between English and Chinese 

(Japanese is a SOV language while both English 

and Chinese are SVO languages). Without 
preordering, correct word orders are difficult to 

obtain given the typical skip-window beam 

search in the PBMT. Also, as in EnZh, the 
PartLex model outperforms the UnLex model, 

both of which being significantly better than the 

FullLex model due to the limited rule coverage 
in the later model: only 50% preordering rules 
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are applied in the FullLex model. Tech1 test set 

is a very close match to the training data thus its 
BLEU score is much higher.  

5 Conclusion and Future Work 

To summarize, we made the following 

improvements: 

1. We generalized fully lexicalized 
reordering rules to partially lexicalized 

and unlexicalized rules for broader rule 

coverage and reduced data sparseness. 
2. We allowed multiple permutation, multi-

level rule matching to select the best 

reordering path. 
  Experiment results show consistent and 

significant improvements on multiple English-

Chinese and English-Japanese test sets judged by 
both automatic and human judgments. 

   In future work we would like to explore new 

methods to prune the phrase table without 
degrading MT performance and to make rule 

extraction and reordering more robust to parsing 

errors. 
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Abstract
Machine Transliteration is an essential
task for many NLP applications. Howev-
er, names and loan words typically orig-
inate from various languages, obey dif-
ferent transliteration rules, and therefore
may benefit from being modeled inde-
pendently. Recently, transliteration mod-
els based on Bayesian learning have over-
come issues with over-fitting allowing for
many-to-many alignment in the training of
transliteration models. We propose a nov-
el coupled Dirichlet process mixture mod-
el (cDPMM) that simultaneously clusters
and bilingually aligns transliteration data
within a single unified model. The un-
ified model decomposes into two class-
es of non-parametric Bayesian component
models: a Dirichlet process mixture mod-
el for clustering, and a set of multino-
mial Dirichlet process models that perf-
orm bilingual alignment independently for
each cluster. The experimental results
show that our method considerably outper-
forms conventional alignment models.

1 Introduction

Machine transliteration methods can be catego-
rized into phonetic-based models (Knight et al.,
1998), spelling-based models (Brill et al., 2000),
and hybrid models which utilize both phonetic
and spelling information (Oh et al., 2005; Oh et
al., 2006). Among them, statistical spelling-based
models which directly align characters in the train-
ing corpus have become popular because they
are language-independent, do not require phonet-
ic knowledge, and are capable of achieving state-
of-the-art performance (Zhang et al., 2012b). A
major problem with real-word transliteration cor-
pora is that they are usually not clean, may con-
tain name pairs with various linguistic origins and

this can hinder the performance of spelling-based
models because names from different origins obey
different pronunciation rules, for example:

“Kim Jong-il/金正恩” (Korea),
“Kana Gaski/金崎” (Japan),
“Haw King/霍金” (England),

“Jin yong/金庸’ (China).

The same Chinese character “金” should be
aligned to different romanized character se-
quences: “Kim”, “Kana”, “King”, “Jin”. To ad-
dress this issue, many name classification metho-
ds have been proposed, such as the supervised lan-
guage model-based approach of (Li et al., 2007),
and the unsupervised approach of (Huang et al.,
2005) that used a bottom-up clustering algorithm.
(Li et al., 2007) proposed a supervised translitera-
tion model which classifies names based on their
origins and genders using a language model; it
switches between transliteration models based on
the input. (Hagiwara et al., 2011) tackled the is-
sue by using an unsupervised method based on the
EM algorithm to perform a soft classification.

Recently, non-parametric Bayesian
models (Finch et al., 2010; Huang et al.,
2011; Hagiwara et al., 2012) have attracted
much attention in the transliteration field. In
comparison to many of the previous alignment
models (Li et al., 2004; Jiampojamarn et al.,
2007; Berg-Kirkpatrick et al., 2011), the non-
parametric Bayesian models allow unconstrained
monotonic many-to-many alignment and are able
to overcome the inherent over-fitting problem.

Until now most of the previous work (Li et al.,
2007; Hagiwara et al., 2011) is either affected by
the multi-origins factor, or has issues with over-
fitting. (Hagiwara et al., 2012) took these two fac-
tors into consideration, but their approach still op-
erates within an EM framework and model order
selection by hand is necessary prior to training.
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We propose a simple, elegant, fully-
unsupervised solution based on a single generative
model able to both cluster and align simultaneous-
ly. The coupled Dirichlet Process Mixture Model
(cDPMM) integrates a Dirichlet process mixture
model (DPMM) (Antoniak, 1974) and a Bayesian
Bilingual Alignment Model (BBAM) (Finch et
al., 2010). The two component models work
synergistically to support one another: the clus-
tering model sorts the data into classes so that
self-consistent alignment models can be built
using data of the same type, and at the same time
the alignment probabilities from the alignment
models drive the clustering process.

In summary, the key advantages of our model
are as follows:

• it is based on a single, unified generative
model;

• it is fully unsupervised;

• it is an infinite mixture model, and does not
require model order selection – it is effec-
tively capable of discovering an appropriate
number of clusters from the data;

• it is able to handle data from multiple origins;

• it can perform many-to-many alignment
without over-fitting.

2 Model Description

In this section we describe the methodology and
realization of the proposed cDPMM in detail.

2.1 Terminology

In this paper, we concentrate on the alignment
process for transliteration. The proposed cDP-
MM segments a bilingual corpus of transliteration
pairs into bilingual character sequence-pairs. We
will call these sequence-pairs Transliteration U-
nits (TUs). We denote the source and target of
a TU as sm

1 = ⟨s1, ..., sm⟩ and tn1 = ⟨t1, ..., tn⟩
respectively, where si (ti) is a single character in
source (target) language. We use the same no-
tation (s, t) = (⟨s1, ..., sm⟩, ⟨t1, ..., tn⟩) to de-
note a transliteration pair, which we can write as
x = (sm

1 , tn1 ) for simplicity. Finally, we express
the training set itself as a set of sequence pairs:
D = {xi}I

i=1. Our aim is to obtain a bilingual
alignment ⟨(s1, t1), ..., (sl, tl)⟩ for each transliter-
ation pair xi, where each (sj , tj) is a segment of
the whole pair (a TU) and l is the number of seg-
ments used to segment xi.

2.2 Methodology
Our cDPMM integrates two Dirichlet process
models: the DPMM clustering model, and the
BBAM alignment model which is a multinomial
Dirichlet process.

A Dirichlet process mixture model, models the
data as a mixture of distributions – one for each
cluster. It is an infinite mixture model, and the
number of components is not fixed prior to train-
ing. Equation 1 expresses the DPMM hierarchi-
cally.

Gc|αc, G0c ∼ DP (αc, G0c)

θk|Gc ∼ Gc

xi|θk ∼ f(xi|θk) (1)

where G0c is the base measure and αc > 0 is the
concentration parameter for the distribution Gc.
xi is a name pair in training data, and θk repre-
sents the parameters of a candidate cluster k for
xi. Specifically θk contains the probabilities of all
the TUs in cluster k. f(xi|θk) (defined in Equa-
tion 7) is the probability that mixture component
k parameterized by θk will generate xi.

The alignment component of our cDPMM is
a multinomial Dirichlet process and is defined as
follows:

Ga|αa, G0a ∼ DP (αa, G0a)

(sj , tj)|Ga ∼ Ga (2)

The subscripts ‘c’ and ‘a’ in Equations 1 and 2
indicate whether the terms belong to the clustering
or alignment model respectively.

The generative story for the cDPMM is sim-
ple: first generate an infinite number of clusters,
choose one, then generate a transliteration pair us-
ing the parameters that describe the cluster. The
basic sampling unit of the cDPMM for the cluster-
ing process is a transliteration pair, but the basic
sampling unit for BBAM is a TU. In order to inte-
grate the two processes in a single model we treat
a transliteration pair as a sequence of TUs gener-
ated by a BBAM model. The BBAM generates a
sequence (a transliteration pair) based on the joint
source-channel model (Li et al., 2004). We use a
blocked version of a Gibbs sampler to train each
BBAM (see (Mochihashi et al., 2009) for details
of this process).

2.3 The Alignment Model
This model is a multinomial DP model. Under the
Chinese restaurant process (CRP) (Aldous, 1985)
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interpretation, each unique TU corresponds to a
dish served at a table, and the number of customers
in each table represents the count of a particular
TU in the model.

The probability of generating the jth TU (sj , tj)
is,

P
(
(sj , tj)|(s−j , t−j)

)
=

N
(
(sj , tj)

)
+ αaG0a

(
(sj , tj)

)

N + αa
(3)

where N is the total number of TUs generated
so far, and N

(
(sj , tj)

)
is the count of (sj , tj).

(s−j , t−j) are all the TUs generated so far except
(sj , tj). The base measure G0a is a joint spelling
model:

G0a

(
(s, t)

)
= P (|s|)P (s||s|)P (|t|)P (t||t|)

=
λ

|s|
s

|s|! e
−λsv−|s|

s × λ
|t|
t

|t|! e
−λtv

−|t|
t

(4)

where |s| (|t|) is the length of the source (target)
sequence, vs (vt) is the vocabulary (alphabet) size
of the source (target) language, and λs (λt) is the
expected length of source (target) side.

2.4 The Clustering Model
This model is a DPMM. Under the CRP interpre-
tation, a transliteration pair corresponds to a cus-
tomer, the dish served on each table corresponds
to an origin of names.

We use z = (z1, ..., zI), zi ∈ {1, ..., K} to in-
dicate the cluster of each transliteration pair xi in
the training set and θ = (θ1, ..., θK) to represent
the parameters of the component associated with
each cluster.

In our model, each mixture component is a
multinomial DP model, and since θk contains the
probabilities of all the TUs in cluster k, the num-
ber of parameters in each θk is uncertain and
changes with the transliteration pairs that belong
to the cluster. For a new cluster (the K + 1th clus-
ter), we use Equation 4 to calculate the probability
of each TU. The cluster membership probability
of a transliteration pair xi is calculated as follows,

P (zi = k|D, θ, z−i) ∝ nk

n − 1 + αc
P (xi|z, θk) (5)

P (zi = K + 1|D, θ, z−i) ∝ αc

n − 1 + αc
P (xi|z, θK+1)

(6)

where nk is the number of transliteration pairs in
the existing cluster k ∈ {1, ..., K} (cluster K + 1
is a newly created cluster), zi is the cluster indi-
cator for xi, and z−i is the sequence of observed
clusters up to xi. As mentioned earlier, basic sam-
pling units are inconsistent for the clustering and
alignment model, therefore to couple the models
the BBAM generates transliteration pairs as a se-
quence of TUs, these pairs are then used directly
in the DPMM.

Let γ = ⟨(s1, t1), ..., (sl, tl)⟩ be a derivation of
a transliteration pair xi. To make the model inte-
gration process explicit, we use function f to cal-
culate the probability P (xi|z, θk), where f is de-
fined as follows,

f(xi|θk) =

{ ∑
γ∈R

∏
(s,t)∈γ P (s, t|θk) k ∈ {1, ..., K}∑

γ∈R

∏
(s,t)∈γ G0c(s, t) k = K + 1

(7)

where R denotes the set of all derivations of xi,
G0c is the same as Equation 4.

The cluster membership zi is sampled together
with the derivation γ in a single step according to
P (zi = k|D, θ, z−i) and f(xi|θk). Following the
method of (Mochihashi et al., 2009), first f(xi|θk)
is calculated by forward filtering, and then a sam-
ple γ is taken by backward sampling.

3 Experiments

3.1 Corpora

To empirically validate our approach, we investi-
gate the effectiveness of our model by conduct-
ing English-Chinese name transliteration genera-
tion on three corpora containing name pairs of
varying degrees of mixed origin. The first two cor-
pora were drawn from the “Names of The World’s
Peoples” dictionary published by Xin Hua Pub-
lishing House. The first corpus was construct-
ed with names only originating from English lan-
guage (EO), and the second with names originat-
ing from English, Chinese, Japanese evenly (ECJ-
O). The third corpus was created by extracting
name pairs from LDC (Linguistic Data Consor-
tium) Named Entity List, which contains names
from all over the world (Multi-O). We divided the
datasets into training, development and test sets
for each corpus with a ratio of 10:1:1. The details
of the division are displayed in Table 2.
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cDPMM Alignment BBAM Alignment
mun|蒙 din|丁 ger|格(0, English) mun|蒙 din|丁 ger|格

ding|丁 guo|果(2, Chinese) din|丁 g| guo|果
tei|丁 be|部(3, Japanese) t| |丁 e| ibe|部

fan|范 chun|纯 yi|一(2, Chinese) fan|范 chun|纯 y| i|一
hong|洪 il|一 sik|植(5, Korea) hong|洪 i|一 l| si|植 k|

sei|静 ichi|一 ro|郎(4, Japanese) seii|静 ch| i|一 ro|郎
dom|东 b|布 ro|罗 w|夫 s|斯 ki|基(0, Russian) do|东 mb|布 ro|罗 w|夫 s|斯 ki|基

he|何 dong|东 chang|昌(2, Chinese) he|何 don|东 gchang|昌
b|布 ran|兰 don|东(0, English) b|布 ran|兰 don|东

Table 1: Typical alignments from the BBAM and cDPMM.

3.2 Baselines

We compare our alignment model with
GIZA++ (Och et al., 2003) and the Bayesian
bilingual alignment model (BBAM). We employ
two decoding models: a phrase-based machine
translation decoder (specifically Moses (Koehn
et al., 2007)), and the DirecTL decoder (Jiampo-
jamarn et al., 2009). They are based on different
decoding strategies and optimization targets, and
therefore make the comparison more compre-
hensive. For the Moses decoder, we applied the
grow-diag-final-and heuristic algorithm to extract
the phrase table, and tuned the parameters using
the BLEU metric.

Corpora
Corpus Scale

Training Development Testing
EO 32,681 3,267 3,267

ECJ-O 32,500 3,250 3,250
Multi-O 33,291 3,328 3,328

Table 2: Statistics of the experimental corpora.

To evaluate the experimental results, we uti-
lized 3 metrics from the Named Entities Workshop
(NEWS) (Zhang et al., 2012a): word accuracy in
top-1 (ACC), fuzziness in top-1 (Mean F-score)
and mean reciprocal rank (MRR).

3.3 Parameter Setting

In our model, there are several important parame-
ters: 1) max s, the maximum length of the source
sequences of the alignment tokens; 2) max t, the
maximum length of the target sequences of the
alignment tokens; and 3) nc, the initial number of
classes for the training data. We set max s = 6,
max t = 1 and nc = 5 empirically based on a
small pilot experiment. The Moses decoder was
used with default settings except for the distortion-
limit which was set to 0 to ensure monotonic de-
coding. For the DirecTL decoder the following
settings were used: cs = 4, ng = 9 and nBest =

5. cs denotes the size of context window for fea-
tures, ng indicates the size of n-gram features and
nBest is the size of transliteration candidate list
for updating the model in each iteration. The con-
centration parameter αc, αa of the clustering mod-
el and the BBAM was learned by sampling its val-
ue. Following (Blunsom et al., 2009) we used
a vague gamma prior Γ(10−4, 104), and sampled
new values from a log-normal distribution whose
mean was the value of the parameter, and variance
was 0.3. We used the Metropolis-Hastings algo-
rithm to determine whether this new sample would
be accepted. The parameters λs and λt in Equa-
tion 4 were set to λs = 4 and λt = 1.

Model EO ECJ-O Multi-O
#(Clusters) cDPMM 5.8 9.5 14.3

#(Targets)
GIZA++ 14.43 5.35 6.62
BBAM 6.06 2.45 2.91

cDPMM 9.32 3.45 4.28

Table 3: Alignment statistics.

3.4 Experimental Results

Table 3 shows some details of the alignment re-
sults. The #(Clusters) represents the average num-
ber of clusters from the cDPMM. It is averaged
over the final 50 iterations, and the classes which
contain less than 10 name pairs are excluded. The
#(Targets) represents the average number of En-
glish character sequences that are aligned to each
Chinese sequence. From the results we can see
that in terms of the number of alignment targe-
ts: GIZA++ > cDPMM > BBAM. GIZA++ has
considerably more targets than the other approach-
es, and this is likely to be a symptom of it over-
fitting the data. cDPMM can alleviate the over-
fitting through its BBAM component, and at the
same time effectively model the diversity in Chi-
nese character sequences caused by multi-origin.
Table 1 shows some typical TUs from the align-
ments produced by BBAM and cDPMM on cor-
pus Multi-O. The information in brackets in Ta-
ble 1, represents the ID of the class and origin of
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Corpora Model Evaluation
ACC M-Fscore MRR

EO
GIZA 0.7241 0.8881 0.8061

BBAM 0.7286 0.8920 0.8043
cDPMM 0.7398 0.8983 0.8126

ECJ-O
GIZA 0.5471 0.7278 0.6268

BBAM 0.5522 0.7370 0.6344
cDPMM 0.5643 0.7420 0.6446

Multi-O
GIZA 0.4993 0.7587 0.5986

BBAM 0.5163 0.7769 0.6123
cDPMM 0.5237 0.7796 0.6188

Table 4: Comparison of different methods using
the Moses phrase-based decoder.

the name pair; the symbol ‘ ’ indicates a “NUL-
L” alignment. We can see the Chinese characters
“丁(ding) 一(yi) 东(dong)” have different align-
ments in different origins, and that the cDPMM
has provided the correct alignments for them.

We used the sampled alignment from running
the BBAM and cDPMM models for 100 iterations,
and combined the alignment tables of each class
together. The experiments are therefore investigat-
ing whether the alignment has been meaningfully
improved by the clustering process. We would ex-
pect further gains from exploiting the class infor-
mation in the decoding process (as in (Li et al.,
2007)), but this remains future research. The top-
10 transliteration candidates were used for testing.
The detailed experimental results are shown in Ta-
bles 4 and 5.

Our proposed model obtained the highest per-
formance on all three datasets for all evaluation
metrics by a considerable margin. Surprisingly,
for dataset EO although there is no multi-origin
factor, we still observed a respectable improve-
ment in every metric. This shows that although
names may have monolingual origin, there are hid-
den factors which can allow our model to succeed,
possibly related to gender or convention. Other
models based on supervised classification or clus-
tering with fixed classes may fail to capture these
characteristics.

To guarantee the reliability of the compara-
tive results, we performed significance testing
based on paired bootstrap resampling (Efron et al.,
1993). We found all differences to be significant
(p < 0.05).

4 Conclusion

In this paper we propose an elegant unsupervised
technique for monotonic sequence alignment
based on a single generative model. The key ben-

Corpora Model Evaluation
ACC M-Fscore MRR

EO
GIZA 0.6950 0.8812 0.7632

BBAM 0.7152 0.8899 0.7839
cDPMM 0.7231 0.8933 0.7941

ECJ-O
GIZA 0.3325 0.6208 0.4064

BBAM 0.3427 0.6259 0.4192
cDPMM 0.3521 0.6302 0.4316

Multi-O
GIZA 0.3815 0.7053 0.4592

BBAM 0.3934 0.7146 0.4799
cDPMM 0.3970 0.7179 0.4833

Table 5: Comparison of different methods using
the DirecTL decoder.

efits of our model are that it can handle data from
multiple origins, and model using many-to-many
alignment without over-fitting. The model oper-
ates by clustering the data into classes while si-
multaneously aligning it, and is able to discover
an appropriate number of classes from the data.
Our results show that our alignment model can im-
prove the performance of a transliteration gener-
ation system relative to two other state-of-the-art
aligners. Furthermore, the system produced gains
even on data of monolingual origin, where no ob-
vious clusters in the data were expected.
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Abstract
The phrase-based and N-gram-based
SMT frameworks complement each other.
While the former is better able to memo-
rize, the latter provides a more principled
model that captures dependencies across
phrasal boundaries. Some work has been
done to combine insights from these two
frameworks. A recent successful attempt
showed the advantage of using phrase-
based search on top of an N-gram-based
model. We probe this question in the
reverse direction by investigating whether
integrating N-gram-based translation and
reordering models into a phrase-based
decoder helps overcome the problematic
phrasal independence assumption. A large
scale evaluation over 8 language pairs
shows that performance does significantly
improve.

1 Introduction
Phrase-based models (Koehn et al., 2003; Och
and Ney, 2004) learn local dependencies such as
reorderings, idiomatic collocations, deletions and
insertions by memorization. A fundamental draw-
back is that phrases are translated and reordered
independently of each other and contextual infor-
mation outside of phrasal boundaries is ignored.
The monolingual language model somewhat re-
duces this problem. However i) often the language
model cannot overcome the dispreference of the
translation model for nonlocal dependencies, ii)
source-side contextual dependencies are still ig-
nored and iii) generation of lexical translations and
reordering is separated.

The N-gram-based SMT framework addresses
these problems by learning Markov chains over se-

quences of minimal translation units (MTUs) also
known as tuples (Mariño et al., 2006) or over op-
erations coupling lexical generation and reorder-
ing (Durrani et al., 2011). Because the mod-
els condition the MTU probabilities on the previ-
ous MTUs, they capture non-local dependencies
and both source and target contextual information
across phrasal boundaries.

In this paper we study the effect of integrating
tuple-based N-gram models (TSM) and operation-
based N-gram models (OSM) into the phrase-
based model in Moses, a state-of-the-art phrase-
based system. Rather than using POS-based
rewrite rules (Crego and Mariño, 2006) to form
a search graph, we use the ability of the phrase-
based system to memorize larger translation units
to replicate the effect of source linearization as
done in the TSM model.

We also show that using phrase-based search
with MTU N-gram translation models helps to ad-
dress some of the search problems that are non-
trivial to handle when decoding with minimal
translation units. An important limitation of the
OSM N-gram model is that it does not handle un-
aligned or discontinuous target MTUs and requires
post-processing of the alignment to remove these.
Using phrases during search enabled us to make
novel changes to the OSM generative story (also
applicable to the TSM model) to handle unaligned
target words and to use target linearization to deal
with discontinuous target MTUs.

We performed an extensive evaluation, carrying
out translation experiments from French, Spanish,
Czech and Russian to English and in the opposite
direction. Our integration of the OSM model into
Moses and our modification of the OSM model to
deal with unaligned and discontinuous target to-
kens consistently improves BLEU scores over the
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baseline system, and shows statistically significant
improvements in seven out of eight cases.

2 Previous Work

Several researchers have tried to combine the ideas
of phrase-based and N-gram-based SMT. Costa-
jussà et al. (2007) proposed a method for combin-
ing the two approaches by applying sentence level
reranking. Feng et al. (2010) added a linearized
source-side language model in a phrase-based sys-
tem. Crego and Yvon (2010) modified the phrase-
based lexical reordering model of Tillman (2004)
for an N-gram-based system. Niehues et al. (2011)
integrated a bilingual language model based on
surface word forms and POS tags into a phrase-
based system. Zhang et al. (2013) explored multi-
ple decomposition structures for generating MTUs
in the task of lexical selection, and to rerank the
N-best candidate translations in the output of a
phrase-based. A drawback of the TSM model is
the assumption that source and target information
is generated monotonically. The process of re-
ordering is disconnected from lexical generation
which restricts the search to a small set of precom-
puted reorderings. Durrani et al. (2011) addressed
this problem by coupling lexical generation and
reordering information into a single generative
process and enriching the N-gram models to learn
lexical reordering triggers. Durrani et al. (2013)
showed that using larger phrasal units during de-
coding is superior to MTU-based decoding in an
N-gram-based system. However, they do not use
phrase-based models in their work, relying only
on the OSM model. This paper combines insights
from these recent pieces of work and show that
phrase-based search combined with N-gram-based
and phrase-based models in decoding is the over-
all best way to go. We integrate the two N-gram-
based models, TSM and OSM, into phrase-based
Moses and show that the translation quality is im-
proved by taking both translation and reordering
context into account. Other approaches that ex-
plored such models in syntax-based systems used
MTUs for sentence level reranking (Khalilov and
Fonollosa, 2009), in dependency translation mod-
els (Quirk and Menezes, 2006) and in target lan-
guage syntax systems (Vaswani et al., 2011).

3 Integration of N-gram Models

We now describe our integration of TSM and
OSM N-gram models into the phrase-based sys-

Figure 1: Example (a) Word Alignments (b) Un-
folded MTU Sequence (c) Operation Sequence (d)
Step-wise Generation

tem. Given a bilingual sentence pair (F,E) and
its alignment (A), we first identify minimal trans-
lation units (MTUs) from it. An MTU is defined
as a translation rule that cannot be broken down
any further. The MTUs extracted from Figure 1(a)
are A → a,B → b, C . . .H → c1 and D → d.
These units are then generated left-to-right in two
different ways, as we will describe next.

3.1 Tuple Sequence Model (TSM)
The TSM translation model assumes that MTUs
are generated monotonically. To achieve this ef-
fect, we enumerate the MTUs in the target left-
to-right order. This process is also called source
linearization or tuple unfolding. The resulting se-
quence of monotonic MTUs is shown in Figure
1(b). We then define a TSM model over this se-
quence (t1, t2, . . . , tJ ) as:

ptsm(F,E,A) =

J∏

j=1

p(tj |tj−n+1, ..., tj−1)

where n indicates the amount of context used. A
4-gram Kneser-Ney smoothed language model is
trained with SRILM (Stolcke, 2002).

Search: In previous work, the search graph in
TSM N-gram SMT was not built dynamically
like in the phrase-based system, but instead con-
structed as a preprocessing step using POS-based
rewrite rules (learned when linearizing the source
side). We do not adopt this framework. We use

1We use . . . to denote discontinuous MTUs.
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phrase-based search which builds up the decoding
graph dynamically and searches through all pos-
sible reorderings within a fixed window. During
decoding we use the phrase-internal alignments to
perform source linearization. For example, if dur-
ing decoding we would like to apply the phrase
pair “C D H – d c”, a combination of t3 and t4 in
Figure 1(b), then we extract the MTUs from this
phrase-pair and linearize the source to be in the
order of the target. We then compute the TSM
probability given the n − 1 previous MTUs (in-
cluding MTUs occurring in the previous source
phrases). The idea is to replicate rewrite rules
with phrase-pairs to linearize the source. Previ-
ous work on N-gram-based models restricted the
length of the rewrite rules to be 7 or less POS tags.
We use phrases of length 6 and less.

3.2 Operation Sequence Model (OSM)
The OSM model represents a bilingual sentence
pair and its alignment through a sequence of oper-
ations that generate the aligned sentence pair. An
operation either generates source and target words
or it performs reordering by inserting gaps and
jumping forward and backward. The MTUs are
generated in the target left-to-right order just as in
the TSM model. However rather than linearizing
the source-side, reordering operations (gaps and
jumps) are used to handle crossing alignments.
During training, each bilingual sentence pair is de-
terministically converted to a unique sequence of
operations.2 The example in Figure 1(a) is con-
verted to the sequence of operations shown in Fig-
ure 1(c). A step-wise generation of MTUs along
with reordering operations is shown in Figure 1(d).
We learn a Markov model over a sequence of oper-
ations (o1, o2, . . . , oJ ) that encapsulate MTUs and
reordering information which is defined as fol-
lows:
posm(F,E,A) =

J∏

j=1

p(oj |oj−n+1, ..., oj−1)

A 9-gram Kneser-Ney smoothed language model
is trained with SRILM.3 By coupling reorder-
ing with lexical generation, each (translation or
reordering) decision conditions on n − 1 previ-
ous (translation and reordering) decisions span-
ning across phrasal boundaries. The reordering
decisions therefore influence lexical selection and

2Please refer to Durrani et al. (2011) for a list of opera-
tions and the conversion algorithm.

3We also tried a 5-gram model, the performance de-
creased slightly in some cases.

vice versa. A heterogeneous mixture of translation
and reordering operations enables the OSM model
to memorize reordering patterns and lexicalized
triggers unlike the TSM model where translation
and reordering are modeled separately.

Search: We integrated the generative story of
the OSM model into the hypothesis extension pro-
cess of the phrase-based decoder. Each hypothesis
maintains the position of the source word covered
by the last generated MTU, the right-most source
word generated so far, the number of open gaps
and their relative indexes, etc. This information
is required to generate the operation sequence for
the MTUs in the hypothesized phrase-pair. After
the operation sequence is generated, we compute
its probability given the previous operations. We
define the main OSM feature, and borrow 4 sup-
portive features, the Gap, Open Gap, Gap-width
and Deletion penalties (Durrani et al., 2011).

3.3 Problem: Target Discontinuity and
Unaligned Words

Two issues that we have ignored so far are the han-
dling of MTUs which have discontinuous targets,
and the handling of unaligned target words. Both
TSM and OSM N-gram models generate MTUs
linearly in left-to-right order. This assumption be-
comes problematic in the cases of MTUs that have
target-side discontinuities (See Figure 2(a)). The
MTUA→ g . . . a can not be generated because of
the intervening MTUs B → b, C . . .H → c and
D → d. In the original TSM model, such cases are
dealt with by merging all the intervening MTUs
to form a bigger unit t′1 in Figure 2(c). A solu-
tion that uses split-rules is proposed by Crego and
Yvon (2009) but has not been adopted in Ncode
(Crego et al., 2011), the state-of-the-art TSM N-
gram system. Durrani et al. (2011) dealt with
this problem by applying a post-processing (PP)
heuristic that modifies the alignments to remove
such cases. When a source word is aligned to a
discontinuous target-cept, first the link to the least
frequent target word is identified, and the group
of links containing this word is retained while the
others are deleted. The alignment in Figure 2(a),
for example, is transformed to that in Figure 2(b).
This allows OSM to extract the intervening MTUs
t2 . . . t5 (Figure 2(c)). Note that this problem does
not exist when dealing with source-side disconti-
nuities: the TSM model linearizes discontinuous
source-side MTUs such as C . . .H → c. The
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Figure 2: Example (a) Original Alignments (b)
Post-Processed Alignments (c) Extracted MTUs –
t′1 . . . t

′
3 (from (a)) and t1 . . . t7 (from (b))

OSM model deals with such cases through Insert
Gap and Continue Cept operations.

The second problem is the unaligned target-side
MTUs such as ε → f in Figure 2(a). Inserting
target-side words “spuriously” during decoding is
a non-trival problem because there is no evidence
of when to hypothesize such words. These cases
are dealt with in N-gram-based SMT by merging
such MTUs to the MTU on the left or right based
on attachment counts (Durrani et al., 2011), lexical
probabilities obtained from IBM Model 1 (Mariño
et al., 2006), or POS entropy (Gispert and Mariño,
2006). Notice how ε→ f (Figure 2(a)) is merged
with the neighboring MTU E → e to form a new
MTUE → ef (Figure 2 (c)). We initially used the
post-editing heuristic (PP) as defined by Durrani et
al. (2011) for both TSM and OSM N-gram mod-
els, but found that it lowers the translation quality
(See Row 2 in Table 2) in some language pairs.

3.4 Solution: Insertion and Linearization

To deal with these problems, we made novel modi-
fications to the generative story of the OSM model.
Rather than merging the unaligned target MTU
such as ε − f , to its right or left MTU, we gen-
erate it through a new Generate Target Only (f)
operation. Orthogonal to its counterpart Generate
Source Only (I) operation (as used for MTU t7 in
Figure 2 (c)), this operation is generated as soon
as the MTU containing its previous target word
is generated. In Figure 2(a), ε − f is generated
immediately after MTU E − e is generated. In
a sequence of unaligned source and target MTUs,
unaligned source MTUs are generated before the
unaligned target MTUs. We do not modify the de-
coder to arbitrarily generate unaligned MTUs but
hypothesize these only when they appear within

an extracted phrase-pair. The constraint provided
by the phrase-based search makes the Generate
Target Only operation tractable. Using phrase-
based search therefore helps addressing some of
the problems that exist in the decoding framework
of N-gram SMT.

The remaining problem is the discontinuous tar-
get MTUs such as A→ g . . . a in Figure 2(a). We
handle this with target linearization similar to the
TSM source linearization. We collapse the target
words g and a in the MTU A → g . . . a to occur
consecutively when generating the operation se-
quence. The conversion algorithm that generates
the operations thinks that g and a occurred adja-
cently. During decoding we use the phrasal align-
ments to linearize such MTUs within a phrasal
unit. This linearization is done only to compute
the OSM feature. Other features in the phrase-
based system (e.g., language model) work with the
target string in its original order. Notice again how
memorizing larger translation units using phrases
helps us reproduce such patterns. This is achieved
in the tuple N-gram model by using POS-based
split and rewrite rules.

4 Evaluation
Corpus: We ran experiments with data made
available for the translation task of the Eighth
Workshop on Statistical Machine Translation. The
sizes of bitext used for the estimation of translation
and monolingual language models are reported in
Table 1. All data is true-cased.

Pair Parallel Monolingual Lang
fr–en ≈39 M ≈91 M fr
cs–en ≈15.6 M ≈43.4 M cs
es–en ≈15.2 M ≈65.7 M es
ru–en ≈2 M ≈21.7 M ru

≈287.3 M en

Table 1: Number of Sentences (in Millions) used
for Training

We follow the approach of Schwenk and Koehn
(2008) and trained domain-specific language mod-
els separately and then linearly interpolated them
using SRILM with weights optimized on the held-
out dev-set. We concatenated the news-test sets
from four years (2008-2011) to obtain a large dev-
setin order to obtain more stable weights (Koehn
and Haddow, 2012). For Russian-English and
English-Russian language pairs, we divided the
tuning-set news-test 2012 into two halves and used

402



No. System fr-en es-en cs-en ru-en en-fr en-es en-cs en-ru
1. Baseline 31.89 35.07 23.88 33.45 29.89 35.03 16.22 23.88
2. 1+pp 31.87 35.09 23.64 33.04 29.70 35.00 16.17 24.05
3. 1+pp+tsm 31.94 35.25 23.85 32.97 29.98 35.06 16.30 23.96
4. 1+pp+osm 32.17 35.50 24.14 33.21 30.35 35.34 16.49 24.22
5. 1+osm* 32.13 35.65 24.23 33.91 30.54 35.49 16.62 24.25

Table 2: Translating into and from English. Bold: Statistically Significant (Koehn, 2004) w.r.t Baseline

the first half for tuning and second for test. We test
our systems on news-test 2012. We tune with the
k-best batch MIRA algorithm (Cherry and Foster,
2012).

Moses Baseline: We trained a Moses system
(Koehn et al., 2007) with the following settings:
maximum sentence length 80, grow-diag-final-
and symmetrization of GIZA++ alignments, an
interpolated Kneser-Ney smoothed 5-gram lan-
guage model with KenLM (Heafield, 2011) used at
runtime, msd-bidirectional-fe lexicalized reorder-
ing, sparse lexical and domain features (Hasler
et al., 2012), distortion limit of 6, 100-best
translation options, minimum bayes-risk decoding
(Kumar and Byrne, 2004), cube-pruning (Huang
and Chiang, 2007) and the no-reordering-over-
punctuation heuristic.

Results: Table 2 shows uncased BLEU scores
(Papineni et al., 2002) on the test set. Row 2 (+pp)
shows that the post-editing of alignments to re-
move unaligned and discontinuous target MTUs
decreases the performance in the case of ru-en, cs-
en and en-fr. Row 3 (+pp+tsm) shows that our in-
tegration of the TSM model slightly improves the
BLEU scores for en-fr, and es-en. Results drop
in ru-en and en-ru. Row 4 (+pp+osm) shows that
the OSM model consistently improves the BLEU
scores over the Baseline systems (Row 1) giving
significant improvements in half the cases. The
only result that is lower than the baseline system
is that of the ru-en experiment, because OSM is
built with PP alignments which particularly hurt
the performance for ru-en. Finally Row 5 (+osm*)
shows that our modifications to the OSM model
(Section 3.4) give the best result ranging from
[0.24−0.65] with statistically significant improve-
ments in seven out of eight cases. It also shows im-
provements over Row 4 (+pp+osm) even in some
cases where the PP heuristic doesn’t hurt. The
largest gains are obtained in the ru-en translation
task (where the PP heuristic inflicted maximum
damage).

5 Conclusion and Future Work
We have addressed the problem of the indepen-
dence assumption in PBSMT by integrating N-
gram-based models inside a phrase-based system
using a log-linear framework. We try to replicate
the effect of rewrite and split rules as used in the
TSM model through phrasal alignments. We pre-
sented a novel extension of the OSM model to
handle unaligned and discontinuous target MTUs
in the OSM model. Phrase-based search helps us
to address these problems that are non-trivial to
handle in the decoding frameworks of the N-gram-
based models. We tested our extentions and modi-
fications by evaluating against a competitive base-
line system over 8 language pairs. Our integra-
tion of TSM shows small improvements in a few
cases. The OSM model which takes both reorder-
ing and lexical context into consideration consis-
tently improves the performance of the baseline
system. Our modification to the OSM model pro-
duces the best results giving significant improve-
ments in most cases. Although our modifications
to the OSM model enables discontinuous MTUs,
we did not fully utilize these during decoding, as
Moses only uses continous phrases. The discon-
tinuous MTUs that span beyond a phrasal length
of 6 words are therefore never hypothesized. We
would like to explore this further by extending the
search to use discontinuous phrases (Galley and
Manning, 2010).
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Adrià Gispert and José B. Mariño. 2006. Linguis-
tic Tuple Segmentation in N-Gram-Based Statistical
Machine Translation. In INTERSPEECH.

Eva Hasler, Barry Haddow, and Philipp Koehn. 2012.
Sparse Lexicalised Features and Topic Adaptation
for SMT. In Proceedings of the seventh Interna-
tional Workshop on Spoken Language Translation
(IWSLT), pages 268–275.

Kenneth Heafield. 2011. KenLM: Faster and Smaller
Language Model Queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation,
pages 187–197, Edinburgh, Scotland, United King-
dom, 7.

Liang Huang and David Chiang. 2007. Forest Rescor-
ing: Faster Decoding with Integrated Language
Models. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
pages 144–151, Prague, Czech Republic, June. As-
sociation for Computational Linguistics.

Maxim Khalilov and José A. R. Fonollosa. 2009. N-
Gram-Based Statistical Machine Translation Versus
Syntax Augmented Machine Translation: Compar-
ison and System Combination. In Proceedings of
the 12th Conference of the European Chapter of the
ACL (EACL 2009), pages 424–432, Athens, Greece,
March. Association for Computational Linguistics.

Philipp Koehn and Barry Haddow. 2012. Towards Ef-
fective Use of Training Data in Statistical Machine
Translation. In Proceedings of the Seventh Work-
shop on Statistical Machine Translation, pages 317–
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Abstract

In this paper we show how to auto-
matically induce non-linear features for
machine translation. The new features
are selected to approximately maximize
a BLEU-related objective and decompose
on the level of local phrases, which guar-
antees that the asymptotic complexity of
machine translation decoding does not in-
crease. We achieve this by applying gra-
dient boosting machines (Friedman, 2000)
to learn new weak learners (features) in the
form of regression trees, using a differen-
tiable loss function related to BLEU. Our
results indicate that small gains in perfor-
mance can be achieved using this method
but we do not see the dramatic gains ob-
served using feature induction for other
important machine learning tasks.

1 Introduction

The linear model for machine translation (Och and
Ney, 2002) has become the de-facto standard in
the field. Recently, researchers have proposed a
large number of additional features (TaroWatan-
abe et al., 2007; Chiang et al., 2009) and param-
eter tuning methods (Chiang et al., 2008b; Hop-
kins and May, 2011; Cherry and Foster, 2012)
which are better able to scale to the larger pa-
rameter space. However, a significant feature en-
gineering effort is still required from practition-
ers. When a linear model does not fit well, re-
searchers are careful to manually add important
feature conjunctions, as for example, (Daumé III
and Jagarlamudi, 2011; Clark et al., 2012). In the
related field of web search ranking, automatically
learned non-linear features have brought dramatic
improvements in quality (Burges et al., 2005; Wu

∗This research was conducted during the author’s intern-
ship at Microsoft Research

et al., 2010). Here we adapt the main insights of
such work to the machine translation setting and
share results on two language pairs.

Some recent works have attempted to relax the
linearity assumption on MT features (Nguyen et
al., 2007), by defining non-parametric models on
complete translation hypotheses, for use in an n-
best re-ranking setting. In this paper we develop
a framework for inducing non-linear features in
the form of regression decision trees, which de-
compose locally and can be integrated efficiently
in decoding. The regression trees encode non-
linear feature combinations of the original fea-
tures. We build on the work by Friedman (2000)
which shows how to induce features to minimize
any differentiable loss function. In our applica-
tion the features are regression decision trees, and
the loss function is the pairwise ranking log-loss
from the PRO method for parameter tuning (Hop-
kins and May, 2011). Additionally, we show how
to design the learning process such that the in-
duced features are local on phrase-pairs and their
language model and reordering context, and thus
can be incorporated in decoding efficiently.

Our results using re-ranking on two language
pairs show that the feature induction approach can
bring small gains in performance. Overall, even
though the method shows some promise, we do
not see the dramatic gains that have been seen for
the web search ranking task (Wu et al., 2010). Fur-
ther improvements in the original feature set and
the induction algorithm, as well as full integration
in decoding are needed to potentially result in sub-
stantial performance improvements.

2 Feature learning using gradient
boosting machines

In the linear model for machine translation, the
scores of translation hypotheses are weighted
sums of a set of input features over the hypotheses.
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Figure 1: A Bulgarian source sentence (meaning ”the
conference in Bulgaria”, together with a candidate transla-
tion. Local and global features for the translation hypoth-
esis are shown. f0=smoothed relative frequency estimate
of log p(s|t); f1=lexical weighting estimate of log p(s|t);
f2=joint count of the phrase-pair; f3=sum of language model
log-probabilities of target phrase words given context.

For a set of features f1(h), . . . , fL(h) and weights
for these features λ1, . . . , λL, the hypothesis
scores are defined as: F (h) =

∑
l=1...L λlfl(h).

In current state-of-the-art models, the features
fl(h) decompose locally on phrase-pairs (with
language model and reordering context) inside the
hypotheses. This enables hypothesis recombina-
tion during machine translation decoding, leading
to faster and more accurate search. As an exam-
ple, Figure 1 shows a Bulgarian source sentence
(spelled phonetically in Latin script) and a can-
didate translation. Two phrase-pairs are used to
compose the translation, and each phrase-pair has
a set of local feature function values. A mini-
mal set of four features is shown, for simplicity.
We can see that the hypothesis-level (global) fea-
ture values are sums of phrase-level (local) feature
values. The score of a translation given feature
weights λ can be computed either by scoring the
phrase-pairs and adding the scores, or by scoring
the complete hypothesis by computing its global
feature values. The local feature values do look at
some limited context outside of a phrase-pair, to
compute language model scores and re-ordering
scores; therefore we say that the features are de-
fined on phrase-pairs in context.

We start with such a state-of-the-art linear
model with decomposable features and show how
we can automatically induce additional features.
The new features are also locally decomposable,
so that the scores of hypotheses can be computed
as sums of phrase-level scores. The new local
phrase-level features are non-linear combinations
of the original phrase-level features.

Figure 2: Example of two decision tree features. The left
decision tree has linear nodes and the right decision tree has
constant nodes.

2.1 Form of induced features

We will use the example in Figure 1 to introduce
the form of the new features we induce and to give
an intuition of why such features might be useful.
The new features are expressed by regression de-
cision trees; Figure 2 shows two examples.

One intuition we might have is that, if a phrase
pair has been seen very few times in the training
corpus (for example, the first phrase pair P1 in the
Figure has been seen only one time f2 = 1), we
would like to trust its lexical weighting channel
model score f1 more than its smoothed relative-
frequency channel estimate f0. The first regres-
sion tree feature h1 in Figure 2 captures this in-
tuition. The feature value for a phrase-pair of
this feature is computed as follows: if f2 ≤
2, then h1(f0, f1, f2, f3) = 2 × f1; otherwise,
h1(f0, f1, f2, f3) = f1. The effect of this new
feature h1 is to boost the importance of the lexi-
cal weighting score for phrase-pairs of low joint
count. More generally, the regression tree fea-
tures we consider have either linear or constant
leaf nodes, and have up to 8 leaves. Deeper trees
can capture more complex conditions on several
input feature values. Each non-leaf node performs
a comparison of some input feature value to a
threshold and each leaf node (for linear nodes) re-
turns the value of some input feature multiplied
by some factor. For a given regression tree with
linear nodes, all leaf nodes are expressions of the
same input feature but have different coefficients
for it (for example, both leaf nodes of h1 return
affine functions of the input feature f1). A deci-
sion tree feature with constant-valued leaf nodes
is illustrated by the right-hand-side tree in Figure
2. For these decision trees, the leaf nodes contain
a constant, which is specific to each leaf. These
kinds of trees can effectively perform conjunctions
of several binary-valued input feature functions; or
they can achieve binning of real-values features to-
gether with conjunctions over binned values.
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Having introduced the form of the new features
we learn, we now turn to the methodology for in-
ducing them. We apply the framework of gradient
boosting for decision tree weak learners (Fried-
man, 2000). To define the framework, we need
to introduce the original input features, the differ-
entiable loss function, and the details of the tree
growing algorithm. We discuss these in turn next.

2.2 Initial features
Our baseline MT system uses relative frequency
and lexical weighting channel model weights, one
or more language models, distortion penalty, word
count, phrase count, and multiple lexicalized re-
ordering weights, one for each distortion type. We
have around 15 features in this base feature set.
We further expand the input set of features to in-
crease the possibility that useful feature combi-
nations could be found by our feature induction
method. The large feature set contains around
190 features, including source and target word
count features, joint phrase count, lexical weight-
ing scores according to alternative word-alignment
model ran over morphemes instead of words, in-
dicator lexicalized features for insertion and dele-
tion of the top 15 words in each language, cluster-
based insertion and deletion indicators using hard
word clustering, and cluster based signatures of
phrase-pairs. This is the feature set we use as a
basis for weak learner induction.

2.3 Loss function
We use a pair-wise ranking log-loss as in the
PRO parameter tuning method (Hopkins and May,
2011). The loss is defined by comparing the model
scores of pairs of hypotheses hi and hj where
the BLEU score of the first hypothesis is greater
than the BLEU score of the second hypothesis by
a specified threshold. 1

We denote the sentences in a corpus as
s1, s2, . . . , sN . For each sentence sn, we de-
note the ordered selected pairs of hypotheses as
[hn

i1
, hn

j1
], . . . , [hn

iK
, hn

jK
]. The loss-function Ψ is

defined in terms of the hypothesis model scores
1In our implementation, for each sentence, we sample

10, 000 pairs of translations and accept a pair of transla-
tions for use with probability proportional to the BLEU score
difference, if that difference is greater than the threshold of
0.04. The top K = 100 or K = 300 hypothesis pairs with
the largest BLEU difference are selected for computation of
the loss. We compute sentence-level BLEUscores by add-α
smoothing of the match counts for computation of n-gram
precision. The α and K parameters are chosen via cross-
validation.

1: F0(x) = arg minλ Ψ(F (x, λ))
2: for m = 1toM do
3: yr = −[∂Ψ(F (x))

∂F (xr) ]F (x)=Fm−1(x), r =
1 . . . R

4: αm = arg minα,β
∑R

r=1[yr − βh(xi; α)]2

5: ρm = arg minρ Ψ(Fm−1(x) + ρh(x; αm)
6: Fm(x) = Fm−1(x) + ρmh(x; αm)
7: end for

Figure 3: A gradient boosting algorithm for local
feature functions.

F (h) as follows:
∑

n=1...N

∑
k=1...K log(1 +

e
F (hn

jk
)−F (hn

ik
)
).

The idea of the gradient boosting method is to
induce additional features by computing a func-
tional gradient of the target loss function and itera-
tively selecting the next weak learner (feature) that
is most parallel to the negative gradient. Since we
want to induce features such that the hypothesis
scores decompose locally, we need to formulate
our loss function as a function of local phrase-pair
in context scores. Having the model scores de-
compose locally means that the scores of hypothe-
ses F (h) decompose as F (h) =

∑
pr∈h F (pr)),

where by pr ∈ h we denote the enumeration over
phrase pairs in context that are parts of h. If xr de-
notes the input feature vector for a phrase-pair in
context pr, the score of this phrase-pair can be ex-
pressed as F (xr). Appendix A expresses the pair-
wise log-loss as a function of the phrase scores.

We are now ready to introduce the gradient
boosting algorithm, summarized in Figure 3. In
the first step of the algorithm, we start by set-
ting the phrase-pair in context scoring function
F0(x) as a linear function of the input feature val-
ues, by selecting the feature weights λ to min-
imize the PRO loss Ψ(F0(x)) as a function of
λ. The initial scores have the form F0(x) =∑

l=1...L λlfl(x).This is equivalent to using the
(Hopkins and May, 2011) method of parameter
tuning for a fixed input feature set and a linear
model. We used LBFGS for the optimization in
Line 1. Then we iterate and induce a new de-
cision tree weak learner h(x; αm) like the exam-
ples in Figure 2 at each iteration. The parame-
ter vectors αm encode the topology and parame-
ters of the decision trees, including which feature
value is tested at each node, what the compari-
son cutoffs are, and the way to compute the val-
ues at the leaf nodes. After a new decision tree
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Language Train Dev-Train Dev-Select Test
Chs-En 999K NIST02+03 2K NIST05
Fin-En 2.2M 12K 2K 4.8K

Table 1: Data sets for the two language pairs Chinese-
English and Finnish-English.

Chs-En Fin-En
Features Tune Dev-Train Test Dev-Train Test
base MERT 31.3 30.76 49.8 51.31
base PRO 31.1 31.16 49.7 51.56
large PRO 31.8 31.44 49.8 51.77
boost-global PRO 31.8 31.30 50.0 51.87
boost-local PRO 31.8 31.44 50.1 51.95

Table 2: Results for the two language pairs using different
weight tuning methods and feature sets.

h(x; αm) is induced, it is treated as new feature
and a linear coefficient ρm for that feature is set
by minimizing the loss as a function of this pa-
rameter (Line 5). The new model scores are set as
the old model scores plus a weighted contribution
from the new feature (Line 6). At the end of learn-
ing, we have a linear model over the input features
and additional decision tree features. FM (x) =∑

l=1...L λlfl(x) +
∑

m=1...M ρmh(x; αm). The
most time-intensive step of the algorithm is the se-
lection of the next decision tree h. This is done
by first computing the functional gradient of the
loss with respect to the phrase scores F (xr) at the
point of the current model scores Fm−1(xr). Ap-
pendix A shows a derivation of this gradient. We
then induce a regression tree using mean-square-
error minimization, setting the direction given by
the negative gradient as a target to be predicted us-
ing the features of each phrase-pair in context in-
stance. This is shown as the setting of the αm pa-
rameters by mean-squared-error minimization in
Line 4 of the algorithm. The minimization is done
approximately by a standard greedy tree-growing
algorithm (Breiman et al., 1984). When we tune
weights to minimize the loss, such as the weights
λ of the initial features, or the weights ρm of in-
duced learners, we also include an L2 penalty on
the parameters, to prevent overfitting.

3 Experiments

We report experimental results on two language
pairs: Chinese-English, and Finnish-English. Ta-
ble 1 summarizes statistics about the data. For
each language pair, we used a training set (Train)
for extracting phrase tables and language models,
a Dev-Train set for tuning feature weights and in-
ducing features, a Dev-Select set for selecting hy-
perparameters of PRO tuning and selecting a stop-

ping point and other hyperparameters of the boost-
ing method, and a Test set for reporting final re-
sults. For Chinese-English, the training corpus
consists of approximately one million sentence
pairs from the FBIS and HongKong portions of
the LDC data for the NIST MT evaluation and the
Dev-Train and Test sets are from NIST competi-
tions. The MT system is a phrasal system with a 4-
gram language model, trained on the Xinhua por-
tion of the English Gigaword corpus. The phrase
table has maximum phrase length of 7 words on
either side. For Finnish-English we used a data-
set from a technical domain of software manuals.
For this language pair we used two language mod-
els: one very large model trained on billions of
words, and another language model trained from
the target side of the parallel training set. We re-
port performance using the BLEU-SBP metric pro-
posed in (Chiang et al., 2008a). This is a vari-
ant of BLEU (Papineni et al., 2002) with strict
brevity penalty, where a long translation for one
sentence can not be used to counteract the brevity
penalty for another sentence with a short transla-
tion. Chiang et al. (2008a) showed that this metric
overcomes several undesirable properties of BLEU

and has better correlation with human judgements.
In our experiments with different feature sets and
hyperparameters we observed more stable results
and better correlation of Dev-Train, Dev-Select,
and Test results using BLEU-SBP. For our exper-
iments, we first trained weights for the base fea-
ture sets described in Section 2.2 using MERT. We
then decoded the Dev-Train, Dev-Select, and Test
datasets, generating 500-best lists for each set. All
results in Table 2 report performance of re-ranking
on these 500-best lists using different feature sets
and parameter tuning methods.

The baseline (base feature set) performance us-
ing MERT and PRO tuning on the two language
pairs is shown on the first two lines. In line with
prior work, PRO tuning achieves a bit lower scores
on the tuning set but higher scores on the test set,
compared to MERT. The large feature set addi-
tionally contains over 170 manually specified fea-
tures, described in Section 2.2. It was infeasible
to run MERT training on this feature set. The test
set results using PRO tuning for the large set are
about a quarter of a BLEU-SBP point higher than
the results using the base feature set on both lan-
guage pairs. Finally, the last two rows show the
performance of the gradient boosting method. In
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addition to learning locally decomposable features
boost-local, we also implemented boost-global,
where we are learning combinations of the global
feature values and lose decomposability. The fea-
tures learned by boost-global can not be com-
puted exactly on partial hypotheses in decoding
and thus this method has a speed disadvantage, but
we wanted to compare the performance of boost-
local and boost-global on n-best list re-ranking
to see the potential accuracy gain of the two meth-
ods. We see that boost-local is slightly better in
performance, in addition to being amenable to ef-
ficient decoder integration.

The gradient boosting results are mixed; for
Finnish-English, we see around .2 gain of the
boost-local model over the large feature set.
There is no improvement on Chinese-English, and
the boost-global method brings slight degrada-
tion. We did not see a large difference in perfor-
mance among models using different decision tree
leaf node types and different maximum numbers
of leaf nodes. The selected boost-local model
for FIN-ENU used trees with maximum of 2 leaf
nodes and linear leaf values; 25 new features were
induced before performance started to degrade
on the Dev-Select set. The induced features for
Finnish included combinations of language model
and channel model scores, combinations of word
count and channel model scores, and combina-
tions of channel and lexicalized reordering scores.
For example, one feature increases the contribu-
tion of the relative frequency channel score for
phrases with many target words, and decreases the
channel model contribution for shorter phrases.

The best boost-local model for Chs-Enu used
trees with a maximum of 2 constant-values leaf
nodes, and induced 24 new tree features. The fea-
tures effectively promoted and demoted phrase-
pairs in context based on whether an input fea-
ture’s value was smaller than a determined cutoff.

In conclusion, we proposed a new method to
induce feature combinations for machine transla-
tion, which do not increase the decoding complex-
ity. There were small improvements on one lan-
guage pair in a re-ranking setting. Further im-
provements in the original feature set and the in-
duction algorithm, as well as full integration in de-
coding are needed to result in substantial perfor-
mance improvements.

This work did not consider alternative ways
of generating non-linear features, such as taking

products of two or more input features. It would
be interesting to compare such alternatives to the
regression tree features we explored.
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4 Appendix A: Derivation of derivatives

Here we express the loss as a function of phrase-
level in context scores and derive the derivative of
the loss with respect to these scores.

Let us number all phrase-pairs in context in
all hypotheses in all sentences as p1, . . . , pR and
denote their input feature vectors as x1, . . . ,xR.
We will use F (pr) and F (xr) interchange-
ably, because the score of a phrase-pair in
context is defined by its input feature vec-
tor. The loss Ψ(F (xr)) is expressed as follows:
∑N

n=1

∑K
k=1 log(1 + e

∑
pr∈hn

jk

F (xr)−∑
pr∈hn

ik

F (xr)
).

Next we derive the derivatives of the loss
Ψ(F (x)) with respect to the phrase scores. Intu-
itively, we are treating the scores we want to learn
as parameters for the loss function; thus the loss
function has a huge number of parameters, one
for each instance of each phrase pair in context in
each translation. We ask the loss function if these
scores could be set in an arbitrary way, what di-
rection it would like to move them in to be mini-
mized. This is the direction given by the negative
gradient.

Each phrase-pair in context pr occurs in exactly
one hypothesis h in one sentence. It is possible
that two phrase-pairs in context share the same set
of input features, but for ease of implementation
and exposition, we treat these as different train-
ing instances. To express the gradient with respect
to F (xr) we therefore need to focus on the terms
of the loss from a single sentence and to take into
account the hypothesis pairs [hj,k, hi,k] where the
left or the right hypothesis is the hypothesis h con-
taining our focus phrase pair pr. ∂Ψ(F (x))

∂F (xr) is ex-
pressed as:

=
∑

k:h=hik
− e

∑
pr∈hn

jk

F (xr)−∑
pr∈hn

ik

F (xr)

1+e

∑
pr∈hn

jk

F (xr)−∑
pr∈hn

ik

F (xr)

+
∑

k:h=hjk

e

∑
pr∈hn

jk

F (xr)−∑
pr∈hn

ik

F (xr)

1+e

∑
pr∈hn

jk

F (xr)−∑
pr∈hn

ik

F (xr)

Since in the boosting step we induce a deci-
sion tree to fit the negative gradient, we can see
that the feature induction algorithm is trying to in-
crease the scores of phrases that occur in better

hypotheses (the first hypothesis in each pair), and
it increases the scores more if weaker hypotheses
have higher advantage; it is also trying to decrease
the scores of phrases in weaker hypotheses that are
currently receiving high scores.
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Abstract

An important challenge to statistical ma-
chine translation (SMT) is the lack of par-
allel data for many language pairs. One
common solution is to pivot through a
third language for which there exist par-
allel corpora with the source and target
languages. Although pivoting is a robust
technique, it introduces some low quality
translations. In this paper, we present two
language-independent features to improve
the quality of phrase-pivot based SMT.
The features, source connectivity strength
and target connectivity strength reflect the
quality of projected alignments between
the source and target phrases in the pivot
phrase table. We show positive results (0.6
BLEU points) on Persian-Arabic SMT as
a case study.

1 Introduction

One of the main issues in statistical machine trans-
lation (SMT) is the scarcity of parallel data for
many language pairs especially when the source
and target languages are morphologically rich. A
common SMT solution to the lack of parallel data
is to pivot the translation through a third language
(called pivot or bridge language) for which there
exist abundant parallel corpora with the source
and target languages. The literature covers many
pivoting techniques. One of the best performing
techniques, phrase pivoting (Utiyama and Isahara,
2007), builds an induced new phrase table between
the source and target. One of the main issues of

this technique is that the size of the newly cre-
ated pivot phrase table is very large (Utiyama and
Isahara, 2007). Moreover, many of the produced
phrase pairs are of low quality which affects the
translation choices during decoding and the over-
all translation quality. In this paper, we introduce
language independent features to determine the
quality of the pivot phrase pairs between source
and target. We show positive results (0.6 BLEU
points) on Persian-Arabic SMT.

Next, we briefly discuss some related work. We
then review two common pivoting strategies and
how we use them in Section 3. This is followed by
our approach to using connectivity strength fea-
tures in Section 4. We present our experimental
results in Section 5.

2 Related Work

Many researchers have investigated the use of piv-
oting (or bridging) approaches to solve the data
scarcity issue (Utiyama and Isahara, 2007; Wu and
Wang, 2009; Khalilov et al., 2008; Bertoldi et al.,
2008; Habash and Hu, 2009). The main idea is to
introduce a pivot language, for which there exist
large source-pivot and pivot-target bilingual cor-
pora. Pivoting has been explored for closely re-
lated languages (Hajič et al., 2000) as well as un-
related languages (Koehn et al., 2009; Habash and
Hu, 2009). Many different pivot strategies have
been presented in the literature. The following
three are perhaps the most common.

The first strategy is the sentence translation
technique in which we first translate the source
sentence to the pivot language, and then translate
the pivot language sentence to the target language
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(Khalilov et al., 2008).
The second strategy is based on phrase pivot-

ing (Utiyama and Isahara, 2007; Cohn and Lap-
ata, 2007; Wu and Wang, 2009). In phrase pivot-
ing, a new source-target phrase table (translation
model) is induced from source-pivot and pivot-
target phrase tables. Lexical weights and transla-
tion probabilities are computed from the two trans-
lation models.

The third strategy is to create a synthetic source-
target corpus by translating the pivot side of
source-pivot corpus to the target language using an
existing pivot-target model (Bertoldi et al., 2008).

In this paper, we build on the phrase pivoting
approach, which has been shown to be the best
with comparable settings (Utiyama and Isahara,
2007). We extend phrase table scores with two
other features that are language independent.

Since both Persian and Arabic are morphologi-
cally rich, we should mention that there has been
a lot of work on translation to and from morpho-
logically rich languages (Yeniterzi and Oflazer,
2010; Elming and Habash, 2009; El Kholy and
Habash, 2010a; Habash and Sadat, 2006; Kathol
and Zheng, 2008). Most of these efforts are fo-
cused on syntactic and morphological processing
to improve the quality of translation.

To our knowledge, there hasn’t been a lot of
work on Persian and Arabic as a language pair.
The only effort that we are aware of is based
on improving the reordering models for Persian-
Arabic SMT (Matusov and Köprü, 2010).

3 Pivoting Strategies

In this section, we review the two pivoting strate-
gies that are our baselines. We also discuss how
we overcome the large expansion of source-to-
target phrase pairs in the process of creating a
pivot phrase table.

3.1 Sentence Pivoting

In sentence pivoting, English is used as an inter-
face between two separate phrase-based MT sys-
tems; Persian-English direct system and English-
Arabic direct system. Given a Persian sentence,
we first translate the Persian sentence from Per-
sian to English, and then from English to Arabic.

3.2 Phrase Pivoting

In phrase pivoting (sometimes called triangulation
or phrase table multiplication), we train a Persian-

to-Arabic and an English-Arabic translation mod-
els, such as those used in the sentence pivoting
technique. Based on these two models, we induce
a new Persian-Arabic translation model.

Since we build our models on top of Moses
phrase-based SMT (Koehn et al., 2007), we need
to provide the same set of phrase translation prob-
ability distributions.1 We follow Utiyama and Isa-
hara (2007) in computing the probability distribu-
tions. The following are the set of equations used
to compute the lexical probabilities (φ) and the
phrase probabilities (pw)

φ(f |a) =∑
e
φ(f |e)φ(e|a)

φ(a|f) =∑
e
φ(a|e)φ(e|f)

pw(f |a) =
∑
e
pw(f |e)pw(e|a)

pw(a|f) =
∑
e
pw(a|e)pw(e|f)

where f is the Persian source phrase. e is
the English pivot phrase that is common in both
Persian-English translation model and English-
Arabic translation model. a is the Arabic target
phrase.

We also build a Persian-Arabic reordering table
using the same technique but we compute the re-
ordering weights in a similar manner to Henriquez
et al. (2010).

As discussed earlier, the induced Persian-
Arabic phrase and reordering tables are very large.
Table 1 shows the amount of parallel corpora
used to train the Persian-English and the English-
Arabic and the equivalent phrase table sizes com-
pared to the induced Persian-Arabic phrase table.2

We introduce a basic filtering technique dis-
cussed next to address this issue and present some
baseline experiments to test its performance in
Section 5.3.

3.3 Filtering for Phrase Pivoting

The main idea of the filtering process is to select
the top [n] English candidate phrases for each Per-
sian phrase from the Persian-English phrase ta-
ble and similarly select the top [n] Arabic target
phrases for each English phrase from the English-
Arabic phrase table and then perform the pivot-
ing process described earlier to create a pivoted

1Four different phrase translation scores are computed in
Moses’ phrase tables: two lexical weighting scores and two
phrase translation probabilities.

2The size of the induced phrase table size is computed but
not created.
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Training Corpora Phrase Table
Translation Model Size # Phrase Pairs Size
Persian-English ≈4M words 96,04,103 1.1GB
English-Arabic ≈60M words 111,702,225 14GB
Pivot Persian-Arabic N/A 39,199,269,195 ≈2.5TB

Table 1: Translation Models Phrase Table comparison in terms of number of line and sizes.

Persian-Arabic phrase table. To select the top can-
didates, we first rank all the candidates based on
the log linear scores computed from the phrase
translation probabilities and lexical weights mul-
tiplied by the optimized decoding weights then we
pick the top [n] pairs.

We compare the different pivoting strategies
and various filtering thresholds in Section 5.3.

4 Approach

One of the main challenges in phrase pivoting is
the very large size of the induced phrase table.
It becomes even more challenging if either the
source or target language is morphologically rich.
The number of translation candidates (fanout) in-
creases due to ambiguity and richness (discussed
in more details in Section 5.2) which in return
increases the number of combinations between
source and target phrases. Since the only criteria
of matching between the source and target phrase
is through a pivot phrase, many of the induced
phrase pairs are of low quality. These phrase pairs
unnecessarily increase the search space and hurt
the overall quality of translation.

To solve this problem, we introduce two
language-independent features which are added to
the log linear space of features in order to deter-
mine the quality of the pivot phrase pairs. We call
these features connectivity strength features.

Connectivity Strength Features provide two
scores, Source Connectivity Strength (SCS) and
Target Connectivity Strength (TCS). These two
scores are similar to precision and recall metrics.
They depend on the number of alignment links be-
tween words in the source phrase to words of the
target phrase. SCS and TSC are defined in equa-
tions 1 and 2 where S = {i : 1 ≤ i ≤ S} is the
set of source words in a given phrase pair in the
pivot phrase table and T = {j : 1 ≤ j ≤ T}
is the set of the equivalent target words. The
word alignment between S and T is defined as

A = {(i, j) : i ∈ S and j ∈ T }.

SCS =
|A|
|S| (1)

TCS =
|A|
|T | (2)

We get the alignment links by projecting the
alignments of source-pivot to the pivot-target
phrase pairs used in pivoting. If the source-target
phrase pair are connected through more than one
pivot phrase, we take the union of the alignments.

In contrast to the aggregated values represented
in the lexical weights and the phrase probabilities,
connectivity strength features provide additional
information by counting the actual links between
the source and target phrases. They provide an
independent and direct approach to measure how
good or bad a given phrase pair are connected.

Figure 1 and 2 are two examples (one good, one
bad) Persian-Arabic phrase pairs in a pivot phrase
table induced by pivoting through English.3 In the
first example, each Persian word is aligned to an
Arabic word. The meaning is preserved in both
phrases which is reflected in the SCS and TCS
scores. In the second example, only one Persian
word in aligned to one Arabic word in the equiv-
alent phrase and the two phrases conveys two dif-
ferent meanings. The English phrase is not a good
translation for either, which leads to this bad pair-
ing. This is reflected in the SCS and TCS scores.

5 Experiments

In this section, we present a set of baseline ex-
periments including a simple filtering technique to
overcome the huge expansion of the pivot phrase
table. Then we present our results in using connec-
tivity strength features to improve Persian-Arabic
pivot translation quality.

3We use the Habash-Soudi-Buckwalter Arabic transliter-
ation (Habash et al., 2007) in the figures with extensions for
Persian as suggested by Habash (2010).
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Persian: "AςtmAd"myAn"dw"kšwr "" " ""‘ .-,ر"دو"()"ن"ا%$#"د ’"

" " " " " " " " " " " " "‘trust"between"the"two"countries’"
English: "trust"between"the"two"countries"

Arabic:" "Alθqħ"byn"Aldwltyn " "" " ""‘ ا52و2$3"34"ا012/ ’"

" " " " " " " " " " " " "‘the"trust"between"the"two"countries’"

Figure 1: An example of strongly connected Persian-Arabic phrase pair through English. All Persian
words are connected to one or more Arabic words. SCS=1.0 and TCS=1.0.

Persian: "AyjAd"cnd"šrkt"mštrk " "" " "‘ 0/.+ک",+*(")'&"ا$#"د ’"

" " " " " " " " " " " " "‘Establish"few"joint"companies’"

English: "joint"ventures"

Arabic:" "bςD"šrkAt"AlmqAwlAt"fy"Albld" "‘ ا<=>&";:"ا89"و6ت",+5"ت"123 ’"

" " " " " " " " " " " " "‘Some"construcBon"companies"in"the"country’"

Figure 2: An example of weakly connected Persian-Arabic phrase pairs through English. Only one
Persian word is connected to an Arabic word. SCS=0.25 and TCS=0.2.

5.1 Experimental Setup

In our pivoting experiments, we build two SMT
models. One model to translate from Persian to
English and another model to translate from En-
glish to Arabic. The English-Arabic parallel cor-
pus is about 2.8M sentences (≈60M words) avail-
able from LDC4 and GALE5 constrained data. We
use an in-house Persian-English parallel corpus of
about 170K sentences and 4M words.

Word alignment is done using GIZA++ (Och
and Ney, 2003). For Arabic language model-
ing, we use 200M words from the Arabic Giga-
word Corpus (Graff, 2007) together with the Ara-
bic side of our training data. We use 5-grams
for all language models (LMs) implemented us-
ing the SRILM toolkit (Stolcke, 2002). For En-
glish language modeling, we use English Giga-
word Corpus with 5-gram LM using the KenLM
toolkit (Heafield, 2011).

All experiments are conducted using the Moses
phrase-based SMT system (Koehn et al., 2007).
We use MERT (Och, 2003) for decoding weight

4LDC Catalog IDs: LDC2005E83, LDC2006E24,
LDC2006E34, LDC2006E85, LDC2006E92, LDC2006G05,
LDC2007E06, LDC2007E101, LDC2007E103,
LDC2007E46, LDC2007E86, LDC2008E40, LDC2008E56,
LDC2008G05, LDC2009E16, LDC2009G01.

5Global Autonomous Language Exploitation, or GALE,
is a DARPA-funded research project.

optimization. For Persian-English translation
model, weights are optimized using a set 1000 sen-
tences randomly sampled from the parallel cor-
pus while the English-Arabic translation model
weights are optimized using a set of 500 sen-
tences from the 2004 NIST MT evaluation test
set (MT04). The optimized weights are used for
ranking and filtering (discussed in Section 3.3).

We use a maximum phrase length of size 8
across all models. We report results on an in-
house Persian-Arabic evaluation set of 536 sen-
tences with three references. We evaluate using
BLEU-4 (Papineni et al., 2002) and METEOR
(Lavie and Agarwal, 2007).

5.2 Linguistic Preprocessing

In this section we present our motivation and
choice for preprocessing Arabic, Persian, English
data. Both Arabic and Persian are morphologi-
cally complex languages but they belong to two
different language families. They both express
richness and linguistic complexities in different
ways.

One aspect of Arabic’s complexity is its vari-
ous attachable clitics and numerous morphologi-
cal features (Habash, 2010). We follow El
Kholy and Habash (2010a) and use the PATB to-
kenization scheme (Maamouri et al., 2004) in our
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experiments. We use MADA v3.1 (Habash and
Rambow, 2005; Habash et al., 2009) to tokenize
the Arabic text. We only evaluate on detokenized
and orthographically correct (enriched) output fol-
lowing the work of El Kholy and Habash (2010b).

Persian on the other hand has a relatively sim-
ple nominal system. There is no case system and
words do not inflect with gender except for a few
animate Arabic loanwords. Unlike Arabic, Persian
shows only two values for number, just singular
and plural (no dual), which are usually marked by
either the suffix Aë+ +hA and sometimes 	

à@+ +An,
or one of the Arabic plural markers. Verbal mor-
phology is very complex in Persian. Each verb
has a past and present root and many verbs have
attached prefix that is regarded part of the root.
A verb in Persian inflects for 14 different tense,
mood, aspect, person, number and voice combina-
tion values (Rasooli et al., 2013). We use Perstem
(Jadidinejad et al., 2010) for segmenting Persian
text.

English, our pivot language, is quite different
from both Arabic and Persian. English is poor
in morphology and barely inflects for number and
tense, and for person in a limited context. English
preprocessing simply includes down-casing, sepa-
rating punctuation and splitting off “’s”.

5.3 Baseline Evaluation

We compare the performance of sentence pivot-
ing against phrase pivoting with different filtering
thresholds. The results are presented in Table 2. In
general, the phrase pivoting outperforms the sen-
tence pivoting even when we use a small filtering
threshold of size 100. Moreover, the higher the
threshold the better the performance but with a di-
minishing gain.

Pivot Scheme BLEU METEOR
Sentence Pivoting 19.2 36.4
Phrase Pivot F100 19.4 37.4
Phrase Pivot F500 20.1 38.1
Phrase Pivot F1K 20.5 38.6

Table 2: Sentence pivoting versus phrase pivoting
with different filtering thresholds (100/500/1000).

We use the best performing setup across the rest
of the experiments.

5.4 Connectivity Strength Features
Evaluation

In this experiment, we test the performance of
adding the connectivity strength features (+Conn)
to the best performing phrase pivoting model
(Phrase Pivot F1K).

Model BLEU METEOR
Sentence Pivoting 19.2 36.4
Phrase Pivot F1K 20.5 38.6
Phrase Pivot F1K+Conn 21.1 38.9

Table 3: Connectivity strength features experi-
ment result.

The results in Table 3 show that we get a
nice improvement of ≈0.6/0.5 (BLEU/METEOR)
points by adding the connectivity strength fea-
tures. The differences in BLEU scores between
this setup and all other systems are statistically
significant above the 95% level. Statistical signif-
icance is computed using paired bootstrap resam-
pling (Koehn, 2004).

6 Conclusion and Future Work

We presented an experiment showing the effect of
using two language independent features, source
connectivity score and target connectivity score,
to improve the quality of pivot-based SMT. We
showed that these features help improving the
overall translation quality. In the future, we plan
to explore other features, e.g., the number of the
pivot phases used in connecting the source and tar-
get phrase pair and the similarity between these
pivot phrases. We also plan to explore language
specific features which could be extracted from
some seed parallel data, e.g., syntactic and mor-
phological compatibility of the source and target
phrase pairs.
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Abstract

We experiment with adding semantic role
information to a string-to-tree machine
translation system based on the rule ex-
traction procedure of Galley et al. (2004).
We compare methods based on augment-
ing the set of nonterminals by adding se-
mantic role labels, and altering the rule
extraction process to produce a separate
set of rules for each predicate that encom-
pass its entire predicate-argument struc-
ture. Our results demonstrate that the sec-
ond approach is effective in increasing the
quality of translations.

1 Introduction

Statistical machine translation (SMT) has made
considerable advances in using syntactic proper-
ties of languages in both the training and the de-
coding of translation systems. Over the past few
years, many researchers have started to realize that
incorporating semantic features of languages can
also be effective in increasing the quality of trans-
lations, as they can model relationships that often
are not derivable from syntactic structures.

Wu and Fung (2009) demonstrated the promise
of using features based on semantic predicate-
argument structure in machine translation, using
these feature to re-rank machine translation out-
put. In general, re-ranking approaches are lim-
ited by the set of translation hypotheses, leading
to a desire to incorporate semantic features into
the translation model used during MT decoding.

Liu and Gildea (2010) introduced two types of
semantic features for tree-to-string machine trans-
lation. These features model the reorderings and
deletions of the semantic roles in the source sen-
tence during decoding. They showed that addition
of these semantic features helps improve the qual-
ity of translations. Since tree-to-string systems are

trained on parse trees, they are constrained by the
tree structures and are generally outperformed by
string-to-tree systems.

Xiong et al. (2012) integrated two discrimi-
native feature-based models into a phrase-based
SMT system, which used the semantic predicate-
argument structure of the source language. Their
first model defined features based on the context of
a verbal predicate, to predict the target translation
for that verb. Their second model predicted the re-
ordering direction between a predicate and its ar-
guments from the source to the target sentence.

Wu et al. (2010) use a head-driven phrase struc-
ture grammar (HPSG) parser to add semantic rep-
resentations to their translation rules.

In this paper, we use semantic role labels to en-
rich a string-to-tree translation system, and show
that this approach can increase the BLEU (Pap-
ineni et al., 2002) score of the translations. We
extract GHKM-style (Galley et al., 2004) transla-
tion rules from training data where the target side
has been parsed and labeled with semantic roles.
Our general method of adding information to the
syntactic tree is similar to the “tree grafting” ap-
proach of Baker et al. (2010), although we fo-
cus on predicate-argument structure, rather than
named entity tags and modality. We modify the
rule extraction procedure of Galley et al. (2004) to
produce rules representing the overall predicate-
argument structure of each verb, allowing us to
model alternations in the mapping from syntax to
semantics of the type described by Levin (1993).

2 Semantic Roles for String-to-Tree
Translation

2.1 Semantic Role Labeling

Semantic Role Labeling (SRL) is the task of iden-
tifying the arguments of the predicates in a sen-
tence, and classifying them into different argu-
ment labels. Semantic roles can provide a level
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of understanding that cannot be derived from syn-
tactic analysis of a sentence. For example, in
sentences “Ali opened the door.” and “The door
opened”, the worddoor has two different syntac-
tic roles but only one semantic role in the two sen-
tences.

Semantic arguments can be classified into core
and non-core arguments (Palmer et al., 2010).
Core arguments are necessary for understanding
the sentence. Non-core arguments add more infor-
mation about the predicate but are not essential.

Automatic semantic role labelers have been de-
veloped by training classifiers on hand annotated
data (Gildea and Jurafsky, 2000; Srikumar and
Roth, 2011; Toutanova et al., 2005; Fürstenau and
Lapata, 2012). State-of-the-art semantic role la-
belers can predict the labels with accuracies of
around 90%.

2.2 String-to-Tree Translation

We adopt the GHKM framework of Galley et al.
(2004) using the parses produced by the split-
merge parser of Petrov et al. (2006) as the English
trees. As shown by Wang et al. (2010), the refined
nonterminals produced by the split-merge method
can aid machine translation. Furthermore, in all
of our experiments, we exclude unary rules during
extraction by ensuring that no rules will have the
same span in the source side (Chung et al., 2011).

2.3 Using Semantic Role Labels in SMT

To incorporate semantic information into a string-
to-tree SMT system, we tried two approaches:

• Using semantically enriched GHKM rules,
and

• Extracting semantic rules separately from the
regular GHKM rules, and adding a new fea-
ture for distinguishing the semantic rules.

The next two sections will explain these two
methods in detail.

2.4 Semantically Enriched Rules (Method 1)

In this method, we tag the target trees in the train-
ing corpus with semantic role labels, and extract
the translation rules from the tagged corpus. Since
the SCFG rule extraction methods do not assume
any specific set of non-terminals for the target
parse trees, we can attach the semantic roles of
each constituent to its label in the tree, and use

S

NP–ARG0

NPB

NN

everybody

VP

VBG–PRED

lending

NP–ARG1

NPB

DT

a

NN

hand

Figure 1: A target tree after inserting semantic
roles. “Lending” is the predicate, “everybody” is
argument 0, and “a hand” is argument 1 for the
predicate.

S-8

NP-7-ARG11 victimized by NP-7-ARG02

NP-7-ARG11
受 NP-7-ARG02

Figure 2: A complete semantic rule.

these new labels for rule extraction. We only la-
bel the core arguments of each predicate, to make
sure that the rules are not too specific to the train-
ing data. We attach each semantic label to the root
of the subtree that it is labeling. Figure 1 shows
an example target tree after attaching the semantic
roles. We then run a GHKM rule extractor on the
labeled training corpus and use the semantically
enriched rules with a syntax-based decoder.

2.5 Complete Semantic Rules with Added
Feature (Method 2)

This approach uses the semantic role labels to
extract a set of special translation rules, that on
the target side form the smallest tree fragments in
which one predicate and all of its core arguments
are present. These rules model the complete se-
mantic structure of each predicate, and are used
by the decoder in addition to the normal GHKM
rules, which are extracted separately.

Starting by semantic role labeling the target
parse trees, we modify the GHKM component of
the system to extract a semantic rule for each pred-
icate. We definelabels p as the set of semantic
role labels related to predicatep. That includes all
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Number of rules
dev test

Baseline 1292175 1300589
Method 1 1340314 1349070
Method 2 1416491 1426159

Table 1: The number of the translation rules used
by the three experimented methods

of the labels of the arguments ofp, and the label
of p itself. Then we add the following condition
to the definition of the “frontier node” defined in
Galley et al. (2004):

A frontier node must have either all or none of
the semantic role labels from labels p in its de-
scendants in the tree.

Adding this new condition, we extract one se-
mantic rule for each predicate, and for that rule we
discard the labels related to the other predicates.
This semantic rule will then have on its target side,
the smallest tree fragment that contains all of the
arguments of predicatep and the predicate itself.

Figure 2 depicts an example of a complete se-
mantic rule. Numbers following grammatical cat-
egories (for example, S-8 at the root) are the re-
fined nonterminals produced by the split-merge
parser. In general, the tree side of the rule may
extend below the nodes with semantic role labels
because of the general constraint on frontier nodes
that they must have a continuous span in the source
(Chinese) side. Also, the internal nodes of the
rules (such as a node with PRED label in Figure
2) are removed because they are not used in de-
coding.

We also extract the regular GHKM rules using
the original definition of the frontier nodes, and
add the semantic rules to them. To differentiate
the semantic rules from the non-semantic ones, we
add a new binary feature that is set to 1 for the
semantic rules and to 0 for the rest of the rules.

3 Experiments

Semantic role labeling was done using the Prop-
Bank standard (Palmer et al., 2005). Our labeler
uses a maximum entropy classifier and for iden-
tification and classification of semantic roles, and
has a percision of 90% and a recall of 88%. The
features used for training the labeler are a subset of
the features used by Gildea and Jurafsky (2000),
Xue and Palmer (2004), and Pradhan et al. (2004).

The string-to-tree training data that we used is
a Chinese to English parallel corpus that contains

more than 250K sentence pairs, which consist of
6.3M English words. The corpus was drawn from
the newswire texts available from LDC.1 We used
a 392-sentence development set with four refer-
ences for parameter tuning, and a 428-sentence
test set with four references for testing. They are
drawn from the newswire portion of NIST evalua-
tion (2004, 2005, 2006). The development set and
the test set only had sentences with less than 30
words for decoding speed. A set of nine standard
features, which include globally normalized count
of rules, lexical weighting (Koehn et al., 2003),
length penalty, and number of rules used, was used
for the experiments. In all of our experiments, we
used the split-merge parsing method of Petrov et
al. on the training corpus, and mapped the seman-
tic roles from the original trees to the result of the
split-merge parser. We used a syntax-based de-
coder with Earley parsing and cube pruning (Chi-
ang, 2007). We used the Minimum Error Rate
Training (Och, 2003) to tune the decoding param-
eters for the development set and tested the best
weights that were found on the test set.

We ran three sets of experiments: Baseline
experiments, where we did not do any seman-
tic role labeling prior to rule extraction and only
extracted regular GHKM rules, experiments with
our method of Section 2.4 (Method 1), and a set
of experiments with our method of Section 2.5
(Method 2).

Table 1 contains the numbers of the GHKM
translation rules used by our three method. The
rules were filtered by the development and the test
to increase the decoding speed. The increases in
the number of rules were expected, but they were
not big enough to significantly change the perfor-
mance of the decoder.

3.1 Results

For every set of experiments, we ran MERT on the
development set with 8 different starting weight
vectors picked randomly. For Method 2 we added
a new random weight for the new feature. We then
tested the system on the test set, using for each
experiment the weight vector from the iteration of
MERT with the maximum BLEU score on the de-
velopment set. Table 3 shows the BLEU scores
that we found on the test set, and their correspond-
ing scores on the development set.

1We randomly sampled our data from various different
sources. The language model is trained on the English side
of entire data (1.65M sentences, which is 39.3M words.)
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Source 解决 13亿人的问题 ,不能靠别人 ,只能靠自己 .
Reference to solve the problem of 1.3 billion people , we can only rely on ourselves and nobody else .
Baseline cannot rely on others , can only resolve the problem of 13 billion people , on their own .
Method 2 to resolve the issue of 1.3 billion people , they can’t rely on others , and it can only rely on themselves .

Source 在新世纪新形势下 ,亚洲的发展面临着新的机遇 .
Reference in the new situation of the millennium , the development of asia is facing new opportunities .
Baseline facing new opportunities in the new situation in the new century , the development of asia .
Method 2 under the new situation in the new century , the development of asia are facing a new opportunity .

Source 他说 ,阿盟是同美国讨论中东地区 进行民主改革的最佳伙伴 .
Reference he said the arab league is the best partner to discuss with the united states about carrying out democratic reforms in the middle east .
Baseline arab league is the best with democratic reform in the middle east region in the discussion of the united states , hesaid .
Method 2 arab league is the best partner to discuss the middle east region democratic reform with the united states , hesaid .

Table 2: Comparison of example translations from the baseline method and ourMethod 2.

The best BLEU score on the test set is 25.92,
which is from the experiments of Method 2.
Method 1 system seems to behave slightly worse
than the baseline and Method 2. The reason for
this behavior is that the rules that were extracted
from the semantic role labeled corpus could have
isolated semantic roles in them which would not
necessarily get connected to the right predicate
or argument during decoding. In other words,
it is possible for a rule to only contain one or
some of the semantic arguments of a predicate,
and not even include the predicate itself, and there-
fore there is no guarantee that the predicate will be
translated with the right arguments and in the right
order. The difference between the BLEU scores
of the best Method 2 results and the baseline is
0.92. This improvement is statistically significant
(p = 0.032) and it shows that incorporating se-
mantic roles in machine translation is an effective
approach.

Table 2 compares some translations from the
baseline decoder and our Method 2. The first line
of each example is the Chinese source sentence,
and the second line is one of the reference trans-
lations. The last two lines compare the baseline
and Method 2. These examples show how our
Method 2 can outperform the baseline method, by
translating complete semantic structures, and gen-
erating the semantic roles in the correct order in
the target language. In the first example, the pred-
icaterely on for the argumentthemselves was not
translated by the baseline decoder, but it was cor-
rectly translated by Method 2. The second ex-
ample is a case where the baseline method gener-
ated the arguments in the wrong order (in the case
of facing anddevelopment), but the translation by
Method 2 has the correct order. In the last example
we see that the arguments of the predicatediscuss
have the wrong order in the baseline translation,

BLEU Score
dev test

Baseline 26.01 25.00
Method 1 26.12 24.84
Method 2 26.5 25.92

Table 3: BLEU scores on the test and development
sets, of 8 experiments with random initial feature
weights.

but Method 2 generated the correct oder.

4 Conclusion

We proposed two methods for incorporating se-
mantic role labels in a string-to-tree machine
translation system, by learning translation rules
that are semantically enriched. In one approach,
the system learned the translation rules by us-
ing a semantic role labeled corpus and augment-
ing the set of nonterminals used in the rules, and
in the second approach, in addition to the regu-
lar SCFG rules, the system learned semantic roles
which contained the complete semantic structure
of a predicate, and added a feature to distinguish
those rules.

The first approach did not perform any better
than the baseline, which we explained as being due
to having rules with only partial semantic struc-
tures and not having a way to guarantee that those
rules will be used with each other in the right way.
The second approach significantly outperformed
the baseline of our experiments, which shows that
complete predicate-argument structures can im-
prove the quality of machine translation.
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Abstract

This paper presents two minimum Bayes
risk (MBR) based Answer Re-ranking
(MBRAR) approaches for the question
answering (QA) task. The first approach
re-ranks single QA system’s outputs by
using a traditional MBR model, by mea-
suring correlations between answer can-
didates; while the second approach re-
ranks the combined outputs of multiple
QA systems with heterogenous answer ex-
traction components by using a mixture
model-based MBR model. Evaluation-
s are performed on factoid questions se-
lected from two different domains: Jeop-
ardy! and Web, and significant improve-
ments are achieved on all data sets.

1 Introduction

Minimum Bayes Risk (MBR) techniques have
been successfully applied to a wide range of nat-
ural language processing tasks, such as statisti-
cal machine translation (Kumar and Byrne, 2004),
automatic speech recognition (Goel and Byrne,
2000), parsing (Titov and Henderson, 2006), etc.
This work makes further exploration along this
line of research, by applying MBR technique to
question answering (QA).

The function of a typical factoid question an-
swering system is to automatically give answers to
questions in most case asking about entities, which
usually consists of three key components: ques-
tion understanding, passage retrieval, and answer
extraction. In this paper, we propose two MBR-
based Answer Re-ranking (MBRAR) approaches,
aiming to re-rank answer candidates from either
single and multiple QA systems. The first one
re-ranks answer outputs from single QA system
based on a traditional MBR model by measuring
the correlations between each answer candidates

and all the other candidates; while the second one
re-ranks the combined answer outputs from multi-
ple QA systems based on a mixture model-based
MBR model. The key contribution of this work is
that, our MBRAR approaches assume little about
QA systems and can be easily applied to QA sys-
tems with arbitrary sub-components.

The remainder of this paper is organized as fol-
lows: Section 2 gives a brief review of the QA task
and describe two types of QA systems with differ-
ent pros and cons. Section 3 presents two MBRAR
approaches that can re-rank the answer candidates
from single and multiple QA systems respectively.
The relationship between our approach and pre-
vious work is discussed in Section 4. Section 5
evaluates our methods on large scale questions s-
elected from two domains (Jeopardy! and Web)
and shows promising results. Section 6 concludes
this paper.

2 Question Answering

2.1 Overview

Formally, given an input question Q, a typical fac-
toid QA system generates answers on the basis of
the following three procedures:

(1) Question Understanding, which determines
the answer type and identifies necessory informa-
tion contained in Q, such as question focus and
lexical answer type (LAT). Such information will
be encoded and used by the following procedures.

(2) Passage Retrieval, which formulates queries
based on Q, and retrieves passages from offline
corpus or online search engines (e.g. Google and
Bing).

(3) Answer Extraction, which first extracts an-
swer candidates from retrieved passages, and then
ranks them based on specific ranking models.
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2.2 Two Types of QA Systems
We present two different QA sysytems, which are
distinguished from three aspects: answer typing,
answer generation, and answer ranking.

The 1st QA system is denoted as Type-
Dependent QA engine (TD-QA). In answer typing
phase, TD-QA assigns the most possible answer
type T̂ to a given question Q based on:

T̂ = argmax
T

P (T |Q)

P (T |Q) is a probabilistic answer-typing mod-
el that is similar to Pinchak and Lin (2006)’s
work. In answer generation phase, TD-QA uses
a CRF-based Named Entity Recognizer to detect
all named entities contained in retrieved passages
with the type T̂ , and treat them as the answer can-
didate space H(Q):

H(Q) =
∪

k

Ak

In answer ranking phase, the decision rule de-
scribed below is used to rank answer candidate s-
pace H(Q):

Â = argmax
A∈H(Q)

P (A|T̂ , Q)

= argmax
A∈H(Q)

∑

i

λi · hi(A, T̂ , Q)

where {hi(·)} is a set of ranking features that
measure the correctness of answer candidates, and
{λi} are their corresponding feature weights.

The 2ed QA system is denoted as Type-
Independent QA engine (TI-QA). In answer typ-
ing phase, TI-QA assigns top N , instead of the
best, answer types TN (Q) for each question Q.
The probability of each type candidate is main-
tained as well. In answer generation phase, TI-
QA extracts all answer candidates from retrieved
passages based on answer types in TN (Q), by the
same NER used in TD-QA. In answer ranking
phase, TI-QA considers the probabilities of differ-
ent answer types as well:

Â = argmax
A∈H(Q)

P (A|Q)

= argmax
A∈H(Q)

∑

T∈TN (Q)

P (A|T, Q) · P (T |Q)

On one hand, TD-QA can achieve relative high
ranking precision, as using a unique answer type
greatly reduces the size of the candidate list for

ranking. However, as the answer-typing model is
far from perfect, if prediction errors happen, TD-
QA can no longer give correct answers at all.

On the other hand, TI-QA can provide higher
answer coverage, as it can extract answer candi-
dates with multiple answer types. However, more
answer candidates with different types bring more
difficulties to the answer ranking model to rank the
correct answer to the top 1 position. So the rank-
ing precision of TI-QA is not as good as TD-QA.

3 MBR-based Answering Re-ranking

3.1 MBRAR for Single QA System
MBR decoding (Bickel and Doksum, 1977) aims
to select the hypothesis that minimizes the expect-
ed loss in classification. In MBRAR, we replace
the loss function with the gain function that mea-
sure the correlation between answer candidates.
Thus, the objective of the MBRAR approach for
single QA system is to find the answer candidate
that is most supported by other candidates under
QA system’s distribution, which can be formally
written as:

Â = argmax
A∈H(Q)

∑

Ak∈H(Q)

G(A,Ak) · P (Ak|H(Q))

P (Ak|H(Q)) denotes the hypothesis distribu-
tion estimated on the search space H(Q) based on
the following log-linear formulation:

P (Ak|H(Q)) =
exp(β · P (Ak|Q))∑

A′∈H exp(β · P (A′ |Q))

P (Ak|Q) is the posterior probability of the answer
candidate Ak based on QA system’s ranking mod-
el, β is a scaling factor which controls the distri-
bution P (·) sharp (when β > 1) or smooth (when
β < 1).

G(A, Ak) is the gain function that denotes the
degree of how Ak supports A. This function can
be further expanded as a weighted combination of
a set of correlation features as:

∑
j λj ·hj(A,Ak).

The following correlation features are used in
G(·):

• answer-level n-gram correlation feature:

hanswer(A, Ak) =
∑

ω∈A
#ω(Ak)

where ω denotes an n-gram in A, #ω(Ak)
denotes the number of times that ω occurs in
Ak.
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• passage-level n-gram correlation feature:

hpassage(A, Ak) =
∑

ω∈PA

#ω(PAk
)

where PA denotes passages from which A
are extracted. This feature measures the de-
gree of Ak supports A from the context per-
spective.

• answer-type agreement feature:

htype(A, Ak) = δ(TA, TAi)

δ(TA, TAk
) denotes an indicator function that

equals to 1 when the answer types of A and
Ak are the same, and 0 otherwise.

• answer-length feature that is used to penalize
long answer candidates.

• averaged passage-length feature that is used
to penalize passages with a long averaged
length.

3.2 MBRAR for Multiple QA Systems
Aiming to apply MBRAR to the outputs from N
QA systems, we modify MBR components as fol-
lows.

First, the hypothesis space HC(Q) is built by
merging answer candidates of multiple QA sys-
tems:

HC(Q) =
∪

i

Hi(Q)

Second, the hypothesis distribution is defined
as a probability distribution over the combined
search space of N component QA systems and
computed as a weighted sum of component model
distributions:

P (A|HC(Q)) =
N∑

i=1

αi · P (A|Hi(Q))

where α1, ..., αN are coefficients with following
constraints holds1: 0 ≤ αi ≤ 1 and

∑N
i=1 αi = 1,

P (A|Hi(Q)) is the posterior probability of A esti-
mated on the ith QA system’s search space Hi(Q).

Third, the features used in the gain function G(·)
can be grouped into two categories, including:

• system-independent features, which includes
all features described in Section 3.1 for single
system based MBRAR method;

1For simplicity, the coefficients are equally set: αi =
1/N .

• system-dependent features, which measure
the correctness of answer candidates based
on information provided by multiple QA sys-
tems:

– system indicator feature hsys(A, QAi),
which equals to 1 when A is generated
by the ith system QAi, and 0 otherwise;

– system ranking feature hrank(A, QAi),
which equals to the reciprocal of the
rank position of A predicted by QAi. If
QAi fails to generate A, then it equals
to 0;

– ensemble feature hcons(A), which e-
quals to 1 when A can be generated by
all individual QA system, and 0 other-
wise.

Thus, the MBRAR for multiple QA systems can
be finally formulated as follows:

Â = argmax
A∈HC(Q)

∑

Ai∈HC(Q)

G(A, Ai) · P (Ai|HC(Q))

where the training process of the weights in the
gain function is carried out with Ranking SVM2

based on the method described in Verberne et al.
(2009).

4 Related Work

MBR decoding have been successfully applied to
many NLP tasks, e.g. machine translation, pars-
ing, speech recognition and etc. As far as we
know, this is the first work that applies MBR prin-
ciple to QA.

Yaman et al. (2009) proposed a classifica-
tion based method for QA task that jointly uses
multiple 5-W QA systems by selecting one opti-
mal QA system for each question. Comparing to
their work, our MBRAR approaches assume few
about the question types, and all QA systems con-
tribute in the re-ranking model. Tellez-Valero et
al. (2008) presented an answer validation method
that helps individual QA systems to automatical-
ly detect its own errors based on information from
multiple QA systems. Chu-Carroll et al. (2003) p-
resented a multi-level answer resolution algorithm
to merge results from the answering agents at the
question, passage, and answer levels. Grappy et al.

2We use SV MRank (Joachims, 2006) that can be found-
ed at www.cs.cornell.edu/people/tj/svm light/svm rank.html/
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(2012) proposed to use different score combina-
tions to merge answers from different QA system-
s. Although all methods mentioned above leverage
information provided by multiple QA systems, our
work is the first time to explore the usage of MBR
principle for the QA task.

5 Experiments

5.1 Data and Metric

Questions from two different domains are used
as our evaluation data sets: the first data set in-
cludes 10,051 factoid question-answer pairs se-
lected from the Jeopardy! quiz show3; while the
second data set includes 360 celebrity-asking web
questions4 selected from a commercial search en-
gine, the answers for each question is labeled by
human annotators.

The evaluation metric Succeed@n is defined as
the number of questions whose correct answers
are successfully ranked to the top n answer can-
didates.

5.2 MBRAR for Single QA System

We first evaluate the effectiveness of our MBRAR
for single QA system. Given the N-best answer
outputs from each single QA system, together with
their ranking scores assigned by the corresponding
ranking components, we further perform MBRAR
to re-rank them and show resulting numbers on t-
wo evaluation data sets in Table 1 and 2 respec-
tively.

Both Table 1 and Table 2 show that, by lever-
aging our MBRAR method on individual QA sys-
tems, the rankings of correct answers are consis-
tently improved on both Jeopardy! and web ques-
tions.

Joepardy! Succeed@1 Succeed@2 Succeed@3

TD-QA 2,289 2,693 2,885
MBRAR 2,372 2,784 2,982

TI-QA 2,527 3,397 3,821
MBRAR 2,628 3,500 3,931

Table 1: Impacts of MBRAR for single QA system
on Jeopardy! questions.

We also notice TI-QA performs significantly
better than TD-QA on Jeopardy! questions, but
worse on web questions. This is due to fac-
t that when the answer type is fixed (PERSON for

3http://www.jeopardy.com/
4The answers of such questions are person names.

Web Succeed@1 Succeed@2 Succeed@3

TD-QA 97 128 146
MBRAR 99 130 148

TI-QA 95 122 136
MBRAR 97 126 143

Table 2: Impacts of MBRAR for single QA system
on web questions.

celebrity-asking questions), TI-QA will generate
candidates with wrong answer types, which will
definitely deteriorate the ranking accuracy.

5.3 MBRAR for Multiple QA Systems

We then evaluate the effectiveness of our MBRAR
for multiple QA systems. The mixture model-
based MBRAR method described in Section 3.2
is used to rank the combined answer outputs from
TD-QA and TI-QA, with ranking results shown in
Table 3 and 4.

From Table 3 and Table 4 we can see that, com-
paring to the ranking performances of single QA
systems TD-QA and TI-QA, MBRAR using two
QA systems’ outputs shows significant improve-
ments on both Jeopardy! and web questions. Fur-
thermore, comparing to MBRAR on single QA
system, MBRAR on multiple QA systems can pro-
vide extra gains on both questions sets as well.

Jeopardy! Succeed@1 Succeed@2 Succeed@3

TD-QA 2,289 2,693 2,885
TI-QA 2,527 3,397 3,821

MBRAR 2,891 3,668 4,033

Table 3: Impacts of MBRAR for multiple QA sys-
tems on Jeopardy! questions.

Web Succeed@1 Succeed@2 Succeed@3

TD-QA 97 128 146
TI-QA 95 122 136

MBRAR 108 137 152

Table 4: Impacts of MBRAR for multiple QA sys-
tems on web questions.

6 Conclusions and Future Work

In this paper, we present two MBR-based answer
re-ranking approaches for QA. Comparing to pre-
vious methods, MBRAR provides a systematic
way to re-rank answers from either single or multi-
ple QA systems, without considering their hetero-
geneous implementations of internal components.
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Experiments on questions from two different do-
mains show that, our proposed method can sig-
nificantly improve the ranking performances. In
future, we will add more QA systems into our M-
BRAR framework, and design more features for
the MBR gain function.
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Abstract

Question answering systems have been de-
veloped for many languages, but most re-
sources were created for English, which
can be a problem when developing a sys-
tem in another language such as French.
In particular, for question classification,
no labeled question corpus is available for
French, so this paper studies the possi-
bility to use existing English corpora and
transfer a classification by translating the
question and their labels. By translating
the training corpus, we obtain results close
to a monolingual setting.

1 Introduction

In question answering (QA), as in most Natural
Language Processing domains, English is the best
resourced language, in terms of corpora, lexicons,
or systems. Many methods are based on super-
vised machine learning which is made possible by
the great amount of resources for this language.

While developing a question answering system
for French, we were thus limited by the lack of
resources for this language. Some were created,
for example for answer validation (Grappy et al.,
2011). Yet, for question classification, although
question corpora in French exist, only a small part
of them is annotated with question classes, and
such an annotation is costly. We thus wondered
if it was possible to use existing English corpora,
in this case the data used in (Li and Roth, 2002),
to create a classification module for French.

Transfering knowledge from one language to
another is usually done by exploiting parallel cor-
pora; yet in this case, few such corpora exists
(CLEF QA datasets could be used, but question
classes are not very precise). We thus investigated
the possibility of using machine translation to cre-
ate a parallel corpus, as has been done for spoken

language understanding (Jabaian et al., 2011) for
example. The idea is that using machine transla-
tion would enable us to have a large training cor-
pus, either by using the English one and translat-
ing the test corpus, or by translating the training
corpus. One of the questions posed was whether
the quality of present machine translation systems
would enable to learn the classification properly.

This paper presents a question classification
transfer method, which results are close to those
of a monolingual system. The contributions of the
paper are the following:

• comparison of train-on-target and test-on-
source strategies for question classification;

• creation of an effective question classification
system for French, with minimal annotation
effort.

This paper is organized as follows: The problem
of Question Classification is defined in section 2.
The proposed methods are presented in section 3,
and the experiments in section 4. Section 5 details
the related works in Question Answering. Finally,
Section 6 concludes with a summary and a few
directions for future work.

2 Problem definition

A Question Answering (QA) system aims at re-
turning a precise answer to a natural language
question: if asked ”How large is the Lincoln
Memorial?”, a QA system should return the an-
swer ”164 acres” as well as a justifying snippet.
Most systems include a question classification step
which determines the expected answer type, for
example area in the previous case. This type can
then be used to extract the correct answer in docu-
ments.

Detecting the answer type is usually consid-
ered as a multiclass classification problem, with
each answer type representing a class. (Zhang and
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Figure 1: Methods for transfering question classi-
fication

Lee, 2003) showed that a training corpus of sev-
eral thousands of questions was required to obtain
around 90% correct classification, which makes it
a costly process to adapt a system to another lan-
guage than English. In this paper, we wish to learn
such a system for French, without having to man-
ually annotate thousands of questions.

3 Transfering question classification

The two methods tested for transfering the classi-
fication, following (Jabaian et al., 2011), are pre-
sented in Figure 1:

• The first one (on the left), called test-on-
source, consists in learning a classification
model in English, and to translate the test cor-
pus from French to English, in order to apply
the English model on the translated test cor-
pus.

• The second one (on the right), called train-
on-target, consists in translating the training
corpus from English to French. We obtain an
labeled French corpus, on which it is possible
to learn a classification model.

In the first case, classification is learned on well
written questions; yet, as the test corpus is trans-
lated, translation errors may disturb the classifier.
In the second case, the classification model will
be learned on less well written questions, but the
corpus may be large enough to compensate for the
loss in quality.

Figure 2: Some of the question categories pro-
posed by (Li and Roth, 2002)

4 Experiments

4.1 Question classes

We used the question taxonomy proposed by (Li
and Roth, 2002), which enabled us to compare
our results to those obtained by (Zhang and Lee,
2003) on English. This taxonomy contains two
levels: the first one contains 50 fine grained cat-
egories, the second one contains 6 coarse grained
categories. Figure 2 presents a few of these cate-
gories.

4.2 Corpora

For English, we used the data from (Li and Roth,
2002), which was assembled from USC, UIUC
and TREC collections, and has been manually la-
beled according to their taxonomy. The training
set contains 5,500 labeled questions, and the test-
ing set contains 500 questions.

For French, we gathered questions from several
evaluation campaigns: QA@CLEF 2005, 2006,
2007, EQueR and Quæro 2008, 2009 and 2010.
After elimination of duplicated questions, we ob-
tained a corpus of 1,421 questions, which were di-
vided into a training set of 728 questions, and a test
set of 693 questions 1. Some of these questions
were already labeled, and we manually annotated
the rest of them.

Translation was performed by Google Trans-
late online interface, which had satisfactory per-
formance on interrogative forms, which are not
well handled by all machine translation systems 2.

1This distribution is due to further constraints on the sys-
tem.

2We tested other translation systems, but Google Trans-
late gave the best results.
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Train en en fr fr
(trans.)

Test en en fr fr
(trans.)

Method test-
on-
source

train-
on-
target

50 .798 .677 .794 .769
classes
6 .90 .735 .828 .84
classes

Table 1: Question classification precision for both
levels of the hierarchy (features = word n-grams,
classifier = libsvm)

4.3 Classification parameters

The classifier used was LibSVM (Chang and Lin,
2011) with default parameters, which offers one-
vs-one multiclass classification, and which (Zhang
and Lee, 2003) showed to be most effective for this
task.

We only considered surface features, and ex-
tracted bag-of-ngrams (with n = 1..2).

4.4 Results and discussion

Table 1 shows the results obtained with the basic
configuration, for both transfer methods.

Results are given in precision, i.e. the propor-
tion of correctly classified questions among the
test questions 3.

Using word n-grams, monolingual English clas-
sification obtains .798 correct classification for the
fine grained classes, and .90 for the coarse grained
classes, results which are very close to those ob-
tained by (Zhang and Lee, 2003).

On French, we obtain lower results: .769 for
fine grained classes, and .84 for coarse grained
classes, probably mostly due to the smallest size
of the training corpus: (Zhang and Lee, 2003) had
a precision of .65 for the fine grained classification
with a 1,000 questions training corpus.

When translating test questions from French
to English, classification precision decreases, as
was expected from (Cumbreras et al., 2006). Yet,
when translating the training corpus from English
to French and learning the classification model

3We measured the significance of precision differences
(Student t test, p=.05), for each level of the hierarchy between
each test, and, unless indicated otherwise, comparable results
are significantly different in each condition.

Train en fr fr
(trans.)

Test en fr fr
Method train-

on-
target

50 .822 .798 .807
classes
6
classes .92 .841 .872

Table 2: Question classification precision for both
levels of the hierarchy (features = word n-grams
with abbreviations, classifier = libsvm)

on this translated corpus, precision is close to
the French monolingual one for coarse grained
classes and a little higher than monolingual for
fine grained classification (and close to the English
monolingual one): this method gives precisions of
.794 for fine grained classes and .828 for coarse
grained classes.

One possible explanation is that the condition
when test questions are translated is very sensitive
to translation errors: if one of the test questions
is not correcly translated, the classifier will have
a hard time categorizing it. If the training cor-
pus is translated, translation errors can be counter-
balanced by correct translations. In the following
results, we do not consider the ”en to en (trans)”
method since it systematically gives lower results.

As results were lower than our existing rule-
based method, we added parts-of-speech as fea-
tures in order to try to improve them, as well as
semantic classes: the classes are lists of words re-
lated to a particular category; for example ”pres-
ident” usually means that a person is expected as
an answer. Table 2 shows the classification perfor-
mance with this additional information.

Classification is slightly improved, but only for
coarse grained classes (the difference is not signif-
icant for fine grained classes).

When analyzing the results, we noted that most
confusion errors were due to the type of features
given as inputs: for example, to correctly clas-
sify the question ”What is BPH?” as a question
expecting an expression corresponding to an ab-
breviation (ABBR:exp class in the hierarchy), it
is necessary to know that ”BPH” is an abbrevia-
tion. We thus added a specific feature to detect if
a question word is an abbreviation, simply by test-
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Train en fr fr
(trans.)

Test en fr fr
50 .804 .837 .828
classes
6
classes .904 .869 .900

Table 3: Question classification precision for both
levels of the hierarchy (features = word n-grams
with abbreviations, classifier = libsvm)

ing if it contains only upper case letters, and nor-
malizing them. Table 3 gives the results with this
additional feature (we only kept the method with
translation of the training corpus since results were
much higher).

Precision is improved for both levels of the hi-
erarchy: for fine grained classes, results increase
from .794 to .837, and for coarse grained classes,
from .828 to .869. Remaining classification errors
are much more disparate.

5 Related work

Most question answering systems include ques-
tion classification, which is generally based on su-
pervised learning. (Li and Roth, 2002) trained
the SNoW hierarchical classifier for question clas-
sification, with a 50 classes fine grained hierar-
chy, and a coarse grained one of 6 classes. The
features used are words, parts-of-speech, chunks,
named entities, chunk heads and words related to
a class. They obtain 98.8% correct classification
of the coarse grained classes, and 95% on the fine
grained one. This hierarchy was widely used by
other QA systems.

(Zhang and Lee, 2003) studied the classifica-
tion performance according to the classifier and
training dataser size, as well as the contribution of
question parse trees. Their results are 87% correct
classification on coarse grained classes and 80%
on fine grained classes with vectorial attributes,
and 90% correct classification on coarse grained
classes and 80% on fine grained classes with struc-
tured input and tree kerneks.

These question classifications were used for
English only. Adapting the methods to other
languages requires to annotated large corpora of
questions.

In order to classify questions in different lan-
guages, (Solorio et al., 2004) proposed an in-

ternet based approach to determine the expected
type. By combining this information with ques-
tion words, they obtain 84% correct classification
for English, 84% for Spanish and 89% for Ital-
ian, with a cross validation on a 450 question cor-
pus for 7 question classes. One of the limitations
raised by the authors is the lack of large labeled
corpora for all languages.

A possibility to overcome this lack of resources
is to use existing English resources. (Cumbreras
et al., 2006) developed a QA system for Spanish,
based on an English QA system, by translating the
questions from Spanish to English. They obtain a
65% precision for Spanish question classification,
while English classification are correctly classified
with an 80% precision. This method thus leads to
an important drop in performance.

Crosslingual QA systems, in which the question
is in a different language than the documents, also
usually rely on English systems, and translate an-
swers for example (Bos and Nissim, 2006; Bow-
den et al., 2008).

6 Conclusion

This paper presents a comparison between two
transfer modes to adapt question classification
from English to French. Results show that trans-
lating the training corpus gives better results than
translating the test corpus.

Part-of-speech information only was used, but
since (Zhang and Lee, 2003) showed that best re-
sults are obtained with parse trees and tree kernels,
it could be interesting to test this additional in-
formation; yet, parsing translated questions may
prove unreliable.

Finally, as interrogative forms occur rarely is
corpora, their translation is usually of a slightly
lower quality. A possible future direction for this
work could be to use a specific model of transla-
tion for questions in order to learn question classi-
fication on higher quality translations.
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M.Á.G. Cumbreras, L. López, and F.M. Santiago.
2006. Bruja: Question classification for spanish. us-
ing machine translation and an english classifier. In
Proceedings of the Workshop on Multilingual Ques-
tion Answering, pages 39–44. Association for Com-
putational Linguistics.

Arnaud Grappy, Brigitte Grau, Mathieu-Henri Falco,
Anne-Laure Ligozat, Isabelle Robba, and Anne Vil-
nat. 2011. Selecting answers to questions from
web documents by a robust validation process. In
IEEE/WIC/ACM International Conference on Web
Intelligence.

Bassam Jabaian, Laurent Besacier, and Fabrice
Lefèvre. 2011. Combination of stochastic under-
standing and machine translation systems for lan-
guage portability of dialogue systems. In Acous-
tics, Speech and Signal Processing (ICASSP), 2011
IEEE International Conference on, pages 5612–
5615. IEEE.

X. Li and D. Roth. 2002. Learning question classifiers.
In Proceedings of the 19th international conference
on Computational linguistics-Volume 1, pages 1–7.
Association for Computational Linguistics.
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Abstract

Retrieving similar questions is very
important in community-based ques-
tion answering(CQA). In this paper,
we propose a unified question retrieval
model based on latent semantic index-
ing with tensor analysis, which can cap-
ture word associations among different
parts of CQA triples simultaneously.
Thus, our method can reduce lexical
chasm of question retrieval with the
help of the information of question con-
tent and answer parts. The experimen-
tal result shows that our method out-
performs the traditional methods.

1 Introduction
Community-based (or collaborative) ques-

tion answering(CQA) such as Yahoo! An-
swers1 and Baidu Zhidao2 has become a pop-
ular online service in recent years. Unlike tra-
ditional question answering (QA), information
seekers can post their questions on a CQA
website which are later answered by other
users. However, with the increase of the CQA
archive, there accumulate massive duplicate
questions on CQA websites. One of the pri-
mary reasons is that information seekers can-
not retrieve answers they need and thus post
another new question consequently. There-
fore, it becomes more and more important to
find semantically similar questions.

The major challenge for CQA retrieval is the
lexical gap (or lexical chasm) among the ques-
tions (Jeon et al., 2005b; Xue et al., 2008),

1http://answers.yahoo.com/
2http://zhidao.baidu.com/

Query:
Q: Why is my laptop screen blinking?
Expected:
Q1: How to troubleshoot a flashing
screen on an LCD monitor?
Not Expected:
Q2: How to blinking text on screen
with PowerPoint?

Table 1: An example on question retrieval

as shown in Table 1. Since question-answer
pairs are usually short, the word mismatch-
ing problem is especially important. However,
due to the lexical gap between questions and
answers as well as spam typically existing in
user-generated content, filtering and ranking
answers is very challenging.

The earlier studies mainly focus on generat-
ing redundant features, or finding textual clues
using machine learning techniques; none of
them ever consider questions and their answers
as relational data but instead model them as
independent information. Moreover, they only
consider the answers of the current question,
and ignore any previous knowledge that would
be helpful to bridge the lexical and se mantic
gap.

In recent years, many methods have been
proposed to solve the word mismatching prob-
lem between user questions and the questions
in a QA archive(Blooma and Kurian, 2011),
among which the translation-based (Riezler et
al., 2007; Xue et al., 2008; Zhou et al., 2011)
or syntactic-based approaches (Wang et al.,
2009) methods have been proven to improve
the performance of CQA retrieval.

However, most of these approaches used
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pipeline methods: (1) modeling word asso-
ciation; (2) question retrieval combined with
other models, such as vector space model
(VSM), Okapi model (Robertson et al., 1994)
or language model (LM). The pipeline meth-
ods often have many non-trivial experimental
setting and result to be very hard to repro-
duce.

In this paper, we propose a novel unified
retrieval model for CQA, latent semantic
tensor indexing (LSTI), which is an exten-
sion of the conventional latent semantic index-
ing (LSI) (Deerwester et al., 1990). Similar
to LSI, LSTI can integrate the two detached
parts (modeling word association and question
retrieval) into a single model.

In traditional document retrieval, LSI is an
effective method to overcome two of the most
severe constraints on Boolean keyword queries:
synonymy, that is, multiple words with similar
meanings, and polysemy, or words with more
than one meanings.

Usually in a CQA archive, each en-
try (or question) is in the following triple
form:⟨question title, question content,
answer⟩. Because the performance based
solely on the content or the answer part is
less than satisfactory, many works proposed
that additional relevant information should be
provided to help question retrieval(Xue et al.,
2008). For example, if a question title contains
the keyword “why”, the CQA triple, which
contains “because” or “reason” in its answer
part, is more likely to be what the user looks
for.

Since each triple in CQA has three parts, the
natural representation of the CQA collection
is a three-dimensional array, or 3rd-order ten-
sor, rather than a matrix. Based on the tensor
decomposition, we can model the word associ-
ation simultaneously in the pairs: question-
question, question-body and question-answer.

The rest of the paper is organized as fol-
lows: Section 3 introduces the concept of LSI.
Section 4 presents our method. Section 5 de-
scribes the experimental analysis. Section 6
concludes the paper.

2 Related Works

There are some related works on question re-
trieval in CQA. Various query expansion tech-

niques have been studied to solve word mis-
match problems between queries and docu-
ments. The early works on question retrieval
can be traced back to finding similar ques-
tions in Frequently Asked Questions (FAQ)
archives, such as the FAQ finder (Burke et al.,
1997), which usually used statistical and se-
mantic similarity measures to rank FAQs.

Jeon et al. (2005a; 2005b) compared four
different retrieval methods, i.e., the vector
space model(Jijkoun and de Rijke, 2005),
the Okapi BM25 model (Robertson et al.,
1994), the language model, and the trans-
lation model, for question retrieval on CQA
data, and the experimental results showed
that the translation model outperforms the
others. However, they focused only on similar-
ity measures between queries (questions) and
question titles.

In subsequent work (Xue et al., 2008), a
translation-based language model combining
the translation model and the language model
for question retrieval was proposed. The
results showed that translation models help
question retrieval since they could effectively
address the word mismatch problem of ques-
tions. Additionally, they also explored an-
swers in question retrieval.

Duan et al. (2008) proposed a solution that
made use of question structures for retrieval
by building a structure tree for questions in
a category of Yahoo! Answers, which gave
more weight to important phrases in question
matching.

Wang et al. (2009) employed a parser to
build syntactic trees for questions, and ques-
tions were ranked based on the similarity be-
tween their syntactic trees and that of the
query question.

It is worth noting that our method is to-
tally different to the work (Cai et al., 2006)
of the same name. They regard documents
as matrices, or the second order tensors to
generate a low rank approximations of ma-
trices (Ye, 2005). For example, they convert
a 1, 000, 000-dimensional vector of word space
into a 1000 × 1000 matrix. However in our
model, a document is still represented by a
vector. We just project a higher-dimensional
vector to a lower-dimensional vector, but not
a matrix in Cai’s model. A 3rd-order tensor is
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also introduced in our model for better repre-
sentation for CQA corpus.

3 Latent Semantic Indexing
Latent Semantic Indexing (LSI) (Deer-

wester et al., 1990), also called Latent Seman-
tic Analysis (LSA), is an approach to auto-
matic indexing and information retrieval that
attempts to overcome these problems by map-
ping documents as well as terms to a represen-
tation in the so-called latent semantic space.

The key idea of LSI is to map documents
(and by symmetry terms) to a low dimen-
sional vector space, the latent semantic space.
This mapping is computed by decomposing
the term-document matrix N with SVD, N =
UΣV t, where U and V are orthogonal matri-
ces U tU = V tV = I and the diagonal matrix
Σ contains the singular values of N . The LSA
approximation of N is computed by just keep
the largest K singular values in Σ, which is
rank K optimal in the sense of the L2-norm.

LSI has proven to result in more robust word
processing in many applications.

4 Tensor Analysis for CQA
4.1 Tensor Algebra

We first introduce the notation and basic
definitions of multilinear algebra. Scalars are
denoted by lower case letters (a, b, . . . ), vectors
by bold lower case letters (a, b, . . . ), matri-
ces by bold upper-case letters (A, B, . . . ), and
higher-order tensors by calligraphic upper-case
letters (A, B, . . . ).

A tensor, also known as n-way array, is a
higher order generalization of a vector (first
order tensor) and a matrix (second order ten-
sor). The order of tensor D ∈ RI1×I2×···×IN is
N . An element of D is denoted as di1,...,N .

An Nth-order tensor can be flattened into
a matrix by N ways. We denote the matrix
D(n) as the mode-n flattening of D (Kolda,
2002).

Similar with a matrix, an Nth-order tensor
can be decomposed through “N -mode singu-
lar value decomposition (SVD)”, which is a an
extension of SVD that expresses the tensor as
the mode-n product of N -orthogonal spaces.

D = Z ×1 U1 ×2 U2 · · ·×n Un · · ·×N UN . (1)

Tensor Z, known as the core tensor, is analo-
gous to the diagonal singular value matrix in
conventional matrix SVD. Z is in general a
full tensor. The core tensor governs the in-
teraction between the mode matrices Un, for
n = 1, . . . , N . Mode matrix Un contains the
orthogonal left singular vectors of the mode-n
flattened matrix D(n).

The N -mode SVD algorithm for decompos-
ing D is as follows:

1. For n = 1, . . . , N , compute matrix Un in
Eq.(1) by computing the SVD of the flat-
tened matrix D(n) and setting Un to be
the left matrix of the SVD.

2. Solve for the core tensor as follows Z =
D ×1 UT

1 ×2 UT
2 · · · ×n UT

n · · · ×N UT
N .

4.2 CQA Tensor
Given a collection of CQA triples, ⟨qi, ci, ai⟩

(i = 1, . . . , K), where qi is the question and
ci and ai are the content and answer of qi

respectively. We can use a 3-order tensor
D ∈ RK×3×T to represent the collection, where
T is the number of terms. The first dimension
corresponds to entries, the second dimension,
to parts and the third dimension, to the terms.

For example, the flattened matrix of CQA
tensor with “terms” direction is composed
by three sub-matrices MTitle, MContent and
MAnswer, as was illustrated in Figure 1. Each
sub-matrix is equivalent to the traditional
document-term matrix.

Figure 1: Flattening CQA tensor with “terms”
(right matrix)and “entries” (bottom matrix)

Denote pi,j to be part j of entry i. Then we
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have the term frequency, defined as follows.

tfi,j,k =
ni,j,k∑
i ni,j,k

, (2)

where ni,j,k is the number of occurrences of the
considered term (tk) in pi,j , and the denomi-
nator is the sum of number of occurrences of
all terms in pi,j .

The inverse document frequency is a mea-
sure of the general importance of the term.

idfj,k = log |K|
1 +

∑
i I(tk ∈ pi,j)

, (3)

where |K| is the total number of entries and
I(·) is the indicator function.

Then the element di,j,k of tensor D is

di,j,k = tfi,j,k × idfj,k. (4)

4.3 Latent Semantic Tensor Indexing
For the CQA tensor, we can decompose it

as illustrated in Figure 2.

D = Z ×1 UEntry ×2 UPart ×3 UTerm, (5)

where UEntry, UPart and UTerm are left sin-
gular matrices of corresponding flattened ma-
trices. UTerm spans the term space, and we
just use the vectors corresponding to the 1, 000
largest singular values in this paper, denoted
as U′Term.

Figure 2: 3-mode SVD of CQA tensor

To deal with such a huge sparse data set, we
use singular value decomposition (SVD) im-
plemented in Apache Mahout3 machine learn-
ing library, which is implemented on top
of Apache Hadoop4 using the map/reduce
paradigm and scalable to reasonably large
data sets.

3http://mahout.apache.org/
4http://hadoop.apache.org

4.4 Question Retrieval
In order to retrieve similar question effec-

tively, we project each CQA triple Dq ∈
R1×3×T to the term space by

D̂i = Di ×3 U′T
Term. (6)

Given a new question only with title part,
we can represent it by tensor Dq ∈ R1×3×T ,
and its MContent and MAnswer are zero ma-
trices. Then we project Dq to the term space
and get D̂q.

Here, D̂q and D̂i are degraded tensors and
can be regarded as matrices. Thus, we can cal-
culate the similarity between D̂q and D̂i with
normalized Frobenius inner product.

For two matrices A and B, the Frobenius
inner product, indicated as A : B, is the
component-wise inner product of two matrices
as though they are vectors.

A : B =
∑

i,j

Ai,jBi,j (7)

To reduce the affect of length, we use the
normalized Frobenius inner product.

A : B =
A : B√

A : A ×
√

B : B
(8)

While given a new question both with title
and content parts, MContent is not a zero ma-
trix and could be also employed in the question
retrieval process. A simple strategy is to sum
up the scores of two parts.

5 Experiments

5.1 Datasets
We collected the resolved CQA triples from

the “computer” category of Yahoo! Answers
and Baidu Zhidao websites. We just selected
the resolved questions that already have been
given their best answers. The CQA triples are
preprocessed with stopwords removal (Chinese
sentences are segmented into words in advance
by FudanNLP toolkit(Qiu et al., 2013)).

In order to evaluate our retrieval system, we
divide our dataset into two parts. The first
part is used as training dataset; the rest is used
as test dataset for evaluation. The datasets are
shown in Table 2.
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DataSet training
data size

test data
size

Baidu Zhidao 423k 1000
Yahoo! Answers 300k 1000

Table 2: Statistics of Collected Datasets

Methods MAP
Okapi 0.359
LSI 0.387

(Jeon et al., 2005b) 0.372
(Xue et al., 2008) 0.381

LSTI 0.415

Table 3: Retrieval Performance on Dataset
from Yahoo! Answers

5.2 Evaluation

We compare our method with two baseline
methods: Okapi BM25 and LSI and two state-
of-the-art methods: (Jeon et al., 2005b)(Xue
et al., 2008). In LSI, we regard each triple
as a single document. Three annotators are
involved in the evaluation process. Given a
returned result, two annotators are asked to
label it with “relevant” or “irrelevant”. If an
annotator considers the returned result seman-
tically equivalent to the queried question, he
labels it as “relevant”; otherwise, it is labeled
as “irrelevant”. If a conflict happens, the third
annotator will make the final judgement.

We use mean average precision (MAP)
to evaluate the effectiveness of each method.

The experiment results are illustrated in Ta-
ble 3 and 4, which show that our method out-
performs the others on both datasets.

The primary reason is that we incorpo-
rate the content of the question body and
the answer parts into the process of ques-
tion retrieval, which should provide addi-
tional relevance information. Different to

Methods MAP
Okapi 0.423
LSI 0.490

(Jeon et al., 2005b) 0.498
(Xue et al., 2008) 0.512

LSTI 0.523

Table 4: Retrieval Performance on Dataset
from Baidu Zhidao

the translation-based methods, our method
can capture the mapping relations in three
parts (question, content and answer) simulta-
neously.

It is worth noting that the problem of data
sparsity is more crucial for LSTI since the size
of a tensor in LSTI is larger than a term-
document matrix in LSI. When the size of data
is small, LSTI tends to just align the common
words and thus cannot find the correspond-
ing relations among the focus words in CQA
triples. Therefore, more CQA triples may re-
sult in better performance for our method.

6 Conclusion
In this paper, we proposed a novel re-

trieval approach for community-based QA,
called LSTI, which analyzes the CQA triples
with naturally tensor representation. LSTI
is a unified model and effectively resolves the
problem of lexical chasm for question retrieval.
For future research, we will extend LSTI to
a probabilistic form (Hofmann, 1999) for bet-
ter scalability and investigate its performance
with a larger corpus.
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Abstract
Some words are more contentful than oth-
ers: for instance, make is intuitively more
general than produce and fifteen is more
‘precise’ than a group. In this paper,
we propose to measure the ‘semantic con-
tent’ of lexical items, as modelled by
distributional representations. We inves-
tigate the hypothesis that semantic con-
tent can be computed using the Kullback-
Leibler (KL) divergence, an information-
theoretic measure of the relative entropy
of two distributions. In a task focus-
ing on retrieving the correct ordering of
hyponym-hypernym pairs, the KL diver-
gence achieves close to 80% precision but
does not outperform a simpler (linguis-
tically unmotivated) frequency measure.
We suggest that this result illustrates the
rather ‘intensional’ aspect of distributions.

1 Introduction

Distributional semantics is a representation of lex-
ical meaning that relies on a statistical analysis
of the way words are used in corpora (Curran,
2003; Turney and Pantel, 2010; Erk, 2012). In
this framework, the semantics of a lexical item is
accounted for by modelling its co-occurrence with
other words (or any larger lexical context). The
representation of a target word is thus a vector in a
space where each dimension corresponds to a pos-
sible context. The weights of the vector compo-
nents can take various forms, ranging from sim-
ple co-occurrence frequencies to functions such as
Pointwise Mutual Information (for an overview,
see (Evert, 2004)).

This paper investigates the issue of comput-
ing the semantic content of distributional vectors.

That is, we look at the ways we can distribution-
ally express that make is a more general verb than
produce, which is itself more general than, for
instance, weave. Although the task is related to
the identification of hyponymy relations, it aims
to reflect a more encompassing phenomenon: we
wish to be able to compare the semantic content of
words within parts-of-speech where the standard
notion of hyponymy does not apply (e.g. preposi-
tions: see with vs. next to or of vs. concerning)
and across parts-of-speech (e.g. fifteen vs. group).

The hypothesis we will put forward is that se-
mantic content is related to notions of relative en-
tropy found in information theory. More specif-
ically, we hypothesise that the more specific a
word is, the more the distribution of the words
co-occurring with it will differ from the baseline
distribution of those words in the language as a
whole. (A more intuitive way to phrase this is that
the more specific a word is, the more information
it gives us about which other words are likely to
occur near it.) The specific measure of difference
that we will use is the Kullback-Leibler divergence
of the distribution of words co-ocurring with the
target word against the distribution of those words
in the language as a whole. We evaluate our hy-
pothesis against a subset of the WordNet hierar-
chy (given by (Baroni et al, 2012)), relying on the
intuition that in a hyponym-hypernym pair, the hy-
ponym should have higher semantic content than
its hypernym.

The paper is structured as follows. We first
define our notion of semantic content and moti-
vate the need for measuring semantic content in
distributional setups. We then describe the im-
plementation of the distributional system we use
in this paper, emphasising our choice of weight-
ing measure. We show that, using the compo-
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nents of the described weighting measure, which
are both probability distributions, we can calculate
the relative entropy of a distribution by inserting
those probability distributions in the equation for
the Kullback-Leibler (KL) divergence. We finally
evaluate the KL measure against a basic notion of
frequency and conclude with some error analysis.

2 Semantic content

As a first approximation, we will define seman-
tic content as informativeness with respect to de-
notation. Following Searle (1969), we will take
a ‘successful reference’ to be a speech act where
the choice of words used by the speaker appropri-
ately identifies a referent for the hearer. Glossing
over questions of pragmatics, we will assume that
a more informative word is more likely to lead to
a successful reference than a less informative one.
That is, if Kim owns a cat and a dog, the identify-
ing expression my cat is a better referent than my
pet and so cat can be said to have more semantic
content than pet.

While our definition relies on reference, it also
posits a correspondence between actual utterances
and denotation. Given two possible identifying ex-
pressions e1 and e2, e1 may be preferred in a par-
ticular context, and so, context will be an indicator
of the amount of semantic content in an expres-
sion. In Section 5, we will produce an explicit
hypothesis for how the amount of semantic con-
tent in a lexical item affects the contexts in which
it appears.

A case where semantic content has a direct cor-
respondence with a lexical relation is hyponymy.
Here, the correspondence relies entirely on a basic
notion of extension. For instance, it is clear that
hammer is more contentful than tool because the
extension of hammer is smaller than that of tool,
and therefore more discriminating in a given iden-
tifying expression (See Give me the hammer ver-
sus Give me the tool). But we can also talk about
semantic content in cases where the notion of ex-
tension does not necessarily apply. For example,
it is not usual to talk of the extension of a prepo-
sition. However, in context, the use of a preposi-
tion against another one might be more discrim-
inating in terms of reference. Compare a) Sandy
is with Kim and b) Sandy is next to Kim. Given a
set of possible situations involving, say, Kim and
Sandy at a party, we could show that b) is more
discriminating than a), because it excludes the sit-

uations where Sandy came to the party with Kim
but is currently talking to Kay at the other end of
the room. The fact that next to expresses physi-
cal proximity, as opposed to just being in the same
situation, confers it more semantic content accord-
ing to our definition. Further still, there may be a
need for comparing the informativeness of words
across parts of speech (compare A group of/Fifteen
people was/were waiting in front of the town hall).

Although we will not discuss this in detail, there
is a notion of semantic content above the word
level which should naturally derive from compo-
sition rules. For instance, we would expect the
composition of a given intersective adjective and
a given noun to result into a phrase with a seman-
tic content greater than that of its components (or
at least equal to it).

3 Motivation

The last few years have seen a growing interest in
distributional semantics as a representation of lex-
ical meaning. Owing to their mathematical inter-
pretation, distributions allow linguists to simulate
human similarity judgements (Lund, Burgess and
Atchley, 1995), and also reproduce some of the
features given by test subjects when asked to write
down the characteristics of a given concept (Ba-
roni and Lenci, 2008). In a distributional semantic
space, for instance, the word ‘cat’ may be close to
‘dog’ or to ‘tiger’, and its vector might have high
values along the dimensions ‘meow’, ‘mouse’ and
‘pet’. Distributional semantics has had great suc-
cesses in recent years, and for many computational
linguists, it is an essential tool for modelling phe-
nomena affected by lexical meaning.

If distributional semantics is to be seen as
a general-purpose representation, however, we
should evaluate it across all properties which we
deem relevant to a model of the lexicon. We con-
sider semantic content to be one such property. It
underlies the notion of hyponymy and naturally
models our intuitions about the ‘precision’ (as op-
posed to ‘vagueness’) of words.

Further, semantic content may be crucial in
solving some fundamental problems of distribu-
tional semantics. As pointed out by McNally
(2013), there is no easy way to define the notion
of a function word and this has consequences for
theories where function words are not assigned
a distributional representation. McNally suggests
that the most appropriate way to separate function
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from content words might, in the end, involve tak-
ing into account how much ‘descriptive’ content
they have.

4 An implementation of a distributional
system

The distributional system we implemented for this
paper is close to the system of Mitchell and La-
pata (2010) (subsequently M&L). As background
data, we use the British National Corpus (BNC) in
lemmatised format. Each lemma is followed by a
part of speech according to the CLAWS tagset for-
mat (Leech, Garside, and Bryant, 1994). For our
experiments, we only keep the first letter of each
part-of-speech tag, thus obtaining broad categories
such as N or V. Furthermore, we only retain words
in the following categories: nouns, verbs, adjec-
tives and adverbs (punctuation is ignored). Each
article in the corpus is converted into a 11-word
window format, that is, we are assuming that con-
text in our system is defined by the five words pre-
ceding and the five words following the target.

To calculate co-occurrences, we use the follow-
ing equations:

freqci =
∑

t

freqci,t (1)

freqt =
∑

ci

freqci,t (2)

freqtotal =
∑

ci,t

freqci,t (3)

The quantities in these equations represent the
following:

freqci,t frequency of the context word ci
with the target word t

freqtotal total count of word tokens
freqt frequency of the target word t
freqci frequency of the context word ci

As in M&L, we use the 2000 most frequent
words in our corpus as the semantic space dimen-
sions. M&L calculate the weight of each context
term in the distribution as follows:

vi(t) =
p(ci|t)
p(ci)

=
freqci,t × freqtotal
freqt × freqci

(4)

We will not directly use the measure vi(t) as it
is not a probability distribution and so is not suit-
able for entropic analysis; instead our analysis will

be phrased in terms of the probability distributions
p(ci|t) and p(ci) (the numerator and denominator
in vi(t)).

5 Semantic content as entropy: two
measures

Resnik (1995) uses the notion of information con-
tent to improve on the standard edge counting
methods proposed to measure similarity in tax-
onomies such as WordNet. He proposes that the
information content of a term t is given by the self-
information measure − log p(t). The idea behind
this measure is that, as the frequency of the term
increases, its informativeness decreases. Although
a good first approximation, the measure cannot be
said to truly reflect our concept of semantic con-
tent. For instance, in the British National Corpus,
time and see are more frequent than thing or may
and man is more frequent than part. However, it
seems intuitively right to say that time, see and
man are more ‘precise’ concepts than thing, may
and part respectively. Or said otherwise, there is
no indication that more general concepts occur in
speech more than less general ones. We will there-
fore consider self-information as a baseline.

As we expect more specific words to be more
informative about which words co-occur with
them, it is natural to try to measure the specificity
of a word by using notions from information the-
ory to analyse the probability distribution p(ci|t)
associated with the word. The standard notion
of entropy is not appropriate for this purpose, be-
cause it does not take account of the fact that the
words serving as semantic space dimensions may
have different frequencies in language as a whole,
i.e. of the fact that p(ci) does not have a uniform
distribution. Instead we need to measure the de-
gree to which p(ci|t) differs from the context word
distribution p(ci). An appropriate measure for this
is the Kullback-Leibler (KL) divergence or rela-
tive entropy:

DKL(P‖Q) =
∑

i

ln(
P (i)

Q(i)
)P (i) (5)

By taking P (i) to be p(ci|t) andQ(i) to be p(ci)
(as given by Equation 4), we calculate the rela-
tive entropy of p(ci|t) and p(ci). The measure is
clearly informative: it reflects the way that t mod-
ifies the expectation of seeing ci in the corpus.
We hypothesise that when compared to the distri-
bution p(ci), more informative words will have a
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more ‘distorted’ distribution p(ci|t) and that the
KL divergence will reflect this.1

6 Evaluation

In Section 2, we defined semantic content as a no-
tion encompassing various referential properties,
including a basic concept of extension in cases
where it is applicable. However, we do not know
of a dataset providing human judgements over the
general informativeness of lexical items. So in or-
der to evaluate our proposed measure, we inves-
tigate its ability to retrieve the right ordering of
hyponym pairs, which can be considered a subset
of the issue at hand.

Our assumption is that if X is a hypernym of
Y , then the information content inX will be lower
than in Y (because it has a more ‘general’ mean-
ing). So, given a pair of words {w1, w2} in a
known hyponymy relation, we should be able to
tell which of w1 or w2 is the hypernym by com-
puting the respective KL divergences.

We use the hypernym data provided by (Baroni
et al, 2012) as testbed for our experiment.2 This
set of hyponym-hypernym pairs contains 1385 in-
stances retrieved from the WordNet hierarchy. Be-
fore running our system on the data, we make
slight modifications to it. First, as our distributions
are created over the British National Corpus, some
spellings must be converted to British English: for
instance, color is replaced by colour. Second, five
of the nouns included in the test set are not in the
BNC. Those nouns are brethren, intranet, iPod,
webcam and IX. We remove the pairs containing
those words from the data. Third, numbers such as
eleven or sixty are present in the Baroni et al set as
nouns, but not in the BNC. Pairs containing seven
such numbers are therefore also removed from the
data. Finally, we encounter tagging issues with
three words, which we match to their BNC equiv-
alents: acoustics and annals are matched to acous-
tic and annal, and trouser to trousers. These mod-
ifications result in a test set of 1279 remaining
pairs.

We then calculate both the self-information
measure and the KL divergence of all terms in-

1Note that KL divergence is not symmetric:
DKL(p(ci|t)‖p(ci))) is not necessarily equal to
DKL(p(ci)‖p(ci|t)). The latter is inferior as a few
very small values of p(ci|t) can have an inappropriately large
effect on it.

2The data is available at http://clic.cimec.
unitn.it/Files/PublicData/eacl2012-data.
zip.

cluded in our test set. In order to evaluate the sys-
tem, we record whether the calculated entropies
match the order of each hypernym-hyponym pair.
That is, we count a pair as correctly represented
by our system if w1 is a hypernym of w2 and
KL(w1) < KL(w2) (or, in the case of the
baseline, SI(w1) < SI(w2) where SI is self-
information).

Self-information obtains 80.8% precision on the
task, with the KL divergence lagging a little be-
hind with 79.4% precision (the difference is not
significant). In other terms, both measures per-
form comparably. We analyse potential reasons
for this disappointing result in the next section.

7 Error analysis

It is worth reminding ourselves of the assumption
we made with regard to semantic content. Our
hypothesis was that with a ‘more general’ target
word t, the p(ci|t) distribution would be fairly
similar to p(ci).

Manually checking some of the pairs which
were wrongly classified by the KL divergence re-
veals that our hypothesis might not hold. For ex-
ample, the pair beer – beverage is classified in-
correctly. When looking at the beverage distri-
bution, it is clear that it does not conform to our
expectations: it shows high vi(t) weights along
the food, wine, coffee and tea dimensions, for in-
stance, i.e. there is a large difference between
p(cfood) and p(cfood|t), etc. Although beverage
is an umbrella word for many various types of
drinks, speakers of English use it in very partic-
ular contexts. So, distributionally, it is not a ‘gen-
eral word’. Similar observations can be made for,
e.g. liquid (strongly associated with gas, presum-
ably via coordination), anniversary (linked to the
verb mark or the noun silver), or again projectile
(co-occurring with weapon, motion and speed).

The general point is that, as pointed out else-
where in the literature (Erk, 2013), distributions
are a good representation of (some aspects of) in-
tension, but they are less apt to model extension.3

So a term with a large extension like beverage
may have a more restricted (distributional) inten-
sion than a word with a smaller extension, such as

3We qualify ‘intension’ here, because in the sense of a
mapping from possible worlds to extensions, intension can-
not be said to be provided by distributions: the distribution of
beverage, it seems, does not allow us to successfully pick out
all beverages in the real world.
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beer.4

Contributing to this issue, fixed phrases, named
entities and generally strong collocations skew our
distributions. So for instance, in the jewelry distri-
bution, the most highly weighted context is mental
(with vi(t) = 395.3) because of the music album
Mental Jewelry. While named entities could eas-
ily be eliminated from the system’s results by pre-
processing the corpus with a named entity recog-
niser, the issue is not so simple when it comes to
fixed phrases of a more compositional nature (e.g.
army ant): excluding them might be detrimental
for the representation (it is, after all, part of the
meaning of ant that it can be used metaphorically
to refer to people) and identifying such phrases is
a non-trivial problem in itself.

Some of the errors we observe may also be
related to word senses. For instance, the word
medium, to be found in the pair magazine –
medium, can be synonymous with middle, clair-
voyant or again mode of communication. In the
sense of clairvoyant, it is clearly more specific
than in the sense intended in the test pair. As dis-
tributions do not distinguish between senses, this
will have an effect on our results.

8 Conclusion

In this paper, we attempted to define a mea-
sure of distributional semantic content in or-
der to model the fact that some words have a
more general meaning than others. We com-
pared the Kullback-Leibler divergence to a sim-
ple self-information measure. Our experiments,
which involved retrieving the correct ordering of
hyponym-hypernym pairs, had disappointing re-
sults: the KL divergence was unable to outperform
self-information, and both measures misclassified
around 20% of our testset.

Our error analysis showed that several factors
contributed to the misclassifications. First, distri-
butions are unable to model extensional properties
which, in many cases, account for the feeling that a
word is more general than another. Second, strong
collocation effects can influence the measurement
of information negatively: it is an open question
which phrases should be considered ‘words-with-
spaces’ when building distributions. Finally, dis-

4Although it is more difficult to talk of the extension of
e.g. adverbials (very) or some adjectives (skillful), the general
point is that text is biased towards a certain usage of words,
while the general meaning a competent speaker ascribes to
lexical items does not necessarily follow this bias.

tributional representations do not distinguish be-
tween word senses, which in many cases is a de-
sirable feature, but interferes with the task we sug-
gested in this work.

To conclude, we would like to stress that we do
not think another information-theoretic measure
would perform hugely better than the KL diver-
gence. The point is that the nature of distributional
vectors makes them sensitive to word usage and
that, despite the general assumption behind dis-
tributional semantics, word usage might not suf-
fice to model all aspects of lexical semantics. We
leave as an open problem the issue of whether a
modified form of our ‘basic’ distributional vectors
would encode the right information.
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Abstract 

This paper aims at understanding what hu-

man think in textual entailment (TE) recogni-

tion process and modeling their thinking pro-

cess to deal with this problem. We first ana-

lyze a labeled RTE-5 test set and find that the 

negative entailment phenomena are very ef-

fective features for TE recognition. Then, a 

method is proposed to extract this kind of 

phenomena from text-hypothesis pairs auto-

matically. We evaluate the performance of 

using the negative entailment phenomena on 

both the English RTE-5 dataset and Chinese 

NTCIR-9 RITE dataset, and conclude the 

same findings. 

1 Introduction 

Textual Entailment (TE) is a directional relation-

ship between pairs of text expressions, text (T) 

and hypothesis (H). If human would agree that 

the meaning of H can be inferred from the mean-

ing of T, we say that T entails H (Dagan et al., 

2006). The researches on textual entailment have 

attracted much attention in recent years due to its 

potential applications (Androutsopoulos and Ma-

lakasiotis, 2010). Recognizing Textual Entail-

ment (RTE) (Bentivogli, et al., 2011), a series of 

evaluations on the developments of English TE 

recognition technologies, have been held seven 

times up to 2011. In the meanwhile, TE recogni-

tion technologies in other languages are also un-

derway (Shima, et al., 2011).   

Sammons, et al., (2010) propose an evaluation 

metric to examine the characteristics of a TE 

recognition system. They annotate text-

hypothesis pairs selected from the RTE-5 test set 

with a series of linguistic phenomena required in 

the human inference process. The RTE systems 

are evaluated by the new indicators, such as how 

many T-H pairs annotated with a particular phe-

nomenon can be correctly recognized. The indi-

cators can tell developers which systems are bet-

ter to deal with T-H pairs with the appearance of 

which phenomenon. That would give developers 

a direction to enhance their RTE systems. 

Such linguistic phenomena are thought as im-

portant in the human inference process by anno-

tators. In this paper, we use this valuable re-

source from a different aspect. We aim at know-

ing the ultimate performance of TE recognition 

systems which embody human knowledge in the 

inference process. The experiments show five 

negative entailment phenomena are strong fea-

tures for TE recognition, and this finding con-

firms the previous study of Vanderwende et al. 

(2006). We propose a method to acquire the lin-

guistic phenomena automatically and use them in 

TE recognition.  

This paper is organized as follows. In Section 

2, we introduce linguistic phenomena used by 

annotators in the inference process and point out 

five significant negative entailment phenomena. 

Section 3 proposes a method to extract them 

from T-H pairs automatically, and discuss their 

effects on TE recognition. In Section 4, we ex-

tend the methodology to the BC (binary class 

subtask) dataset distributed by NTCIR-9 RITE 

task (Shima, et al., 2011) and discuss their ef-

fects on TE recognition in Chinese. Section 5 

concludes the remarks. 

2 Human Inference Process in TE 

We regard the human annotated phenomena as 

features in recognizing the binary entailment re-

lation between the given T-H pairs, i.e., EN-

TAILMENT and NO ENTAILMENT. Total 210 

T-H pairs are chosen from the RTE-5 test set by 

Sammons et al. (2010), and total 39 linguistic 

phenomena divided into the 5 aspects, including 

knowledge domains, hypothesis structures, infer-

ence phenomena, negative entailment phenome-
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na, and knowledge resources, are annotated on 

the selected dataset. 

2.1 Five aspects as features 

We train SVM classifiers to evaluate the perfor-

mances of the five aspects of phenomena as fea-

tures for TE recognition. LIBSVM RBF kernel 

(Chang and Lin, 2011) is adopted to develop 

classifiers with the parameters tuned by grid 

search. The experiments are done with 10-fold 

cross validation. 

For the dataset of Sammons et al. (2010), two 

annotators are involved in labeling the above 39 

linguistic phenomena on the T-H pairs. They 

may agree or disagree in the annotation. In the 

experiments, we consider the effects of their 

agreement. Table 1 shows the results. Five as-

pects are first regarded as individual features, 

and are then merged together. Schemes “Annota-

tor A” and “Annotator B” mean the phenomena 

labelled by annotator A and annotator B are used 

as features respectively.  The “A AND B” 

scheme, a strict criterion, denotes a phenomenon 

exists in a T-H pair only if both annotators agree 

with its appearance. In contrast, the “A OR B” 

scheme, a looser criterion, denotes a phenome-

non exists in a T-H pair if at least one annotator 

marks its appearance. 

We can see that the aspect of negative entail-

ment phenomena is the most significant feature 

among the five aspects. With only 9 phenomena 

in this aspect, the SVM classifier achieves accu-

racy above 90% no matter which labeling 

schemes are adopted. Comparatively, the best 

accuracy in RTE-5 task is 73.5% (Iftene and 

Moruz, 2009). In negative entailment phenomena 

aspect, the “A OR B” scheme achieves the best 

accuracy. In the following experiments, we adopt 

this labeling scheme. 

2.2 Negative entailment phenomena 

There is a large gap between using negative en-

tailment phenomena and using the second effec-

tive features (i.e., inference phenomena). Moreo-

ver, using the negative entailment phenomena as 

features only is even better than using all the 39 

linguistic phenomena. We further analyze which 

negative entailment phenomena are more signifi-

cant. 

There are nine linguistic phenomena in the as-

pect of negative entailment. We take each phe-

nomenon as a single feature to do the two-way 

textual entailment recognition. The “A OR B” 

scheme is applied. Table 2 shows the experi-

mental results. 

 Annotator A Annotator B A AND B A OR B 

Knowledge  

Domains 
50.95% 52.38% 52.38% 50.95% 

Hypothesis  

Structures 
50.95% 51.90% 50.95% 51.90% 

Inference  

Phenomena 
74.29% 72.38% 72.86% 74.76% 

Negative  

Entailment  

Phenomena 

97.14% 95.71% 92.38% 97.62% 

Knowledge  
Resources 

69.05% 69.52% 67.62% 69.52% 

ALL  97.14% 92.20% 90.48% 97.14% 

Table 1: Accuracy of recognizing binary TE rela-

tion with the five aspects as features. 

 
Phenomenon ID Negative entailment  

Phenomenon  

Accuracy 

0 Named Entity mismatch 60.95% 

1 Numeric Quantity mismatch 54.76% 

2 Disconnected argument 55.24% 

3 Disconnected relation 57.62% 

4 Exclusive argument 61.90% 

5 Exclusive relation 56.67% 

6 Missing modifier 56.19% 

7 Missing argument 69.52% 

8 Missing relation 68.57% 

Table 2: Accuracy of recognizing TE relation 

with individual negative entailment phenomena. 

 

The 1
st
 column is phenomenon ID, the 2

nd
 col-

umn is the phenomenon, and the 3
rd

 column is 

the accuracy of using the phenomenon in the bi-

nary classification. Comparing with the best ac-

curacy 97.62% shown in Table 1, the highest 

accuracy in Table 2 is 69.52%, when missing 

argument is adopted. It shows that each phenom-

enon is suitable for some T-H pairs, and merging 

all negative entailment phenomena together 

achieves the best performance.  

We consider all possible combinations of 

these 9 negative entailment phenomena, i.e., 

  
 +…+   

  =511 feature settings, and use each 

feature setting to do 2-way entailment relation 

recognition by LIBSVM. The notation   
  de-

notes a set of 
  

(   )   
 feature settings, each with 

n features.  

The model using all nine phenomena achieves 

the best accuracy of 97.62%. Examining the 

combination sets, we find phenomena IDs 3, 4, 5, 

7 and 8 appear quite often in the top 4 feature 

settings of each combination set. In fact, this set-

ting achieves an accuracy of 95.24%, which is 

the best performance in   
  combination set. On 

the one hand, adding more phenomena into (3, 4, 

5, 7, 8) setting does not have much performance 

difference.  

In the above experiments, we do all the anal-

yses on the corpus annotated with linguistic phe-

nomena by human. We aim at knowing the ulti-
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mate performance of TE recognition systems 

embodying human knowledge in the inference. 

The human knowledge in the inference cannot be 

captured by TE recognition systems fully correct-

ly. In the later experiments, we explore the five 

critical features, (3, 4, 5, 7, 8), and examine how 

the performance is affected if they are extracted 

automatically. 

3 Negative Entailment Phenomena Ex-

traction 

The experimental results in Section 2.2 show that 

disconnected relation, exclusive argument, ex-

clusive relation, missing argument, and missing 

relation are significant. We follow the definitions 

of Sammons et al. (2010) and show them as fol-

lows. 

(a) Disconnected Relation. The arguments and 

the relations in Hypothesis (H) are all matched 

by counterparts in Text (T). None of the argu-

ments in T is connected to the matching relation. 

(b) Exclusive Argument. There is a relation 

common to both the hypothesis and the text, but 

one argument is matched in a way that makes H 

contradict T. 

(c) Exclusive Relation. There are two or more 

arguments in the hypothesis that are also related 

in the text, but by a relation that means H contra-

dicts T. 

(d) Missing Argument. Entailment fails be-

cause an argument in the Hypothesis is not pre-

sent in the Text, either explicitly or implicitly. 

(e) Missing Relation. Entailment fails because 

a relation in the Hypothesis is not present in the 

Text, either explicitly or implicitly. 

To model the annotator’s inference process, 

we must first determine the arguments and the 

relations existing in T and H, and then align the 

arguments and relations in H to the related ones 

in T. It is easy for human to find the important 

parts in a text description in the inference process, 

but it is challenging for a machine to determine 

what words are important and what are not, and 

to detect the boundary of arguments and relations. 

Moreover, two arguments (relations) of strong 

semantic relatedness are not always literally 

identical.  

In the following, a method is proposed to ex-

tract the phenomena from T-H pairs automatical-

ly. Before extraction, the English T-H pairs are 

pre-processed by numerical character transfor-

mation, POS tagging, and dependency parsing 

with Stanford Parser (Marneffe, et al., 2006; 

Levy and Manning, 2003), and stemming with 

NLTK (Bird, 2006). 

3.1 A feature extraction method 

Given a T-H pair, we first extract 4 sets of noun 

phrases based on their POS tags, including {noun 

in H}, {named entity (nnp) in H}, {compound 

noun (cnn) in T}, and {compound noun (cnn) in 

H}.  Then, we extract 2 sets of relations, includ-

ing {relation in H} and {relation in T}, where 

each relation in the sets is in a form of Predi-

cate(Argument1, Argument2).  Some typical ex-

amples of relations are verb(subject, object) for 

verb phrases, neg(A, B) for negations, num(Noun, 

number) for numeric modifier, and tmod(C, tem-

poral argument) for temporal modifier. A predi-

cate has only 2 arguments in this representation. 

Thus, a di-transitive verb is in terms of two rela-

tions. 

Instead of measuring the relatedness of T-H 

pairs by comparing T and H on the predicate-

argument structure (Wang and Zhang, 2009), our 

method tries to find the five negative entailment 

phenomena based on the similar representation. 

Each of the five negative entailment phenomena 

is extracted as follows according to their defini-

tions. To reduce the error propagation which may 

be arisen from the parsing errors, we directly 

match those nouns and named entities appearing 

in H to the text T. Furthermore, we introduce 

WordNet to align arguments in H to T. 

(a) Disconnected Relation. If (1) for each a  

{noun in H}{nnp in H}{cnn in H}, we can 

find a  T too, and (2) for each r1=h(a1,a2)  

{relation in H}, we can find a relation r2=h(a3,a4) 

 {relation in T} with the same header h, but 

with different arguments, i.e., a3≠a1 and a4≠a2, 

then we say the T-H pair has the “Disconnected 

Relation”  phenomenon. 

(b) Exclusive Argument. If there exist a rela-

tion r1=h(a1,a2){relation in H}, and a relation 

r2=h(a3,a4){relation in T} where both relations 

have the same header h, but either the pair (a1,a3) 

or the pair (a2,a4) is an antonym by looking up 

WordNet, then we say the T-H pair has the “Ex-

clusive Argument” phenomenon.   

(c) Exclusive Relation. If there exist a relation 

r1=h1(a1,a2){relation in T}, and a relation 

r2=h2(a1,a2){relation in H} where both relations 

have the same arguments, but h1 and h2 have the 

opposite meanings by consulting WordNet, then 

we say that the T-H pair has the “Exclusive Rela-

tion” phenomenon. 
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(d) Missing Argument. For each argument a1 

{noun in H}{nnp in H}{cnn in H}, if there 

does not exist an argument a2T such that a1=a2, 

then we say that the T-H pair has “Missing Ar-

gument” phenomenon. 

(e) Missing Relation. For each relation 

r1=h1(a1,a2){relation in H}, if there does not 

exist a relation r2=h2(a3,a4){relation in T} such 

that h1=h2, then we say that the T-H pair has 

“Missing Relation” phenomenon. 

3.2 Experiments and discussion 

The following two datasets are used in English 

TE recognition experiments. 

(a) 210 pairs from part of RTE-5 test set. The 

210 T-H pairs are annotated with the linguistic 

phenomena by human annotators.  They are se-

lected from the 600 pairs in RTE-5 test set, in-

cluding 51% ENTAILMENT and 49% NO EN-

TAILMENT. 

(b) 600 pairs of RTE-5 test set. The original 

RTE-5 test set, including 50% ENTAILMENT 

and 50% NO ENTAILMENT.  

Table 3 shows the performances of TE recog-

nition. The “Machine-annotated” and the “Hu-

man-annotated” columns denote that the phe-

nomena annotated by machine and human are 

used in the evaluation respectively. Using “Hu-

man-annotated” phenomena can be seen as the 

upper-bound of the experiments. The perfor-

mance of using machine-annotated features in 

210-pair and 600-pair datasets is 52.38% and 

59.17% respectively. 

Though the performance of using the phenom-

ena extracted automatically by machine is not 

comparable to that of using the human annotated 

ones, the accuracy achieved by using only 5 fea-

tures (59.17%) is just a little lower than the aver-

age accuracy of all runs in RTE-5 formal runs 

(60.36%) (Bentivogli, et al., 2009). It shows that 

the significant phenomena are really effective in 

dealing with entailment recognition. If we can 

improve the performance of the automatic phe-

nomena extraction, it may make a great progress 

on the textual entailment. 

 
Phenomena 210 pairs 600 pairs 

Machine- 

annotated 

Human- 

annotated 

Machine- 

annotated 

Disconnected Relation 50.95% 57.62% 54.17% 

Exclusive Argument 50.95% 61.90% 55.67% 

Exclusive Relation 50.95% 56.67% 51.33% 

Missing Argument 53.81% 69.52% 56.17% 

Missing Relation 50.95% 68.57% 52.83% 

All 52.38% 95.24% 59.17% 

Table 3: Accuracy of textual entailment recogni-

tion using the extracted phenomena as features. 

4 Negative Entailment Phenomena in 

Chinese RITE Dataset 

To make sure if negative entailment phenomena 

exist in other languages, we apply the methodol-

ogies in Sections 2 and 3 to the RITE dataset in 

NTCIR-9. We annotate all the 9 negative entail-

ment phenomena on Chinese T-H pairs according 

to the definitions by Sammons et al. (2010) and 

analyze the effects of various combinations of 

the phenomena on the new annotated Chinese 

data. The accuracy of using all the 9 phenomena 

as features (i.e.,   
  setting) is 91.11%. It shows 

the same tendency as the analyses on English 

data. The significant negative entailment phe-

nomena on Chinese data, i.e., (3, 4, 5, 7, 8), are 

also identical to those on English data. The mod-

el using only 5 phenomena achieves an accuracy 

of 90.78%, which is very close to the perfor-

mance using all phenomena.  

We also classify the entailment relation using 

the phenomena extracted automatically by the 

similar method shown in Section 3.1, and get a 

similar result. The accuracy achieved by using 

the five automatically extracted phenomena as 

features is 57.11%, and the average accuracy of 

all runs in NTCIR-9 RITE task is 59.36% (Shima, 

et al., 2011). Compared to the other methods us-

ing a lot of features, only a small number of bi-

nary features are used in our method. Those ob-

servations establish what we can call a useful 

baseline for TE recognition. 

5 Conclusion 

In this paper we conclude that the negative en-

tailment phenomena have a great effect in deal-

ing with TE recognition. Systems with human 

annotated knowledge achieve very good perfor-

mance. Experimental results show that not only 

can it be applied to the English TE problem, but 

also has the similar effect on the Chinese TE 

recognition. Though the automatic extraction of 

the negative entailment phenomena still needs a 

lot of efforts, it gives us a new direction to deal 

with the TE problem.  

The fundamental issues such as determining 

the boundary of the arguments and the relations, 

finding the implicit arguments and relations, ver-

ifying the antonyms of arguments and relations, 

and determining their alignments need to be fur-

ther examined to extract correct negative entail-

ment phenomena. Besides, learning-based ap-

proaches to extract phenomena and multi-class 

TE recognition will be explored in the future.  
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Abstract
Textual entailment is an asymmetric rela-
tion between two text fragments that de-
scribes whether one fragment can be in-
ferred from the other. It thus cannot cap-
ture the notion that the target fragment
is “almost entailed” by the given text.
The recently suggested idea of partial tex-
tual entailment may remedy this problem.
We investigate partial entailment under the
faceted entailment model and the possibil-
ity of adapting existing textual entailment
methods to this setting. Indeed, our results
show that these methods are useful for rec-
ognizing partial entailment. We also pro-
vide a preliminary assessment of how par-
tial entailment may be used for recogniz-
ing (complete) textual entailment.

1 Introduction

Approaches for applied semantic inference over
texts gained growing attention in recent years,
largely triggered by the textual entailment frame-
work (Dagan et al., 2009). Textual entailment is
a generic paradigm for semantic inference, where
the objective is to recognize whether a textual hy-
pothesis (labeled H) can be inferred from another
given text (labeled T ). The definition of textual
entailment is in some sense strict, in that it requires
that H’s meaning be implied by T in its entirety.
This means that from an entailment perspective, a
text that contains the main ideas of a hypothesis,
but lacks a minor detail, is indiscernible from an
entirely unrelated text. For example, if T is “mus-
cles move bones”, andH “the main job of muscles
is to move bones”, then T does not entail H , and
we are left with no sense of how close (T,H) were
to entailment.

In the related problem of semantic text similar-
ity, gradual measures are already in use. The se-
mantic text similarity challenge in SemEval 2012

(Agirre et al., 2012) explicitly defined different
levels of similarity from 5 (semantic equivalence)
to 0 (no relation). For instance, 4 was defined
as “the two sentences are mostly equivalent, but
some unimportant details differ”, and 3 meant that
“the two sentences are roughly equivalent, but
some important information differs”. Though this
modeling does indeed provide finer-grained no-
tions of similarity, it is not appropriate for seman-
tic inference for two reasons. First, the term “im-
portant information” is vague; what makes one de-
tail more important than another? Secondly, simi-
larity is not sufficiently well-defined for sound se-
mantic inference; for example, “snowdrops bloom
in summer” and “snowdrops bloom in winter”
may be similar, but have contradictory meanings.
All in all, these measures of similarity do not quite
capture the gradual relation needed for semantic
inference.

An appealing approach to dealing with the
rigidity of textual entailment, while preserving the
more precise nature of the entailment definition, is
by breaking down the hypothesis into components,
and attempting to recognize whether each one is
individually entailed by T . It is called partial tex-
tual entailment, because we are only interested in
recognizing whether a single element of the hy-
pothesis is entailed. To differentiate the two tasks,
we will refer to the original textual entailment task
as complete textual entailment.

Partial textual entailment was first introduced
by Nielsen et al. (2009), who presented a ma-
chine learning approach and showed significant
improvement over baseline methods. Recently, a
public benchmark has become available through
the Joint Student Response Analysis and 8th Rec-
ognizing Textual Entailment (RTE) Challenge in
SemEval 2013 (Dzikovska et al., 2013), on which
we focus in this paper.

Our goal in this paper is to investigate the idea
of partial textual entailment, and assess whether
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existing complete textual entailment methods can
be used to recognize it. We assume the facet
model presented in SemEval 2013, and adapt ex-
isting technologies to the task of recognizing par-
tial entailment (Section 3). Our work further ex-
pands upon (Nielsen et al., 2009) by evaluating
these adapted methods on the new RTE-8 bench-
mark (Section 4). Partial entailment may also fa-
cilitate an alternative divide and conquer approach
to complete textual entailment. We provide an ini-
tial investigation of this approach (Section 5).

2 Task Definition

In order to tackle partial entailment, we need to
find a way to decompose a hypothesis. Nielsen et
al. (2009) defined a model of facets, where each
such facet is a pair of words in the hypothesis
and the direct semantic relation connecting those
two words. We assume the simplified model that
was used in RTE-8, where the relation between the
words is not explicitly stated. Instead, it remains
unstated, but its interpreted meaning should corre-
spond to the manner in which the words are related
in the hypothesis. For example, in the sentence
“the main job of muscles is to move bones”, the
pair (muscles, move) represents a facet. While it is
not explicitly stated, reading the original sentence
indicates that muscles is the agent of move.

Formally, the task of recognizing faceted entail-
ment is a binary classification task. Given a text T ,
a hypothesis H , and a facet within the hypothesis
(w1, w2), determine whether the facet is either ex-
pressed or unaddressed by the text. Nielsen et al
included additional classes such as contradicting,
but in the scope of this paper we will only tend to
the binary case, as was done in RTE-8.

Consider the following example:
T: Muscles generate movement in the body.
H: The main job of muscles is to move bones.

The facet (muscles, move) refers to the agent role
in H , and is expressed by T . However, the facet
(move, bones), which refers to a theme or direct
object relation in H , is unaddressed by T .

3 Recognizing Faceted Entailment

Our goal is to investigate whether existing entail-
ment recognition approaches can be adapted to
recognize faceted entailment. Hence, we speci-
fied relatively simple decision mechanisms over a
set of entailment detection modules. Given a text

and a facet, each module reports whether it rec-
ognizes entailment, and the decision mechanism
then determines the binary class (expressed or un-
addressed) accordingly.

3.1 Entailment Modules
Current textual entailment systems operate across
different linguistic levels, mainly on lexical infer-
ence and syntax. We examined three representa-
tive modules that reflect these levels: Exact Match,
Lexical Inference, and Syntactic Inference.

Exact Match We represent T as a bag-of-words
containing all tokens and lemmas appearing in the
text. We then check whether both facet lemmas
w1, w2 appear in the text’s bag-of-words. Exact
matching was used as a baseline in previous rec-
ognizing textual entailment challenges (Bentivogli
et al., 2011), and similar methods of lemma-
matching were used as a component in recogniz-
ing textual entailment systems (Clark and Harri-
son, 2010; Shnarch et al., 2011).

Lexical Inference This feature checks whether
both facet words, or semantically related words,
appear in T . We use WordNet (Fellbaum, 1998)
with the Resnik similarity measure (Resnik, 1995)
and count a facet term wi as matched if the sim-
ilarity score exceeds a certain threshold (0.9, em-
pirically determined on the training set). Both w1

and w2 must match for this module’s entailment
decision to be positive.

Syntactic Inference This module builds upon
the open source1 Bar-Ilan University Textual En-
tailment Engine (BIUTEE) (Stern and Dagan,
2011). BIUTEE operates on dependency trees by
applying a sequence of knowledge-based transfor-
mations that converts T into H . It determines en-
tailment according to the “cost” of generating the
hypothesis from the text. The cost model can be
automatically tuned with a relatively small train-
ing set. BIUTEE has shown state-of-the-art per-
formance on previous recognizing textual entail-
ment challenges (Stern and Dagan, 2012).

Since BIUTEE processes dependency trees,
both T and the facet must be parsed. We therefore
extract a path in H’s dependency tree that repre-
sents the facet. This is done by first parsing H ,
and then locating the two nodes whose words com-
pose the facet. We then find their lowest common
ancestor (LCA), and extract the path P from w1 to

1cs.biu.ac.il/˜nlp/downloads/biutee
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w2 through the LCA. This path is in fact a depen-
dency tree. BIUTEE can now be given T and P
(as the hypothesis), and try to recognize whether
the former entails the latter.

3.2 Decision Mechanisms
We started our experimentation process by defin-
ing Exact Match as a baseline. Though very sim-
ple, this unsupervised baseline performed surpris-
ingly well, with 0.96 precision and 0.32 recall on
expressed facets of the training data. Given its
very high precision, we decided to use this mod-
ule as an initial filter, and employ the others for
classifying the “harder” cases.

We present all the mechanisms that we tested:

Baseline Exact
BaseLex Exact ∨ Lexical
BaseSyn Exact ∨ Syntactic
Disjunction Exact ∨ Lexical ∨ Syntactic
Majority Exact ∨ (Lexical ∧ Syntactic)

Note that since every facet that Exact Match
classifies as expressed is also expressed by Lexi-
cal Inference, BaseLex is essentially Lexical Infer-
ence on its own, and Majority is equivalent to the
majority rule on all three modules.

4 Empirical Evaluation

4.1 Dataset: Student Response Analysis
We evaluated our methods as part of RTE-8. The
challenge focuses on the domain of scholastic
quizzes, and attempts to emulate the meticulous
marking process that teachers do on a daily basis.
Given a question, a student’s response, and a refer-
ence answer, the task of student response analysis
is to determine whether the student answered cor-
rectly. This task can be approximated as a special
case of textual entailment; by assigning the stu-
dent’s answer as T and the reference answer asH ,
we are basically asking whether one can infer the
correct (reference) answer from the student’s re-
sponse.

Recall the example from Section 2. In this case,
H is a reference answer to the question:

Q: What is the main job of muscles?

T is essentially the student answer, though it is
also possible to define T as the union of both the
question and the student answer. In this work, we
chose to exclude the question.

There were two tracks in the challenge: com-
plete textual entailment (the main task) and partial

Unseen Unseen Unseen
Answers Questions Domains

Baseline .670 .688 .731
BaseLex .756 .710 .760
BaseSyn .744 .733 .770
Disjunction .695 .655 .703
Majority .782 .765 .816

Table 1: Micro-averaged F1 on the faceted Sci-
EntsBank test set.

entailment (the pilot task). Both tasks made use of
the SciEntsBank corpus (Dzikovska et al., 2012),
which is annotated at facet-level, and provides a
convenient test-bed for evaluation of both partial
and complete entailment. This dataset was split
into train and test subsets. The test set has 16,263
facet-response pairs based on 5,106 student re-
sponses over 15 domains (learning modules). Per-
formance was measured using micro-averaged F1,
over three different scenarios:

Unseen Answers Classify new answers to ques-
tions seen in training. Contains 464 student re-
sponses.

Unseen Questions Classify new answers to
questions that were not seen in training, but other
questions from the same domain were. Contains
631 student responses.

Unseen Domains Classify new answers to un-
seen questions from unseen domains. Contains
4,011 student responses.

4.2 Results

Table 1 shows the F1-measure of each configu-
ration in each scenario. There is some variance
between the different scenarios; this may be at-
tributed to the fact that there are much fewer Un-
seen Answers and Unseen Questions instances. In
all cases, Majority significantly outperformed the
other configurations. While BaseLex and BaseSyn
improve upon the baseline, they seem to make dif-
ferent mistakes, in particular false positives. Their
conjunction is thus a more conservative indicator
of entailment, and proves helpful in terms of F1.
All improvements over the baseline were found
to be statistically significant using McNemar’s test
with p < 0.01 (excluding Disjunction). It is also
interesting to note that the systems’ performance
does not degrade in “harder” scenarios; this is a re-
sult of the mostly unsupervised nature of our mod-
ules.
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Unfortunately, our system was the only submis-
sion in the partial entailment pilot track of RTE-
8, so we have no comparisons with other sys-
tems. However, the absolute improvement from
the exact-match baseline to the more sophisticated
Majority is in the same ballpark as that of the best
systems in previous recognizing textual entailment
challenges. For instance, in the previous recogniz-
ing textual entailment challenge (Bentivogli et al.,
2011), the best system yielded an F1 score of 0.48,
while the baseline scored 0.374. We can therefore
conclude that existing approaches for recognizing
textual entailment can indeed be adapted for rec-
ognizing partial entailment.

5 Utilizing Partial Entailment for
Recognizing Complete Entailment

Encouraged by our results, we ask whether the
same algorithms that performed well on the
faceted entailment task can be used for recogniz-
ing complete textual entailment. We performed an
initial experiment that examines this concept and
sheds some light on the potential role of partial en-
tailment as a possible facilitator for complete en-
tailment.

We suggest the following 3-stage architecture:

1. Decompose the hypothesis into facets.
2. Determine whether each facet is entailed.
3. Aggregate the individual facet results and de-

cide on complete entailment accordingly.

Facet Decomposition For this initial investiga-
tion, we use the facets provided in SciEntsBank;
i.e. we assume that the step of facet decomposition
has already been carried out. When the dataset
was created for RTE-8, many facets were extracted
automatically, but only a subset was selected. The
facet selection process was done manually, as part
of the dataset’s annotation. For example, in “the
main job of muscles is to move bones”, the facet
(job, muscles) was not selected, because it was not
critical for answering the question. We refer to the
issue of relying on manual input further below.

Recognizing Faceted Entailment This step was
carried out as explained in the previous sections.
We used the Baseline configuration and Majority,
which performed best in our experiments above.
In addition, we introduce GoldBased that uses the
gold annotation of faceted entailment, and thus

Unseen Unseen Unseen
Answers Questions Domains

Baseline .575 .582 .683
Majority .707 .673 .764
GoldBased .842 .897 .852

BestComplete .773 .745 .712

Table 2: Micro-averaged F1 on the 2-way com-
plete entailment SciEntsBank test set.

provides a certain upper bound on the perfor-
mance of determining complete entailment based
on facets.

Aggregation We chose the simplest sensible ag-
gregation rule to decide on overall entailment: a
student answer is classified as correct (i.e. it en-
tails the reference answer) if it expresses each
of the reference answer’s facets. Although this
heuristic is logical from a strict entailment per-
spective, it might yield false negatives on this par-
ticular dataset. This happens because tutors may
sometimes grade answers as valid even if they
omit some less important, or indirectly implied,
facets.

Table 2 shows the experiment’s results. The
first thing to notice is that GoldBased is not per-
fect. There are two reasons for this behavior.
First, the task of student response analysis is only
an approximation of textual entailment, albeit a
good one. This discrepancy was also observed
by the RTE-8 challenge organizers (Dzikovska et
al., 2013). The second reason is because some of
the original facets were filtered when creating the
dataset. This caused both false positives (when
important facets were filtered out) and false neg-
atives (when unimportant facets were retained).

Our Majority mechanism, which requires that
the two underlying methods for partial entailment
detection (Lexical Inference and Syntactic Infer-
ence) agree on a positive classification, bridges
about half the gap from the baseline to the gold
based method. As a rough point of comparison,
we also show the performance of BestComplete,
the winning entry in each setting of the RTE-8
main task. This measure is not directly compara-
ble to our facet-based systems, because it did not
rely on manually selected facets, and due to some
variations in the dataset size (about 20% of the stu-
dent responses were not included in the pilot task
dataset). However, these results may indicate the
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prospects of using faceted entailment for complete
entailment recognition, suggesting it as an attrac-
tive research direction.

6 Conclusion and Future Work

In this paper, we presented an empirical attempt
to tackle the problem of partial textual entail-
ment. We demonstrated that existing methods for
recognizing (complete) textual entailment can be
successfully adapted to this setting. Our experi-
ments showed that boolean combinations of these
methods yield good results. Future research may
add additional features and more complex fea-
ture combination methods, such as weighted sums
tuned by machine learning. Furthermore, our
work focused on a specific decomposition model
– faceted entailment. Other flavors of partial en-
tailment should be investigated as well. Finally,
we examined the possibility of utilizing partial en-
tailment for recognizing complete entailment in a
semi-automatic setting, which relied on the man-
ual facet annotation in the RTE-8 dataset. Our
preliminary results suggest that this approach is
indeed feasible, and warrant further research on
facet-based entailment methods that rely on fully-
automatic facet extraction.
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Abstract
This paper introduces a supervised ap-
proach for performing sentence level di-
alect identification between Modern Stan-
dard Arabic and Egyptian Dialectal Ara-
bic. We use token level labels to de-
rive sentence-level features. These fea-
tures are then used with other core and
meta features to train a generative clas-
sifier that predicts the correct label for
each sentence in the given input text. The
system achieves an accuracy of 85.5%
on an Arabic online-commentary dataset
outperforming a previously proposed ap-
proach achieving 80.9% and reflecting a
significant gain over a majority baseline of
51.9% and two strong baseline systems of
78.5% and 80.4%, respectively.

1 Introduction

The Arabic language exists in a state of Diglos-
sia (Ferguson, 1959) where the standard form of
the language, Modern Standard Arabic (MSA) and
the regional dialects (DA) live side-by-side and
are closely related. MSA is the language used
in education, scripted speech and official settings
while DA is the native tongue of Arabic speak-
ers. Arabic dialects may be divided into five
main groups: Egyptian (including Libyan and Su-
danese), Levantine (including Lebanese, Syrian,
Palestinian and Jordanian), Gulf, Iraqi and Mo-
roccan (Maghrebi) (Habash, 2010). Even though
these dialects did not originally exist in a written
form, they are pervasively present in social me-
dia text (normally mixed with MSA) nowadays.
DA does not have a standard orthography leading
to many spelling variations and inconsistencies.
Linguistic Code switching (LCS) between MSA
and DA happens both intra-sententially and inter-
sententially. LCS in Arabic poses a serious chal-
lenge for almost all NLP tasks since MSA and DA

differ on all levels of linguistic representation. For
example, MSA trained tools perform very badly
when applied directly to DA or to a code-switched
DA-MSA text. Hence a need for a robust dialect
identification tool as a preprocessing step arises
both on the word and sentence levels.

In this paper, we focus on the problem of dialect
identification on the sentence level. We propose
a supervised approach for identifying whether a
given sentence is prevalently MSA or Egyptian
DA (EDA). The system uses the approach that was
presented in (Elfardy et al., 2013) to perform token
dialect identification. The token level decisions
are then combined with other features to train a
generative classifier that tries to predict the class
of the given sentence. The presented system out-
performs the approach presented by Zaidan and
Callison-Burch (2011) on the same dataset using
10-fold cross validation.

2 Related Work

Dialect Identification in Arabic is crucial for al-
most all NLP tasks, yet most of the research in
Arabic NLP, with few exceptions, is targeted to-
wards MSA. Biadsy et al. (2009) present a sys-
tem that identifies dialectal words in speech and
their dialect of origin through the acoustic signals.
Salloum and Habash (2011) tackle the problem of
DA to English Machine Translation (MT) by piv-
oting through MSA. The authors present a system
that applies transfer rules from DA to MSA then
uses state of the art MSA to English MT system.
Habash et al. (2012) present CODA, a Conven-
tional Orthography for Dialectal Arabic that aims
to standardize the orthography of all the variants
of DA while Dasigi and Diab (2011) present an
unsupervised clustering approach to identify or-
thographic variants in DA. Zaidan and Callison-
Burch (2011) crawl a large dataset of MSA-DA
news’ commentaries. The authors annotate part
of the dataset for sentence-level dialectalness on
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Amazon Mechanical Turk and try a language mod-
eling (LM) approach to solve the problem. In
Elfardy and Diab (2012a), we present a set of
guidelines for token-level identification of dialec-
talness while in (Elfardy and Diab, 2012b), (El-
fardy et al., 2013) we tackle the problem of token-
level dialect-identification by casting it as a code-
switching problem.

3 Approach to Sentence-Level Dialect
Identification

We present a supervised system that uses a Naive
Bayes classifier trained on gold labeled data with
sentence level binary decisions of either being
MSA or DA.

3.1 Features
The proposed supervised system uses two kinds of
features: (1) Core Features, and (2) Meta Features.

3.1.1 Core Features:
These features indicate how dialectal (or non di-
alectal) a given sentence is. They are further
divided into: (a) Token-based features and (b)
Perplexity-based features.
3.1.1.1 Token-based Features: We use the
approach that was presented in (Elfardy et al.,
2013) to decide upon the class of each word in
the given sentence. The aforementioned approach
relies on language models (LM) and MSA and
EDA Morphological Analyzer to decide whether
each word is (a) MSA, (b) EDA, (c) Both (MSA
& EDA) or (d) OOV. We use the token-level class
labels to estimate the percentage of EDA words
and the percentage of OOVs for each sentence.
These percentages are then used as features for
the proposed model. The following variants of the
underlying token-level system are built to assess
the effect of varying the level of preprocessing
on the underlying LM on the performance of the
overall sentence level dialect identification pro-
cess: (1) Surface, (2) Tokenized, (3) CODAfied,
and (4) Tokenized-CODA. We use the following
sentence to show the different techniques:
A
	
JJ
Ê«

Q�

�
J»ð Ð@Qk èY» kdh HrAm wktyr ElynA

1. Surface LMs: No significant preprocessing
is applied apart from the regular initial clean
up of the text which includes removal of
URLs, normalization of speech effects such
as reducing all redundant letters in a word to

1We use Buckwalter transliteration scheme
http://www.qamus.org/transliteration.htm

a standardized form, eg. the elongated form
of the word Q�


�
J» ktyr1 ‘a lot’ which could be

rendered in the text as Q�
�J
�J
�J

�
J�

�
J�

�
J�

�
J» kttttyyyyr

is reduced to Q�
 � J
 � J

�
J �

�
J �

�
J » ktttyyyr (specifi-

cally three repeated letters instead of an un-
predictable number of repetitions, to main-
tain the signal that there is a speech effect
which could be a DA indicator).
ex. A

	
JJ
Ê«

Q�

�
J»ð Ð@Qk èY»

kdh HrAm wktyr ElynA

2. Orthography Normalized (CODAfied)
LM: since DA is not originally a written
form of Arabic, no standard orthography
exists for it. Habash et al. (2012) attempt
to solve this problem by presenting CODA,
a conventional orthography for writing DA.
We use the implementation of CODA pre-
sented in CODAfy (Eskander et al., 2013),
to build an orthography-normalized LM.
While CODA and its applied version using
CODAfy solve the spelling inconsistency
problem in DA, special care must be taken
when using it for our task since it removes
valuable dialectalness cues. For example, the
letter �

H (v in Buckwalter (BW) Translitera-
tion) is converted into the letter �

H (t in BW)
in a DA context. CODA suggests that such
cases get mapped to the original MSA phono-
logical variant which might make the dialect
identification problem more challenging. On
the other hand, CODA solves the sparseness
issue by mapping multiple spelling-variants
to the same orthographic form leading to a
more robust LM.
ex. A

	
JJ
Ê«

Q�

�
J»ð Ð@Qk èY»

kdh HrAm wkvyr ElynA

3. Tokenized LM: D3 tokenization-scheme is
applied to all data using MADA (Habash et
al., 2009) (an MSA Tokenizer) for the MSA
corpora, and MADA-ARZ (Habash et al.,
2013) (an EDA tokenizer) for the EDA cor-
pora. For building the tokenized LM, we
maintain clitics and lexemes. Some clitics
are unique to MSA while others are unique to
EDA so maintaining them in the LM is help-
ful, eg. the negation enclitic �

� $ is only
used in EDA but it could be seen with an
MSA/EDA homograph, maintaining the en-
clitic in the LM facilitates the identification
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of the sequence as being EDA. 5-grams are
used for building the tokenized LMs (as op-
posed to 3-grams for the surface LMs)
ex. A

	
K ú



Î« Q�


�
J» ð Ð@Qk èY»

kdh HrAm w+ ktyr Ely +nA

4. Tokenized & Orthography Normalized
LMs: (Tokenized-CODA) The data is tok-
enized as in (3) then orthography normaliza-
tion is applied to the tokenized data.

ex. A
	
K ú



Î« Q�


�
J» ð Ð@Qk èY»

kdh HrAm w+ kvyr Ely +nA

In addition to the underlying token-level system,
we use the following token-level features:

1. Percentage of words in the sentence that is
analyzable by an MSA morphological ana-
lyzer.

2. Percentage of words in the sentence that is
analyzable by an EDA morphological ana-
lyzer.

3. Percentage of words in the sentence that ex-
ists in a precompiled EDA lexicon.

3.1.1.2 Perplexity-based Features: We run
each sentence through each of the MSA and EDA
LMs and record the perplexity for each of them.
The perplexity of a language model on a given test
sentence; S(w1, .., wn) is defined as:

perplexity = (2)−(1/N)
∑

i
log2(p(wi|hi)) (1)

where N is the number of tokens in the sentence
and hi is the history of token wi.

The perplexity conveys how confused the LM is
about the given sentence so the higher the perplex-
ity value, the less probable that the given sentence
matches the LM.2

3.1.2 Meta Features.

These are the features that do not directly relate
to the dialectalness of words in the given sentence
but rather estimate how informal the sentence is
and include:

• The percentage of punctuation, numbers,
special-characters and words written in Ro-
man script.

2We repeat this step for each of the preprocessing schemes
explained in section 3.1.1.1

• The percentage of words having word-
lengthening effects.
• Number of words & average word-length.
• Whether the sentence has consecutive re-

peated punctuation or not. (Binary feature,
yes/no)
• Whether the sentence has an exclamation

mark or not. (Binary feature, yes/no)
• Whether the sentence has emoticons or not.

(Binary feature, yes/no)

3.2 Model Training

We use the WEKA toolkit (Hall et al., 2009) and
the derived features to train a Naive-Bayes classi-
fier. The classifier is trained and cross-validated
on the gold-training data for each of our different
configurations (Surface, CODAfied, Tokenized &
Tokenized-CODA).

We conduct two sets of experiments. In the first
one, Experiment Set A, we split the data into a
training set and a held-out test set. In the second
set, Experiment Set B, we use the whole dataset
for training without further splitting. For both sets
of experiments, we apply 10-fold cross validation
on the training data. While using a held-out test-
set for evaluation (in the first set of experiments)
is a better indicator of how well our approach per-
forms on unseen data, only the results from the
second set of experiments are directly comparable
to those produced by Zaidan and Callison-Burch
(2011).

4 Experiments

4.1 Data

We use the code-switched EDA-MSA portion of
the crowd source annotated dataset by Zaidan
and Callison-Burch (2011). The dataset consists
of user commentaries on Egyptian news articles.
Table 1 shows the statistics of the data.

MSA Sent.EDA Sent.MSA Tok.EDA Tok.
Train 12,160 11,274 300,181 292,109
Test 1,352 1,253 32,048 32,648

Table 1: Number of EDA and MSA sentences and
tokens in the training and test datasets. In Experi-
ment Set A only the train-set is used to perform a
10-fold cross-validation and the test-set is used for
evaluation. In experiment Set B, all data is used to
perform the 10-fold cross-validation.
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(a) Experiment Set A (Uses 90% of the dataset) (b) Experiment Set B (Uses the whole dataset)

Figure 1: Learning curves for the different configurations (obtained by applying 10-fold cross validation
on the training set.)

4.2 Baselines

We use four baselines. The first of which is a
majority baseline (Maj-BL); that assigns all the
sentences the label of the most frequent class ob-
served in the training data. The second baseline
(Token-BL) assumes that the sentence is EDA if
more than 45% of its tokens are dialectal otherwise
it assumes it is MSA.3 The third baseline (Ppl-BL)
runs each sentence through MSA & EDA LMs and
assigns the sentence the class of the LM yielding
the lower perplexity value. The last baseline (OZ-
CCB-BL) is the result obtained by Zaidan and
Callison-Burch (2011) which uses the same ap-
proach of our third baseline, Ppl-BL.4 For Token-
BL and Ppl-BL, the performance is calculated
for all LM-sizes of the four different configura-
tions: Surface, CODAfied, Tokenized, Tokenized-
CODA and the best performing configuration on
the cross-validation set is used as the baseline sys-
tem.

4.3 Results & Discussion

For each of the different configurations, we build a
learning curve by varying the size of the LMs be-
tween 2M, 4M, 8M, 16M and 28M tokens. Figures
1a and 1b show the learning curves of the different
configurations on the cross-validation set for ex-
periments A & B respectively. In Table 2 we note
that both CODA and Tokenized solve the data-
sparseness issue hence they produce better results

3We experimented with different thresholds (15%, 30%,
45%, 60% and 75%) and the 45% threshold setting yielded

Condition Exp. Set A Exp. Set B

Maj-BL 51.9 51.9

Token-BL 79.1 78.5

Ppl-BL 80.4 80.4

OZ-CCB-BL N/A 80.9

Surface 82.4 82.6

CODA 82.7 82.8

Tokenized 85.3 85.5
Tokenized-CODA 84.9 84.9

Table 2: Performance Accuracies of the differ-
ent configurations of the 8M LM (best-performing
LM size) using 10-fold cross validation against the
different baselines.

than Surface experimental condition. However, as
mentioned earlier, CODA removes some dialectal-
ness cues so the improvement resulting from using
CODA is much less than that from using tokeniza-
tion. Also when combining CODA with tokeniza-
tion as in the condition Tokenized-CODA, the per-
formance drops since in this case the sparseness
issue has been already resolved by tokenization
so adding CODA only removes dialectalness cues.
For example Q�


�
J»ð wktyr ‘and a lot’ does not oc-

cur frequently in the data so when performing the
tokenization it becomes Q�


�
J » ð w+ ktyr which

on the contrary is frequent in the data. Adding

the best performance
4This baseline can only be compared to the results of the

second set of experiments.
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Condition Test Set

Maj-BL 51.9

Token-BL 77

Ppl-BL 81.1

Tokenized 83.3

Table 3: Performance Accuracies of the best-
performing configuration (Tokenized) on the held-
out test set against the baselines Maj-BL, Token-
BL and Ppl-BL.

Orthography-Normalization converts it to Q�

�
J» ð

w+ kvyr which is more MSA-like hence the con-
fusability increases.

All configurations outperform all baselines with
the Tokenized configuration producing the best re-
sults. The performance of all systems drop as
the size of the LM increases beyond 16M tokens.
As indicated in (Elfardy et al., 2013) as the size
of the MSA & EDA LMs increases, the shared
ngrams increase leading to higher confusability
between the classes of tokens in a given sentence.
Table 3 presents the results on the held out dataset
compared against three of the baselines, Maj-BL,
Token-BL and Ppl-BL. We note that the Tokenized
condition, the best performing condition, outper-
forms all baselines with a significant margin.

5 Conclusion

We presented a supervised approach for sentence
level dialect identification in Arabic. The ap-
proach uses features from an underlying system
for token-level identification of Egyptian Dialec-
tal Arabic in addition to other core and meta fea-
tures to decide whether a given sentence is MSA or
EDA. We studied the impact of two types of pre-
processing techniques (Tokenization and Orthog-
raphy Normalization) as well as varying the size of
the LM on the performance of our approach. The
presented approach produced significantly better
results than a previous approach in addition to
beating the majority baseline and two other strong
baselines.
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Abstract
Semantic parsing is a domain-dependent
process by nature, as its output is defined
over a set of domain symbols. Motivated
by the observation that interpretation can
be decomposed into domain-dependent
and independent components, we suggest
a novel interpretation model, which aug-
ments a domain dependent model with ab-
stract information that can be shared by
multiple domains. Our experiments show
that this type of information is useful and
can reduce the annotation effort signifi-
cantly when moving between domains.

1 Introduction

Natural Language (NL) understanding can be intu-
itively understood as a general capacity, mapping
words to entities and their relationships. However,
current work on automated NL understanding
(typically referenced as semantic parsing (Zettle-
moyer and Collins, 2005; Wong and Mooney,
2007; Chen and Mooney, 2008; Kwiatkowski et
al., 2010; Börschinger et al., 2011)) is restricted
to a given output domain1 (or task) consisting of a
closed set of meaning representation symbols, de-
scribing domains such as robotic soccer, database
queries and flight ordering systems.

In this work, we take a first step towards con-
structing a semantic interpreter that can leverage
information from multiple tasks. This is not a
straight forward objective – the domain specific
nature of semantic interpretation, as described in
the current literature, does not allow for an easy
move between domains. For example, a sys-
tem trained for the task of understanding database
queries will not be of any use when it will be given
a sentence describing robotic soccer instructions.

In order to understand this difficulty, a closer
look at semantic parsing is required. Given a sen-
tence, the interpretation process breaks it into a

1The term domain is overloaded in NLP; in this work we
use it to refer to the set of output symbols.

set of interdependent decisions, which rely on an
underlying representation mapping words to sym-
bols and syntactic patterns into compositional de-
cisions. This representation takes into account do-
main specific information (e.g., a lexicon mapping
phrases to a domain predicate) and is therefore of
little use when moving to a different domain.

In this work, we attempt to develop a domain in-
dependent approach to semantic parsing. We do it
by developing a layer of representation that is ap-
plicable to multiple domains. Specifically, we add
an intermediate layer capturing shallow semantic
relations between the input sentence constituents.
Unlike semantic parsing which maps the input to
a closed set of symbols, this layer can be used to
identify general predicate-argument structures in
the input sentence.The following example demon-
strates the key idea behind our representation –
two sentences from two different domains have a
similar intermediate structure.
Example 1. Domains with similar intermediate structures

• The [Pink goalie]ARG [kicks]PRED to [Pink11]ARG

pass(pink1, pink11)

• [She]ARG [walks]PRED to the [kitchen]ARG

go(sister, kitchen)

In this case, the constituents of the first
sentence (from the Robocup domain (Chen
and Mooney, 2008)), are assigned domain-
independent predicate-argument labels (e.g., the
word corresponding to a logical function is identi-
fied as a PRED). Note that it does not use any do-
main specific information, for example, the PRED

label assigned to the word “kicks” indicates that
this word is the predicate of the sentence, not a
specific domain predicate (e.g., pass(·)). The in-
termediate layer can be reused across domains.
The logical output associated with the second sen-
tence is taken from a different domain, using a dif-
ferent set of output symbols, however it shares the
same predicate-argument structure.

Despite the idealized example, in practice,
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leveraging this information is challenging, as the
logical structure is assumed to only weakly corre-
spond to the domain-independent structure, a cor-
respondence which may change in different do-
mains. The mismatch between the domain in-
dependent (linguistic) structure and logical struc-
tures typically stems from technical considera-
tions, as the domain logical language is designed
according to an application-specific logic and not
according to linguistic considerations. This situa-
tion is depicted in the following example, in which
one of the domain-independent labels is omitted.
• The [Pink goalie]ARG [kicks]PRED the [ball]ARG to [Pink11]ARG

pass(pink1, pink11)

In order to overcome this difficulty, we suggest
a flexible model that is able to leverage the super-
vision provided in one domain to learn an abstract
intermediate layer, and show empirically that it
learns a robust model, improving results signifi-
cantly in a second domain.

2 Semantic Interpretation Model

Our model consists of both domain-dependent
(mapping between text and a closed set of sym-
bols) and domain independent (abstract predicate-
argument structures) information. We formulate
the joint interpretation process as a structured pre-
diction problem, mapping a NL input sentence (x),
to its highest ranking interpretation and abstract
structure (y). The decision is quantified using a
linear objective, which uses a vector w, mapping
features to weights and a feature function Φ which
maps the output decision to a feature vector. The
output interpretation y is described using a sub-
set of first order logic, consisting of typed con-
stants (e.g., robotic soccer player), functions cap-
turing relations between entities, and their prop-
erties (e.g., pass(x, y), where pass is a function
symbol and x, y are typed arguments). We use
data taken from two grounded domains, describing
robotic soccer events and household situations.

We begin by formulating the domain-specific
process. We follow (Goldwasser et al., 2011;
Clarke et al., 2010) and formalize semantic infer-
ence as an Integer Linear Program (ILP). Due to
space consideration, we provide a brief descrip-
tion (see (Clarke et al., 2010) for more details).
We then proceed to augment this model with
domain-independent information, and connect the
two models by constraining the ILP model.

2.1 Domain-Dependent Model

Interpretation is composed of several decisions,
capturing mapping of input tokens to logical frag-
ments (first order) and their composition into
larger fragments (second). We encode a first-order
decision as αcs, a binary variable indicating that
constituent c is aligned with the logical symbol s.
A second-order decision βcs,dt, is encoded as a bi-
nary variable indicating that the symbol t (associ-
ated with constituent d) is an argument of a func-
tion s (associated with constituent c). The overall
inference problem (Eq. 1) is as follows:

Fw(x) = arg maxα,β
∑
c∈x

∑
s∈D αcs ·wTΦ1(x, c, s)

+
∑
c,d∈x

∑
s,t∈D βcs,dt ·wTΦ2(x, c, s, d, t) (1)

We restrict the possible assignments to the deci-
sion variables, forcing the resulting output formula
to be syntactically legal, for example by restrict-
ing active β-variables to be type consistent, and
forcing the resulting functional composition to be
acyclic and fully connected (we refer the reader to
(Clarke et al., 2010) for more details). We take ad-
vantage of the flexible ILP framework and encode
these restrictions as global constraints.

Features We use two types of feature, first-order
Φ1 and second-order Φ2. Φ1 depends on lexical
information: each mapping of a lexical item c to a
domain symbol s generates a feature. In addition
each combination of a lexical item c and an sym-
bol type generates a feature.
Φ2 captures a pair of symbols and their alignment
to lexical items. Given a second-order decision
βcs,dt, a feature is generated considering the nor-
malized distance between the head words in the
constituents c and d. Another feature is gener-
ated for every composition of symbols (ignoring
the alignment to the text).

2.2 Domain-Independent Information

We enhance the decision process with informa-
tion that abstracts over the attributes of specific
domains by adding an intermediate layer consist-
ing of the predicate-argument structure of the sen-
tence. Consider the mappings described in Exam-
ple 1. Instead of relying on the mapping between
Pink goalie and pink1, this model tries to iden-
tify an ARG using different means. For example, the
fact that it is preceded by a determiner, or capital-
ized provide useful cues. We do not assume any
language specific knowledge and use features that
help capture these cues.
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This information is used to assist the overall
learning process. We assume that these labels cor-
respond to a binding to some logical symbol, and
encode it as a constraint forcing the relations be-
tween the two models. Moreover, since learning
this layer is a by-product of the learning process
(as it does not use any labeled data) forcing the
connection between the decisions is the mecha-
nism that drives learning this model.

Our domain-independent layer bears some
similarity to other semantic tasks, most no-
tably Semantic-Role Labeling (SRL) introduced
in (Gildea and Jurafsky, 2002), in which identi-
fying the predicate-argument structure is consid-
ered a preprocessing step, prior to assigning ar-
gument labels. Unlike SRL, which aims to iden-
tify linguistic structures alone, in our framework
these structures capture both natural-language and
domain-language considerations.

Domain-Independent Decision Variables We
add two new types of decisions abstracting over
the domain-specific decisions. We encode the new
decisions as γc and δcd. The first (γ) captures local
information helping to determine if a given con-
stituent c is likely to have a label (i.e., γPc for pred-
icate or γAc for argument). The second (δ) consid-
ers higher level structures, quantifying decisions
over both the labels of the constituents c,d as a
predicate-argument pair. Note, a given word c can
be labeled as PRED or ARG if γc and δcd are active.

Model’s Features We use the following fea-
tures: (1) Local Decisions Φ3(γ(c)) use a feature
indicating if c is capitalized, a set of features cap-
turing the context of c (window of size 2), such
as determiner and quantifier occurrences. Finally
we use a set of features capturing the suffix letters
of c, these features are useful in identifying verb
patterns. Features indicate if c is mapped to an ARG

or PRED. (2) Global Decision Φ4(δ(c, d)): a feature
indicating the relative location of c compared to d
in the input sentence. Additional features indicate
properties of the relative location, such as if the
word appears initially or finally in the sentence.

Combined Model In order to consider both
types of information we augment our decision
model with the new variables, resulting in the fol-
lowing objective function (Eq. 2).
Fw(x) = arg maxα,β

∑
c∈x

∑
s∈D αcs·w1

TΦ1(x, c, s)+

∑
c,d∈x

∑
s,t∈D

∑
i,j βcsi,dtj · w2

TΦ2(x, c, si, d, tj) +∑
c∈x γc ·w3

TΦ3(x, c)+
∑
c,d∈x δcd ·w4

TΦ4(x, c, d) (2)

For notational convenience we decompose the
weight vector w into four parts, w1,w2 for fea-
tures of (first, second) order domain-dependent de-
cisions, and similarly for the independent ones.
In addition, we also add new constraints tying
these new variables to semantic interpretation :
∀c ∈ x (γc → αc,s1 ∨ αc,s2 ∨ ... ∨ αc,sn)

∀c ∈ x, ∀d ∈ x (δc,d → βc,s1,dt1∨βc,s2,dt1∨...∨βc,sn,dtn)

(where n is the length of x).

2.3 Learning the Combined Model
The supervision to the learning process is given
via data consisting of pairs of sentences and (do-
main specific) semantic interpretation. Given that
we have introduced additional variables that cap-
ture the more abstract predicate-argument struc-
ture of the text, we need to induce these as la-
tent variables. Our decision model maps an input
sentence x, into a logical output y and predicate-
argument structure h. We are only supplied with
training data pertaining to the input (x) and out-
put (y). We use a variant of the latent structure
perceptron to learn in these settings2.

3 Experimental Settings

Situated Language This dataset, introduced in
(Bordes et al., 2010), describes situations in a sim-
ulated world. The dataset consists of triplets of the
form - (x,u, y), where x is a NL sentence describ-
ing a situation (e.g., “He goes to the kitchen”), u
is a world state consisting of grounded relations
(e.g., loc(John, Kitchen)) description, and y is
a logical interpretation corresponding to x.

The original dataset was used for concept tag-
ging, which does not include a compositional as-
pect. We automatically generated the full logical
structure by mapping the constants to function ar-
guments. We generated additional function sym-
bols of the same relation, but of different arity
when needed 3. Our new dataset consists of 25 re-
lation symbols (originally 15). In our experiments
we used a set of 5000 of the training triplets.

Robocup The Robocup dataset, originally in-
troduced in (Chen and Mooney, 2008), describes
robotic soccer events. The dataset was collected
for the purpose of constructing semantic parsers
from ambiguous supervision and consists of both
“noisy” and gold labeled data. The noisy dataset

2Details omitted, see (Chang et al., 2010) for more details.
3For example, a unary relation symbol for “He plays”,

and a binary for “He plays with a ball”.
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System Training Procedure
DOM-INIT w1: Noisy probabilistic model, described below.
PRED-ARGS Only w3,w4 Trained over the Situ. dataset.
COMBINEDRL w1,w2,w3,w4:learned from Robocup gold
COMBINEDRI+S w3,w4: learned from the Situ. dataset,

w1 uses the DOM-INIT Robocup model.
COMBINEDRL+S w3,w4: Initially learned over the Situ. dataset,

updated jointly with w1,w2 over Robocup gold

Table 1: Evaluated System descriptions.

was constructed by temporally aligning a stream
of soccer events occurring during a robotic soc-
cer match with human commentary describing the
game. This dataset consists of pairs (x, {y0, yk}),
x is a sentence and {y0, yk} is a set of events (log-
ical formulas). One of these events is assumed to
correspond to the comment, however this is not
guaranteed. The gold labeled labeled data con-
sists of pairs (x, y). The data was collected from
four Robocup games. In our experiments we fol-
low other works and use 4-fold cross validation,
training over 3 games and testing over the remain-
ing game. We evaluate the Accuracy of the parser
over the test game data.4 Due to space consider-
ations, we refer the reader to (Chen and Mooney,
2008) for further details about this dataset.

Semantic Interpretation Tasks We consider
two of the tasks described in (Chen and Mooney,
2008) (1) Semantic Parsing requires generating
the correct logical form given an input sentence.
(2) Matching, given a NL sentence and a set of
several possible interpretation candidates, the sys-
tem is required to identify the correct one. In all
systems, the source for domain-independent infor-
mation is the Situated domain, and the results are
evaluated over the Robocup domain.

Experimental Systems We tested several vari-
ations, all solving Eq. 2, however different re-
sources were used to obtain Eq. 2 parameters (see
sec. 2.2). Tab. 1 describes the different varia-
tions. We used the noisy Robocup dataset to ini-
tialize DOM-INIT, a noisy probabilistic model, con-
structed by taking statistics over the noisy robocup
data and computing p(y|x). Given the training set
{(x, {y1, .., yk})}, every word in x is aligned to
every symbol in every y that is aligned with it. The
probability of a matching (x, y)is computed as the
product:

∏n
i=1 p(yi|xi), where n is the number

of symbols appearing in y, and xi, yi is the word

4In our model accuracy is equivalent to F-measure.

System Matching Parsing
PRED-ARGS 0.692 –
DOM-INIT 0.823 0.357
COMBINEDRI+S 0.905 0.627
(BÖRSCHINGER ET AL., 2011) – 0.86
(KIM AND MOONEY, 2010) 0.885 0.742

Table 2: Results for the matching and parsing tasks. Our
system performs well on the matching task without any do-
main information. Results for both parsing and matching
tasks show that using domain-independent information im-
proves results dramatically.

level matching to a logical symbol. Note that this
model uses lexical information only.

4 Knowledge Transfer Experiments

We begin by studying the role of domain-
independent information when very little domain
information is available. Domain-independent in-
formation is learned from the situated domain
and domain-specific information (Robocup) avail-
able is the simple probabilistic model (DOM-INIT).
This model can be considered as a noisy proba-
bilistic lexicon, without any domain-specific com-
positional information, which is only available
through domain-independent information.

The results, summarized in Table 2, show that
in both tasks domain-independent information is
extremely useful and can make up for missing do-
main information. Most notably, performance for
the matching task using only domain independent
information (PRED-ARGS) was surprisingly good,
with an accuracy of 0.69. Adding domain-specific
lexical information (COMBINEDRI+S) pushes this
result to over 0.9, currently the highest for this task
– achieved without domain specific learning.

The second set of experiments study whether
using domain independent information, when rel-
evant (gold) domain-specific training data is avail-
able, improves learning. In this scenario, the
domain-independent model is updated according
to training data available for the Robocup domain.
We compare two system over varying amounts
of training data (25, 50, 200 training samples
and the full set of 3 Robocup games), one boot-
strapped using the Situ. domain (COMBINEDRL+S)
and one relying on the Robocup training data
alone (COMBINEDRL). The results, summarized in
table 3, consistently show that transferring domain
independent information is helpful, and helps push
the learned models beyond the supervision offered
by the relevant domain training data. Our final
system, trained over the entire dataset achieves a
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System # training Parsing
COMBINEDRL+S (COMBINEDRL) 25 0.16 (0.03)
COMBINEDRL+S (COMBINEDRL) 50 0.323 (0.16)
COMBINEDRL+S (COMBINEDRL) 200 0.385 (0.36)
COMBINEDRL+S (COMBINEDRL) full game 0.86 (0.79)

(CHEN ET AL., 2010) full game 0.81

Table 3: Evaluating our model in a learning settings. The
domain-independent information is used to bootstrap learn-
ing from the Robocup domain. Results show that this infor-
mation improves performance significantly, especially when
little data is available

score of 0.86, significantly outperforming (Chen
et al., 2010), a competing supervised model. It
achieves similar results to (Börschinger et al.,
2011), the current state-of-the-art for the pars-
ing task over this dataset. The system used in
(Börschinger et al., 2011) learns from ambigu-
ous training data and achieves this score by using
global information. We hypothesize that it can be
used by our model and leave it for future work.

5 Conclusions

In this paper, we took a first step towards a new
kind of generalization in semantic parsing: con-
structing a model that is able to generalize to a
new domain defined over a different set of sym-
bols. Our approach adds an additional hidden
layer to the semantic interpretation process, cap-
turing shallow but domain-independent semantic
information, which can be shared by different do-
mains. Our experiments consistently show that
domain-independent knowledge can be transferred
between domains. We describe two settings; in
the first, where only noisy lexical-level domain-
specific information is available, we observe that
the model learned in the other domain can be used
to make up for the missing compositional infor-
mation. For example, in the matching task, even
when no domain information is available, iden-
tifying the abstract predicate argument structure
provides sufficient discriminatory power to iden-
tify the correct event in over 69% of the times.

In the second setting domain-specific examples
are available. The learning process can still utilize
the transferred knowledge, as it provides scaffold-
ing for the latent learning process, resulting in a
significant improvement in performance.
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Abstract

In this paper we present a novel ap-
proach to modelling distributional seman-
tics that represents meaning as distribu-
tions over relations in syntactic neighbor-
hoods. We argue that our model approxi-
mates meaning in compositional configu-
rations more effectively than standard dis-
tributional vectors or bag-of-words mod-
els. We test our hypothesis on the problem
of judging event coreferentiality, which in-
volves compositional interactions in the
predicate-argument structure of sentences,
and demonstrate that our model outper-
forms both state-of-the-art window-based
word embeddings as well as simple ap-
proaches to compositional semantics pre-
viously employed in the literature.

1 Introduction

Distributional Semantic Models (DSM) are popu-
lar in computational semantics. DSMs are based
on the hypothesis that the meaning of a word or
phrase can be effectively captured by the distribu-
tion of words in its neighborhood. They have been
successfully used in a variety of NLP tasks includ-
ing information retrieval (Manning et al., 2008),
question answering (Tellex et al., 2003), word-
sense discrimination (Schütze, 1998) and disam-
biguation (McCarthy et al., 2004), semantic sim-
ilarity computation (Wong and Raghavan, 1984;
McCarthy and Carroll, 2003) and selectional pref-
erence modeling (Erk, 2007).

A shortcoming of DSMs is that they ignore the
syntax within the context, thereby reducing the
distribution to a bag of words. Composing the

∗*Equally contributing authors

distributions for “Lincoln”, “Booth”, and “killed”
gives the same result regardless of whether the in-
put is “Booth killed Lincoln” or “Lincoln killed
Booth”. But as suggested by Pantel and Lin (2000)
and others, modeling the distribution over prefer-
ential attachments for each syntactic relation sep-
arately yields greater expressive power. Thus, to
remedy the bag-of-words failing, we extend the
generic DSM model to several relation-specific
distributions over syntactic neighborhoods. In
other words, one can think of the Structured DSM
(SDSM) representation of a word/phrase as sev-
eral vectors defined over the same vocabulary,
each vector representing the word’s selectional
preferences for its various syntactic arguments.

We argue that this representation not only cap-
tures individual word semantics more effectively
than the standard DSM, but is also better able to
express the semantics of compositional units. We
prove this on the task of judging event coreference.

Experimental results indicate that our model
achieves greater predictive accuracy on the task
than models that employ weaker forms of compo-
sition, as well as a baseline that relies on state-
of-the-art window based word embeddings. This
suggests that our formalism holds the potential of
greater expressive power in problems that involve
underlying semantic compositionality.

2 Related Work

Next, we relate and contrast our work to prior re-
search in the fields of Distributional Vector Space
Models, Semantic Compositionality and Event
Co-reference Resolution.

2.1 DSMs and Compositionality
The underlying idea that “a word is characterized
by the company it keeps” was expressed by Firth
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(1957). Several works have defined approaches to
modelling context-word distributions anchored on
a target word, topic, or sentence position. Collec-
tively these approaches are called Distributional
Semantic Models (DSMs).

While DSMs have been very successful on a va-
riety of tasks, they are not an effective model of
semantics as they lack properties such as compo-
sitionality or the ability to handle operators such
as negation. In order to model a stronger form of
semantics, there has been a recent surge in stud-
ies that phrase the problem of DSM composition-
ality as one of vector composition. These tech-
niques derive the meaning of the combination of
two words a and b by a single vector c = f(a, b).
Mitchell and Lapata (2008) propose a framework
to define the composition c = f(a, b, r,K) where
r is the relation between a and b, and K is the
additional knowledge used to define composition.
While this framework is quite general, the actual
models considered in the literature tend to disre-
gardK and r and mostly perform component-wise
addition and multiplication, with slight variations,
of the two vectors. To the best of our knowledge
the formulation of composition we propose is the
first to account for both K and r within this com-
positional framework.

Dinu and Lapata (2010) and Séaghdha and Ko-
rhonen (2011) introduced a probabilistic model
to represent word meanings by a latent variable
model. Subsequently, other high-dimensional ex-
tensions by Rudolph and Giesbrecht (2010), Ba-
roni and Zamparelli (2010) and Grefenstette et
al. (2011), regression models by Guevara (2010),
and recursive neural network based solutions by
Socher et al. (2012) and Collobert et al. (2011)
have been proposed. However, these models do
not efficiently account for structure.

Pantel and Lin (2000) and Erk and Padó (2008)
attempt to include syntactic context in distribu-
tional models. A quasi-compositional approach
was attempted in Thater et al. (2010) by a com-
bination of first and second order context vectors.
But they do not explicitly construct phrase-level
meaning from words which limits their applicabil-
ity to real world problems. Furthermore, we also
include structure into our method of composition.
Prior work in structure aware methods to the best
of our knowledge are (Weisman et al., 2012) and
(Baroni and Lenci, 2010). However, these meth-
ods do not explicitly model composition.

2.2 Event Co-reference Resolution

While automated resolution of entity coreference
has been an actively researched area (Haghighi
and Klein, 2009; Stoyanov et al., 2009; Raghu-
nathan et al., 2010), there has been relatively lit-
tle work on event coreference resolution. Lee
et al. (2012) perform joint cross-document entity
and event coreference resolution using the two-
way feedback between events and their arguments.
We, on the other hand, attempt a slightly different
problem of making co-referentiality judgements
on event-coreference candidate pairs.

3 Structured Distributional Semantics

In this paper, we propose an approach to incorpo-
rate structure into distributional semantics (more
details in Goyal et al. (2013)). The word distribu-
tions drawn from the context defined by a set of
relations anchored on the target word (or phrase)
form a set of vectors, namely a matrix for the tar-
get word. One axis of the matrix runs over all
the relations and the other axis is over the distri-
butional word vocabulary. The cells store word
counts (or PMI scores, or other measures of word
association). Note that collapsing the rows of the
matrix provides the standard dependency based
distributional representation.

3.1 Building Representation: The PropStore

To build a lexicon of SDSM matrices for a given
vocabulary we first construct a proposition knowl-
edge base (the PropStore) created by parsing the
Simple English Wikipedia. Dependency arcs are
stored as 3-tuples of the form 〈w1, r, w2〉, denot-
ing an occurrence of words w1, word w2 related
by r. We also store sentence indices for triples
as this allows us to achieve an intuitive technique
to achieve compositionality. In addition to the
words’ surface-forms, the PropStore also stores
their POS tags, lemmas, and Wordnet supersenses.
This helps to generalize our representation when
surface-form distributions are sparse.

The PropStore can be used to query for the ex-
pectations of words, supersenses, relations, etc.,
around a given word. In the example in Figure 1,
the query (SST(W1) = verb.consumption, ?, dobj)
i.e. “what is consumed” might return expectations
[pasta:1, spaghetti:1, mice:1 . . . ]. Relations and
POS tags are obtained using a dependency parser
Tratz and Hovy (2011), supersense tags using sst-
light Ciaramita and Altun (2006), and lemmas us-
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Figure 1: Sample sentences & triples

ing Wordnet Fellbaum (1998).

3.2 Mimicking Compositionality
For representing intermediate multi-word phrases,
we extend the above word-relation matrix symbol-
ism in a bottom-up fashion using the PropStore.
The combination hinges on the intuition that when
lexical units combine to form a larger syntactically
connected phrase, the representation of the phrase
is given by its own distributional neighborhood
within the embedded parse tree. The distributional
neighborhood of the net phrase can be computed
using the PropStore given syntactic relations an-
chored on its parts. For the example in Figure
1, we can compose SST(w1) = Noun.person and
Lemma(W1) = eat appearing together with a nsubj
relation to obtain expectations around “people eat”
yielding [pasta:1, spaghetti:1 . . . ] for the object
relation, [room:2, restaurant:1 . . .] for the location
relation, etc. Larger phrasal queries can be built to
answer queries like “What do people in China eat
with?”, “What do cows do?”, etc. All of this helps
us to account for both relation r and knowledgeK
obtained from the PropStore within the composi-
tional framework c = f(a, b, r,K).

The general outline to obtain a composition
of two words is given in Algorithm 1, which
returns the distributional expectation around the
composed unit. Note that the entire algorithm can
conveniently be written in the form of database
queries to our PropStore.

Algorithm 1 ComposePair(w1, r, w2)
M1 ← queryMatrix(w1) (1)
M2 ← queryMatrix(w2) (2)
SentIDs←M1(r) ∩M2(r) (3)
return ((M1∩ SentIDs) ∪ (M2∩ SentIDs)) (4)

For the example “noun.person nsubj eat”, steps

(1) and (2) involve querying the PropStore for the
individual tokens, noun.person and eat. Let the re-
sulting matrices be M1 and M2, respectively. In
step (3), SentIDs (sentences where the two words
appear with the specified relation) are obtained by
taking the intersection between the nsubj compo-
nent vectors of the two matrices M1 and M2. In
step (4), the entries of the original matrices M1

and M2 are intersected with this list of common
SentIDs. Finally, the resulting matrix for the com-
position of the two words is simply the union of
all the relationwise intersected sentence IDs. Intu-
itively, through this procedure, we have computed
the expectation around the words w1 and w2 when
they are connected by the relation “r”.

Similar to the two-word composition process,
given a parse subtree T of a phrase, we obtain
its matrix representation of empirical counts over
word-relation contexts (described in Algorithm 2).
Let the E = {e1 . . . en} be the set of edges in T ,
ei = (wi1, ri, wi2)∀i = 1 . . . n.

Algorithm 2 ComposePhrase(T )
SentIDs← All Sentences in corpus
for i = 1→ n do

Mi1 ← queryMatrix(wi1)
Mi2 ← queryMatrix(wi2)
SentIDs← SentIDs ∩(M1(ri) ∩M2(ri))

end for
return ((M11∩ SentIDs) ∪ (M12∩ SentIDs)
· · · ∪ (Mn1∩ SentIDs) ∪ (Mn2∩ SentIDs))

The phrase representations becomes sparser as
phrase length increases. For this study, we restrict
phrasal query length to a maximum of three words.

3.3 Event Coreferentiality
Given the SDSM formulation and assuming no
sparsity constraints, it is possible to calculate
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SDSM matrices for composed concepts. However,
are these correct? Intuitively, if they truly capture
semantics, the two SDSM matrix representations
for “Booth assassinated Lincoln” and “Booth shot
Lincoln with a gun" should be (almost) the same.
To test this hypothesis we turn to the task of pre-
dicting whether two event mentions are coreferent
or not, even if their surface forms differ. It may be
noted that this task is different from the task of full
event coreference and hence is not directly compa-
rable to previous experimental results in the liter-
ature. Two mentions generally refer to the same
event when their respective actions, agents, pa-
tients, locations, and times are (almost) the same.
Given the non-compositional nature of determin-
ing equality of locations and times, we represent
each event mention by a triple E = (e, a, p) for
the event, agent, and patient.

In our corpus, most event mentions are verbs.
However, when nominalized events are encoun-
tered, we replace them by their verbal forms. We
use SRL Collobert et al. (2011) to determine the
agent and patient arguments of an event mention.
When SRL fails to determine either role, its empir-
ical substitutes are obtained by querying the Prop-
Store for the most likely word expectations for
the role. It may be noted that the SDSM repre-
sentation relies on syntactic dependancy relations.
Hence, to bridge the gap between these relations
and the composition of semantic role participants
of event mentions we empirically determine those
syntactic relations which most strongly co-occur
with the semantic relations connecting events,
agents and patients. The triple (e, a, p) is thus the
composition of the triples (a, relationsetagent, e)
and (p, relationsetpatient, e), and hence a com-
plex object. To determine equality of this complex
composed representation we generate three levels
of progressively simplified event constituents for
comparison:

Level 1: Full Composition:
Mfull = ComposePhrase(e, a, p).

Level 2: Partial Composition:
Mpart:EA = ComposePair(e, r, a)
Mpart:EP = ComposePair(e, r, p).

Level 3: No Composition:
ME = queryMatrix(e)

MA = queryMatrix(a)

MP = queryMatrix(p)

To judge coreference between
events E1 and E2, we compute pair-

wise similarities Sim(M1full,M2full),
Sim(M1part:EA,M2part:EA), etc., for each
level of the composed triple representation. Fur-
thermore, we vary the computation of similarity
by considering different levels of granularity
(lemma, SST), various choices of distance
metric (Euclidean, Cityblock, Cosine), and
score normalization techniques (Row-wise, Full,
Column-collapsed). This results in 159 similarity-
based features for every pair of events, which are
used to train a classifier to decide conference.

4 Experiments

We evaluate our method on two datasets and com-
pare it against four baselines, two of which use
window based distributional vectors and two that
employ weaker forms of composition.

4.1 Datasets

IC Event Coreference Corpus: The dataset
(Hovy et al., 2013), drawn from 100 news articles
about violent events, contains manually created
annotations for 2214 pairs of co-referent and non-
coreferent events each. Where available, events’
semantic role-fillers for agent and patient are an-
notated as well. When missing, empirical substi-
tutes were obtained by querying the PropStore for
the preferred word attachments.

EventCorefBank (ECB) corpus: This corpus
(Bejan and Harabagiu, 2010) of 482 documents
from Google News is clustered into 45 topics,
with event coreference chains annotated over each
topic. The event mentions are enriched with se-
mantic roles to obtain the canonical event struc-
ture described above. Positive instances are ob-
tained by taking pairwise event mentions within
each chain, and negative instances are generated
from pairwise event mentions across chains, but
within the same topic. This results in 11039 posi-
tive instances and 33459 negative instances.

4.2 Baselines

To establish the efficacy of our model, we compare
SDSM against a purely window-based baseline
(DSM) trained on the same corpus. In our exper-
iments we set a window size of seven words. We
also compare SDSM against the window-based
embeddings trained using a recursive neural net-
work (SENNA) (Collobert et al., 2011) on both
datsets. SENNA embeddings are state-of-the-art
for many NLP tasks. The second baseline uses
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IC Corpus ECB Corpus
Prec Rec F-1 Acc Prec Rec F-1 Acc

SDSM 0.916 0.929 0.922 0.906 0.901 0.401 0.564 0.843
Senna 0.850 0.881 0.865 0.835 0.616 0.408 0.505 0.791
DSM 0.743 0.843 0.790 0.740 0.854 0.378 0.524 0.830
MVC 0.756 0.961 0.846 0.787 0.914 0.353 0.510 0.831
AVC 0.753 0.941 0.837 0.777 0.901 0.373 0.528 0.834

Table 1: Cross-validation Performance on IC and ECB dataset

SENNA to generate level 3 similarity features for
events’ individual words (agent, patient and ac-
tion). As our final set of baselines, we extend two
simple techniques proposed by (Mitchell and Lap-
ata, 2008) that use element-wise addition and mul-
tiplication operators to perform composition. We
extend it to our matrix representation and build
two baselines AVC (element-wise addition) and
MVC (element-wise multiplication).

4.3 Discussion

Among common classifiers, decision-trees (J48)
yielded best results in our experiments. Table 1
summarizes our results on both datasets.

The results reveal that the SDSM model con-
sistently outperforms DSM, SENNA embeddings,
and the MVC and AVC models, both in terms
of F-1 score and accuracy. The IC corpus com-
prises of domain specific texts, resulting in high
lexical overlap between event mentions. Hence,
the scores on the IC corpus are consistently higher
than those on the ECB corpus.

The improvements over DSM and SENNA em-
beddings, support our hypothesis that syntax lends
greater expressive power to distributional seman-
tics in compositional configurations. Furthermore,
the increase in predictive accuracy over MVC and
AVC shows that our formulation of composition
of two words based on the relation binding them
yields a stronger form of compositionality than
simple additive and multiplicative models.

Next, we perform an ablation study to deter-
mine the most predictive features for the task of
event coreferentiality. The forward selection pro-
cedure reveals that the most informative attributes
are the level 2 compositional features involving
the agent and the action, as well as their individ-
ual level 3 features. This corresponds to the in-
tuition that the agent and the action are the prin-
cipal determiners for identifying events. Features
involving the patient and level 1 features are least

useful. This is probably because features involv-
ing full composition are sparse, and not as likely
to provide statistically significant evidence. This
may change as our PropStore grows in size.

5 Conclusion and Future Work

We outlined an approach that introduces structure
into distributed semantic representations gives us
an ability to compare the identity of two repre-
sentations derived from supposedly semantically
identical phrases with different surface realiza-
tions. We employed the task of event coreference
to validate our representation and achieved sig-
nificantly higher predictive accuracy than several
baselines.

In the future, we would like to extend our model
to other semantic tasks such as paraphrase detec-
tion, lexical substitution and recognizing textual
entailment. We would also like to replace our syn-
tactic relations to semantic relations and explore
various ways of dimensionality reduction to solve
this problem.
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Abstract

This paper addresses the problem of deal-
ing with a collection of labeled training
documents, especially annotating negative
training documents and presents a method
of text classification from positive and un-
labeled data. We applied an error detec-
tion and correction technique to the re-
sults of positive and negative documents
classified by the Support Vector Machines
(SVM). The results using Reuters docu-
ments showed that the method was compa-
rable to the current state-of-the-art biased-
SVM method as the F-score obtained by
our method was 0.627 and biased-SVM
was 0.614.

1 Introduction

Text classification using machine learning (ML)
techniques with a small number of labeled data has
become more important with the rapid increase in
volume of online documents. Quite a lot of learn-
ing techniques e.g., semi-supervised learning, self-
training, and active learning have been proposed.
Blum et al. proposed a semi-supervised learn-
ing approach called the Graph Mincut algorithm
which uses a small number of positive and nega-
tive examples and assigns values to unlabeled ex-
amples in a way that optimizes consistency in a
nearest-neighbor sense (Blum et al., 2001). Cabr-
era et al. described a method for self-training text
categorization using the Web as the corpus (Cabr-
era et al., 2009). The method extracts unlabeled
documents automatically from the Web and ap-
plies an enriched self-training for constructing the
classifier.

Several authors have attempted to improve clas-
sification accuracy using only positive and unla-
beled data (Yu et al., 2002; Ho et al., 2011). Liu
et al. proposed a method called biased-SVM that

uses soft-margin SVM as the underlying classi-
fiers (Liu et al., 2003). Elkan and Noto proposed
a theoretically justified method (Elkan and Noto,
2008). They showed that under the assumption
that the labeled documents are selected randomly
from the positive documents, a classifier trained on
positive and unlabeled documents predicts proba-
bilities that differ by only a constant factor from
the true conditional probabilities of being positive.
They reported that the results were comparable to
the current state-of-the-art biased SVM method.
The methods of Liu et al. and Elkan et al. model
a region containing most of the available positive
data. However, these methods are sensitive to the
parameter values, especially the small size of la-
beled data presents special difficulties in tuning
the parameters to produce optimal results.

In this paper, we propose a method for elimi-
nating the need for manually collecting training
documents, especially annotating negative train-
ing documents based on supervised ML tech-
niques. Our goal is to eliminate the need for manu-
ally collecting training documents, and hopefully
achieve classification accuracy from positive and
unlabeled data as high as that from labeled posi-
tive and labeled negative data. Like much previous
work on semi-supervised ML, we apply SVM to
the positive and unlabeled data, and add the classi-
fication results to the training data. The difference
is that before adding the classification results, we
applied the MisClassified data Detection and Cor-
rection (MCDC) technique to the results of SVM
learning in order to improve classification accu-
racy obtained by the final classifiers.

2 Framework of the System

The MCDC method involves category error cor-
rection, i.e., correction of misclassified candidates,
while there are several strategies for automati-
cally detecting lexical/syntactic errors in corpora
(Abney et al., 1999; Eskin, 2000; Dickinson and
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Meurers., 2005; Boyd et al., 2008) or categorical
data errors (Akoglu et al., 2013). The method first
detects error candidates. As error candidates, we
focus on support vectors (SVs) extracted from the
training documents by SVM. Training by SVM is
performed to find the optimal hyperplane consist-
ing of SVs, and only the SVs affect the perfor-
mance. Thus, if some training document reduces
the overall performance of text classification be-
cause of an outlier, we can assume that the docu-
ment is a SV.

Figure 1 illustrates our system. First, we ran-
domly select documents from unlabeled data (U )
where the number of documents is equal to that of
the initial positive training documents (P1). We set
these selected documents to negative training doc-
uments (N1), and apply SVM to learn classifiers.
Next, we apply the MCDC technique to the re-
sults of SVM learning. For the result of correction
(RC1)1, we train SVM classifiers, and classify the
remaining unlabeled data (U \ N1). For the re-
sult of classification, we randomly select positive
(CP1) and negative (CN1) documents classified
by SVM and add to the SVM training data (RC1).
We re-train SVM classifiers with the training doc-
uments, and apply the MCDC. The procedure is
repeated until there are no unlabeled documents
judged to be either positive or negative. Finally,
the test data are classified using the final classi-
fiers. In the following subsections, we present the
MCDC procedure shown in Figure 2. It consists
of three steps: extraction of misclassified candi-
dates, estimation of error reduction, and correction
of misclassified candidates.

1The manually annotated positive examples are not cor-
rected.
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Figure 2: The MCDC procedure

2.1 Extraction of misclassified candidates

Let D be a set of training documents and xk ∈
{x1, x2, · · ·, xm} be a SV of negative or positive
documents obtained by SVM. We remove ∪m

k=1xk

from the training documents D. The resulting
D \ ∪m

k=1xk is used for training Naive Bayes
(NB) (McCallum, 2001), leading to a classifica-
tion model. This classification model is tested on
each xk, and assigns a positive or negative label.
If the label is different from that assigned to xk,
we declare xk an error candidate.

2.2 Estimation of error reduction

We detect misclassified data from the extracted
candidates by estimating error reduction. The es-
timation of error reduction is often used in ac-
tive learning. The earliest work is the method of
Roy and McCallum (Roy and McCallum, 2001).
They proposed a method that directly optimizes
expected future error by log-loss or 0-1 loss, using
the entropy of the posterior class distribution on
a sample of unlabeled documents. We used their
method to detect misclassified data. Specifically,
we estimated future error rate by log-loss function.
It uses the entropy of the posterior class distribu-
tion on a sample of the unlabeled documents. A
loss function is defined by Eq (1).

EP̂D2∪(xk,yk)
= − 1

| X |
∑

x∈X

∑

y∈Y

P (y|x)

× log(P̂D2∪(xk,yk)(y|x)). (1)

Eq (1) denotes the expected error of the learner.
P (y | x) denotes the true distribution of out-
put classes y ∈ Y given inputs x. X denotes a
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set of test documents. P̂D2∪(xk,yk)(y | x) shows
the learner’s prediction, and D2 denotes the train-
ing documents D except for the error candidates
∪l

k=1xk. If the value of Eq (1) is sufficiently
small, the learner’s prediction is close to the true
output distribution.

We used bagging to reduce variance of P (y | x)
as it is unknown for each test document x. More
precisely, from the training documents D, a dif-
ferent training set consisting of positive and nega-
tive documents is created2. The learner then cre-
ates a new classifier from the training documents.
The procedure is repeated m times3, and the final
class posterior for an instance is taken to be the un-
weighted average of the class posteriori for each of
the classifiers.

2.3 Correction of misclassified candidates

For each error candidate xk, we calculated the ex-
pected error of the learner, EP̂D2

∪(xk,yk old) and

EP̂D2
∪(xk,yk new) by using Eq (1). Here, yk old

refers to the original label assigned to xk, and
yk new is the resulting category label estimated by
NB classifiers. If the value of the latter is smaller
than that of the former, we declare the document
xk to be misclassified, i.e., the label yk old is an
error, and its true label is yk new. Otherwise, the
label of xk is yk old.

3 Experiments

3.1 Experimental setup

We chose the 1996 Reuters data (Reuters, 2000)
for evaluation. After eliminating unlabeled doc-
uments, we divided these into three. The data
(20,000 documents) extracted from 20 Aug to 19
Sept is used as training data indicating positive
and unlabeled documents. We set the range of δ
from 0.1 to 0.9 to create a wide range of scenar-
ios, where δ refers to the ratio of documents from
the positive class first selected from a fold as the
positive set. The rest of the positive and negative
documents are used as unlabeled data. We used
categories assigned to more than 100 documents
in the training data as it is necessary to examine
a wide range of δ values. These categories are 88
in all. The data from 20 Sept to 19 Nov is used

2We set the number of negative documents extracted ran-
domly from the unlabeled documents to the same number of
positive training documents.

3We set the number of m to 100 in the experiments.

as a test set X, to estimate true output distribu-
tion. The remaining data consisting 607,259 from
20 Nov 1996 to 19 Aug 1997 is used as a test data
for text classification. We obtained a vocabulary
of 320,935 unique words after eliminating words
which occur only once, stemming by a part-of-
speech tagger (Schmid, 1995), and stop word re-
moval. The number of categories per documents is
3.21 on average. We used the SVM-Light package
(Joachims, 1998)4. We used a linear kernel and set
all parameters to their default values.

We compared our method, MCDC with three
baselines: (1) SVM, (2) Positive Example-Based
Learning (PEBL) proposed by (Yu et al., 2002),
and (3) biased-SVM (Liu et al., 2003). We chose
PEBL because the convergence procedure is very
similar to our framework. Biased-SVM is the
state-of-the-art SVM method, and often used for
comparison (Elkan and Noto, 2008). To make
comparisons fair, all methods were based on a lin-
ear kernel. We randomly selected 1,000 positive
and 1,000 negative documents classified by SVM
and added to the SVM training data in each itera-
tion5. For biased-SVM, we used training data and
classified test documents directly. We empirically
selected values of two parameters, “c” (trade-off
between training error and margin) and “j”, i.e.,
cost (cost-factor, by which training errors on posi-
tive examples) that optimized the F-score obtained
by classification of test documents.

The positive training data in SVM are assigned
to the target category. The negative training data
are the remaining data except for the documents
that were assigned to the target category, i.e., this
is the ideal method as we used all the training data
with positive/negative labeled documents. The
number of positive training data in other three
methods depends on the value of δ, and the rest
of the positive and negative documents were used
as unlabeled data.

3.2 Text classification

Classification results for 88 categories are shown
in Figure 3. Figure 3 shows micro-averaged F-
score against the δ value. As expected, the re-
sults obtained by SVM were the best among all
δ values. However, this is the ideal method
that requires 20,000 documents labeled posi-
tive/negative, while other methods including our

4http://svmlight.joachims.org
5We set the number of documents up to 1,000.
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SVM PEBL Biased-SVM MCDC
Level (# of Cat) Cat F Cat F (Iter) Cat F (Iter) Cat F (Iter)

Best GSPO .955 GSPO .802 (26) CCAT .939 GSPO .946 (9)
Top (22) Worst GODD .099 GODD .079 (6) GODD .038 GODD .104 (4)

Avg .800 .475 (19) .593 .619 (8)
Best M14 .870 E71 .848 (7) M14 .869 M14 .875 (9)

Second (32) Worst C16 .297 E14 .161 (14) C16 .148 C16 .150 (3)
Avg .667 .383 (22) .588 .593 (7)
Best M141 .878 C174 .792 (27) M141 .887 M141 .885 (8)

Third (33) Worst G152 .102 C331 .179 (16) G155 .130 C331 .142 (6)
Avg .717 .313 (18) .518 .557 (8)

Fourth (1) – C1511 .738 C1511 .481 (16) C1511 .737 C1511 .719 (4)
Micro Avg F-score .718 .428 (19) .614 .627 (8)

Table 1: Classification performance (δ = 0.7)
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Figure 3: F-score against the value of δ

method used only positive and unlabeled docu-
ments. Overall performance obtained by MCDC
was better for those obtained by PEBL and biased-
SVM methods in all δ values, especially when the
positive set was small, e.g., δ = 0.3, the improve-
ment of MCDC over biased-SVM and PEBL was
significant.

Table 1 shows the results obtained by each
method with a δ value of 0.7. “Level” indi-
cates each level of the hierarchy and the numbers
in parentheses refer to the number of categories.
“Best” and “Worst” refer to the best and the low-
est F-scores in each level of a hierarchy, respec-
tively. “Iter” in PEBL indicates the number of it-
erations until the number of negative documents
is zero in the convergence procedure. Similarly,
“Iter” in the MCDC indicates the number of it-
erations until no unlabeled documents are judged
to be either positive or negative. As can be seen
clearly from Table 1, the results with MCDC were
better than those obtained by PEBL in each level
of the hierarchy. Similarly, the results were bet-

δ SV Ec Err
Correct

Prec Rec F
0.3 227,547 54,943 79,329 .693 .649 .670
0.7 141,087 34,944 42,385 .712 .673 .692

Table 2: Miss-classified data correction results

ter than those of biased-SVM except for the fourth
level, “C1511”(Annual results). The average num-
bers of iterations with MCDC and PEBL were 8
and 19 times, respectively. In biased-SVM, it is
necessary to run SVM many times, as we searched
“c” and “j”. In contrast, MCDC does not require
such parameter tuning.

3.3 Correction of misclassified candidates

Our goal is to achieve classification accuracy from
only positive documents and unlabeled data as
high as that from labeled positive and negative
data. We thus applied a miss-classified data de-
tection and correction technique for the classifica-
tion results obtained by SVM. Therefore, it is im-
portant to examine the accuracy of miss-classified
correction. Table 2 shows detection and correction
performance against all categories. “SV” shows
the total number of SVs in 88 categories in all iter-
ations. “Ec” refers to the total number of extracted
error candidates. “Err” denotes the number of doc-
uments classified incorrectly by SVM and added
to the training data, i.e., the number of documents
that should be assigned correctly by the correction
procedure. “Prec” and “Rec” show the precision
and recall of correction, respectively.

Table 2 shows that precision was better than re-
call with both δ values, as the precision obtained
by γ value = 0.3 and 0.7 were 4.4% and 3.9%
improvement against recall values, respectively.
These observations indicated that the error candi-
dates extracted by our method were appropriately
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corrected. In contrast, there were still other doc-
uments that were miss-classified but not extracted
as error candidates. We extracted error candidates
using the results of SVM and NB classifiers. En-
semble of other techniques such as boosting and
kNN for further efficacy gains seems promising to
try with our method.

4 Conclusion

The research described in this paper involved text
classification using positive and unlabeled data.
Miss-classified data detection and correction tech-
nique was incorporated in the existing classifica-
tion technique. The results using the 1996 Reuters
corpora showed that the method was comparable
to the current state-of-the-art biased-SVM method
as the F-score obtained by our method was 0.627
and biased-SVM was 0.614. Future work will in-
clude feature reduction and investigation of other
classification algorithms to obtain further advan-
tages in efficiency and efficacy in manipulating
real-world large corpora.
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Abstract

We present an automatic method for ana-
lyzing sentiment dynamics between char-
acters in plays. This literary format’s
structured dialogue allows us to make as-
sumptions about who is participating in a
conversation. Once we have an idea of
who a character is speaking to, the senti-
ment in his or her speech can be attributed
accordingly, allowing us to generate lists
of a character’s enemies and allies as well
as pinpoint scenes critical to a character’s
emotional development. Results of ex-
periments on Shakespeare’s plays are pre-
sented along with discussion of how this
work can be extended to unstructured texts
(i.e. novels).

1 Introduction

Insightful analysis of literary fiction often chal-
lenges trained human readers let alone machines.
In fact, some humanists believe literary analysis
is so closely tied to the human condition that it is
impossible for computers to perform. In his book
Reading Machines: Toward an Algorithmic Criti-
cism, Stephen Ramsay (2011) states:

Tools that can adjudicate the hermeneu-
tical parameters of human reading ex-
periences...stretch considerably beyond
the most ambitious fantasies of artificial
intelligence.

Antonio Roque (2012) has challenged Ramsay’s
claim, and certainly there has been successful
work done in the computational analysis and mod-
eling of narratives, as we will review in the next
section. However, we believe that most previous
work (except possibly (Elsner, 2012)) has failed to
directly address the root cause of Ramsay’s skep-
ticism: can computers extract the emotions en-
coded in a narrative? For example, can the love

that Shakespeare’s Juliet feels for Romeo be com-
putationally tracked? Empathizing with characters
along their journeys to emotional highs and lows
is often what makes a narrative compelling for a
reader, and therefore we believe mapping these
journeys is the first step in capturing the human
reading experience.

Unfortunately but unsurprisingly, computa-
tional modeling of the emotional relationships de-
scribed in natural language text remains a daunting
technical challenge. The reason this task is so dif-
ficult is that emotions are indistinct and often sub-
tly conveyed, especially in text with literary merit.
Humans typically achieve no greater than 80% ac-
curacy in sentiment classification experiments in-
volving product reviews (Pang et al., 2002) (Ga-
mon, 2004). Similar experiments on fiction texts
would presumably yield even higher error rates.

In order to attack this open problem and make
further progress towards refuting Ramsay’s claim,
we turn to shallow statistical approaches. Sen-
timent analysis (Pang and Lee, 2008) has been
successfully applied to mine social media data
for emotional responses to events, public figures,
and consumer products just by using emotion
lexicons–lists that map words to polarity values
(+1 for positive sentiment, -1 for negative) or va-
lence values that try to capture degrees of polarity.
In the following paper, we describe our attempts
to use modern sentiment lexicons and dialogue
structure to algorithmically track and model–with
no domain-specific customization–the emotion
dynamics between characters in Shakespeare’s
plays.1

2 Sentiment Analysis and Related Work

Sentiment analysis (SA) is now widely used com-
mercially to infer user opinions from product re-
views and social-media messages (Pang and Lee,

1XML versions provided by Jon Bosak:
http://www.ibiblio.org/xml/examples/shakespeare/
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2008). Traditional machine learning techniques on
n-grams, parts of speech, and other bag of words
features can be used when the data is labeled (e.g.
IMDB’s user reviews are labeled with one to ten
stars, which are assumed to correlate with the
text’s polarity) (Pang et al., 2002). But text anno-
tated with its true sentiments is hard to come by so
often labels must be obtained via crowdsourcing.

Knowledge-based methods (which also typi-
cally rely on crowdsourcing) provide an alter-
native to using labeled data (Andreevskaia and
Bergler, 2007). These methods are driven by
sentiment lexicons, fixed lists associating words
with “valences” (signed integers representing pos-
itive and negative feelings) (Kim and Hovy, 2004).
Some lexicons allow for analysis of specific emo-
tions by associating words with degrees of fear,
joy, surprise, anger, anticipation, etc. (Strappar-
ava and Valitutti, 2004) (Mohammad and Turney,
2008). Unsurprisingly, methods which, like these,
lack deep understanding often work more reliably
as the length of the input text increases.

Turning our attention now to automatic seman-
tic analysis of fiction, it seems that narrative mod-
eling and summarization has been the most inten-
sively studied application. Chambers and Jurafsky
(2009) described a system that can learn (without
supervision) the sequence of events described in a
narrative, and Elson and McKeown (2009) created
a platform that can symbolically represent and rea-
son over narratives.

Narrative structure has also been studied by rep-
resenting character interactions as networks. Mut-
ton (2004) adapted methods for extracting social
networks from Internet Relay Chat (IRC) to mine
Shakespeare’s plays for their networks. Extending
this line of work to novels, Elson and McKeown
(2010) developed a reliable method for speech
attribution in unstructured texts, and then used
this method to successfully extract social networks
from Victorian novels (Elson et al., 2010)(Agar-
wal et al., 2012).

While structure is undeniably important, we be-
lieve analyzing a narrative’s emotions is essen-
tial to capturing the ‘reading experience,’ which
is a view others have held. Alm and Sproat
(2005) analyzed Brothers Grimm fairy tales for
their ‘emotional trajectories,’ finding emotion typ-
ically increases as a story progresses. Mohammad
(2011) scaled-up their work by using a crowd-
sourced emotion lexicon to track emotion dynam-

ics over the course of many novels and plays, in-
cluding Shakespeare’s. In the most recent work
we are aware of, Elsner (2012) analyzed emotional
trajectories at the character level, showing how
Miss Elizabeth Bennet’s emotions change over the
course of Pride and Prejudice.

3 Character-to-Character Sentiment
Analysis

Character

Guildenstern
Polonius 
Gertrude
Horatio
Ghost 
Marcellus
Osric
Bernardo
Laertes
Ophelia
Rosencrantz
Claudius

7
2
-1
-5
-12
-27

31
25
24
12
8
7

Hamlet's Sentiment 
Valence Sum

Figure 1: The characters in Hamlet are ranked
by Hamet’s sentiment towards them. Expectedly,
Claudius draws the most negative emotion.

We attempt to further Elsner’s line of work by
leveraging text structure (as Mutton and Elson did)
and knowlege-based SA to track the emotional tra-
jectories of interpersonal relationships rather than
of a whole text or an isolated character. To ex-
tract these relationships, we mined for character-
to-character sentiment by summing the valence
values (provided by the AFINN sentiment lexicon
(Nielsen, 2011)) over each instance of continuous
speech and then assumed that sentiment was di-
rected towards the character that spoke immedi-
ately before the current speaker. This assumption
doesn’t always hold; it is not uncommon to find a
scene in which two characters are expressing feel-
ings about someone offstage. Yet our initial results
on Shakespeare’s plays show that the instances of
face-to-face dialogue produce a strong enough sig-
nal to generate sentiment rankings that match our
expectations.

For example, Hamlet’s sentiment rankings upon
the conclusion of his play are shown in Figure 1.
Not surprisingly, Claudius draws the most nega-
tive sentiment from Hamlet, receiving a score of
-27. On the other hand, Gertrude is very well liked
by Hamlet (+24), which is unexpected (at least to
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us) since Hamlet suspects that his mother was in-
volved in murdering King Hamlet.

Figure 2: The above chart tracks how Gertrude’s
and Hamlet’s sentiment towards one another
changes over the course of the play. Hamlet’s sen-
timent for Gertrude is denoted by the black line,
and Gertrude’s for Hamlet is marked by the op-
posite boundary of the dark/light gray area. The
drastic change in Act III Scene IV: The Queen’s
Closet is consistent with the scene’s plot events.

3.1 Peering into the Queen’s Closet

To gain more insight into this mother-son rela-
tionship, we examined how their feelings towards
one another change over the course of the play.
Figure 2 shows the results of dynamic character-
to-character sentiment analysis on Gertrude and
Hamlet. The running total of Hamlet’s sentiment
valence toward Gertrude is tracked by the black
line, and Gertrude’s feelings toward her son are
tracked by the opposite boundary of the light/dark
gray area. The line graph shows a dramatic swing
in sentiment around line 2,250, which corresponds
to Act iii, Scene iv.

In this scene, entitled The Queen’s Closet, Ham-
let confronts his mother about her involvement in
King Hamlet’s death. Gertrude is shocked at the
accusation, revealing she never suspected Ham-
let’s father was murdered. King Hamlet’s ghost
even points this out to his son: “But, look, amaze-
ment on thy mother sits” (3.4.109). Hamlet then
comes to the realization that his mother had no
involvement in the murder and probably married
Claudius more so to preserve stability in the state.
As a result, Hamlet’s affection towards his mother
grows, as exhibited in the sentiment jump from
-1 to 22. But this scene has the opposite affect
on Gertrude: she sees her son murder an innocent
man (Polonius) and talk to an invisible presence

(she cannot see King Hamlet’s ghost). Gertrude
is coming to the understanding that Hamlet is
not just depressed but possibly mad and on a re-
venge mission. Because of Gertrude’s realization,
it is only natural that her sentiment undergoes a
sharply negative change (1 to -19).

3.2 Analyzing Shakespeare’s Most Famous
Couples

Figure 3: Othello’s sentiment for Desdemona is
denoted by the black line, and Desdemona’s for
Othello is marked by the opposite boundary of the
dark/light gray area. As expected, the line graph
shows Othello has very strong positive emotion
towards his new wife at the beginning of the play,
but this positivity quickly degrades as Othello falls
deeper and deeper into Iago’s deceit.

After running this automatic analysis on all of
Shakespeare’s plays, not all the results examined
were as enlightening as the Hamlet vs. Gertrude
example. Instead, the majority supported our al-
ready held interpretations. We will now present
what the technique revealed about three of Shake-
speare’s best known relationships. Figure 3 shows
Othello vs. Desdemona sentiment dynamics. We
clearly see Othello’s love for his new bride cli-
maxes in the first third of the play and then rapidly
degrades due to Iago’s deceit while Desdemona’s
feelings for Othello stay positive until the very
end of the play when it is clear Othello’s love for
her has become poisoned. For an example of a
contrasting relationship, Figure 4 shows Romeo
vs. Juliet. As expected, the two exhibit rapidly
increasing positive sentiment for each other that
only tapers when the play takes a tragic course in
the latter half. Lastly, Figure 5 shows Petruchio
vs. Katharina (from The Taming of the Shrew).
The phases of Petruchio’s courtship can be seen:
first he is neutral to her, then ‘tames’ her with a
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period of negative sentiment, and finally she em-
braces him, as shown by the increasingly positive
sentiment exhibited in both directions.

Figure 4: Juliet’s sentiment for Romeo is de-
noted by the black line, and Romeo’s for Juliet
is marked by the opposite boundary of the gray
area. Aligning with our expectations, both charac-
ters exhibit strong positive sentiment towards the
other throughout the play.

Unfortunately, we do not have room in this pa-
per to discuss further examples, but a visualization
of sentiment dynamics between any pair of char-
acters in any of Shakespeare’s plays can be seen at
www.lehigh.edu/∼etn212/ShakespeareExplorer.html.

Figure 5: Petruchio’s sentiment for Katharina is
denoted by the black line, and Katharina’s for
Petruchio is marked by the opposite boundary of
the dark/light gray area. The period from line 1200
to line 1700, during which Petruchio exhibits neg-
ative sentiment, marks where he is ‘taming’ the
‘shrew.’

4 Future Work

While this paper presents experiments on just
Shakespeare’s plays, note that the described tech-
nique can be extended to any work of fiction writ-

ten since the Elizabethan Period. The sentiment
lexicon we used, AFINN, is designed for modern
English; thus, it should only provide better anal-
ysis on works written after Shakespeare’s. Fur-
thermore, character-to-character analysis should
be able to be applied to novels (and other un-
structured fiction) if Elson and McKeown’s (2010)
speaker attribution technique is first run on the
work.

Not only can these techniques be extended to
novels but also be made more precise. For in-
stance, the assumption that the current speaker’s
sentiment is directed toward the previous speaker
is rather naive. A speech could be analyzed for
context clues that signal that the character speak-
ing is not talking about someone present but about
someone out of the scene. The sentiment could
then be redirected to the not-present character.
Furthermore, detecting subtle rhetorical features
such as irony and deceit would markedly improve
the accuracy of the analysis on some plays. For ex-
ample, our character-to-character analysis fails to
detect that Iago hates Othello because Iago gives
his commander constant lip service in order to ma-
nipulate him–only revealing his true feelings at the
play’s conclusion.

5 Conclusions

As demonstrated, shallow, un-customized senti-
ment analysis can be used in conjunction with
text structure to analyze interpersonal relation-
ships described within a play and output an inter-
pretation that matches reader expectations. This
character-to-character sentiment analysis can be
done statically as well as dynamically to possi-
bly pinpoint influential moments in the narrative
(which is how we noticed the importance of Ham-
let’s Act 3, Scene 4 to the Hamlet-Gertrude rela-
tionship). Yet, we believe the most noteworthy as-
pect of this work lies not in the details of our tech-
nique but rather in the demonstration that detailed
emotion dynamics can be extracted with simplis-
tic approaches–which in turn gives promise to the
future work of robust analysis of interpersonal re-
lationships in short stories and novels.
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Abstract 

In this article, we propose a novel classifier 
based on quantum computation theory. Differ-
ent from existing methods, we consider the 
classification as an evolutionary process of a 
physical system and build the classifier by us-
ing the basic quantum mechanics equation. 
The performance of the experiments on two 
datasets indicates feasibility and potentiality of 
the quantum classifier.  

1 Introduction 

Taking modern natural science into account, the 
quantum mechanics theory (QM) is one of the 
most famous and profound theory which brings a 
world-shaking revolution for physics. Since QM 
was born, it has been considered as a significant 
part of theoretic physics and has shown its power 
in explaining experimental results. Furthermore, 
some scientists believe that QM is the final prin-
ciple of physics even the whole natural science. 
Thus, more and more researchers have expanded 
the study of QM in other fields of science, and it 
has affected almost every aspect of natural sci-
ence and technology deeply, such as quantum 
computation.   

The principle of quantum computation has al-
so affected a lot of scientific researches in com-
puter science, specifically in computational mod-
eling, cryptography theory as well as information 
theory. Some researchers have employed the 
principle and technology of quantum computa-
tion to improve the studies on Machine Learning 
(ML) (Aїmeur et al., 2006; Aїmeur et al., 2007; 
Chen et al., 2008; Gambs, 2008; Horn and 
Gottlieb, 2001; Nasios and Bors, 2007), a field 
which studies theories and constructions of sys-
tems that can learn from data, among which clas-
sification is a typical task. Thus, we attempted to  

 
build a computational model based on quantum 
computation theory to handle classification tasks 
in order to prove the feasibility of applying the 
QM model to machine learning. 

In this article, we present a method that con-
siders the classifier as a physical system amena-
ble to QM and treat the entire process of classifi-
cation as the evolutionary process of a closed 
quantum system. According to QM, the evolu-
tion of quantum system can be described by a 
unitary operator. Therefore, the primary problem 
of building a quantum classifier (QC) is to find 
the correct or optimal unitary operator. We ap-
plied classical optimization algorithms to deal 
with the problem, and the experimental results 
have confirmed our theory. 

The outline of this paper is as follows. First, 
the basic principle and structure of QC is intro-
duced in section 2. Then, two different experi-
ments are described in section 3. Finally, section 
4 concludes with a discussion. 

2  Basic principle of quantum classifier  

As we mentioned in the introduction, the major 
principle of quantum classifier (QC) is to consid-
er the classifier as a physical system and the 
whole process of classification as the evolution-
ary process of a closed quantum system. Thus, 
the evolution of the quantum system can be de-
scribed by a unitary operator (unitary matrix), 
and the remaining job is to find the correct or 
optimal unitary operator. 

2.1 Architecture of quantum classifier 
The architecture and the whole procedure of data 
processing of QC are illustrated in Figure 1. As 
is shown, the key aspect of QC is the optimiza-
tion part where we employ the optimization algo-
rithm to find an optimal unitary operator ܷᇱ.  

484



  
Figure 1. Architecture of quantum classifier 

 
The detailed information about each phase of the 
process will be explained thoroughly in the fol-
lowing sections.  

2.2 Encode input state and target state 
In quantum mechanics theory, the state of a 
physical system can be described as a superposi-
tion of the so called eigenstates which are or-
thogonal. Any state, including the eigenstate, can 
be represented by a complex number vector. We 
use Dirac’s braket notation to formalize the data 
as equation 1: 

|ࣘ⟩ =෍࢔ࡱ|࢔࡯⟩
࢔

																					(1) 

 
where |ࣘ⟩ denotes a state and ࢔࡯ ∈ ℂ is a com-
plex number with ࢔࡯ = -being the projec ⟨ࣘ|࢔ࡱ⟩
tion of |ࣘ⟩ on the eigenstate |࢔ࡱ⟩. According to 
quantum theory, ࢔࡯ denotes the probability am-
plitude. Furthermore, the probability of |ࣘ⟩ col-
lapsing on |࢔ࡱ⟩ is P(࢔ࡱ) =

૛|࢔࡯|

∑ ࢔૛|࢔࡯|
 . 

Based on the hypothesis that QC can be con-
sidered as a quantum system, the input data 
should be transformed to an available format in 
quantum theory — the complex number vector. 
According to Euler’s formula, a complex number 
z can be denoted as ࢠ = ≤with r ࣂ࢏ࢋ࢘ ૙, ࣂ ∈ ℝ. 
Equation 1, thus, can be written as: 
 
																													|ࣘ⟩ =෍࢘࢔ࡱ|࢔ࣂ࢏ࢋ࢔⟩

࢔

												(2) 

 
where ࢘࢔  and ࢔ࣂ  denote the module and the 
phase of the complex coefficient respectively.  
 

 
For different applications, we employ different 
approaches to determine the value of ࢘࢔ and ࢔ࣂ. 
Specifically, in our experiment, we assigned the 
term frequency, a feature frequently used in text 
classification to ࢘࢔ , and treated the phase ࢔ࣂ as 
a constant, since we found the phase makes little 
contribution to the classification.  

For each data sample ݈݁݌݉ܽݏ௞, we calculate 
the corresponding input complex number vector 
by equation 3, which is illustrated in detail in 
Figure 2. 

 

																|ࣘ࢑⟩ =෍࢘࢐࢑ ∙ ࢐ൿࡱ|ࣂ࢏ࢋ
࢓

࢐ୀ૚

																					(3)	 

 
 

Figure 2. Process of calculating the input state 
 
Each eigenstate |࢐ࡱൿ  denotes the correspond-

ing ݂݁ܽ݁ݎݑݐ௝, resulting in m eigenstates for  all 
the samples.  

As is mentioned above, the evolutionary pro-
cess of a closed physical system can be described 
by a unitary operator, depicted by a matrix as in 
equation 4: 

 
																																|ࣘᇱ⟩ =  (4)																											⟨ࣘ|ࢁ

 
where |ࣘᇱ⟩ and |ࣘ⟩ denote the final state and the 
initial state respectively. The approach to deter-
mine the unitary operator will be discussed in 
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section 2.3. We encode the target state in the 
similar way. Like the Vector Space Model(VSM), 
we use a label matrix to represent each class as in 
Figure 3. 

 
 

Figure 3.  Label matrix 
 

For each input sample ݈݁݌݉ܽݏ௞, we generate 
the corresponding target complex number vector 
according to equation 5: 

																						|࣐࢑⟩ =෍࢐࢑ࡸ ∙ ࢐ൿࡱ|ࣂ࢏ࢋ
࢔

࢐ୀ૚

															(5) 

 
where each eigenstate |࢐ࡱൿ represents the corre-
sponding ܾ݁ܽܮ ௝݈ , resulting in w eigenstates for 
all the labels. Totally, we need ࢓+࢝  eigen-
states, including features and labels. 

 

2.3 Finding the Hamiltonian matrix and the 
Unitary operator 

As is mentioned in the first section, finding a 
unitary operator to describe the evolutionary pro-
cess is the vital step in building a QC. As a basic 
quantum mechanics theory, a unitary operator 
can be represented by a unitary matrix with the 
property ࢁற = ૚ିࢁ , and a unitary operator can 
also be written as equation 6: 

ࢁ																																	 = ࢋ
ࡴ࢏ି
ℏ ࢚																												(6) 

 
where H is the Hamiltonian matrix and ℏ is the 
reduced Planck constant. Moreover, the Hamil-
tonian H is a Hermitian matrix with the property 
றࢁ = ∗(࢚ࢁ) =  ,The remaining job, therefore .ࢁ
is to find an optimal Hamiltonian matrix. 

Since H is a Hermitian matrix, we only need 
to determine (࢓ +࢝)૛  free real parameters, 
provided that the dimension of H is (m+w). Thus, 
the problem of determining H can be regarded as 
a classical optimization problem, which can be 
resolved by various optimization algorithms 
(Chen and Kudlek, 2001). An error function is 
defined as equation 7: 

 

(ࡴ)࢘࢘ࢋ														 =
૚

∑ หൻ࢚ࣘ
࢑หࣘ࢕

࢑ൿห(࢚ࣘ,ࣘ࢏)∈ࢀ
											(7) 

where T is a set of training pairs with ߶௧ ,
߶௜ , ܽ݊݀	߶௢  denoting the target, input, and output 
state respectively, and ߶௢  is determined by ߶௜ as 
equation 8: 
 

⟨࢕ࣘ|                     = ࢋ
షࡴ࢏
ℏ           (8)                      ⟨࢏ࣘ|࢚
 

In the optimization phase, we employed sever-
al optimization algorithm, including BFGS, Ge-
neric Algorithm, and a multi-objective optimiza-
tion algorithm SQP (sequential quadratic pro-
gramming) to optimize the error function. In our 
experiment, the SQP method performed best out-
performed the others.  
 

3 Experiment 

We tested the performance of QC on two differ-
ent datasets. In section 3.1, the Reuters-21578 
dataset was used to train a binary QC. We com-
pared the performance of QC with several classi-
cal classification methods, including Support 
Vector Machine (SVM) and K-nearest neighbor 
(KNN). In section 3.2, we evaluated the perfor-
mance on multi-class classification using an oral 
conversation datasets and analyzed the results. 

3.1 Reuters-21578 
The Reuters dataset we tested contains 3,964 
texts belonging to “earnings” category and 8,938 
texts belonging to “others” categories. In this 
classification task, we selected the features by 
calculating the ߯ଶ  score of each term from the 
“earnings” category (Manning and Schütze, 
2002).  

For the convenience of counting, we adopted 
3,900 “earnings” documents and 8,900 “others” 
documents and divided them into two groups: the 
training pool and the testing sets. Since we fo-
cused on the performance of QC trained by 
small-scale training sets in our experiment, we 
each selected 1,000 samples from the “earnings” 
and the “others” category as our training pool 
and took the rest of the samples (2,900 “earnings” 
and 7,900 “others” documents) as our testing sets.  
We randomly selected training samples from the 
training pool ten times to train QC, SVM, and 
KNN classifier respectively and then verified the 
three trained classifiers on the testing sets, the 
results of which are illustrated in Figure 4. We 
noted that the QC performed better than both 
KNN and SVM on small-scale training sets, 
when the number of training samples is less than 
50. 
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Figure 4.  Classification accuracy for Reuters-

21578 datasets 
 

Generally speaking, the QC trained by a large 
training set may not always has an ideal perfor-
mance. Whereas some single training sample 
pair led to a favorable result when we used only 
one sample from each category to train the QC. 
Actually, some single samples could lead to an 
accuracy of more than 90%, while some others 
may produce an accuracy lower than 30%. 
Therefore, the most significant factor for QC is 
the quality of the training samples rather than the 
quantity. 

3.2 Oral conversation datasets 
Besides the binary QC, we also built a multi-
class version and tested its performance on an 
oral conversation dataset which was collected by 
the Laboratory of Computational Linguistics of 
Tsinghua university. The dataset consisted of 
1,000 texts and were categorized into 5 classes, 
each containing 200 texts. We still took the term 
frequency as the feature, the dimension of which 
exceeded 1,000. We, therefore, utilized the pri-
mary component analysis (PCA) to reduce the 
high dimension of the features in order to de-
crease the computational complexity. In this ex-
periment, we chose the top 10 primary compo-
nents of the outcome of PCA, which contained 
nearly 60% information of the original data. 
Again, we focused on the performance of QC 
trained by small-scale training sets. We selected 
100 samples from each class to construct the 
training pool and took the rest of the data as the 
testing sets. Same to the experiment in section 
3.1, we randomly selected the training samples 
from the training pool ten times to train QC, 
SVM, and KNN classifier respectively and veri 
fied the models on the testing sets, the results of 
which are shown in Figure 5. 
 

 
Figure 5.  Classification accuracy for oral 

conversation datasets 
 

4 Discussion 

We present here our model of text classification 
and compare it with SVM and KNN on two da-
tasets. We find that it is feasible to build a super-
vised learning model based on quantum mechan-
ics theory. Previous studies focus on combining 
quantum method with existing classification 
models such as neural network (Chen et al., 2008) 
and kernel function (Nasios and Bors, 2007) aim-
ing to improve existing models to work faster 
and more efficiently. Our work, however, focus-
es on developing a novel method which explores 
the relationship between machine learning model 
with physical world, in order to investigate these 
models by physical rule which describe our uni-
verse. Moreover, the QC performs well in text 
classification compared with SVM and KNN and 
outperforms them on small-scale training sets. 
Additionally, the time complexity of QC depends 
on the optimization algorithm and the amounts of 
features we adopt. Generally speaking, simulat-
ing quantum computing on classical computer 
always requires more computation resources, and 
we believe that quantum computer will tackle the 
difficulty in the forthcoming future. Actually, 
Google and NASA have launched a quantum 
computing AI lab this year, and we regard the 
project as an exciting beginning. 

Future studies include: We hope to find a 
more suitable optimization algorithm for QC and  
a more reasonable physical explanation towards 
the “quantum nature” of the QC. We hope our 
attempt will shed some light upon the application 
of quantum theory into the field of machine 
learning. 
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Abstract
We present a fast method for re-purposing
existing semantic word vectors to improve
performance in a supervised task. Re-
cently, with an increase in computing re-
sources, it became possible to learn rich
word embeddings from massive amounts
of unlabeled data. However, some meth-
ods take days or weeks to learn good em-
beddings, and some are notoriously dif-
ficult to train. We propose a method
that takes as input an existing embedding,
some labeled data, and produces an em-
bedding in the same space, but with a bet-
ter predictive performance in the super-
vised task. We show improvement on the
task of sentiment classification with re-
spect to several baselines, and observe that
the approach is most useful when the train-
ing set is sufficiently small.

1 Introduction

Incorporating the vector representation of a word
as a feature, has recently been shown to benefit
performance in several standard NLP tasks such
as language modeling (Bengio et al., 2003; Mnih
and Hinton, 2009), POS-tagging and NER (Col-
lobert et al., 2011), parsing (Socher et al., 2010),
as well as in sentiment and subjectivity analysis
tasks (Maas et al., 2011; Yessenalina and Cardie,
2011). Real-valued word vectors mitigate sparsity
by “smoothing” relevant semantic insight gained
during the unsupervised training over the rare and
unseen terms in the training data. To be effective,
these word-representations — and the process by
which they are assigned to the words (i.e. embed-
ding) — should capture the semantics relevant to
the task. We might, for example, consider dra-
matic (term X) and pleasant (term Y) to correlate
with a review of a good movie (task A), while find-
ing them of opposite polarity in the context of a

dating profile (task B). Consequently, good vectors
for X and Y should yield an inner product close to
1 in the context of task A, and −1 in the context
of task B. Moreover, we may already have on our
hands embeddings for X and Y obtained from yet
another (possibly unsupervised) task (C), in which
X and Y are, for example, orthogonal. If the em-
beddings for task C happen to be learned from a
much larger dataset, it would make sense to re-
use task C embeddings, but adapt them for task
A and/or task B. We will refer to task C and its
embeddings as the source task and the source em-
beddings, and task A/B, and its embeddings as the
target task and the target embeddings.

Traditionally, we would learn the embeddings
for the target task jointly with whatever unla-
beled data we may have, in an instance of semi-
supervised learning, and/or we may leverage la-
bels from multiple other related tasks in a multi-
task approach. Both methods have been applied
successfully (Collobert and Weston, 2008) to learn
task-specific embeddings. But while joint train-
ing is highly effective, a downside is that a large
amount of data (and processing time) is required
a-priori. In the case of deep neural embeddings,
for example, training time can number in days. On
the other hand, learned embeddings are becoming
more abundant, as much research and computing
effort is being invested in learning word represen-
tations using large-scale deep architectures trained
on web-scale corpora. Many of said embeddings
are published and can be harnessed in their raw
form as additional features in a number of super-
vised tasks (Turian et al., 2010). It would, thus, be
advantageous to learn a task-specific embedding
directly from another (source) embedding.

In this paper we propose a fast method for re-
embedding words from a source embedding S to a
target embedding T by performing unconstrained
optimization of a convex objective. Our objec-
tive is a linear combination of the dataset’s log-
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likelihood under the target embedding and the
Frobenius norm of the distortion matrix — a ma-
trix of component-wise differences between the
target and the source embeddings. The latter acts
as a regularizer that penalizes the Euclidean dis-
tance between the source and target embeddings.
The method is much faster than joint training and
yields competitive results with several baselines.

2 Related Work

The most relevant to our contribution is the work
by Maas et.al (2011), where word vectors are
learned specifically for sentiment classification.
Embeddings are learned in a semi-supervised
fashion, and the components of the embedding are
given an explicit probabilistic interpretation. Their
method produces state-of-the-art results, however,
optimization is non-convex and takes approxi-
mately 10 hours on 10 machines1. Naturally, our
method is significantly faster because it operates in
the space of an existing embedding, and does not
require a large amount of training data a-priori.

Collobert and Weston (2008), in their seminal
paper on deep architectures for NLP, propose a
multilayer neural network for learning word em-
beddings. Training of the model, depending on
the task, is reported to be between an hour and
three days. While the obtained embeddings can
be “fine-tuned” using backpropogation for a su-
pervised task, like all multilayer neural network
training, optimization is non-convex, and is sensi-
tive to the dimensionality of the hidden layers.

In machine learning literature, joint semi-
supervised embedding takes form in methods such
as the LaplacianSVM (LapSVM) (Belkin et al.,
2006) and Label Propogation (Zhu and Ghahra-
mani, 2002), to which our approach is related.
These methods combine a discriminative learner
with a non-linear manifold learning technique in a
joint objective, and apply it to a combined set of
labeled and unlabeled examples to improve per-
formance in a supervised task. (Weston et al.,
2012) take it further by applying this idea to deep-
learning architectures. Our method is different in
that the (potentially) massive amount of unlabeled
data is not required a-priori, but only the resultant
embedding.

1as reported by author in private correspondence. The
runtime can be improved using recently introduced tech-
niques, see (Collobert et al., 2011)

3 Approach

Let ΦS ,ΦT ∈ R|V |×K be the source and target
embedding matrices respectively, where K is the
dimension of the word vector space, identical in
the source and target embeddings, and V is the set
of embedded words, given by VS ∩ VT . Following
this notation, φi – the ith row in Φ – is the respec-
tive vector representation of wordwi ∈ V . In what
follows, we first introduce our supervised objec-
tive, then combine it with the proposed regularizer
and learn the target embedding ΦT by optimizing
the resulting joint convex objective.

3.1 Supervised model

We model each document dj ∈ D (a movie re-
view, for example) as a collection of words wij
(i.i.d samples). We assign a sentiment label sj ∈
{0, 1} to each document (converting the star rating
to a binary label), and seek to optimize the con-
ditional likelihood of the labels (sj)j∈{1,...,|D|},
given the embeddings and the documents:

p(s1, ..., s|D||D; ΦT ) =
∏

dj∈D

∏

wi∈dj
p(sj |wi; ΦT )

where p(sj = 1|wi,ΦT ) is the probability of as-
signing a positive label to document j, given that
wi ∈ dj . As in (Maas et al., 2011), we use logistic
regression to model the conditional likelihood:

p(sj = 1|wi; ΦT ) =
1

1 + exp(−ψTφi)

where ψ ∈ RK+1 is a regression parameter vector
with an included bias component. Maximizing the
log-likelihood directly (for ψ and ΦT ), especially
on small datasets, will result in severe overfitting,
as learning will tend to commit neutral words to
either polarity. Classical regularization will mit-
igate this effect, but can be improved further by
introducing an external embedding in the regular-
izer. In what follows, we describe re-embedding
regularization— employing existing (source) em-
beddings to bias word vector learning.

3.2 Re-embedding regularization

To leverage rich semantic word representations,
we employ an external source embedding and in-
corporate it in the regularizer on the supervised
objective. We use Euclidean distance between the
source and the target embeddings as the regular-
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ization loss. Combined with the supervised objec-
tive, the resulting log-likelihood becomes:

argmax
ψ,ΦT

∑

dj∈D

∑

wi∈dj
log p(sj |wi; ΦT )− λ||∆Φ||2F (1)

where ∆Φ = ΦT−ΦS , ||·||F is a Frobenius norm,
and λ is a trade-off parameter. There are almost
no restrictions on ΦS , except that it must match
the desired target vector space dimension K. The
objective is convex in ψ and ΦT , thus, yielding a
unique target re-embedding. We employ L-BFGS
algorithm (Liu and Nocedal, 1989) to find the op-
timal target embedding.

3.3 Classification with word vectors
To classify documents, re-embedded word vectors
can now be used to construct a document-level
feature vector for a supervised learning algorithm
of choice. Perhaps the most direct approach is to
compute a weighted linear combination of the em-
beddings for words that appear in the document
to be classified, as done in (Maas et al., 2011)
and (Blacoe and Lapata, 2012). We use the docu-
ment’s binary bag-of-words vector vj , and com-
pute the document’s vector space representation
through the matrix-vector product ΦT vj . The re-
sulting K + 1-dimensional vector is then cosine-
normalized and used as a feature vector to repre-
sent the document dj .

4 Experiments

Data: For our experiments, we employ a large,
recently introduced IMDB movie review dataset
(Maas et al., 2011), in place of the smaller dataset
introduced in (Pang and Lee, 2004) more com-
monly used for sentiment analysis. The dataset
(50,000 reviews) is split evenly between training
and testing sets, each containing a balanced set of
highly polar (≥ 7 and≤ 4 stars out of 10) reviews.
Source embeddings: We employ three external
embeddings (obtained from (Turian et al., 2010))
induced using the following models: 1) hierarchi-
cal log-bilinear model (HLBL) (Mnih and Hinton,
2009) and two neural network-based models – 2)
Collobert and Weston’s (C&W) deep-learning ar-
chitecture, and 3) Huang et.al’s polysemous neural
language model (HUANG) (Huang et al., 2012).
C&W and HLBL were induced using a 37M-word
newswire text (Reuters Corpus 1). We also induce
a Latent Semantic Analysis (LSA) based embed-
ding from the subset of the English project Guten-
berg collection of approximately 100M words. No

pre-processing (stemming or stopword removal),
beyond case-normalization is performed in either
the external or LSA-based embedding. For HLBL,
C&W and LSA embeddings, we use two variants
of different dimensionality: 50 and 200. In total,
we obtain seven source embeddings: HLBL-50,
HLBL-200, C&W-50, C&W-200, HUANG-
50, LSA-50, LSA-200.
Baselines: We generate two baseline embeddings
– NULL and RANDOM. NULL is a set of zero
vectors, and RANDOM is a set of uniformly
distributed random vectors with a unit L2-norm.
NULL and RANDOM are treated as source vec-
tors and re-embedded in the same way. The
NULL baseline is equivalent to regularizing on
the target embedding without the source embed-
ding. As additional baselines, we use each of the
7 source embeddings directly as a target without
re-embedding.
Training: For each source embedding matrix ΦS ,
we compute the optimal target embedding matrix
ΦT by maximizing Equation 1 using the L-BFGS
algorithm. 20 % of the training set (5,000 docu-
ments) is withheld for parameter (λ) tuning. We
use LIBLINEAR (Fan et al., 2008) logistic re-
gression module to classify document-level em-
beddings (computed from the ΦT vj matrix-vector
product). Training (re-embedding and document
classification) on 20,000 documents and a 16,000
word vocabulary takes approximately 5 seconds
on a 3.0 GHz quad-core machine.

5 Results and Discussion

The main observation from the results is that our
method improves performance for smaller training
sets (≤ 5000 examples). The reason for the perfor-
mance boost is expected – classical regularization
of the supervised objective reduces overfitting.
However, comparing to the NULL and RAN-
DOM baseline embeddings, the performance is
improved noticeably (note that a percent differ-
ence of 0.1 corresponds to 20 correctly classi-
fied reviews) for word vectors that incorporate the
source embedding in the regularizer, than those
that do not (NULL), and those that are based on
the random source embedding (RANDOM). We
hypothesize that the external embeddings, gen-
erated from a significantly larger dataset help
“smooth” the word-vectors learned from a small
labeled dataset alone. Further observations in-
clude:
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Features Number of training examples
+ Bag-of-words features

.5K 5K 20K .5K 5K 20K

A. Re-embeddings (our method)

HLBL-50 74.01 79.89 80.94 78.90 84.88 85.42
HLBL-200 74.33 80.14 81.05 79.22 85.05 85.95
C&W-50 74.52 79.81 80.48 78.92 84.89 85.87
C&W-200 74.80 80.25 81.15 79.34 85.28 86.15
HUANG-50 74.29 79.90 79.91 79.03 84.89 85.61
LSA-50 72.83 79.67 80.67 78.71 83.44 84.73
LSA-200 73.70 80.03 80.91 79.12 84.83 85.31

B. Baselines

RANDOM-50 w/ re-embedding 72.90 79.12 80.21 78.29 84.01 84.87
RANDOM-200 w/ re-embedding 72.93 79.20 80.29 78.31 84.08 84.91
NULL w/ re-embedding 72.92 79.18 80.24 78.29 84.10 84.98
HLBL-200 w/o re-embedding 67.88 72.60 73.10 79.02 83.83 85.83
C&W-200 w/o re-embedding 68.17 72.72 73.38 79.30 85.15 86.15
HUANG-50 w/o re-embedding 67.89 72.63 73.12 79.13 84.94 85.99

C. Related methods

Joint training (Maas, 2011) — — 84.65 — — 88.90
Bag of Words SVM — — — 79.17 84.97 86.14

Table 1: Classification accuracy for the sentiment task (IMDB
movie review dataset (Maas et al., 2011)). Subtable A compares
performance of the re-embedded vocabulary, induced from a
given source embedding. Subtable B contains a set of base-
lines: X-w/o re-embedding indicates using a source embedding
X directly without re-embedding.

BORING

source: lethal, lifestyles, masterpiece . . .
target: idiotic, soft-core, gimmicky

BAD

source: past, developing, lesser, . . .
target: ill, madonna, low, . . .

DEPRESSING

source: versa, redemption, townsfolk . . .
target: hate, pressured, unanswered ,

BRILLIANT

source: high-quality, obsession, hate . . .
target: all-out, bold, smiling . . .

Table 2: A representative set of words from the 20 closest-
ranked (cosine-distance) words to (boring, bad, depressing,
brilliant) extracted from the source and target (C&W-200)
embeddings. Source embeddings give higher rank to words
that are related, but not necessarily indicative of sentiment,
e.g. brilliant and obsession. Target words tend to be tuned
and ranked higher based on movie-sentiment-based rela-
tions.

Training set size: We note that with a sufficient
number of training instances for each word in the
test set, additional knowledge from an external
embedding does little to improve performance.
Source embeddings: We find C&W embeddings
to perform best for the task of sentiment classi-
fication. These embeddings were found to per-
form well in other NLP tasks as well (Turian et
al., 2010).
Embedding dimensionality: We observe that for
HLBL, C&W and LSA source embeddings (for all
training set sizes), 200 dimensions outperform 50.
While a smaller number of dimensions has been
shown to work better in other tasks (Turian et al.,
2010), re-embedding words may benefit from a
larger initial dimension of the word vector space.
We leave the testing of this hypothesis for future
work.
Additional features: Across all embeddings, ap-
pending the document’s binary bag-of-words rep-
resentation increases classification accuracy.

6 Future Work

While “semantic smoothing” obtained from intro-
ducing an external embedding helps to improve
performance in the sentiment classification task,
the method does not help to re-embed words that
do not appear in the training set to begin with. Re-
turning to our example, if we found dramatic and
pleasant to be “far” in the original (source) em-
bedding space, but re-embed them such that they
are “near” (for the task of movie review sentiment

classification, for example), then we might ex-
pect words such as melodramatic, powerful, strik-
ing, enjoyable to be re-embedded nearby as well,
even if they did not appear in the training set.
The objective for this optimization problem can be
posed by requiring that the distance between ev-
ery pair of words in the source and target embed-
dings is preserved as much as possible, i.e. min
(φ̂iφ̂j − φiφj)2 ∀i, j (where, with some abuse of
notation, φ and φ̂ are the source and target em-
beddings respectively). However, this objective is
no longer convex in the embeddings. Global re-
embedding constitutes our ongoing work and may
pose an interesting challenge to the community.

7 Conclusion

We presented a novel approach to adapting exist-
ing word vectors for improving performance in
a text classification task. While we have shown
promising results in a single task, we believe that
the method is general enough to be applied to
a range of supervised tasks and source embed-
dings. As sophistication of unsupervised methods
grows, scaling to ever-more massive datasets, so
will the representational power and coverage of in-
duced word vectors. Techniques for leveraging the
large amount of unsupervised data, but indirectly
through word vectors, can be instrumental in cases
where the data is not directly available, training
time is valuable and a set of easy low-dimensional
“plug-and-play” features is desired.
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Abstract

We introduce LABR, the largest sentiment
analysis dataset to-date for the Arabic lan-
guage. It consists of over 63,000 book
reviews, each rated on a scale of 1 to 5
stars. We investigate the properties of the
the dataset, and present its statistics. We
explore using the dataset for two tasks:
sentiment polarity classification and rat-
ing classification. We provide standard
splits of the dataset into training and test-
ing, for both polarity and rating classifica-
tion, in both balanced and unbalanced set-
tings. We run baseline experiments on the
dataset to establish a benchmark.

1 Introduction

The internet is full of platforms where users can
express their opinions about different subjects,
from movies and commercial products to books
and restaurants. With the explosion of social me-
dia, this has become easier and more prevalent
than ever. Mining these troves of unstructured text
has become a very active area of research with
lots of applications. Sentiment Classification is
among the most studied tasks for processing opin-
ions (Pang and Lee, 2008; Liu, 2010). In its ba-
sic form, it involves classifying a piece of opinion,
e.g. a movie or book review, into either having a
positive or negative sentiment. Another form in-
volves predicting the actual rating of a review, e.g.
predicting the number of stars on a scale from 1 to
5 stars.

Most of the current research has focused on
building sentiment analysis applications for the
English language (Pang and Lee, 2008; Liu, 2010;
Korayem et al., 2012), with much less work on
other languages. In particular, there has been
little work on sentiment analysis in Arabic (Ab-
basi et al., 2008; Abdul-Mageed et al., 2011;

Abdul-Mageed et al., 2012; Abdul-Mageed and
Diab, 2012b; Korayem et al., 2012), and very
few, considerably small-sized, datasets to work
with (Rushdi-Saleh et al., 2011b; Rushdi-Saleh et
al., 2011a; Abdul-Mageed and Diab, 2012a; Elar-
naoty et al., 2012). In this work, we try to address
the lack of large-scale Arabic sentiment analysis
datasets in this field, in the hope of sparking more
interest in research in Arabic sentiment analysis
and related tasks. Towards this end, we intro-
duce LABR, the Large-scale Arabic Book Review
dataset. It is a set of over 63K book reviews, each
with a rating of 1 to 5 stars.

We make the following contributions: (1)
We present the largest Arabic sentiment analy-
sis dataset to-date (up to our knowledge); (2)
We provide standard splits for the dataset into
training and testing sets. This will make
comparing different results much easier. The
dataset and the splits are publicly available at
www.mohamedaly.info/datasets; (3) We explore
the structure and properties of the dataset, and per-
form baseline experiments for two tasks: senti-
ment polarity classification and rating classifica-
tion.

2 Related Work

A few Arabic sentiment analysis datasets have
been collected in the past couple of years, we men-
tion the relevant two sets:

OCA Opinion Corpus for Arabic (Rushdi-Saleh
et al., 2011b) contains 500 movie reviews in Ara-
bic, collected from forums and websites. It is di-
vided into 250 positive and 250 negative reviews,
although the division is not standard in that there is
no rating for neutral reviews i.e. for 10-star rating
systems, ratings above and including 5 are con-
sidered positive and those below 5 are considered
negative.

AWATIF is a multi-genre corpus for Mod-
ern Standard Arabic sentiment analysis (Abdul-
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Number of reviews 63,257

Number of users 16,486

Avg. reviews per user 3.84

Median reviews per user 2

Number of books 2,131

Avg. reviews per book 29.68

Median reviews per book 6

Median tokens per review 33

Max tokens per review 3,736

Avg. tokens per review 65

Number of tokens 4,134,853

Number of sentences 342,199

Table 1: Important Dataset Statistics.
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Figure 1: Reviews Histogram. The plot shows
the number of reviews for each rating.

Mageed and Diab, 2012a). It consists of about
2855 sentences of news wire stories, 5342 sen-
tences from Wikipedia talk pages, and 2532
threaded conversations from web forums.

3 Dataset Collection

We downloaded over 220,000 reviews from the
book readers social network www.goodreads.com
during the month of March 2013. These reviews
were from the first 2143 books in the list of Best
Arabic Books. After harvesting the reviews, we
found out that over 70% of them were not in Ara-
bic, either because some non-Arabic books exist in
the list, or because of existing translations of some
of the books in other languages. After filtering out
the non-Arabic reviews, and performing several
pre-processing steps to clean up HTML tags and
other unwanted content, we ended up with 63,257
Arabic reviews.

4 Dataset Properties

The dataset contains 63,257 reviews that were sub-
mitted by 16,486 users for 2,131 different books.

Task Training Set Test Set

1. Polarity Classification
B 13,160 3,288

U 40,845 10,211

2. Rating Classification
B 11,760 2,935

U 50,606 12,651

Table 2: Training and Test sets. B stands for bal-
anced, and U stands for Unbalanced.

Table 1 contains some important facts about the
dataset and Fig. 1 shows the number of reviews
for each rating. We consider as positive reviews
those with ratings 4 or 5, and negative reviews
those with ratings 1 or 2. Reviews with rating 3
are considered neutral and not included in the po-
larity classification. The number of positive re-
views is much larger than that of negative reviews.
We believe this is because the books we got re-
views for were the most popular books, and the
top rated ones had many more reviews than the the
least popular books.

The average user provided 3.84 reviews with the
median being 2. The average book got almost 30
reviews with the median being 6. Fig. 2 shows
the number of reviews per user and book. As
shown in the Fig. 2c, most books and users have
few reviews, and vice versa. Figures 2a-b show
a box plot of the number of reviews per user and
book. We notice that books (and users) tend to
have (give) positive reviews than negative reviews,
where the median number of positive reviews per
book is 5 while that for negative reviews is only 2
(and similarly for reviews per user).

Fig. 3 shows the statistics of tokens and sen-
tences. The reviews were tokenized and “rough”
sentence counts were computed (by looking for
punctuation characters). The average number of
tokens per review is 65.4, the average number of
sentences per review is 5.4, and the average num-
ber of tokens per sentence is 12. Figures 3a-b
show that the distribution is similar for positive
and negative reviews. Fig. 3c shows a plot of the
frequency of the tokens in the vocabulary in a log-
log scale, which conforms to Zipf’s law (Manning
and Schütze, 2000).

5 Experiments

We explored using the dataset for two tasks: (a)
Sentiment polarity classification: where the goal
is to predict if the review is positive i.e. with rating
4 or 5, or is negative i.e. with rating 1 or 2; and (b)
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Rating classification: where the goal is to predict
the rating of the review on a scale of 1 to 5.

To this end, we divided the dataset into separate
training and test sets, with a ratio of 8:2. We do
this because we already have enough training data,
so there is no need to resort to cross-validation
(Pang et al., 2002). To avoid the bias of having
more positive than negative reviews, we explored
two settings: (a) a balanced split where the num-
ber of reviews from every class is the same, and
is taken to be the size of the smallest class (where
larger classes are down-sampled); (b) an unbal-
anced split where the number of reviews from ev-
ery class is unrestricted, and follows the distribu-
tion shown in Fig. 1. Table 2 shows the number of
reviews in the training and test sets for each of the
two tasks for the balanced and unbalanced splits,
while Fig. 4 shows the breakdown of these num-

bers per class.

Tables 3-4 show results of the experiments for
both tasks in both balanced/unbalanced settings.
We tried different features: unigrams, bigrams,
and trigrams with/without tf-idf weighting. For
classifiers, we used Multinomial Naive Bayes,
Bernoulli Naive Bayes (for binary counts), and
Support Vector Machines. We report two mea-
sures: the total classification accuracy (percentage
of correctly classified test examples) and weighted
F1 measure (Manning and Schütze, 2000). All
experiments were implemented in Python using
scikit-learn (Pedregosa et al., 2011) and Qalsadi
(available at pypi.python.org/pypi/qalsadi).

We notice that: (a) The total accuracy and
weighted F1 are quite correlated and go hand-in-
hand. (b) Task 1 is much easier than task 2, which
is expected. (c) The unbalanced setting seems eas-
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Features Tf-Idf
Balanced Unbalanced

MNB BNB SVM MNB BNB SVM

1g
No 0.801 / 0.801 0.807 / 0.807 0.766 / 0.766 0.887 / 0.879 0.889 / 0.876 0.880 / 0.877

Yes 0.809 / 0.808 0.529 / 0.417 0.801 / 0.801 0.838 / 0.765 0.838 / 0.766 0.903 / 0.895

1g+2g
No 0.821 / 0.821 0.821 / 0.821 0.789 / 0.789 0.893 / 0.877 0.891 / 0.873 0.892 / 0.888

Yes 0.822 / 0.822 0.513 / 0.368 0.818 / 0.818 0.838 / 0.765 0.837 / 0.763 0.910 / 0.901

1g+2g+3g
No 0.821 / 0.821 0.823 / 0.823 0.786 / 0.786 0.889 / 0.869 0.886 / 0.863 0.893 / 0.888

Yes 0.827 / 0.827 0.511 / 0.363 0.821 / 0.820 0.838 / 0.765 0.837 / 0.763 0.910 / 0.901

Table 3: Task 1: Polarity Classification Experimental Results. 1g means using the unigram model,
1g+2g is using unigrams + bigrams, and 1g+2g+3g is using trigrams. Tf-Idf indicates whether tf-idf
weighting was used or not. MNB is Multinomial Naive Bayes, BNB is Bernoulli Naive Bayes, and SVM
is the Support Vector Machine. The numbers represent total accuracy / weighted F1 measure. See Sec.
5.

Features Tf-Idf
Balanced Unbalanced

MNB BNB SVM MNB BNB SVM

1g
No 0.393 / 0.392 0.395 / 0.396 0.367 / 0.365 0.465 / 0.445 0.464 / 0.438 0.460 / 0.454

Yes 0.402 / 0.405 0.222 / 0.128 0.387 / 0.384 0.430 / 0.330 0.379 / 0.229 0.482 / 0.472

1g+2g
No 0.407 / 0.408 0.418 / 0.421 0.383 / 0.379 0.487 / 0.460 0.487 / 0.458 0.472 / 0.466

Yes 0.419 / 0.423 0.212 / 0.098 0.411 / 0.407 0.432 / 0.325 0.379 / 0.217 0.501 / 0.490

1g+2g+3g
No 0.405 / 0.408 0.417 / 0.420 0.384 / 0.381 0.487 / 0.457 0.484 / 0.452 0.474 / 0.467

Yes 0.426 / 0.431 0.211 / 0.093 0.410 / 0.407 0.431 / 0.322 0.379 / 0.216 0.503 / 0.491

Table 4: Task 2: Rating Classification Experimental Results. See Table 3 and Sec. 5.
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Figure 4: Training-Test Splits. (a) Histogram of
the number of training and test reviews for the po-
larity classification task for balanced (solid) and
unbalanced (hatched) cases. (b) The same for the
rating classification task. In the balanced set, all
classes have the same number of reviews as the
smallest class, which is done by down-sampling
the larger classes.

ier than the balanced one. This might be because
the unbalanced sets contain more training exam-
ples to make use of. (d) SVM does much better
in the unbalanced setting, while MNB is slightly
better than SVM in the balanced setting. (e) Using
more ngrams helps, and especially combined with
tf-idf weighting, as all the best scores are with tf-
idf.

6 Conclusion and Future Work

In this work we presented the largest Arabic sen-
timent analysis dataset to-date. We explored its
properties and statistics, provided standard splits,
and performed several baseline experiments to es-
tablish a benchmark. Although we used very sim-
ple features and classifiers, task 1 achieved quite
good results (~90% accuracy) but there is much
room for improvement in task 2 (~50% accuracy).
We plan next to work more on the dataset to
get sentence-level polarity labels, and to extract
Arabic sentiment lexicon and explore its poten-
tial. Furthermore, we also plan to explore using
Arabic-specific and more powerful features.
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Abstract

Recommendation dialog systems help
users navigate e-commerce listings by ask-
ing questions about users’ preferences to-
ward relevant domain attributes. We
present a framework for generating and
ranking fine-grained, highly relevant ques-
tions from user-generated reviews. We
demonstrate our approach on a new dataset
just released by Yelp, and release a new
sentiment lexicon with 1329 adjectives for
the restaurant domain.

1 Introduction

Recommendation dialog systems have been devel-
oped for a number of tasks ranging from product
search to restaurant recommendation (Chai et al.,
2002; Thompson et al., 2004; Bridge et al., 2005;
Young et al., 2010). These systems learn user re-
quirements through spoken or text-based dialog,
asking questions about particular attributes to fil-
ter the space of relevant documents.

Traditionally, these systems draw questions
from a small, fixed set of attributes, such as cuisine
or price in the restaurant domain. However, these
systems overlook an important element in users’
interactions with online product listings: user-
generated reviews. Huang et al. (2012) show that
information extracted from user reviews greatly
improves user experience in visual search inter-
faces. In this paper, we present a dialog-based in-
terface that takes advantage of review texts. We
demonstrate our system on a new challenge cor-
pus of 11,537 businesses and 229,907 user reviews
released by the popular review website Yelp1, fo-
cusing on the dataset’s 4724 restaurants and bars
(164,106 reviews).

This paper makes two main contributions. First,
we describe and qualitatively evaluate a frame-

1
https://www.yelp.com/dataset_challenge/

work for generating new, highly-relevant ques-
tions from user review texts. The framework
makes use of techniques from topic modeling and
sentiment-based aspect extraction to identify fine-
grained attributes for each business. These at-
tributes form the basis of a new set of questions
that the system can ask the user.

Second, we use a method based on information-
gain for dynamically ranking candidate questions
during dialog production. This allows our system
to select the most informative question at each di-
alog step. An evaluation based on simulated di-
alogs shows that both the ranking method and the
automatically generated questions improve recall.

2 Generating Questions from Reviews

2.1 Subcategory Questions

Yelp provides each business with category labels
for top-level cuisine types like Japanese, Coffee
& Tea, and Vegetarian. Many of these top-level
categories have natural subcategories (e.g., ramen
vs. sushi). By identifying these subcategories, we
enable questions which probe one step deeper than
the top-level category label.

To identify these subcategories, we run Latent
Dirichlet Analysis (LDA) (Blei et al., 2003) on
the reviews of each set of businesses in the twenty
most common top-level categories, using 10 top-
ics and concatenating all of a business’s reviews
into one document.2 Several researchers have used
sentence-level documents to model topics in re-
views, but these tend to generate topics about fine-
grained aspects of the sort we discuss in Section
2.2 (Jo and Oh, 2011; Brody and Elhadad, 2010).
We then manually labeled the topics, discarding
junk topics and merging similar topics. Table 1
displays sample extracted subcategories.

Using these topic models, we assign a business

2We use the Topic Modeling Toolkit implementation:
http://nlp.stanford.edu/software/tmt
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Category Topic Label Top Words
pizza crust sauce pizza garlic sausage slice salad

Italian traditional pasta sauce delicious ravioli veal dishes gnocchi
bistro bruschetta patio salad valet delicious brie panini
deli sandwich deli salad pasta delicious grocery meatball

brew pub beers peaks ale brewery patio ipa brew
grill steak salad delicious sliders ribs tots drinks
bar drinks vig bartender patio uptown dive karaoke

American (New) bistro drinks pretzel salad fondue patio sanwich windsor
brunch sandwich brunch salad delicious pancakes patio
burger burger fries sauce beef potato sandwich delicious

mediterranean pita hummus jungle salad delicious mediterranean wrap
italian deli sandwich meats cannoli cheeses authentic sausage

new york deli beef sandwich pastrami corned fries waitress
Delis bagels bagel sandwiches toasted lox delicious donuts yummy

mediterranean pita lemonade falafel hummus delicious salad bakery
sandwiches sandwich subs sauce beef tasty meats delicious

sushi sushi kyoto zen rolls tuna sashimi spicy
Japanese teppanyaki sapporo chef teppanyaki sushi drinks shrimp fried

teriyaki teriyaki sauce beef bowls veggies spicy grill
ramen noodles udon dishes blossom delicious soup ramen

Table 1: A sample of subcategory topics with hand-labels and top words.

to a subcategory based on the topic with high-
est probability in that business’s topic distribution.
Finally, we use these subcategory topics to gen-
erate questions for our recommender dialog sys-
tem. Each top-level category corresponds to a sin-
gle question whose potential answers are the set of
subcategories: e.g., “What type of Japanese cui-
sine do you want?”

2.2 Questions from Fine-Grained Aspects

Our second source for questions is based on as-
pect extraction in sentiment summarization (Blair-
Goldensohn et al., 2008; Brody and Elhadad,
2010). We define an aspect as any noun-phrase
which is targeted by a sentiment predicate. For
example, from the sentence “The place had great
atmosphere, but the service was slow.” we ex-
tract two aspects: +atmosphere and –service.

Our aspect extraction system has two steps.
First we develop a domain specific sentiment lex-
icon. Second, we apply syntactic patterns to iden-
tify NPs targeted by these sentiment predicates.

2.2.1 Sentiment Lexicon
Coordination Graph We generate a list of
domain-specific sentiment adjectives using graph
propagation. We begin with a seed set combin-
ing PARADIGM+ (Jo and Oh, 2011) with ‘strongly
subjective’ adjectives from the OpinionFinder lex-
icon (Wilson et al., 2005), yielding 1342 seeds.
Like Brody and Elhadad (2010), we then construct
a coordination graph that links adjectives modify-
ing the same noun, but to increase precision we

require that the adjectives also be conjoined by
and (Hatzivassiloglou and McKeown, 1997). This
reduces problems like propagating positive sen-
timent to orange in good orange chicken. We
marked adjectives that follow too or lie in the
scope of negation with special prefixes and treated
them as distinct lexical entries.

Sentiment Propagation Negative and positive
seeds are assigned values of 0 and 1 respectively.
All other adjectives begin at 0.5. Then a stan-
dard propagation update is computed iteratively
(see Eq. 3 of Brody and Elhadad (2010)).

In Brody and Elhadad’s implementation of this
propagation method, seed sentiment values are
fixed, and the update step is repeated until the non-
seed values converge. We found that three modifi-
cations significantly improved precision. First, we
omit candidate nodes that don’t link to at least two
positive or two negative seeds. This eliminated
spurious propagation caused by one-off parsing er-
rors. Second, we run the propagation algorithm for
fewer iterations (two iterations for negative terms
and one for positive terms). We found that addi-
tional iterations led to significant error propaga-
tion when neutral (italian) or ambiguous (thick)
terms were assigned sentiment.3 Third, we update
both non-seed and seed adjectives. This allows us
to learn, for example, that the negative seed deca-
dent is positive in the restaurant domain.

Table 2 shows a sample of sentiment adjectives
3Our results are consistent with the recent finding of Whit-

ney and Sarkar (2012) that cautious systems are better when
bootstrapping from seeds.
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Negative Sentiment
institutional, underwhelming, not nice, burn-
tish, unidentifiable, inefficient, not attentive,
grotesque, confused, trashy, insufferable,
grandiose, not pleasant, timid, degrading,
laughable, under-seasoned, dismayed, torn
Positive Sentiment
decadent, satisfied, lovely, stupendous,
sizable, nutritious, intense, peaceful,
not expensive, elegant, rustic, fast, affordable,
efficient, congenial, rich, not too heavy,
wholesome, bustling, lush

Table 2: Sample of Learned Sentiment Adjectives

derived by this graph propagation method. The
final lexicon has 1329 adjectives4, including 853
terms not in the original seed set. The lexicon is
available for download.5

Evaluative Verbs In addition to this adjective
lexicon, we take 56 evaluative verbs such as love
and hate from admire-class VerbNet predicates
(Kipper-Schuler, 2005).

2.2.2 Extraction Patterns

To identify noun-phrases which are targeted by
predicates in our sentiment lexicon, we develop
hand-crafted extraction patterns defined over syn-
tactic dependency parses (Blair-Goldensohn et al.,
2008; Somasundaran and Wiebe, 2009) generated
by the Stanford parser (Klein and Manning, 2003).
Table 3 shows a sample of the aspects generated by
these methods.

Adj + NP It is common practice to extract any
NP modified by a sentiment adjective. However,
this simple extraction rule suffers from precision
problems. First, reviews often contain sentiment
toward irrelevant, non-business targets (Wayne is
the target of excellent job in (1)). Second, hypo-
thetical contexts lead to spurious extractions. In
(2), the extraction +service is clearly wrong–in
fact, the opposite sentiment is being expressed.

(1) Wayne did an excellent job addressing our
needs and giving us our options.

(2) Nice and airy atmosphere, but service could be
more attentive at times.

4We manually removed 26 spurious terms which were
caused by parsing errors or propagation to a neutral term.

5http://nlp.stanford.edu/projects/
yelp.shtml

We address these problems by filtering out sen-
tences in hypothetical contexts cued by if, should,
could, or a question mark, and by adopting the fol-
lowing, more conservative extractions rules:

i) [BIZ + have + adj. + NP] Sentiment adjec-
tive modifies NP, main verb is have, subject
is business name, it, they, place, or absent.
(E.g., This place has some really great yogurt
and toppings).

ii) [NP + be + adj.] Sentiment adjective linked
to NP by be—e.g., Our pizza was much too
jalapeno-y.

“Good For” + NP Next, we extract aspects us-
ing the pattern BIZ + positive adj. + for + NP, as in
It’s perfect for a date night. Examples of extracted
aspects include +lunch, +large groups, +drinks,
and +quick lunch.

Verb + NP Finally, we extract NPs that appear
as direct object to one of our evaluative verbs (e.g.,
We loved the fried chicken).

2.2.3 Aspects as Questions
We generate questions from these extracted as-
pects using simple templates. For example, the as-
pect +burritos yields the question: Do you want a
place with good burritos?

3 Question Selection for Dialog

To utilize the questions generated from reviews in
recommendation dialogs, we first formalize the di-
alog optimization task and then offer a solution.

3.1 Problem Statement

We consider a version of the Information Retrieval
Dialog task introduced by Kopeček (1999). Busi-
nesses b ∈ B have associated attributes, coming
from a set Att. These attributes are a combination
of Yelp categories and our automatically extracted
aspects described in Section 2. Attributes att ∈ Att
take values in a finite domain dom(att). We denote
the subset of businesses with an attribute att tak-
ing value val ∈ dom(att), as B|att=val. Attributes
are functions from businesses to subsets of values:
att : B → P(dom(att)). We model a user in-
formation need I as a set of attribute/value pairs:
I = {(att1, val1), . . . , (att|I|, val|I|)}.

Given a set of businesses and attributes, a rec-
ommendation agent π selects an attribute to ask
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Chinese: Mexican:
+beef +egg roll +sour soup +orange chicken +salsa bar +burritos +fish tacos +guacamole
+noodles +crab puff +egg drop soup +enchiladas +hot sauce +carne asade +breakfast burritos
+dim sum +fried rice +honey chicken +horchata +green salsa +tortillas +quesadillas

Japanese: American (New)
+rolls +sushi rolls +wasabi +sushi bar +salmon +environment +drink menu +bar area +cocktails +brunch
+chicken katsu +crunch +green tea +sake selection +hummus +mac and cheese +outdoor patio +seating area
+oysters +drink menu +sushi selection +quality +lighting +brews +sangria +cheese plates

Table 3: Sample of the most frequent positive aspects extracted from review texts.

Input: Information need I
Set of businesses B
Set of attributes Att
Recommendation agent π
Dialog length K

Output: Dialog history H
Recommended businesses B

Initialize dialog history H = ∅
for step = 0; step < K; step++ do

Select an attribute: att = π(B,H)
Query user for the answer: val = I(att)
Restrict set of businesses: B = B|att=val
Append answer: H = H ∪ {(att, val)}

end
Return (H,B)

Algorithm 1: Procedure for evaluating a recom-
mendation agent

the user about, then uses the answer value to nar-
row the set of businesses to those with the de-
sired attribute value, and selects another query.
Algorithm 1 presents this process more formally.
The recommendation agent can use both the set of
businesses B and the history of question and an-
swers H from the user to select the next query.
Thus, formally a recommendation agent is a func-
tion π : B × H → Att. The dialog ends after a
fixed number of queries K.

3.2 Information Gain Agent

The information gain recommendation agent
chooses questions to ask the user by selecting
question attributes that maximize the entropy of
the resulting document set, in a manner similar to
decision tree learning (Mitchell, 1997). Formally,
we define a function infogain : Att× P(B)→ R:

infogain(att, B) =

−
∑

vals∈P(dom(att))

|Batt=vals|
|B| log

|Batt=vals|
|B|

The agent then selects questions att ∈ Att that
maximize the information gain with respect to the

set of businesses satisfying the dialog history H:
π(B,H) = argmax

att∈Att
infogain(att, B|H)

4 Evaluation

4.1 Experimental Setup

We follow the standard approach of using the at-
tributes of an individual business as a simulation
of a user’s preferences (Chung, 2004; Young et al.,
2010). For every business b ∈ B we form an in-
formation need composed of all of b’s attributes:

Ib =
⋃

{att∈Att|att(b)6=∅}
(att, att(b))

To evaluate a recommendation agent, we use
the recall metric, which measures how well an in-
formation need is satisfied. For each information
need I , let BI be the set of businesses that satisfy
the questions of an agent. We define the recall of
the set of businesses with respect to the informa-
tion need as

recall(BI , I) =

∑
b∈BI

∑
(att,val)∈I 1[val ∈ att(b)]

|BI ||I|
We average recall across all information needs,
yielding average recall.

We compare against a random agent baseline
that selects attributes att ∈ Att uniformly at ran-
dom at each time step. Other recommendation di-
alog systems such as Young et al. (2010) select
questions from a small fixed hierarchy, which is
not applicable to our large set of attributes.

4.2 Results

Figure 1 shows the average recall for the ran-
dom agent versus the information gain agent with
varying sets of attributes. ‘Top-level’ repeatedly
queries the user’s top-level category preferences,
‘Subtopic’ additionally uses our topic modeling
subcategories, and ‘All’ uses these plus the as-
pects extracted from reviews. We see that for suf-
ficiently long dialogs, ‘All’ outperforms the other
systems. The ‘Subtopic’ and ‘Top-level’ systems
plateau after a few dialog steps once they’ve asked
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Figure 1: Average recall for each agent.

all useful questions. For instance, most businesses
only have one or two top-level categories, so af-
ter the system has identified the top-level cate-
gory that the user is interested in, it has no more
good questions to ask. Note that the information
gain agent starts dialogs with the top-level and ap-
propriate subcategory questions, so it is only for
longer dialogs that the fine-grained aspects boost
performance.

Below we show a few sample output dialogs
from our ‘All’ information gain agent.

Q: What kind of place do you want?
A: American (New)
Q: What kind of American (New) do you want:
bar, bistro, standard, burgers, brew pub, or
brunch?
A: bistro
Q: Do you want a place with a good patio?
A: Yes

Q: What kind of place do you want?
A: Chinese
Q: What kind of Chinese place do you want:
buffet, dim sum, noodles, pan Asian, Panda
Express, sit down, or veggie?
A: sit down
Q: Do you want a place with a good lunch
special?
A: Yes

Q: What kind of place do you want?
A: Mexican
Q: What kind of Mexican place do you want:
dinner, taqueria, margarita bar, or tortas?
A: Margarita bar
Q: Do you want a place with a good patio?

A: Yes

5 Conclusion

We presented a system for extracting large sets
of attributes from user reviews and selecting rel-
evant attributes to ask questions about. Using
topic models to discover subtypes of businesses, a
domain-specific sentiment lexicon, and a number
of new techniques for increasing precision in sen-
timent aspect extraction yields attributes that give
a rich representation of the restaurant domain. We
have made this 1329-term sentiment lexicon for
the restaurant domain available as useful resource
to the community. Our information gain recom-
mendation agent gives a principled way to dynam-
ically combine these diverse attributes to ask rele-
vant questions in a coherent dialog. Our approach
thus offers a new way to integrate the advantages
of the curated hand-build attributes used in statisti-
cal slot and filler dialog systems, and the distribu-
tionally induced, highly relevant categories built
by sentiment aspect extraction systems.
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Abstract

We study subjective language in social
media and create Twitter-specific lexi-
cons via bootstrapping sentiment-bearing
terms from multilingual Twitter streams.
Starting with a domain-independent, high-
precision sentiment lexicon and a large
pool of unlabeled data, we bootstrap
Twitter-specific sentiment lexicons, us-
ing a small amount of labeled data to
guide the process. Our experiments on
English, Spanish and Russian show that
the resulting lexicons are effective for
sentiment classification for many under-
explored languages in social media.

1 Introduction

The language that people use to express opinions
and sentiment is extremely diverse. This is true for
well-formed data, such as news and reviews, and
it is particularly true for data from social media.
Communication in social media is informal, ab-
breviations and misspellings abound, and the per-
son communicating is often trying to be funny,
creative, and entertaining. Topics change rapidly,
and people invent new words and phrases.

The dynamic nature of social media together
with the extreme diversity of subjective language
has implications for any system with the goal
of analyzing sentiment in this domain. General,
domain-independent sentiment lexicons have low
coverage. Even models trained specifically on so-
cial media data may degrade somewhat over time
as topics change and new sentiment-bearing terms
crop up. For example, the word “occupy” would
not have been indicative of sentiment before 2011.

Most of the previous work on sentiment lexicon
construction relies on existing natural language

processing tools, e.g., syntactic parsers (Wiebe,
2000), information extraction (IE) tools (Riloff
and Wiebe, 2003) or rich lexical resources such
as WordNet (Esuli and Sebastiani, 2006). How-
ever, such tools and lexical resources are not avail-
able for many languages spoken in social media.
While English is still the top language in Twitter,
it is no longer the majority. Thus, the applicabil-
ity of these approaches is limited. Any method for
analyzing sentiment in microblogs or other social
media streams must be easily adapted to (1) many
low-resource languages, (2) the dynamic nature of
social media, and (3) working in a streaming mode
with limited or no supervision.

Although bootstrapping has been used for learn-
ing sentiment lexicons in other domains (Turney
and Littman, 2002; Banea et al., 2008), it has not
yet been applied to learning sentiment lexicons for
microblogs. In this paper, we present an approach
for bootstrapping subjectivity clues from Twitter
data, and evaluate our approach on English, Span-
ish and Russian Twitter streams. Our approach:
• handles the informality, creativity and the dy-

namic nature of social media;
• does not rely on language-dependent tools;
• scales to the hundreds of new under-explored

languages and dialects in social media;
• classifies sentiment in a streaming mode.
To bootstrap subjectivity clues from Twitter

streams we rely on three main assumptions:
i. sentiment-bearing terms of similar orienta-

tion tend to co-occur at the tweet level (Tur-
ney and Littman, 2002);

ii. sentiment-bearing terms of opposite orienta-
tion do not co-occur at the tweet level (Ga-
mon and Aue, 2005);

iii. the co-occurrence of domain-specific and
domain-independent subjective terms serves
as a signal of subjectivity.
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2 Related Work

Mihalcea et.al (2012) classifies methods for boot-
strapping subjectivity lexicons into two types:
corpus-based and dictionary-based.

Dictionary-based methods rely on existing lex-
ical resources to bootstrap sentiment lexicons.
Many researchers have explored using relations in
WordNet (Miller, 1995), e.g., Esuli and Sabastiani
(2006), Andreevskaia and Bergler (2006) for En-
glish, Rao and Ravichandran (2009) for Hindi and
French, and Perez-Rosas et al. (2012) for Spanish.
Mohammad et al. (2009) use a thesaurus to aid
in the construction of a sentiment lexicon for En-
glish. Other works (Clematide and Klenner, 2010;
Abdul-Mageed et al., 2011) automatically expands
and evaluates German and Arabic lexicons. How-
ever, the lexical resources that dictionary-based
methods need, do not yet exist for the majority of
languages in social media. There is also a mis-
match between the formality of many language re-
sources, such as WordNet, and the extremely in-
formal language of social media.

Corpus-based methods extract subjectivity and
sentiment lexicons from large amounts of unla-
beled data using different similarity metrics to
measure the relatedness between words. Hatzivas-
siloglou and McKeown (1997) were the first to ex-
plore automatically learning the polarity of words
from corpora. Early work by Wiebe (2000) iden-
tifies clusters of subjectivity clues based on their
distributional similarity, using a small amount of
data to bootstrap the process. Turney (2002) and
Velikovich et al. (2010) bootstrap sentiment lexi-
cons for English from the web by using Pointwise
Mutual Information (PMI) and graph propaga-
tion approach, respectively. Kaji and Kitsuregawa
(2007) propose a method for building sentiment
lexicon for Japanese from HTML pages. Banea
et al. (2008) experiment with Lexical Semantic
Analysis (LSA) (Dumais et al., 1988) to bootstrap
a subjectivity lexicon for Romanian. Kanayama
and Nasukawa (2006) bootstrap subjectivity lexi-
cons for Japanese by generating subjectivity can-
didates based on word co-occurrence patterns.

In contrast to other corpus-based bootstrapping
methods, we evaluate our approach on multiple
languages, specifically English, Spanish, and Rus-
sian. Also, as our approach relies only on the
availability of a bilingual dictionary for translating
an English subjectivity lexicon and crowdsourcing
for help in selecting seeds, it is more scalable and

better able to handle the informality and the dy-
namic nature of social media. It also can be effec-
tively used to bootstrap sentiment lexicons for any
language for which a bilingual dictionary is avail-
able or can be automatically induced from parallel
corpora.

3 Data

For the experiments in this paper, we use three
sets of data for each language: 1M unlabeled
tweets (BOOT) for bootstrapping Twitter-specific
lexicons, 2K labeled tweets for development data
(DEV), and 2K labeled tweets for evaluation
(TEST). DEV is used for parameter tuning while
bootstrapping, and TEST is used to evaluating the
quality of the bootstrapped lexicons.

We take English tweets from the corpus con-
structed by Burger et al. (2011) which con-
tains 2.9M tweets (excluding retweets) from 184K
users.1 English tweets are identified automati-
cally using a compression-based language identifi-
cation (LID) tool (Bergsma et al., 2012). Accord-
ing to LID, there are 1.8M (63.6%) English tweets,
which we randomly sample to create BOOT, DEV

and TEST sets for English. Unfortunately, Burger’s
corpus does not include Russian and Spanish data
on the same scale as English. Therefore, for
other languages we construct a new Twitter corpus
by downloading tweets from followers of region-
specific news and media feeds.

Sentiment labels for tweets in DEV and TEST

sets for all languages are obtained using Amazon
Mechanical Turk. For each tweet we collect an-
notations from five workers and use majority vote
to determine the final label for the tweet. Snow
et al. (2008) show that for a similar task, labeling
emotion and valence, on average four non-expert
labelers are needed to achieve an expert level of
annotation. Table 1 gives the distribution of tweets
over sentiment labels for the development and test
sets for English (E-DEV, E-TEST), Spanish (S-
DEV, S-TEST), and Russian (R-DEV, R-TEST).
Below are examples of tweets in Russian with En-
glish translations labeled with sentiment:
• Positive: В планах вкусный завтрак

и куча фильмов (Planning for delicious
breakfast and lots of movies);
• Negative: Хочу сдохнуть, и я это сделаю

(I want to die and I will do that);

1They provided the tweet IDs, and we used the Twitter
Corpus Tools to download the tweets.
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Data Positive Neg Both Neutral
E-DEV 617 357 202 824
E-TEST 596 347 195 862
S-DEV 358 354 86 1,202
S-TEST 317 387 93 1203
R-DEV 452 463 156 929
R-TEST 488 380 149 983

Table 1: Sentiment label distribution in develop-
ment DEV and test TEST datasets across languages.
• Both: Хочется написать грубее про

фильм но не буду. Хотя актеры хоро-
ши (I want to write about the movie rougher
but I will not. Although the actors are good);
• Neutral: Почему умные мысли приходят

только ночью? (Why clever thoughts come
only at night?).

4 Lexicon Bootstrapping

To create a Twitter-specific sentiment lexicon for
a given language, we start with a general-purpose,
high-precision sentiment lexicon2 and bootstrap
from the unlabeled data (BOOT) using the labeled
development data (DEV) to guide the process.

4.1 High-Precision Subjectivity Lexicons
For English we seed the bootstrapping pro-
cess with the strongly subjective terms from the
MPQA lexicon3 (Wilson et al., 2005). These
terms have been previously shown to be high-
precision for recognizing subjective sentences
(Riloff and Wiebe, 2003).

For the other languages, the subjective seed
terms are obtained by translating English seed
terms using a bilingual dictionary, and then col-
lecting judgments about term subjectivity from
Mechanical Turk. Terms that truly are strongly
subjective in translation are used for seed terms
in the new language, with term polarity projected
from the English. Finally, we expand the lexicons
with plurals and inflectional forms for adverbs, ad-
jectives and verbs.

4.2 Bootstrapping Approach
To bootstrap, first the new lexicon LB(0) is seeded
with the strongly subjective terms from the orig-
inal lexicon LI . On each iteration i ≥ 1, tweets
in the unlabeled data are labeled using the lexicon

2Other works on generating domain-specific sentiment
lexicons e.g., from blog data (Jijkoun et al., 2010) also start
with a general, domain-specific lexicon.

3http://www.cs.pitt.edu/mpqa/

from the previous iteration, LB(i−1). If a tweet
contains one or more terms from LB(i−1) it is con-
sidered subjective, otherwise objective. The polar-
ity of subjective tweets is determined in a similar
way: if the tweet contains ≥ 1 positive terms, tak-
ing into account the negation, it is considered neg-
ative; if it contains ≥ 1 negative terms, taking into
account the negation, it is considered positive.4 If
it contains both positive and negative terms, it is
considered to be both. Then, for every term not in
LB(i−1) that has a frequency ≥ θfreq, the proba-
bility of that term being subjective is calculated as
shown in Algorithm 1 line 10. The top θk terms
with a subjective probability ≥ θpr are then added
to LB(i). The polarity of new terms is determined
based on the probability of the term appearing in
positive or negative tweets as shown in line 18.5

The bootstrapping process terminates when there
are no more new terms meeting the criteria to add.

Algorithm 1 BOOTSTRAP (σ, θpr, θfreq, θtopK )

1: iter = 0, σ = 0.5, LB(~θ)← LI(σ)
2: while (stop 6= true) do
3: LiterB (~θ)← ∅,∆LiterB (~θ)← ∅
4: for each new term w ∈ {V \ LB(~θ)} do
5: for each tweet t ∈ T do
6: if w ∈ t then
7: UPDATE c(w,LB(~θ)), c(w,LposB (~θ)), c(w)
8: end if
9: end for

10: psubj(w)← c(w,LB(~θ))
c(w)

11: ppos(w)← c(w,L
pos
B

(~θ))

c(w,LB(~θ))

12: LiterB (~θ)← w, psubj(w), ppol(w)
13: end for
14: SORT LiterB (~θ) by psubj(w)
15: while (K ≤ θtopK) do
16: for each new term w ∈ LiterB (~θ) do
17: if [psubj(w) ≥ θpr and cw ≥ θfreq then
18: if [ppos(w) ≥ 0.5] then
19: wpol ← positive
20: else
21: wpol ← negative
22: end if
23: ∆LiterB (~θ)← ∆LiterB (~θ) + wpol

24: end if
25: end for
26: K = K + 1
27: end while
28: if [∆LiterB (~θ) == 0] then
29: stop← true
30: end if
31: LB(~θ)← LB(~θ) + ∆LiterB (~θ)
32: iter = iter + 1
33: end while

4If there is a negation in the two words before a sentiment
term, we flip its polarity.

5Polarity association probabilities should sum up to 1
ppos(w|LB(~θ)) + pneg(w|LB(~θ)) = 1.
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English Spanish Russian
LEI LEB LSI LSB LRI LRB

Pos 2.3 16.8 2.9 7.7 1.4 5.3
Neg 2.8 4.7 5.2 14.6 2.3 5.5
Total 5.1 21.5 8.1 22.3 3.7 10.8

Table 2: The original and the bootstrapped (high-
lighted) lexicon term count (LI ⊂ LB) with polar-
ity across languages (thousands).

The set of parameters ~θ is optimized using a grid
search on the development data using F-measure
for subjectivity classification. As a result, for En-
glish ~θ = [0.7, 5, 50] meaning that on each itera-
tion the top 50 new terms with a frequency ≥ 5
and probability ≥ 0.7 are added to the lexicon.
For Spanish, the set of optimal parameters ~θ =
[0.65, 3, 50] and for Russian - ~θ = [0.65, 3, 50]. In
Table 2 we report size and term polarity from the
original LI and the bootstrapped LB lexicons.

5 Lexicon Evaluations

We evaluate our bootstrapped sentiment lexicons
English LEB , Spanish LSB and Russian LRB by com-
paring them with existing dictionary-expanded
lexicons that have been previously shown to be ef-
fective for subjectivity and polarity classification
(Esuli and Sebastiani, 2006; Perez-Rosas et al.,
2012; Chetviorkin and Loukachevitch, 2012). For
that we perform subjectivity and polarity classifi-
cation using rule-based classifiers6 on the test data
E-TEST, S-TEST and R-TEST.

We consider how the various lexicons perform
for rule-based classifiers for both subjectivity and
polarity. The subjectivity classifier predicts that
a tweet is subjective if it contains a) at least one,
or b) at least two subjective terms from the lexi-
con. For the polarity classifier, we predict a tweet
to be positive (negative) if it contains at least one
positive (negative) term taking into account nega-
tion. If the tweet contains both positive and nega-
tive terms, we take the majority label.

For English we compare our bootstrapped lex-
icon LEB against the original lexicon LEI and
strongly subjective terms from SentiWordNet 3.0
(Esuli and Sebastiani, 2006). To make a fair
comparison, we automatically expand SentiWord-
Net with noun plural forms and verb inflectional
forms. In Figure 1 we report precision, recall

6Similar approach to a rule-based classification using
terms from he MPQA lexicon (Riloff and Wiebe, 2003).

and F-measure results. They show that our boot-
strapped lexicon significantly outperforms Senti-
WordNet for subjectivity classification. For polar-
ity classification we get comparable F-measure but
much higher recall for LEB compared to SWN .

(a) Subj ≥ 1 (b) Subj ≥ 2 (c) Polarity

Lexicon Fsubj≥1 Fsubj≥2 Fpolarity
SWN 0.57 0.27 0.78
LEI 0.71 0.48 0.82
LEB 0.75 0.72 0.78

Figure 1: Precision (x-axis), recall (y-axis) and
F-measure (in the table) for English: LEI = ini-
tial lexicon, LEB = bootstrapped lexicon, SWN =
strongly subjective terms from SentiWordNet.

For Spanish we compare our bootstrapped lex-
icon LSB against the original LSI lexicon, and the
full and medium strength terms from the Span-
ish sentiment lexicon constructed by Perez-Rosas
et el. (2012). We report precision, recall and F-
measure in Figure 2. We observe that our boot-
strapped lexicon yields significantly better perfor-
mance for subjectivity classification compared to
both full and medium strength terms. However,
our bootstrapped lexicon yields lower recall and
similar precision for polarity classification.

(a) Subj ≥ 1 (b) Subj ≥ 2 (c) Polarity

Lexicon Fsubj≥1 Fsubj≥2 Fpolarity
SM 0.44 0.17 0.64
SF 0.47 0.13 0.66
LSI 0.59 0.45 0.58
LSB 0.59 0.59 0.55

Figure 2: Precision (x-axis), recall (y-axis) and F-
measure (in the table) for Spanish: LSI = initial
lexicon, LSB = bootstrapped lexicon, SF = full
strength terms; SM = medium strength terms.
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For Russian we compare our bootstrapped lex-
icon LRB against the original LRI lexicon, and the
Russian sentiment lexicon constructed by Chetv-
iorkin and Loukachevitchet (2012). The external
lexicon in Russian P was built for the domain
of product reviews and does not include polarity
judgments for subjective terms. As before, we
expand the external lexicon with the inflectional
forms for adverbs, adjectives and verbs. We report
results for Russian in Figure 3. We find that for
subjectivity our bootstrapped lexicon shows better
performance compared to the external lexicon (5k
terms). However, the expanded external lexicon
(17k terms) yields higher recall with a significant
drop in precision. Note that for Russian, we report
polarity classification results for LRB and LRI lexi-
cons only because P does not have polarity labels.

(a) Subj ≥ 1 (b) Subj ≥ 2 (c) Polarity

Lexicon Fsubj≥1 Fsubj≥2 Fpolarity
P 0.55 0.29 –
PX 0.62 0.47 –
LRI 0.46 0.13 0.73
LRB 0.61 0.35 0.73

Figure 3: Precision (x-axis), recall (y-axis) and F-
measure for Russian: LRI = initial lexicon, LRB =
bootstrapped lexicon, P = external sentiment lex-
icon, PX = expanded external lexicon.

We next perform error analysis for subjectiv-
ity and polarity classification for all languages and
identify common errors to address them in future.

For subjectivity classification we observe that
applying part-of-speech tagging during the boot-
strapping could improve results for all languages.
We could further improve the quality of the lex-
icon and reduce false negative errors (subjec-
tive tweets classified as neutral) by focusing on
sentiment-bearing terms such as adjective, adverbs
and verbs. However, POS taggers for Twitter are
only available for a limited number of languages
such as English (Gimpel et al., 2011). Other false
negative errors are often caused by misspellings.7

7For morphologically-rich languages, our approach cov-
ers different linguistic forms of terms but not their mis-
spellings. However, it can be fixed by an edit-distance check.

We also find subjective tweets with philosophi-
cal thoughts and opinions misclassified, especially
in Russian, e.g., Иногда мы бываем не готовы
к исполнению заветной мечты но все рав-
но так не хочется ее спугнуть (Sometimes we
are not ready to fulfill our dreams yet but, at the
same time, we do not want to scare them). Such
tweets are difficult to classify using lexicon-based
approaches and require deeper linguistic analysis.

False positive errors for subjectivity classifica-
tion happen because some terms are weakly sub-
jective and can be used in both subjective and
neutral tweets e.g., the Russian term хвастаться
(brag) is often used as subjective, but in a tweet
никогда не стоит хвастаться будущим (never
brag about your future) it is used as neutral. Simi-
larly, the Spanish term buenas (good) is often used
subjectively but it is used as neutral in the follow-
ing tweet “@Diveke me falto el buenas! jaja que
onda que ha pasado” (I miss the good times we
had, haha that wave has passed!).

For polarity classification, most errors happen
because our approach relies on either positive or
negative polarity scores for a term but not both.8

However, in the real world terms may sometimes
have both usages. Thus, some tweets are misclas-
sified (e.g., “It is too warm outside”). We can
fix this by summing over weighted probabilities
rather than over term counts. Additional errors
happen because tweets are very short and convey
multiple messages (e.g., “What do you mean by
unconventional? Sounds exciting!”) Thus, our ap-
proach can be further improved by adding word
sense disambiguation and anaphora resolution.

6 Conclusions

We propose a scalable and language independent
bootstrapping approach for learning subjectivity
clues from Twitter streams. We demonstrate the
effectiveness of the bootstrapping procedure by
comparing the resulting subjectivity lexicons with
state-of the-art sentiment lexicons. We perform
error analysis to address the most common error
types in the future. The results confirm that the
approach can be effectively exploited and further
improved for subjectivity classification for many
under-explored languages in social media.

8During the bootstrapping we calculate probability for a
term to be positive and negative, e.g., p(warm|+) = 0.74
and p(warm|−) = 0.26. But during polarity classification
we rely on the highest probability score and consider it to be
“the polarity” for the term e.g., positive for warm.
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Abstract 

Emotion classification can be generally done 
from both the writer’s and reader’s 
perspectives. In this study, we find that two 
foundational tasks in emotion classification, 
i.e., reader’s emotion classification on the 
news and writer’s emotion classification on 
the comments, are strongly related to each 
other in terms of coarse-grained emotion 
categories, i.e., negative and positive. On the 
basis, we propose a respective way to jointly 
model these two tasks. In particular, a co-
training algorithm is proposed to improve 
semi-supervised learning of the two tasks. 
Experimental evaluation shows the 
effectiveness of our joint modeling 
approach.

*
 

1 Introduction 

Emotion classification aims to predict the emo-

tion categories (e.g., happy, angry, or sad) of a 

given text (Quan and Ren, 2009; Das and Ban-

dyopadhyay, 2009). With the rapid growth of 

computer mediated communication applications, 

such as social websites and miro-blogs, the re-

search on emotion classification has been attract-

ing more and more attentions recently from the 

natural language processing (NLP) community 

(Chen et al., 2010; Purver and Battersby, 2012). 

In general, a single text may possess two kinds 

of emotions, writer’s emotion and reader’s emo-

tion, where the former concerns the emotion ex-

pressed by the writer when writing the text and 

the latter concerns the emotion expressed by a 

reader after reading the text. For example, con-

sider two short texts drawn from a news and cor-

responding comments, as shown in Figure 1. On 

                                                 
* *  Corresponding author 

one hand, for the news text, while its writer just 

objectively reports the news and thus does not 

express his emotion in the text, a reader could 

yield sad or worried emotion. On the other hand, 

for the comment text, its writer clearly expresses 

his sad emotion while the emotion of a reader 

after reading the comments is not clear (Some 

may feel sorry but others might feel careless). 

 
News:  

Today's Japan earthquake could be 
     2011 quake aftershock. …… 

News Writer’s emotion: None 
News Reader’s emotion: sad, worried 

Comments: 
(1) I hope everything is ok, so sad. I still can 
not forget last year. 
(2) My father-in-law got to experience this 
quake... what a suffering. 

Comment Writer’s emotion: sad 
Comment Reader’s emotion: Unknown 

Figure 1: An example of writer’s and reader’s 

emotions on a news and its comments 

 

Accordingly, emotion classification can be 

grouped into two categories: reader’s emotion 

and writer’s emotion classifications. Although 

both emotion classification tasks have been 

widely studied in recent years, they are always 

considered independently and treated separately.  

However, news and their corresponding com-

ments often appear simultaneously. For example, 

in many news websites, it is popular to see a 

news followed by many comments. In this case, 

because the writers of the comments are a part of 

the readers of the news, the writer’s emotions on 

the comments are exactly certain reflection of the 

reader’s emotions on the news. That is, the 

comment writer’s emotions and the news read-

er’s emotions are strongly related. For example, 
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in Figure 1, the comment writer’s emotion ‘sad’ 

is among the news reader’s emotions. 

Above observation motivates joint modeling 

of news reader’s and comment writer’s emotions. 

In this study, we systematically investigate the 

relationship between the news reader’s emotions 

and the comment writer’s emotions. Specifically, 

we manually analyze their agreement in a corpus 

collected from a news website. It is interesting to 

find that such agreement only applies to coarse-

grained emotion categories (i.e., positive and 

negative) with a high probability and does not 

apply to fine-grained emotion categories (e.g., 

happy, angry, and sad). This motivates our joint 

modeling in terms of the coarse-grained emotion 

categories. Specifically, we consider the news 

text and the comment text as two different views 

of expressing either the news reader’s or com-

ment writer’s emotions. Given the two views, a 

co-training algorithm is proposed to perform 

semi-supervised emotion classification so that 

the information in the unlabeled data can be ex-

ploited to improve the classification performance. 

2 Related Work  

2.1 Comment Writer’s Emotion Classifica-

tion 

Comment writer’s emotion classification has 

been a hot research topic in NLP during the last 

decade (Pang et al., 2002; Turney, 2002; Alm et 

al., 2005; Wilson et al., 2009) and previous stud-

ies can be mainly grouped into two categories: 

coarse-grained and fine-grained emotion classifi-

cation. 

Coarse-grained emotion classification, also 

called sentiment classification, concerns only 

two emotion categories, such as like or dislike 

and positive or negative (Pang and Lee, 2008; 

Liu, 2012). This kind of emotion classification 

has attracted much attention since the pioneer 

work by Pang et al. (2002) in the NLP communi-

ty due to its wide applications (Cui et al., 2006; 

Riloff et al., 2006; Dasgupta and Ng, 2009; Li et 

al., 2010; Li et al., 2011). 

In comparison, fine-grained emotion classifi-

cation aims to classify a text into multiple emo-

tion categories, such as happy, angry, and sad. 

One main group of related studies on this task is 

about emotion resource construction, such as 

emotion lexicon building (Xu et al., 2010; 

Volkova et al., 2012) and sentence-level or doc-

ument-level corpus construction (Quan and Ren, 

2009; Das and Bandyopadhyay, 2009). Besides, 

all the related studies focus on supervised learn-

ing (Alm et al., 2005; Aman and Szpakowicz, 

2008; Chen et al., 2010; Purver and Battersby, 

2012; Moshfeghi et al., 2011), and so far, we 

have not seen any studies on semi-supervised 

learning on fine-grained emotion classification.  

2.2 News Reader’s Emotion Classification 

While comment writer’s emotion classification 

has been extensively studied, there are only a 

few studies on news reader’s emotion classifica-

tion from the NLP and related communities.  

Lin et al. (2007) first describe the task of read-

er’s emotion classification on the news articles 

and then employ some standard machine learning 

approaches to train a classifier for determining 

the reader’s emotion towards a news. Their fur-

ther study, Lin et al. (2008) exploit more features 

and achieve a higher performance. 

Unlike all the studies mentioned above, our 

study is the first attempt on exploring the rela-

tionship between comment writer’s emotion 

classification and news reader’s emotion classifi-

cation.  

3 Relationship between News Reader’s 

and Comment Writer’s Emotions 

To investigate the relationship between news 

reader’s and comment writer’s emotions, we col-

lect a corpus of Chinese news articles and their 

corresponding comments from Yahoo! Kimo 

News (http://tw.news.yahoo.com), where each 

news article is voted with emotion tags from 

eight categories: happy, sad, angry, meaningless, 

boring, heartwarming, worried, and useful. 

These emotion tags on each news are selected by 

the readers of the news. Note that because the 

categories of “useful” and “meaningless” are not 

real emotion categories, we ignore them in our 

study. Same as previous studies of Lin et al. 

(2007) and Lin et al. (2008), we consider the 

voted emotions as reader’s emotions on the news, 

i.e., the news reader’s emotions. We only select 

the news articles with a dominant emotion (pos-

sessing more than 50% votes) in our data. Be-

sides, as we attempt to consider the comment 

writer’s emotions, the news articles without any 

comments are filtered. 

As a result, we obtain a corpus of 3495 news 

articles together with their comments and the 

numbers of the articles of happy, sad, angry, 

boring, heartwarming, and worried are 1405, 

230, 1673, 75, 92 and 20 respectively. For 

coarse-grained categories, happy and heartwarm-

ing are merged into the positive category while 
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sad, angry, boring and worried are merged into 

the negative category. 

Besides the tags of the reader’s emotions, each 

news article is followed by some comments, 

which can be seen as a reflection of the writer’s 

emotions (Averagely, each news is followed by 

15 comments). In order to know the exact rela-

tionship between these two kinds of emotions, 

we select 20 news from each category and ask 

two human annotators, named A and B, to manu-

ally annotate the writer’s emotion (single-label) 

according to the comments of each news. Table 1 

reports the agreement on annotators and emo-

tions, measured with Cohen’s kappa (κ) value 

(Cohen, 1960). 
 κ  Value 

(Fine-grained 
emotions) 

κ Value 
(Coarse-grained 

emotions) 
Annotators 0.566 0.742 
Emotions 0.504 0.756 

Table 1: Agreement on annotators and emotions 

 

Agreement between two annotators: The 

annotation agreement between the two annota-

tors is 0.566 on the fine-grained emotion catego-

ries and 0.742 on the coarse-grained emotion 

categories.  

Agreement between news reader’s and 

comment writer’s emotions: We compare the 

news reader’s emotion (automatically extracted 

from the web page) and the comment writer’s 

emotion (manually annotated by annotator A). 

The annotation agreement between the two kinds 

of emotions is 0.504 on the fine-grained emotion 

categories and 0.756 on the coarse-grained emo-

tion categories. From the results, we can see that 

the agreement on the fine-grained emotions is a 

bit low while the agreement between the coarse-

grained emotions, i.e., positive and negative, is 

very high. We find that although some fine-

grained emotions of the comments are not con-

sistent with the dominant emotion of the news, 

they belong to the same coarse-grained category.  

In a word, the agreement between news read-

er’s and comment writer’s emotions on the 

coarse-grained emotions is very high, even high-

er than the agreement between the two annota-

tors (0.754 vs. 0.742).  

In the following, we focus on the coarse-

grained emotions in emotion classification. 

4 Joint Modeling of News Reader’s and 

Comment Writer’s Emotions 

Given the importance of both news reader’s and 

comment writer’s emotion classification as de-

scribed in Introduction and the close relationship 

between news reader’s and comment writer’s 

emotions as described in last section, we system-

atically explore their joint modeling on the two 

kinds of emotion classification. 

In semi-supervised learning, the unlabeled da-

ta is exploited to improve the models with a 

small amount of the labeled data. In our ap-

proach, we consider the news text and the com-

ment text as two different views to express the 

news or comment emotion and build the two 

classifiers 
NC  and 

CC . Given the two-view clas-

sifiers, we perform co-training for semi-

supervised emotion classification, as shown in 

Figure 2, on both news reader’s and comment 

writer’s emotion classification. 

 

 
Input:   

NewsL  the labeled data on the news 

CommentL the labeled data  on the comments 

NewsU the unlabeled data  on the news  

CommentU  the labeled data  on the comments 

Output: 

NewsL New labeled data on the news 

CommentL  New labeled data on the comments 

 

Procedure: 

 

Loop for N iterations until
NewsU   or 

CommentU   

(1). Learn classifier 
NC  with 

NewsL  

(2). Use NC  to label the samples from NewsU   

(3). Choose 
1n  positive and 

1n negative news 
1N  

most confidently predicted by 
NC  

(4). Choose corresponding comments 
1M (the 

comments of the news in 
1N ) 

(5). Learn classifier 
CC  with 

CommentL  

(6). Use CC  to label the samples from CommentU   

(7). Choose 2n  positive and 2n negative comments 

2M  most confidently predicted by 
CC  

(8). Choose corresponding comments 2N (the news 

of the comments in 2M ) 

(9). 1 2News NewsL L N N    

1 2Comment CommentL L M M    

(10). 1 2News NewsU U N N  

1 2Comment CommentU U M M    

 
Figure 2: Co-training algorithm for semi-

supervised emotion classification 
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5 Experimentation 

5.1 Experimental Settings 

Data Setting: The data set includes 3495 news 

articles (1572 positive and 1923 negative) and 

their comments as described in Section 3. Alt-

hough the emotions of the comments are not giv-

en in the website, we just set their coarse-grained 

emotion categories the same as the emotions of 

their source news due to their close relationship, 

as described in Section 3. To make the data bal-

anced, we randomly select 1500 positive and 

1500 negative news with their comments for the 

empirical study. Among them, we randomly se-

lect 400 news with their comments as the test 

data. 

Features: Each news or comment text is treat-

ed as a bag-of-words and transformed into a bi-

nary vector encoding the presence or absence of 

word unigrams. 

Classification algorithm: the maximum en-

tropy (ME) classifier implemented with the pub-

lic tool, Mallet Toolkits
*
. 

5.2 Experimental Results 

News reader’s emotion classifier: The classifier 

trained with the news text. 

Comment writer’s emotion classifier: The 

classifier trained with the comment text. 

Figure 3 demonstrates the performances of the 

news reader’s and comment writer’s emotion 

classifiers trained with the 10 and 50 initial la-

beled samples plus automatically labeled data 

from co-training. Here, in each iteration, we pick 

2 positive and 2 negative most confident samples, 

i.e, 1 2 2n n  . From this figure, we can see that 

our co-training algorithm is very effective: using 

only 10 labeled samples in each category 

achieves a very promising performance on either 

news reader’s or comment writer’s emotion clas-

sification. Especially, the performance when us-

ing only 10 labeled samples is comparable to that 

when using more than 1200 labeled samples on 

supervised learning of comment writer’s emotion 

classification. 

   For comparison, we also implement a self-

training algorithm for the news reader’s and 

comment writer’s emotion classifiers, each of 

which automatically labels the samples from the 

unlabeled data independently. For news reader’s 

emotion classification, the performances of self-

training are 0.783 and 0.79 when 10 and 50 ini-

                                                 
* http://mallet.cs.umass.edu/ 

tial labeled samples are used. For comment writ-

er’s emotion classification, the performances of 

self-training are 0.505 and 0.508. These results 

are much lower than the performances of our co-

training approach, especially on the comment 

writer’s emotion classification i.e., 0.505 and 

0.508 vs. 0.783 and 0.805. 
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0.5

0.6

0.7

0.8

0 400 800 1200 1600 2000 2400

Size of the added unlabeled data
A
c
c
u
r
a
c
y

 

50 Initial Labeled Samples
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Size of the added unlabeled data data
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c
c
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c
y

The news reader's emotion
classifier (Co-training)
The comment writer's emotion
classifier (Co-training)

 Figure 3: Performances of the news reader’s and 

comment writer’s emotion classifiers using the 

co-training algorithm 

6 Conclusion 

In this paper, we focus on two popular emotion 

classification tasks, i.e., reader’s emotion classi-

fication on the news and writer’s emotion classi-

fication on the comments. From the data analysis, 

we find that the news reader’s and comment 

writer’s emotions are highly consistent to each 

other in terms of the coarse-grained emotion cat-

egories, positive and negative. On the basis, we 

propose a co-training approach to perform semi-

supervised learning on the two tasks. Evaluation 

shows that the co-training approach is so effec-

tive that using only 10 labeled samples achieves 

nice performances on both news reader’s and 

comment writer’s emotion classification.  
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Abstract

Quotes are used in news articles as evi-
dence of a person’s opinion, and thus are
a useful target for opinion mining. How-
ever, labelling each quote with a polarity
score directed at a textually-anchored tar-
get can ignore the broader issue that the
speaker is commenting on. We address
this by instead labelling quotes as support-
ing or opposing a clear expression of a
point of view on a topic, called a position
statement. Using this we construct a cor-
pus covering 7 topics with 2,228 quotes.

1 Introduction

News articles are a useful target for opinion min-
ing as they discuss salient opinions by newswor-
thy people. Rather than asserting what a person’s
opinion is, journalists typically provide evidence
by using reported speech, and in particular, direct
quotes. We focus on direct quotes as expressions
of opinion, as they can be accurately extracted and
attributed to a speaker (O’Keefe et al., 2012).

Characterising the opinions in quotes remains
challenging. In sentiment analysis over product
reviews, polarity labels are commonly used be-
cause the target, the product, is clearly identified.
However, for quotes on topics of debate, the target
and meaning of polarity labels is less clear. For ex-
ample, labelling a quote about abortion as simply
positive or negative is uninformative, as a speaker
can use either positive or negative language to sup-
port or oppose either side of the debate.

Previous work (Wiebe et al., 2005; Balahur
et al., 2010) has addressed this by giving each
expression of opinion a textually-anchored target.
While this makes sense for named entities, it does
not apply as obviously for topics, such as abortion,
that may not be directly mentioned. Our solution
is to instead define position statements, which are

Abortion: Women should have the right to choose an abortion.

Carbon tax: Australia should introduce a tax on carbon or an
emissions trading scheme to combat global warming.

Immigration: Immigration into Australia should be maintained
or increased because its benefits outweigh any negatives.

Reconciliation: The Australian government should formally
apologise to the Aboriginal people for past injustices.

Republic: Australia should cease to be a monarchy with the
Queen as head of state and become a republic with an Australian
head of state.

Same-sex marriage: Same-sex couples should have the right to
attain the legal state of marriage as it is for heterosexual couples.

Work choices: Australia should introduce WorkChoices to give
employers more control over wages and conditions.

Table 1: Topics and their position statements.

clear statements of a viewpoint or position on a
particular topic. Quotes related to this topic can
then be labelled as supporting, neutral, or oppos-
ing the position statement. This disambiguates the
meaning of the polarity labels, and allows us to
determine the side of the debate that the speaker
is on. Table 1 shows the topics and position state-
ments used in this work, and some example quotes
from the republic topic are given below. Note that
the first example includes no explicit mention of
the monarchy or the republic.
Positive: “I now believe that the time has come. . . for us to
have a truly Australian constitutional head of state.”

Neutral: “The establishment of an Australian republic is es-
sentially a symbolic change, with the main arguments, for
and against, turning on national identity. . . ”

Negative: “I personally think that the monarchy is a tradition
which we want to keep.”

With this formulation we define an annotation
scheme and build a corpus covering 7 topics, with
100 documents per topic. This corpus includes
3,428 quotes, of which 1,183 were marked in-
valid, leaving 2,228 that were marked as support-
ing, neutral, or opposing the relevant topic state-
ment. All quotes in our corpus were annotated by
three annotators, with Fleiss’ κ values of between
0.43 and 0.45, which is moderate.
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2 Background

Early work in sentiment analysis (Turney, 2002;
Pang et al., 2002; Dave et al., 2003; Blitzer et al.,
2007) focused on product and movie reviews,
where the text under analysis discusses a single
product or movie. In these cases, labels like posi-
tive and negative are appropriate as they align well
with the overall communicative goal of the text.

Later work established aspect-oriented opinion
mining (Hu and Liu, 2004), where the aim is to
find features or aspects of products that are dis-
cussed in a review. The reviewer’s position on
each aspect can then be classified as positive or
negative, which results in a more fine-grained clas-
sification that can be combined to form an opin-
ion summary. These approaches assume that each
document has a single source (the document’s au-
thor), whose communicative goal is to evaluate a
well-defined target, such as a product or a movie.
However this does not hold in news articles, where
the goal of the journalist is to present the view-
points of potentially many people.

Several studies (Wiebe et al., 2005; Wilson
et al., 2005; Kim and Hovy, 2006; Godbole et al.,
2007) have looked at sentiment in news text, with
some (Balahur and Steinberger, 2009; Balahur
et al., 2009, 2010) focusing on quotes. In all of
these studies the authors have textually-anchored
the target of the sentiment. While this makes sense
for targets that can be resolved back to named enti-
ties, it does not apply as obviously when the quote
is arguing for a particular viewpoint in a debate,
as the topic may not be mentioned explicitly and
polarity labels may not align to sides of the debate.

Work on debate summarisation and subgroup
detection (Somasundaran and Wiebe, 2010; Abu-
Jbara et al., 2012; Hassan et al., 2012) has of-
ten used data from online debate forums, partic-
ularly those forums where users are asked to se-
lect whether they support or oppose a given propo-
sition before they can participate. This is simi-
lar to our aim with news text, where instead of a
textually-anchored target, we have a proposition,
against which we can evaluate quotes.

3 Position Statements

Our goal in this study is to determine which side of
a debate a given quote supports. Assigning polar-
ity labels to a textually-anchored target does not
work here for several reasons. Quotes may not
mention the debate topic, there may be many rel-

No cont. Context
Topic Quotes AA κ AA κ

Abortion 343 .77 .57 .73 .53
Carbon tax 278 .71 .42 .57 .34
Immigration 249 .58 .18 .58 .25
Reconcil. 513 .66 .37 .68 .44
Republic 347 .68 .51 .71 .58
Same-sex m. 246 .72 .51 .71 .55
Work choices 269 .72 .45 .65 .44
Total 2,245 .69 .43 .66 .45

Table 2: Average Agreement (AA) and Fleiss’ κ
over the valid quotes

evant textually-anchored targets for a single topic,
and polarity labels do not necessarily align with
sides of a debate.

We instead define position statements, which
clearly state the position that one side of the debate
is arguing for. We can then characterise opinions
as supporting, neutral towards, or opposing this
particular position. Position statements should not
argue for a particular position, rather they should
simply state what the position is. Table 1 shows
the position statements that we use in this work.

4 Annotation

For our task we expect a set of news articles on
a given topic as input, where the direct quotes in
the articles have been extracted and attributed to
speakers. A position statement will have been de-
fined, that states a point of view on the topic, and
a small subset of quotes will have been labelled as
supporting, neutral, or opposing the given state-
ment. A system performing this task would then
label the remaining quotes as supporting, neutral,
or opposing, and return them to the user.

A major contribution of this work is that we
construct a fully labelled corpus, which can be
used to evaluate systems that perform the task de-
scribed above. To build this corpus we employed
three annotators, one of whom is an author, while
the other two were hired using the outsourcing
website Freelancer1. Our data is drawn from the
Sydney Morning Herald2 archive, which ranges
from 1986 until 2009, and it covers seven topics
that were subject to debate within Australian news
media during that time. For each topic we used

1http://www.freelancer.com
2http://www.smh.com.au
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No cont. Context
Topic Quotes AA κ AA κ

Abortion 343 .78 .52 .74 .46
Carbon tax 278 .72 .39 .59 .19
Immigration 249 .58 .08 .58 .14
Reconcil. 513 .66 .31 .69 .36
Republic 347 .69 .39 .72 .41
Same-sex m. 246 .73 .43 .73 .40
Work choices 269 .73 .40 .67 .32
Total 2,245 .70 .36 .68 .32

Table 3: Average Agreement (AA) and Fleiss’ κ
when the labels are neutral versus non-neutral

Apache Solr3 to find the top 100 documents that
matched a manually-constructed search query. All
documents were tokenised and POS-tagged and the
named entities were found using the system from
Hachey et al. (2013). Finally, the quotes were ex-
tracted and attributed to speakers using the system
from O’Keefe et al. (2012).

For the first part of the task, annotators were
asked to label each quote without considering any
context. In other words they were asked to only
use the text of the quote itself as evidence for an
opinion, not the speaker’s prior opinions or the
text of the document. They were then asked to la-
bel the quote a second time, while considering the
text surrounding the quote, although they were still
asked to ignore the prior opinions of the speaker.
For each of these choices annotators were given a
five-point scale ranging from strong or clear op-
position to strong or clear support, where support
or opposition is relative to the position statement.

Annotators were also asked to mark instances
where either the speaker or quote span was incor-
rectly identified, although they were asked to con-
tinue annotating the quote as though it were cor-
rect. They were also asked to mark quotes that
were invalid due to either the quote being off-
topic, or the item not being a quote (e.g. book ti-
tles, scare quotes, etc.).

5 Corpus results

In order to achieve the least amount of noise in
our corpus, we opted to discard quotes that any an-
notator had marked as invalid. From the original
set of 3,428 quotes, 1,183 (35%) were removed,
which leaves 2,245 (65%). From the original cor-
pus, 23% were marked off-topic, which shows that

3http://lucene.apache.org/solr/

in order to label opinions in news, a system would
first have to identify the topic-relevant parts of the
text. The annotators further indicated that 16%
were not quotes, and there were a small number of
cases (<1%) where the quote span was incorrect.
Annotators were able to select multiple reasons for
a quote being invalid.

Table 2 shows both Fleiss’ κ and the raw agree-
ment averaged between annotators for each topic.
We collapsed the two supporting labels together,
as well as the two opposing labels, such that we
end up with a classification of opposes vs. neu-
tral vs. supports. The no context and context cases
scored 0.69 and 0.66 in raw agreement, while the
κ values were 0.43 and 0.45, which is moderate.

Intuitively we expect that the confusion is
largely between neutral and the two polar labels.
To examine this we merged all the non-neutral la-
bels into one group and calculated the agreement
between the non-neutral group and the neutral la-
bel, as shown in Table 3. For the non-neutral vs.
neutral agreement we find that despite stability in
raw agreement, Fleiss’ κ drops substantially, to
0.36 (no context) and 0.32 (context).

For comparison we remove all neutral annota-
tions and focus on disagreement between the po-
lar labels. For this we cannot use Fleiss’ κ, as it
requires a fixed number of annotations per quote,
however we can average the pairwise κ values be-
tween annotators, which results in values of 0.93
(no context) and 0.92 (context). Though they are
not directly comparable, the magnitude of the dif-
ference between the numbers (0.36 and 0.32 vs.
0.93 and 0.92) indicates that deciding when an
opinion provides sufficient evidence of support or
opposition is the main challenge facing annotators.

To adjudicate the decisions annotators made, we
opted to take a majority vote for cases of two
or three-way agreement, while discarding cases
where annotators did not agree (1% of quotes).
The final distribution of labels in the corpus is
shown in Table 4. For both the no context and
context cases the largest class was neutral with
61% and 46% of the corpus respectively. The drop
in neutrality between the no context and context
cases shows that the interpretation of a quote can
change based on the context it is placed in.

6 Discussion

In refining our annotation scheme we noted several
factors that make annotation difficult.
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No context Context
Topic Quotes Opp. Neut. Supp. Quotes Opp. Neut. Supp.
Abortion 343 .13 .63 .25 340 .16 .52 .32
Carbon tax 273 .09 .70 .21 273 .14 .44 .42
Immigration 247 .09 .72 .19 245 .12 .64 .23
Reconciliation 509 .05 .57 .38 503 .07 .42 .50
Republic 345 .24 .48 .28 342 .32 .37 .32
Same-sex marriage 246 .16 .55 .28 243 .25 .38 .37
Work choices 265 .14 .72 .14 266 .26 .50 .24
Total 2,228 .12 .61 .26 2,212 .18 .46 .36

Table 4: Label distribution for the final corpus.

Opinion relevance When discussing a topic,
journalists will often delve into the related aspects
and opinions that people hold. This introduces a
challenge as annotators need to decide whether a
particular quote is on-topic enough to be labelled.
For instance, these quotes by the same speaker
were in an article on the carbon tax:

1) “Whether it’s a stealth tax, the emissions trading scheme,
whether it’s an upfront. . . tax like a carbon tax, there will not
be any new taxes as part of the Coalition’s policy”

2) “I don’t think it’s something that we should rush into. But
certainly I’m happy to see a debate about the nuclear option.”

In the first quote the speaker is voicing opposi-
tion to a tax on carbon, which is easy to annotate
with our scheme. However in the second quote,
the speaker is discussing nuclear power in relation
to a carbon tax, which is much more difficult, as it
is unclear whether is is off-topic or neutral.

Obfuscation and self-contradiction While
journalists usually quote someone to provide
evidence of the person’s opinion, there are some
cases where they include quotes to show that
the person is inconsistent. The following quotes
by the same speaker were included in an arti-
cle to illustrate that the speaker’s position was
inconsistent:

1) “My point is that. . . the most potent argument in favour of
the republic, is that why should we have a Briton as the Queen
– who, of course, in reality is also the Queen of Australia –
but a Briton as the head of State of Australia”

2) “The Coalition supports the Constitution not because we
support the. . . notion of the monarchy, but because we support
the way our present Constitution works”

The above example also indicates a level of ob-
fuscation that is reasonably common for politi-
cians. Neither of the quotes actually expresses a
clear statement of how the speaker feels about a
potential republic. The first quote is an opinion

about the strongest argument in favour of a re-
public, without necessarily making that argument,
while the second quote states a party line, with a
caveat that might indicate personal disagreement.

Annotator bias This task is prone to be influ-
enced by an annotator’s biases, including their po-
litical or cultural background, their opinion about
the topic or speaker, or their level of knowledge
about the topic.

7 Conclusion

In this work we examined the problem of anno-
tating opinions in news articles. We proposed to
exploit quotes, as they are used by journalists to
provide evidence of an opinion, and are easy to
extract and attribute to speakers. Our key con-
tribution is that rather than requiring a textually-
anchored target for each quote, we instead label
quotes as supporting, neutral, or opposing a posi-
tion statement, which states a particular viewpoint
on a topic. This allowed us to resolve ambigu-
ities that arise when considering a polarity label
towards a topic. We next defined an annotation
scheme and built a corpus, which covers 7 top-
ics, with 100 documents per topic, and a total of
2,228 annotated quotes. Future work will include
building a system able to perform the task we have
defined, as well as extending this work to include
indirect quotes.
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Abstract 

Bag-of-words (BOW) is now the most popular 

way to model text in machine learning based 

sentiment classification. However, the perfor-

mance of such approach sometimes remains 

rather limited due to some fundamental defi-

ciencies of the BOW model. In this paper, we 

focus on the polarity shift problem, and pro-

pose a novel approach, called dual training and 

dual prediction (DTDP), to address it. The 

basic idea of DTDP is to first generate artifi-

cial samples that are polarity-opposite to the 

original samples by polarity reversion, and 

then leverage both the original and opposite 

samples for (dual) training and (dual) predic-

tion. Experimental results on four datasets 

demonstrate the effectiveness of the proposed 

approach for polarity classification.  

1 Introduction 

The most popular text representation model in 

machine learning based sentiment classification 

is known as the bag-of-words (BOW) model, 

where a piece of text is represented by an unor-

dered collection of words, based on which stand-

ard machine learning algorithms are employed as 

classifiers. Although the BOW model is simple 

and has achieved great successes in topic-based 

text classification, it disrupts word order, breaks 

the syntactic structures and discards some kinds 

of semantic information that are possibly very 

important for sentiment classification. Such dis-

advantages sometimes limit the performance of 

sentiment classification systems.  

A lot of subsequent work focused on feature 

engineering that aims to find a set of effective 

features based on the BOW representation. How-

ever, there still remain some problems that are 

not well addressed. Out of them, the polarity 

shift problem is the biggest one. 

We refer to “polarity shift” as a linguistic phe-

nomenon that the sentiment orientation of a text 

is reversed (from positive to negative or vice ver-

sa) because of some particular expressions called 

polarity shifters. Negation words (e.g., “no”, “not” 

and “don’t”) are the most important type of po-

larity shifter. For example, by adding a negation 

word “don’t” to a positive text “I like this book” 

in front of “like”, the orientation of the text is 

reversed from positive to negative.  

Naturally, handling polarity shift is very im-

portant for sentiment classification. However, the 

BOW representations of two polarity-opposite 

texts, e.g., “I like this book” and “I don’t like this 

book”, are considered to be very similar by most 

of machine learning algorithms. Although some 

methods have been proposed in the literature to 

address the polarity shift problem (Das and Chen, 

2001; Pang et al., 2002; Na et al., 2004; Kenndey 

and Inkpen, 2006; Ikeda et al., 2008; Li and 

Huang, 2009; Li et al., 2010), the state-of-the-art 

results are still far from satisfactory. For example, 

the improvements are less than 2% after consid-

ering polarity shift in Li et al. (2010). 

In this work, we propose a novel approach, 

called dual training and dual prediction (DTDP), 

to address the polarity shift problem. By taking 

advantage of the unique nature of polarity classi-

fication, DTDP is motivated by first generating 

artificial samples that are polarity-opposite to the 

original ones. For example, given the original 

sample “I don’t like this book. It is boring,” its 

polarity-opposite version, “I like this book. It is 

interesting”, is artificially generated. Second, the 

original and opposite training samples are used 

together for training a sentiment classifier (called 

dual training), and the original and opposite test 

samples are used together for prediction (called 

dual prediction). Experimental results prove that 

the procedure of DTDP is very effective at cor-

recting the training and prediction errors caused 
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by polarity shift, and it beats other alternative 

methods of considering polarity shift. 

2 Related Work 

The lexicon-based sentiment classification sys-

tems can be easily modified to include polarity 

shift. One common way is to directly reverse the 

sentiment orientation of polarity-shifted words, 

and then sum up the orientations word by word 

(Hu and Liu, 2004; Kim and Hovy, 2004; Po-

lanyi and Zaenen, 2004; Kennedy and Inkpen, 

2006). Wilson et al. (2005) discussed other com-

plex negation effects by using conjunctive and 

dependency relations among polarity words. Alt-

hough handling polarity shift is easy and effec-

tive in term-counting systems, they rarely outper-

form the baselines of machine learning methods 

(Kennedy, 2006). 

The machine learning methods are generally 

more effective for sentiment classification. How-

ever, it is difficult to handle polarity shift based 

on the BOW model. Das and Chen (2001) pro-

posed a method by simply attaching “NOT” to 

words in the scope of negation, so that in the text 

“I don’t like book”, the word “like” is changed to 

a new word “like-NOT”. There were also some 

attempts to model polarity shift by using more 

complex linguistic features (Na et al., 2004; 

Kennedy and Inkpen, 2006). But the improve-

ments upon the baselines of machine learning 

systems are very slight (less than 1%). 

Ikeda et al. (2008) proposed a machine learn-

ing method, to model polarity-shifters for both 

word-wise and sentence-wise sentiment classifi-

cation, based on a dictionary extracted from 

General Inquirer. Li and Huang (2009) proposed 

a method first to classify each sentence in a text 

into a polarity-unshifted part and a polarity-

shifted part according to certain rules, then to 

represent them as two bag-of-words for senti-

ment classification. Li et al. (2010) further pro-

posed a method to separate the shifted and un-

shifted text based on training a binary detector. 

Classification models are then trained based on 

each of the two parts. An ensemble of two com-

ponent parts is used at last to get the final polari-

ty of the whole text. 

3 The Proposed Approach 

We first present the method for generating artifi-

cial polarity-opposite samples, and then intro-

duce the algorithm of dual training and dual pre-

diction (DTDP). 

3.1 Generating Artificial Polarity-Opposite 

Samples 

Given an original sample and an antonym dic-

tionary (e.g., WordNet
1

), a polarity-opposite 

sample is generated artificially according to the 

following rules: 

1) Sentiment word reversion: All sentiment 

words out of the scope of negation are re-

versed to their antonyms; 

2) Handling negation: If there is a negation 

expression, we first detect the scope of nega-

tion, and then remove the negation words 

(e.g., “no”, “not”, and “don’t”). The senti-

ment words in the scope of negation are not 

reversed; 

3) Label reversion: The class label of the la-

beled sample is also reversed to its opposite 

(i.e., Positive to Negative, or vice versa) as 

the class label of newly generated samples 

(called polarity-opposite samples). 

Let us use a simple example to explain the 

generation process. Given the original sample: 

The original sample 

Text:   I don’t like this book. It is boring. 

Label: Negative 

According to Rule 1, “boring” is reversed to 

its antonym “interesting”; According to Rule 2, 

the negation word “don’t” is removed, and “like” 

is not reversed; According to Rule 3, the class 

label Negative is reversed to Positive. Finally, an 

artificial polarity-opposite sample is generated: 

The generated opposite sample 

Text:   I like this book. It is interesting. 

Label: Positive 

All samples in the training and test set are re-

versed to their polarity-opposite versions. We 

refer to them as “opposite training set” and “op-

posite test set”, respectively. 

3.2 Dual Training and Dual Prediction 

In this part, we introduce how to make use of the 

original and opposite training/test data together 

for dual training and dual prediction (DTDP). 

Dual Training: Let D = f(xi; yi)g
N
i=1  and 

~D = f(~xi; ~yi)g
N
i=1  be the original and opposite 

training set respectively, where x  denotes the 

feature vector, y  denotes the class label, and N  

denotes the size of training set. In dual training, 

D [ ~D are used together as training data to learn 

                                                 
1 http://wordnet.princeton.edu/ 
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a classification model. The size of training data 

is doubled in dual training. 

Suppose the example in Section 3.1 is used as 

one training sample. As far as only the original 

sample (“I don’t like this book. It is boring.”) is 

considered, the feature “like” will be improperly 

recognized as a negative indicator (since the 

class label is Negative), ignoring the expression 

of negation. Nevertheless, if the generated oppo-

site sample (“I like this book. It is interesting.”) 

is also used for training, “like” will be learned 

correctly, due to the removal of negation in sam-

ple reversion. Therefore, the procedure of dual 

training can correct some learning errors caused 

by polarity shift. 

Dual Prediction: Given an already-trained 

classification model, in dual prediction, the orig-

inal and opposite test samples are used together 

for prediction. In dual prediction, when we pre-

dict the positive degree of a test sample, we 

measure not only how positive the original test 

sample is, but also how negative the opposite 

sample is.  

Let x  and ~x denote the feature vector of the 

original and opposite test samples respectively; 

let pd(cjx) and pd(cj~x) denote the predictions of 

the original and opposite test sample, based on 

the dual training model. The dual predicting 

function is defined as: 

pd(+jx; ~x) = (1¡a)pd(+jx)+apd(¡j~x), 

pd(¡jx; ~x) = (1¡a)pd(¡jx)+apd(+j~x), 

where a (0 6 a 6 1) is the weight of the oppo-

site prediction.  

Now suppose the example in Section 3.1 is a 

test sample. As far as only the original test sam-

ple (“I don’t like this book. It is boring.”) is used 

for prediction, it is very likely that it is falsely 

predicted as Positive, since “like” is a strong pos-

itive feature, despite that it is in the scope of ne-

gation. While in dual prediction, we still measure 

the “sentiment-opposite” degree of the opposite 

test sample (“I like this book. It is interesting.”). 

Since negation is removed, it is very likely that 

the opposite test sample is assigned with a high 

positive score, which could compensate the pre-

diction errors of the original test sample. 

Final Output: It should be noted that alt-

hough the artificially generated training and test-

ing data are helpful in most cases, they still pro-

duce some noises (e.g., some poorly generated 

samples may violate the quality of the original 

data set). Therefore, instead of using all dual 

predictions as the final output, we use the origi-

nal prediction po(cjx) as an alternate, in case that 

the dual prediction pd(cjx; ~x) is not enough con-

fident, according to a confidence threshold t. The 

final output is defined as: 

pf(cjx) =

½
pd(cjx; ~x); if¢p > t

po(cjx); if¢p < t
 

where ¢p = pd(cjx; ~x)¡po(cjx). 

4 Experimental Study 

4.1 Datasets 

The Multi-Domain Sentiment Datasets
2
 are used 

for evaluations. They consist of product reviews 

collected from four different domains: Book, 

DVD, Electronics and Kitchen. Each of them 

contains 1,000 positive and 1,000 negative re-

views. Each of the datasets is randomly spit into 

5 folds, with four folds serving as training data, 

and the remaining one fold serving as test data. 

All of the following results are reported in terms 

of an average of 5-fold cross validation. 

4.2 Evaluated Systems 

We evaluate four machine learning systems that 

are proposed to address polarity shift in docu-

ment-level polarity classification: 

1) Baseline: standard machine learning meth-

ods based on the BOW model, without han-

dling polarity shift;  

2) Das-2001: the method proposed by Das and 

Chen (2001), where “NOT” is attached to the 

words in the scope of negation as a prepro-

cessing step; 

3) Li-2010: the approach proposed by Li et al. 

(2010). The details of the algorithm is intro-

duced in related work; 

4) DTDP: our approach proposed in Section 3. 

The WordNet dictionary is used for sample 

reversion. The empirical value of the param-

eter a and t are used in the evaluation.  

4.3 Comparison of the Evaluated Systems 

In table 1, we report the classification accuracy 

of four evaluated systems using unigram features. 

We consider two widely-used classification algo-

rithms: SVM and Naïve Bayes. For SVM, the 

LibSVM toolkit
3
 is used with a linear kernel and 

the default penalty parameter. For Naïve Bayes, 

the OpenPR-NB toolkit
4
 is used. 

                                                 
2 http://www.cs.jhu.edu/~mdredze/datasets/sentiment/ 
3 http://www.csie.ntu.edu.tw/~cjlin/libsvm/  
4 http://www.openpr.org.cn  
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Dataset 
SVM Naïve Bayes 

Baseline Das-2001 Li-2010 DTDP Baseline Das-2001 Li-2010 DTDP 

Book 0.745 0.763 0.760 0.800 0.779 0.783 0.792 0.814 

DVD 0.764 0.771 0.795 0.823 0.795 0.793 0.810 0.820 

Electronics 0.796 0.813 0.812 0.828 0.815 0.827 0.824 0.841 

Kitchen 0.822 0.820 0.844 0.849 0.830 0.847 0.840 0.859 

Avg. 0.782 0.792 0.803 0.825 0.804 0.813 0.817 0.834 

Table 1: Classification accuracy of different systems using unigram features 

Dataset 
SVM Naïve Bayes 

Baseline Das-2001 Li-2010 DTDP Baseline Das-2001 Li-2010 DTDP 

Book 0.775 0.777 0.788 0.818 0.811 0.815 0.822 0.840 

DVD 0.790 0.793 0.809 0.828 0.824 0.826 0.837 0.868 

Electronics 0.818 0.834 0.841 0.848 0.841 0.857 0.852 0.866 

Kitchen 0.847 0.844 0.870 0.878 0.878 0.879 0.883 0.896 

Avg. 0.808 0.812 0.827 0.843 0.839 0.844 0.849 0.868 

Table 2: Classification accuracy of different systems using both unigram and bigram features 

Compared to the Baseline system, the Das-

2001 approach achieves very slight improve-

ments (less than 1%). The performance of Li-

2010 is relatively effective: it improves the aver-

age score by 0.21% and 0.13% on SVM and Na-

ïve Bayes, respectively. Yet, the improvements 

are still not satisfactory. 

As for our approach (DTDP), the improve-

ments are remarkable. Compared to the Baseline 

system, the average improvements are 4.3% and 

3.0% on SVM and Naïve Bayes, respectively. In 

comparison with the state-of-the-art (Li-2010), 

the average improvement is 2.2% and 1.7% on 

SVM and Naïve Bayes, respectively. 

We also report the classification accuracy of 

four systems using both unigrams and bigrams 

features for classification in Table 2. From this 

table, we can see that the performance of each 

system is improved compared to that using uni-

grams. It is now relatively difficult to show im-

provements by incorporating polarity shift, be-

cause using bigrams already captured a part of 

negations (e.g., “don’t like”).  

The Das-2001 approach still shows very lim-

ited improvements (less than 0.5%), which 

agrees with the reports in Pang et al. (2002). The 

improvements of Li-2010 are also reduced: 1.9% 

and 1% on SVM and Naïve Bayes, respectively.  

Although the improvements of the previous 

two systems are both limited, the performance of 

our approach (DTDP) is still sound. It improves 

the Baseline system by 3.7% and 2.9% on SVM 

and Naïve Bayes, respectively, and outperforms 

the state-of-the-art (Li-2010) by 1.6% and 1.9% 

on SVM and Naïve Bayes, respectively. 

5 Conclusions 

In this work, we propose a method, called dual 

training and dual prediction (DTDP), to address 

the polarity shift problem in sentiment classifica-

tion. The basic idea of DTDP is to generate arti-

ficial samples that are polarity-opposite to the 

original samples, and to make use of both the 

original and opposite samples for dual training 

and dual prediction. Experimental studies show 

that our DTDP algorithm is very effective for 

sentiment classification and it beats other alterna-

tive methods of considering polarity shift.  

One limitation of current work is that the tun-

ing of parameters in DTDP (such as a and t) is 

not well discussed. We will leave this issue to an 

extended version. 
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Abstract 

The task of review rating prediction can be 
well addressed by using regression algorithms 
if there is a reliable training set of reviews 
with human ratings. In this paper, we aim to 
investigate  a more challenging task of cross-
language review rating prediction, which 
makes use of only rated reviews in a source 
language (e.g. English) to predict the rating 
scores of unrated reviews in a target language 
(e.g. German). We propose a new co-
regression algorithm to address this task by 
leveraging unlabeled reviews.  Evaluation re-
sults on several datasets show that our pro-
posed co-regression algorithm can consistently 
improve the prediction results. 

1 Introduction 

With the development of e-commerce, more and 
more people like to buy products on the web and 
express their opinions about the products by 
writing reviews. These reviews usually contain 
valuable information for other people’s reference 
when they buy the same or similar products. In 
some applications, it is useful to categorize a re-
view into either positive or negative, but in many 
real-world scenarios, it is important to provide 
numerical ratings rather than binary decisions.  

The task of review rating prediction aims to 
automatically predict the rating scores of unrated 
product reviews. It is considered as a finer-
grained task than the binary sentiment classifica-
tion task. Review rating prediction has been 
modeled as a multi-class classification or regres-
sion task, and the regression based methods have 
shown better performance than the multi-class 
classification based methods in recent studies (Li 
et al. 2011). Therefore, we focus on investigating 
regression-based methods in this study.  

Traditionally, the review rating prediction task 
has been investigated in a monolingual setting, 
which means that the training reviews with hu-
man ratings and the test reviews are in the same 
language. However, a more challenging task is to 

predict the rating scores of the reviews in a target 
language (e.g. German) by making use of the 
rated reviews in a different source language (e.g. 
English), which is called Cross-Language Re-
view Rating Prediction. Considering that the re-
sources (i.e. the rated reviews) for review rating 
prediction in different languages are imbalanced, 
it would be very useful to make use of the re-
sources in resource-rich languages to help ad-
dress the review rating prediction task in re-
source-poor languages.  

The task of cross-language review rating pre-
diction can be typically addressed by using ma-
chine translation services for review translation, 
and then applying regression methods based on 
the monolingual training and test sets. However, 
due to the poor quality of machine translation, 
the reviews translated from one language A to 
another language B are usually very different 
from the original reviews in language B, because 
the words or syntax of the translated reviews 
may be erroneous or non-native.  This phenome-
non brings great challenges for existing regres-
sion algorithms.  

In this study, we propose a new co-regression 
algorithm to address the above problem by lever-
aging unlabeled reviews in the target language.  
Our algorithm can leverage both views of the 
reviews in the source language and the target 
language to collaboratively determine the confi-
dently predicted ones out of the unlabeled re-
views, and then use the selected examples to 
enlarge the training set. Evaluation results on 
several datasets show that our proposed co-
regression algorithm can consistently improve 
the prediction results. 

2 Related Work 

Most previous works on review rating prediction 
model this problem as a multi-class classification 
task or a regression task. Various features have 
been exploited from the review text, including 
words, patterns, syntactic structure, and semantic 
topic (Qu et al. 2010; Pang and Lee, 2005; Leung 
et al. 2006; Ganu et al. 2009). Traditional learn-
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ing models, such as SVM, are adopted for rating 
prediction. Most recently, Li et al. (2011) pro-
pose a novel tensor-based learning framework to 
incorporate reviewer and product information 
into the text based learner for rating prediction.  
Saggion et al. (2012) study the use of automatic 
text summaries instead of the full reviews for 
movie review rating prediction. In addition to 
predicting the overall rating of a full review, 
multi-aspect rating prediction has also been in-
vestigated (Lu et al. 2011b; Snyder and Barzilay, 
2007; Zhu et al. 2009; Wang et al. 2010; Lu et al. 
2009; Titov and McDonald, 2008). All the above 
previous works are working under a monolingual 
setting, and to the best of our knowledge, there 
exists no previous work on cross-language re-
view rating prediction.  
    It is noteworthy that a few studies have been 
conducted for the task of cross-lingual sentiment 
classification or text classification, which aims to 
make use of labeled data in a language for the 
binary classification task in a different language 
(Mihalcea et al., 2007; Banea et al., 2008; Wan 
2009; Lu et al. 2011a; Meng et al. 2012; Shi et 
al., 2010; Prettenhofer and Stein 2010). However, 
the binary classification task is very different 
from the regression task studied in this paper, 
and the proposed methods in the above previous 
works cannot be directly applied.  

3 Problem Definition and Baseline Ap-
proaches 

Let L={(x1, y1), …, (xi, yi), …, (xn, yn)} denote the 
labeled training set of reviews in a source lan-
guage (e.g. English), where xi is the i-th review 
and yi is its real-valued label, and n is the number 
of labeled examples; Let T denote the test review 
set in a different target language (e.g. German); 
Then the task of cross-language review rating 
prediction aims at automatically predicting the 
rating scores of the reviews in T by leveraging 
the labeled reviews in L. No labeled reviews in 
the target language are allowed to be used. 

The task is a regression problem and it is chal-
lenging due to the language gap between the la-
beled training dataset and the test dataset. Fortu-
nately, due to the development of machine trans-
lation techniques, a few online machine transla-
tion services can be used for review translation. 
We adopt Google Translate1 for review transla-
tion. After review translation, the training re-
views and the test reviews are now in the same 

                                                 
1 http://translate.google.com 

language, and any regression algorithm (e.g. lo-
gistic regression, least squares regression, KNN 
regressor) can be applied for learning and predic-
tion.  In this study, without loss of generality, we 
adopt the widely used regression SVM (Vapnik 
1995; Joachims 1999) implemented in the 
SVMLight toolkit 2  as the basic regressor. For 
comparative analysis, we simply use the default 
parameter values in SVMLight with linear kernel. 
The features include all unigrams and bigrams in 
the review texts, and the value of each feature is 
simply set to its frequency (TF) in a review.  

Using features in different languages, we have 
the following baseline approaches for addressing 
the cross-language regression problem.  

REG_S:  It conducts regression learning and 
prediction in the source language.   

REG_T: It conducts regression learning and 
prediction in the target language.   

REG_ST: It conducts regression learning and 
prediction with all the features in both languages.   

REG_STC: It combines REG_S and REG_T   
by averaging their prediction values.  

However, the above regression methods do not 
perform very well due to the unsatisfactory ma-
chine translation quality and the various lan-
guage expressions. Therefore, we need to find 
new approaches to improve the above methods.  

4 Our Proposed Approach 

4.1 Overview 

Our basic idea is to make use of some amounts 
of unlabeled reviews in the target language to 
improve the regression performance. Consider-
ing that the reviews have two views in two lan-
guages and inspired by the co-training style algo-
rithms (Blum and Mitchell, 1998; Zhou and Li, 
2005), we propose a new co-training style algo-
rithm called co-regression to leverage the unla-
beled data in a collaborative way.  The proposed 
co-regression algorithm can make full use of 
both the features in the source language and the 
features in the target language in a unified 
framework similar to (Wan 2009). Each review 
has two versions in the two languages. The 
source-language features and the target-language 
features for each review are considered two re-
dundant views of the review. In the training 
phase, the co-regression algorithm is applied to 
learn two regressors in the two languages. In the 
prediction phase, the two regressors are applied 
to predict two rating scores of the review. The 

                                                 
2 http://svmlight.joachims.org 
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final rating score of the review is the average of 
the two rating scores.  

4.2 Our Proposed Co-Regression Algorithm 

In co-training for classification, some confidently 
classified examples by one classifier are pro-
vided for the other classifier, and vice versa. 
Each of the two classifiers can improve by learn-
ing from the newly labeled examples provided 
by the other classifier. The intuition is the same 
for co-regression. However, in the classification 
scenario, the confidence value of each prediction 
can be easily obtained through consulting the 
classifier. For example, the SVM classifier pro-
vides a confidence value or probability for each 
prediction. However, in the regression scenario, 
the confidence value of each prediction is not 
provided by the regressor. So the key question is 
how to get the confidence value of each labeled 
example. In (Zhou and Li, 2005), the assumption 
is that the most confidently labeled example of a 
regressor should be with such a property, i.e. the 
error of the regressor on the labeled example set 
(i.e. the training set) should decrease the most if 
the most confidently labeled example is utilized. 
In other words, the confidence value of each la-
beled example is measured by the decrease of the 
error (e.g. mean square error) on the labeled set 
of the regressor utilizing the information pro-
vided by the example. Thus, each example in the 
unlabeled set is required to be checked by train-
ing a new regression model utilizing the example. 
However, the model training process is usually 
very time-consuming for many regression algo-
rithms, which significantly limits the use of the 
work in (Zhou and Li, 2005). Actually, in (Zhou 
and Li, 2005), only the lazy learning based KNN 
regressor is adopted. Moreover, the confidence 
of the labeled examples is assessed based only on 
the labeled example set (i.e. the training set), 
which makes the generalization ability of the 
regressor not good.  

In order to address the above problem, we 
propose a new confidence evaluation strategy 
based on the consensus of the two regressors. 
Our intuition is that if the two regressors agree 
on the prediction scores of an example very well, 
then the example is very confidently labeled. On 
the contrary, if the prediction scores of an exam-
ple by the two regressors are very different, we 
can hardly make a decision whether the example 
is confidently labeled or not. Therefore, we use 
the absolute difference value between the predic-
tion scores of the two regressors as the confi-
dence value of a labeled example, and if the ex-

ample is chosen, its final prediction score is the 
average of the two prediction scores. Based on 
this strategy, the confidently labeled examples 
can be easily and efficiently chosen from the 
unlabeled set as in the co-training algorithm, and 
these examples are then added into the labeled 
set for re-training the two regressors. 

 
Given: 

- Fsource and Ftarget are redundantly sufficient 
sets of features, where Fsource represents 
the source language features, Ftarget repre-
sents the target language features; 

- L is a set of labeled training reviews; 
- U is a set of unlabeled reviews; 

Loop for I iterations: 
1. Learn the first regressor Rsource from L 

based on Fsource; 
2. Use Rsource to label reviews from U based 

on Fsource; Let source
iŷ denote the predic-

tion score of review xi;  
3. Learn the second classifier Rtarget from L 

based on Ftarget; 
4. Use Rtarget to label reviews from U based 

on Ftarget; Let ett
iy argˆ denote the predic-

tion score of review xi;  
5. Choose m most confidently predicted re-

views E={ top m reviews with the small-
est value of source

i
ett

i yy ˆˆ arg − } from U, 

where the final prediction score of each 
review in E is 2ˆˆ arg source

i
ett

i yy + ; 

6. Removes reviews E from U and add re-
views E with the corresponding predic-
tion scores to L; 

Figure 1. Our proposed co-regression algorithm 
 
Our proposed co-regression algorithm is illus-

trated in Figure 1. In the proposed co-regression 
algorithm, any regression algorithm can be used 
as the basic regressor to construct Rsource and Rtar-

get, and in this study, we adopt the same regres-
sion SVM implemented in the SVMLight toolkit 
with default parameter values. Similarly, the fea-
tures include both unigrams and bigrams and the 
feature weight is simply set to term frequency.  
There are two parameters in the algorithm: I is 
the iteration number and m is the growth size in 
each iteration. I and m can be empirically set ac-
cording to the total size of the unlabeled set U, 
and we have I×m≤ |U|. 

Our proposed co-regression algorithm is much 
more efficient than the COREG algorithm (Zhou 
and Li, 2005). If we consider the time-
consuming regression learning process as one  
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Figure 2. Comparison results vs. Iteration Number (I) (Rsource and Rtarget are the two component regressors)  

basic operation and make use of all unlabeled 
examples in U, the computational complexity of 
COREG is O(|U|+I). By contrast, the computa-
tional complexity of our proposed co-regression 
algorithm is just O(I). Since |U| is much larger 
than I, our proposed co-regression algorithm is 
much more efficient than COREG, and thus our 
proposed co-regression algorithm is more suit-
able to be used in applications with a variety of 
regression algorithms.  

Moreover, in our proposed co-regression algo-
rithm, the confidence of each prediction is de-
termined collaboratively by two regressors. The 
selection is not restricted by the training set, and 
it is very likely that a portion of good examples 
can be chosen for generalize the regressor to-
wards the test set.  

5 Empirical Evaluation 

We used the WEBIS-CLS-10 corpus3 provided 
by (Prettenhofer and Stein, 2010) for evaluation.  
It consists of Amazon product reviews for three 
product categories (i.e. books, dvds and music) 
written in different languages including English, 
German, etc. For each language-category pair 
there exist three sets of training documents, test 
documents, and unlabeled documents. The train-
ing and test sets comprise 2000 documents each, 
whereas the number of unlabeled documents var-
ies from 9000 – 170000. The dataset is provided 
with the rating score between 1 to 5 assigned by 
users, which can be used for the review rating 
prediction task. We extracted texts from both the 
summary field and the text field to represent a 
review text. We then extracted the rating score as 
a review’s corresponding real-valued label. In 
the cross-language scenario, we regarded English 
as the source language, and regarded German as 
the target language. The experiments were con-
ducted on each product category separately. 
Without loss of generality, we sampled and used 
                                                 
3 http://www.uni-weimar.de/medien/webis/research/corpora/ 
corpus-webis-cls-10.html 

only 8000 unlabeled documents for each product 
category. We use Mean Square Error (MSE) as 
the evaluation metric, which penalizes more se-
vere errors more heavily.  

In the experiments, our proposed co-regression 
algorithm (i.e. “co-regression”) is compared with 
the COREG algorithm in (Zhou and Li, 2005) 
and a few other baselines. For our proposed co-
regression algorithm, the growth size m is simply 
set to 50. We implemented the COREG algo-
rithm by replacing the KNN regressor with the 
regression SVM and the pool size is also set to 
50. The iteration number I varies from 1 to 150. 
The comparison results are shown in Figure 2.  

We can see that on all product categories, the 
MSE values of our co-regression algorithm and 
the two component regressors tend to decline 
over a wide range of I, which means that the se-
lected confidently labeled examples at each itera-
tion are indeed helpful to improve the regressors.  
Our proposed co-regression algorithm outper-
forms all the baselines (including COREG) over 
different iteration members, which verifies the 
effectiveness of our proposed algorithm. We can 
also see that the COREG algorithm does not per-
form well for this cross-language regression task. 
Overall, our proposed co-regression algorithm 
can consistently improve the prediction results. 

6 Conclusion and Future Work 

In this paper, we study a new task of cross-
language review rating prediction and propose a 
new co-regression algorithm to address this task. 
In future work, we will apply the proposed co-
regression algorithm to other cross-language or 
cross-domain regression problems in order to 
verify its robustness.  
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Abstract

In this paper we present a technique to

reveal definitions and hypernym relations

from text. Instead of using pattern match-

ing methods that rely on lexico-syntactic

patterns, we propose a technique which

only uses syntactic dependencies between

terms extracted with a syntactic parser.

The assumption is that syntactic informa-

tion are more robust than patterns when

coping with length and complexity of the

sentences. Afterwards, we transform such

syntactic contexts in abstract representa-

tions, that are then fed into a Support

Vector Machine classifier. The results on

an annotated dataset of definitional sen-

tences demonstrate the validity of our ap-

proach overtaking current state-of-the-art

techniques.

1 Introduction

Nowadays, there is a huge amount of textual

data coming from different sources of informa-

tion. Wikipedia1 , for example, is a free encyclo-

pedia that currently contains 4,208,409 English ar-

ticles2. Even Social Networks play a role in the

construction of data that can be useful for Infor-

mation Extraction tasks like Sentiment Analysis,

Question Answering, and so forth.

From another point of view, there is the need

of having more structured data in the forms of

ontologies, in order to allow semantics-based re-

trieval and reasoning. Ontology Learning is

a task that permits to automatically (or semi-

automatically) extract structured knowledge from

plain text. Manual construction of ontologies usu-

ally requires strong efforts from domain experts,

and it thus needs an automatization in such sense.

1http://www.wikipedia.org/
2April 12, 2013.

In this paper, we focus on the extraction of hy-

pernym relations. The first step of such task relies

on the identification of what (Navigli and Velardi,

2010) called definitional sentences, i.e., sentences

that contain at least one hypernym relation. This

subtask is important by itself for many tasks like

Question Answering (Cui et al., 2007), construc-

tion of glossaries (Klavans and Muresan, 2001),

extraction of taxonomic and non-taxonomic rela-

tions (Navigli, 2009; Snow et al., 2004), enrich-

ment of concepts (Gangemi et al., 2003; Cataldi et

al., 2009), and so forth.

Hypernym relation extraction involves two as-

pects: linguistic knowlege, and model learning.

Patterns collapse both of them, preventing to face

them separately with the most suitable techniques.

First, patterns have limited expressivity; then, lin-

guistic knowledge inside patterns is learned from

small corpora, so it is likely to have low coverage.

Classification strictly depends on the learned pat-

terns, so performance decreases, and the available

classification techniques are restricted to those

compatible with the pattern approach. Instead, we

use a syntactic parser for the first aspect (with all

its native and domain-independent knowledge on

language expressivity), and a state-of-the-art ap-

proach to learn models with the use of Support

Vector Machine classifiers.

Our assumption is that syntax is less dependent

than learned patterns from the length and the com-

plexity of textual expressions. In some way, pat-

terns grasp syntactic relationships, but they actu-

ally do not use them as input knowledge.

2 Related Work

In this section we present the current state of the

art concerning the automatic extraction of defini-

tions and hypernym relations from plain text. We

will use the term definitional sentence referring to

the more general meaning given by (Navigli and

Velardi, 2010): A sentence that provides a for-
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mal explanation for the term of interest, and more

specifically as a sentence containing at least one

hypernym relation.

So far, most of the proposed techniques rely on

lexico-syntactic patterns, either manually or semi-

automatically produced (Hovy et al., 2003; Zhang

and Jiang, 2009; Westerhout, 2009). Such pat-

terns are sequences of words like “is a” or “refers

to”, rather than more complex sequences includ-

ing part-of-speech tags.

In the work of (Westerhout, 2009), after a man-

ual identification of types of definitions and related

patterns contained in a corpus, he successively ap-

plied Machine Learning techniques on syntactic

and location features to improve the results.

A fully-automatic approach has been proposed

by (Borg et al., 2009), where the authors applied

genetic algorithms to the extraction of English def-

initions containing the keyword “is”. In detail,

they assign weights to a set of features for the clas-

sification of definitional sentences, reaching a pre-

cision of 62% and a recall of 52%.

Then, (Cui et al., 2007) proposed an approach

based on soft patterns, i.e., probabilistic lexico-

semantic patterns that are able to generalize over

rigid patterns enabling partial matching by cal-

culating a generative degree-of-match probability

between a test instance and the set of training in-

stances.

Similarly to our approach, (Fahmi and Bouma,

2006) used three different Machine Learning algo-

rithms to distinguish actual definitions from other

sentences also relying on syntactic features, reach-

ing high accuracy levels.

The work of (Klavans and Muresan, 2001) re-

lies on a rule-based system that makes use of “cue

phrases” and structural indicators that frequently

introduce definitions, reaching 87% of precision

and 75% of recall on a small and domain-specific

corpus.

As for the task of definition extraction, most

of the existing approaches use symbolic methods

that are based on lexico-syntactic patterns, which

are manually crafted or deduced automatically.

The seminal work of (Hearst, 1992) represents the

main approach based on fixed patterns like “NPx

is a/an NPy” and “NPx such as NPy”, that usu-

ally imply < x IS-A y >.

The main drawback of such technique is that it

does not face the high variability of how a relation

can be expressed in natural language. Still, it gen-

erally extracts single-word terms rather than well-

formed and compound concepts. (Berland and

Charniak, 1999) proposed similar lexico-syntactic

patterns to extract part-whole relationships.

(Del Gaudio and Branco, 2007) proposed a rule-

based approach to the extraction of hypernyms

that, however, leads to very low accuracy values

in terms of Precision.

(Ponzetto and Strube, 2007) proposed a

technique to extract hypernym relations from

Wikipedia by means of methods based on the

connectivity of the network and classical lexico-

syntactic patterns. (Yamada et al., 2009) extended

their work by combining extracted Wikipedia en-

tries with new terms contained in additional web

documents, using a distributional similarity-based

approach.

Finally, pure statistical approaches present

techniques for the extraction of hierarchies of

terms based on words frequency as well as co-

occurrence values, relying on clustering proce-

dures (Candan et al., 2008; Fortuna et al., 2006;

Yang and Callan, 2008). The central hypothesis is

that similar words tend to occur together in similar

contexts (Harris, 1954). Despite this, they are de-

fined by (Biemann, 2005) as prototype-based on-

tologies rather than formal terminological ontolo-

gies, and they usually suffer from the problem of

data sparsity in case of small corpora.

3 Approach

In this section we present our approach to identify

hypernym relations within plain text. Our method-

ology consists in relaxing the problem into two

easier subtasks. Given a relation rel(x, y) con-

tained in a sentence, the task becomes to find 1)

a possible x, and 2) a possible y. In case of more

than one possible x or y, a further step is needed

to associate the correct x to the right y.

By seeing the problem as two different classi-

fication problems, there is no need to create ab-

stract patterns between the target terms. In ad-

dition to this, the general problem of identifying

definitional sentences can be seen as to find at least

one x and one y in a sentence.

3.1 Local Syntactic Information

Dependency parsing is a procedure that extracts

syntactic dependencies among the terms contained

in a sentence. The idea is that, given a hyper-

nym relation, hyponyms and hypernyms may be
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characterized by specific sets of syntactic contexts.

According to this assumption, the task can be seen

as a classification problem where each term in a

sentence has to be classified as hyponym, hyper-

nym, or neither of the two.

For each noun, we construct a textual represen-

tation containing its syntactic dependencies (i.e.,

its syntactic context). In particular, for each syn-

tactic dependency dep(a, b) (or dep(b, a)) of a tar-

get noun a, we create an abstract token3 dep-

target-b̂ (or dep-b̂-target), where b̂ becomes the

generic string “noun” in case it is another noun;

otherwise it is equal to b. This way, the nouns are

transformed into abstract strings; on the contrary,

no abstraction is done for verbs.

For instance, let us consider the sentence “The

Albedo of an object is the extent to which it dif-

fusely reflects light from the sun”. After the Part-

Of-Speech annotation, the parser will extract a se-

ries of syntactic dependencies like “det(Albedo,

The)”, “nsubj(extent, Albedo)”, “prepof(Albedo,

object)”, where det identifies a determiner, nsubj

represents a noun phrase which is the syntac-

tic subject of a clause, and so forth4. Then,

such dependencies will be transformed in abstract

terms like “det-target-the”, “nsubj-noun-target”,

and “prepof -target-noun”. These triples represent

the feature space on which the Support Vector Ma-

chine classifiers will construct the models.

3.2 Learning phase

Our model assumes a transformation of the local

syntactic information into labelled numeric vec-

tors. More in detail, given a sentence S annotated

with the terms linked by the hypernym relation,

the system produces as many input instances as

the number of nouns contained in S. For each

noun n in S, the method produces two instances

Sn
x and Sn

y , associated to the label positive or neg-

ative depending on their presence in the target re-

lation (i.e., as x or y respectively). If a noun is

not involved in a hypernym relation, both the two

instances will have the label negative. At the end

of this process, two training sets are built, i.e., one

for each relation argument, namely the x-set and

the y-set. All the instances of both the datasets are

then transformed into numeric vectors according

3We make use of the term “abstract” to indicate that some
words are replaced with more general entity identifiers.

4A complete overview of the Stan-
ford dependencies is available at
http://nlp.stanford.edu/software/dependencies manual.pdf.

to the Vector Space Model (Salton et al., 1975),

and are finally fed into a Support Vector Machine

classifier5 (Cortes and Vapnik, 1995). We refer to

the two resulting models as the x-model and the

y-model. These models are binary classifiers that,

given the local syntactic information of a noun, es-

timate if it can be respectively an x or a y in a hy-

pernym relation.

Once the x-model and the y-model are built, we

can both classify definitional sentences and extract

hypernym relations. In the next section we deepen

our proposed strategy in that sense.

The whole set of instances of all the sentences

are fed into two Support Vector Machine classi-

fiers, one for each target label (i.e., x and y).

At this point, it is possible to classify each term

as possible x or y by querying the respective clas-

sifiers with its local syntactic information.

4 Setting of the Tasks

In this section we present how our proposed tech-

nique is able to classify definitional sentences un-

raveling hypernym relations.

4.1 Classification of definitional sentences

As already mentioned in previous sections, we la-

bel as definitional all the sentences that contain at

least one noun n classified as x, and one noun m
classified as y (where n 6= m). In this phase, it

is not further treated the case of having more than

one x or y in one single sentence. Thus, given an

input sentence:

1. we extract all the nouns (POS-tagging),

2. we extract all the syntactic dependencies of

the nouns (dependency parsing),

3. we fed each noun (i.e., its instance) to the x-

model and to the y model,

4. we check if there exist at least one noun clas-

sified as x and one noun classified as y: in

this case, we classify the sentences as defini-

tional.

4.2 Extraction of hypernym relations

Our method for extracting hypernym relations

makes use of both the x-model and the y-model

as for the the task of classifying definitional sen-

tences. If exactly one x and one y are identified

5We used the Sequential Minimal Optimization imple-
mentation of the Weka framework (Hall et al., 2009).
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in the same sentence, they are directly connected

and the relation is extracted. The only constraint

is that x and y must be connected within the same

parse tree.

Now, considering our target relation hyp(x, y),
in case the sentence contains more than one noun

that is classified as x (or y), there are two possible

scenarios:

1. there are actually more than one x (or y), or

2. the classifiers returned some false positive.

Up to now, we decided to keep all the possi-

ble combinations, without further filtering opera-

tions6. Finally, in case of multiple classifications

of both x and y, i.e., if there are multiple x and

multiple y at the same time, the problem becomes

to select which x is linked to which y7. To do this,

we simply calculate the distance between these

terms in the parse tree (the closer the terms, the

better the connection between the two). Neverthe-

less, in the used corpus, only around 1.4% of the

sentences are classified with multiple x and y.

Finally, since our method is able to extract

single nouns that can be involved in a hyper-

nym relation, we included modifiers preceded by

preposition “of”, while the other modifiers are re-

moved. For example, considering the sentence

“An Archipelago is a chain of islands”, the whole

chunk “chain of islands” is extracted from the sin-

gle triggered noun chain.

5 Evaluation

In this section we present the evaluation of our

approach, that we carried out on an annotated

dataset of definitional sentences (Navigli et al.,

2010). The corpus contains 4,619 sentences ex-

tracted from Wikipedia, and only 1,908 are anno-

tated as definitional. On a first instance, we test the

classifiers on the extraction of hyponyms (x) and

hypernyms (y) from the definitional sentences, in-

dependently. Then, we evaluate the classification

of definitional sentences. Finally, we evaluate the

ability of our technique when extracting whole hy-

pernym relations. With the used dataset, the con-

structed training sets for the two classifiers (x-set

and y-set) resulted to have approximately 1,500

features.

6We only used the constraint that x has to be different
from y.

7Notice that this is different from the case in which a sin-
gle noun is labeled as both x and y.

Alg. P R F Acc

WCL-3 98.8% 60.7% 75.2 % 83.4 %

Star P. 86.7% 66.1% 75.0 % 81.8 %

Bigrams 66.7% 82.7% 73.8 % 75.8 %

Our sys. 88.0% 76.0% 81.6% 89.6%

Table 1: Evaluation results for the classification of

definitional sentences, in terms of Precision (P ),

Recall (R), F-Measure (F ), and Accuracy (Acc),

using 10-folds cross validation. For the WCL-3

approach and the Star Patterns see (Navigli and

Velardi, 2010), and (Cui et al., 2007) for Bigrams.

Algorithm P R F

WCL-3 78.58% 60.74% * 68.56%

Our system 83.05% 68.64% 75.16%

Table 2: Evaluation results for the hypernym re-

lation extraction, in terms of Precision (P ), Re-

call (R), and F-Measure (F ). For the WCL-3 ap-

proach, see (Navigli and Velardi, 2010). These re-

sults are obtained using 10-folds cross validation

(* Recall has been inherited from the definition

classification task, since no indication has been re-

ported in their contribution).

5.1 Results

In this section we present the evaluation of our

technique on both the tasks of classifying def-

initional sentences and extracting hypernym re-

lations. Notice that our approach is susceptible

from the errors given by the POS-tagger8 and the

syntactic parser9 . In spite of this, our approach

demonstrates how syntax can be more robust for

identifying semantic relations. Our approach does

not make use of the full parse tree, and we are not

dependent on a complete and correct result of the

parser.

The goal of our evaluation is twofold: first, we

evaluate the ability of classifying definitional sen-

tences; finally, we measure the accuracy of the hy-

pernym relation extraction.

A definitional sentences is extracted only if at

least one x and one y are found in the same sen-

tence. Table 1 shows the accuracy of the ap-

proach for this task. As can be seen, our pro-

posed approach has a high Precision, with a high

Recall. Although Precision is lower than the pat-

8http://nlp.stanford.edu/software/tagger.shtml
9http://www-nlp.stanford.edu/software/lex-parser.shtml
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tern matching approach proposed by (Navigli and

Velardi, 2010), our Recall is higher, leading to an

higher overall F-Measure.

Table 2 shows the results of the extraction of

the whole hypernym relations. Note that our ap-

proach has high levels of accuracy. In particular,

even in this task, our system outperforms the pat-

tern matching algorithm proposed by (Navigli and

Velardi, 2010) in terms of Precision and Recall.

6 Conclusion and Future Work

We presented an approach to reveal definitions and

extract underlying hypernym relations from plain

text, making use of local syntactic information fed

into a Support Vector Machine classifier. The aim

of this work was to revisit these tasks as classical

supervised learning problems that usually carry to

high accuracy levels with high performance when

faced with standard Machine Learning techniques.

Our first results on this method highlight the va-

lidity of the approach by significantly improving

current state-of-the-art techniques in the classifi-

cation of definitional sentences as well as in the

extraction of hypernym relations from text. In fu-

ture works, we aim at using larger syntactic con-

texts. In fact, currently, the detection does not

surpass the sentence level, while taxonomical in-

formation can be even contained in different sen-

tences or paragraphs. We also aim at evaluating

our approach on the construction of entire tax-

onomies starting from domain-specific text cor-

pora, as in (Navigli et al., 2011; Velardi et al.,

2012). Finally, the desired result of the task of ex-

tracting hypernym relations from text (as for any

semantic relationships in general) depends on the

domain and the specific later application. Thus,

we think that a precise evaluation and comparison

of any systems strictly depends on these factors.

For instance, given a sentence like “In mathemat-

ics, computing, linguistics and related disciplines,

an algorithm is a sequence of instructions” one

could want to extract only “instructions” as hyper-

nym (as done in the annotation), rather than the en-

tire chunk “sequence of instructions” (as extracted

by our technique). Both results can be valid, and

a further discrimination can only be done if a spe-

cific application or use of this knowlege is taken

into consideration.
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Abstract

Word Sense Disambiguation (WSD) is one
of the toughest problems in NLP, and in
WSD, verb disambiguation has proved to
be extremely difficult, because of high de-
gree of polysemy, too fine grained senses,
absence of deep verb hierarchy and low in-
ter annotator agreement in verb sense an-
notation. Unsupervised WSD has received
widespread attention, but has performed
poorly, specially on verbs. Recently an
unsupervised bilingual EM based algo-
rithm has been proposed, which makes
use only of the raw counts of the transla-
tions in comparable corpora (Marathi and
Hindi). But the performance of this ap-
proach is poor on verbs with accuracy
level at 25-38%. We suggest a modifica-
tion to this mentioned formulation, using
context and semantic relatedness of neigh-
boring words. An improvement of 17% -
35% in the accuracy of verb WSD is ob-
tained compared to the existing EM based
approach. On a general note, the work
can be looked upon as contributing to the
framework of unsupervised WSD through
context aware expectation maximization.

1 Introduction

The importance of unsupervised approaches in
WSD is well known, because they do not need
sense tagged corpus. In multilingual unsuper-
vised scenario, either comparable or parallel cor-
pora have been used by past researchers for disam-
biguation (Dagan et al., 1991; Diab and Resnik,
2002; Kaji and Morimoto, 2002; Specia et al.,
2005; Lefever and Hoste, 2010; Khapra et al.,
2011). Recent work by Khapra et al., (2011) has
shown that, in comparable corpora, sense distribu-
tion of a word in one language can be estimated

using the raw counts of translations of the target
words in the other language; such sense distribu-
tions contribute to the ranking of senses. Since
translations can themselves be ambiguous, Expec-
tation Maximization based formulation is used to
determine the sense frequencies. Using this ap-
proach every instance of a word is tagged with the
most probable sense according to the algorithm.

In the above formulation, no importance is
given to the context. That would do, had the ac-
curacy of disambiguation on verbs not been poor
25-35%. This motivated us to propose and inves-
tigate use of context in the formulation by Khapra
et al. (2011).

For example consider the sentence in chem-
istry domain,“Keep the beaker on the flat table.”
In this sentence, the target word ‘table’ will be
tagged as ‘the tabular array’ sense since it is dom-
inant in the chemistry domain by their algorithm.
But its actual sense is ‘a piece of furniture’ which
can be captured only if context is taken into con-
sideration. In our approach we tackle this problem
by taking into account the words from the context
of the target word. We use semantic relatedness
between translations of the target word and those
of its context words to determine its sense.

Verb disambiguation has proved to be extremely
difficult (Jean, 2004), because of high degree of
polysemy (Khapra et al., 2010), too fine grained
senses, absence of deep verb hierarchy and low in-
ter annotator agreement in verb sense annotation.
On the other hand, verb disambiguation is very
important for NLP applications like MT and IR.
Our approach has shown significant improvement
in verb accuracy as compared to Khapra’s (2011)
approach.

The roadmap of the paper is as follows. Sec-
tion 2 presents related work. Section 3 covers the
background work. Section 4 explains the modified
EM formulation using context and semantic relat-
edness. Section 5 presents the experimental setup.
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Results are presented in section 6. Section 7 cov-
ers phenomena study and error analysis. Conclu-
sions and future work are given in the last section,
section 8.

2 Related work

Word Sense Disambiguation is one of the hard-
est problems in NLP. Successful supervised WSD
approaches (Lee et al., 2004; Ng and Lee, 1996)
are restricted to resource rich languages and do-
mains. They are directly dependent on availabil-
ity of good amount of sense tagged data. Creat-
ing such a costly resource for all language-domain
pairs is impracticable looking at the amount of
time and money required. Hence, unsupervised
WSD approaches (Diab and Resnik, 2002; Kaji
and Morimoto, 2002; Mihalcea et al., 2004; Jean,
2004; Khapra et al., 2011) attract most of the re-
searchers.

3 Background

Khapra et al. (2011) dealt with bilingual unsuper-
vised WSD. It uses EM algorithm for estimating
sense distributions in comparable corpora. Ev-
ery polysemous word is disambiguated using the
raw counts of its translations in different senses.
Synset aligned multilingual dictionary (Mohanty
et al., 2008) is used for finding its translations.
In this dictionary, synsets are linked, and after
that the words inside the synsets are also linked.
For example, for the concept of‘boy’, the Hindi
synset{ladakaa, balak, bachhaa} is linked with
the Marathi synset{mulagaa, poragaa, por}. The
Marathi word ‘mulagaa’ is linked to the Hindi
word ‘ladakaa’ which is its exact lexical substi-
tution.

Suppose wordsu in languageL1 andv in lan-
guageL2 are translations of each other and their
senses are required. The EM based formulation is
as follows:

E-Step:

P (SL1 |u) =

∑

v

P (π
L2

(SL1)|v) · #(v)

∑

S
L1
i

∑

x

P (π
L2

(SL1
i )|x) · #(x)

where, SL1
i ∈ synsetsL1

(u)

v ∈ crosslinks
L2

(u, SL1)

x ∈ crosslinks
L2

(u, SL1
i )

M-Step:

P (SL2 |v) =

∑

u

P (π
L1

(SL2)|u) · #(u)

∑

S
L2
i

∑

y

P (π
L1

(SL2
i )|y) · #(y)

where, SL2
i ∈ synsets

L2
(v)

u ∈ crosslinks
L1

(v, SL2)

y ∈ crosslinks
L1

(v, SL2
i )

Here,

• ‘#’ indicates the raw count.

• crosslinks
L1

(a, SL2) is the set of possible
translations of the word ‘a’ from languageL1

to L2 in the senseSL2 .

• π
L2

(SL1) means the linked synset of the
senseSL1 in L2.

E and M steps are symmetric except for the
change in language. In both the steps, we esti-
mate sense distribution in one language using raw
counts of translations in another language. But
this approach has following limitations:
Poor performance on verbs:This approach gives
poor performance on verbs (25%-38%). See sec-
tion 6.
Same sense throughout the corpus:Every oc-
currence of a word is tagged with the single sense
found by the algorithm, throughout the corpus.
Closed loop of translations: This formulation
does not work for some common words which
have the same translations in all senses. For ex-
ample, the verb ‘karna’ in Hindi has two differ-
ent senses in the corpusviz., ‘ to do’ (S1) and ‘to
make’ (S2). In both these senses, it gets trans-
lated as ‘karne’ in Marathi. The word ‘karne’ also
back translates to ‘karna’ in Hindi through both its
senses. In this case, the formulation works out as
follows:

The probabilities are initialized uniformly.
Hence,P (S1|karna) = P (S2|karna) = 0.5.
Now, in first iteration the sense of ‘karne’ will be
estimated as follows (E-step):

P (S1|karne) =
P (S1|karna) ∗ #(karna)

#(karna)

= 0.5,
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P (S2|karne) =
P (S2|karna) ∗ #(karna)

#(karna)

= 0.5

Similarly, in M-step, we will getP (S1|karna) =
P (S2|karna) = 0.5. Eventually, it will end up
with initial probabilities and no strong decision
can be made.

To address these problems we have introduced
contextual clues in their formulation by using se-
mantic relatedness.

4 Modified Bilingual EM approach

We introduce context in the EM formulation stated
above and treat the context as a bag of words. We
assume that each word in the context influences
the sense of the target word independently. Hence,

p(S|w,C) =
∏

ci∈C

p(S|w, ci)

where,w is the target word,S is one of the candi-
date synsets ofw, C is the set of words in context
(sentence in our case) andci is one of the context
words.

Suppose we would have sense tagged data,
p(S|w, c) could have been computed as:

p(S|w, c) =
#(S,w, c)

#(w, c)

But since the sense tagged corpus is not avail-
able, we cannot find#(S,w, c) from the corpus
directly. However, we can estimate it using the
comparable corpus in other language. Here, we
assume that given a word and its context word
in languageL1, the sense distribution inL1 will
be same as that inL2 given the translation of a
word and the translation of its context word inL2.
But these translations can be ambiguous, hence
we can use Expectation Maximization approach
similar to (Khapra et al., 2011) as follows:

E-Step:

P (SL1 |u, a) =

∑

v,b

P (π
L2

(SL1)|v, b) · σ(v, b)

∑

S
L1
i

∑

x,b

P (π
L2

(SL1
i )|x, b) · σ(x, b)

where, SL1
i ∈ synsets

L1
(u)

a ∈ context(u)

v ∈ crosslinks
L2

(u, SL1)

b ∈ crosslinks
L2

(a)

x ∈ crosslinks
L2

(u, SL1
i )

crosslinks
L1

(a) is the set of all possible transla-
tions of the word ‘a’ from L1 toL2 in all its senses.

σ(v, b) is the semantic relatedness between the
senses ofv and senses ofb. Since,v andb go over
all possible translations ofu and a respectively.
σ(v, b) has the effect of indirectly capturing the
semantic similarity between the senses ofu and
a. A symetric formulation in the M-step below
takes the computation back from languageL2 to
languageL1. The semantic relatedness comes as
an additional weighing factor, capturing context,
in the probablistic score.
M-Step:

P (SL2 |v, b) =

∑

u,a

P (π
L1

(SL2)|u, a) · σ(u, a)

∑

S
L2
i

∑

y,b

P (π
L1

(SL2
i )|y, a) · σ(y, a)

where, SL2
i ∈ synsets

L2
(v)

b ∈ context(v)

u ∈ crosslinks
L1

(v, SL2)

a ∈ crosslinksL1(b)

y ∈ crosslinks
L1

(v, SL2
i )

σ(u, a) is the semantic relatedness between the
senses ofu and senses ofa and contributes to the
score likeσ(v, b).

Note how the computation moves back and
forth betweenL1 andL2 considering translations
of both target words and their context words.

In the above formulation, we could have con-
sidered the term#(word, context word) (i.e.,
the co-occurrence count of the translations of
the word and the context word) instead of
σ(word, context word). But it is very unlikely
that every translation of a word will co-occur with
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Algorithm HIN-HEALTH MAR-HEALTH
NOUN ADV ADJ VERB Overall NOUN ADV ADJ VERB Overall

EM-C 59.82 67.80 56.66 60.38 59.63 62.90 62.54 53.63 52.49 59.77
EM 60.68 67.48 55.54 25.29 58.16 63.88 58.88 55.71 35.60 58.03
WFS 53.49 73.24 55.16 38.64 54.46 59.35 67.32 38.12 34.91 52.57
RB 32.52 45.08 35.42 17.93 33.31 33.83 38.76 37.68 18.49 32.45

Table 1: Comparison(F-Score) of EM-C and EM for Health domain

Algorithm HIN-TOURISM MAR-TOURISM
NOUN ADV ADJ VERB Overall NOUN ADV ADJ VERB Overall

EM-C 62.78 65.10 54.67 55.24 60.70 59.08 63.66 58.02 55.23 58.67
EM 61.16 62.31 56.02 31.85 57.92 59.66 62.15 58.42 38.33 56.90
WFS 63.98 75.94 52.72 36.29 60.22 61.95 62.39 48.29 46.56 57.47
RB 32.46 42.56 36.35 18.29 32.68 33.93 39.30 37.49 15.99 32.65

Table 2: Comparison(F-Score) of EM-C and EM for Tourism domain

every translation of its context word considerable
number of times. This term may make sense only
if we have arbitrarily large comparable corpus in
the other language.

4.1 Computation of semantic relatedness

The semantic relatedness is computed by taking
the inverse of the length of the shortest path among
two senses in the wordnet graph (Pedersen et al.,
2005). All the semantic relations (including cross-
part-of-speech links)viz., hypernymy, hyponymy,
meronymy, entailment, attributeetc.,are used for
computing the semantic relatedness.

Sense scores thus obtained are used to disam-
biguate all words in the corpus. We consider all
the content words from the context for disam-
biguation of a word. The winner sense is the one
with the highest probability.

5 Experimental setup

We have used freely available in-domain compa-
rable corpora1 in Hindi and Marathi languages.
These corpora are available for health and tourism
domains. The dataset is same as that used in
(Khapra et al., 2011) in order to compare the per-
formance.

6 Results

Table 1 and Table 2 compare the performance of
the following two approaches:

1. EM-C (EM with Context): Our modified ap-
proach explained in section 4.

2. EM : Basic EM based approach by Khapra et
al., (2011).

1http://www.cfilt.iitb.ac.in/wsd/annotatedcorpus/

3. WFS: Wordnet First Sense baseline.

4. RB: Random baseline.

Results clearly show that EM-C outperforms EM
especially in case of verbs in all language-domain
pairs. In health domain, verb accuracy is increased
by 35% for Hindi and 17% for Marathi, while in
tourism domain, it is increased by 23% for Hindi
and 17% for Marathi. The overall accuracy is in-
creased by (1.8-2.8%) for health domain and (1.5-
1.7%) for tourism domain. Since there are less
number of verbs, the improved accuracy is not di-
rectly reflected in the overall performance.

7 Error analysis and phenomena study

Our approach tags all the instances of a word de-
pending on its context as apposed to basic EM ap-
proach. For example, consider the following sen-
tence from the tourism domain:

vh p�� х�l rh� T�।
(vaha patte khel rahe the)

(They were playing cards/leaves)

Here, the wordp�� (plural form ofp�A) has two
sensesviz., ‘leaf’ and ‘playing card’. In tourism
domain, the‘leaf’ sense is more dominant. Hence,
basic EM will tagp�� with ‘leaf’ sense. But it’s
true sense is‘playing card’. The true sense is cap-
tured only if context is considered. Here, the word
х�lnA (to play) (root form ofх�l) endorses the
‘playing card’ sense of the wordp�A. This phe-
nomenon is captured by our approach through se-
mantic relatedness.

But there are certain cases where our algorithm
fails. For example, consider the following sen-
tence:
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vh p�X к� Enc� p�� х�l rh� T�।
(vaha ped ke niche patte khel rahe the)

(They were playing cards/leaves below the tree)

Here, two strong context wordsp�X (tree) and
х�l (play) are influencing the sense of the word
p��. Semantic relatedness betweenp�X (tree) and
p�A (leaf) is more than that ofх�l (play) andp�A
(playing card). Hence, the ‘leaf sense’ is assigned
to p�A.

This problem occurred because we considered
the context as a bag of words. This problem can
be solved by considering the semantic structure
of the sentence. In this example, the wordp�A
(leaf/playingcard) is the subject of the verbх�lnA
(to play) whilep�X (tree) is not even in the same
clause withp�A (leaf/playingcards). Thus we
could considerх�lnA (to play) as the stronger clue
for its disambiguation.

8 Conclusion and Future Work

We have presented a context aware EM formula-
tion building on the framework of Khapra et al
(2011). Our formulation solves the problems of
“inhibited progress due to lack of translation diver-
sity” and “uniform sense assignment, irrespective
of context” that the previous EM based formula-
tion of Khapra et al. suffers from. More impor-
tantly our accuracy on verbs is much higher and
more than the state of the art, to the best of our
knowledge. Improving the performance on other
parts of speech is the primary future work. Fu-
ture directions also point to usage of semantic role
clues, investigation of familialy apart pair of lan-
guages and effect of variation of measures of se-
mantic relatedness.
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Abstract

Quality estimation models provide feed-
back on the quality of machine translated
texts. They are usually trained on human-
annotated datasets, which are very costly
due to its task-specific nature. We in-
vestigate active learning techniques to re-
duce the size of these datasets and thus
annotation effort. Experiments on a num-
ber of datasets show that with as little as
25% of the training instances it is possible
to obtain similar or superior performance
compared to that of the complete datasets.
In other words, our active learning query
strategies can not only reduce annotation
effort but can also result in better quality
predictors.

1 Introduction

The purpose of machine translation (MT) qual-
ity estimation (QE) is to provide a quality pre-
diction for new, unseen machine translated texts,
without relying on reference translations (Blatz et
al., 2004; Specia et al., 2009; Callison-Burch et
al., 2012). This task is usually addressed with
machine learning models trained on datasets com-
posed of source sentences, their machine transla-
tions, and a quality label assigned by humans. A
common use of quality predictions is the decision
between post-editing a given machine translated
sentence and translating its source from scratch,
based on whether its post-editing effort is esti-
mated to be lower than the effort of translating the
source sentence.

Since quality scores for the training of QE mod-
els are given by human experts, the annotation pro-
cess is costly and subject to inconsistencies due to
the subjectivity of the task. To avoid inconsisten-
cies because of disagreements among annotators,
it is often recommended that a QE model is trained

for each translator, based on labels given by such
a translator (Specia, 2011). This further increases
the annotation costs because different datasets are
needed for different tasks. Therefore, strategies to
reduce the demand for annotated data are needed.
Such strategies can also bring the possibility of se-
lecting data that is less prone to inconsistent anno-
tations, resulting in more robust and accurate pre-
dictions.

In this paper we investigate Active Learning
(AL) techniques to reduce the size of the dataset
while keeping the performance of the resulting
QE models. AL provides methods to select in-
formative data points from a large pool which,
if labelled, can potentially improve the perfor-
mance of a machine learning algorithm (Settles,
2010). The rationale behind these methods is to
help the learning algorithm achieve satisfactory re-
sults from only on a subset of the available data,
thus incurring less annotation effort.

2 Related Work

Most research work on QE for machine transla-
tion is focused on feature engineering and feature
selection, with some recent work on devising more
reliable and less subjective quality labels. Blatz et
al. (2004) present the first comprehensive study on
QE for MT: 91 features were proposed and used
to train predictors based on an automatic metric
(e.g. NIST (Doddington, 2002)) as the quality la-
bel. Quirk (2004) showed that small datasets man-
ually annotated by humans for quality can result
in models that outperform those trained on much
larger, automatically labelled sets.

Since quality labels are subjective to the anno-
tators’ judgements, Specia and Farzindar (2010)
evaluated the performance of QE models using
HTER (Snover et al., 2006) as the quality score,
i.e., the edit distance between the MT output and
its post-edited version. Specia (2011) compared
the performance of models based on labels for
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post-editing effort, post-editing time, and HTER.
In terms of learning algorithms, by and large

most approaches use Support Vector Machines,
particularly regression-based approaches. For an
overview on various feature sets and machine
learning algorithms, we refer the reader to a re-
cent shared task on the topic (Callison-Burch et
al., 2012).

Previous work use supervised learning methods
(“passive learning” following the AL terminol-
ogy) to train QE models. On the other hand, AL
has been successfully used in a number of natural
language applications such as text classification
(Lewis and Gale, 1994), named entity recognition
(Vlachos, 2006) and parsing (Baldridge and Os-
borne, 2004). See Olsson (2009) for an overview
on AL for natural language processing as well as
a comprehensive list of previous work.

3 Experimental Settings

3.1 Datasets

We perform experiments using four MT datasets
manually annotated for quality:

English-Spanish (en-es): 2, 254 sentences
translated by Moses (Koehn et al., 2007), as pro-
vided by the WMT12 Quality Estimation shared
task (Callison-Burch et al., 2012). Effort scores
range from 1 (too bad to be post-edited) to 5 (no
post-editing needed). Three expert post-editors
evaluated each sentence and the final score was
obtained by a weighted average between the three
scores. We use the default split given in the shared
task: 1, 832 sentences for training and 432 for
test.

French-English (fr-en): 2, 525 sentences trans-
lated by Moses as provided in Specia (2011), an-
notated by a single translator. Human labels in-
dicate post-editing effort ranging from 1 (too bad
to be post-edited) to 4 (little or no post-editing
needed). We use a random split of 90% sentences
for training and 10% for test.

Arabic-English (ar-en): 2, 585 sentences trans-
lated by two state-of-the-art SMT systems (de-
noted ar-en-1 and ar-en-2), as provided in (Specia
et al., 2011). A random split of 90% sentences for
training and 10% for test is used. Human labels in-
dicate the adequacy of the translation ranging from
1 (completely inadequate) to 4 (adequate). These
datasets were annotated by two expert translators.

3.2 Query Methods
The core of an AL setting is how the learner will
gather new instances to add to its training data. In
our setting, we use a pool-based strategy, where
the learner queries an instance pool and selects
the best instance according to an informativeness
measure. The learner then asks an “oracle” (in this
case, the human expert) for the true label of the in-
stance and adds it to the training data.

Query methods use different criteria to predict
how informative an instance is. We experiment
with two of them: Uncertainty Sampling (US)
(Lewis and Gale, 1994) and Information Density
(ID) (Settles and Craven, 2008). In the following,
we denote M(x) the query score with respect to
method M .

According to the US method, the learner selects
the instance that has the highest labelling variance
according to its model:

US(x) = V ar(y|x)

The ID method considers that more dense regions
of the query space bring more useful information,
leveraging the instance uncertainty and its similar-
ity to all the other instances in the pool:

ID(x) = V ar(y|x)×
(

1

U

U∑

u=1

sim(x, x(u))

)β

The β parameter controls the relative importance
of the density term. In our experiments, we set it
to 1, giving equal weights to variance and density.
The U term is the number of instances in the query
pool. As similarity measure sim(x, x(u)), we use
the cosine distance between the feature vectors.
With each method, we choose the instance that
maximises its respective equation.

3.3 Experiments
To build our QE models, we extracted the 17 fea-
tures used by the baseline approach in the WMT12
QE shared task.1 These features were used with a
Support Vector Regressor (SVR) with radial basis
function and fixed hyperparameters (C=5, γ=0.01,
ε=0.5), using the Scikit-learn toolkit (Pedregosa
et al., 2011). For each dataset and each query
method, we performed 20 active learning simu-
lation experiments and averaged the results. We

1We refer the reader to (Callison-Burch et al., 2012) for
a detailed description of the feature set, but this was a very
strong baseline, with only five out of 19 participating systems
outperforming it.
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started with 50 randomly selected sentences from
the training set and used all the remaining train-
ing sentences as our query pool, adding one new
sentence to the training set at each iteration.

Results were evaluated by measuring Mean Ab-
solute Error (MAE) scores on the test set. We
also performed an “oracle” experiment: at each it-
eration, it selects the instance that minimises the
MAE on the test set. The oracle results give an
upper bound in performance for each test set.

Since an SVR does not supply variance values
for its predictions, we employ a technique known
as query-by-bagging (Abe and Mamitsuka, 1998).
The idea is to build an ensemble of N SVRs
trained on sub-samples of the training data. When
selecting a new query, the ensemble is able to re-
turnN predictions for each instance, from where a
variance value can be inferred. We used 20 SVRs
as our ensemble and 20 as the size of each training
sub-sample.2 The variance values are then used
as-is in the case of US strategy and combined with
query densities in case of the ID strategy.

4 Results and Discussion

Figure 1 shows the learning curves for all query
methods and all datasets. The “random” curves
are our baseline since they are equivalent to pas-
sive learning (with various numbers of instances).
We first evaluated our methods in terms of how
many instances they needed to achieve 99% of the
MAE score on the full dataset. For three datasets,
the AL methods significantly outperformed the
random selection baseline, while no improvement
was observed on the ar-en-1 dataset. Results are
summarised in Table 1.

The learning curves in Figure 1 show an inter-
esting behaviour for most AL methods: some of
them were able to yield lower MAE scores than
models trained on the full dataset. This is par-
ticularly interesting in the fr-en case, where both
methods were able to obtain better scores using
only ∼25% of the available instances, with the
US method resulting in 0.03 improvement. The
random selection strategy performs surprisingly
well (for some datasets it is better than the AL
strategies with certain number of instances), pro-
viding extra evidence that much smaller annotated

2We also tried sub-samples with the same size of the cur-
rent training data but this had a large impact in the query
methods running time while not yielding significantly better
results.

Figure 1: Learning curves for different query se-
lection strategies in the four datasets. The horizon-
tal axis shows the number of instances in the train-
ing set and the vertical axis shows MAE scores.

545



US ID Random Full dataset#instances MAE #instances MAE #instances MAE
en-es 959 (52%) 0.6818 549 (30%) 0.6816 1079 (59%) 0.6818 0.6750
fr-en 79 (3%) 0.5072 134 (6%) 0.5077 325 (14%) 0.5070 0.5027
ar-en-1 51 (2%) 0.6067 51 (2%) 0.6052 51 (2%) 0.6061 0.6058
ar-en-2 209 (9%) 0.6288 148 (6%) 0.6289 532 (23%) 0.6288 0.6290

Table 1: Number (proportion) of instances needed to achieve 99% of the performance of the full dataset.
Bold-faced values indicate the best performing datasets.

Best MAE US Best MAE ID Full dataset#instances MAE US MAE Random #instances MAE ID MAE Random
en-es 1832 (100%) 0.6750 0.6750 1122 (61%) 0.6722 0.6807 0.6750
fr-en 559 (25%) 0.4708 0.5010 582 (26%) 0.4843 0.5008 0.5027
ar-en-1 610 (26%) 0.5956 0.6042 351 (15%) 0.5987 0.6102 0.6058
ar-en-2 1782 (77%) 0.6212 0.6242 190 (8%) 0.6170 0.6357 0.6227

Table 2: Best MAE scores obtained in the AL experiments. For each method, the first column shows the
number (proportion) of instances used to obtain the best MAE, the second column shows the MAE score
obtained and the third column shows the MAE score for random instance selection at the same number
of instances. The last column shows the MAE obtained using the full dataset. Best scores are shown in
bold and are significantly better (paired t-test, p < 0.05) than both their randomly selected counterparts
and the full dataset MAE.

datasets than those used currently can be sufficient
for machine translation QE.

The best MAE scores achieved for each dataset
are shown in Table 2. The figures were tested for
significance using pairwise t-test with 95% confi-
dence,3 with bold-faced values in the table indicat-
ing significantly better results.

The lower bounds in MAE given by the ora-
cle curves show that AL methods can indeed im-
prove the performance of QE models: an ideal
query method would achieve a very large improve-
ment in MAE using fewer than 200 instances in all
datasets. The fact that different datasets present
similar oracle curves suggests that this is not re-
lated for a specific dataset but actually a common
behaviour in QE. Although some of this gain in
MAE may be due to overfitting to the test set, the
results obtained with the fr-en and ar-en-2 datasets
are very promising, and therefore we believe that
it is possible to use AL to improve QE results in
other cases, as long as more effective query tech-
niques are designed.

5 Further analysis on the oracle
behaviour

By analysing the oracle curves we can observe an-
other interesting phenomenon which is the rapid
increase in error when reaching the last ∼200 in-
stances of the training data. A possible explana-

3We took the average of the MAE scores obtained from
the 20 runs with each query method for that.

tion for this behaviour is the existence of erro-
neous, inconsistent or contradictory labels in the
datasets. Quality annotation is a subjective task by
nature, and it is thus subject to noise, e.g., due to
misinterpretations or disagreements. Our hypothe-
sis is that these last sentences are the most difficult
to annotate and therefore more prone to disagree-
ments.

To investigate this phenomenon, we performed
an additional experiment with the en-es dataset,
the only dataset for which multiple annotations
are available (from three judges). We measure the
Kappa agreement index (Cohen, 1960) between all
pairs of judges in the subset containing the first
300 instances (the 50 initial random instances plus
250 instances chosen by the oracle). We then mea-
sured Kappa in windows of 300 instances until the
last instance of the training set is selected by the
oracle method. We also measure variances in sen-
tence length using windows of 300 instances. The
idea of this experiment is to test whether sentences
that are more difficult to annotate (because of their
length or subjectivity, generating more disagree-
ment between the judges) add noise to the dataset.

The resulting Kappa curves are shown in Fig-
ure 2: the agreement between judges is high for
the initial set of sentences selected, tends to de-
crease until it reaches ∼1000 instances, and then
starts to increase again. Figure 3 shows the results
for source sentence length, which follow the same
trend (in a reversed manner). Contrary to our hy-
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Figure 2: Kappa curves for the en-es dataset. The
horizontal axis shows the number of instances and
the vertical axis shows the kappa values. Each
point in the curves shows the kappa index for a
window containing the last 300 sentences chosen
by the oracle.

pothesis, these results suggest that the most diffi-
cult sentences chosen by the oracle are those in the
middle range instead of the last ones. If we com-
pare this trend against the oracle curve in Figure 1,
we can see that those middle instances are the ones
that do not change the performance of the oracle.

The resulting trends are interesting because they
give evidence that sentences that are difficult to an-
notate do not contribute much to QE performance
(although not hurting it either). However, they do
not confirm our hypothesis about the oracle be-
haviour. Another possible source of disagreement
is the feature set: the features may not be discrim-
inative enough to distinguish among different in-
stances, i.e., instances with very similar features
but different labels might be genuinely different,
but the current features are not sufficient to indi-
cate that. In future work we plan to further inves-
tigate this by hypothesis by using other feature sets
and analysing their behaviour.

6 Conclusions and Future Work

We have presented the first known experiments us-
ing active learning for the task of estimating ma-
chine translation quality. The results are promis-
ing: we were able to reduce the number of in-
stances needed to train the models in three of the
four datasets. In addition, in some of the datasets
active learning yielded significantly better models
using only a small subset of the training instances.

Figure 3: Average source and target sentence
lengths for the en-es dataset. The horizontal axis
shows the number of instances and the vertical
axis shows the length values. Each point in the
curves shows the average length for a window con-
taining the last 300 sentences chosen by the oracle.

The oracle results give evidence that it is possi-
ble to go beyond these encouraging results by em-
ploying better selection strategies in active learn-
ing. In future work we will investigate more
advanced query techniques that consider features
other than variance and density of the data points.
We also plan to further investigate the behaviour
of the oracle curves using not only different fea-
ture sets but also different quality scores such as
HTER and post-editing time. We believe that a
better understanding of this behaviour can guide
further developments not only for instance selec-
tion techniques but also for the design of better
quality features and quality annotation schemes.
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Abstract

Optical Character Recognition (OCR) sys-
tems for Arabic rely on information con-
tained in the scanned images to recognize
sequences of characters and on language
models to emphasize fluency. In this paper
we incorporate linguistically and seman-
tically motivated features to an existing
OCR system. To do so we follow an n-best
list reranking approach that exploits recent
advances in learning to rank techniques.
We achieve 10.1% and 11.4% reduction in
recognition word error rate (WER) relative
to a standard baseline system on typewrit-
ten and handwritten Arabic respectively.

1 Introduction

Optical Character Recognition (OCR) is the task
of converting scanned images of handwritten,
typewritten or printed text into machine-encoded
text. Arabic OCR is a challenging problem due
to Arabic’s connected letter forms, consonantal
diacritics and rich morphology (Habash, 2010).
Therefore only a few OCR systems have been de-
veloped (Märgner and Abed, 2009). The BBN
Byblos OCR system (Natajan et al., 2002; Prasad
et al., 2008; Saleem et al., 2009), which we use
in this paper, relies on a hidden Markov model
(HMM) to recover the sequence of characters from
the image, and uses an n-gram language model
(LM) to emphasize the fluency of the output. For
an input image, the OCR decoder generates an n-
best list of hypotheses each of which is associated
with HMM and LM scores.

In addition to fluency as evaluated by LMs,
other information potentially helps in discrimi-
nating good from bad hypotheses. For example,
Habash and Roth (2011) use a variety of linguistic
(morphological and syntactic) and non-linguistic
features to automatically identify errors in OCR

hypotheses. Another example presented by De-
vlin et al. (2012) shows that using a statistical ma-
chine translation system to assess the difficulty of
translating an Arabic OCR hypothesis into English
gives valuable feedback on OCR quality. There-
fore, combining additional information with the
LMs could reduce recognition errors. However,
direct integration of such information in the de-
coder is difficult.

A straightforward alternative which we advo-
cate in this paper is to use the available informa-
tion to rerank the hypotheses in the n-best lists.
The new top ranked hypothesis is considered as
the new output of the system. We propose com-
bining LMs with linguistically and semantically
motivated features using learning to rank meth-
ods. Discriminative reranking allows each hypoth-
esis to be represented as an arbitrary set of features
without the need to explicitly model their interac-
tions. Therefore, the system benefits from global
and potentially complex features which are not
available to the baseline OCR decoder. This ap-
proach has successfully been applied in numerous
Natural Language Processing (NLP) tasks includ-
ing syntactic parsing (Collins and Koo, 2005), se-
mantic parsing (Ge and Mooney, 2006), machine
translation (Shen et al., 2004), spoken language
understanding (Dinarelli et al., 2012), etc. Fur-
thermore, we propose to combine several ranking
methods into an ensemble which learns from their
predictions to further reduce recognition errors.

We describe our features and reranking ap-
proach in §2, and we present our experiments and
results in §3.

2 Discriminative Reranking for OCR

Each hypothesis in an n-best list {hi}ni=1 is repre-
sented by a d-dimensional feature vector xi ∈ Rd.
Each xi is associated with a loss li to generate a
labeled n-best list H = {(xi, li)}ni=1. The loss is
computed as the Word Error Rate (WER) of the
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hypotheses compared to a reference transcription.
For supervised training we use a set of n-best lists
H = {H(k)}Mk=1.

2.1 Learning to rank approaches

Major approaches to learning to rank can be di-
vided into pointwise score regression, pairwise
preference satisfaction, and listwise structured
learning. See Liu (2009) for a survey. In this
paper, we explore all of the following learning to
rank approaches.

Pointwise In the pointwise approach, the rank-
ing problem is formulated as a regression, or ordi-
nal classification, for which any existing method
can be applied. Each hypothesis constitutes a
learning instance. In this category we use a regres-
sion method called Multiple Additive Regression
Trees (MART) (Friedman, 2000) as implemented
in RankLib.1 The major problem with pointwise
approaches is that the structure of the list of hy-
potheses is ignored.

Pairwise The pairwise approach takes pairs of
hypotheses as instances in learning, and formal-
izes the ranking problem as a pairwise classifica-
tion or pairwise regression. We use several meth-
ods from this category.

RankSVM (Joachims, 2002) is a method based
on Support Vector Machines (SVMs) for which
we use only linear kernels to keep complexity low.
Exact optimization of the RankSVM objective can
be computationally expensive as the number of
hypothesis pairs can be very large. Approximate
stochastic training strategies reduces complexity
and produce comparable performance. There-
fore, in addition to RankSVM, we use stochas-
tic sub-gradient descent (SGDSVM), Pegasos (Pe-
gasosSVM) and Passive-Aggressive Perceptron
(PAPSVM) as implemented in Sculley (2009).2

RankBoost (Freund et al., 2003) is a pairwise
boosting approach implemented in RankLib. It
uses a linear combination of weak rankers, each of
which is a binary function associated with a single
feature. This function is 1 when the feature value
exceeds some threshold and 0 otherwise.

RankMIRA is a ranking method presented in (Le
Roux et al., 2012).3 It uses a weighted linear
combination of features which assigns the highest

1http://people.cs.umass.edu/˜vdang/
ranklib.html

2http://code.google.com/p/sofia-ml
3https://github.com/jihelhere/

adMIRAble

score to the hypotheses with the lowest loss. Dur-
ing training, the weights are updated according to
the Margin-Infused Relaxed Algorithm (MIRA),
whenever the highest scoring hypothesis differs
from the hypothesis with the lowest error rate.

In pairwise approaches, the group structure of
the n-best list is still ignored. Additionally, the
number of training pairs generated from an n-best
list depends on its size, which could result in train-
ing a model biased toward larger hypothesis lists
(Cao et al., 2006).

Listwise The listwise approach takes n-best lists
as instances in both learning and prediction. The
group structure is considered explicitly and rank-
ing evaluation measures can be directly optimized.
The listwise methods we use are implemented in
RankLib.

AdaRank (Xu and Li, 2007) is a boosting ap-
proach, similar to RankBoost, except that it opti-
mizes an arbitrary ranking metric, for which we
use Mean Average Precision (MAP).

Coordinate Ascent (CA) uses a listwise linear
model whose weights are learned by a coordinate
ascent method to optimize a ranking metric (Met-
zler and Bruce Croft, 2007). As with AdaRank we
use MAP.

ListNet (Cao et al., 2007) uses a neural network
model whose parameters are learned by gradient
descent method to optimize a listwise loss based
on a probabilistic model of permutations.

2.2 Ensemble reranking

In addition to the above mentioned approaches,
we couple simple feature selection and reranking
models combination via a straightforward ensem-
ble learning method similar to stacked general-
ization (Wolpert, 1992) and Combiner (Chan and
Stolfo, 1993). Our goal is to generate an overall
meta-ranker that outperforms all base-rankers by
learning from their predictions how they correlate
with each other.

To obtain the base-rankers, we train each of the
ranking models of §2.1 using all the features of
§2.3 and also using each feature family added to
the baseline features separately. Then, we use the
best model for each ranking approach to make pre-
dictions on a held-out data set of n-best lists. We
can think of each base-ranker as computing one
feature for each hypothesis. Hence, the scores
generated by all the rankers for a given hypothe-
sis constitute its feature vector.

The held-out n-best lists and the predictions of
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the base-rankers represent the training data for the
meta-ranker. We choose RankSVM4 as the meta-
ranker since it performed well as a base-ranker.

2.3 Features

Our features fall into five families.
Base features include the HMM and LM scores

produced by the OCR system. These features are
used by the baseline system5 as well as by the var-
ious reranking methods.

Simple features (“simple”) include the baseline
rank of the hypothesis and a 0-to-1 range normal-
ized version of it. We also use a hypothesis confi-
dence feature which corresponds to the average of
the confidence of individual words in the hypoth-
esis; “confidence” for a given word is computed
as the fraction of hypotheses in the n-best list
that contain the word (Habash and Roth, 2011).
The more consensus words a hypothesis contains,
the higher its assigned confidence. We also use
the average word length and the number of con-
tent words (normalized by the hypothesis length).
We define “content words” as non-punctuation and
non-digit words. Additionally, we use a set of bi-
nary features indicating if the hypothesis contains
a sequence of duplicated characters, a date-like se-
quence and an occurrence of a specific character
class (punctuation, alphabetic and digit).

Word LM features (“LM-word”) include the
log probabilities of the hypothesis obtained us-
ing n-gram LMs with n ∈ {1, . . . , 5}. Separate
LMs are trained on the Arabic Gigaword 3 corpus
(Graff, 2007), and on the reference transcriptions
of the training data (see §3.1). The LM models
are built using the SRI Language Modeling Toolkit
(Stolcke, 2002).

Linguistic LM features (“LM-MADA”) are
similar to the word LM features except that they
are computed using the part-of-speech and the
lemma of the words instead of the actual words.6

Semantic coherence feature (“SemCoh”) is
motivated by the fact that semantic information
can be very useful in modeling the fluency of
phrases, and can augment the information pro-
vided by n-gram LMs. In modeling contextual

4RankSVM has also been shown to be a good choice for
the meta-learner in general stacking ensemble learning (Tang
et al., 2010).

5The baseline ranking is simply based on the sum of the
logs of the HMM and LM scores.

6The part-of-speech and the lemmas are obtained using
MADA 3.0, a tool for Arabic morphological analysis and
disambiguation (Habash and Rambow, 2005; Habash et al.,
2009).

lexical semantic information, simple bag-of-words
models usually have a lot of noise; while more
sophisticated models considering positional infor-
mation have sparsity issues. To strike a balance
between these two extremes, we introduce a novel
model of semantic coherence that is based on a
measure of semantic relatedness between pairs of
words. We model semantic relatedness between
two words using the Information Content (IC) of
the pair in a method similar to the one used by Lin
(1997) and Lin (1998).

IC(w1,d, w2) = log
f(w1, d, w2)f(∗,d, ∗)
f(w1, d, ∗)f(∗,d, w2)

Here, d can generally represent some form of re-
lation between w1 and w2. Whereas Lin (1997)
and Lin (1998) used dependency relation between
words, we use distance. Given a sentence, the dis-
tance between w1 and w2 is one plus the number
of words that are seen after w1 and before w2 in
that sentence. Hence, f(w1, d, w2) is the number
of times w1 occurs before w2 at a distance d in
all the sentences in a corpus. ∗ is a placeholder
for any word, i.e., f(∗, d, ∗) is the frequency of all
word pairs occurring at distance d. The distances
are directional and not absolute values. A simi-
lar measure of relatedness was also used by Kolb
(2009).

We estimate the frequencies from the Arabic
Gigaword. We set the window size to 3 and cal-
culate IC values of all pairs of words occurring at
distance within the window size. Since the dis-
tances are directional, it has to be noted that given
a word, its relations with three words before it and
three words after it are modeled. During testing,
for each phrase in our test set, we measure se-
mantic relatedness of pairs of words using the IC
values estimated from the Arabic Gigaword, and
normalize their sum by the number of pairs in the
phrase to obtain a measure of Semantic Coherence
(SC) of the phrase. That is,

SC(p) =
1

m
×

∑

1≤d≤W
1≤i+d<n

IC(wi,d, wi+d)

where p is the phrase being evaluated, n is the
number of words in it, d is the distance between
words, W is the window size (set to 3), and m is
the number of all possible wi, wi+d pairs in the
phrase given these conditions.
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print hand
|H∗| n |h| |H∗| n |h|

Hb 1,560 62 9 2,295 225 8
Hm 1,000 76 9 1,000 225 9
Ht 1,000 64 9 1,000 227 9

Table 1: Data sets statistics. |H∗| refers to the
number of n-best lists, n is the average size of the
lists, and |h| is the average length of a hypothesis.

print hand
Baseline 13.8% 35%
Oracle 9.8% 20.9%
Best result 12.4% 30.9%

Table 2: WER for baseline, oracle and best
reranked hypotheses.

3 Experiments

3.1 Data and baselines
We used two data sets derived from high-
resolution image scans of typewritten and hand-
written Arabic text along with ground truth tran-
scriptions.7 The BBN Byblos system was then
used to process these scanned images into se-
quences of segments (sentence fragments) and
generate a ranked n-best list of hypotheses for
each segment (Natajan et al., 2002; Prasad et al.,
2008; Saleem et al., 2009). We divided each of the
typewritten data set (“print”) and handwritten data
set (“hand”) into three disjoint parts: a training set
for the base-rankersHb, a training set for the meta-
ranker Hm and a test set Ht. Table 1 presents
some statistics about these data sets. Our base-
line is based on the sum of the logs of the HMM
and LM scores. Table 2 presents the WER for our
baseline hypothesis, the best hypothesis in the list
(our oracle) and our best reranking results which
we describe in details in §3.2.

For LM training we used 220M words from
Arabic Gigaword 3, and 2.4M words from each
“print” and “hand” ground truth annotations.

Effect of n-best training size on WER The size
of the training n-best lists is crucial to the learning
of the ranking model. In particular, it determines
the number of training instances per list. To deter-
mine the optimal n to use for the rest of this pa-
per, we conducted the following experiment aims
to understand the effect of the size of n-best lists

7The Anfal data set discussed here was collected by the
Linguistic Data Consortium.
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Figure 1: Effect of the size of training n-best lists
on WER. The horizontal axis represents the max-
imum size of the n-best lists and the vertical axis
represents WER, left is “print” and right is “hand”.

on the reranking performance for one of our best
reranking models, namely RankSVM. We trained
each model with different sizes of n-best, varying
from n = 5 to n = 60 for “print” data, and be-
tween n = 5 and n = 150 for “hand” data. The
top n hypotheses according to the baseline are se-
lected for each n. Figure 1 plots WER as a func-
tion of the size of the training list n for both “print”
and “hand” data.

The lowest WER scores are achieved for n =
10 and n = 15 for both “print” and “hand” data.
We note that a small number of hypotheses per list
is sufficient for RankSVM to obtain a good per-
formance, but also increasing n further seems to
increase the error rate. For the rest of this paper
we use the top 10-best hypotheses per segment.

3.2 Reranking results
The reranking results for “print” and “hand” are
presented in Table 3. The results are presented
as the difference in WER from the baseline WER.
See the caption in Table 3 for more information.

For “print”, the pairwise approaches clearly out-
perform the listwise approaches and achieve the
lowest WER of 12.4% (10.1% WER reduction rel-
ative to the baseline) with 7 different combinations
of rankers and feature families. While both ap-
proaches do not minimize WER directly, the pair-
wise methods have the advantage of using objec-
tives that are simpler to optimize, and they are
trained on much larger number of examples which
may explain their superiority. RankBoost, how-
ever, is less competitive with a performance closer
to that of listwise approaches. All the methods
improved over the baseline with any feature fam-
ily, except for the pointwise approach which did

552



Pointwise Listwise Pairwise

Features M
A

RT

A
da

Ra
nk

Li
stN

et
CA Ra

nk
Bo

os
t

Ra
nk

SV
M

SG
D

SV
M

Ra
nk

M
IR

A
Pe

ga
.S

V
M

PA
PS

V
M

Pr
in

t
Base 1.1 -0.4 -1.0 -1.0 -1.0 -1.1 -1.2 -1.2 -1.3 -1.3

+simple -0.1 0.0 -0.1 -0.2 0.0 -0.1 0.1 0.0 0.1 0.0
+LM-word -1.0 -0.2 0.1 -0.1 -0.1 -0.3 -0.2 -0.1 0.0 -0.1
+LM-MADA 0.0 -0.3 0.1 -0.2 -0.1 0.0 -0.1 -0.2 -0.1 -0.1
+SemCoh 0.0 -0.4 0.0 -0.2 -0.1 -0.1 0.0 -0.1 0.0 0.1

+All 0.6 0.1 0.0 0.1 0.0 0.1 0.2 0.2 0.2 0.0

H
an

d

Base 4.2 -3.1 -3.2 -3.4 -2.9 -3.2 -3.5 -3.8 -3.6 -3.8

+simple 0.3 -0.1 0.1 0.2 0.1 -0.1 0.2 -0.2 0.1 0.2
+LM-word 0.4 -0.1 0.1 0.8 -0.2 -0.7 -0.2 -0.1 0.0 0.1
+LM-MADA 0.0 -0.5 0.1 0.0 0.1 -0.4 -0.1 0.3 -0.2 0.1
+SemCoh 0.0 -0.1 0.0 -0.4 0.0 -0.2 -0.3 -0.2 -0.2 0.0

+All 0.2 0.4 0.0 0.4 0.2 0.4 0.2 0.1 0.2 0.0

Table 3: Reranking results for the “print” and “hand” data sets; the “print” baseline WER is 13.9% and the “hand” baseline
WER is 35.0%. The “Base” numbers represent the difference in WER between the corresponding ranker using “Base” features
only and the baseline, which uses the same “Base” features. The “+features” numbers represent additional gain (relative to
“Base”) obtained by adding the corresponding feature family. The “+All” numbers represent the gain of using all features,
relative to the best single-family system. The actual WER of a ranker can be obtained by summing the baseline WER and the
corresponding “Base” and “+features” scores. Bolded values are the best performers overall.

worse than the baseline. When combined with
the “Base” features, “LM-words” lead to improve-
ments with 8 out of 10 rankers, and proved to be
the most helpful among feature families. “LM-
MADA” follows with improvements with 7 out of
10 rankers. The lowest WER is achieved using
one of these two LM-based families. Combining
all feature families did not help and in many cases
resulted in a higher WER than the best family.

Similar improvements are observed for “hand”.
The lowest achieved WER is 31% (11.4% WER
reduction relative to the baseline). Here also,
the pointwise method increased the WER by 12%
relative to the baseline (as opposed to 7% for
“print”). Again, the listwise approaches are over-
all less effective than their pairwise counterparts,
except for RankBoost which resulted in the small-
est WER reduction among all rankers. The two
best rankers correspond to RankMIRA with the
“simple” and the “SemCoh” features. The “Sem-
Coh” feature resulted in improvements for 6 out of
the 10 rankers, and thus was the best single feature
on average for the “hand” data set. As observed
with “print” data, combining all the features does
not lead to the best performance.

In an additional experiment, we selected the
best model for each ranking method and combined
them to build an ensemble as described in §2.2.
For “hand”, the ensemble slightly outperformed
all the individual rankers and achieved the lowest
WER of 30.9%. However, for the “print” data, the

ensemble failed to improve over the base-rankers
and resulted in a WER of 12.4%.

The best overall results are presented in Table 2.
Our best results reduce the distance to the oracle
top line by 35% for “print” and 29% for “hand”.

4 Conclusion

We presented a set of experiments on incorporat-
ing features into an existing OCR system via n-
best list reranking. We compared several learn-
ing to rank techniques and combined them us-
ing an ensemble technique. We obtained 10.1%
and 11.4% reduction in WER relative to the base-
line for “print” and “hand” data respectively. Our
best systems used pairwise reranking which out-
performed the other methods, and used the MADA
based features for “print” and our novel semantic
coherence feature for “hand”.
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Abstract
Timeline summarization aims at generat-
ing concise summaries and giving read-
ers a faster and better access to under-
stand the evolution of news. It is a new
challenge which combines salience rank-
ing problem with novelty detection. Pre-
vious researches in this field seldom ex-
plore the evolutionary pattern of topics
such as birth, splitting, merging, develop-
ing and death. In this paper, we develop
a novel model called Evolutionary Hier-
archical Dirichlet Process(EHDP) to cap-
ture the topic evolution pattern in time-
line summarization. In EHDP, time vary-
ing information is formulated as a series
of HDPs by considering time-dependent
information. Experiments on 6 different
datasets which contain 3156 documents
demonstrates the good performance of our
system with regard to ROUGE scores.

1 Introduction

Faced with thousands of news articles, people usu-
ally try to ask the general aspects such as the
beginning, the evolutionary pattern and the end.
General search engines simply return the top rank-
ing articles according to query relevance and fail
to trace how a specific event goes. Timeline sum-
marization, which aims at generating a series of
concise summaries for news collection published
at different epochs can give readers a faster and
better access to understand the evolution of news.

The key of timeline summarization is how to
select sentences which can tell readers the evolu-
tionary pattern of topics in the event. It is very
common that the themes of a corpus evolve over
time, and topics of adjacent epochs usually exhibit
strong correlations. Thus, it is important to model
topics across different documents and over differ-
ent time periods to detect how the events evolve.

The task of timelime summarization is firstly
proposed by Allan et al.(2001) by extracting clus-
ters of noun phases and name entities. Chieu et
al.(2004) built a similar system in unit of sentences
with interest and burstiness. However, these meth-
ods seldom explored the evolutionary character-
istics of news. Recently, Yan et al.(2011) ex-
tended the graph based sentence ranking algorithm
used in traditional multi-document summarization
(MDS) to timeline generation by projecting sen-
tences from different time into one plane. They
further explored the timeline task from the opti-
mization of a function considering the combina-
tion of different respects such as relevance, cover-
age, coherence and diversity (Yan et al., 2011b).
However, their approaches just treat timeline gen-
eration as a sentence ranking or optimization prob-
lem and seldom explore the topic information lied
in the corpus.

Recently, topic models have been widely used
for capturing the dynamics of topics via time.
Many dynamic approaches based on LDA model
(Blei et al., 2003) or Hierarchical Dirichelt Pro-
cesses(HDP) (Teh et al., 2006) have been pro-
posed to discover the evolving patterns in the cor-
pus as well as the snapshot clusters at each time
epoch (Blei and Lafferty, 2006; Chakrabarti et al.,
2006; Wang and McCallum, 2007; Caron et al.,
2007; Ren et al., 2008; Ahmed and Xing, 2008;
Zhang et al., 2010).

In this paper, we propose EHDP: a evolution-
ary hierarchical Dirichlet process (HDP) model
for timeline summarization. In EHDP, each HDP
is built for multiple corpora at each time epoch,
and the time dependencies are incorporated into
epochs under the Markovian assumptions. Topic
popularity and topic-word distribution can be in-
ferred from a Chinese Restaurant Process (CRP).
Sentences are selected into timelines by consider-
ing different aspects such as topic relevance, cov-
erage and coherence. We built the evaluation sys-
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tems which contain 6 real datasets and perfor-
mance of different models is evaluated accord-
ing to the ROUGE metrics. Experimental results
demonstrate the effectiveness of our model .

2 EHDP for Timeline Summarization

2.1 Problem Formulation
Given a general query Q = {wqi}i=Qni=1 , we firstly
obtain a set of query related documents. We no-
tate different corpus as C = {Ct}t=Tt=1 according
to their published time where Ct = {Dti}i=Nti=1 de-
notes the document collection published at epoch
t. Document Dt

i is formulated as a collection of
sentences {stij}j=Ntij=1 . Each sentence is presented

with a series of words stij = {wtijl}
l=Nt

ij

l=1 and as-
sociated with a topic θtij . V denotes the vocabu-
lary size. The output of the algorithm is a series
of timelines summarization I = {It}t=Tt=1 where
It ⊂ Ct

2.2 EHDP
Our EHDP model is illustrated in Figure 2. Specif-
ically, each corpus Ct is modeled as a HDP. These
HDP shares an identical base measure G0, which
serves as an overall bookkeeping of overall mea-
sures. We use Gt0 to denote the base measure at
each epoch and draw the local measureGti for each
document at time t from Gt0. In EHDP, each sen-
tence is assigned to an aspect θtij with the consid-
eration of words within current sentence.

To consider time dependency information in
EHDP, we link all time specific base measures Gt0
with a temporal Dirichlet mixture model as fol-
lows:

Gt0 ∼ DP (γt,
1

K
G0+

1

K

∆∑

δ=0

F (v, δ)·Gt−δ0 ) (1)

where F (v, δ) = exp(−δ/v) denotes the expo-
nential kernel function that controls the influence
of neighboring corpus. K denotes the normaliza-
tion factor where K = 1 +

∑∆
δ=0 F (v, δ). ∆ is

the time width and λ is the decay factor. In Chi-
nese Restaurant Process (CRP), each document is
referred to a restaurant and sentences are com-
pared to customers. Customers in the restaurant
sit around different tables and each table btin is as-
sociated with a dish (topic) Ψt

in according to the
dish menu. Let mtk denote the number of ta-
bles enjoying dish k in all restaurants at epoch t,
mtk =

∑Nt

i=1

∑Nt
ib

n=1 1(Ψt
in = k). We redefine

for each epoch t ∈ [1, T ]
1. draw global measure
Gt0 ∼ DP (α, 1

K
G0 + 1

K

∑∆
δ=0 F (v, δ)Gt−δ0 )

2. for each document Dt
i at epoch t,

2.1 draw local measure Gti ∼ DP (γ,Gt0)
2.2 for each sentence stij in Dt

i

draw aspect θtij ∼ Gti
for w ∈ stij draw w ∼ f(w)|θtij

Figure 1: Generation process for EHDP

another parameter Mtk to incorporate time depen-
dency into EHDP.

Mtk =
∆∑

δ=0

F (v, δ) ·mt−δ,k (2)

Let ntib denote the number of sentences sitting
around table b, in document i at epoch t. In CRP
for EHDP, when a new customer stij comes in,
he can sit on the existing table with probability
ntib/(n

t
i−1+γ), sharing the dish (topic) Ψt

ib served
at that table or picking a new table with probabil-
ity γ/(nti − 1 + γ). The customer has to select
a dish from the global dish menu if he chooses a
new table. A dish that has already been shared in
the global menu would be chosen with probability
M t
k/(
∑

kM
t
k+α) and a new dish with probability

α/(
∑

kM
t
k + α).

θtij |θti1, ..., θtij−1, α ∼
∑

φtb=θij

ntib
nti − 1 + γ

δφjb +
γ

nti − 1 + γ
δφnewjb

φnewti |φ, α ∼
∑

k

Mtk∑
iMti + α

δφk +
α∑

iMti + α
G0

(3)

We can see that EHDP degenerates into a series of
independent HDPs when ∆ = 0 and one global
HDP when ∆ = T and v = ∞, as discussed in
Amred and Xings work (2008).

2.3 Sentence Selection Strategy
The task of timeline summarization aims to pro-
duce a summary for each time and the generated
summary should meet criteria such as relevance ,
coverage and coherence (Li et al., 2009). To care
for these three criteria, we propose a topic scoring
algorithm based on Kullback-Leibler(KL) diver-
gence. We introduce the decreasing logistic func-
tion ζ(x) = 1/(1 + ex) to map the distance into
interval (0,1).
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Figure 2: Graphical model of EHDP.

Relevance: the summary should be related with
the proposed query Q.

FR(It) = ζ(KL(It||Q))

Coverage: the summary should highly generalize
important topics mentioned in document collec-
tion at epoch t.

FCv(I
t) = ζ(KL(It||Ct))

Coherence: News evolves over time and a good
component summary is coherent with neighboring
corpus so that a timeline tracks the gradual evolu-
tion trajectory for multiple correlative news.

FCh(It) =

∑δ=∆/2
δ=−∆/2 F (v, δ) · ζ(KL(It||Ct−δ))

∑δ=∆/2
δ=−∆/2 F (v, δ)

Let Score(It) denote the score of the summary
and it is calculated in Equ.(4).

Score(It) = λ1FR(It)+λ2FCv(I
t)+λ3FCh(It)

(4)∑
i λi = 1. Sentences with higher score are se-

lected into timeline. To avoid aspect redundancy,
MMR strategy (Goldstein et al., 1999) is adopted
in the process of sentence selection.

3 Experiments

3.1 Experiments set-up
We downloaded 3156 news articles from selected
sources such as BBC, New York Times and CNN
with various time spans and built the evaluation
systems which contains 6 real datasets. The news
belongs to different categories of Rule of Interpre-
tation (ROI) (Kumaran and Allan, 2004). Detailed
statistics are shown in Table 1. Dataset 2(Deep-
water Horizon oil spill), 3(Haiti Earthquake) and
5(Hurricane Sandy) are used as training data and

New Source Nation News Source Nation
BBC UK New York Times US
Guardian UK Washington Post US
CNN US Fox News US
ABC US MSNBC US

Table 1: New sources of datasets
News Subjects (Query) #docs #epoch
1.Michael Jackson Death 744 162
2.Deepwater Horizon oil spill 642 127
3.Haiti Earthquake 247 83
4.American Presidential Election 1246 286
5.Hurricane Sandy 317 58
6.Jerry Sandusky Sexual Abuse 320 74

Table 2: Detailed information for datasets

the rest are used as test data. Summary at each
epoch is truncated to the same length of 50 words.

Summaries produced by baseline systems and
ours are automatically evaluated through ROUGE
evaluation metrics (Lin and Hovy, 2003). For
the space limit, we only report three ROUGE
ROUGE-2-F and ROUGE-W-F score. Reference
timeline in ROUGE evaluation is manually gener-
ated by using Amazon Mechanical Turk1. Work-
ers were asked to generate reference timeline for
news at each epoch in less than 50 words and we
collect 790 timelines in total.

3.2 Parameter Tuning
To tune the parameters λ(i = 1, 2, 3) and v in our
system, we adopt a gradient search strategy. We
firstly fix λi to 1/3. Then we perform experiments
on with setting different values of v/#epoch in
the range from 0.02 to 0.2 at the interval of 0.02.
We find that the Rouge score reaches its peak at
round 0.1 and drops afterwards in the experiments.
Next, we set the value of v is set to 0.1 · #epoch
and gradually change the value of λ1 from 0 to 1
with interval of 0.05, with simultaneously fixing
λ2 and λ3 to the same value of (1 − λ1)/2. The
performance gets better as λ1 increases from 0 to
0.25 and then declines. Then we set the value of
λ1 to 0.25 and change the value of λ2 from 0 to
0.75 with interval of 0.05. And the value of λ2 is
set to 0.4, and λ3 is set to 0.35 correspondingly.

3.3 Comparison with other topic models
In this subsection, we compare our model with
4 topic model baselines on the test data. Stand-
HDP(1): A topic approach that models different
time epochs as a series of independent HDPs with-
out considering time dependency. Stand-HDP(2):

1http://mturk.com
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M.J. Death US Election S. Sexual Abuse
System R2 RW R2 RW R2 RW
EHDP 0.089 0.130 0.081 0.154 0.086 0.152
Stand-HDP(1) 0.080 0.127 0.075 0.134 0.072 0.138
Stand-HDP(2) 0.077 0.124 0.072 0.127 0.071 0.131
Dyn-LDA 0.080 0.129 0.073 0.130 0.077 0.134
Stan-LDA 0.072 0.117 0.065 0.122 0.071 0.121

Table 3: Comparison with topic models

M.J. Death US Election S. Sexual Abuse
System R2 RW R2 RW R2 RW
EHDP 0.089 0.130 0.081 0.154 0.086 0.152
Centroid 0.057 0.101 0.054 0.098 0.060 0.132
Manifold 0.053 0.108 0.060 0.111 0.069 0.128
ETS 0.078 0.120 0.073 0.130 0.075 0.135
Chieu 0.064 0.107 0.064 0.122 0.071 0.131

Table 4: Comparison with other baselines

A global HDP which models the whole time span
as a restaurant. The third baseline, Dynamic-
LDA is based on Blei and Laffery(2007)‘s work
and Stan-LDA is based on standard LDA model.
In LDA based models, aspect number is prede-
fined as 80 2. Experimental results of different
models are shown in Table 2. As we can see,
EHDP achieves better results than the two stan-
dard HDP baselines where time information is not
adequately considered. We also find an interesting
result that Stan-HDP performs better than Stan-
LDA. This is partly because new aspects can be
automatically detected in HDP. As we know, how
to determine topic number in the LDA-based mod-
els is still an open problem.

3.4 Comparison with other baselines
We implement several baselines used in tradi-
tional summarization or timeline summarization
for comparison. (1) Centroid applies the MEAD
algorithm (Radev et al., 2004) according to the
features including centroid value, position and
first-sentence overlap. (2) Manifold is a graph
based unsupervised method for summarization,
and the score of each sentence is got from the
propagation through the graph (Wan et al., 2007).
(3) ETS is the timeline summarization approach
developed by Yan et al., (2011a), which is a graph
based approach with optimized global and local
biased summarization. (4) Chieu is the time-
line system provided by (Chieu and Lee, 2004)
utilizing interest and bursty ranking but neglect-
ing trans-temporal news evolution. As we can
see from Table 3, Centroid and Manifold get
the worst results. This is probably because meth-
ods in multi-document summarization only care

2In our experiments, the aspect number is set as 50, 80,
100 and 120 respectively and we select the best performed
result with the aspect number as 80

about sentence selection and neglect the novelty
detection task. We can also see that EHDP under
our proposed framework outputs existing timeline
summarization approaches ETS and chieu. Our
approach outputs Yan et al.,(2011a)s model by
6.9% and 9.3% respectively with regard to the av-
erage score of ROUGE-2-F and ROUGE-W-F.

4 Conclusion

In this paper we present an evolutionary HDP
model for timeline summarization. Our EHDP ex-
tends original HDP by incorporating time depen-
dencies and background information. We also de-
velop an effective sentence selection strategy for
candidate in the summaries. Experimental results
on real multi-time news demonstrate the effective-
ness of our topic model.

Oct. 3, 2012
S1: The first debate between President Obama and Mitt Rom-
ney, so long anticipated, quickly sunk into an unenlightening
recitation of tired talking points and mendacity. S2. Mr. Rom-
ney wants to restore the Bush-era tax cut that expires at the end
of this year and largely benefits the wealthy
Oct. 11, 2012
S1: The vice presidential debate took place on Thursday, Oc-
tober 11 at Kentucky’sCentre College, and was moderated by
Martha Raddatz. S2: The first and only debate between Vice
President Joe Biden and Congressman Paul Ryan focused on
domestic and foreign policy. The domestic policy segments in-
cluded questions on health care, abortion
Oct. 16, 2012
S1. President Obama fights back in his second debate with Mitt
Romney, banishing some of the doubts he raised in their first
showdown. S2: The second debate dealt primarily with domes-
tic affairs and include some segues into foreign policy. includ-
ing taxes, unemployment, job creation, the national debt, energy
and women’s rights, both legal and

Table 5: Selected timeline summarization gener-
ated by EHDP for American Presidential Election
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Abstract

We present an ILP model of concept-to-
text generation. Unlike pipeline archi-
tectures, our model jointly considers the
choices in content selection, lexicaliza-
tion, and aggregation to avoid greedy de-
cisions and produce more compact texts.

1 Introduction

Concept-to-text natural language generation
(NLG) generates texts from formal knowledge
representations (Reiter and Dale, 2000). With the
emergence of the Semantic Web (Antoniou and
van Harmelen, 2008), interest in concept-to-text
NLG has been revived and several methods
have been proposed to express axioms of OWL

ontologies (Grau et al., 2008) in natural language
(Bontcheva, 2005; Mellish and Sun, 2006; Gala-
nis and Androutsopoulos, 2007; Mellish and Pan,
2008; Schwitter et al., 2008; Schwitter, 2010;
Liang et al., 2011; Williams et al., 2011).

NLG systems typically employ a pipeline archi-
tecture. They usually start by selecting the logi-
cal facts to express. The next stage, text planning,
ranges from simply ordering the selected facts to
complex decisions about the rhetorical structure
of the text. Lexicalization then selects the words
and syntactic structures that will realize each fact,
specifying how each fact can be expressed as a
single sentence. Sentence aggregation then com-
bines sentences into longer ones. Another compo-
nent generates appropriate referring expressions,
and surface realization produces the final text.

Each stage of the pipeline is treated as a lo-
cal optimization problem, where the decisions of
the previous stages cannot be modified. This ar-
rangement produces texts that may not be optimal,
since the decisions of the stages have been shown
to be co-dependent (Danlos, 1984; Marciniak and
Strube, 2005; Belz, 2008). For example, content

selection and lexicalization may lead to more or
fewer sentence aggregation opportunities.

We present an Integer Linear Programming
(ILP) model that combines content selection, lex-
icalization, and sentence aggregation. Our model
does not consider text planning, nor referring ex-
pression generation, which we hope to include in
future work, but it is combined with an external
simple text planner and a referring expression gen-
eration component; we also do not discuss sur-
face realization. Unlike pipeline architectures, our
model jointly examines the possible choices in the
three NLG stages it considers, to avoid greedy local
decisions. Given an individual (entity) or class of
an OWL ontology and a set of facts (OWL axioms)
about the individual or class, we aim to produce a
text that expresses as many of the facts in as few
words as possible. This is important when space is
limited or expensive (e.g., product descriptions on
smartphones, advertisements in search engines).

Although the search space of our model is very
large and ILP problems are in general NP-hard, ILP

solvers can be used, they are very fast in practice,
and they guarantee finding a global optimum. Ex-
periments show that our ILP model outperforms,
in terms of compression, an NLG system that uses
the same components, but connected in a pipeline,
with no deterioration in fluency and clarity.

2 Related work

Marciniak and Strube (2005) propose a general
ILP approach for language processing applications
where the decisions of classifiers that consider
particular, but co-dependent, subtasks need to be
combined. They also show how their approach
can be used to generate multi-sentence route di-
rections, in a setting with very different inputs and
processing stages than the ones we consider.

Barzilay and Lapata (2005) treat content selec-
tion as an optimization problem. Given a pool of
facts and scores indicating the importance of each
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fact or pair of facts, they select the facts to express
by formulating an optimization problem similar
to energy minimization. In other work, Barzilay
and Lapata (2006) consider sentence aggregation.
Given a set of facts that a content selection stage
has produced, aggregation is viewed as the prob-
lem of partitioning the facts into optimal subsets.
Sentences expressing facts that are placed in the
same subset are aggregated to form a longer sen-
tence. An ILP model is used to find the partitioning
that maximizes the pairwise similarity of the facts
in each subset, subject to constraints limiting the
number of subsets and the facts in each subset.

Althaus et al. (2004) show that ordering a set
of sentences to maximize sentence-to-sentence co-
herence is equivalent to the traveling salesman
problem and, hence, NP-complete. They also show
how an ILP solver can be used in practice.

Joint optimization ILP models have also been
used in multi-document text summarization and
sentence compression (McDonald, 2007; Clarke
and Lapata, 2008; Berg-Kirkpatrick et al., 2011;
Galanis et al., 2012; Woodsend and Lapata, 2012),
where the input is text, not formal knowledge rep-
resetations. Statistical methods to jointly perform
content selection, lexicalization, and surface real-
ization have also been proposed in NLG (Liang et
al., 2009; Konstas and Lapata, 2012a; Konstas and
Lapata, 2012b), but they are currently limited to
generating single sentences from flat records.

To the best of our knowledge, this article is the
first one to consider content selection, lexicaliza-
tion, and sentence aggregation as an ILP joint opti-
mization problem in the context of multi-sentence
concept-to-text generation. It is also the first arti-
cle to consider ILP in NLG from OWL ontologies.

3 Our ILP model of NLG

Let F = {f1, . . . , fn} be the set of all the facts fi
(OWL axioms) about the individual or class to be
described. OWL axioms can be represented as sets
of RDF triples of the form 〈S,R,O〉, where S is an
individual or class, O is another individual, class,
or datatype value, and R is a relation (property)
that connects S to O. Hence, we can assume that
each fact fi is a triple 〈Si, Ri, Oi〉.1

For each fact fi, a set Pi = {pi1, pi2, . . . }
of alternative sentence plans is available. Each

1We actually convert the RDF triples to simpler message
triples, so that each message triple can be easily expressed by
a simple sentence, but we do not discuss this conversion here.

sentence plan pik specifies how to express fi =
〈Si, Ri, Oi〉 as an alternative single sentence. In
our work, a sentence plan is a sequence of slots,
along with instructions specifying how to fill the
slots in; and each sentence plan is associated
with the relations it can express. For example,
〈exhibit12,foundIn,athens〉 could be ex-
pressed using a sentence plan like “[ref (S)]
[findpast] [in] [ref (O)]”, where square brackets
denote slots, ref (S) and ref (O) are instructions
requiring referring expressions for S and O in
the corresponding slots, and “findpast” requires the
simple past form of “find”. In our example, the
sentence plan would lead to a sentence like “Ex-
hibit 12 was found in Athens”. We call elements
the slots with their instructions, but with “S”
and “O” accompanied by the individuals, classes,
or datatype values they refer to; in our exam-
ple, the elements are “[ref (S: exhibit12)]”,
“[findpast]”, “[in]”, “[ref (O: athens)]”. Dif-
ferent sentence plans may lead to more or fewer
aggregation opportunities; for example, sentences
with the same verb are easier to aggregate. We use
aggregation rules (Dalianis, 1999) that operate on
sentence plans and usually lead to shorter texts.

Let s1, . . . , sm be disjoint subsets of F , each
containing 0 to n facts, with m < n. A single
sentence is generated for each subset sj by aggre-
gating the sentences (more precisely, the sentence
plans) expressing the facts of sj .2 An empty sj
generates no sentence, i.e., the resulting text can
be at most m sentences long. Let us also define:

ai =

{
1, if fact fi is selected
0, otherwise (1)

likj =





1, if sentence plan pik is used to express
fact fi, and fi is in subset sj

0, otherwise
(2)

btj =

{
1, if element et is used in subset sj
0, otherwise (3)

and let B be the set of all the distinct elements (no
duplicates) from all the available sentence plans
that can express the facts of F . The length of an
aggregated sentence resulting from a subset sj can
be roughly estimated by counting the distinct el-
ements of the sentence plans that have been cho-
sen to express the facts of sj ; elements that occur
more than once in the chosen sentence plans of sj

2All the sentences of every possible subset sj can be ag-
gregated, because all the sentences share the same subject,
the class or individual being described. If multiple aggrega-
tion rules apply, we use the one that leads to a shorter text.
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are counted only once, because they will probably
be expressed only once, due to aggregation.

Our objective function (4) maximizes the num-
ber of selected facts fi and minimizes the number
of distinct elements in each subset sj , i.e., the ap-
proximate length of the corresponding aggregated
sentence; an alternative explanation is that by min-
imizing the number of distinct elements in each sj ,
we favor subsets that aggregate well. By a and b
we jointly denote all the ai and btj variables. The
two parts (sums) of the objective function are nor-
malized to [0, 1] by dividing by the total number
of available facts |F | and the number of subsets m
times the total number of distinct elements |B|. In
the first part of the objective, we treat all the facts
as equally important; if importance scores are also
available for the facts, they can be added as mul-
tipliers of αi. The parameters λ1 and λ2 are used
to tune the priority given to expressing many facts
vs. generating shorter texts; we set λ1 + λ2 = 1.

max
a,b

λ1 ·
|F |∑

i=1

ai
|F | − λ2 ·

m∑

j=1

|B|∑

t=1

btj
m · |B| (4)

subject to:

ai =

m∑

j=1

|Pi|∑

k=1

likj , for i = 1, . . . , n (5)

∑

et∈Bik

btj ≥ |Bik| · likj , for
i = 1, . . . , n
j = 1, . . . ,m
k = 1, . . . , |Pi|

(6)

∑

pik∈P (et)

likj ≥ btj , for t = 1, . . . , |B|
j = 1, . . . ,m

(7)

|B|∑

t=1

btj ≤ Bmax, for j = 1, . . . ,m (8)

|Pi|∑

k=1

likj +

|Pi′ |∑

k′=1

li′k′j ≤ 1, for
j = 1, . . . ,m, i = 2, . . . , n
i′ = 1, . . . , n− 1; i 6= i′

section(fi) 6= section(f ′
i)

(9)

Constraint 5 ensures that for each selected fact,
only one sentence plan in only one subset is se-
lected; if a fact is not selected, no sentence plan
for the fact is selected either. |σ| denotes the car-
dinality of a set σ. In constraint 6, Bik is the set of
distinct elements et of the sentence plan pik. This
constraint ensures that if pik is selected in a subset
sj , then all the elements of pik are also present in
sj . If pik is not selected in sj , then some of its el-
ements may still be present in sj , if they appear in
another selected sentence plan of sj .

In constraint 7, P (et) is the set of sentence plans
that contain element et. If et is used in a subset sj ,

then at least one of the sentence plans of P (et)
must also be selected in sj . If et is not used in sj ,
then no sentence plan of P (et) may be selected in
sj . Lastly, constraint 8 limits the number of ele-
ments that a subset sj can contain to a maximum
allowed number Bmax, in effect limiting the max-
imum length of an aggregated sentence.

We assume that each relation R has been man-
ually mapped to a single topical section; e.g., re-
lations expressing the color, body, and flavor of
a wine may be grouped in one section, and rela-
tions about the wine’s producer in another. The
section of a fact fi = 〈Si, Ri, Oi〉 is the section
of its relation Ri. Constraint 9 ensures that facts
from different sections will not be placed in the
same subset sj , to avoid unnatural aggregations.

4 Experiments

We used NaturalOWL (Galanis and Androutsopou-
los, 2007; Galanis et al., 2009; Androutsopoulos
et al., 2013), an NLG system for OWL ontologies
that relies on a pipeline of content selection, text
planning, lexicalization, aggregation, referring ex-
pression generation, and surface realization.3 We
modified content selection, lexicalization, and ag-
gregation to use our ILP model, maintaining the
aggregation rules of the original system.4 For re-
ferring expression generation and surface realiza-
tion, the new system, called ILPNLG, invokes the
corresponding components of NaturalOWL.

The original system, called PIPELINE, assumes
that each relation has been mapped to a topical
section, as in ILPNLG. It also assumes that a man-
ually specified order of the sections and the rela-
tions of each section is available, which is used
by the text planner to order the selected facts (by
their relations). The subsequent components of the
pipeline are not allowed to change the order of the
facts, and aggregation operates only on sentence
plans of adjacent facts from the same section. In
ILPNLG, the manually specified order of sections
and relations is used to order the sentences of each
subset sj (before aggregating them), the aggre-
gated sentences in each section (each aggregated
sentence inherits the minimum order of its con-
stituents), and the sections (with their sentences).

We used the Wine Ontology, which had been
3All the software and data we used are freely available

from http://nlp.cs.aueb.gr/software.html.
We use version 2 of NaturalOWL.

4We use the Branch and Cut implementation of GLPK; see
sourceforge.net/projects/winglpk/.
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used in previous experiments with PIPELINE.5 We
kept the 2 topical sections, the ordering of sec-
tions and relations, and the sentence plans that
had been used in the previous experiments, but we
added more sentence plans to ensure that 3 sen-
tence plans were available per fact. We gener-
ated texts for the 52 wine individuals of the on-
tology; we did not experiment with texts describ-
ing classes of wines, because we could not think
of multiple alternative sentence plans for many of
their axioms. For each individual, there were 5
facts on average and a maximum of 6 facts.

PIPELINE has a parameter M specifying the
maximum number of facts it is allowed to report
per text. When M is smaller than the number of
available facts |F | and all the facts are treated as
equally important, as in our experiments, it se-
lects randomly M of the available facts. We re-
peated the generation of PIPELINE’s texts for the
52 individuals for M = 2, 3, 4, 5, 6. For each M ,
the texts of PIPELINE for the 52 individuals were
generated three times, each time using one of the
different alternative sentence plans of each rela-
tion. We also generated the texts using a variant of
PIPELINE, dubbed PIPELINESHORT, which always
selects the shortest (in elements) sentence plan
among the available ones. In all cases, PIPELINE

and PIPELINESHORT were allowed to form ag-
gregated sentences containing up to Bmax = 22
distinct elements, which was the number of dis-
tinct elements of the longest aggregated sentence
in the previous experiments, where PIPELINE was
allowed to aggregate up to 3 original sentences.

With ILPNLG, we repeated the generation of the
texts of the 52 individuals using different values
of λ1 (λ2 = 1 − λ1), which led to texts express-
ing from zero to all of the available facts. We set
the maximum number of fact subsets to m = 3,
which was the maximum number of aggregated
sentences observed in the texts of PIPELINE and
PIPELINESHORT. Again, we set Bmax = 22.

We compared ILPNLG to PIPELINE and PIPELI-
NESHORT by measuring the average number of
facts they reported divided by the average text
length (in words). Figure 1 shows this ratio as a
function of the average number of reported facts,
along with 95% confidence intervals (of sample
means). PIPELINESHORT achieved better results
than PIPELINE, but the differences were small.

For λ1 < 0.2, ILPNLG produces empty texts,

5See www.w3.org/TR/owl-guide/wine.rdf.

Figure 1: Facts/words ratio of the generated texts.

since it focuses on minimizing the number of dis-
tinct elements of each text. For λ1 ≥ 0.225, it per-
forms better than the other systems. For λ1 ≈ 0.3,
it obtains the highest fact/words ratio by select-
ing the facts and sentence plans that lead to the
most compressive aggregations. For greater val-
ues of λ1, it selects additional facts whose sen-
tence plans do not aggregate that well, which is
why the ratio declines. For small numbers of facts,
the two pipeline systems select facts and sentence
plans that offer very few aggregation opportuni-
ties; as the number of selected facts increases,
some more aggregation opportunities arise, which
is why the facts/words ratio of the two systems
improves. In all the experiments, the ILP solver
was very fast (average: 0.08 sec, worst: 0.14 sec).
Experiments with human judges also showed that
the texts of ILPNLG cannot be distinguished from
those of PIPELINESHORT in terms of fluency and
text clarity. Hence, the highest compactness of the
texts of ILPNLG does not come at the expense of
lower text quality. Space does not permit a more
detailed description of these experiments.

We show below texts produced by PIPELINE

(M = 4) and ILPNLG (λ1 = 0.3).

PIPELINE: This is a strong Sauternes. It is made from Semil-

lon grapes and it is produced by Chateau D’ychem.

ILPNLG: This is a strong Sauternes. It is made from Semillon

grapes by Chateau D’ychem.

PIPELINE: This is a full Riesling and it has moderate flavor.

It is produced by Volrad.

ILPNLG: This is a full sweet moderate Riesling.

In the first pair, PIPELINE uses different verbs for
the grapes and producer, whereas ILPNLG uses the
same verb, which leads to a more compressive ag-
gregation; both texts describe the same wine and
report 4 facts. In the second pair, ILPNLG has cho-
sen to express the sweetness instead of the pro-
ducer, and uses the same verb (“be”) for all the
facts, leading to a shorter sentence; again both
texts describe the same wine and report 4 facts.
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In both examples, some facts are not aggregated
because they belong in different sections.

5 Conclusions

We presented an ILP model for NLG that jointly
considers the choices in content selection, lexical-
ization, and aggregation to avoid greedy local de-
cisions and produce more compact texts. Exper-
iments verified that our model can express more
facts per word, compared to a pipeline, which is
important when space is scarce. An off-the-shelf
ILP solver took approximately 0.1 sec for each
text. We plan to extend our model to include text
planning and referring expressions generation.
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Abstract 

The growth of the Web 2.0 technologies has 

led to an explosion of social networking 

media sites. Among them, Twitter is the most 

popular service by far due to its ease for real-

time sharing of information. It collects 

millions of tweets per day and monitors what 

people are talking about in the trending topics 

updated timely. Then the question is how 

users can understand a topic in a short time 

when they are frustrated with the 

overwhelming and unorganized tweets. In 

this paper, this problem is approached by 

sequential summarization which aims to 

produce a sequential summary, i.e., a series 

of chronologically ordered short sub-

summaries that collectively provide a full 

story about topic development. Both the 

number and the content of sub-summaries are 

automatically identified by the proposed 

stream-based and semantic-based approaches. 

These approaches are evaluated in terms of 

sequence coverage, sequence novelty and 

sequence correlation and the effectiveness of 

their combination is demonstrated.  

1 Introduction and Background 

Twitter, as a popular micro-blogging service, 

collects millions of real-time short text messages 

(known as tweets) every second. It acts as not 

only a public platform for posting trifles about 

users’ daily lives, but also a public reporter for 

real-time news. Twitter has shown its powerful 

ability in information delivery in many events, 

like the wildfires in San Diego and the 

earthquake in Japan. Nevertheless, the side effect 

is individual users usually sink deep under 

millions of flooding-in tweets. To alleviate this 

problem, the applications like whatthetrend 1 

have evolved from Twitter to provide services 

that encourage users to edit explanatory tweets 

about a trending topic, which can be regarded as 

topic summaries. It is to some extent a good way 

to help users understand trending topics. 

                                                           
1 whatthetrend.com 

There is also pioneering research in automatic 

Twitter trending topic summarization. (O'Connor 

et al., 2010) explained Twitter trending topics by 

providing a list of significant terms. Users could 

utilize these terms to drill down to the tweets 

which are related to the trending topics. (Sharifi 

et al., 2010) attempted to provide a one-line 

summary for each trending topic using phrase 

reinforcement ranking. The relevance model 

employed by (Harabagiu and Hickl, 2011) 

generated summaries in larger size, i.e., 250-

word summaries, by synthesizing multiple high 

rank tweets. (Duan et al., 2012) incorporate the 

user influence and content quality information in 

timeline tweet summarization and employ 

reinforcement graph to generate summaries for 

trending topics. 

Twitter summarization is an emerging 

research area. Current approaches still followed 

the traditional summarization route and mainly 

focused on mining tweets of both significance 

and representativeness. Though, the summaries 

generated in such a way can sketch the most 

important aspects of the topic, they are incapable 

of providing full descriptions of the changes of 

the focus of a topic, and the temporal information 

or freshness of the tweets, especially for those 

newsworthy trending topics, like earthquake and 

sports meeting. As the main information 

producer in Twitter, the massive crowd keeps 

close pace with the development of trending 

topics and provide the timely updated 

information. The information dynamics and 

timeliness is an important consideration for 

Twitter summarization. That is why we propose 

sequential summarization in this work, which 

aims to produce sequential summaries to capture 

the temporal changes of mass focus. 

Our work resembles update summarization 

promoted by TAC 2  which required creating 

summaries with new information assuming the 

reader has already read some previous 

documents under the same topic. Given two 

chronologically ordered documents sets about a 

topic, the systems were asked to generate two 

                                                           
2 www.nist.gov/tac 
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summaries, and the second one should inform the 

user of new information only. In order to achieve 

this goal, existing approaches mainly emphasized 

the novelty of the subsequent summary (Li and 

Croft, 2006; Varma et al., 2009; Steinberger and 

Jezek, 2009). Different from update 

summarization, we focus more on the temporal 

change of trending topics. In particular, we need 

to automatically detect the “update points” 

among a myriad of related tweets.  

It is the goal of this paper to set up a new 

practical summarization application tailored for 

timely updated Twitter messages. With the aim 

of providing a full description of the focus 

changes and the records of the timeline of a 

trending topic, the systems are expected to 

discover the chronologically ordered sets of 

information by themselves and they are free to 

generate any number of update summaries 

according to the actual situations instead of a 

fixed number of summaries as specified in 

DUC/TAC. Our main contributions include 

novel approaches to sequential summarization 

and corresponding evaluation criteria for this 

new application. All of them will be detailed in 

the following sections. 

2 Sequential Summarization 

Sequential summarization proposed here aims to 

generate a series of chronologically ordered sub-

summaries for a given Twitter trending topic. 

Each sub-summary is supposed to represent one 

main subtopic or one main aspect of the topic, 

while a sequential summary, made up by the sub-

summaries, should retain the order the 

information is delivered to the public. In such a 

way, the sequential summary is able to provide a 

general picture of the entire topic development. 

2.1 Subtopic Segmentation 

One of the keys to sequential summarization is 

subtopic segmentation. How many subtopics 

have attracted the public attention, what are they, 

and how are they developed? It is important to 

provide the valuable and organized materials for 

more fine-grained summarization approaches. 

We proposed the following two approaches to 

automatically detect and chronologically order 

the subtopics. 

2.1.1 Stream-based Subtopic Detection and 

Ordering 

Typically when a subtopic is popular enough, it 

will create a certain level of surge in the tweet 

stream. In other words, every surge in the tweet 

stream can be regarded as an indicator of the 

appearance of a subtopic that is worthy of being 

summarized. Our early investigation provides 

evidence to support this assumption. By 

examining the correlations between tweet content 

changes and volume changes in randomly 

selected topics, we have observed that the 

changes in tweet volume can really provide the 

clues of topic development or changes of crowd 

focus.  

The stream-based subtopic detection approach 

employs the offline peak area detection (Opad) 

algorithm (Shamma et al., 2010) to locate such 

surges by tracing tweet volume changes. It 

regards the collection of tweets at each such 

surge time range as a new subtopic.  

Offline Peak Area Detection (Opad) Algorithm 

1: Input: TS (tweets stream, each twi with timestamp ti); 

peak interval window ∆𝑡 (in hour), and time 

stepℎ (ℎ ≪  ∆𝑡); 

2: Output: Peak Areas PA. 

3: Initial: two time slots: 𝑇′ = 𝑇 = 𝑡0 + ∆𝑡;  

Tweet numbers: 𝑁′ = 𝑁 = 𝑪𝒐𝒖𝒏𝒕(𝑇) 

4: while (𝑡𝑠 = 𝑇 + ℎ) < 𝑡𝑛−1 

5:      update 𝑇′ = 𝑡𝑠 + ∆𝑡 and 𝑁′ = 𝑪𝒐𝒖𝒏𝒕(𝑇′) 

6:      if (𝑁′ < 𝑁 And up-hilling)  

7: output one peak area 𝑝𝑎𝑇  

8: state of down-hilling 

9:      else  

10: update 𝑇 = 𝑇′ and 𝑁 =  𝑁′ 

11: state of up-hilling 

12: 

13: function 𝑪𝒐𝒖𝒏𝒕(𝑇) 

14: Count tweets in time interval T 

The subtopics detected by the Opad algorithm 

are naturally ordered in the timeline. 

2.1.2 Semantic-based Subtopic Detection and 

Ordering 

Basically the stream-based approach monitors 

the changes of the level of user attention. It is 

easy to implement and intuitively works, but it 

fails to handle the cases where the posts about 

the same subtopic are received at different time 

ranges due to the difference of geographical and 

time zones. This may make some subtopics 

scattered into several time slots (peak areas) or 

one peak area mixed with more than one 

subtopic. 

In order to sequentially segment the subtopics 

from the semantic aspect, the semantic-based 

subtopic detection approach breaks the time 

order of tweet stream, and regards each tweet as 

an individual short document. It takes advantage 

of Dynamic Topic Modeling (David and Michael, 

2006) to explore the tweet content.  
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DTM in nature is a clustering approach which 

can dynamically generate the subtopic 

underlying the topic. Any clustering approach 

requires a pre-specified cluster number. To avoid 

tuning the cluster number experimentally, the 

subtopic number required by the semantic-based 

approach is either calculated according to 

heuristics or determined by the number of the 

peak areas detected from the stream-based 

approach in this work. 

Unlike the stream-based approach, the 

subtopics formed by DTM are the sets of 

distributions of subtopic and word probabilities. 

They are time independent. Thus, the temporal 

order among these subtopics is not obvious and 

needs to be discovered. We use the probabilistic 

relationships between tweets and topics learned 

from DTM to assign each tweet to a subtopic that 

it most likely belongs to. Then the subtopics are 

ordered temporally according to the mean values 

of their tweets’ timestamps. 

2.2 Sequential Summary Generation 

Once the subtopics are detected and ordered, the 

tweets belonging to each subtopic are ranked and 

the most significant one is extracted to generate 

the sub-summary regarding that subtopic. Two 

different ranking strategies are adopted to 

conform to two different subtopic detection 

mechanisms. 

For a tweet in a peak area, the linear 

combination of two measures is considered to 

evaluate its significance to be a sub-summary: (1) 

subtopic representativeness measured by the 

cosine similarity between the tweet and the 

centroid of all the tweets in the same peak area; 

(2) crowding endorsement measured by the times 

that the tweet is re-tweeted normalized by the 

total number of re-tweeting. With the DTM 

model, the significance of the tweets is evaluated 

directly by word distribution per subtopic.  

MMR (Carbonell and Goldstein, 1998) is used 

to reduce redundancy in sub-summary generation.  

3 Experiments and Evaluations 

The experiments are conducted on the 24 Twitter 

trending topics collected using Twitter APIs 3 . 

The statistics are shown in Table 1. 

Due to the shortage of gold-standard 

sequential summaries, we invite two annotators 

to read the chronologically ordered tweets, and 

write a series of sub-summaries for each topic 

                                                           
3https://dev.twitter.com/ 

independently. Each sub-summary is up to 140 

characters in length to comply with the limit of 

tweet, but the annotators are free to choose the 

number of sub-summaries. It ends up with 6.3 

and 4.8 sub-summaries on average in a 

sequential summary written by the two 

annotators respectively. These two sets of 

sequential summaries are regarded as reference 

summaries to evaluate system-generated 

summaries from the following three aspects. 

 

Category #TT 
Trending Topic 

Examples 

Tweets 

Number 

News 6 
Minsk, Libya 

Release 
25145 

Sports 6 
#bbcf1, 

Lakers/Heat 
17204 

Technology 5 Google Fiber 13281 

Science 2 AH1N1, Richter 10935 

Entertainment 2 Midnight Club, 6573 

Meme 2 
#ilovemyfans, 

Night Angels 
14595 

Lifestyle 1 Goose Island 6230 

Total 24 ------------ 93963 

Table 1. Data Set 

 Sequence Coverage 

Sequence coverage measures the N-gram match 

between system-generated summaries and 

human-written summaries (stopword removed 

first). Considering temporal information is an 

important factor in sequential summaries, we 

propose the position-aware coverage measure by 

accommodating the position information in 

matching. Let S={s1, s2, …, sk} denote a 

sequential summary and si the ith sub-summary, 

N-gram coverage is defined as: 
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒

=
1

|𝑆𝑠𝑔|
∑

∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑀𝑎𝑡𝑐ℎ(𝑁-𝑔𝑟𝑎𝑚)𝑁-𝑔𝑟𝑎𝑚∈𝑠𝑖,𝑠𝑗𝑠𝑗∈𝑆ℎ𝑤

𝜔𝑖𝑗 ∙ ∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑁-𝑔𝑟𝑎𝑚)𝑁-𝑔𝑟𝑎𝑚∈𝑠𝑗𝑠𝑗∈𝑆ℎ𝑤𝑠𝑖∈𝑆𝑠𝑔

 

where,  𝜔𝑖𝑗 = |𝑗 − 𝑖| + 1, i and j denote the serial 

numbers of the sub-summaries in the system-

generated summary 𝑆𝑠𝑔  and the human-written 

summary 𝑆ℎ𝑤 , respectively. 𝜔  serves as a 

coefficient to discount long-distance matched 

sub-summaries. We evaluate unigram, bigram, 

and skipped bigram matches. Like in ROUGE 

(Lin, 2004), the skip distance is up to four words. 

 Sequence Novelty 

Sequence novelty evaluates the average novelty 

of two successive sub-summaries. Information 

content (IC) has been used to measure the 

novelty of update summaries by (Aggarwal et al., 

2009). In this paper, the novelty of a system-
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generated sequential summary is defined as the 

average of IC increments of two adjacent sub-

summaries,  

𝑁𝑜𝑣𝑒𝑙𝑡𝑦 =
1

|𝑆| − 1
∑(𝐼𝐶𝑠𝑖

− 𝐼𝐶𝑠𝑖, 𝑠𝑖−1
)

𝑖>1

 

where |𝑆| is the number of sub-summaries in the 

sequential summary. 𝐼𝐶𝑠𝑖
= ∑ 𝐼𝐶𝑤𝑤∈𝑠𝑖

. 𝐼𝐶𝑠𝑖, 𝑠𝑖−1
=

∑ 𝐼𝐶𝑤𝑤∈𝑠𝑖∩𝑠𝑖−1
 is the overlapped information in the 

two adjacent sub-summaries. 𝐼𝐶𝑤 = 𝐼𝑇𝐹𝑤  ×

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑤, 𝑊𝑇𝑤) where w is a word, 𝐼𝑇𝐹𝑤 is the 

inverse tweet frequency of w, and 𝑊𝑇𝑤 is all the 

tweets in the trending topic. The relevance 

function is introduced to ensure that the 

information brought by new sub-summaries is 

not only novel but also related to the topic.  

 Sequence Correlation 

Sequence correlation evaluates the sequential 

matching degree between system-generated and 

human-written summaries. In statistics, 

Kendall’s tau coefficient is often used to measure 

the association between two sequences (Lapata, 

2006). The basic idea is to count the concordant 

and discordant pairs which contain the same 

elements in two sequences. Borrowing this idea, 

for each sub-summary in a human-generated 

summary, we find its most matched sub-

summary (judged by the cosine similarity 

measure) in the corresponding system-generated 

summary and then define the correlation 

according to the concordance between the two 

matched sub-summary sequences. 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

=
2(|#𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡𝑃𝑎𝑖𝑟𝑠| − |#𝐷𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡𝑃𝑎𝑖𝑟𝑠|)

𝑛(𝑛 − 1)
 

where n is the number of human-written sub-

summaries.  

Tables 2 and 3 below present the evaluation 

results. For the stream-based approach, we set 

∆t=3 hours experimentally. For the semantic-

based approach, we compare three different 

approaches to defining the sub-topic number K: 

(1) Semantic-based 1: Following the approach 

proposed in (Li et al., 2007), we first derive the 

matrix of tweet cosine similarity. Given the 1-

norm of eigenvalues  𝜆𝑖
𝑛𝑜𝑟𝑚 (𝑖 = 1, 2, … , 𝑛) of the 

similarity matrix and the ratios 𝛾𝑖 =  𝜆𝑖
𝑛𝑜𝑟𝑚/𝜆2 , 

the subtopic number 𝐾 = 𝑖 + 1  if 𝛾𝑖 − 𝛾𝑖+1 > 𝛿 

(𝛿 = 0.4 ). (2) Semantic-based 2: Using the rule 

of thumb in (Wan and Yang, 2008), 𝐾 = √𝑛 , 

where n is the tweet number. (3) Combined: K is 

defined as the number of the peak areas detected 

from the Opad algorithm, meanwhile we use the 

tweets within peak areas as the tweets of DTM. 

This is our new idea. 

The experiments confirm the superiority of the 

semantic-based approach over the stream-based 

approach in summary content coverage and 

novelty evaluations, showing that the former is 

better at subtopic content modeling. The sub-

summaries generated by the stream-based 

approach have comparative sequence (i.e., order) 

correlation with the human summaries. 

Combining the advantages the two approaches 

leads to the best overall results.  

 

Coverage Unigram  Bigram  
Skipped 

Bigram 

Stream-

based(∆t=3) 
0.3022 0.1567 0.1523 

Semantic-

based1(δ=0.5) 
0.3507 0.1684 0.1866 

Semantic-based 2 0.3112 0.1348 0.1267 

Combined(∆t=3) 0.3532 0.1699 0.1791 

Table 2. N-Gram Coverage Evaluation 

Approaches Novelty Correlation 

Stream-based (∆t=3) 0.3798 0.3330 

Semantic-based 1 (δ=0.4) 0.7163 0.3746 

Semantic-based 2 0.7017 0.3295 

Combined (∆t=3) 0.7793 0.3986 

Table 3. Novelty and Correlation Evaluation 

4 Concluding Remarks 

We start a new application for Twitter trending 

topics, i.e., sequential summarization, to reveal 

the developing scenario of the trending topics 

while retaining the order of information 

presentation. We develop several solutions to 

automatically detect, segment and order 

subtopics temporally, and extract the most 

significant tweets into the sub-summaries to 

compose sequential summaries. Empirically, the 

combination of the stream-based approach and 

the semantic-based approach leads to sequential 

summaries with high coverage, low redundancy, 

and good order. 
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Abstract

In this paper, we investigate the problem
of automatic generation of scientific sur-
veys starting from keywords provided by
a user. We present a system that can take
a topic query as input and generate a sur-
vey of the topic by first selecting a set
of relevant documents, and then selecting
relevant sentences from those documents.
We discuss the issues of robust evalua-
tion of such systems and describe an eval-
uation corpus we generated by manually
extracting factoids, or information units,
from 47 gold standard documents (surveys
and tutorials) on seven topics in Natural
Language Processing. We have manually
annotated 2,625 sentences with these fac-
toids (around 375 sentences per topic) to
build an evaluation corpus for this task.
We present evaluation results for the per-
formance of our system using this anno-
tated data.

1 Introduction

The rise of the number of publications in all sci-
entific fields is making it more and more difficult
to get quickly acquainted with the new develop-
ments in a new area. One way to wade through this
huge amount of scholarly information is to consult
topical surveys written by experts in an area. For
example, for machine translation, one might read
(Lopez, 2008)1. Such surveys can be very help-
ful when available, but unfortunately, may not be
available for all areas. Additionally, the manual
surveys quickly go out of date within a few years
of publication as additional papers are published
in the field.

1Adam Lopez. 2008. Statistical machine translation.
ACM Comput. Surv. 40, 3, Article 8

Thus, a system that can generate such surveys
automatically would be a useful tool. Short sum-
maries in the form of abstracts are available for
individual papers, but no such information is avail-
able for scientific topics. In this paper, we ex-
plore strategies for generating and evaluating such
surveys of scientific topics automatically starting
from a phrase representing a topic area. We evalu-
ate our system on a set of topics in the field of Nat-
ural Language Processing. In earlier work, (Teufel
and Moens, 2002) have examined the problem
of summarizing scientific articles using rhetorical
analysis of sentences. Nanba and Okumura (1999)
have also discussed the problem of generating sur-
veys of multiple papers. Mohammad et al. (2009)
presented experiments on generating surveys of
scientific topics starting from papers to be summa-
rized. More recently, Hoang and Kan (2010) have
presented initial results on automatically generat-
ing related work section for a target paper by tak-
ing a hierarchical topic tree as an input.

In this paper, we tackle the more challenging
problem of summarizing a topic starting from a
topic query. Our system takes as an input a string
describing the topic area, selects the relevant pa-
pers from a corpus of papers, and then selects sen-
tences from the citing sentences to these papers to
generate a survey of the topic. A sample output of
our system for the topic of “Word Sense Disam-
biguation” is shown in Figure 1.

2 Candidate Document Selection

Given a query representing the topic to be sum-
marized, our first task is to find the set of rele-
vant documents from the corpus. The simplest
way to do this for a corpus of scientific publica-
tions is to do a query search using exact match or
a standard TF*IDF system such Lucene, rank the
documents using either citation counts or pager-
ank in the bibliometric citation network, and se-
lect the top n documents. However, comparing
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Many corpus based methods have been proposed to deal with the sense disambiguation problem when given de nition for each possible sense of a target word or a
tagged corpus with the instances of each possible sense, e.g., supervised sense disambiguation (Leacock et al. , 1998), and semi-supervised sense disambiguation
(Yarowsky, 1995).

Most researchers working on word sense disambiguation (WSD) use manually sense tagged data such as SemCor (Miller et al. , 1993) to train statistical
classifiers, but also use the information in SemCor on the overall sense distribution for each word as a backoff model.

Yarowsky (1995) has proposed a bootstrapping method for word sense disambiguation.

Training of WSD Classifier Much research has been done on the best supervised learning approach for WSD (Florian and Yarowsky, 2002; Lee and Ng, 2002;
Mihalcea and Moldovan, 2001; Yarowsky et al. , 2001).
For example, the use of parallel corpora for sense tagging can help with word sense disambiguation (Brown et al. , 1991; Dagan, 1991; Dagan and Itai, 1994;
Ide, 2000; Resnik and Yarowsky, 1999).

Figure 1: A sample output survey of our system on the topic of “Word Sense Disambiguation” produced
by paper selection using Restricted Expansion and sentence selection using Lexrank. In our evaluations,
this survey achieved a pyramid score of 0.82 and Unnormalized RU score of 0.31.

Document selection algorithm CG5 CG10 CG20

Title match sorted with citation count 1.82 2.75 3.29
Title match sorted with pagerank 1.77 2.55 3.34
Citation expansion sorted with citation
count 0.53 1.20 2.29

Citation expansion sorted with pagerank 0.20 0.78 1.99
TF*IDF ranked 0.14 0.14 0.56
TF*IDF sorted with citation count 0.44 2.25 3.18
TF*IDF sorted with pagerank 1.54 2.22 2.85
Restricted Expansion 2.52 3.91 6.01

Table 1: Comparison of different methods for
document selection by measuring the Cumulative
Gain (CG) of top 5, 10 and 20 results.

the results of these techniques with the papers cov-
ered by gold standard surveys on a few topics, we
found that some important papers are missed by
these simple approaches. One reason for this is
that early papers in a field might use non-standard
terms in the absence of a stable, accepted termi-
nology. Some early Word Sense Disambiguation
papers, for example, refer to the problem as Lex-
ical Ambiguity Resolution. Additionally, papers
might use alternative forms or abbreviations of
topics in their titles and abstracts, e.g. for input
query “Semantic Role Labelling”, papers such as
(Dahlmeier et al., 2009) titled “Joint Learning of
Preposition Senses and Semantic Roles of Prepo-
sitional Phrases” and (Che and Liu, 2010) titled
“Jointly Modeling WSD and SRL with Markov
Logic” might be missed.

To find these papers, we add a simple heuristic
called Restricted Expansion. In this method, we
first create a base set B, by finding papers with an
exact match to the query. This is a high precision
set since a paper with a title that contains the ex-
act query phrase is very likely to be relevant to the
topic. We then find additional papers by expand-
ing in the citation network around B, that is, by
finding all the papers that are cited by or cite the
papers in B, to create an extended set E. From
this combined set (B ∪E), we create a new set F

by filtering out the set of papers that are not cited
by or cite a minimum threshold tinit of papers in
B. If the total number of papers is lower than fmin
or higher than fmax, we iteratively increase or de-
crease t till fmin ≤ |F | ≤ fmax. This method
allows us to increase our recall without losing pre-
cision. The values for our current experiments are:
tinit = 5, fmin = 150, fmax = 250.

Authors Year Size
Surveys

ACL Wiki 2012 4
Roberto Navigli 2009 68
Eneko Agirre; Philip Edmonds 2006 28
Xiaohua Zhou; Hyoil Han 2005 6
Nancy Ide; Jean Vronis 1998 41

Tutorials
Sanda Harabagiu 2011 45
Diana McCarthy 2011 120
Philipp Koehn 2008 17
Rada Mihalcea 2005 186

Table 2: The set of surveys and tutorials col-
lected for the topic of “Word Sense Disambigua-
tion”. Sizes for surveys are expressed in number
of pages, sizes for tutorials are expressed in num-
ber of slides.

To evaluate different methods of candidate doc-
ument selection, we use Cumulative Gain (CG),
where the weight for each paper is estimated by
the fraction of surveys it appears in. Table 1
shows the average Cumulative Gain of top 5, 10
and 20 documents for each of eight methods we
tried. Restricted Expansion outperformed every
other method. Once we obtain a set of papers to
be summarized, we select the top n most cited pa-
pers in the document set as the papers to be sum-
marized, and extract the set of citing sentences S
from all the papers in the document set to these n
papers. S is the input for our sentence selection
algorithms, described in Section 4.
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Factoid S1 S2 S3 S4 S5 T1 T2 T3 T4 Factoid Weight
definition of wsd X X X X X X X X X 9
wordnet X X X X X X X X 8
knowledge based wsd X X X X X X X 7
supervised wsd X X X X X X X 7
senseval X X X X X X X 7
definition of word senses X X X X X X 7
knowledge based wsd using machine readable dictionaries X X X X X X 6
unsupervised wsd X X X X X X 6
bootstrapping algorithms X X X X X X 6
supervised wsd using decision lists X X X X X X 6

Table 3: Top 10 factoids for the topic of “Word Sense Disambiguation” and their distribution across
various data sources.

3 Evaluation Data for Survey Generation

We use the ACL Anthology Network (AAN) as the
corpus for our experiments (Radev et al., 2013).
We built a factoid inventory for seven topics in
NLP based on manual written surveys in the fol-
lowing way. For each topic, we found at least 3
recent tutorials and 3 recent surveys on the topic
and extracted the factoids that are covered in each
of them. Table 2 shows the complete list of ma-
terial collected for the topic of “Word Sense Dis-
ambiguation”. We found around 80 factoids per
topic on an average. Once the factoids were ex-
tracted, each factoid was assigned a weight based
on the number of documents it appears in, and any
factoids with weight one were removed. Table 3
shows the top ten factoids in the topic of Word
Sense Disambiguation along with their distribu-
tion across the different surveys and tutorials and
final weight.

For each of the topics, we used the method de-
scribed in Section 2 to create a candidate docu-
ment set and extracted the candidate citing sen-
tences to be used as the input for the content se-
lection component. Each sentence in each topic
was then annotated by a human judge against the
factoid list for that topic. A sentence is allowed
to have zero or more than one factoid. The human
assessors were graduate students in Computer Sci-
ence who have taken a basic “Natural Language
Processing” course or an equivalent course. On an
average, 375 citing sentences were annotated for
each topic, with 2,625 sentences being annotated
in total. We present all our experimental results on
this large annotated corpora which is also available
for download 2.

4 Content Models

Once we have the set of input sentences, our sys-
tem must select the sentences that should be part

2http://clair.si.umich.edu/corpora/survey data/

of the survey. For this task, we experimented with
three content models, described below.

4.1 Centroid
The centroid of a set of documents is a set of words
that are statistically important to the cluster of doc-
uments. Centroid based summarization of a docu-
ment set involves first creating the centroid of the
documents, and then judging the salience of each
document based on its similarity to the centroid
of the document set. In our case, the input citing
sentences represent the documents from which we
extract the centroid. We use the centroid imple-
mentation from the publicly available summariza-
tion toolkit, MEAD (Radev et al., 2004).

4.2 Lexrank
LexRank (Erkan and Radev, 2004) is a network
based content selection algorithm that works by
first building a graph of all the documents in a
cluster. The edges between corresponding nodes
represent the cosine similarity between them.
Once the network is built, the algorithm computes
the salience of sentences in this graph based on
their eigenvector centrality in the network.

4.3 C-Lexrank
C-Lexrank is another network based content selec-
tion algorithm that focuses on diversity (Qazvinian
and Radev, 2008). Given a set of sentences, it first
creates a network using these sentences and then
runs a clustering algorithm to partition the net-
work into smaller clusters that represent different
aspects of the paper. The motivation behind the
clustering is to include more diverse facts in the
summary.

5 Experiments and Results

To do an evaluation of our different content selec-
tion methods, we first select the documents using
our Restricted Expansion method, and then pick
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Topic Rand Cent LR C-LR
Summarization 0.68 0.61 0.91 0.82
Question Answering 0.52 0.50 0.65 0.56
Word Sense Disambiguation 0.78 0.73 0.82 0.76
Named Entity Recognition 0.90 0.90 0.94 0.94
Sentiment Analysis 0.75 0.78 0.77 0.78
Semantic Role Labeling 0.78 0.79 0.88 0.94
Dependency Parsing 0.67 0.38 0.71 0.53
Average 0.72 0.68 0.81∗ 0.76

Table 4: Results of pyramid evaluation for each
of the three methods and the random baseline on
each topic.

the citing sentences to be used as the input to the
summarization module as described in Section 2.
Given this input, we generate 500 word summaries
for each of the seven topics using the four meth-
ods: Centroid, Lexrank, C-Lexrank and a random
baseline.

For each summary, we compute two evaluation
metrics. The first is the Pyramid score (Nenkova
and Passonneau, 2004) computed by treating the
factoids as Summary Content Units (SCU’s). The
Pyramid scores for each summary is shown in Ta-
ble 4. The second metric is an Unnormalized Rel-
ative Utility score (Radev and Tam, 2003), com-
puted using the factoid scores of sentences based
on the method presented in (Qazvinian, 2012). We
call this Unnormalized RU since we are not able to
normalize the scores with human generated gold
summaries. The results for Unnormalized RU are
shown in Table 5. The parameter α is the RU
penalty for including a redundant sentence sub-
sumed by an earlier sentence. If the summary
chooses a sentence si with score worig that is sub-
sumed by an earlier summary sentence, the score
is reduced as wsubsumed = (α ∗ worig). We ap-
proximate subsumption by marking a sentence sj
as being subsumed by si if Fj ⊂ Fi, where Fi and
Fj are sets of factoids covered in each sentence.

Topic Rand Cent LR C-LR
Summarization 0.16 0.57 0.29 0.17
Question Answering 0.32 0.39 0.48 0.30
Word Sense Disambiguation 0.28 0.33 0.31 0.30
Named Entity Recognition 0.36 0.38 0.34 0.31
Sentiment Analysis 0.23 0.34 0.48 0.33
Semantic Role Labeling 0.11 0.17 0.16 0.21
Dependency Parsing 0.16 0.05 0.30 0.15
Average 0.23 0.32 0.34∗ 0.25

Table 5: Results of Unnormalized Relative Utility
evaluation for the three methods and random base-
line using α = 0.5.

The reason for the relatively high scores for the
random baseline is that our process to select the
initial set of sentences eliminates many bad sen-

tences. For example, for a subset of 5 topics,
the total input set contains 1508 sentences, out of
which 922 of the sentences (60%) have at least one
factoid. This makes it highly likely to pick good
content sentences even when we are picking sen-
tences at random.

We find that the Lexrank method outperforms
other sentence selection methods on both evalua-
tion metrics. The higher performance of Lexrank
compared to Centroid is consistent with earlier
published results (Erkan and Radev, 2004). The
reason for the low performance of C-Lexrank as
compared to Lexrank on this data set can be at-
tributed to the fact that the input sentence set is
derived from a much more diverse set of papers
which can have a high diversity in lexical choice
when describing the same factoid. Thus simple
lexical similarity is not enough to find good clus-
ters in this sentence set.

The lower Unnormalized RU scores compared
to Pyramid scores indicate that we are selecting
sentences containing highly weighted factoids, but
we do not select the most informative sentences
that contain a large number of factoids. This
also shows that we select some redundant factoids,
since Unnormalized RU contains a penalty for re-
dundancy. This is again, explained by the fact
that the simple lexical diversity based model in C-
Lexrank is not able to detect the same factoids be-
ing present in two sentences. Despite these short-
comings, our system works quite well in terms
of content selection for unseen topics, Figure 2
shows the top 5 sentences for the query “Condi-
tional Random Fields”.

6 Conclusion and Future Work

In this paper, we described a pipeline for the gen-
eration of scientific surveys starting from a topic
query. Our system is divided into two components.
The first component finds the set of papers from
the corpus relevant to the query using a simple
heuristic called Restricted Expansion. The second
component selects sentences from these papers to
generate a survey of the topic. One of the main
contributions of this work is a manually annotated
data set for evaluating both the tasks. We collected
47 gold standard documents (surveys and tutori-
als) on seven topics in Natural Language Process-
ing and extracted factoids for each topic. Each
factoid is given an importance score based on the
number of gold standard documents it appears in.
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In recent years, conditional random fields (CRFs) (Lafferty et al. , 2001)
have shown success on a number of natural language processing (NLP)
tasks, including shallow parsing (Sha and Pereira, 2003), named entity
recognition (McCallum and Li, 2003) and information extraction from
research papers (Peng and McCallum, 2004).

In natural language processing, two aspects of CRFs have been
investigated sufficiently: one is to apply it to new tasks, such as named
entity recognition (McCallum and Li, 2003; Li and McCallum, 2003;
Settles, 2004), part-of-speech tagging (Lafferty et al., 2001), shallow
parsing (Sha and Pereira, 2003), and language modeling (Roark et al.,
2004); the other is to exploit new training methods for CRFs, such as
improved iterative scaling (Lafferty et al., 2001), L-BFGS (McCallum,
2003) and gradient tree boosting (Dietterich et al., 2004)

NP chunks are very similar to the ones of Ramshaw and Marcus (1995).

CRFs have shown empirical successes recently in POS tagging (Lafferty
et al. , 2001), noun phrase segmentation (Sha and Pereira, 2003) and
Chinese word segmentation (McCallum and Feng, 2003)

CRFs have been successfully applied to a number of real-world tasks,
including NP chunking (Sha and Pereira, 2003), Chinese word
segmentation (Peng et al., 2004), information extraction (Pinto et al.,
2003; Peng and McCallum, 2004), named entity identification (McCallum
and Li, 2003; Settles, 2004), and many others.

Figure 2: A sample output survey produced by
our system on the topic of “Conditional Random
Fields” using Restricted Expansion and Lexrank.

Additionally, we manually annotated 2,625 input
sentences, about 375 sentences per topic, with the
factoids extracted from the gold standard docu-
ments for each topic. Using this corpus, we pre-
sented experimental results for the performance of
our document selection component and three sen-
tence selection strategies.

Our results indicate three main directions for
future work. We plan to look at better models
of diversity in sentence selection, since methods
based on simple lexical similarity do not seem to
work well. The low factoid recall shown by low
unnormalized RU scores suggests integrating the
full text of papers with citation based summaries
which might help us find factoids such as topic
definitions that are unlikely to be present in citing
sentences. A final goal would be to improve the
readability and coherence of our system output.
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Abstract
Stanford Dependencies (SD) provide a
functional characterization of the gram-
matical relations in syntactic parse-trees.
The SD representation is useful for parser
evaluation, for downstream applications,
and, ultimately, for natural language un-
derstanding, however, the design of SD fo-
cuses on structurally-marked relations and
under-represents morphosyntactic realiza-
tion patterns observed in Morphologically
Rich Languages (MRLs). We present a
novel extension of SD, called Unified-SD
(U-SD), which unifies the annotation of
structurally- and morphologically-marked
relations via an inheritance hierarchy. We
create a new resource composed of U-SD-
annotated constituency and dependency
treebanks for the MRL Modern Hebrew,
and present two systems that can automat-
ically predict U-SD annotations, for gold
segmented input as well as raw texts, with
high baseline accuracy.

1 Introduction

Stanford Dependencies (SD) provide a functional
characterization of the grammatical relations in
syntactic trees, capturing the predicate-argument
structure of natural language sentences (de Marn-
effe et al., 2006). The SD representation proved
useful in a range of downstream tasks, includ-
ing Textual Entailments (Dagan et al., 2006) and
BioNLP (Fundel and Zimmer., 2007), and in re-
cent years SD structures have also become a de-
facto standard for parser evaluation in English (de
Marneffe and Manning, 2008a; Cer et al., 2010;
Nivre et al., 2010). Efforts now commence to-
wards extending SD for cross-lingual annotation

and evaluation (McDonald et al., 2013; Che et al.,
2012; Haverinen et al., 2011). By and large, these
efforts aim to remain as close as possible to the
original SD scheme. However, the original SD de-
sign emphasizes word-tokens and configurational
structures, and consequently, these schemes over-
look properties and realization patterns observed
in a range of languages known as Morphologically
Rich Languages (MRLs) (Tsarfaty et al., 2010).

MRLs use word-level affixes to express gram-
matical relations that are typically indicated by
structural positions in English. By virtue of
word-level morphological marking, word-order in
MRLs may be flexible. MRLs have been a fo-
cal point for the parsing community due to the
challenges that these phenomena pose for systems
originally developed for English.1 Here we argue
that the SD hierarchy and design principles simi-
larly emphasize English-like structures and under-
represent morphosyntactic argument-marking al-
ternatives. We define an extension of SD, called
Unified-SD (U-SD), which unifies the annotation
of structurally and morphologically marked rela-
tions via an inheritance hierarchy. We extend SD
with a functional branch, and provide a principled
treatment of morpho-syntactic argument marking.

Based on the U-SD scheme we create a new
parallel resource for the MRL Modern Hebrew,
whereby aligned constituency and dependency
trees reflect equivalent U-SD annotations (cf.
Rambow (2010)) for the same set of sentences. We
present two systems that can automatically learn
U-SD annotations, from the dependency and the
constituency versions respectively, delivering high
baseline accuracy on the prediction task.

1See also the SPMRL line of workshops https://
sites.google.com/site/spsemmrl2012/ and the
MT-MRL workshop http://cl.haifa.ac.il/MT/.
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2 The Challenge: SD for MRLs

Stanford Dependencies (SD) (de Marneffe et al.,
2006; de Marneffe and Manning, 2008b) deliver a
functional representation of natural language sen-
tences, inspired by theoretical linguistic work such
as studies on Relational Grammars (Postal and
Perlmutter, 1977), Lexical Functional Grammars
(LFG) (Bresnan, 2000) and the PARC dependency
scheme (King et al., 2003). At the same time, the
scheme is designed with end-users in mind, allow-
ing them to utilize parser output in a form which
is intuitively interpretable and easily processed.

SD basic trees represent sentences as binary
relations between word tokens. These relations
are labeled using traditional grammatical concepts
(subject, object, modifier) that are arranged into an
inheritance hierarchy (de Marneffe and Manning,
2008a, Sec. 3). There are different versions of SD
annotations: the basic SD scheme, which anno-
tates surface dependency relations as a tree span-
ning all word tokens in the sentence, and the col-
lapsed SD version, in which function words (such
as prepositions) are collapsed and used for speci-
fying a direct relation between content words.

The SD scheme defines a core set of labels
and principles which are assumed to be useful
for different languages. However, a close exam-
ination of the SD label-set and inheritance hier-
archy reveals that some of its design principles
are geared towards English-like (that is, configu-
rational) phenomena, and conflict with basic prop-
erties of MRLs. Let us list three such design prin-
ciples and outline the challenges that they pose.

2.1. SD relate input-tokens. In MRLs, substan-
tial information is expressed as word affixes. One
or more morphemes may be appended to a content
word, and several morphemes may be contained in
a single space-delimited token. For example, the
Hebrew token wkfraiti2 in (1) includes the mor-
phemes w (and), kf (when) and raiti (saw); the lat-
ter segment is a content word, and the former two
are functional morphemes.

(1) wkfraiti
and-when-saw.1st.Singular

at
acc

hsrj
the-movie

hifn
the-old

w/and-1.1 kf/when-1.2 raiti/saw-1.3
at/acc-2 h/the-3.1 srj/movie-3.2 h/the-4.1
ifn/old-4.2

2We use the transliteration of Sima’an et al. (2001).

(a) S

NP-sbj

”John”

VP

V-prd

”loves”

NP-obj

”Mary”

(b) S

NP-sbj

”dan”
Dan

V-prd

”ohev”
loves

NP-obj

”et-dana”
ACC-Dana

Figure 1: English (a) and Hebrew (b) PS trees dec-
orated with function labels as dash features.

Naı̈vely taking input tokens as words fails to cap-
ture meaningful relations between morphological
segments internal to space-delimited tokens.

2.2. SD label structurally-marked relations.
Configurational languages like English use func-
tion words such as prepositions and auxiliaries
to indicate relations between content words and
to mark properties of complete structures. In
MRLs, such relations and properties may be indi-
cated by word-level morphological marking such
as case (Blake, 1994) and agreement (Corbett,
2006). In (1), for instance, the case marker at indi-
cates an accusative object relation between “see”
and “movie”, to be distinguished from, e.g, a da-
tive object. Moreover, the agreement in (1) on
the definite morpheme signals that “old” modifies
“movie”. While the original SD scheme label-set
covers function words (e.g. auxpass, expl, prep),
it misses labels for bound morphemes that mark
grammatical relations across languages (such as
accusative, dative or genitive). Explicit labeling of
such relational morphemes will allow us to benefit
from the information that they provide.

2.3. SD relations may be inferred using struc-
tural cues. SD relations are extracted from dif-
ferent types of trees for the purpose of, e.g., cross-
framework evaluation (Cer et al., 2010). Inso-
far, recovering SD relations from phrase-structure
(PS) trees have used a range of structural cues
such as positions and phrase-labels (see, for in-
stance, the software of de Marneffe and Manning
(2008a)). In MRLs, positions and phrase types
may not suffice for recovering SD relations: an
NP under S in Hebrew, for instance, may be a
subject or an object, as shown in Figure 1, and
morphological information then determines the
function of these constituents. Automatically in-
ferring predicate-argument structures across tree-
banks thus must rely on both structural and mor-
phological marking, calling for a single annotation
scheme that inter-relate the marking alternatives.
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gf

root hd
prd
exist

nhd
ghd

dep

arg

sbj obj comp

mod conj

func

marker

prep case
acc gen

det
def

aux
passaux cop

sub

rel complmn cc

punct

Figure 3: The Unified SD (U-SD) Ontology. The architectural changes from the original SD scheme: (i)
added a hd branch, for implicit head labels; (ii) added a func branch where all functional elements (prep,
aux, cc, rel) as well as morphological markers are moved under; (iii) there is a clear separation between
open-class categories (which fall under hd, dep), closed class elements (under func) and non-words (root
and punct). Boldface elements are new to U-SD. Italic branches spell out further as in the original SD.

(a) ROOT

S-root

V-prd

”raiti”

NP-obj

ACC-acc

”at”

NP-hd

NP-hd

H-def

”h”

NN-hd

”srj”

ADJP-mod

H-def

”h”

ADJ-hd

”ifn”

(b) ROOT

root

”raiti”/V

obj

”at”/ACC

hd

”srj”/NN

def

h/H

mod

”ifn”/ADJ

def

h/H

(c) ROOT

root

”raiti”/V

ACC-obj

”srj”/NN.DEF

mod

”ifn”/ADJ.DEF

Figure 2: Sample U-SD Trees for sentence (1).
(a) a phrase-structure tree decorated with U-SD la-
bels, (b) a basic U-SD tree, and (c) a collapsed U-
SD tree, where functional nodes are consumed.

3 The Proposal: Unified-SD (U-SD)

To address these challenges, we propose an exten-
sion of SD called Unified-SD (U-SD) which an-
notates relations between morphological segments
and reflects different types of argument-marking
patterns. The SD ontology is re-organized and ex-
tended to allow us to annotate morphologically-
and structurally-marked relations alike.

Preliminaries. We assume thatM(w1...wn) =
s1....sm is a morphological analysis function that
identifies all morphological segments of a sen-
tence S = w1...wn. The U-SD scheme provides
the syntactic representation of S by means of a set
of triplets (l, si, sj) consisting of a label l, a head
si and a dependent sj (i 6= j). The segments are
assumed to be numbered x.y where x is the posi-
tion of the input token, and y is the position of the
segment inside the token. The segmentation num-
bering is demonstrated in Example (1).

The U-SD Hierarchy. Figure 3 shows our pro-
posed U-SD hierarchy. Everything in the ontol-
ogy is of type gf (grammatical function). We
define five ontological sub-types: root, hd, dep,
func, punct. The root marks a special root de-
pendency. The dep branch is used for depen-
dent types, and it retains much of the structure in
the original SD scheme (separating sbj types, obj
types, mod types, etc.). The new func branch con-
tains argument-marking elements, that is, function
words and morphemes that play a role in indicat-
ing properties or grammatical relations in the syn-
tactic representation. These functional elements
may be of types marker (prepositions and case),
aux (auxiliary verbs and copular elements) and sub
(subordination/conjunction markers). All inher-
ited func elements may be consumed (henceforth,
collapsed) in order to infer grammatical proper-
ties and relations between content words. Head
types are implicit in dependency triplets, however,
when decorating PS trees with dependency labels
as dash features or edge features (as in TigerXML
formats (Brants et al., 2002) or via unification-
based formalisms) both heads and dependents are
labeled with their grammatical types (see Fig-
ure 2(a)). The hd branch extends the scheme with
an inventory of argument-taking elements, to be
used when employing SD inside constituency tree-
banks. The punct branch is reserved for punctu-
ation, prosody and other non-verbal speech acts.
The complete ontology is given in the appendix.

Annotation Guidelines. Anderson (1992) de-
lineates three kinds of properties that are realized
by morphology: structural, inherent, and agree-
ment properties. Structural properties (e.g., case)
are marked on a content word to indicate its rela-
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Gold:
Segments Functions

DEP 1.00 0.8475
RR 1.00 0.8984

Predicted:
Segments Functions

DEP 1.00 0.8349
RR 1.00 0.8559

Raw:
Segments Functions

DEP 0.9506 0.7817
RR 0.9603 0.8130

Table 1: Inferring U-SD trees using different frameworks. All numbers report labeled TedEval accuracy.

tion to other parts of the sentence. Inherent prop-
erties (gender, number, etc.) indicate inherent se-
mantic properties of nominals. Agreement prop-
erties indicate the semantic properties of nominals
on top of other elements (verbs, adjectives, etc.),
in order to indicate their relation to the nominals.

We define annotation guidelines that reflect
these different properties. Structural morphemes
(case) connect words in the arc-structure, linking
a head to its semantic dependent, like the case
marker “at”-ACC in Figure 2(b). Inherent / agree-
ment properties are annotated as dependents of the
content word they add properties to, for instance,
the prefixes def in Figure 2(b) hang under the mod-
ified noun and adjective.

Collapsed U-SD structures interpret func ele-
ments in order to refine the representation of re-
lations between content words. Case markers can
be used for refining the relation between the con-
tent words they connect by labeling their direct re-
lation, much like prep in the original SD scheme
(see, e.g., the ACC-obj in Figure 2c). Inher-
ent/agreement features are in fact features of their
respective head word (as the X.DEF nodes in Fig-
ure 2c).3 Auxiliaries may further be used to add
tense/aspect to the main predicate, and subordina-
tors may propagate information inside the struc-
ture (much like conjunction is propagated in SD).

Universal Aspects of U-SD. The revised U-
SD ontology provides a typological inventory
of labels that describe different types of argu-
ments (dep), argument-taking elements (hd), and
argument-marking elements (func) in the grammar
of different languages. Abstract (universal) con-
cepts reside high in the hierarchy, and more spe-
cific distinctions, e.g., morphological markers of
particular types, are daughters within more spe-
cific branches. Using U-SD for evaluating mono-
lingual parsers is best done with the complete label
set relevant for that language. For cross-language
evaluation, we can limit the depth of the hierar-
chy, and convert the more specific notions to their
most-specific ancestor in the evaluation set.

3Technically, this is done by deleting a line adding a prop-
erty to the morphology column in the CoNLL format.

4 Automatic Annotation of U-SD Trees

Can U-SD structures be automatically predicted?
For MRLs, this requires disambiguating both mor-
phological and syntactic information. Here we
employ the U-SD scheme for annotating mor-
phosyntactic structures in Modern Hebrew, and
use these resources to train two systems that pre-
dict U-SD annotations for raw texts.4

Data. We use the Modern Hebrew treebank
(Sima’an et al., 2001), a corpus of 6220 sentences
morphologically segmented and syntactically an-
alyzed as PS trees. We infer the function label
of each node in the PS trees based on the mor-
phological features, syntactic environment, and
dash-feature (if exist), using deterministic gram-
mar rules (Glinert, 1989). Specifically, we com-
pare each edge with a set of templates, and, once
finding a template that fits the morphological and
syntactic profile of an edge, we assign functions
to all daughters. This delivers PS trees where each
node is annotated with a U-SD label (Figure 2a).
At a second stage we project the inferred labels
onto the arcs of the unlabeled dependency trees of
Goldberg (2011), using the tree unification opera-
tion of Tsarfaty et al. (2012a). The result is a de-
pendency tree aligned with the constituency tree
where dependency arcs are labeled with the same
function as the respective span in the PS tree.5

Systems. We present two systems that predict
U-SD labels along with morphological and syn-
tactic information, using [DEP], a dependency
parser (Nivre et al., 2007), and [RR], a Relational-
Realizational (RR) constituency parser (Tsarfaty
and Sima’an, 2008). DEP is trained directly on the
dependency version of the U-SD resource. Since
it cannot predict its own segmentation, automatic
segments and tags are predicted using the system
of Adler and Elhadad (2006). The constituency-

4Despite significant advances in parsing Hebrew, as of yet
there has been no functional evaluation of Hebrew parsers.
E.g., Goldberg and Elhadad (2010) evaluate on unlabeled de-
pendencies, Tsarfaty (2010) evaluate on constituents. This is
largely due to the lack of standard resources and guidelines
for annotating functional structures in such a language.

5The resources can be downloaded at http://www.
tsarfaty.com/heb-sd/.
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based model is trained on U-SD-labeled RR trees
using Petrov et al. (2006). We use the lattice-based
extension of Goldberg and Elhadad (2011) to per-
form joint segmentation and parsing. We evalu-
ate three input scenarios: [Gold] gold segmen-
tation and gold tags, [Predicted] gold segments,
and [Raw] raw words. We evaluate parsing results
with respect to basic U-SD trees, for 42 labels. We
use TedEval for joint segmentation-tree evaluation
(Tsarfaty et al., 2012b) and follow the cross-parser
evaluation protocol of Tsarfaty et al. (2012a).

Results. Since this work focuses on creating a
new resource, we report results on the standard
devset (Table 1). The gold input scenarios ob-
tain higher accuracy on function labels in all cases,
since gold morphological analysis delivers disam-
biguated functions almost for free. Constituency-
based RR structures obtain better accuracy on U-
SD annotations than the respective dependency
parser. All in all, the U-SD seed we created allows
us to infer rich interpretable annotations automati-
cally for raw text, using either a dependency parser
or a constituency parser, in good accuracy.

5 Conclusion
The contribution of this paper is three-fold. We of-
fer a principled treatment of annotating MRLs via
a Unified-SD scheme, which we design to be ap-
plicable to many languages. We deliver new U-SD
annotated resources for the MRL Modern Hebrew,
in different formal types. We finally present two
systems that automatically predict U-SD annota-
tions for raw texts. These structures are intended
to serve semantic applications. We further intend
to use this scheme and computational frameworks
to serve a wide cross-parser investigation on infer-
ring functional structures across languages.

Appendix: The U-SD Ontology
The list in (2) presents the complete U-SD ontol-
ogy. The hierarchy employs and extends the SD
label set of de Marneffe et al. (2006). For read-
ability, we omit here various compound types un-
der mod, including nn, mwe, predet and preconj.
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(2) gf root - root
hd - head (governor, argument-taking)

prd - verbal predicate
exist - head of an existential phrase

nhd - head of a nominal phrase
ghd - genitive head of a nominal phrase

dep - dependent (governed, or an argument)
arg - argument

agent - agent
comp - complement

acomp - adjectival complement
ccomp - comp clause with internal sbj
xcomp - comp clause with external sbj
pcomp - comp clause of a preposition

obj - object
dobj - direct object
gobj - genitive object
iobj - indirect object
pobj - object of a preposition

subj - subject
expl - expletive subject
nsubj - nominal subject
— nsubjpass - passive nominal sbj
csubj - clausal subject
— csubjpass - passive clausal sbj

mod - modifier
appos - apposition/parenthetical
abbrev - abbreviation
amod - adjectival modifier
advmod - adverbial modifier
— neg - negative modifier
prepmod - prepositional modifier
— possmod - possession modifier
— tmod - temporal modifier
rcmod - relative clause modifier
infmod - infinitival modifier
nummod - numerical modifier

parataxis - ”side-by-side”, interjection
conj - conjuct

func - functional (argument marking)
marker - nominal-marking elements

prep - preposition
case - case marker
— acc - accusative case
— dat - dative case
— gen - genitive case
— nom - nominative case
det - determiner
— def - definite marker
— dem - demonstrative

sub - phrase-marking elements
complm - introducing comp phrase
rel - introducing relative phrase
cc - introducing conjunction
mark - introducing an advb phrase

aux - auxiliary verb or a feature-bundle
auxpass - passive auxiliary
cop - copular element
modal - modal verb
qaux - question auxiliary

punct - punctuation
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Abstract

In this paper, we propose a simple and
effective approach to domain adaptation
for dependency parsing. This is a fea-
ture augmentation approach in which the
new features are constructed based on sub-
tree information extracted from the auto-
parsed target domain data. To demon-
strate the effectiveness of the proposed ap-
proach, we evaluate it on three pairs of
source-target data, compared with sever-
al common baseline systems and previous
approaches. Our approach achieves signif-
icant improvement on all the three pairs of
data sets.

1 Introduction

In recent years, several dependency parsing algo-
rithms (Nivre and Scholz, 2004; McDonald et al.,
2005a; McDonald et al., 2005b; McDonald and
Pereira, 2006; Carreras, 2007; Koo and Collins,
2010; Ma and Zhao, 2012) have been proposed
and achieved high parsing accuracies on several
treebanks of different languages. However, the
performance of such parsers declines when train-
ing and test data come from different domain-
s. Furthermore, the manually annotated treebanks
that these parsers rely on are highly expensive to
create. Therefore, developing dependency pars-
ing algorithms that can be easily ported from one
domain to another—say, from a resource-rich do-
main to a resource-poor domain—is of great im-
portance.

Several approaches have been proposed for the
task of parser adaptation. McClosky et at. (2006)
successfully applied self-training to domain adap-
tation for constituency parsing using the rerank-
ing parser of Charniak and Johnson (2005). Re-
ichart and Rappoport (2007) explored self-training
when the amount of the annotated data is small

and achieved significant improvement. Zhang and
Wang (2009) enhanced the performance of depen-
dency parser adaptation by utilizing a large-scale
hand-crafted HPSG grammar. Plank and van No-
ord (2011) proposed a data selection method based
on effective measures of domain similarity for de-
pendency parsing.

There are roughly two varieties of domain adap-
tation problem—fully supervised case in which
there are a small amount of labeled data in the
target domain, and semi-supervised case in which
there are no labeled data in the target domain. In
this paper, we present a parsing adaptation ap-
proach focused on the fully supervised case. It is a
feature augmentation approach in which the new
features are constructed based on subtree infor-
mation extracted from the auto-parsed target do-
main data. For evaluation, we run experiments
on three pairs of source-target domains—WSJ-
Brown, Brown-WSJ, and WSJ-Genia. Our ap-
proach achieves significant improvement on al-
l these data sets.

2 Our Approach for Parsing Adaptation

Our approach is inspired by Chen et al. (2009)’s
work on semi-supervised parsing with addition-
al subtree-based features extracted from unlabeled
data and by the feature augmentation method pro-
posed by Daume III (2007). In this section, we
first summarize Chen et al.’s work and explain
how we extend that for domain adaptation. We
will then highlight the similarity and difference
between our work and Daume’s method.

2.1 Semi-supervised parsing with
subtree-based features

One of the most well-known semi-supervised
parsing methods is self-training, where a parser
trained from the labeled data set is used to parse
unlabeled data, and some of those auto-parsed data
are added to the labeled data set to retrain the pars-
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ing models. Chen et al. (2009)’s approach differs
from self-training in that partial information (i.e.,
subtrees), instead of the entire trees, from the auto-
parsed data is used to re-train the parsing models.

A subtree is a small part of a dependency
tree. For example, a first-order subtree is a single
edge consisting of a head and a dependent, and a
second-order sibling subtree is one that consists of
a head and two dependents. In Chen et al. (2009),
they first extract all the subtrees in auto-parsed da-
ta and store them in a list Lst. Then they count
the frequency of these subtrees and divide them
into three groups according to their levels of fre-
quency. Finally, they construct new features for
the subtrees based on which groups they belongs
to and retrain a new parser with feature-augmented
training data.1

2.2 Parser adaptation with subtree-based
Features

Chen et al. (2009)’s work is for semi-supervised
learning, where the labeled training data and the
test data come from the same domain; the subtree-
based features collected from auto-parsed data are
added to all the labeled training data to retrain the
parsing model. In the supervised setting for do-
main adaptation, there is a large amount of labeled
data in the source domain and a small amount of
labeled data in the target domain. One intuitive
way of applying Chen’s method to this setting is to
simply take the union of the labeled training data
from both domains and add subtree-based features
to all the data in the union when re-training the
parsing model. However, it turns out that adding
subtree-based features to only the labeled training
data in the target domain works better. The steps
of our approach are as follows:

1. Train a baseline parser with the small amount
of labeled data in the target domain and use
the parser to parse the large amount of unla-
beled sentences in the target domain.

2. Extract subtrees from the auto-parsed data
and add subtree-based features to the labeled
training data in the target domain.

3. Retrain the parser with the union of the la-
beled training data in the two domains, where
the instances from the target domain are aug-
mented with the subtree-based features.

1If a subtree does not appear in Lst, it falls to the fourth
group for “unseen subtrees”.

To state our feature augmentation approach
more formally, we use X to denote the input s-
pace, and Ds and Dt to denote the labeled da-
ta in the source and target domains, respective-
ly. Let X

′
be the augmented input space, and Φs

and Φt be the mappings from X to X
′

for the in-
stances in the source and target domains respec-
tively. The mappings are defined by Eq 1, where
0 =< 0, 0, . . . , 0 >∈ X is the zero vector.

Φs(xorg) = < xorg,0 >

Φt(xorg) = < xorg, xnew > (1)

Here, xorg is the original feature vector in X ,
and xnew is the vector of the subtree-based fea-
tures extracted from auto-parsed data of the target
domain. The subtree extraction method used in
our approach is the same as in (Chen et al., 2009)
except that we use different thresholds when di-
viding subtrees into three frequency groups: the
threshold for the high-frequency level is TOP 1%
of the subtrees, the one for the middle-frequency
level is TOP 10%, and the rest of subtrees belong
to the low-frequency level. These thresholds are
chosen empirically on some development data set.

The idea of distinguishing the source and tar-
get data is similar to the method in (Daume III,
2007), which did feature augmentation by defin-
ing the following mappings:2

Φs(xorg) = < xorg,0 >

Φt(xorg) = < xorg,xorg > (2)

Daume III showed that differentiating features
from the source and target domains improved per-
formance for multiple NLP tasks. The difference
between that study and our approach is that our
new features are based on subtree information in-
stead of copies of original features. Since the new
features are based on the subtree information ex-
tracted from the auto-parsed target data, they rep-
resent certain properties of the target domain and
that explains why adding them to the target data
works better than adding them to both the source
and target data.

3 Experiments

For evaluation, we tested our approach on three
pairs of source-target data and compared it with

2The mapping in Eq 2 looks different from the one pro-
posed in (Daume III, 2007), but it can be proved that the two
are equivalent.
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several common baseline systems and previous
approaches. In this section, we first describe the
data sets and parsing models used in each of the
three experiments in section 3.1. Then we pro-
vide a brief introduction to the systems we have
reimplemented for comparison in section 3.2. The
experimental results are reported in section 3.3.

3.1 Data and Tools

In the first two experiments, we used the Wal-
l Street Journal (WSJ) and Brown (B) portion-
s of the English Penn TreeBank (Marcus et al.,
1993). In the first experiment denoted by “WSJ-
to-B”, WSJ corpus is used as the source domain
and Brown corpus as the target domain. In the
second experiment, we use the reverse order of
the two corpora and denote it by “B-to-WSJ”. The
phrase structures in the treebank are converted into
dependencies using Penn2Malt tool3 with the stan-
dard head rules (Yamada and Matsumoto, 2003).

For the WSJ corpus, we used the standard data
split: sections 2-21 for training and section 23 for
test. In the experiment of B-to-WSJ, we random-
ly selected about 2000 sentences from the training
portion of WSJ as the labeled data in the target do-
main. The rest of training data in WSJ is regarded
as the unlabeled data of the target domain.

For Brown corpus, we followed Reichart and
Rappoport (2007) for data split. The training and
test sections consist of sentences from all of the
genres that form the corpus. The training portion
consists of 90% (9 of each 10 consecutive sen-
tences) of the data, and the test portion is the re-
maining 10%. For the experiment of WSJ-to-B,
we randomly selected about 2000 sentences from
training portion of Brown and use them as labeled
data and the rest as unlabeled data in the target do-
main.

In the third experiment denoted by ’“WSJ-to-
G”, we used WSJ corpus as the source domain and
Genia corpus (G)4 as the target domain. Following
Plank and van Noord (2011), we used the train-
ing data in CoNLL 2008 shared task (Surdeanu
et al., 2008) which are also from WSJ sections
2-21 but converted into dependency structure by
the LTH converter (Johansson and Nugues, 2007).
The Genia corpus is converted to CoNLL format
with LTH converter, too. We randomly selected

3http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html
4Genia distribution in Penn Treebank format is avail-

able at http://bllip.cs.brown.edu/download/genia1.0-division-
rel1.tar.gz

Source Target
training training unlabeled test

WSJ-to-B 39,832 2,182 19,632 2,429
B-to-WSJ 21,814 2,097 37,735 2,416
WSJ-to-G 39,279 1,024 13,302 1,360

Table 1: The number of sentences for each data set
used in our experiments

about 1000 sentences from the training portion of
Genia data and use them as the labeled data of the
target domain, and the rest of training data of Ge-
nia as the unlabeled data of the target domain. Ta-
ble 1 shows the number of sentences of each data
set used in the experiments.

The dependency parsing models we used in this
study are the graph-based first-order and second-
order sibling parsing models (McDonald et al.,
2005a; McDonald and Pereira, 2006). To be more
specific, we use the implementation of MaxPars-
er5 with 10-best MIRA (Crammer et al., 2006; M-
cDonald, 2006) learning algorithm and each pars-
er is trained for 10 iterations. The feature sets of
first-order and second-order sibling parsing mod-
els used in our experiments are the same as the
ones in (Ma and Zhao, 2012). The input to Max-
Parser are sentences with Part-of-Speech tags; we
use gold-standard POS tags in the experiments.

Parsing accuracy is measured with unlabeled at-
tachment score (UAS) and the percentage of com-
plete matches (CM) for the first and second experi-
ments. For the third experiment, we also report la-
beled attachment score (LAS) in order to compare
with the results in (Plank and van Noord, 2011).

3.2 Comparison Systems
For comparison, we re-implemented the follow-
ing well-known baselines and previous approach-
es, and tested them on the three data sets:

SrcOnly: Train a parser with the labeled data
from the source domain only.

TgtOnly: Train a parser with the labeled data
from the target domain only.

Src&Tgt: Train a parser with the labeled data
from the source and target domains.

Self-Training: Following Reichart and Rap-
poport (2007), we train a parser with the
union of the source and target labeled data,
parse the unlabeled data in the target domain,

5http://sourceforge.net/projects/maxparser/
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add the entire auto-parsed trees to the man-
ually labeled data in a single step without
checking their parsing quality, and retrain the
parser.

Co-Training: In the co-training system, we first
train two parsers with the labeled data from
the source and target domains, respectively.
Then we use the parsers to parse unlabeled
data in the target domain and select sentences
for which the two parsers produce identical
trees. Finally, we add the analyses for those
sentences to the union of the source and tar-
get labeled data to retrain a new parser. This
approach is similar to the one used in (Sagae
and Tsujii, 2007), which achieved the highest
scores in the domain adaptation track of the
CoNLL 2007 shared task (Nivre et al., 2007).

Feature-Augmentation: This is the approach
proposed in (Daume III, 2007).

Chen et al. (2009): The algorithm has been ex-
plained in Section 2.1. We use the union of
the labeled data from the source and target
domains as the labeled training data. The
unlabeled data needed to construct subtree-
based features come from the target domain.

Plank and van Noord (2011): This system per-
forms data selection on a data pool consisting
of large amount of labeled data to get a train-
ing set that is similar to the test domain. The
results of the system come from their paper,
not from the reimplementation of their sys-
tem.

Per-corpus: The parser is trained with the large
training set from the target domain. For ex-
ample, for the experiment of WSJ-to-B, all
the labeled training data from the Brown cor-
pus is used for training, including the subset
of data which are treated as unlabeled in our
approach and other comparison systems. The
results serve as an upper bound of domain
adaptation when there is a large amount of
labeled data in the target domain.

3.3 Results
Table 2 illustrates the results of our approach with
the first-order parsing model in the first and sec-
ond experiments, together with the results of the
comparison systems described in section 3.2. The

WSJ-to-B B-to-WSJ
UAS CM UAS CM

SrcOnlys 88.8 43.8 86.3 26.5
TgtOnlyt 86.6 38.8 88.2 29.3
Src&Tgts,t 89.1 44.3 89.4 31.2
Self-Trainings,t 89.2 45.1 89.8 32.1
Co-Trainings,t 89.2 45.1 89.8 32.7
Feature-Augs,t 89.1 45.1 89.8 32.8
Chen (2009)s,t 89.3 45.0 89.7 31.8
this papers,t 89.5 45.5 90.2 33.4
Per-corpusT 89.9 47.0 92.7 42.1

Table 2: Results with the first-order parsing model
in the first and second experiments. The super-
script indicates the source of labeled data used in
training.

WSJ-to-B B-to-WSJ
UAS CM UAS CM

SrcOnlys 89.8 47.3 88.0 30.4
TgtOnlyt 87.7 42.2 89.7 34.2
Src&Tgts,t 90.2 48.2 90.9 36.6
Self-Trainings,t 90.3 48.8 91.0 37.1
Co-Trainings,t 90.3 48.5 90.9 38.0
Feature-Augs,t 90.0 48.4 91.0 37.4
Chen (2009)s,t 90.3 49.1 91.0 37.6
this papers,t 90.6 49.6 91.5 38.8
Per-corpusT 91.1 51.1 93.6 47.9

Table 3: Results with the second-order sibling
parsing model in the first and second experiments.

results with the second-order sibling parsing mod-
el is shown in Table 3. The superscript s, t and T
indicates from which domain the labeled data are
used in training: tag s refers to the labeled data in
the source domain, tag t refers to the small amount
of labeled data in the target domain, and tag T in-
dicates that all the labeled training data from the
target domain, including the ones that are treated
as unlabeled in our approach, are used for training.

Table 4 shows the results in the third experimen-
t with the first-order parsing model. We also in-
clude the result from (Plank and van Noord, 2011),
which use the same parsing model as ours. Note
that this result is not comparable with other num-
bers in the table as it uses a larger set of labeled
data, as indicated by the † superscript.

All three tables show that our system out-
performs the comparison systems in all three
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WSJ-to-G
UAS LAS

SrcOnlys 83.8 82.0
TgtOnlyt 87.0 85.7
Src&Tgts,t 87.2 85.9
Self-Trainings,t 87.3 86.0
Co-Trainings,t 87.3 86.0
Feature-Augs,t 87.9 86.5
Chen (2009)s,t 87.5 86.2
this papers,t 88.4 87.1
Plank (2011)† - 86.8
Per-corpusT 90.5 89.7

Table 4: Results with first-order parsing model in
the third experiment. “Plank (2011)” refers to the
approach in Plank and van Noord (2011).

experiments.6 The improvement of our ap-
proach over the feature augmentation approach
in Daume III (2007) indicates that adding subtree-
based features provides better results than making
several copies of the original features. Our system
outperforms the system in (Chen et al., 2009), im-
plying that adding subtree-based features to only
the target labeled data is better than adding them
to the labeled data in both the source and target
domains.

Considering the three steps of our approach in
Section 2.2, the training data used to train the pars-
er in Step 1 can be from the target domain only or
from the source and target domains. Similarly, in
Step 3 the subtree-based features can be added to
the labeled data from the target domain only or
from the source and target domains. Therefore,
there are four combinations. Our approach is the
one that uses the labeled data from the target do-
main only in both steps, and Chen’s system uses
labeled data from the source and target domains in
both steps. Table 5 compares the performance of
the final parser in the WSJ-to-Genia experimen-
t when the parser is created with one of the four
combinations. The column label and the row label
indicate the choice in Step 1 and 3, respectively.
The table shows the choice in Step 1 does not have
a significant impact on the performance of the fi-
nal models; in contrast, the choice in Step 3 does
matter— adding subtree-based features to the la-
beled data in the target domain only is much better
than adding features to the data in both domains.

6The results of Per-corpus are better than ours but it uses
a much larger labeled training set in the target domain.

TgtOnly Src&Tgt
TgtOnly 88.4/87.1 88.4/87.1
Src&Tgt 87.6/86.3 87.5/86.2

Table 5: The performance (UAS/LAS) of the fi-
nal parser in the WSJ-to-Genia experiment when
different training data are used to create the final
parser. The column label and row label indicate
the choice of the labeled data used in Step 1 and 3
of the process described in Section 2.2.

4 Conclusion

In this paper, we propose a feature augmentation
approach for dependency parser adaptation which
constructs new features based on subtree informa-
tion extracted from auto-parsed data from the tar-
get domain. We distinguish the source and target
domains by adding the new features only to the
data from the target domain. The experimental re-
sults on three source-target domain pairs show that
our approach outperforms all the comparison sys-
tems.

For the future work, we will explore the po-
tential benefits of adding other types of features
extracted from unlabeled data in the target do-
main. We will also experiment with various ways
of combining our current approach with other do-
main adaptation methods (such as self-training
and co-training) to further improve system perfor-
mance.
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Abstract
This paper presents an effective algorith-
m of annotation adaptation for constituen-
cy treebanks, which transforms a treebank
from one annotation guideline to anoth-
er with an iterative optimization proce-
dure, thus to build a much larger treebank
to train an enhanced parser without in-
creasing model complexity. Experiments
show that the transformed Tsinghua Chi-
nese Treebank as additional training da-
ta brings significant improvement over the
baseline trained on Penn Chinese Tree-
bank only.

1 Introduction

Annotated data have become an indispensable
resource for many natural language processing
(NLP) applications. On one hand, the amount of
existing labeled data is not sufficient; on the other
hand, however there exists multiple annotated da-
ta with incompatible annotation guidelines for the
same NLP task. For example, the People’s Daily
corpus (Yu et al., 2001) and Chinese Penn Tree-
bank (CTB) (Xue et al., 2005) are publicly avail-
able for Chinese segmentation.

An available treebank is a major resource for
syntactic parsing. However, it is often a key bottle-
neck to acquire credible treebanks. Various tree-
banks have been constructed based on differen-
t annotation guidelines. In addition to the most
popular CTB, Tsinghua Chinese Treebank (TC-
T) (Zhou, 2004) is another real large-scale tree-
bank for Chinese constituent parsing. Figure 1 il-
lustrates some differences between CTB and TCT
in grammar category and syntactic structure. Un-
fortunately, these heterogeneous treebanks can not

be directly merged together for training a parsing
model. Such divergences cause a great waste of
human effort. Therefore, it is highly desirable to
transform a treebank into another compatible with
another annotation guideline.

In this paper, we focus on harmonizing het-
erogeneous treebanks to improve parsing perfor-
mance. We first propose an effective approach to
automatic treebank transformation from one an-
notation guideline to another. For convenience
of reference, a treebank with our desired anno-
tation guideline is named as target treebank, and
a treebank with a differtn annotation guideline is
named as source treebank. Our approach proceeds
in three steps. A parser is firstly trained on source
treebank. It is used to relabel the raw sentences
of target treebank, to acquire parallel training da-
ta with two heterogeneous annotation guidelines.
Then, an annotation transformer is trained on the
parallel training data to model the annotation in-
consistencies. In the last step, a parser trained on
target treebank is used to generate k-best parse
trees with target annotation for source sentences.
Then the optimal parse trees are selected by the an-
notation transformer. In this way, the source tree-
bank is transformed to another with our desired
annotation guideline. Then we propose an op-
timization strategy of iterative training to further
improve the transformation performance. At each
iteration, the annotation transformation of source-
to-target and target-to-source are both performed.
The transformed treebank is used to provide better
annotation guideline for the parallel training da-
ta of next iteration. As a result, the better paral-
lel training data will bring an improved annotation
transformer at next iteration.

We perform treebank transformation from TC-
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Figure 1: Example heterogeneous trees with TCT (left) and CTB (rigth) annotation guidelines.

T to CTB, in order to obtain additional tree-
bank to improve a parser. Experiments on Chi-
nese constituent parsing show that, the iterative
training strategy outperforms the basic annotation
transformation baseline. With addidional trans-
formed treebank, the improved parser achieves an
F-measure of 0.95% absolute improvement over
the baseline parser trained on CTB only.

2 Automatic Annotation Transformation

In this section, we present an effective approach
that transforms the source treebank to another
compatible with the target annotation guideline,
then describe an optimization strategy of itera-
tive training that conducts several rounds of bidi-
rectional annotation transformation and improves
the transformation performance gradually from a
global view.

2.1 Principle for Annotation Transformation
In training procedure, the source parser is used to
parse the sentences in the target treebank so that
there are k-best parse trees with the source anno-
tation guideline and one gold tree with the target
annotation guideline for each sentence in the tar-
get treebank. This parallel data is used to train
a source-to-target tree transformer. In transfor-
mation procedure, the source k-best parse trees
are first generated by a parser trained on the tar-
get treebank. Then the optimal source parse trees
with target annotation are selected by the annota-
tion transformer with the help of gold source parse
trees. By combining the target treebank with the
transformed source treebank, it can improve pars-
ing accuracy using a parser trained on the enlarged
treebank.

Algorithm 1 shows the training procedure of
treebank annotation transformation. treebanks

and treebankt denote the source and target tree-
bank respectively. parsers denotes the source
parser. transformers→t denotes the annota-
tion transformer. treebankn

m denotes m treebank
re-labeled with n annotation guideline. Func-
tion TRAIN invokes the Berkeley parser (Petro-
v et al., 2006; Petrov and Klein, 2007) to
train the constituent parsing models. Function
PARSE generates k-best parse trees. Function
TRANSFORMTRAIN invokes the perceptron algo-
rithm (Collins, 2002) to train a discriminative an-
notation transformer. Function TRANSFORM se-
lects the optimal transformed parse trees with the
target annotation.

2.2 Learning the Annotation Transformer

To capture the transformation information from
the source treebank to the target treebank, we use
the discriminative reranking technique (Charniak
and Johnson, 2005; Collins and Koo, 2005) to
train the annotation transformer and to score k-
best parse trees with some heterogeneous features.

In this paper, the averaged perceptron algorithm
is used to train the treebank transformation model.
It is an online training algorithm and has been suc-
cessfully used in many NLP tasks, such as pars-
ing (Collins and Roark, 2004) and word segmen-
tation (Zhang and Clark, 2007; Zhang and Clark,
2010).

In addition to the target features which closely
follow Sun et al. (2010). We design the following
quasi-synchronous features to model the annota-
tion inconsistencies.

• Bigram constituent relation For two con-
secutive fundamental constituents si and sj

in the target parse tree, we find the minimum
categories Ni and Nj of the spans of si and
sj in the source parse tree respectively. Here
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Algorithm 1 Basic treebank annotation transformation.
1: function TRANSFORM-TRAIN(treebanks, treebankt)
2: parsers ← TRAIN(treebanks)
3: treebanks

t ← PARSE(parsers, treebankt)
4: transformers→t ← TRANSFORMTRAIN(treebankt, treebanks

t )
5: treebankt

s ← TRANSFORM(transformers→t, treebanks)
6: return treebankt

s ∪ treebankt

Algorithm 2 Iterative treebank annotation transformation.
1: function TRANSFORM-ITERTRAIN(treebanks, treebankt)
2: parsers ← TRAIN(treebanks)
3: parsert ← TRAIN(treebankt)
4: treebanks

t ← PARSE(parsers, treebankt)
5: treebankt

s ← PARSE(parsert, treebanks)
6: repeat
7: transformers→t ← TRANSFORMTRAIN(treebankt,treebanks

t )
8: transformert→s ← TRANSFORMTRAIN(treebanks,treebankt

s)
9: treebankt

s ← TRANSFORM(transformers→t, treebanks)
10: treebanks

t ← TRANSFORM(transformert→s, treebankt)
11: parsert ← TRAIN(treebankt

s ∪ treebankt)
12: until EVAL(parsert) converges
13: return treebankt

s ∪ treebankt

a fundamental constituent is defined to be a
pair of word and its POS tag. If Ni is a sibling
of Nj or each other is identical, we regard the
relation between si and sj as a positive fea-
ture.

• Consistent relation If the span of a target
constituent can be also parsed as a constituent
by the source parser, the combination of tar-
get rule and source category is used.

• Inconsistent relation If the span of a tar-
get constituent cannot be analysed as a con-
stituent by the source parser, the combination
of target rule and corresponding treelet in the
source parse tree is used.

• POS tag The combination of POS tags of
same words in the parallel data is used.

2.3 Iterative Training for Annotation
Transformation

Treebank annotation transformation relies on the
parallel training data. Consequently, the accuracy
of source parser decides the accuracy of annota-
tion transformer. We propose an iterative training
method to improve the transformation accuracy by
iteratively optimizing the parallel parse trees. At
each iteration of training, the treebank transfor-
mation of source-to-target and target-to-source are
both performed, and the transformed treebank pro-
vides more appropriate annotation for subsequent
iteration. In turn, the annotation transformer can
be improved gradually along with optimization of
the parallel parse trees until convergence.

Algorithm 2 shows the overall procedure of it-
erative training, which terminates when the per-
formance of a parser trained on the target treebank
and the transformed treebank converges.

3 Experiments

3.1 Experimental Setup

We conduct the experiments of treebank transfor-
mation from TCT to CTB. CTB 5.1 is used as
the target treebank. We follow the convention-
al corpus splitting of CTB 5.1: articles 001-270
and 400-1151 are used for training, articles 271-
300 are used as test data and articles 301-325 are
used as developing data. We use slightly modi-
fied version of CTB 5.1 by deleting all the function
tags and empty categories, e.g., *OP*, using Tsur-
geon (Levy and Andrew, 2006). The whole TCT
1.0 is taken as the source treebank for training the
annotation transformer.

The Berkeley parsing model is trained with 5
split-merge iterations. And we run the Berkeley
parser in 100-best mode and construct the 20-fold
cross validation training as described in Charni-
ak and Johnson (2005). In this way, we acquire
the parallel parse trees for training the annotation
transformer.

In this paper, we use bracketing F1 as the Par-
seVal metric provided by EVALB 1 for all experi-
ments.

1http://nlp.cs.nyu.edu/evalb/
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Model F-Measure (≤ 40 words) F-Measure (all)
Self-training 86.11 83.81

Base Annotation Transformation 86.56 84.23
Iterative Annotation Transformation 86.75 84.37

Baseline 85.71 83.42

Table 1: The performance of treebank annotation transformation using iterative training.
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Figure 2: Parsing accuracy with different amounts
of CTB training data.

3.2 Basic Transformation
We conduct experiments to evaluate the effect of
the amount of target training data on transforma-
tion accuracy, and how much constituent parser-
s can benefit from our approach. An enhanced
parser is trained on the CTB training data with
the addition of transformed TCT by our anno-
tation transformer. As comparison, we build a
baseline system (direct parsing) using the Berke-
ley parser only trained on the CTB training data.
In this experiment, the self-training method (M-
cClosky et al., 2006a; McClosky et al., 2006b)
is also used to build another strong baseline sys-
tem, which uses unlabelled TCT as additional da-
ta. Figure 2 shows that our approach outperform-
s the two strong baseline systems. It achieves a
0.69% absolute improvement on the CTB test da-
ta over the direct parsing baseline when the whole
CTB training data is used for training. We also can
find that our approach further extends the advan-
tage over the two baseline systems as the amount
of CTB training data decreases in Figure 2. The
figure confirms our approach is effective for im-
proving parser performance, specially for the sce-
nario where the target treebank is scarce.

3.3 Iterative Transformation
We use the iterative training method for annota-
tion transformation. The CTB developing set is
used to determine the optimal training iteration.
After each iteration, we test the performance of
a parser trained on the combined treebank. Fig-

 85.4

 85.6

 85.8

 86

 86.2

 86.4

0 1 2 3 4 5 6 7 8 9 10

F
 s

co
re

Training iterations

Figure 3: Learning curve of iterative transforma-
tion training.

ure 3 shows the performance curve with iteration
ranging from 1 to 10. The performance of basic
annotation transformation is also included in the
curve when iteration is 1. The curve shows that
the maximum performance is achieved at iteration
5. Compared to the basic annotation transforma-
tion, the iterative training strategy leads to a bet-
ter parser with higher accuracy. Table 1 reports
that the final optimized parsing results on the CTB
test set contributes a 0.95% absolute improvement
over the directly parsing baseline.

4 Related Work

Treebank transformation is an effective strategy to
reuse existing annotated data. Wang et al. (1994)
proposed an approach to transform a treebank in-
to another with a different grammar using their
matching metric based on the bracket information
of original treebank. Jiang et al. (2009) proposed
annotation adaptation in Chinese word segmenta-
tion, then, some work were done in parsing (Sun
et al., 2010; Zhu et al., 2011; Sun and Wan, 2012).
Recently, Jiang et al. (2012) proposed an advanced
annotation transformation in Chinese word seg-
mentation, and we extended it to the more com-
plicated treebank annotation transformation used
for Chinese constituent parsing.

Other related work has been focused on semi-
supervised parsing methods which utilize labeled
data to annotate unlabeled data, then use the ad-
ditional annotated data to improve the original
model (McClosky et al., 2006a; McClosky et
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al., 2006b; Huang and Harper, 2009). The self-
training methodology enlightens us on getting an-
notated treebank compatibal with another annota-
tion guideline. Our approach places extra empha-
sis on improving the transformation performance
with the help of source annotation knowledge.

Apart from constituency-to-constituency tree-
bank transformation, there also exists some re-
search on dependency-to-constituency treebank
transformation. Collins et al. (1999) used trans-
formed constituency treebank from Prague De-
pendency Treebank for constituent parsing on
Czech. Xia and Palmer (2001) explored different
algorithms that transform dependency structure to
phrase structure. Niu et al. (2009) proposed to con-
vert a dependency treebank to a constituency one
by using a parser trained on a constituency tree-
bank to generate k-best lists for sentences in the
dependency treebank. Optimal conversion results
are selected from the k-best lists. Smith and Eisner
(2009) and Li et al. (2012) generated rich quasi-
synchronous grammar features to improve parsing
performance. Some work has been done from the
other direction (Daum et al., 2004; Nivre, 2006;
Johansson and Nugues, 2007).

5 Conclusion

This paper propose an effective approach to trans-
form one treebank into another with a different
annotation guideline. Experiments show that our
approach can effectively utilize the heterogeneous
treebanks and significantly improve the state-of-
the-art Chinese constituency parsing performance.
How to exploit more heterogeneous knowledge to
improve the transformation performance is an in-
teresting future issue.
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Abstract

In the line of research extending statis-
tical parsing to more expressive gram-
mar formalisms, we demonstrate for the
first time the use of tree-adjoining gram-
mars (TAG). We present a Bayesian non-
parametric model for estimating a proba-
bilistic TAG from a parsed corpus, along
with novel block sampling methods and
approximation transformations for TAG
that allow efficient parsing. Our work
shows performance improvements on the
Penn Treebank and finds more compact
yet linguistically rich representations of
the data, but more importantly provides
techniques in grammar transformation and
statistical inference that make practical
the use of these more expressive systems,
thereby enabling further experimentation
along these lines.

1 Introduction

There is a deep tension in statistical modeling of
grammatical structure between providing good ex-
pressivity — to allow accurate modeling of the
data with sparse grammars — and low complexity
— making induction of the grammars (say, from
a treebank) and parsing of novel sentences com-
putationally practical. Tree-substitution grammars
(TSG), by expanding the domain of locality of
context-free grammars (CFG), can achieve better
expressivity, and the ability to model more con-
textual dependencies; the payoff would be better
modeling of the data or smaller (sparser) models
or both. For instance, constructions that go across
levels, like the predicate-argument structure of a
verb and its arguments can be modeled by TSGs
(Goodman, 2003).

Recent work that incorporated Dirichlet pro-
cess (DP) nonparametric models into TSGs has
provided an efficient solution to the daunting
model selection problem of segmenting training
data trees into appropriate elementary fragments
to form the grammar (Cohn et al., 2009; Post and
Gildea, 2009). The elementary trees combined in
a TSG are, intuitively, primitives of the language,
yet certain linguistic phenomena (notably various
forms of modification) “split them up”, preventing
their reuse, leading to less sparse grammars than
might be ideal (Yamangil and Shieber, 2012; Chi-
ang, 2000; Resnik, 1992).

TSGs are a special case of the more flexible
grammar formalism of tree adjoining grammar
(TAG) (Joshi et al., 1975). TAG augments TSG
with an adjunction operator and a set of auxil-
iary trees in addition to the substitution operator
and initial trees of TSG, allowing for “splicing in”
of syntactic fragments within trees. This func-
tionality allows for better modeling of linguistic
phenomena such as the distinction between modi-
fiers and arguments (Joshi et al., 1975; XTAG Re-
search Group, 2001). Unfortunately, TAG’s ex-
pressivity comes at the cost of greatly increased
complexity. Parsing complexity for unconstrained
TAG scales as O(n6), impractical as compared to
CFG and TSG’s O(n3). In addition, the model
selection problem for TAG is significantly more
complicated than for TSG since one must reason
about many more combinatorial options with two
types of derivation operators. This has led re-
searchers to resort to manual (Doran et al., 1997)
or heuristic techniques. For example, one can con-
sider “outsourcing” the auxiliary trees (Shieber,
2007), use template rules and a very small num-
ber of grammar categories (Hwa, 1998), or rely
on head-words and force lexicalization in order to
constrain the problem (Xia et al., 2001; Chiang,
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2000; Carreras et al., 2008). However a solution
has not been put forward by which a model that
maximizes a principled probabilistic objective is
sought after.

Recent work by Cohn and Blunsom (2010) ar-
gued that under highly expressive grammars such
as TSGs where exponentially many derivations
may be hypothesized of the data, local Gibbs sam-
pling is insufficient for effective inference and
global blocked sampling strategies will be nec-
essary. For TAG, this problem is only more se-
vere due to its mild context-sensitivity and even
richer combinatorial nature. Therefore in previ-
ous work, Shindo et al. (2011) and Yamangil and
Shieber (2012) used tree-insertion grammar (TIG)
as a kind of expressive compromise between TSG
and TAG, as a substrate on which to build nonpara-
metric inference. However TIG has the constraint
of disallowing wrapping adjunction (coordination
between material that falls to the left and right
of the point of adjunction, such as parentheticals
and quotations) as well as left adjunction along the
spine of a right auxiliary tree and vice versa.

In this work we formulate a blocked sampling
strategy for TAG that is effective and efficient, and
prove its superiority against the local Gibbs sam-
pling approach. We show via nonparametric in-
ference that TAG, which contains TSG as a sub-
set, is a better model for treebank data than TSG
and leads to improved parsing performance. TAG
achieves this by using more compact grammars
than TSG and by providing the ability to make
finer-grained linguistic distinctions. We explain
how our parameter refinement scheme for TAG
allows for cubic-time CFG parsing, which is just
as efficient as TSG parsing. Our presentation as-
sumes familiarity with prior work on block sam-
pling of TSG and TIG (Cohn and Blunsom, 2010;
Shindo et al., 2011; Yamangil and Shieber, 2012).

2 Probabilistic Model

In the basic nonparametric TSG model, there is
an independent DP for every grammar category
(such as c = NP), each of which uses a base dis-
tribution P0 that generates an initial tree by mak-
ing stepwise decisions and concentration parame-
ter αc that controls the level of sparsity (size) of
the generated grammars: Gc ∼ DP(αc, P0(· | c))
We extend this model by adding specialized DPs
for auxiliary trees Gaux

c ∼ DP(αaux
c , P aux

0 (· | c))
Therefore, we have an exchangeable process for
generating auxiliary tree aj given j − 1 auxiliary

trees previously generated

p(aj | a<j) =
nc,aj + αaux

c P aux
0 (aj | c)

j − 1 + αaux
c

(1)

as for initial trees in TSG (Cohn et al., 2009).
We must define base distributions for initial

trees and auxiliary trees. P0 generates an initial
tree with root label c by sampling rules from a
CFG P̃ and making a binary decision at every
node generated whether to leave it as a frontier
node or further expand (with probability βc) (Cohn
et al., 2009). Similarly, our P aux

0 generates an aux-
iliary tree with root label c by sampling a CFG rule
from P̃ , flipping an unbiased coin to decide the di-
rection of the spine (if more than a unique child
was generated), making a binary decision at the
spine whether to leave it as a foot node or further
expand (with probability γc), and recurring into P0

or P aux
0 appropriately for the off-spine and spinal

children respectively.
We glue these two processes together via a set

of adjunction parameters µc. In any derivation for
every node labeled c that is not a frontier node
or the root or foot node of an auxiliary tree, we
determine the number (perhaps zero) of simulta-
neous adjunctions (Schabes and Shieber, 1994)
by sampling a Geometric(µc) variable; thus k si-
multaneous adjunctions would have probability
(µc)

k(1 − µc). Since we already provide simul-
taneous adjunction we disallow adjunction at the
root of auxiliary trees.

3 Inference

Given this model, our inference task is to ex-
plore posterior derivations underlying the data.
Since TAG derivations are highly structured ob-
jects, we design a blocked Metropolis-Hastings
sampler that samples derivations per entire parse
trees all at once in a joint fashion (Cohn and Blun-
som, 2010; Shindo et al., 2011; Yamangil and
Shieber, 2012). As in previous work, we use a
Goodman-transformed TAG as our proposal dis-
tribution (Goodman, 2003) that incorporates ad-
ditional CFG rules to account for the possibil-
ity of backing off to the infinite base distribution
P aux
0 , and use the parsing algorithm described by

Shieber et al. (1995) for computing inside proba-
bilities under this TAG model.

The algorithm is illustrated in Table 1 along
with Figure 1. Inside probabilities are computed
in a bottom-up fashion and a TAG derivation is
sampled top-down (Johnson et al., 2007). The

598



N

α N

γ N

N

Ni

. . .

β

δN0

α N1

γ N2

N3

N4

. . .

β

δ

Nj

α Nk

N∗ β

Nl

γ Nm

N∗ δ

Figure 1: Example used for illustrating blocked
sampling with TAG. On the left hand side we have
a partial training tree where we highlight the par-
ticular nodes (with node labels 0, 1, 2, 3, 4) that the
sampling algorithm traverses in post-order. On the
right hand side is the TAG grammar fragment that
is used to parse these particular nodes: one initial
tree and two wrapping auxiliary trees where one
adjoins into the spine of the other for full general-
ity of our illustration. Grammar nodes are labeled
with their Goodman indices (letters i, j, k, l,m).
Greek letters α, β, γ, δ denote entire subtrees. We
assume that a subtree in an auxiliary tree (e.g., α)
parses the same subtree in a training tree.

sampler visits every node of the tree in post-order
(O(n) operations, n being the number of nodes),
visits every node below it as a potential foot (an-
other O(n) operations), visits every mid-node in
the path between the original node and the poten-
tial foot (if spine-adjunction is allowed) (O(log n)
operations), and forms the appropriate chart items.
The complexity is O(n2 log n) if spine-adjunction
is allowed, O(n2) otherwise.

4 Parameter Refinement

During inference, adjunction probabilities are
treated simplistically to facilitate convergence.
Only two parameters guide adjunction: µc, the
probability of adjunction; and p(aj | a<j , c) (see
Equation 1), the probability of the particular aux-
iliary tree being adjoined given that there is an
adjunction. In all of this treatment, c, the con-
text of an adjunction, is the grammar category la-
bel such as S or NP, instead of a unique identi-
fier for the node at which the adjunction occurs as
was originally the case in probabilistic TAG liter-
ature. However it is possible to experiment with
further refinement schemes at parsing time. Once
the sampler converges on a grammar, we can re-
estimate its adjunction probabilities. Using the
O(n6) parsing algorithm (Shieber et al., 1995) we
experimented with various refinements schemes
— ranging from full node identifiers, to Goodman

Chart item Why made? Inside probability

Ni[4] By assumption. −
Nk[3-4] N∗[4] and β (1 − µc) × π(β)
Nm[2-3] N∗[3] and δ (1 − µc) × π(δ)
Nl[1-3] γ and Nm[2-3] (1 − µc) × π(γ)

×π(Nm[2-3])
Naux[1-3] Nl[1-3] nc,al

/(nc + αaux
c )

×π(Nl[1-3])
Nk[1-4] Naux[1-3] and Nk[3-4] µc × π(Naux[1-3])

×π(Nk[3-4])
Nj [0-4] α and Nk[1-4] (1 − µc) × π(α)

×π(Nk[1-4])
Naux[0-4] Nj [0-4] nc,aj

/(nc + αaux
c )

×π(Nj [0-4])
Ni[0] Naux[0-4] and Ni[4] µc × π(Naux[0-4])

×π(Ni[4])

Table 1: Computation of inside probabilities for
TAG sampling. We create two types of chart
items: (1) per-node, e.g., Ni[ν] denoting the
probability of starting at an initial subtree that
has Goodman index i and generating the subtree
rooted at node ν, and (2) per-path, e.g., Nj[ν-η]
denoting the probability of starting at an auxiliary
subtree that has Goodman index j and generating
the subtree rooted at ν minus the subtree rooted
at η. Above, c denotes the context of adjunction,
which is the nonterminal label of the node of ad-
junction (here, N), µc is the probability of adjunc-
tion, nc,a is the count of the auxiliary tree a, and
nc =

∑
a nc,a is total number of adjunctions at

context c. The function π(·) retrieves the inside
probability corresponding to an item.

index identifiers of the subtree below the adjunc-
tion (Hwa, 1998), to simple grammar category la-
bels — and find that using Goodman index identi-
fiers as c is the best performing option.

Interestingly, this particular refinement scheme
also allows for fast cubic-time parsing, which we
achieve by approximating the TAG by a TSG with
little loss of coverage (no loss of coverage under
special conditions which we find that are often sat-
isfied) and negligible increase in grammar size, as
discussed in the next section.

5 Cubic-time parsing

MCMC training results in a list of sufficient statis-
tics of the final derivation that the TAG sampler
converges upon after a number of iterations. Basi-
cally, these are the list of initial and auxiliary trees,
their cumulative counts over the training data, and
their adjunction statistics. An adjunction statistic
is listed as follows. If α is any elementary tree, and
β is an auxiliary tree that adjoins n times at node ν
of α that is uniquely reachable at path p, we write
α

p← β (n times). We denote ν alternatively as
α[p].
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Figure 2: TAG to TSG transformation algorithm. By removing adjunctions in the correct order we end
up with a larger yet adjunction-free TSG.

Now imagine that we end up with a small gram-
mar that consists of one initial tree α and two aux-
iliary trees β and γ, and the following adjunctions
occurring between them

α
p← β (n times)

α
p← γ (m times)

β
q← γ (k times)

as shown in Figure 2. Assume that α itself occurs
l > n +m times in total so that there is nonzero
probability of no adjunction anywhere within α.
Also assume that the node uniquely identified by
α[p] has Goodman index i, which we denote as
i = G(α[p]).

The general idea of this TAG-TSG approxima-
tion is that, for any auxiliary tree that adjoins at a
node ν with Goodman index i, we create an ini-
tial tree out of it where the root and foot nodes of
the auxiliary tree are both replaced by i. Further,
we split the subtree rooted at ν from its parent and
rename the substitution site that is newly created
at ν as i as well. (See Figure 2.) We can sep-
arate the foot subtree from the rest of the initial
tree since it is completely remembered by any ad-
joined auxiliary trees due to the nature of our re-
finement scheme. However this method fails for
adjunctions that occur at spinal nodes of auxiliary
trees that have foot nodes below them since we
would not know in which order to do the initial
tree creation. However when the spine-adjunction
relation is amenable to a topological sort (as is the
case in Figure 2), we can apply the method by go-
ing in this order and doing some extra bookkeep-
ing: updating the list of Goodman indices and re-
directing adjunctions as we go along. When there
is no such topological sort, we can approximate
the TAG by heuristically dropping low-frequency

adjunctions that introduce cycles.1

The algorithm is illustrated in Figure 2. In (1)
we see the original TAG grammar and its adjunc-
tions (n,m, k are adjunction counts). Note that
the adjunction relation has a topological sort of
α, β, γ. We process auxiliary trees in this order
and iteratively remove their adjunctions by creat-
ing specialized initial tree duplicates. In (2) we
first visit β, which has adjunctions into α at the
node denoted α[p] where p is the unique path from
the root to this node. We retrieve the Goodman in-
dex of this node i = G(α[p]), split the subtree
rooted at this node as a new initial tree αi, relabel
its root as i, and rename the newly-created sub-
stitution site at α[p] as i. Since β has only this
adjunction, we replace it with initial tree version
βi where root/foot labels of β are replaced with
i, and update all adjunctions into β as being into
βi. In (3) we visit γ which now has adjunctions
into α and βi. For the α[p] adjunction we create γi
the same way we created βi but this time we can-
not remove γ as it still has an adjunction into βi.
We retrieve the Goodman index of the node of ad-
junction j = G(βi[q]), split the subtree rooted at
this node as new initial tree βij , relabel its root
as j, and rename the newly-created substitution
site at βi[q] as j. Since γ now has only this ad-
junction left, we remove it by also creating initial
tree version γj where root/foot labels of γ are re-
placed with j. At this point we have an adjunction-
free TSG with elementary trees (and counts)
α(l), αi(l), βi(n), βij(n), γi(m), γj(k) where l is
the count of initial tree α. These counts, when they
are normalized, lead to the appropriate adjunc-

1We found that, on average, about half of our grammars
have a topological sort of their spine-adjunctions. (On aver-
age fewer than 100 spine adjunctions even exist.) When no
such sort exists, only a few low-frequency adjunctions have
to be removed to eliminate cycles.
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Figure 3: Nonparametric TAG (blue) parsing is ef-
ficient and incurs only a small increase in parsing
time compared to nonparametric TSG (red).

tion probability refinement scheme of µc × p(aj |
a<j , c) where c is the Goodman index.

Although this algorithm increases grammar
size, the sparsity of the nonparametric solution
ensures that the increase is almost negligible: on
average the final Goodman-transformed CFG has
173.9K rules for TSG, 189.2K for TAG. Figure 3
demonstrates the comparable Viterbi parsing times
for TSG and TAG.

6 Evaluation

We use the standard Penn treebank methodology
of training on sections 2–21 and testing on section
23. All our data is head-binarized, all hyperpa-
rameters are resampled under appropriate vague
gamma and beta priors. Samplers are run 1000
iterations each; all reported numbers are aver-
ages over 5 runs. For simplicity, parsing results
are based on the maximum probability derivation
(Viterbi algorithm).

In Table 4, we compare TAG inference
schemes and TSG. TAGGibbs operates by locally
adding/removing potential adjunctions, similar to
Cohn et al. (2009). TAG

′
is the O(n2) algorithm

that disallows spine adjunction. We see that TAG
′

has the best parsing performance, while TAG pro-
vides the most compact representation.

model F measure # initial trees # auxiliary trees

TSG 84.15 69.5K -
TAGGibbs 82.47 69.9K 1.7K
TAG
′

84.87 66.4K 1.5K
TAG 84.82 66.4K 1.4K

Figure 4: EVALB results. Note that the Gibbs
sampler for TAG has poor performance and pro-
vides no grammar compaction due to its lack of
convergence.

label #adj ave. #lex. #left #right #wrap
(spine adj) depth trees trees trees trees

VP 4532 (23) 1.06 45 22 65 0
NP 2891 (46) 1.71 68 94 13 1
NN 2160 (3) 1.08 85 16 110 0
NNP 1478 (2) 1.12 90 19 90 0
NNS 1217 (1) 1.10 43 9 60 0
VBN 1121 (1) 1.05 6 18 0 0
VBD 976 (0) 1.0 16 25 0 0
NP 937 (0) 3.0 1 5 0 0
VB 870 (0) 1.02 14 31 4 0
S 823 (11) 1.48 42 36 35 3

total 23320 (118) 1.25 824 743 683 9

Table 2: Grammar analysis for an estimated TAG,
categorized by label. Only the most common top
10 are shown, binarization variables are denoted
with overline. A total number of 98 wrapping
adjunctions (9 unique wrapping trees) and 118
spine adjunctions occur.
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TAGs.

7 Conclusion

We described a nonparametric Bayesian inference
scheme for estimating TAG grammars and showed
the power of TAG formalism over TSG for return-
ing rich, generalizable, yet compact representa-
tions of data. The nonparametric inference scheme
presents a principled way of addressing the diffi-
cult model selection problem with TAG. Our sam-
pler has near quadratic-time efficiency, and our
parsing approach remains context-free allowing
for fast cubic-time parsing, so that our overall
parsing framework is highly scalable.2

There are a number of extensions of this
work: Experimenting with automatically in-
duced adjunction refinements as well as in-
corporating substitution refinements can benefit
Bayesian TAG (Shindo et al., 2012; Petrov et al.,
2006). We are also planning to investigate TAG
for more context-sensitive languages, and syn-
chronous TAG for machine translation.

2An extensive report of our algorithms and experiments
will be provided in the PhD thesis of the first author (Ya-
mangil, 2013). Our code will be made publicly available at
code.seas.harvard.edu/˜elif.
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Abstract
We show that informative lexical cate-
gories from a strongly lexicalised for-
malism such as Combinatory Categorial
Grammar (CCG) can improve dependency
parsing of Hindi, a free word order lan-
guage. We first describe a novel way to
obtain a CCG lexicon and treebank from
an existing dependency treebank, using a
CCG parser. We use the output of a su-
pertagger trained on the CCGbank as a
feature for a state-of-the-art Hindi depen-
dency parser (Malt). Our results show that
using CCG categories improves the accu-
racy of Malt on long distance dependen-
cies, for which it is known to have weak
rates of recovery.

1 Introduction

As compared to English, many Indian languages
including Hindi have a freer word order and are
also morphologically richer. These characteristics
pose challenges to statistical parsers. Today, the
best dependency parsing accuracies for Hindi are
obtained by the shift-reduce parser of Nivre et
al. (2007) (Malt). It has been observed that Malt
is relatively accurate at recovering short distance
dependencies, like arguments of a verb, but is less
accurate at recovering long distance dependencies
like co-ordination, root of the sentence, etc
(Mcdonald and Nivre, 2007; Ambati et al., 2010).

In this work, we show that using CCG lexical
categories (Steedman, 2000), which contain sub-
categorization information and capture long dis-
tance dependencies elegantly, can help Malt with
those dependencies. Section 2 first shows how we
extract a CCG lexicon from an existing Hindi de-
pendency treebank (Bhatt et al., 2009) and then
use it to create a Hindi CCGbank. In section 3, we
develop a supertagger using the CCGbank and ex-
plore different ways of providing CCG categories

from the supertagger as features to Malt. Our re-
sults show that using CCG categories can help
Malt by improving the recovery of long distance
relations.

2 A CCG Treebank from a Dependency
Treebank

There have been some efforts at automatically ex-
tracting treebanks of CCG derivations from phrase
structure treebanks (Hockenmaier and Steedman,
2007; Hockenmaier, 2006; Tse and Curran, 2010),
and CCG lexicons from dependency treebanks
(Çakıcı, 2005). Bos et al. (2009) created a
CCGbank from an Italian dependency treebank by
converting dependency trees into phrase structure
trees and then applying an algorithm similar
to Hockenmaier and Steedman (2007). In this
work, following Çakıcı (2005), we first extract a
Hindi CCG lexicon from a dependency treebank.
We then use a CKY parser based on the CCG
formalism to automatically obtain a treebank
of CCG derivations from this lexicon, a novel
methodology that may be applicable to obtaining
CCG treebanks in other languages as well.

2.1 Hindi Dependency Treebank
In this paper, we work with a subset of the Hindi
Dependency Treebank (HDT ver-0.5) released
as part of Coling 2012 Shared Task on parsing
(Bharati et al., 2012). HDT is a multi-layered
dependency treebank (Bhatt et al., 2009) an-
notated with morpho-syntactic (morphological,
part-of-speech and chunk information) and
syntactico-semantic (dependency) information
(Bharati et al., 2006; Bharati et al., 2009).
Dependency labels are fine-grained, and mark de-
pendencies that are syntactico-semantic in nature,
such as agent (usually corresponding to subject),
patient (object), and time and place expressions.
There are special labels to mark long distance
relations like relative clauses, co-ordination etc
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(Bharati et al., 1995; Bharati et al., 2009).
The treebank contains 12,041 training, 1,233

development and 1,828 testing sentences with an
average of 22 words per sentence. We used the
CoNLL format1 for our purposes, which contains
word, lemma, pos-tag, and coarse pos-tag in the
WORD, LEMMA, POS, and CPOS fields respectively
and morphological features and chunk information
in the FEATS column.

2.2 Algorithm

We first made a list of argument and adjunct
dependency labels in the treebank. For e.g.,
dependencies with the label k1 and k2 (corre-
sponding to subject and object respectively) are
considered to be arguments, while labels like
k7p and k7t (corresponding to place and time
expressions) are considered to be adjuncts. For
readability reasons, we will henceforth refer to
dependency labels with their English equivalents
(e.g., SUBJ, OBJ, PURPOSE, CASE for k1, k2,
rt, lwg psp respectively).

Starting from the root of the dependency tree,
we traverse each node. The category of a node de-
pends on both its parent and children. If the node
is an argument of its parent, we assign the chunk
tag of the node (e.g., NP, PP) as its CCG category.
Otherwise, we assign it a category of X|X, where
X is the parent’s result category and | is direction-
ality (\ or /), which depends on the position of
the node w.r.t. its parent. The result category of
a node is the category obtained once its arguments
are resolved. For example, S, is the result category
for (S\NP)\NP. Once we get the partial category
of a node based on the node’s parent information,
we traverse through the children of the node. If
a child is an argument, we add that child’s chunk
tag, with appropriate directionality, to the node’s
category. The algorithm is sketched in Figure 1
and an example of a CCG derivation for a simple
sentence (marked with chunk tags; NP and VGF
are the chunk tags for noun and finite verb chunks
respectively.) is shown in Figure 2. Details of
some special cases are described in the following
subsections.

We created two types of lexicon. In Type 1,
we keep morphological information in noun cate-
gories and in Type 2, we don’t. For example, con-
sider a noun chunk ‘raam ne (Ram ERG)’. In Type
1, CCG categories for ‘raam’ and ‘ne’ are NP and

1http://nextens.uvt.nl/depparse-wiki/DataFormat

ModifyTree(DependencyTree tree);
for (each node in tree):

handlePostPositionMarkers(node);
handleCoordination(node);
handleRelativeClauses(node);
if (node is an argument of parent):

cat = node.chunkTag;
else:

prescat = parent.resultCategory;
cat = prescat + getDir(node, parent) + prescat;

for(each child of node):
if (child is an argument of node):

cat = cat + getDir(child, node) + child.chunkTag;

Figure 1: Algorithm for extracting CCG lexicon
from a dependency tree.

ROOT mohan ne raam ke lie kitaab khariidii
Mohan Erg Ram for book buy-past-fem

ROOT

OBJ

PURPOSE

CASE

SUBJ

CASE

[NP mohan ne] [NP raam ke lie] [NP kitaab] [V GF khariidii]
NP NP\NP NP (VGF/VGF)\NP NP (VGF\NP)\NP

< < <
NP VGF/VGF VGF\NP

< B×
VGF\NP

<
VGF

‘Mohan bought a book for Ram.’

Figure 2: An example dependency tree with its
CCG derivation (Erg = Ergative case).

NP[ne]\NP respectively. In Type 2, respective
CCG categories for ‘raam’ and ‘ne’ are NP and
NP\NP. Morphological information such as case
(e.g., Ergative case - ‘ne’) in noun categories is ex-
pected to help with determining their dependency
labels, but makes the lexicon more sparse.

2.3 Morphological Markers

In Hindi, morphological information is encoded in
the form of post-positional markers on nouns, and
tense, aspect and modality markers on verbs. A
post-positional marker following a noun plays the
role of a case-marker (e.g., ‘raam ne (Ram ERG)’,
here ‘ne’ is the ergative case marker) and can also
have a role similar to English prepositions (e.g.,
‘mej par (table on)’). Post-positional markers on
nouns can be simple one word expressions like
‘ne’ or ‘par’ or can be multiple words as in ‘raam
ke lie (Ram for)’. Complex post position markers
as a whole give information about how the head
noun or verb behaves. We merged complex post
position markers into single words like ‘ke lie’ so
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that the entire marker gets a single CCG category.
For an adjunct like ‘raam ke lie (for Ram)’

in Figure 2, ‘raam’ can have a CCG category
VGF/VGF as it is the head of the chunk and
‘ke lie’ a category of (VGF/VGF)\(VGF/VGF).
Alternatively, if we pass the adjunct information
to the post-position marker (‘ke lie’), and use the
chunk tag ‘NP’ as the category for the head word
(‘raam’), then categories of ‘raam’ and ‘ke lie’ are
NP and (VGF/VGF)\NP respectively. Though
both these analysis give the same semantics, we
chose the latter as it leads to a less sparse lexi-
con. Also, adjuncts that modify adjacent adjuncts
are assigned identical categories X/X making use
of CCG’s composition rule and following Çakıcı
(2005).

2.4 Co-ordination
The CCG category of a conjunction is (X\X)/X,
where a conjunction looks for a child to its right
and then a child to its left. To handle conjunc-
tion with multiple children, we modified the de-
pendency tree, as follows.

For the example given below, in the original de-
pendency tree, the conjunction ora ‘and’ has three
children ‘Ram’ , ‘Shyam’ and ‘Sita’. We modified
the original dependency tree and treat the comma
‘,’ as a conjunction. As a result, ‘,’ will have ‘Ram’
and ‘Shyam’ as children and ‘and’ will have ‘,’ and
‘Sita’ as children. It is straightforward to convert
this tree into the original dependency tree for the
purpose of evaluation/comparison with other de-
pendency parsers.

ROOT raam , shyam ora siitaa skoola gaye

ROOT

DEST

SUBJ

COORD
COORD

COORDCOORD

raam , shyam ora siitaa skoola gaye
Ram , Shyam and Sita school went

NP (NP\NP)/NP NP (NP\NP)/NP NP NP (VGF\NP)\NP
> > <

NP\NP NP\NP VGF\NP
<

NP
<

NP
<

VGF
‘Ram , Shyam and Sita went to school.’

2.5 Relative Clauses
In English, relative clauses have the category type
NP\NP, where they combine with a noun phrase
on the left to give a resulting noun phrase. Hindi,
due to its freer word order, has relative clauses of
the type NP\NP or NP/NP based on the position of
the relative clause with respect to the head noun.
Similar to English, the relative pronoun has a CCG

category of (NP|NP)|X where directionality de-
pends on the position of the relative pronoun in the
clause and the category X depends on the gram-
matical role of the relative pronoun. In the follow-
ing example, X is VGF\NP

ROOT vaha ladakaa jo baithaa hai raam hai

ROOT

OBJ

SUBJ

DEM
RELC

SUBJ AUX

vaha ladakaa jo baithaa hai raam hai
that boy who sitting be-1P-pres Ram be-1P-pres

NP/NP NP (NP\NP)/X VGF\NP VGF\VGF NP (VGF\NP)\NP
> > B× <

NP VGF\NP VGF\NP
>

NP\NP
>

NP
<

VGF

‘The boy who is sitting is Ram’

2.6 CCG Lexicon to Treebank conversion

We use a CCG parser to convert the CCG lexicon
to a CCG treebank as conversion to CCG trees
directly from dependency trees is not straight-
forward. Using the above algorithm, we get one
CCG category for every word in a sentence. We
then run a non-statistical CKY chart parser based
on the CCG formalism2, which gives CCG deriva-
tions based on the lexical categories. This gives
multiple derivations for some sentences. We rank
these derivations using two criteria. The first cri-
terion is correct recovery of the gold dependency
tree. Derivations which lead to gold dependencies
are given higher weight. In the second criterion,
we prefer derivations which yield intra-chunk de-
pendencies (e.g., verb and auxiliary) prior to inter-
chunk (e.g., verb and its arguments). For exam-
ple, morphological markers (which lead to intra-
chunk dependencies) play a crucial role in identi-
fying correct dependencies . Resolving these de-
pendencies first helps parsers in better identifica-
tion of inter-chunk dependencies such as argument
structure of the verb (Ambati, 2011). We thus ex-
tract the best derivation for each sentence and cre-
ate a CCGbank for Hindi. Coverage, i.e., number
of sentences for which we got at least one com-
plete derivation, using this lexicon is 96%. The
remaining 4% are either cases of wrong annota-
tions in the original treebank, or rare constructions
which are currently not handled by our conversion
algorithm.

2http://openccg.sourceforge.net/
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3 Experiments

In this section, we first describe the method of de-
veloping a supertagger using the CCGbank. We
then describe different ways of providing CCG
categories from the supertagger as features to a
state-of-the-art Hindi Dependency parser (Malt).

We did all our experiments using both gold fea-
tures (pos, chunk and morphological information)
provided in the treebank and automatic features
extracted using a Hindi shallow parser3. We re-
port results with automatic features but we also
obtained similar improvements with gold features.

3.1 Category Set

For supertagging, we first obtained a category set
from the CCGbank training data. There are 2,177
and 718 category types in Type 1 (with morph. in-
formation) and Type 2 (without morph. informa-
tion) data respectively. Clark and Curran (2004)
showed that using a frequency cutoff can signif-
icantly reduce the size of the category set with
only a small loss in coverage. We explored dif-
ferent cut-off values and finally used a cutoff of
10 for building the tagger. This reduced the cat-
egory types to 376 and 202 for Type 1 and Type
2 respectively. The percent of category tokens in
development data that don’t appear in the category
set entrailed by this cut-off are 1.39 & 0.47 for
Type 1 and Type 2 respectively.

3.2 Supertagger

Following Clark and Curran (2004), we used
a Maximum Entropy approach to build our su-
pertagger. We explored different features in the
context of a 5-word window surrounding the tar-
get word. We used features based on WORD (w),
LEMMA (l), POS (p), CPOS (c) and the FEATS (f )
columns of the CoNLL format. Table 1 shows the
impact of different features on supertagger perfor-
mance. Experiments 1, 2, 3 have current word (wi)
features while Experiments 4, 5, 6 show the im-
pact of contextual and complex bi-gram features.

Accuracy of the supertagger after Experiment 6
is 82.92% and 84.40% for Type 1 and Type 2 data
respectively. As the number of category types in
Type 1 data (376) are much higher than in Type 2
(202), it is not surprising that the performance of
the supertagger is better for Type 2 as compared to
Type 1.

3http://ltrc.iiit.ac.in/analyzer/hindi/

Experiments: Features Accuracy

Type 1 Type 2

Exp 1: wi, pi 75.14 78.47

Exp 2: Exp 1 + li, ci 77.58 80.17

Exp 3: Exp 2 + fi 80.43 81.88

Exp 4: Exp 3 +wi−1,wi−2, pi−1,pi−2, 82.72 84.15

wi+1, wi+2, pi+1, pi+2

Exp 5: Exp 4 + wipi, wici, wifi, pifi 82.81 84.29

Exp 6: Exp 5 + wi−2wi−1, wi−1wi, 82.92 84.40

wiwi+1, wi+1wi+2, pi−2pi−1,

pi−1pi, pipi+1, pi+1pi+2

Table 1: Impact of different features on the su-
pertagger performance for development data.

3.3 Dependency Parsing

There has been a significant amount of work on
Hindi dependency parsing in the recent past (Hu-
sain, 2009; Husain et al., 2010; Bharati et al.,
2012). Out of all these efforts, state-of-the-art ac-
curacy is achieved using the Malt parser. We first
run Malt with previous best settings (Bharati et
al., 2012) which use the arc-standard parsing al-
gorithm with a liblinear learner, and treat this as
our baseline. We compare and analyze results af-
ter adding supertags as features with this baseline.

3.4 Using Supertags as Features to Malt

Çakıcı (2009) showed that using gold CCG cate-
gories extracted from dependency trees as features
to MST parser (McDonald et al., 2006) boosted
the performance for Turkish. But using automatic
categories from a supertagger radically decreased
performance in their case as supertagger accuracy
was very low. We have explored different ways
of incorporating both gold CCG categories and
supertagger-provided CCG categories into depen-
dency parsing. Following Çakıcı (2009), instead
of using supertags for all words, we used supertags
which occurred at least K times in the training
data, and backed off to coarse POS-tags otherwise.
We experimented with different values of K and
found that K=15 gave the best results.

We first provided gold CCG categories as fea-
tures to the Malt parser and then provided the out-
put of the supertagger described in section 3.2. We
did all these experiments with both Type 1 and
Type 2 data. Unlabelled Attachment Scores (UAS)
and Labelled Attachment Scores (LAS) for Malt
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are shown in Table 2. As expected, gold CCG
categories boosted UAS and LAS by around 6%
and 7% respectively, for both Type 1 and Type 2
data. This clearly shows that the rich subcatego-
rization information provided by CCG categories
can help a shift-reduce parser. With automatic cat-
egories from a supertagger, we also got improve-
ments over the baseline, for both Type 1 and Type
2 data. All the improvements are statistically sig-
nificant (McNemar’s test, p < 0.01).

With gold CCG categories, Type 1 data gave
slightly better improvements over Type 2 as Type
1 data has richer morphological information. But,
in the case of supertagger output, Type 2 data
gave more improvements over the baseline Malt
as compared to Type 1. This is because the perfor-
mance of the supertagger on Type 2 data is slightly
better than that of Type 1 data (see Table 1).

Experiment Development Testing

UAS LAS UAS LAS

Malt: Baseline 89.09 83.46 88.67 83.04

Malt + Type 1 Gold 95.87* 90.79* 95.27* 90.22*

Malt + Type 2 Gold 95.73* 90.70* 95.26* 90.18*

Malt + Type 1 ST 89.54* 83.68* 88.93* 83.23*

Malt + Type 2 ST 89.90* 83.96* 89.04* 83.35*

Table 2: Supertagger impact on Hindi dependency
parsing (ST=Supertags). McNemar’s test, * = p <
0.01.

It is interesting to notice the impact of using
automatic CCG categories from a supertagger on
long distance dependencies. It is known that Malt
is weak at long-distance relations (Mcdonald and
Nivre, 2007; Ambati et al., 2010). Providing
CCG categories as features improved handling of
long-distance dependencies for Malt. Figure 3
shows the F-score of the impact of CCG categories
on three dependency labels, which take the ma-
jor share of long distance dependencies, namely,
ROOT, COORD, and RELC, the labels for sentence
root, co-ordination, and relative clause respec-
tively. For these relations, providing CCG cate-
gories gave an increment of 1.2%, 1.4% and 1.6%
respectively over the baseline.

We also found that the impact of CCG cate-
gories is higher when the span of the dependency
is longer. Figure 4 shows the F-score of the impact
of CCG categories on dependencies based on the
distance between words. Using CCG categories
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Figure 3: Label-wise impact of supertag features.

does not have much impact on short distance de-
pendencies (1−5), which Malt is already good at.
For longer range distances, 6−10, and >10, there
is an improvement of 1.8% and 1.4% respectively.
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Figure 4: Impact of supertags on distance ranges.

4 Conclusion and Future Direction

We have presented an approach for automatically
extracting a CCG lexicon from a dependency tree-
bank for Hindi. We have also presented a novel
way of creating a CCGbank from a dependency
treebank using a CCG parser and the CCG lex-
icon. Unlike previous work, we obtained im-
provements in dependency recovery using auto-
matic supertags, as well as gold information. We
have shown that informative CCG categories im-
prove the performance of a shift-reduce depen-
dency parser (Malt) in recovering some long dis-
tance relations. In future work, we would like to
directly train a CCG shift-reduce parser (such as
Zhang and Clark (2011)’s English parser) on the
Hindi CCGbank. We would also like to see the
impact of generalisation of our lexicon using the
free-word order formalism for CCG categories of
Baldridge (2002).
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Abstract

Higher-order dependency features are
known to improve dependency parser ac-
curacy. We investigate the incorporation
of such features into a cube decoding
phrase-structure parser. We find consid-
erable gains in accuracy on the range of
standard metrics. What is especially in-
teresting is that we find strong, statisti-
cally significant gains on dependency re-
covery on out-of-domain tests (Brown vs.
WSJ). This suggests that higher-order de-
pendency features are not simply over-
fitting the training material.

1 Introduction

Higher-order dependency features encode more
complex sub-parts of a dependency tree struc-
ture than first-order, bigram head-modifier rela-
tionships.1 The clear trend in dependency pars-
ing has been that the addition of such higher-order
features improves parse accuracy (McDonald &
Pereira, 2006; Carreras, 2007; Koo & Collins,
2010; Zhang & Nivre, 2011; Zhang & McDonald,
2012). This finding suggests that the same ben-
efits might be observed in phrase-structure pars-
ing. But, this is not necessarily implied. Phrase-
structure parsers are generally stronger than de-
pendency parsers (Petrov et al., 2010; Petrov &
McDonald, 2012), and make use of more kinds
of information. So, it might be that the infor-
mation modelled by higher-order dependency fea-
tures adds less of a benefit in the phrase-structure
case.

1Examples of first-order and higher-order dependency
features are given in §3.2.

To investigate this issue, we experiment using
Huang’s (2008) cube decoding algorithm. This
algorithm allows structured prediction with non-
local features, as discussed in §2. Collins’s (1997)
strategy of expanding the phrase-structure parser’s
dynamic program to incorporate head-modifier de-
pendency information would not scale to the com-
plex kinds of dependencies we will consider. Us-
ing Huang’s algorithm, we can indeed incorporate
arbitrary types of dependency feature, using a sin-
gle, simple dynamic program.

Compared to the baseline, non-local feature
set of Collins (2000) and Charniak & Johnson
(2005), we find that higher-order dependencies
do in fact tend to improve performance signifi-
cantly on both dependency and constituency ac-
curacy metrics. Our most interesting finding,
though, is that higher-order dependency features
show a consistent and unambiguous contribution
to the dependency accuracy, both labelled and un-
labelled, of our phrase-structure parsers on out-
of-domain tests (which means, here, trained on
WSJ, but tested on BROWN). In fact, the gains are
even stronger on out-of-domain tests than on in-
domain tests. One might have thought that higher-
order dependencies, being rather specific by na-
ture, would tend to pick out only very rare events,
and so only serve to over-fit the training material,
but this is not what we find. We speculate as to
what this might mean in §5.2.

The cube decoding paradigm requires a first-
stage parser to prune the output space. For this, we
use the generative parser of Petrov et al. (2006).
We can use this parser’s model score as a fea-
ture in our discriminative model at no additional
cost. However, doing so conflates the contribu-
tion to accuracy of the generative model, on the
one hand, and the discriminatively trained, hand-
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written, features, on the other. Future systems
might use the same or a similar feature set to
ours, but in an architecture that does not include
any generative parser. On the other hand, some
systems might indeed incorporate this generative
model’s score. So, we need to know exactly what
the generative model is contributing to the accu-
racy of a generative-discriminative model combi-
nation. Thus, we conduct experiments in sets: in
some cases the generative model score is used, and
in others it is not used.

Compared to the faster and more psycholog-
ically plausible shift-reduce parsers (Zhang &
Nivre, 2011; Zhang & Clark, 2011), cube decod-
ing is a computationally expensive method. But,
cube decoding provides a relatively exact envi-
ronment with which to compare different feature
sets, has close connections with modern phrase-
based machine translation methods (Huang & Chi-
ang, 2007), and produces very accurate parsers. In
some cases, one might want to use a slower, but
more accurate, parser during the training stage of
a semi-supervised parser training strategy. For ex-
ample, Petrov et al. (2010) have shown that a fast
parser (Nivre et al., 2007) can be profitably trained
from the output of a slower but more accurate one
(Petrov et al., 2006), in a strategy they call uptrain-
ing.

We make the source code for these experiments
available.2

2 Phrase-Structure Parsing with
Non-Local Features

2.1 Non-Local Features

To decode using exact dynamic programming (i.e.,
CKY), one must restrict oneself to the use of only
local features. Local features are those that fac-
tor according to the individual rule productions of
the parse. For example, a feature indicating the
presence of the rule S → NP VP is local.3 But,
a feature that indicates that the head word of this
S is, e.g., joined, is non-local, because the head
word of a phrase cannot be determined by look-
ing at a single rule production. To find a phrase’s
head word (or tag), we must recursively find the

2See http://gfcoppola.net/code.php. This
software is available for free for non-profit research uses.

3A feature indicating that, e.g., the first word dominated
by S is Pierre is also local, since the words of the sentence
are constant across hypothesized parses, and words can be
referred to by their position with respect to a given rule pro-
duction. See Huang (2008) for more details.

head phrase of each local rule production, until we
reach a terminal node (or tag node). This recursion
would not be allowed in standard CKY. Many dis-
criminative parsers have used only local features
(Taskar et al., 2004; Turian et al., 2007; Finkel
et al., 2008). However, Huang (2008) shows that
the use of non-local features does in fact contribute
substantially to parser performance. And, our de-
sire to make heavy use of head-word dependency
relations necessitates the use of non-local features.

2.2 Cube Decoding

While the use of non-local features destroys the
ability to do exact search, we can still do inex-
act search using Huang’s (2008) cube decoding
algorithm.4 A tractable first-stage parser prunes
the space of possible parses, and outputs a forest,
which is a set of rule production instances that can
be used to make a parse for the given sentence,
and which is significantly pruned compared to the
entire space allowed by the grammar. The size of
this forest is at most cubic in the length of the sen-
tence (Billot & Lang, 1989), but implicitly repre-
sents exponentially many parses. To decode, we
fix an beam width of k (an integer). Then, when
parsing, we visit each node n in the same bottom-
up order we would use for Viterbi decoding, and
compute a list of the top k parses to n, according
to a global linear model (Collins, 2002), using the
trees that have survived the beam at earlier nodes.

2.3 The First-Stage Parser

As noted, we require a first-stage parser to prune
the search space.5 As a by-product of this pruning
procedure, we are able to use the model score of
the first-stage parser as a feature in our ultimate
model at no additional cost. As a first-stage parser,
we use Huang et al.’s (2010) implementation of
the LA-PCFG parser of Petrov et al. (2006), which
uses a generative, latent-variable model.

3 Features

3.1 Phrase-Structure Features

Our phrase-structure feature set is taken from
Collins (2000), Charniak & Johnson (2005), and

4This algorithm is closely related to the algorithm for
phrase-based machine translation using a language model
(Huang & Chiang, 2007).

5All work in this paradigm has used a generative parser as
the first-stage parser. But, this is arguably a historical acci-
dent. We could just as well use a discriminative parser with
only local features, like Petrov & Klein (2007a).
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Huang (2008). Some features are omitted, with
choices made based on the ablation studies of
Johnson & Ural (2010). This feature set, which we
call Φphrase, contains the following, mostly non-
local, features, which are described and depicted
in Charniak & Johnson (2005), Huang (2008), and
Johnson & Ural (2010):
• CoPar The depth (number of levels) of par-

allelism between adjacent conjuncts
• CoParLen The difference in length between

adjacent conjuncts
• Edges The words or (part-of-speech) tags on

the outside and inside edges of a given XP6

• NGrams Sub-parts of a given rule production
• NGramTree An n-gram of the input sen-

tence, or the tags, along with the minimal tree
containing that n-gram
• HeadTree A sub-tree containing the path

from a word to its maximal projection, along
with all siblings of all nodes in that path
• Heads Head-modifier bigrams
• Rule A single rule production
• Tag The tag of a given word
• Word The tag of and first XP above a word
• WProj The tag of and maximal projection of

a word
Heads is a first-order dependency feature.

3.2 Dependency Parsing Features

McDonald et al. (2005) showed that chart-based
dependency parsing, based on Eisner’s (1996) al-
gorithm, could be successfully approached in a
discriminative framework. In this earliest work,
each feature function could only refer to a sin-
gle, bigram head-modifier relationship, e.g., Mod-
ifier, below. Subsequent work (McDonald &
Pereira, 2006; Carreras, 2007; Koo & Collins,
2010) looked at allowing features to access more
complex, higher-order relationships, including tri-
gram and 4-gram relationships, e.g., all features
apart from Modifier, below. With the ability to
incorporate non-local phrase-structure parse fea-
tures (Huang, 2008), we can recognize depen-
dency features of arbitrary order (cf. Zhang &
McDonald (2012)). Our dependency feature set,
which we call Φdeps, contains:
• Modifier head and modifier

6The tags outside of a given XP are approximated using
the marginally most likely tags given the parse.

• Sibling head, modifierm, andm’s nearest in-
ner sibling
• Grandchild head, modifier m, and one of
m’s modifiers
• Sibling+Grandchild head, modifier m, m’s

nearest inner sibling, and one of m’s modi-
fiers
• Grandchild+Grandsibling head, modifier
m, one of m’s modifiers g, and g’s inner sib-
ling

These features are insensitive to arc labels in the
present experiments, but future work will incorpo-
rate arc labels. Each feature class contains more
and less lexicalized versions.

3.3 Generative Model Score Feature

Finally, we have a feature set, Φgen, contain-
ing only one feature function. This feature
maps a parse to the logarithm of the MAX-RULE-
PRODUCT score of that parse according to the LA-
PCFG parsing model, which is trained separately.
This score has the character of a conditional like-
lihood for the parse (see Petrov & Klein (2007b)).

4 Training

We have two feature sets Φphrase and Φdeps, for
which we fix weights using parallel stochastic op-
timization of a structured SVM objective (Collins,
2002; Taskar et al., 2004; Crammer et al., 2006;
Martins et al., 2010; McDonald et al., 2010). To
the single feature in the set Φgen (i.e. the genera-
tive model score), we give the weight 1.

The combined models, Φphrase+deps, Φphrase+gen,
and Φphrase+deps+gen, are then model combinations
of the first three. The combination weights
for these combinations are obtained using Och’s
(2003) Minimum Error-Rate Training (MERT).
The MERT stage helps to avoid feature under-
training (Sutton et al., 2005), and avoids the prob-
lem of scaling involved in a model that contains
mostly boolean features, but one, real-valued, log-
scale feature. Training is conducted in three stages
(SVM, MERT, SVM), so that there is no influence of
any data outside the given training set (WSJ2-21)
on the combination weights.

5 Experiments

5.1 Methods

All models are trained on WSJ2-21, with WSJ22
used to pick the stopping iteration for online
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Test Set
WSJ BROWN

Type Model F1 UAS LAS F1 UAS LAS

G LA-PCFG 90.3 93.7 91.5 85.1 88.7 85.0
D phrase 91.2 93.9 91.0 86.1 89.4 85.1

deps — 93.3 — — 89.3 —
phrase+deps 91.7 94.4 91.5 86.4 90.1 85.9

G+D phrase+gen 92.1 94.7 92.6 87.0 90.0 86.5
phrase+deps+gen 92.4 94.9 92.8 87.4 90.7 87.1

Table 1: Performance of the various models in cube decoding experiments, on the WSJ test set (in-
domain) and the BROWN test set (out-of-domain). G abbreviates generative, D abbreviates discrim-
inative, and G+D a combination. Some cells are empty because Φdeps features are only sensitive to
unlabelled dependencies. Best results in D and G+D conditions appear in bold face.

Test Set
Hypothesis WSJ BROWN

Greater Lesser F1 UAS LAS F1 UAS LAS

phrase+deps phrase .042 .029 .018 .140 .022 .009
phrase+deps deps — <.001 — — .012 —
phrase+gen phrase .013 .003 <.001 .016 .090 <.001

phrase+deps+gen phrase+gen .030 .122 .151 .059 .008 .020
phrase+deps+gen phrase+deps .019 .020 <.001 .008 .040 <.001

Table 2: Results of statistical significance evaluations of hypotheses of the form X’s accuracy is greater
than Y’s on the various test sets and metrics. Bold face indicates p < .05.

optimization, as is standard. The test sets are
WSJ23 (in-domain test set), and BROWN9 (out-of-
domain test set) from the Penn Treebank (Mar-
cus et al., 1993).7 We evaluate using harmonic
mean between labelled bracket recall and preci-
sion (EVALB F1), unlabelled dependency accuracy
(UAS), and labelled dependency accuracy (LAS).
Dependencies are extracted from full output trees
using the algorithm of de Marneffe & Manning
(2008). We chose this dependency extractor,
firstly, because it is natively meant to be run on
the output of phrase-structure parsers, rather than
on gold trees with function tags and traces still
present, as is, e.g., the Penn-Converter of Johans-
son & Nugues (2007). Also, this is the extractor
that was used in a recent shared task (Petrov &
McDonald, 2012). We use EVALB and eval.pl to
calculate scores.

For hypothesis testing, we used the paired boot-
strap test recently empirically evaluated in the con-
text of NLP by Berg-Kirkpatrick et al. (2012). This

7Following Gildea (2001), the BROWN test set is usually
divided into 10 parts. If we start indexing at 0, then the last
(test) section has index 9. We received the BROWN data splits
from David McClosky, p.c.

involves drawing b subsamples of size n with re-
placement from the test set in question, and check-
ing relative performance of the models on the sub-
sample (see the reference). We use b = 106 and
n = 500 in all tests.

5.2 Results

The performance of the models is shown in Table
1, and Table 2 depicts the results of significance
tests of differences between key model pairs.

We find that adding in the higher-order depen-
dency feature set, Φdeps, makes a statistically sig-
nificant improvement in accuracy on most met-
rics, in most conditions. On the in-domain WSJ

test set, we find that Φphrase+deps is significantly
better than either of its component parts on all
metrics. But, Φphrase+deps+gen is significantly bet-
ter than Φphrase+gen only on F1, but not on UAS

or LAS. However, on the out-of-domain BROWN

tests, we find that adding Φdeps always adds con-
siderably, and in a statistically significant way, to
both LAS and UAS. That is, not only is Φphrase+deps
better at dependency recovery than its component
parts, but Φphrase+deps+gen is also considerably bet-
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ter on dependency recovery than Φphrase+gen, which
represents the previous state-of-the-art in this vein
of research (Huang, 2008). This result is perhaps
counter-intuitive, in the sense that one might have
supposed that higher-order dependency features,
being highly specific by nature, might only have
only served to over-fit the training material. How-
ever, this result shows otherwise. Note that the
dependency features include various levels of lex-
icalization. It might be that the more unlexical-
ized features capture something about the struc-
ture of correct parses, that transfers well out-of-
domain. Future work should investigate this. And,
it of course remains to be seen how this result will
transfer to other train-test domain pairs.

To our knowledge, this is the first work to
specifically separate the role of the generative
model feature from the other features of Collins
(2000) and Charniak & Johnson (2005). We note
that, even without the Φgen feature, the discrimi-
native parsing models are very strong, but adding
Φgen nevertheless yields considerable gains. Thus,
while a fully discriminative model, perhaps im-
plemented using a shift-reduce algorithm, can be
expected to do very well, if the best accuracy is
necessary (e.g., in a semi-supervised training strat-
egy), it still seems to pay to use the generative-
discriminative model combination. Note that the
LAS scores of our models without Φgen are rela-
tively weak. This is presumably largely because
our dependency features are, at present, not sen-
sitive to arc labels, so our results probably under-
estimate the capability of our general framework
with respect to labelled dependency recovery.

Table 3 compares our work with Huang’s
(2008). Note that our model Φphrase+gen uses es-
sentially the same features as Huang (2008), so
the fact that our Φphrase+gen is noticeably more ac-
curate on F1 is presumably due to the benefits
in reduced feature under-training achieved by the
MERT combination strategy. Also, our Φphrase+deps
model is as accurate as Huang’s, without even us-
ing the generative model score feature. Table 4
compares our work to McClosky et al.’s (2006)
domain adaptation work with the Charniak &
Johnson (2005) parser. Their three models shown
have been trained on: i) the WSJ (supervised,
out-of-domain), ii) the WSJ plus 2.5 million sen-
tences of automatically labelled NANC newswire
text (semi-supervised, out-of-domain), and iii) the
BROWN corpus (supervised, in-domain). We test

Type Model WSJ

G+D Huang (2008) 91.7
D phrase+deps 91.7

G+D phrase+gen 92.1
G+D phrase+deps+gen 92.4

Table 3: Comparison of constituency parsing re-
sults in the cube decoding framework, on the WSJ

test set. On G+D, D, see Table 1.

Parser Training Data BROWN F1

CJ WSJ 85.2
CJ WSJ+NANC 87.8
CJ BROWN 88.4

Our Best WSJ 87.4

Table 4: Comparison of our best model,
Φphrase+deps+gen, on BROWN, with the Charniak &
Johnson (2005) parser, denoted CJ, as reported in
McClosky et al. (2006). Underline indicates best
trained on WSJ, bold face indicates best overall.

on BROWN. We see that our best (WSJ-trained)
model is over 2% more accurate (absolute F1

difference) than the Charniak & Johnson (2005)
parser trained on the same data. In fact, our
best model is nearly as good as McClosky et al.’s
(2006) self-trained, semi-supervised model. Of
course, the self-training strategy is orthogonal to
the improvements we have made.

6 Conclusion

We have shown that the addition of higher-order
dependency features into a cube decoding phase-
structure parser leads to statistically significant
gains in accuracy. The most interesting finding
is that these gains are clearly observed on out-of-
domain tests. This seems to imply that higher-
order dependency features do not merely over-fit
the training material. Future work should look at
other train-test domain pairs, as well as look at ex-
actly which higher-order dependency features are
most important to out-of-domain accuracy.

Acknowledgments

This work was supported by the Scottish Infor-
matics and Computer Science Alliance, The Uni-
versity of Edinburgh’s School of Informatics, and
ERC Advanced Fellowship 249520 GRAMPLUS.
We thank Zhongqiang Huang for his extensive
help in getting started with his LA-PCFG parser.

614



References

Berg-Kirkpatrick, T., Burkett, D., & Klein, D.
(2012). An empirical investigation of statistical
significance in NLP. In EMNLP, 995–1005.

Billot, S., & Lang, B. (1989). The structure of
shared forests in ambiguous parsing. In ACL,
143–151.

Carreras, X. (2007). Experiments with a higher-
order projective dependency parser. In Pro-
ceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007, 957–961.

Charniak, E., & Johnson, M. (2005). Coarse-to-
fine n-best parsing and MaxEnt discriminative
reranking. In ACL, 173–180.

Collins, M. (1997). Three generative, lexicalised
models for statistical parsing. In ACL, 16–23.

Collins, M. (2000). Discriminative reranking for
natural language parsing. In ICML, 175–182.

Collins, M. (2002). Discriminative training meth-
ods for Hidden Markov Models: theory and
experiments with perceptron algorithms. In
EMNLP, 1–8.

Crammer, K., Dekel, O., Keshet, J., Shalev-
Shwartz, S., & Singer, Y. (2006). Online
passive-aggressive algorithms. JMLR, 7, 551–
585.

Eisner, J. (1996). Three new probabilistic mod-
els for dependency parsing: An exploration. In
COLING, 340–345.

Finkel, J. R., Kleeman, A., & Manning, C. D.
(2008). Efficient, feature-based, conditional
random field parsing. In ACL, 959–967.

Gildea, D. (2001). Corpus variation and parser
performance. In EMNLP, 167–202.

Huang, L. (2008). Forest reranking: Discrimina-
tive parsing with non-local features. In ACL,
586–594.

Huang, L., & Chiang, D. (2007). Forest rescor-
ing: Faster decoding with integrated language
models. In ACL.

Huang, Z., Harper, M., & Petrov, S. (2010). Self-
training with products of latent variable gram-
mars. In EMNLP, 12–22.

Johansson, R., & Nugues, P. (2007). Extended
constituent-to-dependency conversion for En-
glish. In Proc. of the 16th Nordic Conference on
Computational Linguistics (NODALIDA), 105–
112.

Johnson, M., & Ural, A. E. (2010). Reranking the
Berkeley and Brown parsers. In HLT-NAACL,
665–668.

Koo, T., & Collins, M. (2010). Efficient third-
order dependency parsers. In ACL, 1–11.

Marcus, M. P., Santorini, B., & Marcinkiewicz,
M. A. (1993). Building a large annotated corpus
of English: The Penn Treebank. Computational
Linguistics, 19(2), 313–330.

de Marneffe, M.-C., & Manning, C. D. (2008).
The Stanford typed dependencies representa-
tion. In Coling 2008: Proceedings of the work-
shop on Cross-Framework and Cross-Domain
Parser Evaluation, 1–8.

Martins, A. F., Gimpel, K., Smith, N. A., Xing,
E. P., Figueiredo, M. A., & Aguiar, P. M.
(2010). Learning structured classifiers with dual
coordinate ascent. Technical report, DTIC Doc-
ument.

McClosky, D., Charniak, E., & Johnson, M.
(2006). Reranking and self-training for parser
adaptation. In ACL, 337–344.

McDonald, R., & Pereira, F. (2006). Online learn-
ing of approximate dependency parsing algo-
rithms. In EACL, 81–88.

McDonald, R. T., Crammer, K., & Pereira, F. C. N.
(2005). Online large-margin training of depen-
dency parsers. In ACL, 91–98.

McDonald, R. T., Hall, K., & Mann, G. (2010).
Distributed training strategies for the structured
perceptron. In HLT-NAACL, 456–464.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit,
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Abstract

We present fast, accurate, direct non-
projective dependency parsers with third-
order features. Our approach uses AD3,
an accelerated dual decomposition algo-
rithm which we extend to handle special-
ized head automata and sequential head
bigram models. Experiments in fourteen
languages yield parsing speeds competi-
tive to projective parsers, with state-of-
the-art accuracies for the largest datasets
(English, Czech, and German).

1 Introduction

Dependency parsing has become a prominent ap-
proach to syntax in the last few years, with in-
creasingly fast and accurate models being devised
(Kübler et al., 2009; Huang and Sagae, 2010;
Zhang and Nivre, 2011; Rush and Petrov, 2012).

In projective parsing, the arcs in the dependency
tree are constrained to be nested, and the problem
of finding the best tree can be addressed with dy-
namic programming. This results in cubic-time
decoders for arc-factored and sibling second-order
models (Eisner, 1996; McDonald and Pereira,
2006), and quartic-time for grandparent models
(Carreras, 2007) and third-order models (Koo and
Collins, 2010). Recently, Rush and Petrov (2012)
trained third-order parsers with vine pruning cas-
cades, achieving runtimes only a small factor
slower than first-order systems. Third-order fea-
tures have also been included in transition systems
(Zhang and Nivre, 2011) and graph-based parsers
with cube-pruning (Zhang and McDonald, 2012).

Unfortunately, non-projective dependency
parsers (appropriate for languages with a more
flexible word order, such as Czech, Dutch, and
German) lag behind these recent advances. The
main obstacle is that non-projective parsing is
NP-hard beyond arc-factored models (McDonald

and Satta, 2007). Approximate parsers have there-
fore been introduced, based on belief propagation
(Smith and Eisner, 2008), dual decomposition
(Koo et al., 2010), or multi-commodity flows
(Martins et al., 2009, 2011). These are all in-
stances of turbo parsers, as shown by Martins et
al. (2010): the underlying approximations come
from the fact that they run global inference in
factor graphs ignoring loop effects. While this
line of research has led to accuracy gains, none of
these parsers use third-order contexts, and their
speeds are well behind those of projective parsers.

This paper bridges the gap above by presenting
the following contributions:

• We apply the third-order feature models of Koo
and Collins (2010) to non-projective parsing.

• This extension is non-trivial since exact dy-
namic programming is not applicable. Instead,
we adapt AD3, the dual decomposition algo-
rithm proposed by Martins et al. (2011), to han-
dle third-order features, by introducing special-
ized head automata.

• We make our parser substantially faster than the
many-components approach of Martins et al.
(2011). While AD3 requires solving quadratic
subproblems as an intermediate step, recent re-
sults (Martins et al., 2012) show that they can be
addressed with the same oracles used in the sub-
gradient method (Koo et al., 2010). This enables
AD3 to exploit combinatorial subproblems like
the the head automata above.

Along with this paper, we provide a free distribu-
tion of our parsers, including training code.1

2 Dependency Parsing with AD3

Dual decomposition is a class of optimization
techniques that tackle the dual of combinatorial

1Released as TurboParser 2.1, and publicly available at
http://www.ark.cs.cmu.edu/TurboParser.

617



Figure 1: Parts considered in this paper. First-
order models factor over arcs (Eisner, 1996; Mc-
Donald et al., 2005), and second-order models in-
clude also consecutive siblings and grandparents
(Carreras, 2007). Our parsers add also arbitrary
siblings (not necessarily consecutive) and head bi-
grams, as in Martins et al. (2011), in addition
to third-order features for grand- and tri-siblings
(Koo and Collins, 2010).

problems in a modular and extensible manner (Ko-
modakis et al., 2007; Rush et al., 2010). In this
paper, we employ alternating directions dual de-
composition (AD3; Martins et al., 2011). Like
the subgradient algorithm of Rush et al. (2010),
AD3 splits the original problem into local sub-
problems, and seeks an agreement on the over-
lapping variables. The difference is that the AD3

subproblems have an additional quadratic term to
accelerate consensus. Recent analysis (Martins et
al., 2012) has shown that: (i) AD3 converges at
a faster rate,2 and (ii) the quadratic subproblems
can be solved using the same combinatorial ma-
chinery that is used in the subgradient algorithm.
This opens the door for larger subproblems (such
as the combination of trees and head automata in
Koo et al., 2010) instead of a many-components
approach (Martins et al., 2011), while still enjoy-
ing faster convergence.

2.1 Our Setup

Given a sentence with L words, to which we
prepend a root symbol $, let A := {〈h,m〉 | h ∈
{0, . . . , L}, m ∈ {1, . . . , L}, h 6= m} be the
set of possible dependency arcs. We parame-
terize a dependency tree via an indicator vector
u := 〈ua〉a∈A, where ua is 1 if the arc a is in the
tree, and 0 otherwise, and we denote by Y ⊆ R|A|
the set of such vectors that are indicators of well-

2Concretely, AD3 needs O(1/ε) iterations to converge to
a ε-accurate solution, while subgradient needs O(1/ε2).

formed trees. Let {As}Ss=1 be a cover of A, where
each As ⊆ A. We assume that the score of a parse
tree u ∈ Y decomposes as f(u) :=

∑S
s=1 fs(zs),

where each zs := 〈zs,a〉a∈As is a “partial view” of
u, and each local score function fs comes from a
feature-based linear model.

Past work in dependency parsing considered ei-
ther (i) a few “large” components, such as trees
and head automata (Smith and Eisner, 2008; Koo
et al., 2010), or (ii) many “small” components,
coming from a multi-commodity flow formulation
(Martins et al., 2009, 2011). Let Ys ⊆ R|As| de-
note the set of feasible realizations of zs, i.e., those
that are partial views of an actual parse tree. A tu-
ple of views 〈z1, . . . ,zS〉 ∈

∏S
s=1 Ys is said to be

globally consistent if zs,a = zs′,a holds for every
a, s and s′ such that a ∈ As∩As′ . We assume each
parse u ∈ Y corresponds uniquely to a globally
consistent tuple of views, and vice-versa. Follow-
ing Martins et al. (2011), the problem of obtaining
the best-scored tree can be written as follows:

maximize
∑S

s=1 fs(zs)

w.r.t. u ∈ R|A|, zs ∈ Ys, ∀s
s.t. zs,a = ua, ∀s, ∀a ∈ As, (1)

where the equality constraint ensures that the par-
tial views “glue” together to form a coherent parse
tree.3

2.2 Dual Decomposition and AD3

Dual decomposition methods dualize out the
equality constraint in Eq. 1 by introducing La-
grange multipliers λs,a. In doing so, they solve a
relaxation where the combinatorial sets Ys are re-
placed by their convex hulls Zs := conv(Ys).4 All
that is necessary is the following assumption:
Assumption 1 (Local-Max Oracle). Every s ∈
{1, . . . , S} has an oracle that solves efficiently any
instance of the following subproblem:

maximize fs(zs) +
∑

a∈As
λs,azs,a

w.r.t. zs ∈ Ys. (2)

Typically, Assumption 1 is met whenever the max-
imization of fs over Ys is tractable, since the ob-
jective in Eq. 2 just adds a linear function to fs.

3Note that any tuple 〈z1, . . . , zS〉 ∈
∏S

s=1 Ys satisfying
the equality constraints will be globally consistent; this fact,
due the assumptions above, will imply u ∈ Y.

4Let ∆|Ys| := {α ∈ R|Ys| |α ≥ 0,
∑

ys∈Ys
αys

= 1}
be the probability simplex. The convex hull of Ys is the set
conv(Ys) := {∑ys∈Ys

αys
ys | α ∈ ∆|Ys|}. Its members

represent marginal probabilities over the arcs in As.
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The AD3 algorithm (Martins et al., 2011) alter-
nates among the following iterative updates:

• z-updates, which decouple over s = 1, . . . , S,
and solve a penalized version of Eq. 2:

z(t+1)
s := argmax

zs∈Zs

fs(zs) +
∑

a∈As
λ
(t)
s,azs,a

−ρ
2

∑
a∈As

(zs,a − u(t)a )2. (3)

Above, ρ is a constant and the quadratic term
penalizes deviations from the current global so-
lution (stored in u(t)).5 We will see (Prop. 2)
that this problem can be solved iteratively using
only the Local-Max Oracle (Eq. 2).

• u-updates, a simple averaging operation:

u(t+1)
a := 1

|{s : a∈As}|
∑

s : a∈As
z
(t+1)
s,a . (4)

• λ-updates, where the Lagrange multipliers are
adjusted to penalize disagreements:

λ(t+1)
s,a := λ(t)s,a − ρ(z(t+1)

s,a − u(t+1)
a ). (5)

In sum, the only difference between AD3 and
the subgradient method is in the z-updates, which
in AD3 require solving a quadratic problem.
While closed-form solutions have been developed
for some specialized components (Martins et al.,
2011), this problem is in general more difficult
than the one arising in the subgradient algorithm.
However, the following result, proved in Martins
et al. (2012), allows to expand the scope of AD3

to any problem which satisfies Assumption 1.
Proposition 2. The problem in Eq. 3 admits a
solution z∗s which is spanned by a sparse basis
W ⊆ Ys with cardinality at most |W| ≤ O(|As|).
In other words, there is a distribution α with sup-
port in W such that z∗s =

∑
ys∈W αys

ys.
6

Prop. 2 has motivated an active set algorithm
(Martins et al., 2012) that maintains an estimate
of W by iteratively adding and removing elements
computed through the oracle in Eq. 2.7 Typically,
very few iterations are necessary and great speed-
ups are achieved by warm-starting W with the ac-
tive set computed in the previous AD3 iteration.
This has a huge impact in practice and is crucial to
obtain the fast runtimes in §4 (see Fig. 2).

5In our experiments (§4), we set ρ = 0.05.
6Note that |Ys| = O(2|As|) in general. What Prop. 2

tells us is that the solution of Eq. 3 can be represented as a
distribution over Ys with a very sparse support.

7The algorithm is a specialization of Nocedal and Wright
(1999), §16.4, which effectively exploits the sparse represen-
tation of z∗s . For details, see Martins et al. (2012).
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Figure 2: Comparison between AD3 and subgra-
dient. We show averaged runtimes in PTB §22 as
a function of the sentence length. For subgradi-
ent, we chose for each sentence the most favorable
stepsize in {0.001, 0.01, 0.1, 1}.

3 Solving the Subproblems

We next describe the actual components used in
our third-order parsers.

Tree component. We use an arc-factored score
function (McDonald et al., 2005): f TREE(z) =∑L

m=1 σARC(π(m),m), where π(m) is the parent
of the mth word according to the parse tree z,
and σARC(h,m) is the score of an individual arc.
The parse tree that maximizes this function can be
found in time O(L3) via the Chu-Liu-Edmonds’
algorithm (Chu and Liu, 1965; Edmonds, 1967).8

Grand-sibling head automata. Let Ain
h and

Aout
h denote respectively the sets of incoming and

outgoing candidate arcs for the hth word, where
the latter subdivides into arcs pointing to the right,
Aout
h,→, and to the left, Aout

h,←. Define the sets
AGSIB
h,→ = Ain

h ∪Aout
h,→ andAGSIB

h,← = Ain
h ∪Aout

h,←. We
describe right-side grand-sibling head automata;
their left-side counterparts are analogous. For
each head word h in the parse tree z, define
g := π(h), and let 〈m0,m1, . . . ,mp+1〉 be the se-
quence of right modifiers of h, with m0 = START

and mp+1 = END. Then, we have the following
grand-sibling component:

fGSIB
h,→ (z|AGSIB

h,→
) =

∑p+1
k=1

(
σSIB(h,mk−1,mk)

σGP(g, h,mk) + σGSIB(g, h,mk−1,mk)
)
,

where we use the shorthand z|B to denote the
subvector of z indexed by the arcs in B ⊆ A.
Note that this score function absorbs grandparent
and consecutive sibling scores, in addition to the
grand-sibling scores.9 For each h, fGSIB

h,→ can be

8In fact, there is an asymptotically fasterO(L2) algorithm
(Tarjan, 1977). Moreover, if the set of possible arcs is reduced
to a subset B ⊆ A (via pruning), then the fastest known al-
gorithm (Gabow et al., 1986) runs in O(|B|+L logL) time.

9Koo et al. (2010) used an identical automaton for their
second-order model, but leaving out the grand-sibling scores.
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No pruning |Ain
m| ≤ K same, + |Aout

h | ≤ J
TREE O(L2) O(KL+ L logL) O(KL+ L logL)
GSIB O(L4) O(K2L2) O(JK2L)
TSIB O(L4) O(KL3) O(J2KL)
SEQ O(L3) O(K2L) O(K2L)

ASIB O(L3) O(KL2) O(JKL)

Table 1: Theoretical runtimes of each subproblem
without pruning, limiting the number of candidate
heads, and limiting (in addition) the number of
modifiers. Note the O(L logL) total runtime per
AD3 iteration in the latter case.

maximized in time O(L3) with dynamic program-
ming, yielding O(L4) total runtime.

Tri-sibling head automata. In addition, we de-
fine left and right-side tri-sibling head automata
that remember the previous two modifiers of a
head word. This corresponds to the following
component function (for the right-side case):

f TSIB
h,→ (z|Aout

h,→
) =

∑p+1
k=2 σTSIB(h,mk−2,mk−1,mk).

Again, each of these functions can be maximized
in time O(L3), yielding O(L4) runtime.

Sequential head bigram model. Head bigrams
can be captured with a simple sequence model:

f SEQ(z) =
∑L

m=2 σHB(m,π(m), π(m− 1)).

Each score σHB(m,h, h
′) is obtained via features

that look at the heads of consecutive words (as in
Martins et al. (2011)). This function can be maxi-
mized in time O(L3) with the Viterbi algorithm.

Arbitrary siblings. We handle arbitrary siblings
as in Martins et al. (2011), definingO(L3) compo-
nent functions of the form fASIB

h,m,s(z〈h,m〉, z〈h,s〉) =
σASIB(h,m, s). In this case, the quadratic problem
in Eq. 3 can be solved directly in constant time.

Tab. 1 details the time complexities of each sub-
problem. Without pruning, each iteration of AD3

has O(L4) runtime. With a simple strategy that
limits the number of candidate heads per word to
a constant K, this drops to cubic time.10 Further
speed-ups are possible with more pruning: by lim-
iting the number of possible modifiers to a con-
stant J , the runtime would reduce to O(L logL).

10In our experiments, we employed this strategy withK =
10, by pruning with a first-order probabilistic model. Fol-
lowing Koo and Collins (2010), for each word m, we also
pruned away incoming arcs 〈h,m〉 with posterior probability
less than 0.0001 times the probability of the most likely head.

UAS Tok/sec
PTB-YM §22, 1st ord 91.38 4,063
PTB-YM §22, 2nd ord 93.15 1,338
PTB-YM §22, 2nd ord, +ASIB, +HB 93.28 1,018
PTB-YM §22, 3rd ord 93.29 709
PTB-YM §22, 3rd ord, gold tags 94.01 722
This work (PTB-YM §23, 3rd ord) 93.07 735
Koo et al. (2010) 92.46 112†

Huang and Sagae (2010) 92.1– 587†

Zhang and Nivre (2011) 92.9– 680†

Martins et al. (2011) 92.53 66†

Zhang and McDonald (2012) 93.06 220
This work (PTB-S §23, 3rd ord) 92.82 604
Rush and Petrov (2012) 92.7– 4,460

Table 2: Results for the projective English dataset.
We report unlabeled attachment scores (UAS) ig-
noring punctuation, and parsing speeds in tokens
per second. Our speeds include the time necessary
for pruning, evaluating features, and decoding, as
measured on a Intel Core i7 processor @3.4 GHz.
The others are speeds reported in the cited papers;
those marked with † were converted from times per
sentence.

4 Experiments

We first evaluated our non-projective parser in a
projective English dataset, to see how its speed and
accuracy compares with recent projective parsers,
which can take advantage of dynamic program-
ming. To this end, we converted the Penn Tree-
bank to dependencies through (i) the head rules
of Yamada and Matsumoto (2003) (PTB-YM) and
(ii) basic dependencies from the Stanford parser
2.0.5 (PTB-S).11 We trained by running 10 epochs
of cost-augmented MIRA (Crammer et al., 2006).
To ensure valid parse trees at test time, we rounded
fractional solutions as in Martins et al. (2009)—
yet, solutions were integral ≈ 95% of the time.

Tab. 2 shows the results in the dev-set (top
block) and in the test-set (two bottom blocks). In
the dev-set, we see consistent gains when more ex-
pressive features are added, the best accuracies be-
ing achieved with the full third-order model; this
comes at the cost of a 6-fold drop in runtime com-
pared with a first-order model. By looking at the
two bottom blocks, we observe that our parser
has slightly better accuracies than recent projec-
tive parsers, with comparable speed levels (with
the exception of the highly optimized vine cascade
approach of Rush and Petrov, 2012).

11We train on sections §02–21, use §22 as validation data,
and test on §23. We trained a simple 2nd-order tagger with
10-fold jackknifing to obtain automatic part-of-speech tags
for §22–23, with accuracies 97.2% and 96.9%, respectively.
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First Ord. Sec. Ord. Third Ord. Best published UAS RP12 ZM12
UAS Tok/sec UAS Tok/sec UAS Tok/sec UAS Tok/sec UAS Tok/sec UAS

Arabic 77.23 2,481 78.50 388 79.64 197 81.12 - Ma11 - - -
Bulgarian 91.76 5,678 92.82 2,049 93.10 1,273 93.50 - Ma11 91.9 3,980 93.08
Chinese 88.49 18,094 90.14 4,284 89.98 2,592 91.89 - Ma10 90.9 7,800 -
Czech 87.66 1,840 90.00 751 90.32 501 89.46 - Ma11 - - -
Danish 89.42 4,110 91.20 1,053 91.48 650 91.86 - Ma11 - -
Dutch 83.61 3,884 86.37 1,294 86.19 599 85.81 121 Ko10 - - -
German 90.52 5,331 91.85 1,788 92.41 965 91.89 - Ma11 90.8 2,880 91.35
English 91.21 3,127 93.03 1,317 93.22 785 92.68 - Ma11 - - -
Japanese 92.78 23,895 93.14 5,660 93.52 2,996 93.72 - Ma11 92.3 8,600 93.24
Portuguese 91.14 4,273 92.71 1,316 92.69 740 93.03 79 Ko10 91.5 2,900 91.69
Slovene 82.81 4,315 85.21 722 86.01 366 86.95 - Ma11 - - -
Spanish 83.61 4,347 84.97 623 85.59 318 87.48 - ZM12 - - 87.48
Swedish 89.36 5,622 90.98 1,387 91.14 684 91.44 - ZM12 90.1 5,320 91.44
Turkish 75.98 6,418 76.50 1,721 76.90 793 77.55 258 Ko10 - - -

Table 3: Results for the CoNLL-2006 datasets and the non-projective English dataset of CoNLL-2008.
“Best Published UAS” includes the most accurate parsers among Nivre et al. (2006), McDonald et al.
(2006), Martins et al. (2010, 2011), Koo et al. (2010), Rush and Petrov (2012), Zhang and McDonald
(2012). The last two are shown separately in the rightmost columns.

In our second experiment (Tab. 3), we used 14
datasets, most of which are non-projective, from
the CoNLL 2006 and 2008 shared tasks (Buch-
holz and Marsi, 2006; Surdeanu et al., 2008).
Our third-order model achieved the best reported
scores for English, Czech, German, and Dutch—
which includes the three largest datasets and the
ones with the most non-projective dependencies—
and is on par with the state of the art for the
remaining languages. To our knowledge, the
speeds are the highest reported among higher-
order non-projective parsers, and only about 3–
4 times slower than the vine parser of Rush and
Petrov (2012), which has lower accuracies.

5 Conclusions

We presented new third-order non-projective
parsers which are both fast and accurate. We de-
coded with AD3, an accelerated dual decomposi-
tion algorithm which we adapted to handle large
components, including specialized head automata
for the third-order features, and a sequence model
for head bigrams. Results are above the state of
the art for large datasets and non-projective lan-
guages. In the hope that other researchers may find
our implementation useful or are willing to con-
tribute with further improvements, we made our
parsers publicly available as open source software.
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Abstract 

For the cascaded task of Chinese word seg-
mentation, POS tagging and parsing, the pipe-
line approach suffers from error propagation 
while the joint learning approach suffers from 
inefficient decoding due to the large combined 
search space. In this paper, we present a novel 
lattice-based framework in which a Chinese 
sentence is first segmented into a word lattice, 
and then a lattice-based POS tagger and a lat-
tice-based parser are used to process the lattice 
from two different viewpoints: sequential POS 
tagging and hierarchical tree building. A strat-
egy is designed to exploit the complementary 
strengths of the tagger and parser, and encour-
age them to predict agreed structures. Experi-
mental results on Chinese Treebank show that 
our lattice-based framework significantly im-
proves the accuracy of the three sub-tasks. 

1 Introduction 

Previous work on syntactic parsing generally 
assumes a processing pipeline where an input 
sentence is first tokenized, POS-tagged and then 
parsed (Collins, 1999; Charniak, 2000; Petrov 
and Klein, 2007). This approach works well for 
languages like English where automatic tokeni-
zation and POS tagging can be performed with 
high accuracy without the guidance of the high-
level syntactic structure. Such an approach, how-
ever, is not optimal for languages like Chinese 
where there are no natural delimiters for word 
boundaries, and word segmentation (or tokeniza-
tion) is a non-trivial research problem by itself. 
Errors in word segmentation would propagate to 
later processing stages such as POS tagging and 
syntactic parsing. More importantly, Chinese is a 
language that lacks the morphological clues that 
help determine the POS tag of a word. For ex-
ample, 调查  (“investigate/investigation”) can 
either be a verb (“investigate”) or a noun (“inves-
tigation”), and there is no morphological varia-
tion between its verbal form and nominal form. 

This contributes to the relatively low accuracy 
(95% or below) in Chinese POS tagging when 
evaluated as a stand-alone task (Sun and Uszko-
reit, 2012), and the noun/verb ambiguity is a ma-
jor source of error.  

More recently, joint inference approaches 
have been proposed to address the shortcomings 
of the pipeline approach. Qian and Liu (2012) 
proposed a joint inference approach where syn-
tactic parsing can provide feedback to word 
segmentation and POS tagging and showed that 
the joint inference approach leads to improve-
ments in all three sub-tasks. However, a major 
challenge for joint inference approach is that the 
large combined search space makes efficient de-
coding and parameter estimation very hard.  

In this paper, we present a novel lattice-based 
framework for Chinese. An input Chinese sen-
tence is first segmented into a word lattice, 
which is a compact representation of a small set 
of high-quality word segmentations. Then, a lat-
tice-based POS tagger and a lattice-based parser 
are used to process the word lattice from two 
different viewpoints. We next employ the dual 
decomposition method to exploit the comple-
mentary strengths of the tagger and parser, and 
encourage them to predict agreed structures. Ex-
perimental results show that our lattice-based 
framework significantly improves the accuracies 
of the three sub-tasks  

2 The Lattice-based Framework 

Figure 1 gives the organization of the framework. 
There are four types of linguistic structures: a 
Chinese sentence, the word lattice, tagged word 
sequence and parse tree of the Chinese sentence. 
An example for each structure is provided in 
Figure 2. We can see that the terminals and pre-
terminals of a parse tree constitute a tagged word 
sequence. Therefore, we define a comparator 
between a tagged word sequence and a parse tree: 
if they contain the same word sequence and POS 
tags, they are equal, otherwise unequal. 
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Figure 1 also shows the workflow of the 
framework. First, the Chinese sentence is seg-
mented into a word lattice using the word seg-
mentation system. Then the word lattice is fed 
into the lattice-based POS tagger to produce a 
tagged word sequence   and into the lattice-
based parser to separately produce a parse tree  . 
We then compare   with   to see whether they 
are equal. If they are equal, we output   as the 
final result. Otherwise, the guidance generator 
generates some guidance orders based on the 
difference between   and  , and guides the tag-
ger and the parser to process the lattice again. 
This procedure may iterate many times until the 
tagger and parser predict equal structures. 

 

 
The motivation to design such a framework is 

as follows. First, state-of-the-art word segmenta-
tion systems can now perform with high accura-
cy. We can easily get an F1 score greater than 
96%, and an oracle (upper bound) F1 score 
greater than 99%  for the word lattice (Jiang et 

al., 2008). Therefore, a word lattice provides us a 
good enough search space to allow sufficient 
interaction among word segmentation, POS tag-
ging and parsing systems. Second, both the lat-
tice-based POS tagger and the lattice-based pars-
er can select word segmentation from the word 
lattice and predict POS tags, but they do so from 
two different perspectives. The lattice-based POS 
tagger looks at a path in a word lattice as a se-
quence and performs sequence labeling based on 
linear local context, while the lattice-based pars-
er builds the parse trees in a hierarchical manner. 
They have different strengths with regard to 
word segmentation and POS tagging. We hypo-
thesize that exploring the complementary 
strengths of the tagger and parser would improve 
each of the sub-tasks. 

We build a character-based model (Xue, 2003) 
for the word segmentation system, and treat 
segmentation as a sequence labeling task, where 
each Chinese character is labeled with a tag. We 
use the tag set provided in Wang et al. (2011) 
and use the same feature templates. We use the 
Maximum Entropy (ME) model to estimate the 
feature weights. To get a word lattice, we first 
generate N-best word segmentation results, and 
then compact the N-best lists into a word lattice 
by collapsing all the identical words into one 
edge. We also assign a probability to each edge, 
which is calculated by multiplying the tagging 
probabilities of each character in the word. 
    The goal of the lattice-based POS tagger is to 
predict a tagged word sequence   for an input 
word lattice  :   = argmax ∈    ( ) ∙  ( ) 

where     ( ) represents the set of all possible 
tagged word sequences derived from the word 
lattice  .  ( ) is used to map   onto a global fea-
ture vector, and   is the corresponding weight 
vector. We use the same non-local feature tem-
plates used in Jiang et al. (2008) and a similar 
decoding algorithm. We use the perceptron algo-
rithm (Collins, 2002) for parameter estimation. 

Goldberg and Elhadad (2011) proposed a lat-
tice-based parser for Heberw based on the 
PCFG-LA model (Matsuzaki et al., 2005). We 
adopted their approach, but found the un-
weighted word lattice their parser takes as input 
to be ineffective for our Chinese experiments. 
Instead, we use a weighted lattice as input and 
weigh each edge in the lattice with the word 
probability. In our model, each syntactic catego-
ry   is split into multiple subcategories  [ ] by 
labeling a latent annotation  . Then, a parse tree 

布朗一行于今晚离沪赴广州。 
Brown’s group will leave Shanghai to Guangzhou tonight. 

(a) Chinese Sentence 

 
 (b) Word Lattice 
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Figure 2: Linguistic structure examples. 
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Figure 1: The lattice-based framework. 
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  is refined into  [ ], where X is the latent an-
notation vector for all non-terminals in  . The 
probability of  [ ] is calculated as:  ( [ ]) =   ( [ ] →  [ ] [ ]) ×  ( [ ] →  )×  ( ) 

where the three terms are products of all syntac-
tic rule probabilities, lexical rule probabilities 
and word probabilities in  [ ] respectively. 

3 Combined Optimization Between The 
Lattice-based POS Tagger and The 
Lattice-based Parser  

We first define some variables to make it easier 
to compare a tagged word sequence   with a 
parse tree  . We define   as the set of all POS 
tags. For  , we define  ( ,  , )=1 if   contains a 
POS tag  ∈   spanning from the i-th character 
to the j-th character, otherwise  ( ,  , ) = 0. We 
also define  ( ,  , #) = 1 if   contains the word 
spanning from the i-th character to the j-th cha-
racter, otherwise  ( ,  , #) = 0. Similarly, for  , 
we define  ( ,  , )=1 if   contains a POS tag  ∈   spanning from the i-th character to the j-th 
character, otherwise  ( ,  , ) = 0. We also define  ( ,  , #)  = 1 if   contains the word spanning 
from the i-th character to the j-th character, oth-
erwise  ( ,  , #) = 0. Therefore,   and   are equal, 
only if  ( ,  , ) =  ( ,  , )  for all  ∈ [0, ] ,  ∈ [ + 1, ] and  ∈  ∪ #, otherwise unequal. 

Our framework expects the tagger and the 
parser to predict equal structures and we formu-
late it as a constraint optimization problem:    ,   = argmax ,    ( ) +   ( ) 

Such that for all  ∈ [0, ] ,  ∈ [ + 1, ]  and  ∈  ∪ #:  ( ,  ,  ) =  ( ,  , ) 
 

where   ( ) =  ∙  ( )  is a scoring function 
from the viewpoint of the lattice-based POS tag-
ger, and   ( ) = log  ( ) is a scoring function 
from the viewpoint of the lattice-based parser.  

The dual decomposition (a special case of La-
grangian relaxation) method introduced in Ko-
modakis et al. (2007) is suitable for this problem. 
Using this method, we solve the primal con-
straint optimization problem by optimizing the 
dual problem. First, we introduce a vector of La-
grange multipliers  ( ,  , )  for each equality 
constraint. Then, the Lagrangian is formulated as:  ( , , ) =   ( ) +   ( ) +  ( ,  , )( ( ,  , ) −  ( ,  , )) , ,  

By grouping the terms that depend on   and  , 
we rewrite the Lagrangian as  ( , , ) =    ( ) +   ( ,  , ) ( ,  , ) , ,   

+   ( ) −  ( ,  , ) ( ,  , ) , ,   

Then, the dual objective is  ( ) = max ,  ( , , ) 

= max    ( ) +   ( ,  , ) ( ,  , ) , ,  + 

max    ( ) −  ( ,  , ) ( ,  , ) , ,   

The dual problem is to find min  ( ). 
    We use the subgradient method (Boyd et al., 
2003) to minimize the dual. Following Rush et al. 
(2010), we define the subgradient of   ( ) as:  ( ,  , ) =  ( ,  , ) −  ( ,  ,  )  for all ( ,  , ) 

Then, adjust  ( ,  ,  ) as follows:   ( ,  , ) =  ( ,  , ) −  ( ( ,  ,  ) −  ( ,  , )) 
where  >0 is a step size. 

 
Algorithm 1 presents the subgradient method 

to solve the dual problem. The algorithm initia-
lizes the Lagrange multiplier values with 0 (line 
1) and then iterates many times. In each iteration, 
the algorithm finds the best   ( )  and   ( )  by 
running the lattice-based POS tagger (line 3) and 
the lattice-based parser (line 4). If   ( ) and    ( ) 
share the same tagged word sequence (line 5), 
then the algorithm returns the solution (line 6). 
Otherwise, the algorithm adjusts the Lagrange 
multiplier values based on the differences be-
tween    ( ) and   ( ) (line 8). A crucial point is 
that the argmax problems in line 3 and line 4 can 
be solved efficiently using the original decoding 
algorithms, because the Lagrange multiplier can 
be regarded as adjustments for lexical rule prob-
abilities and word probabilities.  

4 Experiments 

We conduct experiments on the Chinese Tree-
bank Version 5.0 and use the standard data split 

Algorithm 1: Combined Optimization 
1: Set  ( )( ,  , )=0, for all  ( ,  , ) 
2: For k=1 to K 
3:     ( ) ← argmax    ( ) +∑   (   )( ,  , ) ( ,  , )  , ,    
4:     ( ) ← argmax    ( ) − ∑   (   )( ,  , ) ( ,  , )  , ,   
5:   If  ( )( ,  , ) =  ( )( ,  , ) for all ( ,  , )  
6:      Return (  ( ),   ( )) 
7:   Else  
8:       ( )( ,  , ) =  (   )( ,  , ) −  ( ( )( ,  , ) −  ( )( ,  , ))  
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(Petrov and Klein, 2007). The traditional evalua-
tion metrics for POS tagging and parsing are not 
suitable for the joint task. Following with Qian 
and Liu (2012), we redefine precision and recall 
by computing the span of a constituent based on 
character offsets rather than word offsets.  

4.1 Performance of the Basic Sub-systems 
We train the word segmentation system with 100 
iterations of the Maximum Entropy model using 
the OpenNLP toolkit. Table 1 shows the perfor-
mance. It shows that our word segmentation sys-
tem is comparable with the state-of-the-art sys-
tems and the upper bound F1 score of the word 
lattice exceeds 99.6%. This indicates that our 
word segmentation system can provide a good 
search space for the lattice-based POS tagger and 
the lattice-based parser. 

 
To train the lattice-based POS tagger, we gen-

erate the word lattice for each sentence in the 
training set using cross validation approach. We 
divide the entire training set into 18 folds on av-
erage (each fold contains 1,000 sentences). For 
each fold, we segment each sentence in the fold 
into a word lattice by compacting 20-best seg-
mentation list produced with a model trained on 
the other 17 folds. Then, we train the lattice-
based POS tagger with 20 iterations of the aver-
age perceptron algorithm. Table 2 presents the 
joint word segmentation and POS tagging per-
formance and shows that our lattice-based POS 
tagger obtains results that are comparable with 
state-of-the-art systems. 

 
We implement the lattice-based parser by 

modifying the Berkeley Parser, and train it with 
5 iterations of the split-merge-smooth strategy 
(Petrov et al., 2006). Table 3 shows the perfor-
mance, where the “Pipeline Parser” represents 
the system taking one-best segmentation result 

from our word segmentation system as input and 
“Lattice-based Parser” represents the system tak-
ing the compacted word lattice as input. We find 
the lattice-based parser gets better performance 
than the pipeline system among all three sub-
tasks. 

 

4.2 Performance of the Framework 
For the lattice-based framework, we set the max-
imum iteration in Algorithm 1 as K = 20. The 
step size   is tuned on the development set and 
empirically set to be 0.8. Table 4 shows the pars-
ing performance on the test set. It shows that the 
lattice-based framework achieves improvement 
over the lattice-based parser alone among all 
three sub-tasks: 0.16 points for word segmenta-
tion, 1.19 points for POS tagging and 1.65 points 
for parsing. It also outperforms the lattice-based 
POS tagger by 0.65 points on POS tagging accu-
racy. Our lattice-based framework also improves 
over the best joint inference parsing system 
(Qian and Liu, 2012) by 0.57 points. 

 

5 Conclusion  

In this paper, we present a novel lattice-based 
framework for the cascaded task of Chinese 
word segmentation, POS tagging and parsing. 
We first segment a Chinese sentence into a word 
lattice, then process the lattice using a lattice-
based POS tagger and a lattice-based parser. We 
also design a strategy to exploit the complemen-
tary strengths of the tagger and the parser and 
encourage them to predict agreed structures. Ex-
perimental results show that the lattice-based 
framework significantly improves the accuracies 
of the three tasks. The parsing accuracy of the 
framework also outperforms the best joint pars-
ing system reported in the literature. 

  P R F 
(Qian and Liu, 

2012) 
 

Seg. 97.56 98.36 97.96 
POS 93.43 94.2 93.81 
Parse 83.03 82.66 82.85 

Lattice-based  
Framework 

Seg. 97.82 97.9 97.86 
POS 94.36 94.44 94.40 
Parse 83.34 83.5 83.42 

 Table 4: Lattice-based framework evaluation. 

  P R F 

Pipeline Parser 
 

Seg. 96.97 98.06 97.52 
POS 92.01 93.04 92.52 
Parse 80.86 81.47 81.17 

 
Lattice-based 

 Parser 

Seg. 97.73 97.66 97.70 
POS 93.24 93.18 93.21 
Parse 81.83 81.71 81.77 

 Table 3: Parsing evaluation. 

 P R F 
(Kruengkrai et al., 2009) 93.28 94.07 93.67 
(Zhang and Clark, 2010) - - 93.67 
(Qian and Liu, 2012) 93.1 93.96 93.53 
(Sun, 2011) - - 94.02 
Lattice-based POS tagger 93.64 93.87 93.75 

Table 2: POS tagging evaluation. 

  P R F 
(Kruengkrai et al., 2009) 97.46 98.29 97.87 
(Zhang and Clark, 2010) - - 97.78 
(Qian and Liu, 2012) 97.45 98.24 97.85 
(Sun, 2011) - - 98.17 
Our Word Seg. System 96.97 98.06 97.52 
Word Lattice Upper Bound 99.55 99.75 99.65 

Table 1: Word segmentation evaluation. 
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Abstract

Beam search incremental parsers are ac-
curate, but not as fast as they could be.
We demonstrate that, contrary to popu-
lar belief, most current implementations
of beam parsers in fact run in O(n2),
rather than linear time, because each state-
transition is actually implemented as an
O(n) operation. We present an improved
implementation, based on Tree Structured
Stack (TSS), in which a transition is per-
formed in O(1), resulting in a real linear-
time algorithm, which is verified empiri-
cally. We further improve parsing speed
by sharing feature-extraction and dot-
product across beam items. Practically,
our methods combined offer a speedup of
∼2x over strong baselines on Penn Tree-
bank sentences, and are orders of magni-
tude faster on much longer sentences.

1 Introduction

Beam search incremental parsers (Roark, 2001;
Collins and Roark, 2004; Zhang and Clark, 2008;
Huang et al., 2009; Huang and Sagae, 2010;
Zhang and Nivre, 2011; Zhang and Clark, 2011)
provide very competitive parsing accuracies for
various grammar formalisms (CFG, CCG, and de-
pendency grammars). In terms of purning strate-
gies, they can be broadly divided into two cat-
egories: the first group (Roark, 2001; Collins
and Roark, 2004) uses soft (aka probabilistic)
beams borrowed from bottom-up parsers (Char-
niak, 2000; Collins, 1999) which has no control
of complexity, while the second group (the rest
and many more recent ones) employs hard beams
borrowed from machine translation (Koehn, 2004)
which guarantee (as they claim) a linear runtime
O(kn) where k is the beam width. However, we
will demonstrate below that, contrary to popular

∗Supported in part by DARPA FA8750-13-2-0041 (DEFT).

belief, in most standard implementations their ac-
tual runtime is in fact O(kn2) rather than linear.
Although this argument in general also applies to
dynamic programming (DP) parsers,1 in this pa-
per we only focus on the standard, non-dynamic
programming approach since it is arguably still the
dominant practice (e.g. it is easier with the popular
arc-eager parser with a rich feature set (Kuhlmann
et al., 2011; Zhang and Nivre, 2011)) and it bene-
fits more from our improved algorithms.

The dependence on the beam-size k is because
one needs to do k-times the number of basic opera-
tions (feature-extractions, dot-products, and state-
transitions) relative to a greedy parser (Nivre and
Scholz, 2004; Goldberg and Elhadad, 2010). Note
that in a beam setting, the same state can expand
to several new states in the next step, which is usu-
ally achieved by copying the state prior to making
a transition, whereas greedy search only stores one
state which is modified in-place.

Copying amounts to a large fraction of the
slowdown of beam-based with respect to greedy
parsers. Copying is expensive, because the state
keeps track of (a) a stack and (b) the set of
dependency-arcs added so far. Both the arc-set and
the stack can grow to O(n) size in the worst-case,
making the state-copy (and hence state-transition)
an O(n) operation. Thus, beam search imple-
mentations that copy the entire state are in fact
quadratic O(kn2) and not linear, with a slowdown
factor of O(kn) with respect to greedy parsers,
which is confirmed empirically in Figure 4.

We present a way of decreasing the O(n) tran-
sition cost to O(1) achieving strictly linear-time
parsing, using a data structure of Tree-Structured
Stack (TSS) that is inspired by but simpler than
the graph-structured stack (GSS) of Tomita (1985)
used in dynamic programming (Huang and Sagae,
2010).2 On average Treebank sentences, the TSS

1The Huang-Sagae DP parser (http://acl.cs.qc.edu)
does run in O(kn), which inspired this paper when we ex-
perimented with simulating non-DP beam search using GSS.

2Our notion of TSS is crucially different from the data
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input: w0 . . . wn−1

axiom 0 : 〈0, ε〉: ∅

SHIFT
` : 〈j, S〉 : A

`+ 1 : 〈j + 1, S|wj〉 : A
j < n

REDUCEL
` : 〈j, S|s1|s0〉 : A

`+ 1 : 〈j, S|s0〉 : A ∪ {s1xs0}

REDUCER
` : 〈j, S|s1|s0〉 : A

`+ 1 : 〈j, S|s1〉 : A ∪ {s1ys0}

goal 2n− 1 : 〈n, s0〉: A

Figure 1: An abstraction of the arc-standard de-
ductive system Nivre (2008). The stack S is a list
of heads, j is the index of the token at the front of
the buffer, and ` is the step number (beam index).
A is the arc-set of dependency arcs accumulated
so far, which we will get rid of in Section 4.1.

version, being linear time, leads to a speedup of
2x∼2.7x over the naive implementation, and about
1.3x∼1.7x over the optimized baseline presented
in Section 5.

Having achieved efficient state-transitions, we
turn to feature extraction and dot products (Sec-
tion 6). We present a simple scheme of sharing
repeated scoring operations across different beam
items, resulting in an additional 7 to 25% speed in-
crease. On Treebank sentences, the methods com-
bined lead to a speedup of ∼2x over strong base-
lines (∼10x over naive ones), and on longer sen-
tences they are orders of magnitude faster.

2 Beam Search Incremental Parsing

We assume familiarity with transition-based de-
pendency parsing. The unfamiliar reader is re-
ferred to Nivre (2008). We briefly describe a
standard shift-reduce dependency parser (which is
called “arc-standard” by Nivre) to establish nota-
tion. Parser states (sometimes called configura-
tions) are composed of a stack, a buffer, and an
arc-set. Parsing transitions are applied to states,
and result in new states. The arc-standard system
has three kinds of transitions: SHIFT, REDUCEL,

structure with the same name in an earlier work of Tomita
(1985). In fact, Tomita’s TSS merges the top portion of the
stacks (more like GSS) while ours merges the bottom por-
tion. We thank Yue Zhang for informing us that TSS was
already implemented for the CCG parser in zpar (http://
sourceforge.net/projects/zpar/) though it was not men-
tioned in his paper (Zhang and Clark, 2011).

and REDUCER, which are summarized in the de-
ductive system in Figure 1. The SHIFT transition
removes the first word from the buffer and pushes
it to the stack, and the REDUCEL and REDUCER
actions each add a dependency relation between
the two words on the top of the stack (which is
achieved by adding the arc s1xs0 or s1ys0 to the
arc-set A), and pops the new dependent from the
stack. When reaching the goal state the parser re-
turns a tree composed of the arcs in the arc-set.

At parsing time, transitions are chosen based on
a trained scoring model which looks at features
of the state. In a beam parser, k items (hypothe-
ses) are maintained. Items are composed of a state
and a score. At step i, each of the k items is ex-
tended by applying all possible transitions to the
given state, resulting in k × a items, a being the
number of possible transitions. Of these, the top
scoring k items are kept and used in step i+1. Fi-
nally, the tree associated with the highest-scoring
item is returned.

3 The Common Implementation of State

The stack is usually represented as a list or an array
of token indices, and the arc-set as an array heads

of length n mapping the word at position m to the
index of its parent. In order to allow for fast fea-
ture extraction, additional arrays are used to map
each token to its left-most and right-most modi-
fier, which are used in most incremental parsers,
e.g. (Huang and Sagae, 2010; Zhang and Nivre,
2011). The buffer is usually implemented as a
pointer to a shared sentence object, and an index j
to the current front of the buffer. Finally, it is com-
mon to keep an additional array holding the tran-
sition sequence leading to the current state, which
can be represented compactly as a pointer to the
previous state and the current action. The state
structure is summarized below:
class state

stack[n] of token_ids
array[n] heads
array[n] leftmost_modifiers
array[n] rightmost_modifiers
int j
int last_action
state previous

In a greedy parser, state transition is performed in-
place. However, in a beam parser the states cannot
be modified in place, and a state transition oper-
ation needs to result in a new, independent state
object. The common practice is to copy the cur-
rent state, and then update the needed fields in the
copy. Copying a stack and arrays of size n is an
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O(n) operation. In what follows, we present a way
to perform transitions in O(1).

4 Efficient State Transitions

4.1 Distributed Representation of Trees
The state needs to keep track of the set of arcs
added to the tree so far for two reasons:

(a) In order to return the complete tree at the end.
(b) In order to compute features when parsing.

Observe that we do not in fact need to store any
arc in order to achieve (a) – we could reconstruct
the entire set by backtracking once we reach the
final configuration. Hence, the arc-set in Figure 1
is only needed for computing features. Instead of
storing the entire arc-set, we could keep only the
information needed for feature computation. In
the feature set we use (Huang and Sagae, 2010),
we need access to (1) items on the buffer, (2)
the 3 top-most elements of the stack, and (3) the
current left-most and right-most modifiers of the
two topmost stack elements. The left-most and
right-most modifiers are already kept in the state
representation, but store more information than
needed: we only need to keep track of the mod-
ifiers of current stack items. Once a token is re-
moved from the stack it will never return, and we
will not need access to its modifiers again. We
can therefore remove the left/rightmost modifier
arrays, and instead have the stack store triplets
(token, leftmost_mod, rightmost_mod). The
heads array is no longer needed. Our new state
representation becomes:
class state

stack[n] of (tok, left, right)
int j
int last_action
state previous

4.2 Tree Structured Stack: TSS
We now turn to handle the stack. Notice that the
buffer, which is also of size O(n), is represented
as a pointer to an immutable shared object, and is
therefore very efficient to copy. We would like to
treat the stack in a similar fashion.

An immutable stack can be implemented func-
tionally as a cons list, where the head is the top
of the stack and the tail is the rest of the stack.
Pushing an item to the stack amounts to adding a
new head link to the list and returning it. Popping
an item from the stack amounts to returning the
tail of the list. Notice that, crucially, a pop opera-
tion does not change the underlying list at all, and

a push operation only adds to the front of a list.
Thus, the stack operations are non-destructive, in
the sense that once you hold a reference to a stack,
the view of the stack through this reference does
not change regardless of future operations that are
applied to the stack. Moreover, push and pop op-
erations are very efficient. This stack implementa-
tion is an example of a persistent data structure – a
data structure inspired by functional programming
which keeps the old versions of itself intact when
modified (Okasaki, 1999).

While each client sees the stack as a list, the un-
derlying representation is a tree, and clients hold
pointers to nodes in the tree. A push operation
adds a branch to the tree and returns the new
pointer, while a pop operation returns the pointer
of the parent, see Figure 3 for an example. We call
this representation a tree-structured stack (TSS).

Using this stack representation, we can replace
the O(n) stack by an integer holding the item at
the top of the stack (s0), and a pointer to the tail of
the stack (tail). As discussed above, in addition
to the top of the stack we also keep its leftmost and
rightmost modifiers s0L and s0R. The simplified
state representation becomes:
class state

int s0, s0L, s0R
state tail
int j
int last_action
state previous

State is now reduced to seven integers, and the
transitions can be implemented very efficiently as
we show in Figure 2. The parser state is trans-
formed into a compact object, and state transitions
are O(1) operations involving only a few pointer
lookups and integer assignments.

4.3 TSS vs. GSS; Space Complexity

TSS is inspired by the graph-structured stack
(GSS) used in the dynamic-programming parser of
Huang and Sagae (2010), but without reentrancy
(see also Footnote 2). More importantly, the state
signature in TSS is much slimmer than that in
GSS. Using the notation of Huang and Sagae, in-
stead of maintaining the full DP signature of

f̃DP(j, S) = (j, fd(sd), . . . , f0(s0))

where sd denotes the dth tree on stack, in non-DP
TSS we only need to store the features f0(s0) for
the final tree on the stack,

f̃noDP(j, S) = (j, f0(s0)),

630



def Shift(state)
newstate.s0 = state.j
newstate.s0L = None
newstate.s0R = None
newstate.tail = state
newstate.j = state.j + 1
return newstate

def ReduceL(state)
newstate.s0 = state.s0
newstate.s0L = state.tail.s0
newstate.s0R = state.s0R
newstate.tail = state.tail.tail
newstate.j = j
return newstate

def ReduceR(state)
newstate.s0 = state.tail.s0
newstate.s0L = state.tail.s0L
newstate.s0R = state.s0
newstate.tail = state.tail.tail
newstate.j = j
return newstate

Figure 2: State transitions implementation in the TSS representation (see Fig. 3 for the tail pointers).
The two lines on s0L and s0R are specific to feature set design, and can be expanded for richer feature
sets. To conserve space, we do not show the obvious assignments to last_action and previous.
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Figure 3: Example of tree-structured stack. The
forward arrows denote state transitions, and the
dotted backward arrows are the tail pointers to
the stack tail. The boxes denote the top-of-stack at
each state. Notice that for b = shift(a) we perform
a single push operation getting b.tail = a, while
for b = reduce(a) transition we perform two pops
and a push, resulting in b.tail = a.tail.tail.

thanks to the uniqueness of tail pointers (“left-
pointers” in Huang and Sagae).

In terms of space complexity, each state is re-
duced from O(n) in size to O(d) with GSS and
to O(1) with TSS,3 making it possible to store the
entire beam in O(kn) space. Moreover, the con-
stant state-size makes memory management easier
and reduces fragmentation, by making it possible
to pre-allocate the entire beam upfront. We did
not explore its empirical implications in this work,
as our implementation language, Python, does not
support low-level memory management.

4.4 Generality of the Approach

We presented a concrete implementation for the
arc-standard system with a relatively simple (yet
state-of-the-art) feature set. As in Kuhlmann et
al. (2011), our approach is also applicable to
other transitions systems and richer feature-sets
with some additional book-keeping. A well-

3For example, a GSS state in Huang and Sagae’s experi-
ments also stores s1, s1L, s1R, s2 besides the f0(s0) fea-
tures (s0, s0L, s0R) needed by TSS. d is treated as a con-
stant by Huang and Sagae but actually it could be a variable.

documented Python implementation for the la-
beled arc-eager system with the rich feature set
of Zhang and Nivre (2011) is available on the first
author’s homepage.

5 Fewer Transitions: Lazy Expansion

Another way of decreasing state-transition costs
is making less transitions to begin with: instead
of performing all possible transitions from each
beam item and then keeping only k of the re-
sulting states, we could perform only transitions
that are sure to end up on the next step in the
beam. This is done by first computing transition
scores from each beam item, then keeping the top
k highest scoring (state, action) pairs, perform-
ing only those k transitions. This technique is
especially important when the number of possi-
ble transitions is large, such as in labeled parsing.
The technique, though never mentioned in the lit-
erature, was employed in some implementations
(e.g., Yue Zhang’s zpar). We mention it here for
completeness since it’s not well-known yet.

6 (Partial) Feature Sharing
After making the state-transition efficient, we turn
to deal with the other major expensive operation:
feature-extractions and dot-products. While we
can’t speed up the process, we observe that some
computations are repeated in different parts of the
beam, and propose to share these computations.
Notice that relatively few token indices from a
state can determine the values of many features.
For example, knowing the buffer index j deter-
mines the words and tags of items after location
j on the buffer, as well as features composed of
combinations of these values.

Based on this observation we propose the no-
tion of a state signature, which is a set of token
indices. An example of a state signature would
be sig(state) = (s0, s0L, s1, s1L), indicating the
indices of the two tokens at the top of the stack to-
gether with their leftmost modifiers. Given a sig-
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Figure 4: Non-linearity of the standard beam
search compared to the linearity of our TSS beam
search for labeled arc-eager and unlabeled arc-
standard parsers on long sentences (running times
vs. sentence length). All parsers use beam size 8.

nature, we decompose the feature function φ(x)
into two parts φ(x) = φs(sig(x)) + φo(x), where
φs(sig(x)) extracts all features that depend exclu-
sively on signature items, and φo(x) extracts all
other features.4 The scoring function w · φ(x) de-
composes into w · φs(sig(x)) + w · φo(x). Dur-
ing beam decoding, we maintain a cache map-
ping seen signatures sig(state) to (partial) tran-
sition scores w · φs(sig(state)). We now need
to calculate w · φo(x) for each beam item, but
w · φs(sig(x)) only for one of the items sharing
the signature. Defining the signature involves a
natural balance between signatures that repeat of-
ten and signatures that cover many features. In the
experiments in this paper, we chose the signature
function for the arc-standard parser to contain all
core elements participating in feature extraction5,
and for the arc-eager parser a signature containing
only a partial subset.6

7 Experiments

We implemented beam-based parsers using the
traditional approach as well as with our proposed
extension and compared their runtime.

The first experiment highlights the non-linear
behavior of the standard implementation, com-
pared to the linear behavior of the TSS method.

4One could extend the approach further to use several sig-
natures and further decompose the feature function. We did
not pursue this idea in this work.

5s0,s0L,s0R,s1,s1L,s1R,s2,j.
6s0, s0L, s0R,s0h,b0L,j, where s0h is the parent of

s0, and b0L is the leftmost modifier of j.

system plain plain plain plain +TSS+lazy
+TSS +lazy +TSS +feat-share

(sec 3) (sec 4) (sec 5) +lazy (sec 6)
ArcS-U 20.8 38.6 24.3 41.1 47.4
ArcE-U 25.4 48.3 38.2 58.2 72.3
ArcE-L 1.8 4.9 11.1 14.5 17.3

Table 1: Parsing speeds for the different tech-
niques measured in sentences/sec (beam size 8).
All parsers are implemented in Python, with dot-
products in C. ArcS/ArcE denotes arc-standard
vs. arc-eager, L/U labeled (stanford deps, 49 la-
bels) vs. unlabeled parsing. ArcS use feature set
of Huang and Sagae (2010) (50 templates), and ArcE

that of Zhang and Nivre (2011) (72 templates).

As parsing time is dominated by score computa-
tion, the effect is too small to be measured on
natural language sentences, but it is noticeable
for longer sentences. Figure 4 plots the runtime
for synthetic examples with lengths ranging from
50 to 1000 tokens, which are generated by con-
catenating sentences from Sections 22–24 of Penn
Treebank (PTB), and demonstrates the non-linear
behavior (dataset included). We argue parsing
longer sentences is by itself an interesting and
potentially important problem (e.g. for other lan-
guages such as Arabic and Chinese where word
or sentence boundaries are vague, and for pars-
ing beyond sentence-level, e.g. discourse parsing
or parsing with inter-sentence dependencies).

Our next set of experiments compares the actual
speedup observed on English sentences. Table 1
shows the speed of the parsers (sentences/sec-
ond) with the various proposed optimization tech-
niques. We first train our parsers on Sections 02–
21 of PTB, using Section 22 as the test set. The
accuracies of all our parsers are at the state-of-
the-art level. The final speedups are up to 10x
against naive baselines and ∼2x against the lazy-
transitions baselines.

8 Conclusions
We demonstrated in both theory and experiments
that the standard implementation of beam search
parsers run in O(n2) time, and have presented im-
proved algorithms which run in O(n) time. Com-
bined with other techniques, our method offers
significant speedups (∼2x) over strong baselines,
or 10x over naive ones, and is orders of magnitude
faster on much longer sentences. We have demon-
strated that our approach is general and we believe
it will benefit many other incremental parsers.
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Abstract

We present an unsupervised approach to
part-of-speech tagging based on projec-
tions of tags in a word-aligned bilingual
parallel corpus. In contrast to the exist-
ing state-of-the-art approach of Das and
Petrov, we have developed a substantially
simpler method by automatically identi-
fying “good” training sentences from the
parallel corpus and applying self-training.
In experimental results on eight languages,
our method achieves state-of-the-art re-
sults.

1 Unsupervised part-of-speech tagging

Currently, part-of-speech (POS) taggers are avail-
able for many highly spoken and well-resourced
languages such as English, French, German, Ital-
ian, and Arabic. For example, Petrov et al. (2012)
build supervised POS taggers for 22 languages us-
ing the TNT tagger (Brants, 2000), with an aver-
age accuracy of 95.2%. However, many widely-
spoken languages — including Bengali, Javanese,
and Lahnda — have little data manually labelled
for POS, limiting supervised approaches to POS
tagging for these languages.
However, with the growing quantity of text

available online, and in particular, multilingual
parallel texts from sources such as multilin-
gual websites, government documents and large
archives of human translations of books, news, and
so forth, unannotated parallel data is becoming
more widely available. This parallel data can be
exploited to bridge languages, and in particular,
transfer information from a highly-resourced lan-
guage to a lesser-resourced language, to build un-
supervised POS taggers.
In this paper, we propose an unsupervised ap-

proach to POS tagging in a similar vein to the
work of Das and Petrov (2011). In this approach,

a parallel corpus for a more-resourced language
having a POS tagger, and a lesser-resourced lan-
guage, is word-aligned. These alignments are ex-
ploited to infer an unsupervised tagger for the tar-
get language (i.e., a tagger not requiring manually-
labelled data in the target language). Our ap-
proach is substantially simpler than that of Das
and Petrov, the current state-of-the art, yet per-
forms comparably well.

2 Related work

There is a wealth of prior research on building un-
supervised POS taggers. Some approaches have
exploited similarities between typologically simi-
lar languages (e.g., Czech and Russian, or Telugu
and Kannada) to estimate the transition probabil-
ities for an HMM tagger for one language based
on a corpus for another language (e.g., Hana et al.,
2004; Feldman et al., 2006; Reddy and Sharoff,
2011). Other approaches have simultaneously
tagged two languages based on alignments in a
parallel corpus (e.g., Snyder et al., 2008).
A number of studies have used tag projection

to copy tag information from a resource-rich to
a resource-poor language, based on word align-
ments in a parallel corpus. After alignment, the
resource-rich language is tagged, and tags are pro-
jected from the source language to the target lan-
guage based on the alignment (e.g., Yarowsky and
Ngai, 2001; Das and Petrov, 2011). Das and
Petrov (2011) achieved the current state-of-the-art
for unsupervised tagging by exploiting high con-
fidence alignments to copy tags from the source
language to the target language. Graph-based la-
bel propagation was used to automatically produce
more labelled training data. First, a graph was
constructed in which each vertex corresponds to
a unique trigram, and edge weights represent the
syntactic similarity between vertices. Labels were
then propagated by optimizing a convex function
to favor the same tags for closely related nodes

634



Model Coverage Accuracy
Many-to-1 alignments 88% 68%
1-to-1 alignments 68% 78%
1-to-1 alignments: Top 60k sents 91% 80%

Table 1: Token coverage and accuracy of many-
to-one and 1-to-1 alignments, as well as the top
60k sentences based on alignment score for 1-to-1
alignments, using directly-projected labels only.

while keeping a uniform tag distribution for un-
related nodes. A tag dictionary was then extracted
from the automatically labelled data, and this was
used to constrain a feature-based HMM tagger.
The method we propose here is simpler to that

of Das and Petrov in that it does not require con-
vex optimization for label propagation or a feature
based HMM, yet it achieves comparable results.

3 Tagset

Our tagger exploits the idea of projecting tag infor-
mation from a resource-rich to resource-poor lan-
guage. To facilitate this mapping, we adopt Petrov
et al.’s (2012) twelve universal tags: NOUN,
VERB, ADJ, ADV, PRON (pronouns), DET (de-
terminers and articles), ADP (prepositions and
postpositions), NUM (numerals), CONJ (conjunc-
tions), PRT (particles), “.” (punctuation), and X
(all other categories, e.g., foreign words, abbrevia-
tions). These twelve basic tags are common across
taggers for most languages.
Adopting a universal tagset avoids the need

to map between a variety of different, language-
specific tagsets. Furthermore, it makes it possi-
ble to apply unsupervised tagging methods to lan-
guages for which no tagset is available, such as
Telugu and Vietnamese.

4 A Simpler Unsupervised POS Tagger

Here we describe our proposed tagger. The key
idea is to maximize the amount of information
gleaned from the source language, while limit-
ing the amount of noise. We describe the seed
model and then explain how it is successively re-
fined through self-training and revision.

4.1 Seed Model

The first step is to construct a seed tagger from
directly-projected labels. Given a parallel corpus
for a source and target language, Algorithm 1 pro-
vides a method for building an unsupervised tag-
ger for the target language. In typical applications,

the source language would be a better-resourced
language having a tagger, while the target lan-
guage would be lesser-resourced, lacking a tagger
and large amounts of manually POS-labelled data.

Algorithm 1 Build seed model
1: Tag source side.
2: Word align the corpus with Giza++ and re-
move the many-to-one mappings.

3: Project tags from source to target using the re-
maining 1-to-1 alignments.

4: Select the top n sentences based on sentence
alignment score.

5: Estimate emission and transition probabilities.
6: Build seed tagger T.

We eliminate many-to-one alignments (Step 2).
Keeping these would give more POS-tagged to-
kens for the target side, but also introduce noise.
For example, suppose English and French were
the source and target language, respectively. In
this case alignments such as English laws (NNS)
to French les (DT) lois (NNS) would be expected
(Yarowsky and Ngai, 2001). However, in Step 3,
where tags are projected from the source to target
language, this would incorrectly tag French les as
NN. We build a French tagger based on English–
French data from the Europarl Corpus (Koehn,
2005). We also compare the accuracy and cov-
erage of the tags obtained through direct projec-
tion using the French Melt POS tagger (Denis and
Sagot, 2009). Table 1 confirms that the one-to-one
alignments indeed give higher accuracy but lower
coverage than the many-to-one alignments. At
this stage of the model we hypothesize that high-
confidence tags are important, and hence eliminate
the many-to-one alignments.
In Step 4, in an effort to again obtain higher

quality target language tags from direct projection,
we eliminate all but the top n sentences based on
their alignment scores, as provided by the aligner
via IBM model 3. We heuristically set this cutoff
to 60k to balance the accuracy and size of the seed
model.1 Returning to our preliminary English–
French experiments in Table 1, this process gives
improvements in both accuracy and coverage.2

1We considered values in the range 60–90k, but this
choice had little impact on the accuracy of the model.

2We also considered using all projected labels for the top
60k sentences, not just 1-to-1 alignments, but in preliminary
experiments this did not perform as well, possibly due to the
previously-observed problems with many-to-one alignments.
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The number of parameters for the emission prob-
ability is |V | × |T | where V is the vocabulary and
T is the tag set. The transition probability, on the
other hand, has only |T |3 parameters for the tri-
gram model we use. Because of this difference
in number of parameters, in step 5, we use dif-
ferent strategies to estimate the emission and tran-
sition probabilities. The emission probability is
estimated from all 60k selected sentences. How-
ever, for the transition probability, which has less
parameters, we again focus on “better” sentences,
by estimating this probability from only those sen-
tences that have (1) token coverage > 90% (based
on direct projection of tags from the source lan-
guage), and (2) length > 4 tokens. These cri-
teria aim to identify longer, mostly-tagged sen-
tences, which we hypothesize are particularly use-
ful as training data. In the case of our preliminary
English–French experiments, roughly 62% of the
60k selected sentences meet these criteria and are
used to estimate the transition probability. For un-
aligned words, we simply assign a random POS
and very low probability, which does not substan-
tially affect transition probability estimates.
In Step 6 we build a tagger by feeding the es-

timated emission and transition probabilities into
the TNT tagger (Brants, 2000), an implementation
of a trigram HMM tagger.

4.2 Self training and revision

For self training and revision, we use the seed
model, along with the large number of target lan-
guage sentences available that have been partially
tagged through direct projection, in order to build
a more accurate tagger. Algorithm 2 describes
this process of self training and revision, and as-
sumes that the parallel source–target corpus has
been word aligned, with many-to-one alignments
removed, and that the sentences are sorted by
alignment score. In contrast to Algorithm 1, all
sentences are used, not just the 60k sentences with
the highest alignment scores.
We believe that sentence alignment score might

correspond to difficulty to tag. By sorting the sen-
tences by alignment score, sentences which are
more difficult to tag are tagged using a more ma-
ture model. Following Algorithm 1, we divide
sentences into blocks of 60k.
In step 3 the tagged block is revised by com-

paring the tags from the tagger with those ob-
tained through direct projection. Suppose source

Algorithm 2 Self training and revision
1: Divide target language sentences into blocks
of n sentences.

2: Tag the first block with the seed tagger.
3: Revise the tagged block.
4: Train a new tagger on the tagged block.
5: Add the previous tagger’s lexicon to the new
tagger.

6: Use the new tagger to tag the next block.
7: Goto 3 and repeat until all blocks are tagged.

language word ws
i is aligned with target language

word wt
j with probability p(w

t
j |ws

i ), T
s
i is the tag

for ws
i using the tagger available for the source

language, and T t
j is the tag for w

t
j using the tagger

learned for the target language. If p(wt
j |ws

i ) > S,
where S is a threshold which we heuristically set
to 0.7, we replace T t

j by T
s
i .

Self-training can suffer from over-fitting, in
which errors in the original model are repeated
and amplified in the new model (McClosky et al.,
2006). To avoid this, we remove the tag of
any token that the model is uncertain of, i.e., if
p(wt

j |ws
i ) < S and T t

j �= T s
i then T

t
j = Null. So,

on the target side, aligned words have a tag from
direct projection or no tag, and unaligned words
have a tag assigned by our model.
Step 4 estimates the emission and transition

probabilities as in Algorithm 1. In Step 5, emis-
sion probabilities for lexical items in the previous
model, but missing from the current model, are
added to the current model. Later models therefore
take advantage of information from earlier mod-
els, and have wider coverage.

5 Experimental Results

Using parallel data from Europarl (Koehn, 2005)
we apply our method to build taggers for the same
eight target languages as Das and Petrov (2011)
— Danish, Dutch, German, Greek, Italian, Por-
tuguese, Spanish and Swedish — with English as
the source language. Our training data (Europarl)
is a subset of the training data of Das and Petrov
(who also used the ODS United Nations dataset
which we were unable to obtain). The evaluation
metric and test data are the same as that used by
Das and Petrov. Our results are comparable to
theirs, although our system is penalized by having
less training data. We tag the source language with
the Stanford POS tagger (Toutanova et al., 2003).
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Danish Dutch German Greek Italian Portuguese Spanish Swedish Average
Seed model 83.7 81.1 83.6 77.8 78.6 84.9 81.4 78.9 81.3
Self training + revision 85.6 84.0 85.4 80.4 81.4 86.3 83.3 81.0 83.4
Das and Petrov (2011) 83.2 79.5 82.8 82.5 86.8 87.9 84.2 80.5 83.4

Table 2: Token-level POS tagging accuracy for our seed model, self training and revision, and the method
of Das and Petrov (2011). The best results on each language, and on average, are shown in bold.
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Figure 1: Overall accuracy, accuracy on known tokens, accuracy on unknown tokens, and proportion of
known tokens for Italian (left) and Dutch (right).

Table 2 shows results for our seed model, self
training and revision, and the results reported by
Das and Petrov. Self training and revision im-
prove the accuracy for every language over the
seed model, and gives an average improvement
of roughly two percentage points. The average
accuracy of self training and revision is on par
with that reported by Das and Petrov. On individ-
ual languages, self training and revision and the
method of Das and Petrov are split — each per-
forms better on half of the cases. Interestingly, our
method achieves higher accuracies on Germanic
languages — the family of our source language,
English—while Das and Petrov perform better on
Romance languages. This might be because our
model relies on alignments, which might be more
accurate for more-related languages, whereas Das
and Petrov additionally rely on label propagation.
Compared to Das and Petrov, our model per-

forms poorest on Italian, in terms of percentage
point difference in accuracy. Figure 1 (left panel)
shows accuracy, accuracy on known words, accu-
racy on unknown words, and proportion of known
tokens for each iteration of our model for Italian;
iteration 0 is the seed model, and iteration 31 is
the final model. Our model performs poorly on
unknown words as indicated by the low accuracy
on unknown words, and high accuracy on known

words compared to the overall accuracy. The poor
performance on unknown words is expected be-
cause we do not use any language-specific rules
to handle this case. Moreover, on average for the
final model, approximately 10% of the test data
tokens are unknown. One way to improve the per-
formance of our tagger might be to reduce the pro-
portion of unknown words by using a larger train-
ing corpus, as Das and Petrov did.
We examine the impact of self-training and re-

vision over training iterations. We find that for
all languages, accuracy rises quickly in the first
5–6 iterations, and then subsequently improves
only slightly. We exemplify this in Figure 1 (right
panel) for Dutch. (Findings are similar for other
languages.) Although accuracy does not increase
much in later iterations, they may still have some
benefit as the vocabulary size continues to grow.

6 Conclusion

We have proposed a method for unsupervised POS
tagging that performs on par with the current state-
of-the-art (Das and Petrov, 2011), but is substan-
tially less-sophisticated (specifically not requiring
convex optimization or a feature-based HMM).
The complexity of our algorithm is O(nlogn)
compared to O(n2) for that of Das and Petrov
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(2011) where n is the size of training data.3 We
made our code are available for download.4

In future work we intend to consider using a
larger training corpus to reduce the proportion of
unknown tokens and improve accuracy. Given
the improvements of our model over that of Das
and Petrov on languages from the same family
as our source language, and the observation of
Snyder et al. (2008) that a better tagger can be
learned from a more-closely related language, we
also plan to consider strategies for selecting an ap-
propriate source language for a given target lan-
guage. Using our final model with unsupervised
HMM methods might improve the final perfor-
mance too, i.e. use our final model as the ini-
tial state for HMM, then experiment with differ-
ent inference algorithms such as ExpectationMax-
imization (EM), Variational Bayers (VB) or Gibbs
sampling (GS).5 Gao and Johnson (2008) compare
EM, VB and GS for unsupervised English POS
tagging. In many cases, GS outperformed other
methods, thus we would like to try GS first for our
model.
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Abstract

Supervised NLP tools and on-line services
are often used on data that is very dif-
ferent from the manually annotated data
used during development. The perfor-
mance loss observed in such cross-domain
applications is often attributed to covari-
ate shifts, with out-of-vocabulary effects
as an important subclass. Many discrim-
inative learning algorithms are sensitive to
such shifts because highly indicative fea-
tures may swamp other indicative features.
Regularized and adversarial learning algo-
rithms have been proposed to be more ro-
bust against covariate shifts. We present
a new perceptron learning algorithm us-
ing antagonistic adversaries and compare
it to previous proposals on 12 multilin-
gual cross-domain part-of-speech tagging
datasets. While previous approaches do
not improve on our supervised baseline,
our approach is better across the board
with an average 4% error reduction.

1 Introduction

Most learning algorithms assume that training and
test data are governed by identical distributions;
and more specifically, in the case of part-of-speech
(POS) tagging, that training and test sentences
were sampled at random and that they are identi-
cally and independently distributed. Significance
is usually tested across data points in standard
NLP test sets. Such datasets typically contain run-
ning text rather than independently sampled sen-
tences, thereby violating the assumption that data
points are independently distributed and sampled
at random. More importantly, significance across

data points only says something about the likely-
hood of observing the same effect on more data
sampled the same way, but says nothing about
likely performance on sentences sampled from
different sources or different domains.

This paper considers the POS tagging problem,
i.e. where we have training and test data consist-
ing of sentences in which all words are assigned
a label y chosen from a finite set of class labels
{NOUN, VERB, DET,. . . }. We assume that we
are interested in performance across data sets or
domains rather than just performance across data
points, but that we do not know the target domain
in advance. This is often the case when we develop
NLP tools and on-line services. We will do cross-
domain experiments using several target domains
in order to compute significance across domains,
enabling us to say something about likely perfor-
mance on new domains.

Several authors have noted how POS tagging
performance is sensitive to cross-domain shifts
(Blitzer et al., 2006; Daume III, 2007; Jiang and
Zhai, 2007), and while most authors have as-
sumed known target distributions and pool unla-
beled target data in order to automatically correct
cross-domain bias (Jiang and Zhai, 2007; Fos-
ter et al., 2010), methods such as feature bag-
ging (Sutton et al., 2006), learning with random
adversaries (Globerson and Roweis, 2006) and
L∞-regularization (Dekel and Shamir, 2008) have
been proposed to improve performance on un-
known target distributions. These methods ex-
plicitly or implicitly try to minimize average or
worst-case expected error across a set of possi-
ble test distributions in various ways. These al-
gorithms are related because of the intimate rela-
tionship between adversarial corruption and reg-
ularization (Ghaoui and Lebret, 1997; Xu et al.,
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2009; Hinton et al., 2012). This paper presents a
new method based on learning with antagonistic
adversaries.
Outline. Section 2 introduces previous work on
robust perceptron learning, as well as the meth-
ods dicussed in the paper. Section 3 motivates
and introduces learning with antagonistic adver-
saries. Section 4 presents experiments on POS tag-
ging and discusses how to evaluate cross-domain
performance. Learning with antagonistic adver-
saries is superior to the other approaches across
10/12 datasets with an average error reduction of
4% over a supervised baseline.
Motivating example. The problem with
out-of-vocabulary effects can be illus-
trated using a small labeled data set:
{x1 = 〈1, 〈0, 1, 0〉〉,x2 = 〈1, 〈0, 1, 1〉〉,x3 =
〈0, 〈0, 0, 0〉〉,x4 = 〈1, 〈0, 0, 1〉〉}. Say we train
our model on x1−3 and evaluate it on the fourth
data point. Most discriminate learning algorithms
only update parameters when training examples
are misclassified. In this example, a model
initialized by zero weights would misclassify x1,
update the parameter associated with feature x2
at a fixed rate α, and the returned model would
then classify all data points correctly. Hence
the parameter associated with feature x3 would
never be updated, although this feature is also
correlated with class. If x2 is missing in our test
data (out-of-vocabulary), we end up classifying
all data points as negative. In this case, we would
wrongly predict that x4 is negative.

2 Robust perceptron learning

Our framework will be averaged perceptron learn-
ing (Freund and Schapire, 1999; Collins, 2002).
We use an additive update algorithm and aver-
age parameters to prevent over-fitting. In adver-
sarial learning, adversaries corrupt the data point
by applying transformations to data points. An-
tagonistic adversaries choose transformations in-
formed by the current model parameters w, but
random adversaries randomly select transforma-
tions from a predefined set of possible transforma-
tions, e.g. deletions of at most k features (Glober-
son and Roweis, 2006).
Feature bagging. In feature bagging (Sutton et al.,
2006), the data is represented by different bags of
features or different views, and the models learned
using different feature bags are combined by aver-
aging. We can reformulate feature bagging as an

adversarial learning problem. For each pass, the
adversary chooses a deleting transformation cor-
responding to one of the feature bags. In Sut-
ton et al. (2006), the feature bags simply divide
the features into two or more representations. In
an online setting feature bagging can be modelled
as a game between a learner and an adversary, in
which (a) the adversary can only choose between
deleting transformations, (b) the adversary cannot
see model parameters when choosing a transfor-
mation, and in which (c) the adversary only moves
in between passes over the data.1

Learning with random adversaries
(LRA). Globerson and Roweis (2006) let an
adversary corrupt labeled data during training
to learn better models of test data with missing
features. They assume that missing features
are randomly distributed and show that the
optimization problem is a second-order cone
program. LRA is an adversarial game in which
the two players are unaware of the other player’s
current move, and in particular, where the ad-
versary does not see model parameters and only
randomly corrupts the data points. Globerson
and Roweis (2006) formulate LRA as a batch
learning problem of minimizing worst case loss
under deleting transformations deleting at most
k features. This is related to regularization in the
following way: If model parameters are chosen
to minimize expected error in the absence of any
k features, we explicitly prevent under-weighting
more than n − k features, i.e. the model must be
able to classify data well in the absence of any k
features. The sparsest possible model would thus
assign weights to k + 1 parameters.
L∞-regularization hedges its bets even more than
adversarial learning by minimizing expected er-
ror with max ||w|| < C. In the online setting,
this corresponds to playing against an adversary
that clips any weight above a certain threshold C,
whether positive or negative (Dekel and Shamir,
2008). In geometric terms the weights are pro-
jected back onto the hyper-cube C. A related
approach, which is not explored in the experi-
ments below, is to regularize linear models toward
weights with low variance (Bergsma et al., 2010).

1Note that the batch version of feature bagging is an in-
stance of group L1 regularization (Jacob et al., 2009; Schmidt
and Murphy, 2010; Martins et al., 2011). Often group regu-
larization is about finding sparser models rather than robust
models. Sparse models can be obtained by grouping corre-
lated features; non-sparse models can be obtained by using
independent, exhaustive views.
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1: X = {〈yi,xi〉}Ni=1, δ deletion rate
2: w0 = 0,v = 0, i = 0
3: for k ∈ K do
4: for n ∈ N do
5: ξ1 ← random.sample(P (1) = 1− δ)
6: ξ2 ← ||w|| < µ||w|| + σ||w||
7: ξ ← (ξ1 + ξ2)(0,1)
8: if sign(w · xn ◦ ξ) 6= yn then
9: wi+1 ← update(wi)

10: i← i+ 1
11: end if
12: v← v +wi

13: end for
14: end for
15: return w = v/(N ×K)

Figure 1: Learning with antagonistic adversaries

3 Learning with antagonistic adversaries

The intuition behind learning with antagonistic ad-
versaries is that the adversary should focus on the
most predictive features. In the prediction game,
this would allow the adversary to inflict more dam-
age, corrupting data points by removing good fea-
tures (rather than random ones). If the adversary
focuses on the most predictive features, she is im-
plicitly regularizing the model to obtain a more
equal distribution of weights.

We draw random binary vectors with P (1) =
1 − δ as in adversarial learning, but deletions are
only effective if ξj = 0 and the weight wj is more
than a standard deviation (σ||w||) from the mean
of the current absolute weight distribution (µ||w||).
In other words, we only delete the predictive fea-
tures, with predictivity being relative to the current
mean weight.

The algorithm is presented in Figure 1. For each
data point, we draw a random binary vector ξ1
with δ chance of zeros. ξ2 is a vector with the
ith scalar zero if and only if the absolute value of
the weight wi in w is more than a standard devia-
tion higher than the current mean. The ith scalar
in ξ is only zero if the ith scalars in both ξ1 and ξ2
are zero. The corresponding features are a random
subset of the predictive features.2

2The approach taken is similar in spirit to confidence-
weighted learning (Dredze et al., 2008). The intuition behind
confidence-weighted learning is to more agressively update
rare features or features that we are less confident about. In
learning with antagonistic adversaries the adversaries delete
predictive features; that is, features that we are confident
about. When these features are deleted, we do not update
the corresponding weights. In relative terms, we therefore
update rare features more aggressively than common ones.
Note also that by doing so we regularize toward weights with
low variance (Bergsma et al., 2010).

4 Experiments

We consider part-of-speech (POS) tagging, i.e. the
problem of assigning syntactic categories to word
tokens in running text. POS tagging accuracy is
known to be very sensitive to domain shifts. Fos-
ter et al. (2011) report a POS tagging accuracy on
social media data of 84% using a tagger that ac-
chieves an accuracy of about 97% on newspaper
data. In the case of social media data, many errors
occur due to different spelling and capitalization
conventions. The main source of error, though, is
the increased out-of-vocabulary rate, i.e. the many
unknown words. While POS taggers can often re-
cover the part of speech of a previously unseen
word from the context it occurs in, this is harder
than for previously seen words.

We use the LXMLS toolkit3 as our baseline
with the default feature model, but use the PTB
tagset rather than the Google tagset (Petrov et
al., 2011) used by default in the LXMLS toolkit.
We use four groups of datasets. The first group
comes from the English Web Treebank (EWT),4

also used in the Parsing the Web shared task
(Petrov and McDonald, 2012). We train our tag-
ger on Sections 2–21 of the WSJ data in the Penn-
III Treebank (PTB), Ontonotes 4.0 release. The
EWT contains development and test data for five
domains: answers (from Yahoo!), emails (from
the Enron corpus), BBC newsgroups, Amazon re-
views, and weblogs. We use the emails develop-
ment section for development and test on the re-
maining four test sets. We also do experiments
with additional data from PTB. For these experi-
ments we use the 0th even split of the biomedical
section (PTB-biomedical) as development data,
the 9th split and the chemistry section (PTB-
chemistry) as test data, and the remaining biomed-
ical data (splits 1–8) as training data. This data
was also used for developing and testing in the
CoNLL 2007 Shared Task (Nivre et al., 2007).

Our third group of datasets also comes from
Ontonotes 4.0.5 We use the Chinese Ontonotes
(CHO) data, covering five different domains. We
use newswire for training data and randomly sam-
pled broadcasted news for development. Finally
we do experiments with the Danish section of the
Copenhagen Dependency Treebank (CDT). For
CDT we rely on the treebank meta-data and sin-

3https://github.com/gracaninja/lxmls-toolkit
4LDC Catalog No.: LDC2012T13.
5LDC Catalog No.: LDC2011T03.
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SP Our L∞ LRA
EWT-answers 86.04 86.06 85.90 86.06
EWT-newsgroups 87.70 87.92 87.78 87.66
EWT-reviews 85.96 86.10 85.80 86.00
EWT-weblogs 87.59 87.89 87.60 87.54
PTB-biomedical 95.05 95.26 95.46 94.43
PTB-chemistry 90.32 90.60 90.56 90.58
CHO-broadcast 78.38 78.42 78.27 78.28
CHO-magazines 78.50 78.57 76.80 78.29
CHO-weblogs 79.64 79.76 79.24 79.37
CDT-law 93.96 95.64 93.91 94.25
CDT-literature 93.93 94.19 94.15 94.15
CDT-magazines 94.95 95.06 94.71 95.04
Wilcoxon p <0.01
macro-av. err.red 4.0 -1.2 -0.2

Table 1: Results (in %).

gle out the newspaper section as training data and
use held-out newspaper data for development.

We observe two characteristics about our
datasets: (a) The class distributions are relatively
stable across domains. For CDT, for example,
we see almost identical distributions of parts of
speech, except literature has more prepositions.
(b) The OOV rate is significantly higher across do-
mains than within domains. This holds even for
the PTB datasets, where the OOV rate is 14.6% on
the biomedical test data, but 43.3% on the chem-
istry test data. These two observations confirm
that cross-domain data is primarily biased by co-
variate shifts.

All learning algorithms do the same number of
passes over each training data set. The number
of iterations was set optimizing baseline system
performance on development data. For EWT and
CHO, we do 10 passes over the data. For PTB,
we do 15 passes over the data, and for CDT, we
do 25 passes over the data. The deletion rate in
adversarial learning was fixed to 0.1% (optimized
on the EWT emails data; not optimized on PTB,
CHO or CDT). In L∞-regularization, the parame-
ter C was optimized the same way and set to 20.
Results are averages over five runs.

4.1 Results
The results are presented in Table 1. Learn-
ing with antagonistic adversaries performs signifi-
cantly better than structured perceptron (SP) learn-
ing, L∞-regularization and LRA across the board.
We follow Demsar (2006) in computing signif-
icance across datasets using a Wilcoxon signed
rank test. This is a strong result given that our al-
gorithm is as computationally efficient as SP and
does not pool unlabeled data to adapt to a spe-
cific target distribution. What we see is that let-

ting an antagonistic adversary corrupt our labeled
data - somewhat surprisingly, maybe - leads to bet-
ter cross-domain performance. L∞-regularization
leads to worse performance, and LRA performs
very similar to SP on average. Improvements
to LRA have also been explored in Trafalis and
Gilbert (2007) and Dekel and Shamir (2008).
We note that on the in-domain dataset (PTB-
biomedical), L∞-regularization performs best, but
our approach also performs better than the struc-
tured perceptron baseline on this dataset.

4.2 Analysis

The number of zero weights or very small weights
is significantly lower for learning with antagonis-
tic adversaries than for the baseline structured per-
ceptron. So our models become less sparse. On
the other hand, we have more parameters with av-
erage weights in our models. Weights are in other
words better distributed. We also observe that pa-
rameters are updated slightly more with antago-
nistic adversaries. In our PTB experiments, for
example, the mean weight is 14.2 in structured
perceptron learning, but 14.5 with antagonistic ad-
versaries. On the other hand, weight variance is
slightly lower; recall the connection to variance
regularization (Bergsma et al., 2010). Note that
L∞-regularization with C = 20 corresponds to
clipping all weights above 20, i.e. roughly a third
of the weights in this case. To validate our intu-
itions about what is going on, we also tried to in-
crease the deletion rate. If δ is increased to 1%,
the mean weight goes up to 19.2. The adversarial
model is less sparse than the baseline model.

A last observation is that the structured percep-
tron baseline model expectedly fits the training
data better than the robust models. On CDT, the
structured perceptron has an accuracy of 98.26%
on held-out training data, whereas our model has
an accuracy of only 97.85%. The L∞-regularized
has an accuracy of 97.82%, whereas LRA has an
accuracy of 98.18%.

5 Conclusion

We presented a discriminative learning algorithms
for cross-domain structured prediction that seems
more robust to covariate shifts than previous ap-
proaches. Our approach was superior to previous
approaches across 12 multilingual cross-domain
POS tagging datasets, with an average error reduc-
tion of 4% over a structured perceptron baseline.

643



References
Shane Bergsma, Dekang Lin, and Dale Schuurmans.

2010. Improved natural language learning via
variance-regularization support vector machines. In
CoNLL.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In EMNLP.

Michael Collins. 2002. Discriminative training meth-
ods for Hidden Markov Models. In EMNLP.

Hal Daume III. 2007. Frustratingly easy domain adap-
tation. In ACL.

Ofer Dekel and Ohad Shamir. 2008. Learning to clas-
sify with missing and corrupted features. In ICML.

Janez Demsar. 2006. Statistical comparisons of clas-
sifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30.

Mark Dredze, Koby Crammer, and Fernando Pereira.
2008. Confidence-weighted linear classification. In
ICML.

George Foster, Cyril Goutte, and Roland Kuhn. 2010.
Discriminative instance weighting for domain adap-
tation in statistical machine translation. In EMNLP.

Jennifer Foster, Ozlem Cetinoglu, Joachim Wagner,
Josef Le Roux, Joakim Nivre, Deirde Hogan, and
Josef van Genabith. 2011. From news to comments:
Resources and benchmarks for parsing the language
of Web 2.0. In IJCNLP.

Yoav Freund and Robert Schapire. 1999. Large margin
classification using the perceptron algorithm. Ma-
chine Learning, 37:277–296.

Laurent El Ghaoui and Herve Lebret. 1997. Robust
solutions to least-squares problems with uncertain
data. In SIAM Journal of Matrix Analysis and Ap-
plications.

Amir Globerson and Sam Roweis. 2006. Nightmare
at test time: robust learning by feature deletion. In
ICML.

Geoffrey Hinton, N. Srivastava, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov. 2012. Improv-
ing neural networks by preventing co-adaptation of
feature detectors. http://arxiv.org/abs/1207.0580.

Laurent Jacob, Guillaume Obozinski, and Jean-
Philippe Vert. 2009. Group lasso with overlap and
graph lasso. In ICML.

Jing Jiang and ChengXiang Zhai. 2007. Instance
weighting for domain adaptation in NLP. In ACL.

Andre Martins, Noah Smith, Pedro Aguiar, and Mario
Figueiredo. 2011. Structured sparsity in structured
prediction. In EMNLP.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
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Abstract

Automatically determining the temporal order
of events and times in a text is difficult, though
humans can readily perform this task. Some-
times events and times are related through use
of an explicit co-ordination which gives infor-
mation about the temporal relation: expres-
sions like “before” and “as soon as”. We in-
vestigate the rôle that these co-ordinating tem-
poral signals have in determining the type of
temporal relations in discourse. Using ma-
chine learning, we improve upon prior ap-
proaches to the problem, achieving over 80%
accuracy at labelling the types of temporal re-
lation between events and times that are re-
lated by temporal signals.

1 Introduction
It is important to understand time in language. The
ability to express and comprehend expressions of time
enables us to plan, to tell stories, and to discuss change
in the world around us.

When we automatically extract temporal informa-
tion, we are often concerned with events and times – re-
ferred to collectively as temporal intervals. We might
ask, for example, “Who is the current President of the
USA?.” In order to extract an answer to this question
from a document collection, we need to identify events
related to persons becoming president and the times of
those events. Crucially, however, we also need to iden-
tify the temporal relations between these events and
times, perhaps, for example, by recognizing a tempo-
ral relation type from a set such as that of Allen (1983).
This last task, temporal relation typing, is challeng-
ing, and is the focus of this paper.

Temporal signals are words or phrases that act as
discourse markers that co-ordinate a pair of events or
times and explicitly state the nature of the temporal re-
lation that holds between them. For example, in “The
parade reached the town hall before noon”, the word
before is a temporal signal, co-ordinating the event
reached with the time noon. Intuitively, these signal

words act as discourse contain temporal ordering infor-
mation that human readers can readily access, and in-
deed this hypothesis is borne out empirically (Bestgen
and Vonk, 1999). In this paper, we present an in-depth
examination into the role temporal signals can play in
machine learning for temporal relation typing, within
the framework of TimeML (Pustejovsky et al., 2005).

2 Related Work
Temporal relation typing is not a new problem. Clas-
sical work using TimeML is that of Boguraev and
Ando (2005), Mani et al. (2007) and Yoshikawa et al.
(2009). The TempEval challenge series features re-
lation typing as a key task (Verhagen et al., 2009).
The take-home message from all this work is that tem-
poral relation typing is a hard problem, even using
advanced techniques and extensive engineering – ap-
proaches rarely achieve over 60% on typing relations
between two events or over 75% accuracy for those be-
tween an event and a time. Recent attempts to include
more linguistically sophisticated features representing
discourse, syntactic and semantic role information have
yielded but marginal improvements, e.g. Llorens et al.
(2010); Mirroshandel et al. (2011).

Although we focus solely on determining the types
of temporal relations, one must also identify which
pairs of temporal intervals should be temporally re-
lated. Previous work has covered the tasks of identi-
fying and typing temporal relations jointly with some
success (Denis and Muller, 2011; Do et al., 2012). The
TempEval3 challenge addresses exactly this task (Uz-
Zaman et al., 2013).

Investigations into using signals for temporal rela-
tion typing have had promising results. Lapata and
Lascarides (2006) learn temporal structure according
to these explicit signals, then predict temporal order-
ings in sentences without signals. As part of an early
TempEval system, Min et al. (2007) automatically an-
notate signals and associate them with temporal rela-
tions. They then include the signal text as a feature
for a relation type classifier. Their definition of sig-
nals varies somewhat from the traditional TimeML sig-
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Event-event relations Event-time relations
Non-signalled Signalled Overall Non-signalled Signalled Overall

Baseline most-common-class 41.4% 57.4% 43.0% 49.2% 51.6% 49.6%
Maxent classifier 57.7% 58.6% 57.8% 81.4% 59.6% 77.3%
Error reduction 27.8% 2.74% 25.4% 64.5% 16.4% 55.5%
Sample size (number of relations) 3 179 343 3 522 2 299 529 2 828

Table 1: Relation typing performance using the base feature set, for relations with and without a temporal signal.

nal definition, as they include words such as reporting
which would otherwise be annotated as an event. The
system achieves a 22% error reduction on a simplified
set of temporal relation types.

Later, Derczynski and Gaizauskas (2010) saw a 50%
error reduction in assignment of relation types on sig-
nalled relation instances from introducing simple fea-
tures describing a temporal signal’s interaction with the
events or times that it co-ordinates. The features for de-
scribing signals included the signal text itself and the
signal’s position in the document relative to the inter-
vals it co-ordinated. This led to a large increase in re-
lation typing accuracy to 82.19% for signalled event-
event relations, using a maximum entropy classifier.

Previous work has attempted to linguistically charac-
terise temporal signals (Brée et al., 1993; Derczynski
and Gaizauskas, 2011). Signal phrases typically fall
into one of three categories: monosemous as temporal
signals (e.g. “during”, “when”); bisemous as temporal
or spatial signals (e.g. “before”); or polysemous with
the temporal sense a minority class (e.g. “in”, “fol-
lowing”). Further, a signal phrase may take two argu-
ments, though its arguments need not be in the imme-
diate content and may be anaphoric. We leave the task
of automatic signal annotation to future work, instead
focusing on the impact that signals have on temporal
relation typing.

Our work builds on previous work by expanding the
study to include relations other than just event-event
relations, by extending the feature set, by doing tem-
poral relation labelling over a more carefully curated
version of the TimeBank corpus (see below), and by
providing detailed analysis of the performance of a set
of labelling techniques when using temporal signals.

3 Experimental Setup
We only approach the relation typing task, and we use
existing signal annotations – that is, we do not attempt
to automatically identify temporal signals.

The corpus used is the signal-curated version of
TimeBank (Pustejovsky et al., 2003). This corpus, TB-
sig,1 adds extra events, times and relations to Time-
Bank, in an effort to correct signal under-annotation in
the original corpus (Derczynski and Gaizauskas, 2011).
Like the original TimeBank corpus, it comprises 183
documents. In these, we are interested only in the tem-
poral relations that use a signal. There are 851 signals
annotated in the corpus, co-ordinating 886 temporal re-

1See http://derczynski.com/sheffield/resources/tb sig.tar.bz2

lations (13.7% of all). For comparison, TimeBank has
688 signal annotations which co-ordinate 718 temporal
relations (11.2%).

When evaluating classifiers, we performed 10-fold
cross-validation, keeping splits at document level.
There are only 14 signalled time-time relations in this
corpus, which is not enough to support any generaliza-
tions, and so we disregard this interval type pairing.

As is common with statistical approaches to tempo-
ral relation typing, we also perform relation folding;
that is, to reduce the number of possible classes, we
sometimes invert argument order and relation type. For
example, A BEFORE B and B AFTER A convey the
same temporal relation, and so we can remove all AF-
TER-type relations by swapping their argument order
and converting them to BEFORE relations. This loss-
less process condenses the labels that our classifier has
to distinguish between, though classification remains a
multi-class problem.

We adopt the base feature set of Mani et al. (2007),
which consists mainly of TimeML event and time
annotation surface attributes. These are, for events:
class, aspect, modality, tense, polarity, part
of speech; and, for times: value, type, function
in document, mod, quant. To these are added
same-tense and same-aspect features, as well as
the string values of events/times.

The feature groups we use here are:

• Base – The attributes of TimeML annotations in-
volved (includes tense, aspect, polarity and so on
as above), as with previous approaches.

• Argument Ordering – Two features: a boolean
set if both arguments are in the same sentence (as
in Chambers et al. (2007)), and the text order of
argument intervals (as in Hepple et al. (2007)).

• Signal Ordering – Textual ordering is important
with temporal signals; compare “You walk before
you run” and “Before you walk you run”. We
add features accounting for relative textual posi-
tion of signal and arguments as per Derczynski
and Gaizauskas (2010). To these we add a feature
reporting whether the signal occurs in first, last,
or mid-sentence position, and features to indicate
whether each interval is in the same sentence as
the signal.

• Syntactic – We add syntactic features: fol-
lowing Bethard et al. (2007), the lowest com-
mon constituent label between each argument and
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Features Classifier Event-event accuracy Event-time accuracy
N/A Baseline most-common-class 57.4% 51.6%
Base Baseline maximum entropy 58.6% 59.6%

Maximum entropy 72.6% 72.4%DG2010 Random forest 76.7% 78.6%

All

Adaptive boosting 70.4% 73.0%
Naı̈ve Bayes 73.8% 71.5%
Maximum entropy 75.5% 78.1%
Linear SVC / Crammer-Singer 79.3% 75.6%
Linear SVC 80.7% 77.1%
Random forest 80.8% 80.3%

Table 2: Results at temporal relation typing over TB-sig, for relations that use a temporal signal

the signal; following Swampillai and Stevenson
(2011), the syntactic path from each argument
to the signal, using a top-level ROOT node for
cross-sentence paths; and three features indicat-
ing whether there is a temporal function tag (-TMP
between each of the intervals or the signal to the
root note. These features are generated using the
Stanford parser (Klein and Manning, 2003) and a
function tagger (Blaheta and Charniak, 2000).

• Signal Text – We add the signal’s raw string, as
well as its lower-case version and its lemma.

• DCT – For event-time relations, whether the time
expression also functions as the document’s cre-
ation timestamp.

Collectively, these feature groups comprise the All
feature set. For comparison, the feature set we reported
in previous work (Derczynski and Gaizauskas, 2010)
is also included, labeled DG2010. This set contains the
base and the signal ordering feature groups only, plus a
single signal feature for the signal raw string.

Using these feature representations we trained multi-
nomial naı̈ve Bayes (Rennie et al., 2003), maximum
entropy (Daumé III, 2008), adaptive boosting (Fre-
und and Schapire, 1997; Zhu et al., 2009), multi-class
SVM (Crammer and Singer, 2002; Chang and Lin,
2011) and random forest2 (Breiman, 2001) classifiers
via Scikit-learn (Pedregosa et al., 2011).

We use two baselines: most-common-class and a
model trained with no signal features. We also in-
troduce two measures replicating earlier work: one
using the DG2010 features and the classifier used in
that work (maximum entropy), and another using the
DG2010 features with the best-performing classifier
under our All feature set, in order to see if performance
changes are due to features or classifier.

Classifiers were evaluated by determining if the class
they output matched the relation type in TB-sig. Re-
sults are given in Table 2. For comparison with the
general case, i.e. for both signalled and non-signalled
temporal relation instances, we list performance with
a maximum entropy classifier and the base feature set

2With nestimators = 200, a minimum of one sample per
node, and no maximum depth.

Figure 1: Effect of training data size on relation typing
performance.

on TB-sig’s temporal relations. Results are in Table 1.
These are split into those that use a signal and those that
do not, though no features relaying signal information
are included.

In order to assess the adequacy of the dataset in
terms of size, we also examined performance using a
maximum entropy classifier learned from varying sub-
proportions of the training data. This was measured
over event-event relations, using all features. Results
are given in Figure 1. That performance appears to sta-
bilise and level off indicates that the training set is of
sufficient size for these experiments.

4 Analysis
The results in Table 2 echo earlier findings and intu-
ition: temporal signals are useful in temporal relation
typing. Results support that signals are not only helpful
in event-event relation typing but also event-time typ-
ing. For comparison, inter-annotator agreement across
all temporal relation labels, i.e. signalled and non-
signalled relations, in TimeBank is 77%.

Using the maximum entropy classifier, our approach
gives a 2.9% absolute performance increase over the
DG2010 feature set for event-event relations (10.6% er-
ror reduction) and a 5.7% absolute increase for event-
time relations (20.7% error reduction). Random forests
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Feature sets Evt-evt Evt-time
All 80.8% 80.3%
All-argument order 80.8% 78.3%
All-signal order 79.0% 77.5%
All-syntax 79.2% 79.6%
All-signal text 70.8% 72.7%
All-DCT 79.9% 79.4%
Base 54.2% 53.9%
Base+argument order 56.8% 60.1%
Base+signal order 59.7% 65.0%
Base+syntax 70.0% 71.0%
Base+signal text 75.5% 66.3%
Base+DCT 54.2% 53.9%
Base+signal text+signal order 80.4% 76.9%
Base+signal text+syntax 79.0% 74.1%
Base+arg order+signal order 77.8% 75.2%

Table 3: Relation typing accuracy based on various fea-
ture combinations, using random forests. Bold figures
indicate the largest performance change.

offer better performance under both feature sets, with
the extended features achieving notable error reduction
over DG2010 – 17.6% for event-event, 7.9% for event-
time relations. Linear support vector classification pro-
vided rapid labelling and comparable performance for
event-event relations but was accuracy was not as good
as random forests for event-time relation labelling.

Note, figures reported earlier in Derczynski and
Gaizauskas (2010) are not directly comparable to the
DG2010 figures reported here, as here we are using the
better-annotated TB-sig corpus, which contains a larger
and more varied set of temporal signal annotations.

Although we are only examining the 13.7% of tem-
poral relations that are co-ordinated with a signal, it
is important to note the performance of conventional
classification approaches on this subset of temporal
relations. Specifically, the error reduction relative to
the baseline that is achieved without signal features is
much lower on relations that use signals than on non-
signalled relations (Table 1). Thus, temporal relations
that use a signal appear to be more difficult to clas-
sify than other relations, unless signal information is
present in the features. This may be due to differences
in how signals are used by authors. One explanation
is that signals may be used in the stead of temporal or-
dering information in surrounding discourse, such as
modulations of dominant tense or aspect (Derczynski
and Gaizauskas, 2013).

Unlike earlier work using maxent, we experiment
with a variety of classifiers, and find a consistent im-
provement in temporal relation typing using signal fea-
tures. With the notable exception of adaptive boost-
ing, classifiers with preference bias (Liu et al., 2002)
– AdaBoost, random trees and SVC – performed best
in this task. Conversely, those tending toward the in-
dependence assumption (naı̈ve Bayes and maxent) did
not capitalise as effectively on the training data.

Features Evt-evt Evt-time
All 80.8% 80.3%
All-signal text 70.8% 72.7%
All-signal text-argument order 70.7% 72.2%
All-signal text-signal order 69.5% 71.2%
All-signal text-syntax 59.5% 69.0%
All-signal text-DCT 70.8% 72.8%

Table 4: Feature ablation without signal text features.
Bold figures indicate largest performance change.

We also investigated the impact of each feature
group on the best-performing classifier (random forests
with n = 200) through feature ablation. Results are
given in Table 3. Ablation suggested that the signal text
features (signal string, lower case string, head word and
lemma) had most impact in event-event relation typing,
though were second to syntax features in event-time re-
lations. Removing other feature groups gave only mi-
nor performance decreases.

We also experimented with adding feature groups to
the base set one-by-one. All but DCT features gave
above-baseline improvement, though argument order-
ing features were not very helpful for event-event re-
lation typing. Signal text features gave the strongest
improvement over baseline for event-event relations,
but syntax gave a larger improvement for event-time
relations. Accordingly, it may be useful to distinguish
between event-event and event-time relations when ex-
tracting temporal information using syntax (c.f. the ap-
proach of Wang et al. (2010)).

A strong above-baseline performance was still ob-
tained even when signal text features were removed,
which included the signal text itself. This was interest-
ing, as signal phrases can indicate quite different tem-
poral orderings (e.g. “Open the box while it rains” vs.
“Open the box before it rains”, and the words used are
typically critical to correct interpretation of the tempo-
ral relation. Further, the model is able to generalise
beyond particular signal phrase choices. To investigate
further, we examined the performance impact of each
group sans “signal text” features (Table 4). In this case,
removing the syntactic features had the greatest (neg-
ative) impact on performance, though the absolute im-
pact on event-event relations (a drop of 11.3%) was far
lower than that on event-time relations (3.7%).

To examine helpful features, we trained a max-
ent classifier on the entire dataset and collected fea-
ture:value pairs. These were then ranked by their
weight. The ten largest-weighted pairings for event-
event relations (the hardest problem in overall temporal
relation typing) are given in Table 5. Prefixes of 1- and
2- correspond to the two interval arguments (events).
Negative values are those where the presence of a par-
ticular feature:value pair suggests the mentioned class
is not applicable.
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Weight Feature Value Class
9.346 2-polarity POS ENDS

-8.713 1-2-same-sent True BEGINS
-7.861 2-aspect NONE BEGINS
-7.256 1-aspect NONE INCLUDES
6.564 2-sig-synt-path NN-NP-IN INCLUDES
6.519 signal-lower before ENDS

-6.294 2-tense NONE BEGINS
-5.908 2-modality None ENDS
5.643 2-text took BEGINS

-5.580 1-modality None ENDS

Table 5: Top ten largest-weighted feature:value pairs.

It can be seen that BEGINS and INCLUDES rela-
tionships are not indicated if the arguments have no
TimeML aspect assigned; this is what one might ex-
pect, given how aspect is used in English, with these
temporal relation types corresponding to event starts
and the progressive. Also, notice how a particular syn-
tactic path, connecting adjacent nominalised event and
the word in acting as a signal, indicate a temporal inclu-
sion relationship. Temporal polysemy, where a word
has more than one possible temporal interpretation,
is also observable here (Derczynski and Gaizauskas
(2011) examine this polysemy in depth). This is vis-
ible in how the temporal signal phrase “before” is not,
as one might expect, a strong indicator of a BEFORE or
even AFTER relation, but of an ENDS relationship.

5 Conclusion
This paper set out to investigate the rôle of temporal
signals in predicting the type of temporal relation be-
tween two intervals. The paper demonstrated the util-
ity of temporal signals in this task, and identified ap-
proaches for using the information these signals con-
tain, which performed consistently better than the state-
of-the-art across a range of machine learning classi-
fiers. Further, it identified the impact that signal text,
signal order and syntax features had in temporal rela-
tion typing of signalled relations.

Two directions of future work are indicated. Firstly,
the utility of signals prompts investigation into detect-
ing which words in a given text occur as temporal sig-
nals. Secondly, it is intuitive that temporal signals ex-
plicitly indicate related pairs of intervals (i.e. events or
times). So, the task of deciding which interval pair(s) a
temporal signal co-ordinates must be approached.

Although we have found a method for achieving
good temporal relation typing performance on a subset
of temporal relations, the greater problem of general
temporal relation typing remains. A better understand-
ing of the semantics of events, times, signals and how
they are related together through syntax may provide
further insights into the temporal relation typing task.

Finally, Bethard et al. (2007) reached high temporal
relation typing performance on one a subset of relations

(events and times in the same sentence); we reach high
temporal relation typing performance on another subset
of relations – those using a temporal signal. Identify-
ing further explicit sources of temporal information ap-
plicable to new sets of relations may reveal promising
paths for investigation.
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Abstract

A new method for keyword extraction
from conversations is introduced, which
preserves the diversity of topics that are
mentioned. Inspired from summarization,
the method maximizes the coverage of
topics that are recognized automatically
in transcripts of conversation fragments.
The method is evaluated on excerpts of the
Fisher and AMI corpora, using a crowd-
sourcing platform to elicit comparative
relevance judgments. The results demon-
strate that the method outperforms two
competitive baselines.

1 Introduction

The goal of keyword extraction from texts is to
provide a set of words that are representative of
the semantic content of the texts. In the applica-
tion intended here, keywords are automatically ex-
tracted from transcripts of conversation fragments,
and are used to formulate queries to a just-in-time
document recommender system. It is thus impor-
tant that the keyword set preserves the diversity of
topics from the conversation. While the first key-
word extraction methods ignored topicality as they
were based on word frequencies, more recent me-
thods have considered topic modeling factors for
keyword extraction, but without specifically set-
ting a topic diversity constraint, which is impor-
tant for naturally-occurring conversations.

In this paper, we propose a new method for key-
word extraction that rewards both word similarity,
to extract the most representative words, and word
diversity, to cover several topics if necessary. The
paper is organized as follows. In Section 2 we re-
view existing methods for keyword extraction. In
Section 3 we describe our proposal, which relies
on topic modeling and a novel topic-aware diverse
keyword extraction algorithm. Section 4 presents

the data and tasks for comparing sets of keywords.
In Section 5 we show that our method outperforms
two existing ones.

2 State of the Art in Keyword Extraction

Numerous studies have been conducted to auto-
matically extract keywords from a text or a tran-
scribed conversation. The earliest techniques have
used word frequencies (Luhn, 1957), TFIDF val-
ues (Salton et al., 1975; Salton and Buckley,
1988), and pairwise word co-occurrence frequen-
cies (Matsuo and Ishizuka, 2004) to rank words
for extraction. These approaches do not con-
sider word meaning, so they may ignore low-
frequency words which together indicate a highly-
salient topic (Nenkova and McKeown, 2012).

To improve over frequency-based methods, se-
veral ways to use lexical semantic information
have been proposed. Semantic relations be-
tween words can be obtained from a manually-
constructed thesaurus such as WordNet, or from
Wikipedia, or from an automatically-built the-
saurus using latent topic modeling techniques.
Ye et al. (2007) used the frequency of all words
belonging to the same WordNet concept set, while
the Wikifier system (Csomai and Mihalcea, 2007)
relied on Wikipedia links to compute a substitute
to word frequency. Harwath and Hazen (2012)
used topic modeling with PLSA to build a the-
saurus, which they used to rank words based on
topical similarity to the topics of a transcribed con-
versation. To consider dependencies among se-
lected words, word co-occurrence has been com-
bined with PageRank by Mihalcea and Tarau
(2004), and additionally with WordNet by Wang
et al. (2007), or with topical information by Z. Liu
et al. (2010). However, as shown empirically by
Mihalcea and Tarau (2004) and by Z. Liu et al.
(2010) with various co-occurrence windows, such
approaches have difficulties modeling long-range
dependencies between words related to the same
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topic. Z. Liu et al. (2009b) used part-of-speech in-
formation and word clustering techniques, while
F. Liu et al. (2009a) added this information to
the TFIDF method so as to consider both word
dependency and semantic information. However,
although they considered topical similarity, the
above methods did not explicitly reward diversity
and might miss secondary topics.

Supervised methods have been used to learn a
model for extracting keywords with various learn-
ing algorithms (Turney, 1999; Frank et al., 1999;
Hulth, 2003). These approaches, however, rely on
the availability of in-domain training data, and the
objective functions they use for learning do not
consider yet the diversity of keywords.

3 Diverse Keyword Extraction

We propose to build a topical representation of
a conversation fragment, and then to select key-
words using topical similarity while also reward-
ing the diversity of topic coverage, inspired by
recent summarization methods (Lin and Bilmes,
2011; Li et al., 2012).

3.1 Representing Topic Information
Topic models such as Probabilistic Latent Seman-
tic Analysis (PLSA) or Latent Dirichlet Allocation
(LDA) can be used to determine the distribution
over the topic z of a word w, noted p(z|w), from a
large amount of training documents. LDA imple-
mented in the Mallet toolkit (McCallum, 2002) is
used in this paper because it does not suffer from
the overfitting issue of PLSA (Blei et al., 2003).

The distribution of each topic z in a given con-
versation fragment t, noted p(z|t), can be com-
puted by summing over all probabilities p(z|w) of
the N words w spoken in the fragment:

p(z|t) = 1

N

∑

w∈t
p(z|w).

3.2 Selecting Keywords
The problem of keyword extraction with maximal
topic coverage is formulated as follows. If a con-
versation fragment t mentions a set of topics Z,
and each word w from the fragment t can evoke a
subset of the topics in Z, then the goal is to find
a subset of unique words S ⊆ t, with |S| ≤ k,
which maximzes the number of covered topics for
each number of keywords k.

This problem is an instance of the maximum
coverage problem, which isNP -hard. Nemhauser

et al. (1978) showed that a greedy algorithm can
find an approximate solution guaranteed to be
within (1 − 1

e ) ' 0.63 of the optimal solution
if the coverage function is submodular and mono-
tone nondecreasing1.

To find a monotone submodular function for
keyword extraction, we used inspiration from re-
cent work on extractive summarization methods
(Lin and Bilmes, 2011; Li et al., 2012), which pro-
posed a square root function for diverse selection
of sentences to cover the maximum number of key
concepts of a given document. The function re-
wards diversity by increasing the gain of selecting
a sentence including a concept that was not yet
covered by a previously selected sentence. This
must be adapted for keyword extraction by defin-
ing an appropriate reward function.

We first introduce rS,z , the topical similarity
with respect to topic z of the keyword set S se-
lected from the fragment t, defined as follows:

rS,z =
∑

w∈S
p(z|w) · p(z|t).

We then propose the following reward function
for each topic, where p(z|t) is the importance of
the topic and λ is a parameter between 0 and 1:

f : rS,z → p(z|t) · rλS,z .

This is clearly a submodular function with di-
minishing returns as rS,z increases.

Finally, the keywords S ⊆ t, with |S| ≤ k,
are chosen by maximizing the cumulative reward
function over all the topics, formulated as follows:

R(S) =
∑

z∈Z
p(z|t) · rλS,z .

Since R(S) is submodular, the greedy algo-
rithm for maximizing R(S) is shown as Algo-
rithm 1 on the next page, with r{w},z being similar
to rS,z with S = {w}. If λ = 1, the reward func-
tion is linear and only measures the topical simila-
rity of words with the main topics of t. However,
when 0 < λ < 1, as soon as a word is selected
from a topic, other words from the same topic start
having diminishing gains.

4 Data and Evaluation Method

The proposed keyword extraction method was
tested on two conversational corpora, the Fisher

1A function F is submodular if ∀A ⊆ B ⊆ T \ t, F (A+
t) − F (A) ≥ F (B + t) − F (B) (diminishing returns) and
is monotone nondecreasing if ∀A ⊆ B, F (A) ≤ F (B).
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(a) (b)

Please select one of the following options:
1. Image (a) represents the conversation fragment better than (b).
2. Image (b) represents the conversation fragment better than (a).
3. Both (a) and (b) offer a good representation of the conversation.
4. None of (a) and (b) offer a good representation of the conversation.

Figure 1: Example of a HIT based on an AMI discussion about the impact on sales of some features of
remote controls (the conversation transcript is given in the Appendix). The word cloud was generated
using WordleTM from the list produced by the diverse keyword extraction method with λ = 0.75 (noted
D(.75)) for image (a) and by a topic similarity method (TS) for image (b). TS over-represents the topic
“color” by selecting three words related to it, but misses other topics such as “remote control”, “losing a
device” and “buying a device” which are also representative of the fragment.

Input : a given text t, a set of topics Z, the
number of keywords k

Output: a set of keywords S
S ← ∅;
while |S| ≤ k do

S ← S ∪ {argmaxw∈t\S(h(w))where
h(w) =

∑
z∈Z p(z|t)[r{w},z + rS,z]

λ};
end
return S;

Algorithm 1: Diverse keyword extraction.

Corpus (Cieri et al., 2004), and the AMI Meeting
Corpus (Carletta, 2007). The former corpus con-
tains about 11,000 topic-labeled telephone conver-
sations, on 40 pre-selected topics (one per con-
versation). We created a topic model using Mal-
let over two thirds of the Fisher Corpus, given its
large number of single-topic documents, with 40
topics. The remaining data is used to build 11
artificial “conversations” (1-2 minutes long) for
testing, by concatenating 11 times three fragments
about three different topics.

The AMI Corpus contains 171 half-hour meet-
ings about remote control design, which include
several topics each – so they cannot be directly
used for learning topic models. While selecting
for testing 8 conversation fragments of 2-3 min-
utes each, we trained topic models on a subset of
the English Wikipedia (10% or 124,684 articles).
Following several previous studies, the number of

topics was set to 100 (Boyd-Graber et al., 2009;
Hoffman et al., 2010).

To evaluate the relevance (or representative-
ness) of extracted keywords with respect to a
conversation fragment, we designed comparison
tasks. In each task, a fragment is shown, followed
by three control questions about its content, and
then by two lists of nine keywords each, from two
different extraction methods. To improve readabil-
ity, the keyword lists are presented to the judges
using a word cloud representation generated by
WordleTM (http://www.wordle.net), in which the
words ranked higher are emphasized in the word
cloud (see example in Figure 1). The judges had
to read the conversation transcript, answer the con-
trol questions, and then decide which word cloud
better represents the content of the conversation.

The tasks were crowdsourced via Amazon’s
Mechanical Turk (AMT) as “human intelligence
tasks” (HITs). One of them is exemplified in Fig-
ure 1, without the control questions, and the re-
spective conversation transcript is given in the Ap-
pendix. Ten workers were recruited for each cor-
pus. An example of judgment counts for each of
the 8 AMI HITs comparing two methods is shown
in Table 1. After collecting judgments, the com-
parative relevance values were computed by first
applying a qualification control factor to the hu-
man judgments, and then averaging results over
all judgments (Habibi and Popescu-Belis, 2012).

Moreover, to verify the diversity of the key-
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Figure 2: Average α-NDCG over the 11 conversations from the Fisher Corpus, for 1 to 15 extracted
keywords.

word set, we use the α-NDCG measure (Clarke
et al., 2008) proposed for information retrieval,
which rewards a mixture of relevance and diver-
sity – with equal weights when α = .5 as set here.
We only apply α-NDCG to the three-topic con-
versation fragments from the Fisher Corpus, rel-
evance of a keyword being set to 1 when it be-
longs to the fragment corresponding to the topic.
A higher value indicates that keywords are more
uniformly distributed across the three topics.

5 Experimental Results

We have compared several versions of the diverse
keyword extraction method, noted D(λ), for λ ∈
{.5, .75, 1}, with two other methods. The first
one uses only word frequency (not including stop-
words) and is noted WF. We did not use TFIDF
because it sets low weights on keywords that are
repeated in many fragments but which are never-
theless important to extract. The second method is
based on topical similarity (noted TS) but does not
specifically enforce diversity (Harwath and Hazen,
2012). In fact TS coincides with D(1), so it is
noted TS. As the relevance of keywords for D(.5)
was already quite low, we did not test lower values
of λ. Similarly, we did not test additional values
of λ above .5 because the resulting word lists were
very similar to tested values.

First of all, we compared the four methods with
respect to the diversity constraint over the con-

HIT A B C D E F G H
TS more relevant 4 1 1 1 2 2 1 1
D(.75) more rel. 4 1 8 9 6 6 6 8
Both relevant 2 5 1 0 2 2 3 1
Both irrelevant 0 3 0 0 0 0 0 0

Table 1: Number of answers for each of the four
options of the comparative evaluation task, from
ten human judges. The 8 HITs compare the D(.75)
and TS methods on 8 AMI HITs.

Corpus Compared methods Relevance (%)
(m1 vs. m2) m1 m2

Fisher D(.75) vs. TS 68 32
TS vs. WF 82 18
WF vs. D(.5) 95 5

AMI D(.75) vs. TS 78 22
TS vs. WF 60 40
WF vs. D(.5) 78 22

Table 2: Comparative relevance scores of keyword
extraction methods based on human judgments.

catenated fragments of the Fisher Corpus, by us-
ing α-NDCG to measure how evenly the extracted
keywords were distributed across the three topics.
Figure 2 shows results averaged over 11 conversa-
tions for various sizes of the keyword set (1–15).
The average α-NDCG values for D(.75) and D(.5)
are similar, and clearly higher than WF and TS
for all ranks (except, of course, for a single key-
word). The values for TS are quite low, and only
increase for a large number of keywords, demon-
strating that TS does not cope well with topic di-
versity, but on the contrary first selects keywords
from the dominant topic. The values for WF are
more uniform as it does not consider topics at all.

To measure the overall representativeness of
keywords, we performed binary comparisons be-
tween the outputs of each method, using crowd-
sourcing, over 11 fragments from the Fisher Cor-
pus and 8 fragments from AMI. The goal is to
rank the methods, so we only report here on
the comparisons required for complete ordering.
AMT workers compared two lists of nine key-
words each, with four options: X more represen-
tative or relevant than Y , or vice-versa, or both
relevant, or both irrelevant. Table 1 shows the
judgments collected when comparing the output of
D(.75) with TS on the AMI Corpus. Workers dis-
agreed for the first two HITs, but then found that
the keywords extracted by D(.75) were more rep-
resentative compared to TS. The consolidated rel-
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evance (Habibi and Popescu-Belis, 2012) is 78%
for D(.75) vs. 22% for TS.

The averaged relevance values for all compar-
isons needed to rank the four methods are shown
in Table 2 separately for the Fisher and AMI Cor-
pora. Although the exact differences vary, the hu-
man judgments over the two corpora both indi-
cate the following ranking: D(.75) > TS > WF >
D(.5). The optimal value of λ is thus around .75,
and with this value, our diversity-aware method
extracts more representative keyword sets than TS
and WF. The differences between methods are
larger for the Fisher Corpus, due to the artificial
fragments that concatenate three topics, but they
are still visible on the natural fragments of the
AMI Corpus. The low scores of D(.5) are found
to be due, upon inspection, to the low relevance
of keywords. In particular, the comparative rele-
vance of D(.75) vs. D(.5) on the Fisher Corpus is
very large (96% vs. 4%).

6 Conclusion

The diverse keyword extraction method with λ =
.75 provides the keyword sets that are judged most
representative of the conversation fragments (two
conversational datasets) by a large number of hu-
man judges recruited via AMT, and has the high-
est α-NDCG value. Therefore, enforcing both rel-
evance and diversity brings an effective improve-
ment to keyword extraction.

Setting λ for a new dataset remains an issue,
and requires a small development data set. How-
ever, preliminary experiments with a third dataset
showed that λ = .75 remains a good value.

In the future, we will use keywords to re-
trieve documents from a repository and recom-
mend them to conversation participants by formu-
lating topically-separate queries.

Appendix: Conversation transcript of
AMI ES2005a meeting (00:00:5-00:01:52)

The following transcript of a four-party conversa-
tions (speakers noted A through D) was submitted
to our keyword extraction method and a baseline
one, generating respectively the two word clouds
shown in Figure 1.

A: The only the only remote controls
I’ve used usually come with the
television, and they’re fairly basic.
So uh

D: Yeah. Yeah.

C: Mm-hmm.
D: Yeah, I was thinking that as well,

I think the the only ones that I’ve seen
that you buy are the sort of one for
all type things where they’re, yeah. So
presumably that might be an idea to

C: Yeah the universal ones. Yeah.
A: Mm. But but to sell it for twenty

five you need a lot of neat features.
For sure.

D: put into.
C: Yeah.
D: Yeah, yeah. Uh ’cause I mean, what

uh twenty five Euros, that’s about I
dunno, fifteen Pounds or so?

C: Mm-hmm, it’s about that.
D: And that’s quite a lot for a remote

control.
A: Yeah, yeah.
C: Mm. Um well my first thoughts

would be most remote controls are grey
or black. As you said they come with
the TV so it’s normally just your basic
grey black remote control functions, so
maybe we could think about colour? Make
that might make it a bit different from
the rest at least. Um, and as you say,
we need to have some kind of gimmick, so
um I thought maybe something like if you
lose it and you can whistle, you know
those things?

D: Uh-huh. Mm-hmm. Okay. The the
keyrings, yeah yeah. Okay, that’s cool.

C: Because we always lose our remote
control.

B: Uh yeah uh, being as a Marketing
Expert I will like to say like before
deciding the cost of this remote control
or any other things we must see the
market potential for this product like
what is the competition in the market?
What are the available prices of the
other remote controls in the prices?
What speciality other remote controls
are having and how complicated it is to
use these remote controls as compared to
other remote controls available in the
market.

D: Okay.
B: So before deciding or before

finalising this project, we must discuss
all these things, like and apart from
this, it should be having a good look
also, because people really uh like
to play with it when they are watching
movies or playing with or playing with
their CD player, MP three player like
any electronic devices. They really
want to have something good, having a
good design in their hands, so, yes, all
this.
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Abstract

Tabular information in text documents
contains a wealth of information, and
so tables are a natural candidate for in-
formation extraction. There are many
cues buried in both a table and its sur-
rounding text that allow us to under-
stand the meaning of the data in a ta-
ble. We study how natural-language
tools, such as part-of-speech tagging,
dependency paths, and named-entity
recognition, can be used to improve the
quality of relation extraction from ta-
bles. In three domains we show that (1)
a model that performs joint probabilis-
tic inference across tabular and natural
language features achieves an F1 score
that is twice as high as either a pure-
table or pure-text system, and (2) us-
ing only shallower features or non-joint
inference results in lower quality.

1 Introduction

Tabular data is ubiquitous and often contains
high-quality, structured relational data. Re-
cent studies found billions of high-quality re-
lations on the web in HTML (Cafarella et
al., 2008). In financial applications, a huge
amount of data is buried in the tables of cor-
porate filings and earnings reports; in science,
millions of journal articles contain billions of
scientific facts in tables. Although tables de-
scribe precise, structured relations, tables are
rarely written in a way that is self-describing,
e.g., tables may contain abbreviations or only
informal schema information; in turn, the con-
tents of tables are often ambiguously specified,
which makes extracting the relations implicit
in tabular data difficult.

Tables are, however, not written in isola-
tion. The text surrounding a table in a jour-

nal article explains its contents to its intended
audience, a human reader. For example, in
a simple study, we demonstrate that humans
can achieve more than 60% higher recall by
jointly reading the text and tables in a journal
article than by only looking at the tables. The
conclusion of this experiment is not surprising,
but it raises a question: How should a system
combine tabular and natural-language features
to understand tables in text?

The literature provides a broad spectrum of
answers to this question. Most previous ap-
proaches use textual or tabular features sepa-
rately, e.g., tabular approaches that do not use
text features (Dalvi et al., 2012; Wu and Lee,
2006; Pinto et al., 2003) or textual approaches
that do not use tabular features (Mintz et al.,
2009; Wu and Weld, 2010; Poon and Domin-
gos, 2007). In a prescient study, Liu et al.
(2007) proposed to learn the target relation in-
dependently from both table and surface tex-
tual features, and then combine the result us-
ing a linear combination of the predictions.

In a similar spirit, we propose to use both
types of features in our approach of relation
extraction. Our proposed approach differs
from prior approaches in two ways: (1) We
use deeper–but standard–NLP features than
prior approaches for table extraction. In con-
trast to the shallow, lexical features that prior
approaches have used, we use standard NLP
features, such as dependency paths, parts of
speech, etc. Our hypothesis is that a deeper
understanding of the text in which a table is
embedded will lead to higher quality table ex-
traction. (2) Our probabilistic model jointly
uses both tabular and textual features. One
advantage of a joint approach is that one can
predict portions of the complicated predicate
that is buried in a table. For example, in a ge-
ology journal article, we may read a measure-
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Table	
  

although some fractional crystallization must have occurred during
the formation of these rocks, crystal fractionation alone cannot
account for the adakitic signature of the Gangdese rocks. Considering
the presence of a ~1500 km long belt of adakitic rocks, a fractionation
model would require the existence of an extremely large parent
magma body, the evidence for which is lacking. In fact, there is a
complete absence of coeval andesitic and basaltic magmatisms in this
adakite belt. Recent investigation on the crystallization history of a
hydrous primitive andesite composition shows that garnet is stable in
andesitic and basaltic bulk compositions only after large degrees of
crystallization lead to a decrease of the Mg-number to less than 0.5,
and that high Mg-number primitive melts are not garnet saturated at
high pressures (Müentener et al., 2001). However, all of the adakitic
porphyries from southern Tibet including those with lower Mg-
number show high Dy/Yb ratios and La/Yb ratios (Gao et al., 2007a).
The high Sr/Y, Dy/Yb and La/Yb ratios, low heavy REE and Y
concentrations of the Gangdese adakites require an adakitic signature
in the primary melt source.

Overall, the adakitic rocks of different ages in the Gangdese belt
display same differentiation trends (Figs. 2 and 3). In both the pre-
collision and post-collision groups, the abundances of MgO (Fig. 3a),
TiO2 (Fig. 3c) and CaO (Fig. 3d) decrease with increasing SiO2,

whereas with few exceptions, most samples have nearly constant
Al2O3 contents (Fig. 3b). Whereas the MgO and SiO2 contents of the
pre-collision adakite show a wide range, most of the post-collision
adakites have high SiO2 and low MgO contents, and plot in the high
SiO2 adakite field (Fig. 2a). In the two types of adakites, the total
alkaline contents (K2O+Na2O wt.%), K2O abundances and K2O/Na2O
ratios show a positive correlation with SiO2, displaying the typical
differentiation trend of calc-alkaline arc magmas (Fig. 2). However,
some of the post-collision adakitic rocks have unusually high K2O
contents, yielding abnormally high total alkaline contents and K2O/
Na2O ratios. Consequently, these samples significantly depart from
the overall trends (Fig. 2). This suggests that the unusual K2O
enrichment was not simply a result of magmatic differentiation.

The two generations of adakitic rock in the Gangdese belt show
many similarities in terms of distribution of trace elements with
typical incompatible trace element fractionation patterns of subduc-
tion-related magmas (Fig. 4). Overall, the adakites of different ages
display significant positive Pb and Sr anomalies, and negative Nb, Ta
and Ti anomalies (Fig. 4), correlating with typical features of adakitic
magmas (Martin et al., 2005). Despite their similar trace element
patterns, the geochemical signatures of the rocks in different regions
show some distinction. Some of the post-collision adakitic rocks from

Table 1
Major and trace elements of the post-collision adakitic rocks from the Gangdese belt, southern Tibet.

Location Zhunuo Puridazong

Sample ZM-1 ZM-2 ZM-3 ZM-4 ZM-5 ZM-6 ZM-7 ZM-8 ZM-9 ZM-10 ZM-12 ZM-13 PRDZ1 PRDZ2 PRDZ3 PRDZ4 PRDZ5

SiO2 66.69 65.96 65.37 67.00 69.09 65.10 63.86 71.56 69.73 69.37 67.27 65.99 65.61 65.97 65.73 65.02 65.29
TiO2 0.64 0.5 0.60 0.57 0.46 0.60 0.59 0.31 0.40 0.45 0.47 0.5 0.6 0.64 0.65 0.63 0.64
Al2O3 15.28 15.28 15.35 14.56 14.67 15.44 16.01 14.2 14.35 14.14 17.12 15.27 15.45 15.4 15.39 15.04 15.18
Fe2O3 4.17 3.07 4.27 4.06 3.18 4.31 3.83 2.39 3.04 3.32 2.25 3.05 3.46 3.69 3.68 3.54 3.62
MnO 0.02 0.06 0.08 0.08 0.04 0.09 0.08 0.03 0.04 0.04 0.03 0.06 0.06 0.06 0.06 0.06 0.06
MgO 1.75 1.54 1.84 1.60 1.20 1.94 2.35 0.83 1.08 1.34 0.97 1.54 1.63 1.75 1.76 1.72 1.7
CaO 2.20 2.61 3.70 2.88 2.06 3.69 3 1.81 2.38 2.52 2.43 2.59 3.27 3.22 3.33 3.16 3.24
Na2O 4.16 4.19 4.02 3.92 3.81 4.00 4.27 4.32 4.34 3.98 5.03 4.13 3.93 3.83 3.78 3.82 3.77
K2O 3.57 3.71 3.25 3.49 4.20 3.19 3.41 4.00 3.85 3.65 3.75 3.71 3.82 3.84 3.79 3.85 3.8
P2O5 0.21 0.18 0.21 0.19 0.17 0.22 0.27 0.11 0.15 0.16 0.24 0.19 0.26 0.27 0.27 0.26 0.26
LOI 0.90 2.66 0.94 1.36 0.86 1.08 1.98 0.22 0.36 0.80 0.12 2.76 1.46 1.62 1.5 1.56 1.4
Sum 99.6 99.8 99.6 99.7 99.7 99.7 99.7 99.8 99.7 99.8 99.7 99.8 99.6 100.3 99.9 98.7 99.0
Mg# 49.4 53.9 50.1 47.9 46.8 51.2 58.8 44.7 45.3 48.5 50.1 54.0 52.3 52.5 52.7 53.1 52.2
Sc 8.31 5.2 8.55 7.36 5.72 8.65 5.79 3.6 4.52 5.62 2.54 8.96 7.27 7.57 7.28 7.43 8.03
V 78.1 66 79.9 71.5 56.3 81.5 74.3 36.2 44.9 52.1 48.8 107 84.8 87.1 83.0 75.6 91.6
Cr 23.1 118 22.6 22.6 21.8 24.5 82.6 13.3 18.2 22.2 112 33.4 24.1 25.5 23.1 377.8 28.7
Co 11 14.4 12.2 10.9 7.27 13 11.5 5.21 6.7 5.24 5.99 13.1 10.6 10.8 10.6 13.4 11.4
Ni 15 86.8 13.9 12.7 10.5 15.9 17.3 6.41 8.65 14.2 6.85 17.1 11.4 11.6 11.5 74.2 12.9
Rb 232 202 141 158 218 142 153 227 207 191 193 40.3 149 143 134 149 155
Sr 681 633 884 752 550 878 807 567 664 623 824 825 1025 987.5 994 950 995
Y 12.2 9.21 17.5 11.0 11.0 11.2 9.57 6.02 7.64 8.98 5.06 8.69 12.0 12.1 11.2 11.6 12.9
Zr 47.2 96.6 114 78.6 26.8 64.7 67.5 26.5 46 77.7 18.3 166 127 136 127 139 149
Nb 9 9.3 9.72 9.14 9.83 9.23 8.98 8.6 8.41 9.77 7.3 6.45 8.83 8.77 8.07 8.65 9.28
Cs 19.1 8.47 6.42 6.97 11.1 8.28 6.26 10.8 8.35 14.0 8.42 2.07 3.66 3.79 3.49 3.60 3.92
Ba 880 669 985 912 848 964 741 861 857 838 652 1043 1287 1234 1129 1205 1225
La 37.4 31.5 33.36 37.8 38.4 38.7 33.6 28 37.2 34.8 25.4 20.6 42.2 50.8 41.5 46.7 49.7
Ce 65.7 63.8 63.6 68.3 65.9 69.6 66.9 47.4 62.7 61.5 49.7 41 83.4 94.0 81.0 88.7 95.5
Pr 8.35 7.81 8.32 8.52 8.2 8.65 8.15 5.41 7.45 7.55 6.65 5.09 9.83 10.42 9.21 9.93 10.70
Nd 31.3 28.3 31.68 30.8 28.4 31.9 29.2 19.2 26.5 27.8 25.1 19.8 37.5 38.4 34.7 37.2 39.8
Sm 5.57 4.68 6.32 5.22 4.79 5.48 4.96 3.02 4.27 4.69 4.19 3.45 6.19 6.25 5.53 6.05 6.55
Eu 1.36 1.17 1.1 1.23 1.08 1.36 1.30 0.76 1.00 1.07 1.04 1.29 1.60 1.57 1.44 1.48 1.60
Gd 4.46 3.34 4.02 3.98 3.58 4.02 3.54 2.17 3.09 3.36 2.69 2.92 4.64 4.50 4.17 4.38 4.63
Tb 0.54 0.43 0.520 0.47 0.47 0.5 0.45 0.25 0.35 0.38 0.32 0.41 0.390 0.397 0.359 0.374 0.414
Dy 2.7 1.99 2.72 2.46 2.3 2.5 2.03 1.22 1.64 1.98 1.22 1.89 2.84 2.79 2.63 2.74 2.91
Ho 0.49 0.34 0.487 0.43 0.41 0.44 0.38 0.23 0.29 0.35 0.19 0.33 0.504 0.511 0.471 0.491 0.530
Er 1.29 0.92 1.26 1.13 1.13 1.19 0.97 0.61 0.77 0.92 0.48 0.96 1.40 1.40 1.30 1.34 1.50
Tm 0.17 0.13 0.16 0.15 0.14 0.15 0.13 0.09 0.11 0.12 0.06 0.13 0.186 0.185 0.167 0.179 0.188
Yb 0.99 0.82 1 0.96 0.94 0.91 0.83 0.6 0.67 0.74 0.38 0.87 1.032 1.004 0.957 1.004 1.096
Lu 0.13 0.12 0.13 0.14 0.13 0.12 0.11 0.09 0.1 0.1 0.04 0.12 0.166 0.166 0.157 0.172 0.173
Hf 1.44 4.05 3.57 2.76 0.94 2.35 2.74 1.11 1.82 2.7 1.34 4.88 3.58 3.84 3.65 3.89 4.15
Ta 0.69 0.79 0.77 0.73 0.92 0.69 0.69 0.82 0.76 0.82 0.62 0.4 0.582 0.567 0.534 0.573 0.592
Pb 21 60.1 34.4 43.9 42.2 34.9 42.4 28 29.7 32.1 23 10.6 32.1 30.8 29.9 31.8 31.9
Th 18 27.2 24.6 24.5 30.1 21.7 24.6 22.3 26 28.4 15 2.95 16.5 17.5 16.0 17.6 17.9
U 2.97 6.64 5.66 5.91 4.48 5.16 5.39 5.11 4.84 8.33 2.83 0.92 2.58 2.43 2.35 2.46 2.57

Mg#=Mg/(Mg+0.85⁎TFe2+).
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Figure 1: An example of joint inference be-
tween a table and its context.
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Figure 2: Job assignments for the human
study.

ment in a table that tells us the type of rock
and its weight—but data such as the location
where this rock was unearthed and in what ge-
ological time interval this rock appeared may
not be specified in the table.

We consider tasks in three domains:
Petrology, Finance, and Geology. For
each domain, we build a system to extract re-
lations from text, tables, or both. We found
that a joint inference system that uses non-
shallow, but standard NLP features can sig-
nificantly improve the quality of the extracted
relations, and that this result holds consistently
across all three domains. For example, in our
Petrology application to extract a knowledge
base, called PetDB1, by using information
extracted from both text and tables, we can
achieve twice as high F1 compared to either a
pure-table or pure-text system.

2 Motivating Human Study

We describe a simple human study that mo-
tivated our approach to jointly combine both
tabular features and natural language features
to extract relations from tables. The hypoth-

1http://www.earthchem.org/petdb
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Figure 3: Human quality to extract Sample-
Rocktype relations in PetDB.
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Figure 4: List of features we used in Text,
Table, and Joint approaches. NER, EL,
and RE refer to named-entity recognition, en-
tity linking, and relation extraction, respec-
tively.

esis that we want to validate is that the text
surrounding a table could provide valuable in-
formation even for a human reader, and there-
fore, an ideal machine reading system should
also try to capture similar information.

We asked three geoscientists to manually
read journal articles and extract relations
for the Petrology domain. We report
our results for the target relation, Sample-
RockType, which associates a rock type with
a rock sample (see Figure 1 for an example).
We randomly sampled 21 journal articles. For
each journal article, we produced three vari-
ants: (1) the original document; (2) table-
only, which is the set of tables in the docu-
ment (without the text); (3) text-only, which
is the text of the document with the tables
removed from the document. Each geoscien-
tist was asked to read and extract the relations
from one of the three variants. We then judged
the precision and recall of their extraction, as
shown in Figure 2.
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As shown in Figure 3, human readers not
surprisingly achieve perfect precision on each
of the variants, but lower recall on both
the table-only and text-only variants. How-
ever, summing the recall of table-only (60%)
and text-only (20%) variants together would
achieve only 80% recall; this implies that in
the best case more than 20% of the extrac-
tions require that the human reader read the
table and its surrounding text jointly. Figure 1
shows one representative example.

This motivates our approach, which uses a
joint inference system to model features from
a table and its surrounding text. We also pro-
pose to use deep linguistic features instead of
shallower features to get as close as possible to
the ability of human readers in understanding
the surrounding text of a table.

3 Empirical Study & Experiments

We describe our experiments to test the hy-
pothesis that (1) deeper linguistic features can
help to extract higher quality relations from
tables, and (2) joint inference across tables and
text improves extraction quality compared to
approaches that use pure-table, pure-text, and
non-joint ways of combining these two. We
briefly describe some experiments for a dataset
that we call Geology (Zhang et al., 2013).
The detailed experimental results in all three
domains are in the technical report version of
this paper.

3.1 Experimental Setup

We consider the task of constructing a geol-
ogy knowledge base. Specifically, our goal is
to extract a Rock-TotalOrganicCarbon
relation that maps rock formations (e.g., “Bar-
nett Formation”) to their total organic carbon
(e.g., “6%”). Such data is important for es-
timating stored energy and for global climate
research.

Dataset. We selected 100 geology journal
articles.2 We asked three geoscientists to an-
notate these journal articles manually to ex-
tract the Rock-TotalOrganicCarbon re-
lation (1.5K tuples). We processed each doc-
ument using Stanford CoreNLP (de Marneffe
et al., 2006; Toutanova and Manning, 2000),

2We choose a set of documents that (1) are in En-
glish, and (2) contain at least one table.

PDFtoHTML3, and pdf2table (Yildiz, 2004).
We then extracted features following state-of-
the-art practices (see Figure 4).

Approaches. To validate our hypothesis,
we implement four systems, each of which has
access to different types of data:

(1) Table. This approach follows Pinto et
al. (2003) and Dalvi et al. (2012) and only uses
the tables in a document.

(2) Text. This approach only has access to
the text in a document and contains all the fea-
tures mentioned in Wu and Weld (2010) and
Mintz et al. (2009).

The features used in (1) and (2) are shown in
Figure 4. In both Table and Text, we use a
conditional random field (Lafferty et al., 2001)
model for the Rock-TotalOrganicCarbon
relation.

(3) Merge. Using Table and Text, we
extract all facts and their associated probabil-
ity. Following Duin (2002), we combine these
two probabilities using a linear combination.
Merge is a baseline approach that uses infor-
mation from both tables and text.

(4) Joint. We build a joint approach that
uses information from both tables and text.
This approach is a large factor graph in which
we embed the CRFs developed in Table and
Text. Additionally, we allow Joint to pre-
dict projections of each relation, as shown in
Figure 4. Recall that a key advantage of a joint
approach is that we do not need to predict all
arguments of the relation (if such a prediction
is unwarranted from the data). The inference
is done by Gibbs sampling using our inference
engine Elementary (Zhang and Ré, 2013).
We describe the Joint system in more detail
in the technical report version of this paper.

3.2 End-to-End Quality

We were able to validate that Joint achieves
higher quality than the other three approaches
we considered. Figure 5 shows the P/R curve
of different approaches on three domains. We
analyzed the domain Geology.
Joint dominates all other approaches. At

a recall of 10%, Joint achieves 3x higher pre-
cision than all other approaches. In our error
analysis, we saw that tables in geology articles
often contain ambiguous words; for example,

3http://pdftohtml.sourceforge.net/
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Figure 5: End-to-end extraction quality on Petrology, Finance, and GeoDeepDive. The
recall is limited by the quality of state-of-the-art table recognition software on PDFs.

the word “Barnett” in a table may refer to ei-
ther a location or a rock formation. By using
features extracted from text, Joint achieves
higher precision. For recall in the range of 0–
10%, Merge outperforms both Text and Ta-
ble, with 3%–90% improvement in precision.

In Geology, Merge has precision that is
similar to Text and Table for the higher re-
call range (>10%). In this domain, we found
that relations that appeared in the text often
repeated relations described in the table. In
other domains, such as Petrology, where
the relations in text and tables have lower de-
grees of overlap, Merge significantly improves
over Text and Table (Figure 5(b)).

We conducted a statistical significance test
to check whether the improvement of Joint
over the three other approaches is statistically
significant. For each of the three probability
thresholds, t ∈ {.99, .90, .50}, we created the
set of predictions that Joint assigns probabil-
ity greater than t. Figure 6 shows the results
of the statistical significance test in which the
null hypothesis is that the F1 scores of two ap-
proaches are the same. With p = 0.01, Joint
has statistically significant improvement of F1
score over all three other approaches with each
probability threshold.

3.3 Shallow vs. Linguistic Features

We validate the hypothesis that using
linguistic features, e.g., part-of-speech
tags (Toutanova and Manning, 2000),
named-entity tags (Finkel et al., 2005), and
dependency trees (de Marneffe et al., 2006),
helps improve the quality of our approach,
called Joint. There are different ways to
use shallow and linguistic features; we select

Approaches \ Prob. .99 .90 .50

Text + + +
Table + + +
Merge + + +

Figure 6: Approximate randomization test
from Chinchor (1992) of F1 score with p =
0.01 on the impact of joint inference compared
with pure-table or pure-text approaches for
different probability thresholds. A + sign in-
dicates that the F1 score of joint approach in-
creased significantly.

Type	
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   Regular	
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  (Dalvi	
  et	
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  2012)	
  	
  

Term	
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  2003)	
  
DicConary	
  and	
  Freebase	
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  et	
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  2009)	
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  et	
  al.,	
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Figure 7: Types of Features.

state-of-the-art approaches from the literature
(see Figure 7).

We created the following variants of Joint.
Joint(-parse) removes features generated by
the dependency parser and syntax parser.
Similarly, Joint(-ner) (Joint(-pos)) removes
all features related to NER (resp. POS).
Joint(-pos) also removes NER and parser fea-
tures because the latter two are dependent on
POS features.

Figure 8 shows the P/R curve for all
these variants on Geology, and Figure 9
shows the results of statistical significance
test. For probability threshold .90, Joint
outperforms Joint(-pos) significantly. The
difference between Joint, Joint(-parse),
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Features \ Prob. .90 .50

Joint(-parse) → Joint 0 +

Joint(-ner) → Joint 0 +

Joint(-pos) → Joint + +

Figure 9: Approximate randomization test of
F1 score with p = 0.01 on the impact of lin-
guistic features. For x→ y, a + indicates that
the F1 score of y is significantly higher than x.
0 indicates that the F1 score does not change
significantly.

and Joint(-ner) is not significant because
there are “easy-to-extract” facts in the high-
probability range. For probability threshold
.50, Joint outperforms all three other vari-
ants significantly.

4 Related Work

The intuition that context features might help
table-related tasks has existed for decades. For
example, Hurst and Nasukawa (2000) men-
tioned (as future work) that context features
could be used to further improve their relation
extraction approaches from tables. Lin et al.
(2010) use bag-of-words features and hyper-
links to recommend new columns for web ta-
bles. Liu et al. (2007) extract features, includ-
ing font size and title, from PDF documents in
which a table appears to help the table rank-
ing task. They find that these features only
contribute less than 2% to precision. In con-
trast, in our approach linguistic features are
quite useful. The above approaches use con-
text features that can be extracted without
POS tagging or linguistic parsing. One aspect
of our work is to demonstrate that traditional
NLP tools can enhance the quality of table ex-
traction.

Extracting information from tables has been
discussed by different communities in the last
decade, including NLP (Wu and Lee, 2006;
Tengli et al., 2004; Chen et al., 2000), artifi-
cial intelligence (Fang et al., 2012; Pivk, 2006),
information retrieval (Wei et al., 2006; Pinto
et al., 2003), database (Cafarella et al., 2008),
and the web (Dalvi et al., 2012). This body of
work considers only features derived from ta-
bles and does not examine richer NLP features
as we do.

While joint inference is popular, it is not
clear when a joint inference system outper-
forms a more traditional NLP pipeline. Re-
cent studies have reached a variety of conclu-
sions: in some, joint inference helps extraction
quality (McCallum, 2009; Poon and Domin-
gos, 2007; Singh et al., 2009); and in some,
joint inference hurts extraction quality (Poon
and Domingos, 2007; Eisner, 2009). Our intu-
ition is that joint inference is helpful in this ap-
plication because our joint inference approach
combines non-redundant signals (textual ver-
sus tabular).

5 Conclusion

To improve the quality of extractions of tabu-
lar data, we use standard NLP techniques to
more deeply understand the text in which a
table is embedded. We validate that deeper
NLP features combined with a joint proba-
bilistic model has a statistically significant im-
pact on quality, i.e., recall and precision. Our
ongoing work is to apply these ideas to a much
larger corpus from each of the three domains.
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Abstract

Distant supervision has attracted recent in-
terest for training information extraction
systems because it does not require any
human annotation but rather employs ex-
isting knowledge bases to heuristically la-
bel a training corpus. However, previous
work has failed to address the problem
of false negative training examples misla-
beled due to the incompleteness of knowl-
edge bases. To tackle this problem, we
propose a simple yet novel framework that
combines a passage retrieval model using
coarse features into a state-of-the-art rela-
tion extractor using multi-instance learn-
ing with fine features. We adapt the in-
formation retrieval technique of pseudo-
relevance feedback to expand knowledge
bases, assuming entity pairs in top-ranked
passages are more likely to express a rela-
tion. Our proposed technique significantly
improves the quality of distantly super-
vised relation extraction, boosting recall
from 47.7% to 61.2% with a consistently
high level of precision of around 93% in
the experiments.

1 Introduction

A recent approach for training information ex-
traction systems is distant supervision, which ex-
ploits existing knowledge bases instead of anno-
tated texts as the source of supervision (Craven
and Kumlien, 1999; Mintz et al., 2009; Nguyen
and Moschitti, 2011). To combat the noisy train-
ing data produced by heuristic labeling in distant
supervision, researchers (Bunescu and Mooney,
2007; Riedel et al., 2010; Hoffmann et al., 2011;
Surdeanu et al., 2012) exploited multi-instance

*This work was done while Le Zhao was at Carnegie
Mellon University.

learning models. Only a few studies have directly
examined the influence of the quality of the train-
ing data and attempted to enhance it (Sun et al.,
2011; Wang et al., 2011; Takamatsu et al., 2012).
However, their methods are handicapped by the
built-in assumption that a sentence does not ex-
press a relation unless it mentions two entities
which participate in the relation in the knowledge
base, leading to false negatives.

aligned 
mentions 

true 
 mentions 

5.5% 

2.7% 1.7% false  
negatives false  

positives 

Figure 1: Noisy training data in distant supervi-
sion

In reality, knowledge bases are often incom-
plete, giving rise to numerous false negatives in
the training data. We sampled 1834 sentences that
contain two entities in the New York Times 2006
corpus and manually evaluated whether they ex-
press any of a set of 50 common Freebase1 rela-
tions. As shown in Figure 1, of the 133 (7.3%)
sentences that truly express one of these relations,
only 32 (1.7%) are covered by Freebase, leaving
101 (5.5%) false negatives. Even for one of the
most complete relations in Freebase, Employee-of
(with more than 100,000 entity pairs), 6 out of 27
sentences with the pattern ‘PERSON executive of
ORGANIZATION’ contain a fact that is not in-
cluded in Freebase and are thus mislabeled as neg-
ative. These mislabelings dilute the discriminative
capability of useful features and confuse the mod-
els. In this paper, we will show how reducing this
source of noise can significantly improve the per-
formance of distant supervision. In fact, our sys-
tem corrects the relation labels of the above 6 sen-
tences before training the relation extractor.

1http://www.freebase.com

665



 
Documents Knowledge 

Base 

Relation 
Extractor 

Passage 
Retriever 

① 

② 

④ 

Pseudo-relevant 
Relation Instances 

③ 

⑤ 

⑥ 

Figure 2: Overall system architecture: The system
(1) matches relation instances to sentences and (2)
learns a passage retrieval model to (3) provide rel-
evance feedback on sentences; Relevant sentences
(4) yield new relation instances which are added
to the knowledge base; Finally, instances are again
(5) matched to sentences to (6) create training data
for relation extraction.

Encouraged by the recent success of simple
methods for coreference resolution (Raghunathan
et al., 2010) and inspired by pseudo-relevance
feedback (Xu and Croft, 1996; Lavrenko and
Croft, 2001; Matveeva et al., 2006; Cao et al.,
2008) in the field of information retrieval, which
expands or reformulates query terms based on
the highest ranked documents of an initial query,
we propose to increase the quality and quantity
of training data generated by distant supervision
for information extraction task using pseudo feed-
back. As shown in Figure 2, we expand an orig-
inal knowledge base with possibly missing rela-
tion instances with information from the highest
ranked sentences returned by a passage retrieval
model (Xu et al., 2011) trained on the same data.
We use coarse features for our passage retrieval
model to aggressively expand the knowledge base
for maximum recall; at the same time, we exploit
a multi-instance learning model with fine features
for relation extraction to handle the newly intro-
duced false positives and maintain high precision.

Similar to iterative bootstrapping tech-
niques (Yangarber, 2001), this mechanism uses
the outputs of the first trained model to expand
training data for the second model, but unlike
bootstrapping it does not require iteration and
avoids the problem of semantic drift. We further
note that iterative bootstrapping over a single
distant supervision system is difficult, because
state-of-the-art systems (Surdeanu et al., 2012;
Hoffmann et al., 2011; Riedel et al., 2010; Mintz
et al., 2009), detect only few false negatives in the

training data due to their high-precision low-recall
features, which were originally proposed by Mintz
et al. (2009). We present a reliable and novel way
to address these issues and achieve significant
improvement over the MULTIR system (Hoff-
mann et al., 2011), increasing recall from 47.7%
to 61.2% at comparable precision. The key to this
success is the combination of two different views
as in co-training (Blum and Mitchell, 1998):
an information extraction technique with fine
features for high precision and an information
retrieval technique with coarse features for high
recall. Our work is developed in parallel with
Min et al. (2013), who take a very different
approach by adding additional latent variables to
a multi-instance multi-label model (Surdeanu et
al., 2012) to solve this same problem.

2 System Details

In this section, we first introduce some formal no-
tations then describe in detail each component of
the proposed system in Figure 2.

2.1 Definitions

A relation instance is an expression r(e1, e2)
where r is a binary relation, and e1 and e2 are
two entities having such a relation, for example
CEO-of(Tim Cook, Apple). The knowledge-based
distant supervised learning problem takes as input
(1) Σ, a training corpus, (2) E, a set of entities
mentioned in that corpus, (3) R, a set of relation
names, and (4) ∆, a set of ground facts of relations
in R. To generate our training data, we further as-
sume (5) T , a set of entity types, as well as type
signature r(E1, E2) for relations.

We define the positive data set POS(r) to be
the set of sentences in which any related pair
of entities of relation r (according to the knowl-
edge base) is mentioned. The negative data set
RAW (r) is the rest of the training data, which
contain two entities of the required types in the
knowledge base, e.g. one person and one or-
ganization for the CEO-of relation in Freebase.
Another negative data set with more conservative
sense NEG(r) is defined as the set of sentences
which contain the primary entity e1 (e.g. person
in any CEO-of relation in the knowledge base) and
any secondary entity e2 of required type (e.g. or-
ganization for the CEO-of relation) but the relation
does not hold for this pair of entities in the knowl-
edge base.
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2.2 Distantly Supervised Passage Retrieval

We extend the learning-to-rank techniques (Liu,
2011) to distant supervision setting (Xu et al.,
2011) to create a robust passage retrieval system.
While relation extraction systems exploit rich and
complex features that are necessary to extract the
exact relation (Mintz et al., 2009; Riedel et al.,
2010; Hoffmann et al., 2011), passage retrieval
components use coarse features in order to provide
different and complementary feedback to informa-
tion extraction models.

We exploit two types of lexical features: Bag-
Of-Words and Word-Position. The two types of
simple binary features are shown in the following
example:

Sentence: Apple founder Steve Jobs died.

Target (Primary) entity: Steve Jobs

Bag-Of-Word features: ‘apple’ ‘founder’ ‘died’ ‘.’

Word-Position features: ‘apple:-2’ ‘founder:-1’

‘died:+1’ ‘.:+2’

For each relation r, we assume each sentence
has a binary relevance label to form distantly su-
pervised training data: sentences in POS(r) are
relevant and sentences in NEG(r) are irrelevant.
As a pointwise learning-to-rank approach (Nallap-
ati, 2004), the probabilities of relevance estimated
by SVMs (Platt and others, 1999) are used for
ranking all the sentences in the original training
corpus for each relation respectively. We use Lib-
SVM 2 (Chang and Lin, 2011) in our implementa-
tion.

2.3 Psuedo-relevance Relation Feedback

In the field of information retrieval, pseudo-
relevance feedback assumes that the top-ranked
documents from an initial retrieval are likely rel-
evant, and extracts relevant terms to expand the
original query (Xu and Croft, 1996; Lavrenko and
Croft, 2001; Cao et al., 2008). Analogously, our
assumption is that entity pairs that appear in more
relevant and more sentences are more likely to
express the relation, and can be used to expand
knowledge base and reduce false negative noise in
the training data for information extraction. We
identify the most likely relevant entity pairs as fol-
lows:

2http://www.csie.ntu.edu.tw/˜cjlin/
libsvm

initialize ∆′ ←− ∆
for each relation type r ∈ R do

learn a passage (sentence) retrieval model L(r)
using coarse features andPOS(r)∪NEG(r)
as training data

score the sentences in the RAW (r) by L(r)
score the entity pairs according to the scores

of sentences they are involved in
select the top ranked pairs of entities, then add

the relation r to their label in ∆′

end for

We select the entity pairs whose average score
of the sentences they are involved in is greater
than p, where p is a parameter tuned on develop-
ment data.3 The relation extraction model is then
trained using (Σ, E,R,∆′) with a more complete
database than the original knowledge base ∆.

2.4 Distantly Supervised Relation Extraction

We use a state-of-the-art open-source system,
MULTIR (Hoffmann et al., 2011), as the rela-
tion extraction component. MULTIR is based
on multi-instance learning, which assumes that
at least one sentence of those matching a given
entity-pair contains the relation of interest (Riedel
et al., 2010) in the given knowledge base to tol-
erate false positive noise in the training data and
superior than previous models (Riedel et al., 2010;
Mintz et al., 2009) by allowing overlapping rela-
tions. MULTIR uses features which are based on
Mintz et al. (2009) and consist of conjunctions of
named entity tags, syntactic dependency paths be-
tween arguments, and lexical information.

3 Experiments

For evaluating extraction accuracy, we follow the
experimental setup of Hoffmann et al. (2011), and
use their implementation of MULTIR4 with 50
training iterations as our baseline. Our complete
system, which we call IRMIE, combines our pas-
sage retrieval component with MULTIR. We use
the same datasets as in Hoffmann et al. (2011) and
Riedel et al. (2010), which include 3-years of New
York Times articles aligned with Freebase. The
sentential extraction evaluation is performed on
a small amount of manually annotated sentences,
sampled from the union of matched sentences and

3We found p = 0.5 to work well in practice.
4http://homes.cs.washington.edu/

˜raphaelh/mr/
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Test Data Set Original Test Set Corrected Test Set
P̃ R̃ F̃ ∆F̃ P̃ R̃ F̃ ∆F̃

MULTIR 80.0 44.6 62.3 92.7 47.7 70.2
IRMIE 84.6 56.1 70.3 +8.0 92.6 61.2 76.9 +6.7
MULTIRLEX 91.8 43.0 67.4 79.6 57.0 68.3
IRMIELEX 89.2 52.5 70.9 +3.5 78.0 69.2 73.6 +5.3

Table 1: Overall sentential extraction performance evaluated on the original test set of Hoffmann et
al. (2011) and our corrected test set: Our proposed relevance feedback technique yields a substantial
increase in recall.

system predictions. We define Se as the sentences
where some system extracted a relation and SF

as the sentences that match the arguments of a
fact in ∆. The sentential precision and recall is
computed on a randomly sampled set of sentences
from Se∪SF , in which each sentence is manually
labeled whether it expresses any relation in R.

Figure 3 shows the precision/recall curves for
MULTIR with and without pseudo-relevance feed-
back computed on the test dataset of 1000 sen-
tence used by Hoffmann et al. (2011). With the
pseudo-relevance feedback from passage retrieval,
IRMIE achieves significantly higher recall at a
consistently high level of precision. At the highest
recall point, IRMIE reaches 78.5% precision and
59.2% recall, for an F1 score of 68.9%.

Because the two types of lexical features used in
our passage retrieval models are not used in MUL-
TIR, we created another baseline MULTIRLEX
by adding these features into MULTIR in order
to rule out the improvement from additional infor-
mation. Note that the sentences are sampled from
the union of Freebase matches and sentences from
which some systems in Hoffmann et al. (2011) ex-
tracted a relation. It underestimates the improve-
ments of the newly developed systems in this pa-
per. We therefore also created a new test set of
1000 sentences by sampling from the union of
Freebase matches and sentences where MULTIR-
LEX or IRMIELEX extracted a relation. Table 1
shows the overall precision and recall computed
against these two test datasets, with and without
adding lexical features into multi-instance learn-
ing models. The performance improvement by us-
ing pseudo-feedback is significant (p < 0.05) in
McNemar’s test for both datasets.

4 Conclusion and Perspectives

This paper proposes a novel approach to address
an overlooked problem in distant supervision: the
knowledge base is often incomplete causing nu-
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Figure 3: Sentential extraction: precision/recall
curves using exact same training and test data,
features and system settings as in Hoffmann et
al. (2011).

merous false negatives in the training data. It
greatly improves a state-of-the-art multi-instance
learning model by correcting the most likely false
negatives in the training data based on the ranking
of a passage retrieval model.

In the future, we would like to more tightly inte-
grate a coarser featured estimator of sentential rel-
evance and a finer featured relation extractor, such
that a single joint-model can be learned.
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Abstract

Appositions are adjacent NPs used to add
information to a discourse. We propose
systems exploiting syntactic and seman-
tic constraints to extract appositions from
OntoNotes. Our joint log-linear model
outperforms the state-of-the-art Favre and
Hakkani-Tür (2009) model by ∼10% on
Broadcast News, and achieves 54.3% F-
score on multiple genres.

1 Introduction

Appositions are typically adjacent coreferent noun
phrases (NP) that often add information about
named entities (NEs). The apposition in Figure 1
consists of three comma-separated NPs – the first
NP (HEAD) names an entity and the others (ATTRs)
supply age and profession attributes. Attributes
can be difficult to identify despite characteristic
punctuation cues, as punctuation plays many roles
and attributes may have rich substructure.

While linguists have studied apposition in de-
tail (Quirk et al., 1985; Meyer, 1992), most appo-
sition extraction has been within other tasks, such
as coreference resolution (Luo and Zitouni, 2005;
Culotta et al., 2007) and textual entailment (Roth
and Sammons, 2007). Extraction has rarely been
intrinsically evaluated, with Favre and Hakkani-
Tür’s work a notable exception.

We analyze apposition distribution in
OntoNotes 4 (Pradhan et al., 2007) and com-
pare rule-based, classification and parsing
extraction systems. Our best system uses a joint
model to classify pairs of NPs with features
that faithfully encode syntactic and semantic
restrictions on appositions, using parse trees and
WordNet synsets.

{John Ake}h , {48}a , {a former vice-president
in charge of legal compliance at American Capital
Management & Research Inc., in Houston,}a , . . .

Figure 1: Example apposition from OntoNotes 4

Our approach substantially outperforms Favre
and Hakkani-Tür on Broadcast News (BN) at
54.9% F-score and has state-of-the-art perfor-
mance 54.3% F-score across multiple genres. Our
results will immediately help the many systems
that already use apposition extraction components,
such as coreference resolution and IE.

2 Background

Apposition is widely studied, but “grammarians
vary in the freedom with which they apply the
term ‘apposition”’ (Quirk et al., 1985). They are
usually composed of two or more adjacent NPs,
hierarchically structured, so one is the head NP

(HEAD) and the rest attributes (ATTRs). They are
often flagged using punctuation in text and pauses
in speech. Pragmatically, they allow an author to
introduce new information and build a shared con-
text (Meyer, 1992).

Quirk et al. propose three tests for apposition: i)
each phrase can be omitted without affecting sen-
tence acceptability, ii) each fulfils the same syntac-
tic function in the resultant sentences, iii) extralin-
guistic reference is unchanged. Strict interpreta-
tions may exclude other information-bearing cases
like pseudo-titles (e.g. ({President}a {Bush}h)NP),
but include some adverbial phrases (e.g. {(John
Smith)NP}h, {(formerly (the president)NP)AP}a). We
adopt the OntoNotes guidelines’ relatively strict
interpretation: “a noun phrase that modifies an
immediately-adjacent noun phrase (these may be
separated by only a comma, colon, or parenthe-
sis).” (BBN, 2004–2007).
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Unit TRAINF DEVF TESTF TRAIN DEV TEST
Sents. 9,595 976 1,098 48,762 6,894 6,896
Appos. 590 64 68 3,877 502 490

Table 1: Sentence and apposition distribution

Apposition extraction is a common component
in many NLP tasks: coreference resolution (Luo
and Zitouni, 2005; Culotta et al., 2007; Bengt-
son and Roth, 2008; Poon and Domingos, 2008),
textual entailment (Roth and Sammons, 2007;
Cabrio and Magnini, 2010), sentence simplifica-
tion (Miwa et al., 2010; Candido et al., 2009;
Siddharthan, 2002) and summarization (Nenkova
et al., 2005). Comma ambiguity has been studied
in the RTE (Srikumar et al., 2008) and generation
domains (White and Rajkumar, 2008).

Despite this, few papers to our knowledge ex-
plicitly evaluate apposition extraction. Moreover,
apposition extraction is rarely the main research
goal and descriptions of the methods used are of-
ten accordingly terse or do not match our guide-
lines. Lee et al. (2011) use rules to extract appo-
sitions for coreference resolution, selecting only
those that are explicitly flagged using commas or
parentheses. They do not separately mark HEAD

and ATTR and permit relative clauses as an ATTR.
While such differences capture useful information
for coreference resolution, these methods would
be unfairly disadvantaged in a direct evaluation.

Favre and Hakkani-Tür (2009, FHT) directly
evaluate three extraction systems on OntoNotes
2.9 news broadcasts. The first retrains the Berke-
ley parser (Petrov and Klein, 2007) on trees la-
belled with appositions by appending the HEAD

and ATTR suffix to NPs – we refer to this as a La-
belled Berkeley Parser (LBP). The second is a CRF

labelling words using an IOB apposition scheme.
Token, POS, NE and BP-label features are used,
as are presence of speech pauses. The final sys-
tem classifies parse tree phrases using an Adaboost
classifier (Schapire and Singer, 2000) with similar
features.

The LBP, IOB and phrase systems score 41.38%,
32.76% and 40.41%, while their best uses LBP tree
labels as IOB features, scoring 42.31%. Their fo-
cus on BN automated speech recognition (ASR)
output, which precludes punctuation cues, does
not indicate how well the methods perform on tex-
tual genres. Moreover all systems use parsers or
parse-label features and do not completely evalu-
ate non-parser methods for extraction despite in-
cluding baselines.

Form # % Reverse form # %
∑

%
H t A 2109 55.9 A t H 724 19.2 75.1
A H 482 12.8 H A 205 5.4 93.3
H , A 1843 48.9 A , H 532 14.1 63.0
A H 482 12.9 H A 205 5.4 81.3
H ( A 146 3.9 A ( H 16 0.4 85.6
A : H 94 2.5 H : A 23 0.6 88.7
H -- A 66 1.8 A -- H 35 0.9 91.4
A - H 31 0.8 H - A 21 0.6 92.8

Table 2: Apposition forms in TRAIN with abstract
(top) and actual (bottom) tokens, e.g., H t A in-
dicates an HEAD, one token then an ATTR.

3 Data

We use apposition-annotated documents from the
English section of OntoNotes 4 (Weischedel et al.,
2011). We manually adjust appositions that do not
have exactly one HEAD and one or more ATTR1.
Some appositions are nested, and we keep only
“leaf” appositions, removing the higher-level ap-
positions.

We follow the CoNLL-2011 scheme to select
TRAIN, DEV and TEST datasets (Pradhan et al.,
2011). OntoNotes 4 is made up of a wide vari-
ety of sources: broadcast conversation and news,
magazine, newswire and web text. Appositions
are most frequent in newswire (one per 192 words)
and least common in broadcast conversation (one
per 645 words) with the others in between (around
one per 315 words).

We also replicate the OntoNotes 2.9 BN data
used by FHT, selecting the same sentences from
OntoNotes 4 (TRAINF/DEVF/TESTF). We do not
“speechify” our data and take a different approach
to nested apposition. Table 1 shows the distri-
bution of sentences and appositions (HEAD-ATTR

pairs).

3.1 Analysis

Most appositions in TRAIN have one ATTR

(97.4%) with few having two (2.5%) or three
(0.1%). HEADs are typically shorter (median 5
tokens, 95% < 7) than ATTRs (median 7 tokens,
95% < 15). Table 2 shows frequent apposition
forms. Comma-separated apposition is the most
common (63%) and 93% are separated by zero or
one token. HEADs are often composed of NEs:
52% PER and 13% ORG, indicating an entity about
which the ATTR adds information.

1Available at http://schwa.org/resources
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Pattern and Example P R F
{ne:PER}h # {pos:NP (pos:IN ne:LOC|ORG|GPE)?}a #
“{Jian Zhang}h, {the head of Chinese delegation}a,” 73.1 21.9 33.7
{pos:DT gaz:role|relation}a #? {ne:PER}h
“{his new wife}a {Camilla}h” 45.9 9.5 15.8
{ne:ORG|GPE}h # {pos:DT pos:NP}a #
“{Capetronic Inc.}h, {a Taiwan electronics maker}a,” 60.4 6.0 10.9
{pos:NP}a # {ne:PER}h #
“{The vicar}a, {W.D. Jones}h,” 33.7 4.5 7.9
{ne:PER}h # {pos:NP pos:POS pos:NP}a #
“{Laurence Tribe}h, {Gore ’s attorney}a,” 82.0 4.0 7.7

Table 3: The top-five patterns by recall in the TRAIN dataset. ‘#’ is a pause (e.g., punctuation), ‘|’ a
disjunction and ‘?’ an optional part. Patterns are used to combine tokens into NPs for pos:NP.

4 Extracting Appositions

We investigate different extraction systems using
a range of syntactic information. Our systems that
use syntactic parses generate candidates (pairs of
NPs: p1 and p2) that are then classified as apposi-
tion or not.

This paper contributes three complementary
techniques for more faithfully modelling apposi-
tion. Any adjacent NPs, disregarding intervening
punctuation, could be considered candidates, how-
ever stronger syntactic constraints that only allow
sibling NP children provide higher precision can-
didate sets. Semantic compatibility features en-
coding that an ATTR provides consistent informa-
tion for its HEAD. A joint classifier models the
complete apposition rather than combining sepa-
rate phrase-wise decisions. Taggers and parsers
are trained on TRAIN and evaluated on DEV or
TEST. We use the C&C tools (Curran and Clark,
2003) for POS and NE tagging and the and the
Berkeley Parser (Petrov and Klein, 2007), trained
with default parameters.

Pattern POS, NE and lexical patterns are used
to extract appositions avoiding parsing’s compu-
tational overhead. Rules are applied indepen-
dently to tokenized and tagged sentences, yield-
ing HEAD-ATTR tuples that are later deduplicated.
The rules were manually derived from TRAIN2 and
Table 3 shows the top five of sixteen rules by re-
call over TRAIN. The “role” gazetteer is the transi-
tive closure of hyponyms of the WordNet (Miller,
1995) synset person.n.01 and “relation” man-
ually constructed (e.g., “father”, “colleague”). Tu-
ples are post-processed to remove spurious appo-

2There is some overlap between TRAIN and DEVF/TESTF
with appositions from the latter used in rule generation.

sitions such as comma-separated NE lists3.

Adjacent NPs This low precision, high recall
baseline assumes all candidates, depending on
generation strategy, are appositions.

Rule We only consider HEADs whose syntactic
head is a PER, ORG, LOC or GPE NE. We formalise
semantic compatibility by requiring the ATTR head
to match a gazetteer dependent on the HEAD’s NE

type. To create PER, ORG and LOC gazetteers,
we identified common ATTR heads in TRAIN and
looked for matching WordNet synsets, selecting
the most general hypernym that was still seman-
tically compatible with the HEAD’s NE type.

Gazetteer words are pluralized using pattern.en
(De Smedt and Daelemans, 2012) and normalised.
We use partitive and NML-aware rules (Collins,
1999; Vadas and Curran, 2007) to extract syntactic
heads from ATTRs. These must match the type-
appropriate gazetteer, with ORG and LOC/GPE

falling back to PER (e.g., “the champion, Apple”).
Extracted tuples are post-processed as for Pat-

tern and reranked by the OntoNotes specificity
scale (i.e., NNP > PRO > Def. NP > Indef. NP

> NP), and the more specific unit is assigned
HEAD. Possible ATTRs further to the left or right
are checked, allowing for cases such as Figure 1.

Labelled Berkeley Parser We train a LBP on
TRAIN and recover appositions from parsed sen-
tences. Without syntactic constraints this is equiv-
alent to FHT’s LBP system (LBPF) and indicated by
† in Tables.

Phrase Each NP is independently classified as
HEAD, ATTR or None. We use a log-linear model
with a SGD optimizer from scikit-learn (Pedregosa

3Full description: http://schwa.org/resources
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Model Full system -syn -sem -both +gold
Pattern 44.8 34.9 39.2 - - - - - - - - - 52.2 39.6 45.1
Adj NPs 11.6 58.0 19.3 3.6 65.1 6.8 - - - - - - 16.0 85.3 27.0
Rule 65.3 46.8 54.5 43.7 50.0 46.7 - - - - - - 79.1 62.0 69.5
LBP 66.3 52.2 58.4 47.8 53.0 †50.3 - - - - - - - - -
Phrase 73.2 45.6 56.2 77.7 41.0 53.7 73.2 44.6 55.4 77.7 40.8 ‡53.5 89.0 58.2 70.4
Joint 66.3 49.0 56.4 68.5 48.6 56.9 70.4 47.0 56.4 68.9 48.0 56.6 87.9 69.5 77.6
Joint LBP 69.6 51.0 58.9 69.6 49.6 57.9 71.5 49.0 58.2 68.3 48.6 56.8 - -

Table 4: Results over DEV: each column shows precision, recall and F-score. -syn/-sem/-both show the
impact of removing constraints/features, +gold shows the impact of parse and tagging errors.

et al., 2011). The binary features are calculated
from a generated candidate phrase (p) and are the
same as FHT’s phrase system (PhraseF), denoted
‡ in Tables. In addition, we propose the fea-
tures below and to decode classifications, adjacent
apposition-classified NPs are re-ordered by speci-
ficity.

• p precedes/follows punctuation/interjection
• p starts with a DT or PRP$ (e.g., “{the

director}a” or “{her husband}a”)
• p’s syntactic head matches a NE-specific se-

mantic gazetteer (e.g., “{the famous actor}a”
→ PER, “{investment bank}a”→ ORG)
• p’s syntactic head has the POS CD (e.g.,

“{John Smith}h, {34}a, . . . ”)
• p’s NE type (e.g., “{John Smith}h”→ PER)
• Specificity rank

Joint The final system classifies pairs of phrases
(p1, p2) as: HEAD-ATTR, ATTR-HEAD or None.
The system uses the phrase model features as
above as well as pairwise features:

• the cross-product of selected features for p1
and p2: gazetteer matches, NE type, speci-
ficity rank. This models the compatibility be-
tween p1 and p2. For example, if the HEAD

has the NE type PER and the ATTR has the
syntactic head in the PER gazetteer, for ex-
ample “{Tom Cruise}h, {famous actor}a,”→
(p1: PER, p2: PER-gaz)
• If semantic features are found in p1 and p2
• p1/p2 specificity (e.g., equal, p1 > p2)
• whether p1 is an acronym of p2 or vice-versa

5 Results

We evaluate by comparing the extracted HEAD-
ATTR pairs against the gold-standard. Correct
pairs match gold-standard bounds and label. We
report precision (P), recall (R) and F1-score (F).

Table 4 shows our systems’ performance on the
multi-genre DEV dataset, the impact of remov-
ing syntactic constraints, semantic features and

parse/tag error. Pattern performance is reasonable
at 39.2% F-score given its lack of full syntactic
information. All other results use parses and, al-
though it has a low F-score, the Adjacent NPs’
65.1% recall, without syntactic constraints, is the
upper bound for the parse-based systems. Statis-
tical models improve performance, with the joint
models better than the higher-precision phrase
model as the latter must make two independently
correct classification decisions. Our best system
has an F-score of 58.9% using a joint model over
the de-labelled trees produced by the LBP. This
indicates that although our model does not use
the apposition labels from the tree, the tree is a
more suitable structure for extraction. This sys-
tem substantially improves on our implementation
of FHT’s LBPF (†) and PhraseF (‡) systems by 8.6%
and 5.4%4.

Removing syntactic constraints mostly reduces
performance in parse-based systems as the system
must consider lower-quality candidates. The F-
score increase is driven by higher precision at min-
imal cost to recall. Removing semantic features
has less impact and removing both is most detri-
mental to performance. These features have less
impact on joint models; indeed, joint performance
using BP trees increases without the features, per-
haps as joint models already model the syntactic
context.

We evaluate the impact of parser and tagger
error by using gold-standard resources. Gold-
standard tags and trees improve recall in all cases
leading to F-score improvements (+gold). The
pattern system is reasonably robust to automatic
tagging errors, but parse-based models suffer con-
siderably from automatic parses. To compare the
impact of tagging and parsing error, we configure
the joint system to use gold parses and automatic
NE tags and vice versa. Using automatic tags does
not greatly impact performance (-1.3%), whereas

4We do not implement the IOB or use LBP features for
TRAIN as these would require n-fold parser training.
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Model P R F
LBPF † 53.1 46.9 49.8
PhraseF ‡ 71.5 30.2 42.5
Pattern 44.8 34.3 38.8
LBP 63.9 45.1 52.9
Joint LBP 66.9 45.7 54.3

Table 5: Results over TEST: FHT’s (top) and our
(bottom) systems.

Error BP LBP δ

PP Attachment 5,585 5,396 -189
NP Internal Structure 1,483 1,338 -145
Other 3,164 3,064 -100
Clause Attachment 3,960 3,867 -93
Modifier Attachment 1,523 1,700 177
Co-ordination 3,095 3,245 150
NP Attachment 2,615 2,680 65
Total 30,189 29,859 -330

Table 6: Selected BP/LBP parse error distribution.

using automatic parses causes a drop of around
20% to 57.7%, demonstrating that syntactic infor-
mation is crucial for apposition extraction.

We compare our work with Favre and Hakkani-
Tür (2009), training with TRAINF and evaluating
over TESTF– exclusively BN data. Our implemen-
tations of their systems, PhraseF and LBPF, per-
form at 43.6% and 44.1%. Our joint LBP system
is substantially better, scoring 54.9%.

Table 5 shows the performance of our best sys-
tems on the TEST dataset and these follow the
same trend as DEV. Joint LBP performs the best
at 54.3%, 4.5% above LBPF.

Finally, we test whether labelling appositions
can help parsing. We parse DEV trees with LBP

and BP, remove apposition labels and analyse
the impact of labelling using the Berkeley Parser
Analyser (Kummerfeld et al., 2012). Table 6
shows the LBP makes fewer errors, particularly
NP internal structuring, PP and clause attachment
classes at the cost of modifier attachment and co-
ordination errors. Rather than increasing parsing
difficulty, apposition labels seem complementary,
improving performance.

6 Conclusion

We present three apposition extraction techniques.
Linguistic tests for apposition motivate strict syn-
tactic constraints on candidates and semantic fea-
tures encode the addition of compatible informa-

tion. Joint models more faithfully capture apposi-
tion structure and our best system achieves state-
of-the-art performance of 54.3%. Our results will
immediately benefit the large number of systems
with apposition extraction components for coref-
erence resolution and IE.
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Abstract
Data selection is an effective approach
to domain adaptation in statistical ma-
chine translation. The idea is to use lan-
guage models trained on small in-domain
text to select similar sentences from large
general-domain corpora, which are then
incorporated into the training data. Sub-
stantial gains have been demonstrated in
previous works, which employ standard n-
gram language models. Here, we explore
the use of neural language models for data
selection. We hypothesize that the con-
tinuous vector representation of words in
neural language models makes them more
effective than n-grams for modeling un-
known word contexts, which are prevalent
in general-domain text. In a comprehen-
sive evaluation of 4 language pairs (En-
glish to German, French, Russian, Span-
ish), we found that neural language mod-
els are indeed viable tools for data se-
lection: while the improvements are var-
ied (i.e. 0.1 to 1.7 gains in BLEU), they
are fast to train on small in-domain data
and can sometimes substantially outper-
form conventional n-grams.

1 Introduction

A perennial challenge in building Statistical Ma-
chine Translation (SMT) systems is the dearth
of high-quality bitext in the domain of interest.
An effective and practical solution is adaptation
data selection: the idea is to use language models
(LMs) trained on in-domain text to select similar
sentences from large general-domain corpora. The
selected sentences are then incorporated into the
SMT training data. Analyses have shown that this
augmented data can lead to better statistical esti-
mation or word coverage (Duh et al., 2010; Had-
dow and Koehn, 2012).

Although previous works in data selection (Ax-
elrod et al., 2011; Koehn and Haddow, 2012; Ya-
suda et al., 2008) have shown substantial gains, we
suspect that the commonly-used n-gram LMs may
be sub-optimal. The small size of the in-domain
text implies that a large percentage of general-
domain sentences will contain words not observed
in the LM training data. In fact, as many as 60% of
general-domain sentences contain at least one un-
known word in our experiments. Although the LM
probabilities of these sentences could still be com-
puted by resorting to back-off and other smoothing
techniques, a natural question remains: will alter-
native, more robust LMs do better?

We hypothesize that the neural language model
(Bengio et al., 2003) is a viable alternative, since
its continuous vector representation of words is
well-suited for modeling sentences with frequent
unknown words, providing smooth probability es-
timates of unseen but similar contexts. Neu-
ral LMs have achieved positive results in speech
recognition and SMT reranking (Schwenk et al.,
2012; Mikolov et al., 2011a). To the best of our
knowledge, this paper is the first work that exam-
ines neural LMs for adaptation data selection.

2 Data Selection Method

We employ the data selection method of (Ax-
elrod et al., 2011), which builds upon (Moore
and Lewis, 2010). The intuition is to select
general-domain sentences that are similar to in-
domain text, while being dis-similar to the average
general-domain text.

To do so, one defines the score of an general-
domain sentence pair (e, f) as:

[INE(e)−GENE(e)] + [INF (f)−GENF (f)]
(1)

where INE(e) is the length-normalized cross-
entropy of e on the English in-domain LM.
GENE(e) is the length-normalized cross-entropy
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Figure 1: Recurrent neural LM.

of e on the English general-domain LM, which
is built from a sub-sample of the general-domain
text. Similarly, INF (f) and GENF (f) are the
cross-entropies of f on Foreign-side LM. Finally,
sentence pairs are ranked according to Eq. 1 and
those with scores lower than some empirically-
chosen threshold are added to the bitext for trans-
lation model training.

2.1 Neural Language Models

The four LMs used to compute Eq. 1 have con-
ventionally been n-grams. N-grams of the form
p(w(t)|w(t − 1), w(t − 2), . . .) predict words by
using multinomial distributions conditioned on the
context (w(t−1), w(t−2), . . .). But when the con-
text is rare or contains unknown words, n-grams
are forced to back-off to lower-order models, e.g.
p(w(t)|w(t − 1)). These backoffs are unfortu-
nately very frequent in adaptation data selection.

Neural LMs, in contrast, model word probabili-
ties using continuous vector representations. Fig-
ure 1 shows a type of neural LMs called recurrent
neural networks (Mikolov et al., 2011b).1 Rather
than representing context as an identity (n-gram
hit-or-miss) function on [w(t − 1), w(t − 2), . . .],
neural LMs summarize the context by a hidden
state vector s(t). This is a continuous vector of
dimension |S| whose elements are predicted by
the previous word w(t − 1) and previous state
s(t − 1). This is robust to rare contexts because
continuous representations enable sharing of sta-
tistical strength between similar contexts. Bengio
(2009) shows that such representations are better
than multinomials in alleviating sparsity issues.

1Another major type of neural LMs are the so-called
feed-forward networks (Bengio et al., 2003; Schwenk, 2007;
Nakamura et al., 1990). Both types of neural LMs have seen
many improvements recently, in terms of computational scal-
ability (Le et al., 2011) and modeling power (Arisoy et al.,
2012; Wu et al., 2012; Alexandrescu and Kirchhoff, 2006).
We focus on recurrent networks here since there are fewer
hyper-parameters and its ability to model infinite context us-
ing recursion is theoretically attractive. But we note that feed-
forward networks are just as viable.

Now, given state vector s(t), we can predict the
probability of the current word. Figure 1 is ex-
pressed formally in the following equations:

w(t) = [w0(t), . . . , wk(t), . . . w|W |(t)] (2)

wk(t) = g



|S|∑

j=0

sj(t)Vkj


 (3)

sj(t)=f



|W |∑

i=0

wi(t− 1)Uji +

|S|∑

i′=0

si′(t− 1)Aji′




(4)
Here, w(t) is viewed as a vector of dimension
|W | (vocabulary size) where each element wk(t)
represents the probability of the k-th vocabulary
item at sentence position t. The function g(zk) =
ezk/

∑
k e

zk is a softmax function that ensures the
neural LM outputs are proper probabilities, and
f(z) = 1/(1 + e−z) is a sigmoid activation that
induces the non-linearity critical to the neural net-
work’s expressive power. The matrices V , U , and
A are trained by maximizing likelihood on train-
ing data using a ”backpropagation-through-time”
method.2 Intuitively, U and A compress the con-
text (|S| < |W |) such that contexts predictive of
the same word w(t) are close together.

Since proper modeling of unknown contexts is
important in our problem, training text for both n-
gram and neural LM is pre-processed by convert-
ing all low-frequency words in the training data
(frequency=1 in our case) to a special ”unknown”
token. This is used only in Eq. 1 for selecting
general-domain sentences; these words retain their
surface forms in the SMT train pipeline.

3 Experiment Setup

We experimented with four language pairs in the
WIT3 corpus (Cettolo et al., 2012), with English
(en) as source and German (de), Spanish (es),
French (fr), Russian (ru) as target. This is the
in-domain corpus, and consists of TED Talk tran-
scripts covering topics in technology, entertain-
ment, and design. As general-domain corpora,
we collected bitext from the WMT2013 campaign,
including CommonCrawl and NewsCommentary
for all 4 languages, Europarl for de/es/fr, UN for
es/fr, Gigaword for fr, and Yandex for ru. The in-
domain data is divided into a training set (for SMT

2The recurrent states are unrolled for several time-steps,
then stochastic gradient descent is applied.
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en-de en-es en-fr en-ru
In-domain Training Set
#sentence 129k 140k 139k 117k
#token (en) 2.5M 2.7M 2.7M 2.3M
#vocab (en) 26k 27k 27k 25k
#vocab (f) 42k 39k 34k 58k
General-domain Bitext
#sentence 4.4M 14.7M 38.9M 2.0M
#token (en) 113M 385M 1012M 51M
%unknown 60% 58% 64% 65%

Table 1: Data statistics. ”%unknown”=fraction of
general-domain sentences with unknown words.

pipeline and neural LM training), a tuning set (for
MERT), a validation set (for choosing the optimal
threshold in data selection), and finally a testset of
1616 sentences.3 Table 1 lists data statistics.

For each language pair, we built a baseline in-
data SMT system trained only on in-domain data,
and an alldata system using combined in-domain
and general-domain data.4 We then built 3 systems
from augmented data selected by different LMs:

• ngram: Data selection by 4-gram LMs with
Kneser-Ney smoothing (Axelrod et al., 2011)

• neuralnet: Data selection by Recurrent neu-
ral LM, with the RNNLM Toolkit.5

• combine: Data selection by interpolated LM
using n-gram & neuralnet (equal weight).

All systems are built using standard settings in
the Moses toolkit (GIZA++ alignment, grow-diag-
final-and, lexical reordering models, and SRILM).
Note that standard n-grams are used as LMs for
SMT; neural LMs are only used for data selection.
Multiple SMT systems are trained by thresholding
on {10k,50k,100k,500k,1M} general-domain sen-
tence subsets, and we empirically determine the
single system for testing based on results on a sep-
arate validation set (in practice, 500k was chosen
for fr and 1M for es, de, ru.).

3The original data are provided by http://wit3.fbk.eu and
http://www.statmt.org/wmt13/. Our domain adaptation sce-
nario is similar to the IWSLT2012 campaign but we used our
own random train/test splits, since we wanted to ensure the
testset for all languages had identical source sentences for
comparison purposes. For replicability, our software is avail-
able at http://cl.naist.jp/∼kevinduh/a/acl2013.

4More advanced phrase table adaptation methods are pos-
sible. but our interest is in comparing data selection methods.
The conclusions should transfer to advanced methods such as
(Foster et al., 2010; Niehues and Waibel, 2012).

5http://www.fit.vutbr.cz/∼imikolov/rnnlm/

4 Results

4.1 LM Perplexity and Training Time
First, we measured perplexity to check the gen-
eralization ability of our neural LMs as language
models. Recall that we train four LMs to com-
pute each of the components of Eq. 1. In Table 2,
we compared each of the four versions of ngram,
neuralnet, and combine LMs on in-domain test
sets or general-domain held-out sets. It re-affirms
previous positive results (Mikolov et al., 2011a),
with neuralnet outperforming ngram by 20-30%
perplexity across all tasks. Also, combine slightly
improves the perplexity of neuralnet.

Task ngram neuralnet combine
In-Domain Test Set

en-de de 157 110 (29%) 110 (29%)
en-de en 102 81 (20%) 78 (24%)
en-es es 129 102 (20%) 98 (24%)
en-es en 101 80 (21%) 77 (24%)
en-fr fr 90 67 (25%) 65 (27%)
en-fr en 102 80 (21%) 77 (24%)
en-ru ru 208 167 (19%) 155 (26%)
en-ru en 103 83 (19%) 79 (23%)

General-Domain Held-out Set
en-de de 234 174 (25%) 161 (31%)
en-de en 218 168 (23%) 155 (29%)
en-es es 62 43 (31%) 43 (31%)
en-es en 84 61 (27%) 59 (30%)
en-fr fr 64 43 (33%) 43 (33%)
en-fr en 95 67 (30%) 65 (32%)
en-ru ru 242 199 (18%) 176 (27%)
en-ru en 191 153 (20%) 142 (26%)

Table 2: Perplexity of various LMs. Number in
parenthesis is percentage improvement vs. ngram.

Second, we show that the usual concern of neu-
ral LM training time is not so critical for the in-
domain data sizes used domain adaptation. The
complexity of training Figure 1 is dominated by
computing Eq. 3 and scales as O(|W | × |S|) in
the number of tokens. Since |W | can be large, one
practical trick is to cluster the vocabulary so that
the output dimension is reduced. Table 3 shows
the training times on a 3.3GHz XeonE5 CPU by
varying these two main hyper-parameters (|S| and
cluster size). Note that the setting |S| = 200 and
cluster size of 100 already gives good perplexity
in reasonable training time. All neural LMs in this
paper use this setting, without additional tuning.
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|S| Cluster Time Perplexity
200 100 198m 110
100 |W | 12915m 110
200 400 208m 113
100 100 52m 118
100 400 71m 120

Table 3: Training time (in minutes) for various
neural LM architectures (Task: en-de de).

4.2 End-to-end SMT Evaluation

Table 4 shows translation results in terms of BLEU
(Papineni et al., 2002), RIBES (Isozaki et al.,
2010), and TER (Snover et al., 2006). We observe
that all three data selection methods essentially
outperform alldata and indata for all language
pairs, and neuralnet tend to be the best in all met-
rics. E.g., BLEU improvements over ngram are
in the range of 0.4 for en-de, 0.5 for en-es, 0.1
for en-fr, and 1.7 for en-ru. Although not all im-
provements are large in absolute terms, many are
statistically significant (95% confidence).

We therefore believe that neural LMs are gen-
erally worthwhile to try for data selection, as it
rarely underperform n-grams. The open question
is: what can explain the significant improvements
in, for example Russian, Spanish, German, but the
lack thereof in French? One conjecture is that
neural LMs succeeded in lowering testset out-of-
vocabulary (OOV) rate, but we found that OOV
reduction is similar across all selection methods.

The improvements appear to be due to better
probability estimates of the translation/reordering
models. We performed a diagnostic by decoding
the testset using LMs trained on the same test-
set, while varying the translation/reordering ta-
bles with those of ngram and neuralnet; this is a
kind of pseudo forced-decoding that can inform us
about which table has better coverage. We found
that across all language pairs, BLEU differences of
translations under this diagnostic become insignif-
icant, implying that the raw probability value is
the differentiating factor between ngram and neu-
ralnet. Manual inspection of en-de revealed that
many improvements come from lexical choice in
morphological variants (”meinen Sohn” vs. ”mein
Sohn”), segmentation changes (”baking soda” →
”Backpulver” vs. ”baken Soda”), and handling of
unaligned words at phrase boundaries.

Finally, we measured the intersection between
the sentence set selected by ngram vs neural-

Task System BLEU RIBES TER
en-de indata 20.8 80.1 59.0

alldata 21.5 80.1 59.1
ngram 21.5 80.3 58.9
neuralnet 21.9+ 80.5+ 58.4
combine 21.5 80.2 58.8

en-es indata 30.4 83.5 48.7
alldata 31.2 83.2 49.9
ngram 32.0 83.7 48.4
neuralnet 32.5+ 83.7 48.3+
combine 32.5+ 83.8 48.3+

en-fr indata 31.4 83.9 51.2
alldata 31.5 83.5 51.4
ngram 32.7 83.7 50.4
neuralnet 32.8 84.2+ 50.3
combine 32.5 84.0 50.5

en-ru indata 14.8 72.5 69.5
alldata 23.4 75.0 62.3
ngram 24.0 75.7 61.4
neuralnet 25.7+ 76.1 60.0+
combine 23.7 75.9 61.9−

Table 4: End-to-end Translation Results. The best
results are bold-faced. We also compare neural
LMs to ngram using pairwise bootstrap (Koehn,
2004): ”+” means statistically significant im-
provement and ”−” means significant degradation.

net. They share 60-75% of the augmented train-
ing data. This high overlap means that ngram
and neuralnet are actually not drastically different
systems, and neuralnet with its slightly better se-
lections represent an incremental improvement.6

5 Conclusions

We perform an evaluation of neural LMs for
adaptation data selection, based on the hypothe-
sis that their continuous vector representations are
effective at comparing general-domain sentences,
which contain frequent unknown words. Com-
pared to conventional n-grams, we observed end-
to-end translation improvements from 0.1 to 1.7
BLEU. Since neural LMs are fast to train in the
small in-domain data setting and achieve equal or
incrementally better results, we conclude that they
are an worthwhile option to include in the arsenal
of adaptation data selection techniques.

6This is corroborated by another analysis: taking the
union of sentences found by ngram and neuralnet gives sim-
ilar BLEU scores as neuralnet.
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Burget, and Jan C̆ernocký. 2011a. Strategies for
training large scale neural network language model.
In ASRU.

Tomás̆ Mikolov, Stefan Kombrink, Lukás̆ Burget, Jan
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Abstract

Analogical learning over strings is a holis-
tic model that has been investigated by a
few authors as a means to map forms of a
source language to forms of a target lan-
guage. In this study, we revisit this learn-
ing paradigm and apply it to the translit-
eration task. We show that alone, it per-
forms worse than a statistical phrase-based
machine translation engine, but the com-
bination of both approaches outperforms
each one taken separately, demonstrating
the usefulness of the information captured
by a so-called formal analogy.

1 Introduction

A proportional analogy is a relationship between
four objects, noted [x : y :: z : t], which reads as
“x is to y as z is to t”. While some strategies have
been proposed for handling semantic relationships
(Turney and Littman, 2005; Duc et al., 2011),
we focus in this study on formal proportional
analogies (hereafter formal analogies or simply
analogies), that is, proportional analogies involv-
ing relationships at the graphemic level, such as
[atomkraftwerken : atomkriegen :: kraftwerks :
kriegs] in German.

Analogical learning over strings has been in-
vestigated by several authors. Yvon (1997) ad-
dressed the task of grapheme-to-phoneme conver-
sion, a problem which continues to be studied ac-
tively, see for instance (Bhargava and Kondrak,
2011). Stroppa and Yvon (2005) applied analog-
ical learning to computing morphosyntactic fea-
tures to be associated with a form (lemma, part-
of-speech, and additional features such as number,
gender, case, tense, mood, etc.). The performance
of the analogical engine on the Dutch language
was as good as or better than the one reported in
(van den Bosch and Daelemans, 1993). Lepage

and Denoual (2005) pioneered the application of
analogical learning to Machine Translation. Dif-
ferent variants of the system they proposed have
been tested in a number of evaluation campaigns,
see for instance (Lepage et al., 2009). Langlais
and Patry (2007) investigated the more specific
task of translating unknown words, a problem si-
multaneously studied in (Denoual, 2007).

Analogical learning has been applied to various
other purposes, among which query expansion in
information retrieval (Moreau et al., 2007), clas-
sification of nominal and binary data, and hand-
written character recognition (Miclet et al., 2008).
Formal analogy has also been used for solving
Raven IQ tests (Correa et al., 2012).

In this study, we investigate the relevance
of analogical learning for English proper name
transliteration into Chinese. We compare it to
the statistical phrase-based machine translation
approach (Koehn et al., 2003) initially proposed
for transliteration by Finch and Sumita (2010).
We show that alone, analogical learning underper-
forms the phrase-based approach, but that a com-
bination of both outperforms individual systems.

We describe in section 2 the principle of ana-
logical learning. In section 3, we report on ex-
periments we conducted in applying analogical
learning on the NEWS 2009 English-to-Chinese
transliteration task. Related works are discussed
in section 4. We conclude in section 5 and identify
avenues we believe deserve investigations.

2 Analogical Learning

2.1 Formal Analogy

In this study, we use the most general definition
of formal analogy we found, initially described
in (Yvon et al., 2004). It handles a large variety
of relations, including but not limited to affixa-
tion operations (i.e. [capital : anticapitalisme ::
commun : anticommuniste] in French), stem mu-
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tations (i.e. [lang : länge :: stark : stärke] in Ger-
man), and even templatic relations (i.e [KaaTiB :
KuTaaB :: QaaRi’ : QuRaa’ ] in Arabic).

Informally,1 this definition states that 4 forms
x, y, z and t are in analogical relation iff we can
find a d-factorization (a factorization into d fac-
tors) of each form, such that the ith factors (i ∈
[1, d]) of x and z equal (in ensemble terms) the ith

factors of y and t.
For instance, [this guy drinks : this boat sinks

:: these guys drank : these boats sank ] holds be-
cause of the following 4-uple of 5-factorizations,
whose factors are aligned column-wise for clarity,
and where spaces (underlined) are treated as regu-
lar characters (ε designates the empty factor):

fx ≡ ( this guy ε dr inks )
fy ≡ ( this boat ε s inks )
fz ≡ ( these guy s dr ank )
ft ≡ ( these boat s s ank )

This analogy “captures” among other things
that in English, changing this for these implies a
plural mark (s) to the corresponding noun. Note
that analogies can relate arbitrarily distant sub-
strings. For instance the 3rd-person singular mark
of the verbs relates to the first substring this .

2.2 Analogical Learning

We now clarify the process of analogical learning.
Let L = {(i(xk), o(xk))k} be a training set (or
memory) gathering pairs of input i(xk) and out-
put o(xk) representations of elements xk. In this
study, the elements we consider are pairs of En-
glish / Chinese proper names in a transliteration
relation. Given an element t for which we only
know i(t), analogical learning works by:

1. building Ei(t) = {(x, y, z) ∈ L3 | [i(x) :
i(y) :: i(z) : i(t)]}, the set of triples in the
training set that stand in analogical propor-
tion with t in the input space,

2. building Eo(t) = {[o(x) : o(y) :: o(z) :
?] | (x, y, z) ∈ Ei(t)}, the set of solutions to
the output analogical equations obtained,

3. selecting o(t) among the solutions aggre-
gated into Eo(t).

In this description, we define an analogical
equation as an analogy with one form missing, and

1We refer the reader to (Stroppa and Yvon, 2005) for a
more technical exposition.

we note [x : y :: z : ? ] the set of its solutions (i.e.
undoable ∈ [reader : doer :: unreadable : ? ]).2

L = { (Schell,谢尔), (Zemens,泽门斯), (Zell,泽尔),
(Schemansky,谢曼斯基), (Clise,克莱斯),
(Rovine,罗文), (Rovensky,罗文斯基), . . .}

. [Schell : Zell :: Schemansky : Zemansky]
↓ ↓ ↓ ↓

[谢尔 : 泽尔 :: 谢曼斯基 : ?] [4 sols] :

曼斯泽基 泽曼斯基 曼斯基泽 . . .

. [Rovine : Rovensky :: Zieman : Zemansky]
↓ ↓ ↓ ↓

[罗文 : 罗文斯基 :: 齐曼 : ?] [6 sols] :

斯基齐曼 斯齐曼基 斯齐基曼 . . .

. [Stephens : Stephansky :: Zemens : Zemansky]
↓ ↓ ↓ ↓

[斯蒂芬斯 : 斯蒂芬斯基 :: 泽门斯 : ?] [9 sols] :

斯泽基门 泽基门斯 泽斯门基 . . .
...

31 solutions: 泽曼斯基 (77) 泽门斯基 (59)

曼泽斯基 (29) 兹梅斯卡尼 (20) . . .

Figure 1: Excerpt of a transliteration session for
the English proper name Zemansky. 31 solutions
have been identified in total (4 by the first equation
reported); the one underlined (actually the most
frequently generated) is the sanctioned one.

Figure 1 illustrates this process on a translit-
eration session for the English proper name
Zemansky. The training corpus L is a set of
pairs of English proper names and their Chi-
nese Transliteration(s). Step 1 identifies analogies
among English proper names: 7 such analogies are
identified, 3 of which are reported (marked with a
. sign). Step 2 projects the English forms in ana-
logical proportion into their known transliteration
(illustrated by a ↓ sign) in order to solve Chinese
analogical equations. Step 3 aggregates the solu-
tions produced during the second step. In the ex-
ample, it consists in sorting the solutions in de-
creasing order of the number of time they have
been generated during step 2 (see next section for
a better strategy).

There are several important points to consider
when deploying the learning procedure shown
above. First, the search stage (step 1) has a time
complexity that can be prohibitive in some appli-
cations of interest. We refer the reader to (Langlais
and Yvon, 2008) for a practical solution to this.
Second, we need a way to solve an analogical

2Analogical equation solvers typically produce several so-
lutions to an equation.
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equation. We applied the finite-state machine pro-
cedure described in (Yvon et al., 2004). Suffice it
to say that typically, this solver produces several
solutions to an equation, most of them spurious,3

reinforcing the need for an efficient aggregation
step (step 3). Last, it might happen that the over-
all approach fails at producing a solution, because
no input analogy is identified during step 1, or be-
cause the input analogies identified do not lead to
analogies in the output space. This silence issue is
analyzed in section 3. A detailed account of those
problems and possible solutions are discussed in
(Somers et al., 2009).

We underline that analogies in both source and
target languages are considered independently: the
approach does not attempt to align source and tar-
get substrings, but relies instead on the inductive
bias that input analogies (often) imply output ones.

3 Experiments

3.1 Setting

The task we study is part of the NEWS evalua-
tion campaign conducted in 2009 (Li et al., 2009).
The dataset consists of 31 961 English-Chinese
transliteration examples for training the system
(TRAIN), 2 896 ones for tuning it (DEV), and 2 896
for testing them (TEST).

We compare two different approaches to
transliteration: a statistical phrase-based machine
translation engine — which according to Li et
al. (2009) was popular among participating sys-
tems to NEWS — as well as differently flavored
analogical systems.

We trained (on TRAIN) a phrase-based transla-
tion device with the Moses toolkit (Koehn et al.,
2007), very similarly to (Finch and Sumita, 2010),
that is, considering each character as a word. The
coefficients of the log-linear function optimized by
Moses’ decoder were tuned (with MERT) on DEV.

For the analogical system, we investigated the
use of classifiers trained in a supervised way to
recognize the good solutions generated during
step 2. For this, we first transliterated the DEV

dataset using TRAIN as a memory. Then, we
trained a classifier, taking advantage of the DEV

corpus for the supervision. We tried two types
of learners — support vector machines (Cortes
and Vapnik, 1995) and voted perceptrons (Freund

3A spurious solution is a string that does not belong to the
language under consideration. See Figure 1 for examples.

and Schapire, 1999)4 — and found the former to
slightly outperform the latter. Finally, we translit-
erated the TEST corpus using both the TRAIN and
DEV corpora as a memory,5 and applied our clas-
sifiers on the solutions generated.

The lack of space prevents us to describe the 61
features we used for characterizing a solution. We
initially considered a set of features which charac-
terizes a solution (frequency, rank in the candidate
list, language model likelihood, etc.), and the pro-
cess that generated the solution (i.e. number of
analogies involved), but no feature that would use
scored pairs of substrings (such as mutual infor-
mation of substrings).6 Thus, we also considered
in a second stage a set of features that we collected
thanks to a n-best list of solutions computed by
Moses (Moses’ score given to a solution, its rank
in the n-best list, etc.).

3.2 Results

We ran the NEWS 2009 official evaluation script7

in order to compute ACC (the accuracy of the
first solution), F1 (the F-measure which gives
partial credits proportional to the longest subse-
quence between the reference transliteration and
the first candidate), and the Mean Reciprocal Rank
(MRR), where 100/MRR roughly indicates the av-
erage rank of the correct solution over the session.

Table 1 reports the results of several transliter-
ation configurations we tested. The first two sys-
tems are pure analogical devices, (M) is the Moses
configuration, (AM1) is a variant discussed further,
(AM2) is the best configuration we tested (a com-
bination of Moses and analogical learning), and
the last two lines show the lowest and highest per-
forming systems among the 18 standard runs reg-
istered at NEWS 2009 (Li et al., 2009). Several
observations have to be made.

First, none of the variants tested outperformed
the best system reported at NEWS 2009. This is
not surprising since we conducted only prelimi-
nary experiments with analogy. Still, we were
pleased to observe that the best configuration we
devised (AM2) would have ranked fourth on this
task.

4We used libSVM (Chang and Lin, 2011) for training
svms, and an in-house package for training voted perceptrons.

5This is fair since there is no training involved. Many
participants to the NEWS campaign did this as well.

6We avoided this in order to keep the classifiers simple to
train.

7http://translit.i2r.a-star.edu.sg/
news2009/evaluation/.
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The ana-freq system is an analogical device
where the aggregation step consists in sorting so-
lutions in decreasing order of frequency. It is
clearly outperformed by the Moses system. The
ana-svma system is an analogical device where
the solutions are selected by the SVM trained on
analogical features only. Learning to recognize
good solutions from spurious ones improves accu-
racy (over A1). Still, we are far from the accuracy
we would observe by using an oracle classifier
(ACC = 81.5). Clearly, further experiments with
better feature engineering must be conducted. It
is noteworthy that the pure analogical devices we
tested (A1 and A2) did not return any solution for
3.7% of the test forms, which explains some loss
in performance compared to the SMT approach,
which always delivers a solution.8

System ana-svma+m (AM1) is an analogical
device where the classifier makes uses of the fea-
tures extracted by Moses. Obviously, those fea-
tures drastically improve accuracy of the classifier.
Configuration (AM2) is a combination which cas-
cades the hybrid device (AM1) with the SMT en-
gine (M). This means that the former system is
trusted whenever it produces a solution, and the
latter one is used as a backup. This configuration
outperforms Moses, which demonstrates the com-
plementarity of the analogical information.

Configuration ACC F1 MRR rank

A1 ana-freq 56.6 79.1 63.0 16
A2 ana-svma 58.0 80.0 58.8 15
M moses 66.6 85.9 66.6 6
AM1 ana-svma+m 63.4 82.0 64.1 10
AM2 AM1 + M 68.5 86.9 69.0 4

last NEWS 2009 19.9 60.6 22.9 23
first NEWS 2009 73.1 89.5 81.2 1

Table 1: Evaluation of different configurations
with the metrics used at NEWS. The last column
indicates the rank of systems as if we had submit-
ted the top 5 configurations to NEWS 2009.

4 Related Work

Most approaches to transliteration we know rely
on some form of substring alignment. This align-
ment can be learnt explicitly as in (Knight and

8Removing the solutions produced by the SMT engine for
the 3.7% test forms that receive no solution from the analog-
ical devices would result in an accuracy score of 65.0.

Graehl, 1998; Li et al., 2004; Jiampojamarn et al.,
2007), or it can be indirectly modeled as in (Oh et
al., 2009) where transliteration is seen as a tagging
task (that is, labeling each source grapheme with a
target one), and where the model learns correspon-
dences at the substring level. See also the semi-
supervised approach of (Sajjad et al., 2012). Ana-
logical inference differs drastically from those ap-
proaches, since it finds relations in the source ma-
terial and solves target equations independently.
Therefore, no alignment whatsoever is required.

Transliteration by analogical learning has been
attempted by Dandapat et al. (2010) for an
English-to-Hindi transliteration task. They com-
pared various heuristics to speed up analogical
learning, and several combinations of phrase-
based SMT and analogical learning. Our results
confirm the observation they made that combining
an analogical device with SMT leads to gains over
individual systems. Still, their work differs from
the present one in the fact that they considered the
top frequency aggregator (similar to A1), which we
showed to be suboptimal. Also, they used the def-
inition of formal analogy of Lepage (1998), which
is provably less general than the one we used. The
impact of this choice for different language pairs
remains to be investigated.

Aggregating solutions produced by analogical
inference with the help of a classifier has been re-
ported in (Langlais et al., 2009). The authors in-
vestigated an arguably more specific task: translat-
ing medical terms. Another difference is that we
classify solutions produced by analogical learning
(roughly 100 solutions per test form), while they
classified pairs of input/target analogies, whose
number can be rather high, leading to huge and
highly unbalanced learning tasks. The authors re-
port training experiments with millions of exam-
ples and only a few positive ones. In fact, we
initially attempted to recognize fruitful analogical
pairs, but found it especially slow and disappoint-
ing.

5 Conclusion

We considered the NEWS 2009 English-to-
Chinese transliteration task for investigating ana-
logical learning, a holistic approach that does not
rely on an alignment or segmentation model. We
have shown that alone, the approach fails to trans-
late 3.7% of the test forms, underperforms the
state-of-the-art SMT engine Moses, while still de-
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livering decent performance. By combining both
approaches, we obtained a system which outper-
forms the individual ones we tested.

We believe analogical inference over strings has
not delivered all his potential yet. In particular,
we have observed that there is a huge room for
improvements in the aggregation step. We have
tested a simple classifier approach, mining a tiny
subset of the features that could be put at use.
More research on this issue is warranted, notably
looking at machine-learned ranking algorithms.

Also, the silence issue we faced could be tack-
led by the notion of analogical dissimilarity intro-
duced by Miclet et al. (2008). The idea of using
near analogies in analogical learning has been suc-
cessfully investigated by the authors on a number
of standard classification testbeds.
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Abstract

We present an efficient algorithm to es-
timate large modified Kneser-Ney mod-
els including interpolation. Streaming
and sorting enables the algorithm to scale
to much larger models by using a fixed
amount of RAM and variable amount of
disk. Using one machine with 140 GB
RAM for 2.8 days, we built an unpruned
model on 126 billion tokens. Machine
translation experiments with this model
show improvement of 0.8 BLEU point
over constrained systems for the 2013
Workshop on Machine Translation task in
three language pairs. Our algorithm is also
faster for small models: we estimated a
model on 302 million tokens using 7.7%
of the RAM and 14.0% of the wall time
taken by SRILM. The code is open source
as part of KenLM.

1 Introduction

Relatively low perplexity has made modified
Kneser-Ney smoothing (Kneser and Ney, 1995;
Chen and Goodman, 1998) a popular choice for
language modeling. However, existing estima-
tion methods require either large amounts of RAM
(Stolcke, 2002) or machines (Brants et al., 2007).
As a result, practitioners have chosen to use
less data (Callison-Burch et al., 2012) or simpler
smoothing methods (Brants et al., 2007).

Backoff-smoothed n-gram language models
(Katz, 1987) assign probability to a word wn in
context wn−11 according to the recursive equation

p(wn|wn−11 ) =

{
p(wn|wn−11 ), if wn1 was seen
b(wn−11 )p(wn|wn2 ), otherwise

The task is to estimate probability p and backoff
b from text for each seen entry wn1 . This paper

Filesystem
Map

Reduce 1

Filesystem
Identity Map

Reduce 2

Filesystem
...

MapReduce Steps
Filesystem
Map

Reduce 1

Reduce 2
...

Optimized

Figure 1: Each MapReduce performs three copies
over the network when only one is required. Ar-
rows denote copies over the network (i.e. to and
from a distributed filesystem). Both options use
local disk within each reducer for merge sort.

contributes an efficient multi-pass streaming algo-
rithm using disk and a user-specified amount of
RAM.

2 Related Work

Brants et al. (2007) showed how to estimate
Kneser-Ney models with a series of five MapRe-
duces (Dean and Ghemawat, 2004). On 31 billion
words, estimation took 400 machines for two days.
Recently, Google estimated a pruned Kneser-Ney
model on 230 billion words (Chelba and Schalk-
wyk, 2013), though no cost was provided.

Each MapReduce consists of one layer of map-
pers and an optional layer of reducers. Mappers
read from a network filesystem, perform optional
processing, and route data to reducers. Reducers
process input and write to a network filesystem.
Ideally, reducers would send data directly to an-
other layer of reducers, but this is not supported.
Their workaround, a series of MapReduces, per-
forms unnecessary copies over the network (Fig-
ure 1). In both cases, reducers use local disk.
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Writing and reading from the distributed filesys-
tem improves fault tolerance. However, the same
level of fault tolerance could be achieved by
checkpointing to the network filesystem then only
reading in the case of failures. Doing so would en-
able reducers to start processing without waiting
for the network filesystem to write all the data.

Our code currently runs on a single machine
while MapReduce targets clusters. Appuswamy et
al. (2013) identify several problems with the scale-
out approach of distributed computation and put
forward several scenarios in which a single ma-
chine scale-up approach is more cost effective in
terms of both raw performance and performance
per dollar.

Brants et al. (2007) contributed Stupid Backoff,
a simpler form of smoothing calculated at runtime
from counts. With Stupid Backoff, they scaled to
1.8 trillion tokens. We agree that Stupid Backoff
is cheaper to estimate, but contend that this work
makes Kneser-Ney smoothing cheap enough.

Another advantage of Stupid Backoff has been
that it stores one value, a count, per n-gram in-
stead of probability and backoff. In previous work
(Heafield et al., 2012), we showed how to collapse
probability and backoff into a single value without
changing sentence-level probabilities. However,
local scores do change and, like Stupid Backoff,
are no longer probabilities.

MSRLM (Nguyen et al., 2007) aims to scal-
ably estimate language models on a single ma-
chine. Counting is performed with streaming algo-
rithms similarly to this work. Their parallel merge
sort also has the potential to be faster than ours.
The biggest difference is that their pipeline de-
lays some computation (part of normalization and
all of interpolation) until query time. This means
that it cannot produce a standard ARPA file and
that more time and memory are required at query
time. Moreover, they use memory mapping on en-
tire files and these files may be larger than physi-
cal RAM. We have found that, even with mostly-
sequential access, memory mapping is slower be-
cause the kernel does not explicitly know where
to read ahead or write behind. In contrast, we use
dedicated threads for reading and writing. Perfor-
mance comparisons are omitted because we were
unable to compile and run MSRLM on recent ver-
sions of Linux.

SRILM (Stolcke, 2002) estimates modified
Kneser-Ney models by storing n-grams in RAM.

Corpus

Counting

Adjusting Counts

DivisionSumming

Interpolation

Model

Figure 2: Data flow in the estimation pipeline.
Normalization has two threads per order: sum-
ming and division. Thick arrows indicate sorting.

It also offers a disk-based pipeline for initial steps
(i.e. counting). However, the later steps store
all n-grams that survived count pruning in RAM.
Without pruning, both options use the same RAM.

IRSTLM (Federico et al., 2008) does not imple-
ment modified Kneser-Ney but rather an approxi-
mation dubbed “improved Kneser-Ney” (or “mod-
ified shift-beta” depending on the version). Esti-
mation is done in RAM. It can also split the corpus
into pieces and separately build each piece, intro-
ducing further approximation.

3 Estimation Pipeline

Estimation has four streaming passes: counting,
adjusting counts, normalization, and interpolation.
Data is sorted between passes, three times in total.
Figure 2 shows the flow of data.

3.1 Counting

For a language model of order N , this step counts
all N -grams (with length exactly N ) by streaming
through the corpus. Words near the beginning of
sentence also formN -grams padded by the marker
<s> (possibly repeated multiple times). The end
of sentence marker </s> is appended to each sen-
tence and acts like a normal token.

Unpruned N -gram counts are sufficient, so
lower-order n-grams (n < N ) are not counted.
Even pruned models require unpruned N -gram
counts to compute smoothing statistics.

Vocabulary mapping is done with a hash table.1

Token strings are written to disk and a 64-bit Mur-

1This hash table is the only part of the pipeline that can
grow. Users can specify an estimated vocabulary size for
memory budgeting. In future work, we plan to support lo-
cal vocabularies with renumbering.
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Suffix
3 2 1
Z B A
Z A B
B B B

Context
2 1 3
Z A B
B B B
Z B A

Figure 3: In suffix order, the last word is primary.
In context order, the penultimate word is primary.

murHash2 token identifier is retained in RAM.
Counts are combined in a hash table and spilled

to disk when a fixed amount of memory is full.
Merge sort also combines identical N -grams (Bit-
ton and DeWitt, 1983).

3.2 Adjusting Counts
The counts c are replaced with adjusted counts a.

a(wn1 ) =

{
c(wn1 ), if n = N or w1 = <s>
|v : c(vwn1 ) > 0|, otherwise

Adjusted counts are computed by streaming
through N -grams sorted in suffix order (Figure 3).
The algorithm keeps a running total a(wNi ) for
each i and compares consecutive N -grams to de-
cide which adjusted counts to output or increment.

Smoothing statistics are also collected. For each
length n, it collects the number tn,k of n-grams
with adjusted count k ∈ [1, 4].

tn,k = |{wn1 : a(wn1 ) = k}|

These are used to compute closed-form estimates
(Chen and Goodman, 1998) of discounts Dn(k)

Dn(k) = k − (k + 1)tn,1tn,k+1

(tn,1 + 2tn,2)tn,k

for k ∈ [1, 3]. Other cases are Dn(0) = 0 and
Dn(k) = Dn(3) for k ≥ 3. Less formally, counts
0 (unknown) through 2 have special discounts.

3.3 Normalization
Normalization computes pseudo probability u

u(wn|wn−11 ) =
a(wn1 )−Dn(a(w

n
1 ))∑

x a(w
n−1
1 x)

and backoff b

b(wn−11 ) =

∑3
i=1Dn(i)|{x : a(wn−11 x) = i}|∑

x a(w
n−1
1 x)

2https://code.google.com/p/smhasher/

The difficulty lies in computing denominator∑
x a(w

n−1
1 x) for all wn−11 . For this, we sort in

context order (Figure 3) so that, for every wn−11 ,
the entries wn−11 x are consecutive. One pass col-
lects both the denominator and backoff3 terms
|{x : a(wn−11 x) = i}| for i ∈ [1, 3].

A problem arises in that denominator∑
x a(w

n−1
1 x) is known only after streaming

through all wn−11 x, but is needed immediately
to compute each u(wn|wn−11 ). One option is to
buffer in memory, taking O(N |vocabulary|) space
since each order is run independently in parallel.
Instead, we use two threads for each order. The
sum thread reads ahead to compute

∑
x a(w

n−1
1 x)

and b(wn−11 ) then places these in a secondary
stream. The divide thread reads the input and the
secondary stream then writes records of the form

(wn1 , u(wn|wn−11 ), b(wn−11 )) (1)

The secondary stream is short so that data read by
the sum thread will likely be cached when read by
the divide thread. This sort of optimization is not
possible with most MapReduce implementations.

Because normalization streams through wn−11 x
in context order, the backoffs b(wn−11 ) are com-
puted in suffix order. This will be useful later
(§3.5), so backoffs are written to secondary files
(one for each order) as bare values without keys.

3.4 Interpolation
Chen and Goodman (1998) found that perplex-
ity improves when the various orders within the
same model are interpolated. The interpolation
step computes final probability p according to the
recursive equation

p(wn|wn−11 ) = u(wn|wn−11 )+b(wn−11 )p(wn|wn−12 )
(2)

Recursion terminates when unigrams are interpo-
lated with the uniform distribution

p(wn) = u(wn) + b(ε)
1

|vocabulary|
where ε denotes the empty string. The unknown
word counts as part of the vocabulary and has
count zero,4 so its probability is b(ε)/|vocabulary|.

3Sums and counts are done with exact integer arithmetic.
Thus, every floating-point value generated by our toolkit is
the result of O(N) floating-point operations. SRILM has nu-
merical precision issues because it uses O(N |vocabulary|)
floating-point operations to compute backoff.

4SRILM implements “another hack” that computes
pSRILM(wn) = u(wn) and pSRILM(<unk>) = b(ε) when-
ever p(<unk>) < 3× 10−6, as it usually is. We implement
both and suspect their motivation was numerical precision.
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Probabilities are computed by streaming in suf-
fix lexicographic order: wn appears before wnn−1,
which in turn appears before wnn−2. In this way,
p(wn) is computed before it is needed to compute
p(wn|wn−1), and so on. This is implemented by
jointly iterating through N streams, one for each
length of n-gram. The relevant pseudo probability
u(wn|wn−11 ) and backoff b(wn−11 ) appear in the
input records (Equation 1).

3.5 Joining

The last task is to unite b(wn1 ) computed in §3.3
with p(wn|wn−11 ) computed in §3.4 for storage in
the model. We note that interpolation (Equation 2)
used the different backoff b(wn−11 ) and so b(wn1 )
is not immediately available. However, the back-
off values were saved in suffix order (§3.3) and in-
terpolation produces probabilities in suffix order.
During the same streaming pass as interpolation,
we merge the two streams.5 Suffix order is also
convenient because the popular reverse trie data
structure can be built in the same pass.6

4 Sorting

Much work has been done on efficient disk-based
merge sort. Particularly important is arity, the
number of blocks that are merged at once. Low
arity leads to more passes while high arity in-
curs more disk seeks. Abello and Vitter (1999)
modeled these costs and derived an optimal strat-
egy: use fixed-size read buffers (one for each
block being merged) and set arity to the number of
buffers that fit in RAM. The optimal buffer size is
hardware-dependent; we use 64 MB by default. To
overcome the operating system limit on file han-
dles, multiple blocks are stored in the same file.

To further reduce the costs of merge sort, we
implemented pipelining (Dementiev et al., 2008).
If there is enough RAM, input is lazily merged
and streamed to the algorithm. Output is cut into
blocks, sorted in the next step’s desired order, and
then written to disk. These optimizations elim-
inate up to two copies to disk if enough RAM
is available. Input, the algorithm, block sorting,
and output are all threads on a chain of producer-
consumer queues. Therefore, computation and
disk operations happen simultaneously.

5Backoffs only exist if the n-gram is the context of some
n+ 1-gram, so merging skips n-grams that are not contexts.

6With quantization (Whittaker and Raj, 2001), the quan-
tizer is trained in a first pass and applied in a second pass.
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Each n-gram record is an array of n vocabu-
lary identifiers (4 bytes each) and an 8-byte count
or probability and backoff. At peak, records are
stored twice on disk because lazy merge sort is
not easily amenable to overwriting the input file.
Additional costs are the secondary backoff file (4
bytes per backoff) and the vocabulary in plaintext.

5 Experiments

Experiments use ClueWeb09.7 After spam filter-
ing (Cormack et al., 2011), removing markup, se-
lecting English, splitting sentences (Koehn, 2005),
deduplicating, tokenizing (Koehn et al., 2007),
and truecasing, 126 billion tokens remained.

7http://lemurproject.org/clueweb09/

693



1 2 3 4 5
393 3,775 17,629 39,919 59,794

Table 1: Counts of unique n-grams (in millions)
for the 5 orders in the large LM.

5.1 Estimation Comparison

We estimated unpruned language models in bi-
nary format on sentences randomly sampled from
ClueWeb09. SRILM and IRSTLM were run un-
til the test machine ran out of RAM (64 GB).
For our code, the memory limit was set to 3.5
GB because larger limits did not improve perfor-
mance on this small data. Results are in Figures
4 and 5. Our code used an average of 1.34–1.87
CPUs, so wall time is better than suggested in Fig-
ure 5 despite using disk. Other toolkits are single-
threaded. SRILM’s partial disk pipeline is not
shown; it used the same RAM and took more time.
IRSTLM’s splitting approximation took 2.5 times
as much CPU and about one-third the memory (for
a 3-way split) compared with normal IRSTLM.

For 302 million tokens, our toolkit used 25.4%
of SRILM’s CPU time, 14.0% of the wall time,
and 7.7% of the RAM. Compared with IRSTLM,
our toolkit used 16.4% of the CPU time, 9.0% of
the wall time, and 16.6% of the RAM.

5.2 Scaling

We built an unpruned model (Table 1) on 126 bil-
lion tokens. Estimation used a machine with 140
GB RAM and six hard drives in a RAID5 configu-
ration (sustained read: 405 MB/s). It took 123 GB
RAM, 2.8 days wall time, and 5.4 CPU days. A
summary of Google’s results from 2007 on differ-
ent data and hardware appears in §2.

We then used this language model as an ad-
ditional feature in unconstrained Czech-English,
French-English, and Spanish-English submissions
to the 2013 Workshop on Machine Translation.8

Our baseline is the University of Edinburgh’s
phrase-based Moses (Koehn et al., 2007) submis-
sion (Durrani et al., 2013), which used all con-
strained data specified by the evaluation (7 billion
tokens of English). It placed first by BLEU (Pap-
ineni et al., 2002) among constrained submissions
in each language pair we consider.

In order to translate, the large model was quan-
tized (Whittaker and Raj, 2001) to 10 bits and
compressed to 643 GB with KenLM (Heafield,

8http://statmt.org/wmt13/

Source Baseline Large
Czech 27.4 28.2

French 32.6 33.4
Spanish 31.8 32.6

Table 2: Uncased BLEU results from the 2013
Workshop on Machine Translation.

2011) then copied to a machine with 1 TB RAM.
Better compression methods (Guthrie and Hepple,
2010; Talbot and Osborne, 2007) and distributed
language models (Brants et al., 2007) could reduce
hardware requirements. Feature weights were re-
tuned with PRO (Hopkins and May, 2011) for
Czech-English and batch MIRA (Cherry and Fos-
ter, 2012) for French-English and Spanish-English
because these worked best for the baseline. Un-
cased BLEU scores on the 2013 test set are shown
in Table 2. The improvement is remarkably con-
sistent at 0.8 BLEU point in each language pair.

6 Conclusion

Our open-source (LGPL) estimation code is avail-
able from kheafield.com/code/kenlm/
and should prove useful to the community. Sort-
ing makes it scalable; efficient merge sort makes
it fast. In future work, we plan to extend to the
Common Crawl corpus and improve parallelism.
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Abstract

We describe a translation model adapta-
tion approach for conversational spoken
language translation (CSLT), which en-
courages the use of contextually appropri-
ate translation options from relevant train-
ing conversations. Our approach employs
a monolingual LDA topic model to de-
rive a similarity measure between the test
conversation and the set of training con-
versations, which is used to bias trans-
lation choices towards the current con-
text. A significant novelty of our adap-
tation technique is its incremental nature;
we continuously update the topic distribu-
tion on the evolving test conversation as
new utterances become available. Thus,
our approach is well-suited to the causal
constraint of spoken conversations. On
an English-to-Iraqi CSLT task, the pro-
posed approach gives significant improve-
ments over a baseline system as measured
by BLEU, TER, and NIST. Interestingly,
the incremental approach outperforms a
non-incremental oracle that has up-front
knowledge of the whole conversation.

1 Introduction

Conversational spoken language translation
(CSLT) systems facilitate communication be-
tween subjects who do not speak the same
language. Current systems are typically used to
achieve a specific task (e.g. vehicle checkpoint
search, medical diagnosis, etc.). These task-driven

Disclaimer: This paper is based upon work supported by the
DARPA BOLT program. The views expressed here are those
of the authors and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

Distribution Statement A (Approved for Public Release,
Distribution Unlimited)

conversations typically revolve around a set of
central topics, which may not be evident at the
beginning of the interaction. As the conversation
progresses, however, the gradual accumulation of
contextual information can be used to infer the
topic(s) of discussion, and to deploy contextually
appropriate translation phrase pairs. For example,
the word ‘drugs’ will predominantly translate
into Spanish as ‘medicamentos’ (medicines) in a
medical scenario, whereas the translation ‘drogas’
(illegal drugs) will predominate in a law enforce-
ment scenario. Most CSLT systems do not take
high-level global context into account, and instead
translate each utterance in isolation. This often
results in contextually inappropriate translations,
and is particularly problematic in conversational
speech, which usually exhibits short, spontaneous,
and often ambiguous utterances.

In this paper, we describe a novel topic-based
adaptation technique for phrase-based statistical
machine translation (SMT) of spoken conversa-
tions. We begin by building a monolingual la-
tent Dirichlet allocation (LDA) topic model on the
training conversations (each conversation corre-
sponds to a “document” in the LDA paradigm).
At run-time, this model is used to infer a topic
distribution over the evolving test conversation up
to and including the current utterance. Transla-
tion phrase pairs that originate in training conver-
sations whose topic distribution is similar to that
of the current conversation are given preference
through a single similarity feature, which aug-
ments the standard phrase-based SMT log-linear
model. The topic distribution for the test conver-
sation is updated incrementally for each new utter-
ance as the available history grows. With this ap-
proach, we demonstrate significant improvements
over a baseline phrase-based SMT system as mea-
sured by BLEU, TER and NIST scores on an
English-to-Iraqi CSLT task.
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2 Relation to Prior Work

Domain adaptation to improve SMT performance
has attracted considerable attention in recent years
(Foster and Kuhn, 2007; Finch and Sumita, 2008;
Matsoukas et al., 2009). The general theme is to
divide the training data into partitions representing
different domains, and to prefer translation options
for a test sentence from training domains that most
resemble the current document context. Weak-
nesses of this approach include (a) assuming the
existence of discrete, non-overlapping domains;
and (b) the unreliability of models generated by
segments with little training data.

To avoid the need for hard decisions about do-
main membership, some have used topic modeling
to improve SMT performance, e.g., using latent
semantic analysis (Tam et al., 2007) or ‘biTAM’
(Zhao and Xing, 2006). In contrast to our source
language approach, these authors use both source
and target information.

Perhaps most relevant are the approaches of
Gong et al. (2010) and Eidelman et al. (2012),
who both describe adaptation techniques where
monolingual LDA topic models are used to ob-
tain a topic distribution over the training data, fol-
lowed by dynamic adaptation of the phrase table
based on the inferred topic of the test document.
While our proposed approach also employs mono-
lingual LDA topic models, it deviates from the
above methods in the following important ways.
First, the existing approaches are geared towards
batch-mode text translation, and assume that the
full document context of a test sentence is always
available. This assumption is incompatible with
translation of spoken conversations, which are in-
herently causal. Our proposed approach infers
topic distributions incrementally as the conversa-
tion progresses. Thus, it is not only consistent
with the causal requirement, but is also capable
of tracking topical changes during the course of a
conversation.

Second, we do not directly augment the trans-
lation table with the inferred topic distribution.
Rather, we compute a similarity between the cur-
rent conversation history and each of the training
conversations, and use this measure to dynami-
cally score the relevance of candidate translation
phrase pairs during decoding.

3 Corpus Data and Baseline SMT

We use the DARPA TransTac English-Iraqi par-
allel two-way spoken dialogue collection to train
both translation and LDA topic models. This data
set contains a variety of scenarios, including med-
ical diagnosis; force protection (e.g. checkpoint,
reconnaissance, patrol); aid, maintenance and in-
frastructure, etc.; each transcribed from spoken
bilingual conversations and manually translated.
The SMT parallel training corpus contains ap-
proximately 773K sentence pairs (7.3M English
words). We used this corpus to extract transla-
tion phrase pairs from bidirectional IBM Model
4 word alignment (Och and Ney, 2003) based on
the heuristic approach of (Koehn et al., 2003). A
4-gram target LM was trained on all Iraqi Ara-
bic transcriptions. Our phrase-based decoder is
similar to Moses (Koehn et al., 2007) and uses
the phrase pairs and target LM to perform beam
search stack decoding based on a standard log-
linear model, the parameters of which were tuned
with MERT (Och, 2003) on a held-out develop-
ment set (3,534 sentence pairs, 45K words) using
BLEU as the tuning metric. Finally, we evaluated
translation performance on a separate, unseen test
set (3,138 sentence pairs, 38K words).

Of the 773K training sentence pairs, about
100K (corresponding to 1,600 conversations) are
marked with conversation boundaries. We use the
English side of these conversations for training
LDA topic models. All other sentence pairs are
assigned to a “background conversation”, which
signals the absence of the topic similarity feature
for phrase pairs derived from these instances. All
of the development and test set data were marked
with conversation boundaries. The training, devel-
opment and test sets were partitioned at the con-
versation level, so that we could model a topic
distribution for entire conversations, both during
training and during tuning and testing.

4 Incremental Topic-Based Adaptation

Our approach is based on the premise that biasing
the translation model to favor phrase pairs origi-
nating in training conversations that are contextu-
ally similar to the current conversation will lead
to better translation quality. The topic distribution
is incrementally updated as the conversation his-
tory grows, and we recompute the topic similarity
between the current conversation and the training
conversations for each new source utterance.
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4.1 Topic modeling with LDA

We use latent Dirichlet allocation, or LDA, (Blei et
al., 2003) to obtain a topic distribution over con-
versations. For each conversation di in the train-
ing collection (1,600 conversations), LDA infers a
topic distribution θdi = p(zk|di) for all latent top-
ics zk = {1, ...,K}, where K is the number of
topics. In this work, we experiment with values
of K ∈ {20, 30, 40}. The full conversation his-
tory is available for training the topic models and
estimating topic distributions in the training set.

At run-time, however, we construct the con-
versation history for the tuning and test sets in-
crementally, one utterance at a time, mirroring a
real-world scenario where our knowledge is lim-
ited to the utterances that have been spoken up to
that point in time. Thus, each development/test ut-
terance is associated with a different conversation
history d∗, for which we infer a topic distribution
θd∗ = p(zk|d∗) using the trained LDA model. We
use Mallet (McCallum, 2002) for training topic
models and inferring topic distributions.

4.2 Topic Similarity Computation

For each test utterance, we are able to infer the
topic distribution θd∗ based on the accumulated
history of the current conversation. We use this
to compute a measure of similarity between the
evolving test conversation and each of the train-
ing conversations, for which we already have topic
distributions θdi . Because θdi and θd∗ are proba-
bility distributions, we use the Jensen-Shannon di-
vergence (JSD) to evaluate their similarity (Man-
ning and Schütze, 1999). The JSD is a smoothed
and symmetric version of Kullback-Leibler diver-
gence, which is typically used to compare two
probability distributions. We define the similar-
ity score as sim(θdi , θd∗) = 1− JSD(θdi ||θd∗).1
Thus, we obtain a vector of similarity scores in-
dexed by the training conversations.

4.3 Integration with the Decoder

We provide the SMT decoder with the similar-
ity vector for each test utterance. Additionally,
the SMT phrase table tracks, for each phrase pair,
the set of parent training conversations (including
the “background conversation”) from which that
phrase pair originated. Using this information, the
decoder evaluates, for each candidate phrase pair

1JSD(θdi ||θd∗) ∈ [0, 1] when defined using log2.

REFERENCE TRANSCRIPTIONS

SYSTEM BLEU↑ TER↓ NIST↑
Baseline 19.32 58.66 6.22

incr20 19.39 58.44 6.26*
incr30 19.36 58.32* 6.26
incr40 19.68* 58.19* 6.28*
conv20 19.60* 58.36* 6.27*
conv30 19.48 58.38* 6.27*
conv40 19.50 58.33* 6.28*

ASR TRANSCRIPTIONS

SYSTEM BLEU↑ TER↓ NIST↑
Baseline 16.92 62.57 5.75

incr20 16.99 62.28* 5.77
incr30 16.96 62.33* 5.78
incr40 17.31* 61.97* 5.83*
conv20 17.29* 62.28* 5.81*
conv30 17.12 62.19* 5.80*
conv40 17.00 62.14* 5.79*

Table 1: Stemmed results on 3,138-utterance test
set. Asterisked results are significantly better than
the baseline (p ≤ 0.05) using 1,000 iterations
of paired bootstrap re-sampling (Koehn, 2004).
(Key: incrN = incremental LDA with N topics;
convN = non-incremental, whole-conversation
LDA with N topics.)

X → Y added to the search graph, its topic simi-
larity score as follows:

FX→Y = max
i∈Par(X→Y )

sim(θdi , θd∗) (1)

where Par(X → Y ) is the set of training con-
versations from which the candidate phrase pair
originated. Phrase pairs from the “background
conversation” only are assigned a similarity score
FX→Y = 0.00. In this way we distill the in-
ferred topic distributions down to a single feature
for each candidate phrase pair. We add this fea-
ture to the log-linear translation model with its
own weight, which is tuned with MERT. The in-
tuition behind this feature is that the lower bound
of suitability of a candidate phrase pair should be
directly proportional to the similarity between its
most relevant conversational provenance and the
current context. Phrase pairs which only occur in
the background conversation are not directly pe-
nalized, but contribute nothing to the topic simi-
larity score.
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Figure 1: Rank trajectories of 4 LDA inferred topics, with incremental topic inference. The x-axis
indicates the utterance number. The y-axis indicates a topic’s rank at each utterance.

5 Experimental Setup and Results

The baseline English-to-Iraqi phrase-based SMT
system was built as described in Section 3. This
system translated each utterance independently,
ignoring higher-level conversational context.

For the topic-adapted system, we compared
translation performance with a varying number of
LDA topics. In intuitive agreement with the ap-
proximate number of scenario types known to be
covered by our data set, a range of 20-40 topics
yielded the best results. We compared the pro-
posed incremental topic tracking approach to a
non-causal oracle approach that had up-front ac-
cess to the entire source conversations at run-time.

In all cases, we compared translation perfor-
mance on both clean-text and automatic speech
recognition (ASR) transcriptions of the source ut-
terances. ASR transcriptions were generated using
a high-performance two-pass HMM-based sys-
tem, which delivered a word error rate (WER) of
10.6% on the test set utterances.

Table 1 summarizes test set performance in
BLEU (Papineni et al., 2001), NIST (Doddington,
2002) and TER (Snover et al., 2006). Given the
morphological complexity of Iraqi Arabic, com-
puting string-based metrics on raw output can
be misleadingly low and does not always reflect
whether the core message was conveyed. Since
the primary goal of CSLT is information transfer,
we present automatic results that are computed af-
ter stemming with an Iraqi Arabic stemmer.

We note that in all settings (incremental
and non-causal oracle) our adaptation approach

matches or significantly outperforms the baseline
across multiple evaluation metrics. In particular,
the incremental LDA system with 40 topics is the
top-scoring system in both clean-text and ASR set-
tings. In the ASR setting, which simulates a real-
world deployment scenario, this system achieves
improvements of 0.39 (BLEU), -0.6 (TER) and
0.08 (NIST).

6 Discussion and Future Directions

We have presented a novel, incremental topic-
based translation model adaptation approach that
obeys the causality constraint imposed by spoken
conversations. This approach yields statistically
significant gains in standard MT metric scores.

We have also demonstrated that incremental
adaptation on an evolving conversation performs
better than oracle adaptation based on the com-
plete conversation history. Although this may
seem counter-intuitive, Figure 1 gives clues as to
why this happens. This figure illustrates the rank
trajectory of four LDA topics as the incremen-
tal conversation grows. The accompanying text
shows excerpts from the conversation. We indi-
cate (in superscript) the topic identity of most rele-
vant words in an utterance that are associated with
that topic. At the first utterance, the top-ranked
topic is “5”, due to the occurrence of “captain”
in the greeting. As the conversation evolves, we
note that this topic become less prominent. The
conversation shifts to a discussion on “windows”,
raising the prominence of topic “4”. Finally, topic
“3” becomes prominent due to the presence of the
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words “project” and “contract”. Thus, the incre-
mental approach is able to track the topic trajecto-
ries in the conversation, and is able to select more
relevant phrase pairs than oracle LDA, which esti-
mates one topic distribution for the entire conver-
sation.

In this work we have used only the source lan-
guage utterance in inferring the topic distribution.
In a two-way CLST system, we also have access
to SMT-generated back-translations in the Iraqi-
English direction. As a next step, we plan to use
SMT-generated English translation of Iraqi utter-
ances to improve topic estimation.
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Abstract

Fast alignment is essential for many nat-
ural language tasks. But in the setting of
monolingual alignment, previous work has
not been able to align more than one sen-
tence pair per second. We describe a dis-
criminatively trained monolingual word
aligner that uses a Conditional Random
Field to globally decode the best align-
ment with features drawn from source and
target sentences. Using just part-of-speech
tags and WordNet as external resources,
our aligner gives state-of-the-art result,
while being an order-of-magnitude faster
than the previous best performing system.

1 Introduction

In statistical machine translation, alignment is typ-
ically done as a one-off task during training. How-
ever for monolingual tasks, like recognizing tex-
tual entailment or question answering, alignment
happens repeatedly: once or multiple times per
test item. Therefore, the efficiency of the aligner is
of utmost importance for monolingual alignment
tasks. Monolingual word alignment also has a va-
riety of distinctions than the bilingual case, for ex-
ample: there is often less training data but more
lexical resources available; semantic relatedness
may be cued by distributional word similarities;
and, both the source and target sentences share the
same grammar.

These distinctions suggest a model design that
utilizes arbitrary features (to make use of word
similarity measure and lexical resources) and ex-
ploits deeper sentence structures (especially in the
case of major languages where robust parsers are
available). In this setting the balance between
precision and speed becomes an issue: while we
might leverage an extensive NLP pipeline for a

∗Performed while faculty at Johns Hopkins University.

language like English, such pipelines can be com-
putationally expensive. One earlier attempt, the
MANLI system (MacCartney et al., 2008), used
roughly 5GB of lexical resources and took 2 sec-
onds per alignment, making it hard to be deployed
and run in large scale. On the other extreme, a sim-
ple non-probabilistic Tree Edit Distance (TED)
model (c.f. §4.2) is able to align 10, 000 pairs
per second when the sentences are pre-parsed, but
with significantly reduced performance. Trying to
embrace the merits of both worlds, we introduce a
discriminative aligner that is able to align tens to
hundreds of sentence pairs per second, and needs
access only to a POS tagger and WordNet.

This aligner gives state-of-the-art performance
on the MSR RTE2 alignment dataset (Brockett,
2007), is faster than previous work, and we re-
lease it publicly as the first open-source monolin-
gual word aligner: Jacana.Align.1

2 Related Work

The MANLI aligner (MacCartney et al., 2008)
was first proposed to align premise and hypothe-
sis sentences for the task of natural language in-
ference. It applies perceptron learning and han-
dles phrase-based alignment of arbitrary phrase
lengths. Thadani and McKeown (2011) opti-
mized this model by decoding via Integer Linear
Programming (ILP). Benefiting from modern ILP
solvers, this led to an order-of-magnitude speedup.
With extra syntactic constraints added, the exact
alignment match rate for whole sentence pairs was
also significantly improved.

Besides the above supervised methods, indirect
supervision has also been explored. Among them,
Wang and Manning (2010) extended the work of
McCallum et al. (2005) and modeled alignment
as latent variables. Heilman and Smith (2010)
used tree kernels to search for the alignment that

1http://code.google.com/p/jacana/
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yields the lowest tree edit distance. Other tree
or graph matching work for alignment includes
that of (Punyakanok et al., 2004; Kouylekov and
Magnini, 2005; Chambers et al., 2007; Mehdad,
2009; Roth and Frank, 2012).

Finally, feature and model design in monolin-
gual alignment is often inspired by bilingual work,
including distortion modeling, phrasal alignment,
syntactic constraints, etc (Och and Ney, 2003;
DeNero and Klein, 2007; Bansal et al., 2011).

3 The Alignment Model

3.1 Model Design
Our work is heavily influenced by the bilingual
alignment literature, especially the discriminative
model proposed by Blunsom and Cohn (2006).
Given a source sentence s of length M , and a tar-
get sentence t of length N , the alignment from s
to t is a sequence of target word indices a, where
am∈[1,M ] ∈ [0, N ]. We specify that when am = 0,
source word st is aligned to a NULL state, i.e.,
deleted. This models a many-to-one alignment
from source to target. Multiple source words can
be aligned to the same target word, but not vice
versa. One-to-many alignment can be obtained
by running the aligner in the other direction. The
probability of alignment sequence a conditioned
on both s and t is then:

p(a | s, t) =
exp(

∑
m,k λkfk(am−1, am, s, t))

Z(s, t)

This assumes a first-order Conditional Random
Field (Lafferty et al., 2001). The word alignment
task is evaluated over F1. Instead of directly op-
timizing F1, we employ softmax-margin training
(Gimpel and Smith, 2010) and add a cost function
to the normalizing function Z(s, t) in the denom-
inator, which becomes:

∑

â

exp(
∑

m,k

λkfk(âm−1, âm, s, t) + cost(at, â))

where at is the true alignments. cost(at, â)
can be viewed as special “features” with uniform
weights that encourage consistent with true align-
ments. It is only computed during training in the
denominator because cost(at,at) = 0 in the nu-
merator. Hamming cost is used in practice.

One distinction of this alignment model com-
pared to other commonly defined CRFs is that

the input is two dimensional: at each position m,
the model inspects both the entire sequence of
source words (as the observation) and target words
(whose offset indices are states). The other dis-
tinction is that the size of its state space is not
fixed (e.g., unlike POS tagging, where states are
for instance 45 Penn Treebank tags), but depends
on N , the length of target sentence. Thus we can
not “memorize” what features are mostly associ-
ated with what states. For instance, in the task of
tagging mail addresses, a feature of “5 consecu-
tive digits” is highly indicative of a POSTCODE.
However, in the alignment model, it does not make
sense to design features based on a hard-coded
state, say, a feature of “source word lemma match-
ing target word lemma” fires for state index 6.

To avoid this data sparsity problem, all features
are defined implicitly with respect to the state. For
instance:

fk(am−1, am, s, t) =

{
1 lemmas match: sm, tam
0 otherwise

Thus this feature fires for, e.g.:
(s3 = sport, t5 = sports, a3 = 5), and:
(s2 = like, t10 = liked, a2 = 10).

3.2 Feature Design

String Similarity Features include the following
similarity measures: Jaro Winkler, Dice Sorensen,
Hamming, Jaccard, Levenshtein, NGram overlap-
ping and common prefix matching.2 Also, two
binary features are added for identical match and
identical match ignoring case.
POS Tags Features are binary indicators of
whether the POS tags of two words match. Also,
a “possrc2postgt” feature fires for each word pair,
with respect to their POS tags. This would capture,
e.g., “vbz2nn”, when a verb such as arrests aligns
with a noun such as custody.
Positional Feature is a real-valued feature for the
positional difference of the source and target word
(abs(mM − am

N )).
WordNet Features indicate whether two words
are of the following relations of each other: hyper-
nym, hyponym, synonym, derived form, entailing,
causing, members of, have member, substances of,
have substances, parts of, have part; or whether

2Of these features the trained aligner preferred Dice
Sorensen and NGram overlapping.
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their lemmas match.3

Distortion Features measure how far apart the
aligned target words of two consecutive source
words are: abs(am + 1 − am−1). This learns a
general pattern of whether these two target words
aligned with two consecutive source words are
usually far away from each other, or very close.
We also added special features for corner cases
where the current word starts or ends the source
sentence, or both the previous and current words
are deleted (a transition from NULL to NULL).
Contextual Features indicate whether the left or
the right neighbor of the source word and aligned
target word are identical or similar. This helps
especially when aligning functional words, which
usually have multiple candidate target functional
words to align to and string similarity features can-
not help. We also added features for neighboring
POS tags matching.

3.3 Symmetrization

To expand from many-to-one alignment to many-
to-many, we ran the model in both directions and
applied the following symmetrization heuristics
(Koehn, 2010): INTERSECTION, UNION, GROW-
DIAG-FINAL.

4 Experiments

4.1 Setup

Since no generic off-the-shelf CRF software is de-
signed to handle the special case of dynamic state
indices and feature functions (Blunsom and Cohn,
2006), we implemented this aligner model in the
Scala programming language, which is fully in-
teroperable with Java. We used the L2 regular-
izer and LBFGS for optimization. OpenNLP4 pro-
vided the POS tagger and JWNL5 interfaced with
WordNet (Fellbaum, 1998).

To make results directly comparable, we closely
followed the setup of MacCartney et al. (2008) and
Thadani and McKeown (2011). Training and test
data (Brockett, 2007) each contains 800 manually
aligned premise and hypothesis pairs from RTE2.
Note that the premises contain 29 words on av-
erage, and the hypotheses only 11 words. We take
the premise as the source and hypothesis as the tar-
get, and use S2T to indicate the model aligns from

3We found that each word has to be POS tagged to get an
accurate relation, otherwise this feature will not help.

4http://opennlp.apache.org/
5http://jwordnet.sf.net/

source to target and T2S from target to source.

4.2 Simple Baselines

We additionally used two baseline systems for
comparison. One was GIZA++, with the IN-
TERSECTION tricks post-applied, which worked
the best among all other symmetrization heuris-
tics. The other was a Tree Edit Distance (TED)
model, popularly used in a series of NLP appli-
cations (Punyakanok et al., 2004; Kouylekov and
Magnini, 2005; Heilman and Smith, 2010). We
used uniform cost for deletion, insertion and sub-
stitutions, and applied a dynamic program algo-
rithm (Zhang and Shasha, 1989) to decode the
tree edit sequence with the minimal cost, based
on the Stanford dependency tree (De Marneffe
and Manning, 2008). This non-probabilistic ap-
proach turned out to be extremely fast, processing
about 10,000 sentence pairs per second with pre-
parsed trees, performing quantitatively better than
the Stanford RTE aligner (Chambers et al., 2007).

4.3 MANLI Baselines

MANLI was first developed by MacCartney et al.
(2008), and then improved by Thadani and McKe-
own (2011) with faster and exact decoding via ILP.
There are four versions to be compared here:

MANLI the original version.
MANLI-approx. re-implemented version by

Thadani and McKeown (2011).
MANLI-exact decoding via ILP solvers.
MANLI-constraint MANLI-exact with hard

syntactic constraints, mainly on common “light”
words (determiners, prepositions, etc.) attachment
to boost exact match rate.

4.4 Results

Following Thadani and McKeown (2011), perfor-
mance is evaluated by macro-averaged precision,
recall, F1 of aligned token pairs, and exact (per-
fect) match rate for a whole pair, shown in Ta-
ble 1. As our baselines, GIZA++ (with align-
ment intersection of two directions) and TED are
on par with previously reported results using the
Stanford RTE aligner. The MANLI-family of sys-
tems provide stronger baselines, notably MANLI-
constraint, which has the best F1 and exact match
rate among themselves.

We ran our aligner in two directions: S2T and
T2S, then merged the results with INTERSECTION,
UNION and GROW-DIAG-FINAL. Our system beats
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System P % R % F1 % E %
GIZA++, ∩ 82.5 74.4 78.3 14.0

TED 80.6 79.0 79.8 13.5
Stanford RTE∗ 82.7 75.8 79.1 -

MANLI∗ 85.4 85.3 85.3 21.3
MANLI-approx./ 87.2 86.3 86.7 24.5
MANLI-exact/ 87.2 86.1 86.8 24.8

MANLI-constraint/ 89.5 86.2 87.8 33.0
this work, S2T 91.8 83.4 87.4 25.9
this work, T2S 93.7 84.0 88.6 35.3

S2T ∩ T2S 95.4 80.8 87.5 31.3
S2T ∪ T2S 90.3 86.6 88.4 29.6

GROW-DIAG-FINAL 94.4 81.8 87.6 30.8

Table 1: Results on the 800 pairs of test data. E% stands
for exact (perfect) match rate. Systems marked with ∗ are
reported by MacCartney et al. (2008), with / by Thadani and
McKeown (2011).

the weak and strong baselines6 in all measures ex-
cept recall. Some patterns are very clearly shown:
Higher precision, lower recall is due to the
higher-quality and lower-coverage of WordNet,
where the MANLI-family systems used addi-
tional, automatically derived lexical resources.
Imbalance of exact match rate between S2T and
T2S with a difference of 9.4% is due to the many-
to-one nature of the aligner. When aligning from
source (longer) to target (shorter), multiple source
words can align to the same target word. This
is not desirable since multiple duplicate “light”
words are aligned to the same “light” word in the
target, which breaks perfect match. When align-
ing T2S, this problem goes away: the shorter tar-
get sentence contains less duplicate words, and in
most cases there is an one-to-one mapping.
MT heuristics help, with INTERSECTION and
UNION respectively improving precision and re-
call.

4.5 Runtime Test

Table 2 shows the runtime comparison. Since the
RTE2 corpus is imbalanced, with premise length
(words) of 29 and hypothesis length of 11, we
also compare on the corpus of FUSION (McKeown
et al., 2010), with both sentences in a pair aver-
aging 27. MANLI-approx. is the slowest, with
quadratic growth in the number of edits with sen-
tence length. MANLI-exact is in second place, re-
lying on the ILP solver. This work has a precise
O(MN2) decoding time, with M the source sen-
tence length and N the target sentence length.

6Unfortunately both MacCartney and Thadani no longer
have their original output files (personal communication), so
we cannot run a significance test against their result.

corpus sent. pair
length

MANLI-
approx.

MANLI-
exact

this
work

RTE2 29/11 1.67 0.08 0.025
FUSION 27/27 61.96 2.45 0.096

Table 2: Alignment runtime in seconds per sentence pair on
two corpora: RTE2 (Cohn et al., 2008) and FUSION (McKe-
own et al., 2010). The MANLI-* results are from Thadani
and McKeown (2011), on a Xeon 2.0GHz with 6MB Cache.
The runtime for this work takes the longest timing from S2T
and T2S, on a Xeon 2.2GHz with 4MB cache (the closest
we can find to match their hardware). Horizontally in a real-
world application where sentences have similar length, this
work is roughly 20x faster (0.096 vs. 2.45). Vertically, the
decoding time for our work increases less dramatically when
sentence length increases (0.025→0.096 vs. 0.08→2.45).

features P % R % F1 % E %
full (T2S) 93.7 84.0 88.6 35.3

- POS 93.2 83.5 88.1 31.4
- WordNet 93.2 83.7 88.2 33.5

- both 93.1 83.2 87.8 30.1
Table 3: Performance without POS and/or Word-
Net features.

While MANLI-exact is about twenty-fold faster
than MANLI-approx., our aligner is at least an-
other twenty-fold faster than MANLI-exact when
the sentences are longer and balanced. We also
benefit from shallower pre-processing (no parsing)
and can store all resources in main memory.7

4.6 Ablation Test

Since WordNet and the POS tagger is the only used
external resource, we removed them8 from the fea-
ture sets and reported performance in Table 3. This
somehow reflects how the model would perform
for a language without a suitable POS tagger, or
more commonly, WordNet in that language. At
this time, the model falls back to relying on string
similarities, distortion, positional and contextual
features, which are almost language-independent.
A loss of less than 1% in F1 suggests that the
aligner can still run reasonably well without a POS

tagger and WordNet.

7WordNet (˜30MB) is a smaller footprint than the 5GB of
external resources used by MANLI.

8per request of reviewers. Note that WordNet is less pre-
cise without a POS tagger. When we removed the POS tag-
ger, we enumerated all POS tags for a word to find its hyper-
nym/synonym/... synsets.
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4.7 Error Analysis
There were three primary categories of error:9

1. Token-based paraphrases that are not covered
by WordNet, such as program and software,
business and venture. This calls for broader-
coverage paraphrase resources.

2. Words that are semantically related but not
exactly paraphrases, such as married and
wife, beat and victory. This calls for re-
sources of close distributional similarity.

3. Phrases of the above kinds, such as elected
and won a seat, politician and presidential
candidate. This calls for further work on
phrase-based alignment.10

There is a trade-off using WordNet vs. larger,
noisier resources in exchange of higher preci-
sion vs. recall and memory/disk allocation. We
think this is an application-specific decision; other
resources could be easily incorporated into our
model, which we may explore in the future to ex-
plore the trade-off in addressing items 1 and 2.

5 Conclusion

We presented a model for monolingual sentence
alignment that gives state-of-the-art performance,
and is significantly faster than prior work. We re-
lease our implementation as the first open-source
monolingual aligner, which we hope to be of ben-
efit to other researchers in the rapidly expanding
area of natural language inference.
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Abstract

We propose a verb suggestion method
which uses candidate sets and domain
adaptation to incorporate error patterns
produced by ESL learners. The candi-
date sets are constructed from a large scale
learner corpus to cover various error pat-
terns made by learners. Furthermore, the
model is trained using both a native cor-
pus and the learner corpus via a domain
adaptation technique. Experiments on two
learner corpora show that the candidate
sets increase the coverage of error patterns
and domain adaptation improves the per-
formance for verb suggestion.

1 Introduction

In this study, we address verb selection errors in
the writing of English learners. Selecting the right
verb based on the context of a sentence is difficult
for the learners of English as a Second Language
(ESL). This error type is one of the most common
errors in various learner corpora ranging from ele-
mentary to proficient levels1.

They ?connect/communicate with other
businessmen and do their jobs with the
help of computers.2

This sentence is grammatically acceptable with
either verb. However, native speakers of En-
glish would less likely use “connect”, which
means “forming a relationship (with other busi-
nessmen)”, whereas “communicate” means “ex-
changing information or ideas”, which is what the
sentence is trying to convey.

∗Now at Tokyo Metropolitan University.
1For example, in the CLC-FCE dataset, the replacement

error of verbs is the third most common out of 75 error types.
In the KJ corpus, lexical choice of verb is the sixth most com-
mon out of 47 error types.

2This sentence is taken from the CLC-FCE dataset.

Previous work on verb selection usually treats
the task as a multi-class classification problem
(Wu et al., 2010; Wang and Hirst, 2010; Liu et
al., 2010; Liu et al., 2011). In this formaliza-
tion, it is important to restrict verbs by a candi-
date set because verb vocabulary is more numer-
ous than other classes, such as determiners. Can-
didate sets for verb selection are often extracted
from thesauri and/or round-trip translations. How-
ever, these resources may not cover certain error
patterns found in actual learner corpora, and suffer
from low-coverage. Furthermore, all the existing
classifier models are trained only using a native
corpus, which may not be adequate for correcting
learner errors.

In this paper, we propose to use error patterns
in ESL writing for verb suggestion task by using
candidate sets and a domain adaptation technique.
First, to increase the coverage, candidate sets are
extracted from a large scale learner corpus derived
from a language learning website. Second, a do-
main adaptation technique is applied to the model
to fill the gap between two domains: native cor-
pus and ESL corpus. Experiments are carried out
on publicly available learner corpora, the Cam-
bridge Learner Corpus First Certificate of English
dataset (CLC-FCE) and the Konan JIEM corpus
(KJ). The results show that the proposed candidate
sets improve the coverage, compared to the base-
line candidate sets derived from the WordNet and
a round-trip translation table. Domain adaptation
also boosts the suggestion performance.

To our knowledge, this is the first work for
verb suggestion that uses (1) a learner corpus as
a source of candidate sets and (2) the domain
adaptation technique to take learner errors into ac-
count.
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2 Verb Suggestion Considering Error
Patterns

The proposed verb suggestion system follows the
standard approach in related tasks (Rozovskaya
and Roth, 2011; Wu et al., 2010), where the candi-
date selection is formalized as a multi-class classi-
fication problem with predefined candidate sets.

2.1 Candidate Sets

For reflecting tendency of learner errors to the can-
didate sets, we use a large scale corpus obtained
from learners’ writing on an SNS (Social Net-
working Service), Lang-83. An advantage of using
the learner corpus from such website is the size of
annotated portion (Mizumoto et al., 2011). This
SNS has over 1 million manually annotated En-
glish sentences written by ESL learners. We have
collected the learner writings on the site, and re-
leased the dataset for research purpose4.

First, we performed POS tagging for the dataset
using the treebank POS tagger in the NLTK toolkit
2.10. Second, we extracted the correction pairs
which have “VB*” tag. The set of correction pairs
given an incorrect verb is considered as a candi-
date set for the verb.

We then performed the following preprocessing
for the dataset because we focus on lexical selec-
tion of verbs:
• Lemmatize verbs to reduce data sparseness.
• Remove non-English verbs using WordNet.
• Remove incorrect verbs which occur only

once in the dataset.
The target verbs are limited to the 500 most

common verbs in the CLC-FCE corpus5. There-
fore, verbs that do not appear in the target list are
not included in the candidate sets. The topmost
500 verbs cover almost 90 percent of the vocabu-
lary of verbs in the CLC-FCE corpus6.

The average number of candidates in a set is
20.37. Note that the number of candidates varies
across each target verb8.

3http://lang-8.com
4Further details can be found at http://cl.naist.

jp/nldata/lang-8/. Candidate sets will also be avail-
able at the same URL.

5They are extracted from all “VB” tagged tokens, and
they contain 1,292 unique verbs after removing non-English
words.

6This number excludes “be”.
7In this paper, we limit the maximum number of candi-

dates in each set to 50.
8For instance, the candidate set for “get” has 315 correc-

tion pairs, whereas “refund” has only 4.

2.2 Suggestion Model

The verb suggestion model consists of multi-class
classifiers for each target verb; and based on the
classifiers’ output, it suggests alternative verbs.
Instances are in a fill-in-the-blank format, where
the labels are verbs. Features in this format are
extracted from the surrounding context of a verb.
When testing on the learner corpus, the model sug-
gests a ranking of the possible verbs for the blank
corresponding to a given context. Note that un-
like the fill-in-the-blank task, the candidate sets
and domain adaptation can be applied to this task
to take the original word into account.

The model is trained on a huge native corpus,
namely the ukWaC corpus, because the data-size
of learner corpora is limited compared to native
corpora. It is then adapted to the target domain,
i.e., learner writing. In our experiment, the Lang-
8 corpus is used as the target domain corpus, since
we assume that it shares the same characteristics
with the CLC-FCE and the KJ corpora used for
testing.

2.3 Domain Adaptation

To adapt the models to the learner corpus, we em-
ploy a domain adaptation technique to emphasize
the importance of learner domain information. Al-
though there are many studies on domain adap-
tation, we chose to use Feature Augmentation
technique introduced by (Daumé III, 2007) for its
simplicity. Recently, (Imamura et al., 2012) pro-
posed to apply this method to grammatical error
correction for writings of Japanese learners and
confirmed that this is more effective for correct-
ing learner errors than simply adding the target do-
main instances.

In this study, the source domain is the native
writing, and the target domain is the ESL writing.
Our motivation is to use the ESL corpus together
with the huge native corpus to employ both an ad-
vantage of the size of training data and the ESL
writing specific features.

In this method, adapting a model to another
model is achieved by extending the feature space.
Given a feature vector of F dimensions as x ∈
RF(F > 0), using simple mapping, the aug-
mented feature vectors for source and target do-
mains are obtained as follows,

Source domain: < xS, xS, 0 > (1)

Target domain: < xT, 0, xT > (2)

709



where 0 denotes a zero-vector of F dimensions.
The three partitions mean a common, a source-
specific, and a target-specific feature space. When
testing on the ESL corpora, the target-specific fea-
tures are emphasized.

2.4 Features

In previous work, various features were used: lex-
ical and POS n-grams, dependencies, and argu-
ments in the verb context. (Liu et al., 2011) has
shown that shallow parse features, such as lexi-
cal n-grams and chunks, work well in realistic set-
tings, in which the input sentence may not be cor-
rectly parsed. Considering this, we use shallow
parse features as context features for robustness.

The features include lexical and POS n-grams,
and lexical head words of the nearest NPs, and
clustering features of these head words. An ex-
ample of extracted features is shown in Table 2.4.
Note that those features are also used when ex-
tracting examples from the target domain dataset
(the learner domain corpus). As shown in Table
2.4, the n-gram features are 3-gram and extracted
from ±2 context window. The nearest NP’s head
features are divided into two (Left, Right).

The additional clustering features are used for
reducing sparseness, because the NP’s head words
are usually proper nouns. To create the word clus-
ters, we employ Brown clustering, a hierarchical
clustering algorithm proposed by (Brown et al.,
1992). The structure of clusters is a complete bi-
nary tree, in which each node is represented as a
bit-string. By varying the length of the prefix of
bit-string, it is possible to change the granularity
of cluster representation. As illustrated in Table
2.4, we use the clustering features with three lev-
els of granularity: 256, 128, and 64 dimensions.
We used Percy Liang’s implementation9 to create
256 dimensional model from the ukWaC corpus,
which is used as the native corpus.

3 Experiments

Performance of verb suggestion is evaluated on
two error-tagged learner corpora: CLC-FCE and
KJ. In the experiments, we assume that the tar-
get verb and its context for suggestion are already
given.

For the experiment on the CLC-FCE dataset,
the targets are all words tagged with “RV” (re-

9https://github.com/percyliang/
brown-cluster

Feature Example
n-grams they-*V*-with
(surface) <S>-they-*V*

*V*-with-other
n-grams PRP-*V*-IN
(POS) <S>-PRP-*V*

*V*-IN-JJ
NP head L they, L PRP

(Left, Right) R businessmen, R NNS
NP head cluster L 01110001, L 0111000, L 011100

(Left, Right) R 11011001, R 1101100, R 110110
(e.g., They (communicate) with other businessmen and do

their jobs with the help of computers.)
“<S>” denotes the beginning of the sentence, “*V*”

denotes the blanked out verb.

Table 1: Example of extracted features as the fill-
in-the-blank form.

placement error of verbs). We assume that all the
verb selection errors are covered with this error
tag. All error tagged parts with nested correction
or multi-word expressions are excluded. The re-
sulting number of “true” targets is 1,083, which
amounts to 4% of all verbs. Therefore the dataset
is highly skewed to correct usages, though this set-
ting expresses well the reality of ESL writing, as
shown in (Chodorow et al., 2012).

We carried out experiments with a variety of re-
sources used for creating candidate sets.
• WordNet

Candidates are retrieved from the synsets and
verbs sharing the same hypernyms in the
WordNet 3.0.
• LearnerSmall

Candidates are retrieved from following
learner corpora: NUS corpus of learner
English (NUCLE), Konan-JIEM (KJ), and
NICT Japanese learner English (JLE) corpus.
• Roundtrip

Candidates are collected by performing
“round-trip” translation, which is similar to
(Bannard and Callison-Burch, 2005) 10.
• WordNet+Roundtrip

A combination of the thesaurus-based and the
translation table-based candidate sets, similar
to (Liu et al., 2010) and (Liu et al., 2011).
• Lang-8

The proposed candidate sets obtained from a
large scale learner corpus.
• Lang-8+DA

Lang-8 candidate sets with domain adapta-
10Our roundtrip translation lexicons are built using a subset

of the WIT3 corpus (Cettolo et al., 2012), which is available
at http://wit3.fbk.eu.
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Settings Candidates/set (Avg.)
WordNet 14.8
LearnerSmall 5.1
Roundtrip 50
Roundtrip (En-Ja-En) 50
WordNet+Roundtrip 50
Lang-8 20.3

Table 2: Comparison of candidate set size for each
setting.

tion via feature augmentation.
Table 3 shows a comparison of the average

number of candidates in each setting. In all config-
urations above, the parameters of the models un-
derlying the system are identical. We used a L2-
regularized generalized linear model with log-loss
function via Scikit-learn ver. 0.13.

Inter-corpus Evaluation
We also evaluate the suggestion performance on
the KJ corpus. The corpus contains diary-style
writing by Japanese university students. The pro-
ficiency of the learners ranges from elementary to
intermediate, so it is lower than that of the CLC-
FCE learners. The targets are all verbs tagged with
“v lxc” (lexical selection error of verbs).

To see the effect of L1 on the verb sugges-
tion task, we added an alternative setting for
the Roundtrip using only the English-Japanese
and Japanese-English round-trip translation tables
(En-Ja-En). For the experiment on this test-
corpus, the LearnerSmall is not included.

Datasets
The ukWaC web-corpus (Ferraresi et al., 2008) is
used as a native corpus for training the suggestion
model. Although this corpus consists of over 40
million sentences, 20,000 randomly selected sen-
tences are used for each verb11.

The Lang-8 learner corpus is used for domain
adaptation of the model in the Lang-8+DA config-
uration. The portion of data is the same as that
used for constructing candidate sets.

Metrics
Mean Reciprocal Rank (MRR) is used for evalu-
ating the performance of alternative suggestions.
The mean reciprocal rank is calculated by taking

11e.g., a classifier with a candidate set containing 50 verbs
is trained with 1 million sentences in total.

the average of the reciprocal ranks for each in-
stance. Given r goldi as the position of the gold
correction candidate in the suggestion list Si for i-
th checkpoint, the reciprocal rank RRi is defined
as,

RRi =





1
r goldi

(goldi ∈ Si)

0 (otherwise)
(3)

4 Results

Tables 5 and 5 show the results of suggestion per-
formance on the CLC-FCE dataset and the KJ cor-
pus, respectively. In both cases, the Lang-8 and its
domain adaptation variant outperformed the oth-
ers. The coverage of error patterns in the tables
is the percentage of the cases where the sugges-
tion list includes the gold correction. Generally,
the suggestion performance and the coverage im-
prove as the size of the candidate sets increases.

5 Discussions

Although the expert-annotated learner corpora
contain candidates which are more reliable than
a web-crawled Lang-8 corpus, the Lang-8 setting
performed better as shown in Table 5. This can be
explained by the broader coverage by the Lang-8
candidate sets than that of the LearnerSmall. Sim-
ilarly, the WordNet performed the worst because
it contains only synonym-like candidates. We can
conclude that, for the verb suggestion task, the
coverage (recall) of candidate sets is more impor-
tant than the quality (precision).

We see little influence of learners’ L1 in the re-
sults of Table 5, since the Roundtrip performed
better than the Roundtrip (En-Ja-En). As already
mentioned, the number of error patterns contained
in the candidate sets seems to have more impor-
tance than the quality.

As shown in Tables 5 and 5, a positive ef-
fect of domain adaptation technique appeared in
both test-corpora. In the case of the CLC-FCE,
280 out of 624 suggestions were improved com-
pared to the setting without domain adaptation.
For instance, confusions between synonyms such
as “?live/stay”, “?say/tell”, and “?solve/resolve”
are improved, because sentences containing these
confusions appear more frequently in the Lang-
8 corpus. Although the number of test-cases for
the KJ corpus is smaller than the CLC-FCE, we
can see the improvements for 33 out of 66 sug-
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Settings MRR Coverage
WordNet 0.066 14.0 %
LearnerSmall 0.128 23.5 %
Roundtrip 0.185 48.1 %
WordNet+Roundtrip 0.173 48.1 %
Lang-8 0.220 57.6 %
Lang-8+DA 0.269* 57.6 %

The value marked with the asterisk indicates statistically sig-
nificant improvement over the baselines, where p < 0.05
bootstrap test.

Table 3: Suggestion performance on the CLC-
FCE dataset.

Settings MRR Coverage
WordNet 0.044 5.0 %
Roundtrip 0.241 53.8 %
Roundtrip (En-Ja-En) 0.188 38.8 %
WordNet+Roundtrip 0.162 53.8 %
Lang-8 0.253 68.9 %
Lang-8+DA 0.412* 68.9 %

The value marked with the asterisk indicates statistically sig-
nificant improvement over the baselines, except “Roundtrip”,
where p < 0.05 bootstrap test.

Table 4: Suggestion performance on the KJ cor-
pus.

gestions. The improvements appeared for fre-
quent confusions of Japanese ESL learners such
as “?see/watch” and “?tell/teach”.

Comparing the results of the Lang-8+DA on
both test-corpora, the domain adaptation tech-
nique worked more effectively on the KJ cor-
pus than on the CLC-FCE. This can be explained
by the fact that the style of writing of the addi-
tional data, i.e., the Lang-8 corpus, is closer to
KJ than it is to CLC-FCE. More precisely, unlike
the examination-type writing style of CLC-FCE,
the KJ corpus consists of diary writing similar in
style to the Lang-8 corpus, and it expresses more
closely the proficiency of the learners.

We think that the next step is to refine the sug-
gestion models, since we currently take a simple
fill-in-the-blank approach. As future work, we
plan to extend the models as follows: (1) use both
incorrect and correct sentences in learner corpora
for training, and (2) employ ESL writing specific
features such as learners’ L1 for domain adapta-
tion.
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Abstract
Measuring semantic textual similarity
(STS) is at the cornerstone of many NLP
applications. Different from the major-
ity of approaches, where a large number
of pairwise similarity features are used to
represent a text pair, our model features
the following: (i) it directly encodes input
texts into relational syntactic structures;
(ii) relies on tree kernels to handle feature
engineering automatically; (iii) combines
both structural and feature vector repre-
sentations in a single scoring model, i.e.,
in Support Vector Regression (SVR); and
(iv) delivers significant improvement over
the best STS systems.

1 Introduction
In STS the goal is to learn a scoring model that
given a pair of two short texts returns a similar-
ity score that correlates with human judgement.
Hence, the key aspect of having an accurate STS
framework is the design of features that can ade-
quately represent various aspects of the similarity
between texts, e.g., using lexical, syntactic and se-
mantic similarity metrics.

The majority of approaches treat input text pairs
as feature vectors where each feature is a score
corresponding to a certain type of similarity. This
approach is conceptually easy to implement and
the STS shared task at SemEval 2012 (Agirre et
al., 2012) (STS-2012) has shown that the best sys-
tems were built following this idea, i.e., a num-
ber of features encoding similarity of an input text
pair were combined in a single scoring model, e.g.,
SVR. Nevertheless, one limitation of using only
similarity features to represent a text pair is that of
low representation power.

The novelty of our approach is that we treat the
input text pairs as structural objects and rely on the
power of kernel learning to extract relevant struc-
tures. To link the documents in a pair we mark the

nodes in the related structures with a special rela-
tional tag. This way effective structural relational
patterns are implicitly encoded in the trees and
can be automatically learned by the kernel-based
machines. We combine our relational structural
model with the features from two best systems of
STS-2012. Finally, we use the approach of classi-
fier stacking to combine several structural models
into the feature vector representation.

The contribution of this paper is as follows: (i) it
provides a convincing evidence that adding struc-
tural features automatically extracted by structural
kernels yields a significant improvement in accu-
racy; (ii) we define a combination kernel that inte-
grates both structural and feature vector represen-
tations within a single scoring model, e.g., Sup-
port Vector Regression; (iii) we provide a sim-
ple way to construct relational structural models
that can be built using off-the-shelf NLP tools;
(iv) we experiment with four structural representa-
tions and show that constituency and dependency
trees represent the best source for learning struc-
tural relationships; and (v) using a classifier stack-
ing approach, structural models can be easily com-
bined and integrated into existing feature-based
STS models.

2 Structural Relational Similarity
The approach of relating pairs of input struc-
tures by learning predictable syntactic transforma-
tions has shown to deliver state-of-the-art results
in question answering, recognizing textual entail-
ment, and paraphrase detection, e.g. (Wang et al.,
2007; Wang and Manning, 2010; Heilman and
Smith, 2010). Previous work relied on fairly com-
plex approaches, e.g. applying quasi-synchronous
grammar formalism and variations of tree edit dis-
tance alignments, to extract syntactic patterns re-
lating pairs of input structures. Our approach
is conceptually simpler, as it regards the prob-
lem within the kernel learning framework, where
we first encode salient syntactic/semantic proper-
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ties of the input text pairs into tree structures and
rely on tree kernels to automatically generate rich
feature spaces. This work extends in several di-
rections our earlier work in question answering,
e.g., (Moschitti et al., 2007; Moschitti and Quar-
teroni, 2008), in textual entailment recognition,
e.g., (Moschitti and Zanzotto, 2007), and more in
general in relational text categorization (Moschitti,
2008; Severyn and Moschitti, 2012).

In this section we describe: (i) a kernel frame-
work to combine structural and vector models; (ii)
structural kernels to handle feature engineering;
and (iii) suitable structural representations for re-
lational learning.

2.1 Structural Kernel Learning
In supervised learning, given labeled data
{(xxxi, yyyi)}ni=1, the goal is to estimate a decision
function h(xxx) = yyy that maps input examples to
their targets. A conventional approach is to rep-
resent a pair of texts as a set of similarity fea-
tures {fi}, s.t. the predictions are computed as
h(xxx) = www · xxx =

∑
iwifi, where www is the model

weight vector. Hence, the learning problem boils
down to estimating individual weights of each of
the similarity features fi. One downside of such
approach is that a great deal of similarity infor-
mation encoded in a given text pair is lost when
modeled by single real-valued scores.

A more versatile approach in terms of the input
representation relies on kernels. In a typical kernel
learning approach, e.g., SVM, the prediction func-
tion for a test input xxx takes on the following form
h(xxx) =

∑
i αiyiK(xxx,xxxi), where αi are the model

parameters estimated from the training data, yi are
target variables, xxxi are support vectors, andK(·, ·)
is a kernel function.

To encode both structural representation and
similarity feature vectors of a given text pair in a
single model we define each document in a pair
to be composed of a tree and a vector: 〈ttt, vvv〉.
To compute a kernel between two text pairs xxxi
and xxxj we define the following all-vs-all kernel,
where all possible combinations of components,
xxx(1) and xxx(2), from each text pair are consid-
ered: K(xxxi,xxxj) = K(xxx

(1)
i ,xxx

(1)
j )+K(xxx

(1)
i ,xxx

(2)
j )+

K(xxx
(2)
i ,xxx

(1)
j ) + K(xxx

(2)
i ,xxx

(2)
j ). Each of the ker-

nel computations K can be broken down into
the following: K(xxx(1),xxx(2)) = KTK(ttt

(1), ttt(2)) +
Kfvec(vvv

(1), vvv(2)), where KTK computes a struc-
tural kernel and Kfvec is a kernel over feature vec-
tors, e.g., linear, polynomial or RBF, etc. Further

in the text we refer to structural tree kernel models
as TK and explicit feature vector representation as
fvec.

Having defined a way to jointly model text pairs
using structural TK representations along with the
similarity features fvec, we next briefly review
tree kernels and our relational structures.

2.2 Tree Kernels
We use tree structures as our base representation
since they provide sufficient flexibility in repre-
sentation and allow for easier feature extraction
than, for example, graph structures. Hence, we
rely on tree kernels to compute KTK(·, ·). Given
two trees it evaluates the number of substructures
(or fragments) they have in common, i.e., it is a
measure of their overlap. Different TK functions
are characterized by alternative fragment defini-
tions. In particular, we focus on the Syntactic Tree
kernel (STK) (Collins and Duffy, 2002) and a Par-
tial Tree Kernel (PTK) (Moschitti, 2006).
STK generates all possible substructures rooted in
each node of the tree with the constraint that pro-
duction rules can not be broken (i.e., any node in a
tree fragment must include either all or none of its
children).
PTK can be more effectively applied to both con-
stituency and dependency parse trees. It general-
izes STK as the fragments it generates can contain
any subset of nodes, i.e., PTK allows for breaking
the production rules and generating an extremely
rich feature space, which results in higher gener-
alization ability.

2.3 Structural representations
In this paper, we define simple-to-build relational
structures based on: (i) a shallow syntactic tree,
(ii) constituency, (iii) dependency and (iv) phrase-
dependency trees.
Shallow tree is a two-level syntactic hierarchy
built from word lemmas (leaves), part-of-speech
tags (preterminals) that are further organized into
chunks. It was shown to significantly outperform
feature vector baselines for modeling relationships
between question answer pairs (Severyn and Mos-
chitti, 2012).
Constituency tree. While shallow syntactic pars-
ing is very fast, here we consider using con-
stituency structures as a potentially richer source
of syntactic/semantic information.
Dependency tree. We propose to use depen-
dency relations between words to derive an alter-
native structural representation. In particular, de-

715



Figure 1: A phrase dependency-based structural representation of a text pair (s1, s2): A woman with
a knife is slicing a pepper (s1) vs. A women slicing green pepper (s2) with a high semantic similarity
(human judgement score 4.0 out of 5.0). Related tree fragments are linked with a REL tag.

pendency relations are used to link words in a way
that they are always at the leaf level. This reorder-
ing of the nodes helps to avoid the situation where
nodes with words tend to form long chains. This
is essential for PTK to extract meaningful frag-
ments. We also plug part-of-speech tags between
the word nodes and nodes carrying their grammat-
ical role.
Phrase-dependency tree. We explore a phrase-
dependency tree similar to the one defined in (Wu
et al., 2009). It represents an alternative struc-
ture derived from the dependency tree, where the
dependency relations between words belonging to
the same phrase (chunk) are collapsed in a unified
node. Different from (Wu et al., 2009), the col-
lapsed nodes are stored as a shallow subtree rooted
at the unified node. This node organization is par-
ticularly suitable for PTK that effectively runs a
sequence kernel on the tree fragments inside each
chunk subtree. Fig 1 gives an example of our vari-
ation of a phrase dependency tree.

As a final consideration, if a document contains
multiple sentences they are merged in a single tree
with a common root. To encode the structural
relationships between documents in a pair a spe-
cial REL tag is used to link the related structures.
We adopt a simple strategy to establish such links:
words from two documents that have a common
lemma get their parents (POS tags) and grandpar-
ents, non-terminals, marked with a REL tag.

3 Pairwise similarity features.
Along with the direct representation of input text
pairs as structural objects our framework is also
capable of encoding pairwise similarity feature
vectors (fvec), which we describe below.

Baseline features. (base) We adopt similar-
ity features from two best performing systems
of STS-2012, which were publicly released1:
namely, the Takelab2 system (Šarić et al., 2012)
and the UKP Lab’s system3 (Bar et al., 2012).
Both systems represent input texts with similarity
features combining multiple text similarity mea-
sures of varying complexity.

UKP (U) provides metrics based on match-
ing of character, word n-grams and common
subsequences. It also includes features derived
from Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007) and aggregation of word sim-
ilarity based on lexical-semantic resources, e.g.,
WordNet. In total it provides 18 features.

Takelab (T) includes n-gram matching of vary-
ing size, weighted word matching, length differ-
ence, WordNet similarity and vector space simi-
larity where pairs of input sentences are mapped
into Latent Semantic Analysis (LSA) space. The
features are computed over several sentence rep-
resentations where stop words are removed and/or
lemmas are used in place of raw tokens. The total
number of Takelab’s features is 21. The combined
system consists of 39 features.
Additional features. We also augment the U and
T feature sets, with an additional set of features (A)
which includes: a cosine similarity scores com-
puted over (i) n-grams of part-of-speech tags (up
to 4-grams), (ii) SuperSense tags (Ciaramita and

1Note that only a subset of the features used in the fi-
nal evaluation was released, which results in lower accuracy
when compared to the official rankings.

2http://takelab.fer.hr/sts/
3https://code.google.com/p/dkpro-similarity-

asl/wiki/SemEval2013
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Altun, 2006), (iii) named entities, (iv) dependency
triplets, and (v) PTK syntactic similarity scores
computed between documents in a pair, where as
input representations we use raw dependency and
constituency trees. To alleviate the problem of do-
main adaptation, where datasets used for training
and testing are drawn from different sources, we
include additional features to represent the com-
bined text of a pair: (i) bags (B) of lemmas, de-
pendency triplets, production rules (from the con-
stituency parse tree) and a normalized length of
the entire pair; and (ii) a manually encoded cor-
pus type (M), where we use a binary feature with
a non-zero entry corresponding to a dataset type.
This helps the learning algorithm to learn implic-
itly the individual properties of each dataset.
Stacking. To integrate multiple TK representa-
tions into a single model we apply a classifier
stacking approach (Fast and Jensen, 2008). Each
of the learned TK models is used to generate pre-
dictions which are then plugged as features into
the final fvec representation, s.t. the final model
uses only explicit feature vector representation. To
obtain prediction scores, we apply 5-fold cross-
validation scheme, s.t. for each of the held-out
folds we obtain independent predictions.

4 Experiments
We present the results of our model tested on the
data from the Core STS task at SemEval 2012.

4.1 Setup
Data. To compare with the best systems of the
STS-2012 we followed the same setup used in
the final evaluation, where 3 datasets (MSRpar,
MSRvid and SMTeuroparl) are used for training
and 5 for testing (two “surprise” datasets were
added: OnWN and SMTnews). We use the entire
training data to obtain a single model for making
predictions on each test set.
Software. To encode TK models along with the
similarity feature vectors into a single regression
scoring model, we use an SVR framework imple-
mented in SVM-Light-TK4. We use the follow-
ing parameter settings -t 5 -F 1 -W A -C
+, which specifies a combination of trees and fea-
ture vectors (-C +), STK over trees (-F 1) (-F
3 for PTK) computed in all-vs-all mode (-W A)
and polynomial kernel of degree 3 for the feature
vector (active by default).

4http://disi.unitn.it/moschitti/Tree-Kernel.htm

Metrics. We report the following metrics em-
ployed in the final evaluation: Pearson correlation
for individual test sets5 and Mean – an average
score weighted by the test set size.

4.2 Results
Table 1 summarizes the results of combining TK
models with a strong feature vector model. We
test structures defined in Sec. 2.3 when using STK
and PTK. The results show that: (i) combining
all three features sets (U, T, A) provides a strong
baseline system that we attempt to further improve
with our relational structures; (ii) the generality of
PTK provides an advantage over STK for learn-
ing more versatile models; (iii) constituency and
dependency representations seem to perform bet-
ter than shallow and phrase-dependency trees; (iv)
using structures with no relational linking does not
work; (v) TK models provide a far superior source
of structural similarity than U + T + A that already
includes PTK similarity scores as features, and fi-
nally (vi) the domain adaptation problem can be
addressed by including corpus specific features,
which leads to a large improvement over the pre-
vious best system.

5 Conclusions and Future Work
We have presented an approach where text pairs
are directly treated as structural objects. This pro-
vides a much richer representation for the learning
algorithm to extract useful syntactic and shallow
semantic patterns. We have provided an exten-
sive experimental study of four different structural
representations, e.g. shallow, constituency, de-
pendency and phrase-dependency trees using STK
and PTK. The novelty of our approach is that it
goes beyond a simple combination of tree kernels
with feature vectors as: (i) it directly encodes input
text pairs into relationally linked structures; (ii) the
learned structural models are used to obtain pre-
diction scores thus making it easy to plug into ex-
isting feature-based models, e.g. via stacking; (iii)
to our knowledge, this work is the first to apply
structural kernels and combinations in a regres-
sion setting; and (iv) our model achieves the state
of the art in STS largely improving the best pre-
vious systems. Our structural learning approach
to STS is conceptually simple and does not re-
quire additional linguistic sources other than off-
the-shelf syntactic parsers. It is particularly suit-
able for NLP tasks where the input domain comes

5we also report the results for a concatenation of all five
test sets (ALL)
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Experiment U T A S C D P STK PTK B M ALL Mean MSRp MSRv SMTe OnWN SMTn

fvec
model

• .7060 .6087 .6080 .8390 .2540 .6820 .4470
• .7589 .6863 .6814 .8637 .4950 .7091 .5395

• • .8079 .7161 .7134 .8837 .5519 .7343 .5607
• • • .8187 .7137 .7157 .8833 .5131 .7355 .5809

TK
models
with STK
and PTK

• • • • • .8261 .6982 .7026 .8870 .4807 .7258 .5333
• • • • • .8326 .6970 .7020 .8925 .4826 .7190 .5253
• • • • • .8341 .7024 .7086 .8921 .4671 .7319 .5495
• • • • • .8211 .6693 .6994 .8903 .2980 .7035 .5603
• • • • • .8362 .7026 .6927 .8896 .5282 .7144 .5485
• • • • • .8458 .7047 .6935 .8953 .5080 .7101 .5834
• • • • • .8468 .6954 .6717 .8902 .4652 .7089 .6133
• • • • • .8326 .6693 .7108 .8879 .4922 .7215 .5156

REL tag • • • ◦ .8218 .6899 .6644 .8726 .4846 .7228 .5684
• • • ◦ .8250 .7000 .6806 .8822 .5171 .7145 .5769

domain
adaptation

• • • • • .8539 .7132 .6993 .9005 .4772 .7189 .6481
• • • • • .8529 .7249 .7080 .8984 .5142 .7263 .6700
• • • • • • .8546 .7156 .6989 .8979 .4884 .7181 .6609
• • • • • • .8810 .7416 .7210 .8971 .5912 .7328 .6778
UKP (best system of STS-2012) .8239 .6773 .6830 .8739 .5280 .6641 .4937

Table 1: Results on STS-2012. First set of experiments studies the combination of fvec models from
UKP (U), Takelab (T) and (A). Next we show results for four structural representations: shallow (S),
constituency (C), dependency (D) and phrase-dependency (P) trees with STK and PTK; next row set
demonstrates the necessity of relational linking for two best structures, i.e. C and D (empty circle denotes
a structures with no relational linking.); finally, domain adaptation via bags of features (B) of the entire
pair and (M) manually encoded dataset type show the state of the art results.

as pairs of objects, e.g., question answering, para-
phrasing and recognizing textual entailment.
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Abstract

We present results from our study of which
uses syntactically and semantically moti-
vated information to group segments of
sentences into unbreakable units for the
purpose of typesetting those sentences in
a region of a fixed width, using an other-
wise standard dynamic programming line
breaking algorithm, to minimize ragged-
ness. In addition to a rule-based base-
line segmenter, we use a very modest size
text, manually annotated with positions of
breaks, to train a maximum entropy clas-
sifier, relying on an extensive set of lexi-
cal and syntactic features, which can then
predict whether or not to break after a cer-
tain word position in a sentence. We also
use a simple genetic algorithm to search
for a subset of the features optimizing F1,
to arrive at a set of features that deliv-
ers 89.2% Precision, 90.2% Recall (89.7%
F1) on a test set, improving the rule-based
baseline by about 11 points and the classi-
fier trained on all features by about 1 point
in F1.

1 Introduction and Motivation

Current best practice in typography focuses on
several interrelated factors (Humar et al., 2008;
Tinkel, 1996). These factors include typeface se-
lection, the color of the type and its contrast with
the background, the size of the type, the length of
the lines of type in the body of the text, the media
in which the type will live, the distance between
each line of type, and the appearance of the jus-
tified or ragged right side edge of the paragraphs,
which should maintain either the appearance of a
straight line on both sides of the block of type (jus-
tified) or create a gentle wave on the ragged right
side edge.

This paper addresses one aspect of current “best
practice,” concerning the alignment of text in a
paragraph. While current practice values that gen-
tle “wave,” which puts the focus on the elegant
look of the overall paragraph, it does so at the
expense of meaning-making features. Meaning-
making features enable typesetting to maintain the
integrity of phrases within sentences, giving those
interests equal consideration with the overall look
of the paragraph. Figure 1 (a) shows a text frag-
ment typeset without any regard to natural breaks
while (b) shows an example of a typesetting that
we would like to get, where many natural breaks
are respected.

While current practice works well enough for
native speakers, fluency problems for non-native
speakers lead to uncertainty when the beginning
and end of English phrases are interrupted by the
need to move to the next line of the text before
completing the phrase. This pause is a poten-
tial problem for readers because they try to inter-
pret content words, relate them to their referents
and anticipate the role of the next word, as they
encounter them in the text (Just and Carpenter,
1980). While incorrect anticipation might not be
problematic for native speakers, who can quickly
re-adjust, non-native speakers may find inaccu-
rate anticipation more troublesome. This prob-
lem could be more significant because English
as a second language (ESL) readers are engaged
not only in understanding a foreign language, but
also in processing the “anticipated text” as they
read a partial phrase, and move to the next line
in the text, only to discover that they anticipated
meaning incorrectly. Even native speakers with
less skill may experience difficulty comprehend-
ing text and work with young readers suggests that
”[c]omprehension difficulties may be localized at
points of high processing demands whether from
syntax or other sources” (Perfetti et al., 2005). As
ESL readers process a partial phrase, and move to
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the next line in the text, instances of incorrectly
anticipated meaning would logically increase pro-
cessing demands to a greater degree. Additionally,
as readers make meaning, we assume that they
don’t parse their thoughts using the same phrasal
divisions “needed to diagram a sentence.” Our per-
spective not only relies on the immediacy assump-
tion, but also develops as an outgrowth of other
ways that we make meaning outside of the form or
function rules of grammar. Specifically, Halliday
and Hasan (1976) found that rules of grammar do
not explain how cohesive principals engage read-
ers in meaning making across sentences. In order
to make meaning across sentences, readers must
be able to refer anaphorically backward to the pre-
vious sentence, and cataphorically forward to the
next sentence. Along similar lines, readers of a
single sentence assume that transitive verbs will
include a direct object, and will therefore specu-
late about what that object might be, and some-
times get it wrong.

Thus proper typesetting of a segment of text
must explore ways to help readers avoid incor-
rect anticipation, while also considering those mo-
ments in the text where readers tend to pause in
order to integrate the meaning of a phrase. Those
decisions depend on the context. A phrasal break
between a one-word subject and its verb tends to
be more unattractive, because the reader does not
have to make sense of relationships between the
noun/subject and related adjectives before moving
on to the verb. In this case, the reader will be more
likely to anticipate the verb to come. However,
a break between a subject preceded by multiple
adjectives and its verb is likely to be more use-
ful to a reader (if not ideal), because the relation-
ships between the noun and its related adjectives
are more likely to have thematic importance lead-
ing to longer gaze time on the relevant words in
the subject phrase (Just and Carpenter, 1980).

We are not aware of any prior work for bring-
ing computational linguistic techniques to bear on
this problem. A relatively recent study (Levasseur
et al., 2006) that accounted only for breaks at
commas and ends of sentences, found that even
those breaks improved reading fluency. While the
participants in that study were younger (7 to 9+
years old), the study is relevant because the chal-
lenges those young participants face, are faced
again when readers of any age encounter new and
complicated texts that present words they do not

know, and ideas they have never considered.
On the other hand, there is ample work on the

basic algorithm to place a sequence of words in a
typesetting area with a certain width, commonly
known as the optimal line breaking problem (e.g.,
Plass (1981), Knuth and Plass (1981)). This prob-
lem is quite well-understood and basic variants are
usually studied as an elementary example applica-
tion of dynamic programming.

In this paper we explore the problem of learn-
ing where to break sentences in order to avoid the
problems discussed above. Once such unbreak-
able segments are identified, a simple application
of the dynamic programming algorithm for opti-
mal line breaking, using unbreakable segments as
“words”, easily typesets the text to a given width
area.

2 Text Breaks

The rationale for content breaks is linked to our in-
terest in preventing inaccurate anticipation, which
is based on the immediacy assumption. The imme-
diacy assumption (Just and Carpenter, 1980) con-
siders, among other things, the reader’s interest in
trying to relate content words to their referents as
soon as possible. Prior context also encourages
the reader to anticipate a particular role or case
for the next word, such as agent or the manner
in which something is done.Therefore, in defin-
ing our breaks, we consider not only the need to
maintain the syntactic integrity of phrases, such
as the prepositional phrase, but also the semantic
integrity across syntactical divisions. For exam-
ple, semantic integrity is important when transitive
verbs anticipate direct objects. Strictly speaking,
we define a bad break as one that will cause (i)
unintended anaphoric collocation, (ii) unintended
cataphoric collocation, or (iii) incorrect anticipa-
tion.

Using these broad constraints, we derived a set
of about 30 rules that define acceptable and non-
acceptable breaks, with exceptions based on con-
text and other special cases. Some of the rules are
very simple and are only related to the word posi-
tion in the sentence:

• Break at the end of a sentence.

• Keep the first and last words of a sentence
with the rest of it.

The rest of the rule set are more complex and de-
pend on the structure of the sentence in question,
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sanctions and UN charges of gross rights abuses. Military tensions on the
Korean peninsula have risen to their highest level for years, with the
communist state under the youthful Kim threatening nuclear war in response
to UN sanctions imposed after its third atomic test last month. It has also

(a) Text with standard typesetting

from US sanctions and UN charges of gross rights abuses. Military tensions
on the Korean peninsula have risen to their highest level for years,
with the communist state under the youthful Kim threatening nuclear war
in response to UN sanctions imposed after its third atomic test last month.

(b) Text with syntax-directed typesetting

Figure 1: Short fragment of text with standard typesetting (a) and with syntax and semantics motivated
typesetting (b), both in a 75 character width.

e.g.:

• Keep a single word subject with the verb.

• Keep an appositive phrase with the noun it
renames.

• Do not break inside a prepositional phrase.

• Keep marooned prepositions with the word
they modify.

• Keep the verb, the object and the preposition
together in a phrasal verb phrase.

• Keep a gerund clause with its adverbial com-
plement.

There are exceptions to these rules in certain cases
such as overly long phrases.

3 Experimental Setup

Our data set consists of a modest set of 150 sen-
tences (3918 tokens) selected from four different
documents and manually annotated by a human
expert relying on the 30 or so rules. The annota-
tion consists of marking after each token whether
one is allowed to break at that position or not.1

We developed three systems for predicting
breaks: a rule-based baseline system, a maximum-
entropy classifier that learns to classify breaks us-
ing about 100 lexical, syntactic and collocational
features, and a maximum entropy classifier that
uses a subset of these features selected by a sim-
ple genetic algorithm in a hill-climbing fashion.
We evaluated our classifiers intrinsically using the
usual measures:

1We expect to make our annotated data available upon the
publication of the paper.

• Precision: Percentage of the breaks posited
that were actually correct breaks in the gold-
standard hand-annotated data. It is possible
to get 100% precision by putting a single
break at the end.

• Recall: Percentage of the actual breaks cor-
rectly posited. It is possible to get 100% re-
call by positing a break after each token.

• F1: The geometric mean of precision and re-
call divided by their average.

It should be noted that when a text is typeset into
an area of width of a certain number of characters,
an erroneous break need not necessarily lead to an
actual break in the final output, that is an error may
not be too bad. On the other hand, a missed break
while not hurting the readability of the text may
actually lead to a long segment that may eventu-
ally worsen raggedness in the final typesetting.

Baseline Classifier We implemented a subset of
the rules (those that rely only on lexical and part-
of-speech information), as a baseline rule-based
break classifier. The baseline classifier avoids
breaks:

• after the first word in a sentence, quote or
parentheses,

• before the last word in a sentence, quote or
parentheses, and

• between a punctuation mark following a
word or between two consecutive punctua-
tion marks.

It posits breaks (i) before a word following a
punctuation, and (ii) before prepositions, auxil-
iary verbs, coordinating conjunctions, subordinate
conjunctions, relative pronouns, relative adverbs,
conjunctive adverbs, and correlative conjunctions.
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Maximum Entropy Classifier We used the
CRF++ Tool2 but with the option to run it only
as a maximum entropy classifier (Berger et al.,
1996), to train a classifier. We used a large set
of about 100 features grouped into the following
categories:

• Lexical features: These features include the
token and the POS tag for the previous, cur-
rent and the next word. We also encode
whether the word is part of a compound noun
or a verb, or is an adjective that subcatego-
rizes a specific preposition in WordNet, (e.g.,
familiar with).

• Constituency structure features: These are
unlexicalized features that take into account
in the parse tree, for a word and its previous
and next words, the labels of the parent, the
grandparent and their siblings, and number of
siblings they have. We also consider the label
of the closest common ancestor for a word
and its next word.

• Dependency structure features: These are un-
lexicalized features that essentially capture
the number of dependency relation links that
cross-over a given word boundary. The moti-
vation for these comes from the desire to limit
the amount of information that would need to
be carried over that boundary, assuming this
would be captured by the number of depen-
dency links over the break point.

• Baseline feature: This feature reflects
whether the rule-based baseline break classi-
fier posits a break at this point or not.

We use the following tools to process the sen-
tences to extract some of these features:

• Stanford constituency and dependency
parsers, (De Marneffe et al., 2006; Klein and
Manning, 2002; Klein and Manning, 2003),

• lemmatization tool in NLTK (Bird, 2006),

• WordNet for compound nouns and verbs
(Fellbaum, 1998).

2Available at http://crfpp.googlecode.com/
svn/trunk/doc/index.html.

Baseline ME-All ME-GA
Precision 77.9 87.3 89.2
Recall 80.4 90.2 90.2
F1 79.1 88.8 89.7

Table 1: Results from Baseline and Maximum En-
tropy break classifiers

Maximum Entropy Classifier with GA Feature
Selection We used a genetic algorithm on a de-
velopment data set, to select a subset of the fea-
tures above. Basically, we start with a randomly
selected set of features and through mutation and
crossover try to obtain feature combinations that
perform better over the development set in terms
of F1 score. After a few hundred generations of
this kind of hill-climbing, we get a subset of fea-
tures that perform the best.

4 Results

Our current evaluation is only intrinsic in that we
measure our performance in getting the break and
no-break points correctly in a test set. The results
are shown in Table 1. The column ME-All shows
the results for a maximum entropy classifier us-
ing all the features and the column ME-GA shows
the results for a maximum entropy classifier using
about 50 of the about 100 features available, as se-
lected by the genetic algorithm.

Our best system delivers 89.2% precision and
90.2% recall (with 89.7% F1), improving the rule-
based baseline by about 11 points and the classifier
trained on all features by about 1 point in F1.

After processing our test set with the ME-GA
classifier, we can feed the segments into a stan-
dard word-wrapping dynamic programming algo-
rithm (along with a maximum width) and obtain a
typeset version with minimum raggedness on the
right margin. This algorithm is fast enough to use
even dynamically when resizing a window if the
text is displayed in a browser on a screen. Fig-
ure 1 (b) displays an example of a small fragment
of text typeset using the output of our best break
classifier. One can immediately note that this type-
setting has more raggedness overall, but avoids the
bad breaks in (a). We are currently in the process
of designing a series of experiments for extrinsic
evaluation to determine if such typeset text helps
comprehension for secondary language learners.
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4.1 Error Analysis
An analysis of the errors our best classifier makes
(which may or may not be translated into an actual
error in the final typesetting) shows that the major-
ity of the errors basically can be categorized into
the following groups:

• Incorrect breaks posited for multiword collo-
cations (e.g., act* of war,3 rule* of law, far
ahead* of, raining cats* and dogs, etc.)

• Missed breaks after a verb (e.g., calls | an act
of war, proceeded to | implement, etc.)

• Missed breaks before or after prepositions or
adverbials (e.g., the day after | the world re-
alized, every kind | of interference)

We expect to overcome such cases by increasing
our training data size significantly by using our
classifier to break new texts and then have a hu-
man annotator to manually correct the breaks.

5 Conclusions and Future Work

We have used syntactically motivated information
to help in typesetting text to facilitate better under-
standing of English text especially by secondary
language learners, by avoiding breaks which may
cause unnecessary anticipation errors. We have
cast this as a classification problem to indicate
whether to break after a certain word or not, by
taking into account a variety of features. Our best
system maximum entropy framework uses about
50 such features, which were selected using a ge-
netic algorithm and performs significantly better
than a rule-based break classifier and better than a
maximum entropy classifier that uses all available
features.

We are currently working on extending this
work in two main directions: We are designing
a set of experiments to extrinsically test whether
typesetting by our system improves reading ease
and comprehension. We are also looking into a
break labeling scheme that is not binary but based
on a notion of “badness” – perhaps quantized into
3-4 grades, that would allow flexibility between
preventing bad breaks and minimizing raggedness.
For instance, breaking a noun-phrase right after an
initial the may be considered very bad. On the
other hand, although it is desirable to keep an ob-
ject NP together with the preceding transitive verb,

3* indicates a spurious incorrect break, | indicates a
missed break.

breaking before the object NP, could be OK, if not
doing so causes an inordinate amount of ragged-
ness. Then the final typesetting stage can optimize
a combination of raggedness and the total “bad-
ness” of all the breaks it posits.
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Abstract

We present the result of an annotation task
on regular polysemy for a series of seman-
tic classes or dot types in English, Dan-
ish and Spanish. This article describes
the annotation process, the results in terms
of inter-encoder agreement, and the sense
distributions obtained with two methods:
majority voting with a theory-compliant
backoff strategy, and MACE, an unsuper-
vised system to choose the most likely
sense from all the annotations.

1 Introduction

This article shows the annotation task of a corpus
in English, Danish and Spanish for regular poly-
semy. Regular polysemy (Apresjan, 1974; Puste-
jovsky, 1995; Briscoe et al., 1995; Nunberg, 1995)
has received a lot of attention in computational
linguistics (Boleda et al., 2012; Rumshisky et al.,
2007; Shutova, 2009). The lack of available sense-
annotated gold standards with underspecification
is a limitation for NLP applications that rely on
dot types1 (Rumshisky et al., 2007; Poibeau, 2006;
Pustejovsky et al., 2009).

Our goal is to obtain human-annotated corpus
data to study regular polysemy and to detect it in
an automatic manner. We have collected a cor-
pus of annotated examples in English, Danish and
Spanish to study the alternation between senses
and the cases of underspecification, including a
contrastive study between languages. Here we de-
scribe the annotation process, its results in terms
of inter-encoder agreement, and the sense distri-
butions obtained with two methods: majority vot-
ing with a theory-compliant backoff strategy and,
MACE an unsupervised system to choose the most
likely sense from all the annotations.

1The corpus is freely available at
http://metashare.cst.dk/repository/search/?q=regular+polysemy

2 Regular polysemy

Very often a word that belongs to a semantic type,
like Location, can behave as a member of another
semantic type, like Organization, as shown by the
following examples from the American National
Corpus (Ide and Macleod, 2001) (ANC):

a) Manuel died in exile in 1932 in England.
b) England was being kept busy with other con-

cerns
c) England was, after all, an important wine

market
In case a), England refers to the English terri-
tory (Location), whereas in b) it refers arguably to
England as a political entity (Organization). The
third case refers to both. The ability of certain
words to switch between semantic types in a pre-
dictable manner is referred to as regular polysemy.
Unlike other forms of meaning variation caused
by metaphor or homonymy, regular polysemy is
considered to be caused by metonymy (Apresjan,
1974; Lapata and Lascarides, 2003). Regular pol-
ysemy is different from other forms of polysemy
in that both senses can be active at the same in a
predicate, which we refer to as underspecification.
Underspecified instances can be broken down in:

1. Contextually complex: England was, after
all, an important wine market

2. Zeugmatic, in which two mutually exclusive
readings are coordinated: England is conser-
vative and rainy

3. Vague, in which no contextual element en-
forces a reading: The case of England is sim-
ilar

3 Choice of semantic classes

The Generative Lexicon (GL) (Pustejovsky, 1995)
groups nouns with their most frequent metonymic
sense in a semantic class called a dot type. For
English, we annotate 5 dot types from the GL:

1. Animal/Meat: ”The chicken ran away” vs.
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”the chicken was delicious”.
2. Artifact/Information : ”The book fell” vs.

”the book was boring”.
3. Container/Content: ”The box was red” vs.

”I hate the whole box”.
4. Location/Organization: ”England is far”

vs. ”England starts a tax reform”.
5. Process/Result: ”The building took months

to finish” vs. ”the building is sturdy”.
For Danish and Spanish, we have chosen Con-

tainer/Content and Location/Organization. We
chose the first one because we consider it the
most prototypical case of metonymy from the ones
listed in the GL. We chose the second one because
the metonymies in locations are a common con-
cern for Named-Entity Recognition (Johannessen
et al., 2005) and a previous area of research in
metonymy resolution (Markert and Nissim, 2009).

4 Annotation Scheme

For each of the nine (five for English, two for Dan-
ish, two for Spanish) dot types, we have randomly
selected 500 corpus examples. Each example con-
sists of a sentence with a selected headword be-
longing to the corresponding dot type. In spite of
a part of the annotation being made with a con-
trastive study in mind, no parallel text was used
to avoid using translated text. For English and
Danish we used freely available reference corpora
(Ide and Macleod, 2001; Andersen et al., 2002)
and, for Spanish, a corpus built from newswire and
technical text (Vivaldi, 2009).

For most of the English examples we used the
words in Rumshisky (2007), except for Loca-
tion/Organization. For Danish and Spanish we
translated the words from English. We expanded
the lists using each language’s wordnet (Pedersen
et al., 2009; Gonzalez-Agirre et al., 2012) as the-
saurus to make the total of occurrences reach 500
after we had removed homonyms and other forms
of semantic variation outside of the purview of
regular polysemy.

For Location/Organization we have used high-
frequency names of geopolitical locations from
each of the corpora. Many of them are corpus-
specific (e.g. Madrid is more frequent in the
Spanish corpus) but a set of words is shared:
Afghanistan, Africa, America, China, England,
Europe,Germany, London.

Every dot type has its particularities that we had
to deal with. For instance, English has lexical al-

ternatives for the meat of several common animals,
like venison or pork instead of deer and pig. This
lexical phenomenon does not impede metonymy
for the animal names, it just makes it less likely.
In order to assess this, we have included 20 ex-
amples of cow. The rest of the dataset consists of
animal names that do not participate in this lexical
alternation, like eel, duck, chicken, or sardine.

We call the first sense in the pair of metonyms
that make up the dot type the literal sense, and the
second sense the metonymic sense, e.g. Location
is the literal sense in Location/Organization.

Each block of 500 sentences belonging to a
dot type was an independent annotation subtask
with an isolated description. The annotator was
shown an example and had to determine whether
the headword in the example had the literal,
metonymic or the underspecified sense. Figure 1
shows an instance of the annotation process.

Figure 1: Screen capture for a Mechanical Turk
annotation instance or HIT

This annotation scheme is designed with the in-
tention of capturing literal, metonymic and under-
specified senses, and we use an inventory of three
possible answers, instead of using Markert and
Nissim’s (Markert and Nissim, 2002; Nissim and
Markert, 2005) approach with fine-grained sense
distinctions, which are potentially more difficult to
annotate and resolve automatically. Markert and
Nissim acknowledge a mixed sense they define as
being literal and metonymic at the same time.

For English we used Amazon Mechanical Turk
(AMT) with five annotations per example by turk-
ers certified as Classification Masters. Using AMT
provides annotations very quickly, possibly at the
expense of reliability, but it has been proven suit-
able for sense-disambiguation task (Snow et al.,
2008). Moreover, it is not possible to obtain an-
notations for every language using AMT. Thus,
for Danish and Spanish, we obtained annotations
from volunteers, most of them native or very pro-
ficient non-natives. See Table 1 for a summary of
the annotation setup for each language.

After the annotation task we obtained the agree-
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Language annotators type
Danish 3-4 volunteer
English 5 AMT
Spanish 6-7 volunteer

Table 1: Amount and type of annotators per in-
stance for each language.

ment values shown in Table 2. The table also pro-
vides the abbreviated names of the datasets.

Dot type Ao ± σ α
eng:animeat 0.86 ± 0.24 0.69
eng:artinfo 0.48 ± 0.23 0.12
eng:contcont 0.65 ± 0.28 0.31
eng:locorg 0.72 ± 0.29 0.46
eng:procres 0.5 ± 0.24 0.10
da:contcont 0.32 ± 0.37 0.39
da:locorg 0.73 ± 0.37 0.47
spa:contcont 0.36 ± 0.3 0.42
spa:locorg 0.52 ±0.28 0.53

Table 2: Averaged observed agreement and its
standard deviation and alpha

Average observed agreement (Ao) is the mean
across examples for the proportion of matching
senses assigned by the annotators. Krippendorff’s
alpha is an aggregate measure that takes chance
disagreement in consideration and accounts for the
replicability of an annotation scheme. There are
large differences in α across datasets.

The scheme can only provide reliable (Artstein
and Poesio, 2008) annotations (α > 0.6) for one
dot type2. This indicates that not all dot types are
equally easy to annotate, regardless of the kind of
annotator. In spite of the number and type of an-
notators, the Location/Organization dot type gives
fairly high agreement values for a semantic task,
and this behavior is consistent across languages.

5 Assigning sense by majority voting

Each example has more than one annotation and
we need to determine a single sense tag for each
example. However, if we assign senses by major-
ity voting, we need a backoff strategy in case of
ties.
The common practice of backing off to the most
frequent sense is not valid in this scenario, where
there can be a tie between the metonymic and
the underspecified sense. We use a backoff that
incorporates our assumption about the relations

2We have made the data freely available at
http://metashare.cst.dk/repository/search/?q=regular+polysemy

between senses, namely that the underspecified
sense sits between the literal and the metonymic
senses:

1. If there is a tie between the underspecified
and literal senses, the sense is literal.

2. If there is a tie between the underspec-
ified and metonymic sense, the sense is
metonymic.

3. If there is a tie between the literal and
metonymic sense or between all three senses,
the sense is underspecified.

Dot type L M U V B
eng:animeat 358 135 7 3 4
eng:artinfo 141 305 54 8 48
eng:contcont 354 120 25 0 25
eng:locorg 307 171 22 3 19
eng:procres 153 298 48 3 45
da:contcont 328 82 91 53 38
da:locorg 322 95 83 44 39
spa:contcont 291 140 69 54 15
soa:locorg 314 139 47 40 7

Table 3: Literal, Metonymic and Underspecified
sense distributions, and underspecified senses bro-
ken down in Voting and Backoff

The columns labelled L, M and U in Table 3
provide the sense distributions for each dot type.
The preference for the underspecified sense varies
greatly, from the very infrequent for English in
Animal/Meat to the two Danish datasets where the
underspecified sense evens with the metonymic
one. However, the Danish examples have mostly
three annotators, and chance disagreement is the
highest for this language in this setup, i.e., the
chance for an underspecified sense in Danish to
be assigned by our backoff strategy is the highest.

Columns V and B show respectively whether
the underspecified senses are a result of majority
voting or backoff. In contrast to volunteers, turk-
ers disprefer the underspecified option and most
of the English underspecified senses are assigned
by backoff. However, it cannot be argued that
turkers have overused clicking on the first option
(a common spamming behavior) because we can
see that two of the English dot types (eng:artinfo,
eng:procres) have majority of metonymic senses,
which are always second in the scheme (cf. Fig.
1). Looking at the amount of underspecified
senses that have been obtained by majority vot-
ing for Danish and Spanish, we suggest that the
level of abstraction required by this annotation is
too high for turkers to perform at a level compara-
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ble to that of our volunteer annotators.

Figure 2: Proportion of non-literality in location
names across languages

Figure 2 shows the proportion of non-literal
(metonymic+underspecified) examples for the
Location/Organization words that are common
across languages. We can see that individual
words show sense skewdness. This skewdness is
a consequence of the kind of text in the corpus:
e.g. America has a high proportion of non-literal
senses in the ANC, where it usually means ”the
population or government of the US”. Similarly,
it is literal less than 50% of the times for the other
two languages. In contrast, Afghanistan is most
often used in its literal location sense.

6 Assigning senses with MACE

Besides using majority voting with backoff , we
use MACE (Hovy et al., 2013) to obtain the sense
tag for each example.

Dot type L M U D I
eng:animeat 340 146 14 .048 3
eng:artinfo 170 180 150 .296 46
eng:contcont 295 176 28 .174 0
eng:locorg 291 193 16 .084 3
eng:procres 155 210 134 .272 33
da:contcont 223 134 143 .242 79
da:locorg 251 144 105 .206 53
spa:contcont 270 155 75 .074 56
spa:locorg 302 146 52 .038 40

Table 4: Sense distributions calculated with
MACE, plus Difference and Intersection of under-
specified senses between methods

MACE is an unsupervised system that uses
Expectation-Maximization (EM) to estimate the
competence of annotators and recover the most
likely answer. MACE is designed as a Bayesian
network that treats the ”correct” labels as latent
variables. This EM method can also be understood

as a clustering that assigns the value of the closest
calculated latent variable (the sense tag) to each
data point (the distribution of annotations).

Datasets that show less variation between
senses calculated using majority voting and using
MACE will be more reliable. Along the sense dis-
tribution in the first three columns, Table 4 pro-
vides the proportion of the senses that is different
between majority voting and MACE (D), and the
size of the intersection (I) of the set of underspec-
ified examples by voting and by MACE, namely
the overlap of the U columns of Tables 3 and 4.

Table 4 shows a smoother distribution of senses
than Table 3, as majority classes are down-
weighted by MACE. It takes very different de-
cisions than majority voting for the two En-
glish datasets with lowest agreement (eng:artinfo,
eng:procres) and for the Danish datasets, which
have the fewest annotators. For these cases, the
diferences oscillate between 0.206 and 0.296.

Although MACE increases the frequency of
the underspecified senses for all datasets but one
(eng:locorg), the underspecified examples in Ta-
ble 3 are not subsumed by the MACE results. The
values in the I column show that none of the un-
derspecified senses of eng:contcont receive the un-
derspecified sense by MACE. All of these exam-
ples, however, were resolved by backoff, as well
as most of the other underspecified cases in the
other English datasets. In contrast to the voting
method, MACE does not operate with any theo-
retical assumption about the relation between the
three senses and treats them independently when
assigning the most likely sense tag to each distri-
bution of annotations.

7 Comparison between methods

The voting system and MACE provide different
sense tags. The following examples (three from
eng:contcont and four from eng:locorg) show dis-
agreement between the sense tag assigned by vot-
ing and by MACE:

d) To ship a crate of lettuce across the country,
a trucker needed permission from a federal
regulatory agency.

e) Controls were sent a package containing
stool collection vials and instructions for col-
lection and mailing of samples.

f) In fact, it was the social committee, and
our chief responsibilities were to arrange for
bands and kegs of beer .
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g) The most unpopular PM in Canada’s mod-
ern history, he introduced the Goods and Ser-
vices Tax , a VAT-like national sales tax.

h) This is Boston’s commercial and financial
heart , but it s far from being an homogeneous
district [...]

i) California has the highest number of people
in poverty in the nation — 6.4 million, includ-
ing nearly one in five children.

j) Under the Emperor Qianlong (Chien Lung),
Kangxi’s grandson, conflict arose between
Europe’s empires and the Middle Kingdom.

All of the previous examples were tagged as un-
derspecified by either the voting system or MACE,
but not by both. Table 5 breaks down the five an-
notations that each example received by turkers in
literal, metonymic and underspecified. The last
two columns show the sense tag provided by vot-
ing or MACE.

Example L M U VOTING MACE
d) 2 2 1 U L
e) 3 1 1 L U
f) 1 2 2 M U
g) 2 2 1 U M
h) 2 2 1 U M
i) 3 0 2 L U
j) 1 2 2 M U

Table 5: Annotation summary and sense tags for
the examples in this section

Just by looking at the table it is not immediate
which method is preferable to assign sense tags
in cases that are not clear-cut. In the case of i),
we consider the underspecified sense more ade-
quate than the literal one obtained by voting, just
like we are also more prone to prefer the under-
specified meaning in f), which has been assigned
by MACE. In the case of h), we consider that the
strictly metonymic sense assigned by MACE does
not capture both the organization- (”commercial
and financial”) and location-related (”district”) as-
pects of the meaning, and we would prefer the un-
derspecifed reading. However, MACE can also
overgenerate the underspecified sense, as the vials
mentioned in example e) are empty and have no
content yet, thereby being literal containers and
not their content.

Examples d), g) and h) have the same dis-
tribution of annotations—namely 2 literal, 2
metonymic and 1 underspecified—but d) has re-
ceived the literal sense from MACE, whereas the

other two are metonymic. This difference is a re-
sult of having trained MACE independently for
each dataset. The three examples receive the un-
derspecified sense from the voting scheme, since
neither the literal or metonymic sense is more
present in the annotations.

On the other hand, e) and i) are skewed towards
literality and receive the literal sense by plurality
without having to resort to any backoff, but they
are marked as underspecified by MACE.

8 Conclusions

We have described the annotation process of a
regular-polysemy corpus in English, Danish and
Spanish which deals with five different dot types.
After annotating the examples for their literal,
metonymic or underspecified reading, we have
determined that this scheme can provide reliable
(α over 0.60) annotations for one dot type. Not
all the dot types are equally easy to annotate.
The main source of variation in agreement, and
thus annotation reliability, is the dot type itself.
While eng:animeat and eng:locorg appear the eas-
iest, eng:artinfo and eng:procres obtain very low α
scores.

9 Further work

After collecting annotated data, the natural next
step is to attempt class-based word-sense disam-
biguation (WSD) to predict the senses in Tables 3
and 4 using a state-of-the-art system like Nastase
et al. (2012). We will consider a sense-assignment
method (voting or MACE) as more appropriate if
it provides the sense tags that are easiest to learn
by our WSD system.

However, learnability is only one possible pa-
rameter for quality, and we also want to develop
an expert-annotated gold standard to compare our
data against. We also consider the possibility of
developing a sense-assignment method that relies
both on the theoretical assumption behind the vot-
ing scheme and the latent-variable approach used
by MACE.
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Abstract

Syntax-based vector spaces are used widely
in lexical semantics and are more versatile
than word-based spaces (Baroni and Lenci,
2010). However, they are also sparse, with
resulting reliability and coverage problems.
We address this problem by derivational
smoothing, which uses knowledge about
derivationally related words (oldish→ old)
to improve semantic similarity estimates.
We develop a set of derivational smoothing
methods and evaluate them on two lexical
semantics tasks in German. Even for mod-
els built from very large corpora, simple
derivational smoothing can improve cover-
age considerably.

1 Introduction

Distributional semantics (Turney and Pantel, 2010)
builds on the assumption that the semantic similar-
ity of words is strongly correlated to the overlap
between their linguistic contexts. This hypothesis
can be used to construct context vectors for words
directly from large text corpora in an unsupervised
manner. Such vector spaces have been applied suc-
cessfully to many problems in NLP (see Turney and
Pantel (2010) or Erk (2012) for current overviews).

Most distributional models in computational lex-
ical semantics are either (a) bag-of-words models,
where the context features are words within a sur-
face window around the target word, or (b) syn-
tactic models, where context features are typically
pairs of dependency relations and context words.

The advantage of syntactic models is that they
incorporate a richer, structured notion of context.
This makes them more versatile; the Distributional
Memory framework by Baroni and Lenci (2010) is
applicable to a wide range of tasks. It is also able –
at least in principle – to capture more fine-grained

types of semantic similarity such as predicate-
argument plausibility (Erk et al., 2010). At the
same time, syntactic spaces are much more prone
to sparsity problems, as their contexts are sparser.
This leads to reliability and coverage problems.

In this paper, we propose a novel strategy
for combating sparsity in syntactic vector spaces,
derivational smoothing. It follows the intuition that
derivationally related words (feed – feeder, blocked
– blockage) are, as a rule, semantically highly simi-
lar. Consequently, knowledge about derivationally
related words can be used as a “back off” for sparse
vectors in syntactic spaces. For example, the pair
oldish – ancient should receive a high semantic
similarity, but in practice, the vector for oldish will
be very sparse, which makes this result uncertain.
Knowing that oldish is derivationally related to old
allows us to use the much less sparse vector for old
as a proxy for oldish.

We present a set of general methods for smooth-
ing vector similarity computations given a resource
that groups words into derivational families (equiv-
alence classes) and evaluate these methods on Ger-
man for two distributional tasks (similarity predic-
tion and synonym choice). We find that even for
syntactic models built from very large corpora, a
simple derivational resource that groups words on
morphological grounds can improve the results.

2 Related Work

Smoothing techniques – either statistical, distribu-
tional, or knowledge-based – are widely applied in
all areas of NLP. Many of the methods were first
applied in Language Modeling to deal with unseen
n-grams (Chen and Goodman, 1999; Dagan et al.,
1999). Query expansion methods in Information
Retrieval are also prominent cases of smoothing
that addresses the lexical mismatch between query
and document (Voorhees, 1994; Gonzalo et al.,
1998; Navigli and Velardi, 2003). In lexical se-
mantics, smoothing is often achieved by backing
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off from words to semantic classes, either adopted
from a resource such as WordNet (Resnik, 1996) or
induced from data (Pantel and Lin, 2002; Wang et
al., 2005; Erk et al., 2010). Similarly, distributional
features support generalization in Named Entity
Recognition (Finkel et al., 2005).

Although distributional information is often used
for smoothing, to our knowledge there is little
work on smoothing distributional models them-
selves. We see two main precursor studies for our
work. Bergsma et al. (2008) build models of se-
lectional preferences that include morphological
features such as capitalization and the presence of
digits. However, their approach is task-specific and
requires a (semi-)supervised setting. Allan and Ku-
maran (2003) make use of morphology by building
language models for stemming-based equivalence
classes. Our approach also uses morphological
processing, albeit more precise than stemming.

3 A Resource for German Derivation

Derivational morphology describes the process of
building new (derived) words from other (basis)
words. Derived words can, but do not have to, share
the part-of-speech (POS) with their basis (oldA→
oldishA vs. warmA→ warmV , warmthN ). Words
can be grouped into derivational families by form-
ing the transitive closure over individual derivation
relations. The words in these families are typically
semantically similar, although the exact degree de-
pends on the type of relation and idiosyncratic fac-
tors (bookN → bookishA, Lieber (2009)).

For German, there are several resources with
derivational information. We use version 1.3
of DERIVBASE (Zeller et al., 2013),1 a freely
available resource that groups over 280,000 verbs,
nouns, and adjectives into more than 17,000 non-
singleton derivational families. It has a precision of
84% and a recall of 71%. Its higher coverage com-
pared to CELEX (Baayen et al., 1996) and IMSLEX

(Fitschen, 2004) makes it particularly suitable for
the use in smoothing, where the resource should
include low-frequency lemmas.

The following example illustrates a family that
covers three POSes as well as a word with a pre-
dominant metaphorical reading (to kneel→ to beg):

knieenV (to kneelV ), beknieenV (to
begV ), KniendeN (kneeling personN ),
kniendA (kneelingA), KnieNn (kneeN )

1Downloadable from: http://goo.gl/7KG2U

Using derivational knowledge for smoothing raises
the question of how semantically similar the lem-
mas within a family really are. Fortunately, DE-
RIVBASE provides information that can be used in
this manner. It was constructed with hand-written
derivation rules, employing string transformation
functions that map basis lemmas onto derived lem-
mas. For example, a suffixation rule using the affix
“heit” generates the derivation dunkel – Dunkel-
heit (darkA – darknessN ). Since derivational fam-
ilies are defined as transitive closures, each pair
of words in a family is connected by a derivation
path. Because the rules do not have a perfect pre-
cision, our confidence in pairs of words decreases
the longer the derivation path between them. To re-
flect this, we assign each pair a confidence of 1/n,
where n is the length of the shortest path between
the lemmas. For example, bekleiden (enrobeV ) is
connected to Verkleidung (disguiseN ) through three
steps via the lemmas kleiden (dressV ) and verklei-
den (disguiseV ) and is assigned the confidence 1/3.

4 Models for Derivational Smoothing

Derivational smoothing exploits the fact that deriva-
tionally related words are also semantically related,
by combining and/or comparing distributional rep-
resentations of derivationally related words. The
definition of a derivational smoothing algorithm
consists of two parts: a trigger and a scheme.

Notation. Given a word w, we use w to denote
its distributional vector and D(w) to denote the set
of vectors for the derivational family of w. We
assume that w ∈ D(w). For words that have no
derivations in DERIVBASE, D(w) is a singleton
set, D(w) = {w}. Let α(w,w′) denote the confi-
dence of the pair (w,w′), as explained in Section 3.

Smoothing trigger. As discussed above, there is
no guarantee for high semantic similarity within a
derivational family. For this reason, smoothing may
also drown out information. In this paper, we report
on two triggers: smooth always always performs
smoothing; smooth if sim=0 smooths only when
the unsmoothed similarity sim(w1,w2) is zero or
unknown (due to w1 or w2 not being in the model).

Smoothing scheme. We present three smoothing
schemes, all of which apply to the level of complete
families. The first two schemes are exemplar-based
schemes, which define the smoothed similarity for
a word pair as a function of the pairwise similarities
between all words of the two derivational families.
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The first one, maxSim, checks for particularly simi-
lar words in the families:

maxSim(w1, w2) = max
w′

1∈D(w1)
w′

2∈D(w2)

sim(w′1,w
′
2)

The second one, avgSim, computes the average
pairwise similarity (N is the number of pairs):

avgSim(w1, w2) =
1

N

∑

w′
1∈D(w1)

w′
2∈D(w2)

sim(w′1,w
′
2)

The third scheme, centSim, is prototype-based. It
computes a centroid vector for each derivational
family, which can be thought of as a representation
for the concept(s) that it expresses:

centSim(w1, w2) = sim
(
c(D(w1)), c(D(w2))

)

where c(D(w)) =∑w′∈D(w) α(w,w
′) ·w′ is the

confidence-weighted centroid vector. centSim is
similar to avgSim. It is more efficient to calculate
and effectively introduces a kind or regularization,
where outliers in either family have less impact on
the overall result.

These models only represents a sample of possi-
ble derivational smoothing methods. We performed
a number of additional experiments (POS-restricted
smoothing, word-based, and pair-based smoothing
triggers), but they did not yield any improvements
over the simpler models we present here.

5 Experimental Evaluation

Syntactic Distributional Model. The syntactic
distributional model that we use represents target
words by pairs of dependency relations and context
words. More specifically, we use the W × LW
matricization of DM.DE, the German version (Padó
and Utt, 2012) of Distributional Memory (Baroni
and Lenci, 2010). DM.DE was created on the basis
of the 884M-token SDEWAC web corpus (Faaß et
al., 2010), lemmatized, tagged, and parsed with the
German MATE toolkit (Bohnet, 2010).

Experiments. We evaluate the impact of smooth-
ing on two standard tasks from lexical semantics.
The first task is predicting semantic similarity. We
lemmatized and POS-tagged the German GUR350
dataset (Zesch et al., 2007), a set of 350 word pairs
with human similarity judgments, created analo-
gously to the well-known Rubenstein and Good-
enough (1965) dataset for English.2 We predict

2Downloadable from: http://goo.gl/bFokI

semantic similarity as cosine similarity. We make
a prediction for a word pair if both words are repre-
sented in the semantic space and their vectors have
a non-zero similarity.

The second task is synonym choice on the Ger-
man version of the Reader’s Digest WordPower
dataset (Wallace and Wallace, 2005).2 This dataset,
which we also lemmatized and POS-tagged, con-
sists of 984 target words with four synonym can-
didates each (including phrases), one of which is
correct. Again, we compute semantic similarity as
the cosine between target and a candidate vector
and pick the highest-similarity candidate as syn-
onym. For phrases, we compute the maximum
pairwise word similarity. We make a prediction for
an item if the target as well as at least one candi-
date are represented in the semantic space and their
vectors have a non-zero similarity.

We expect differences between the two tasks
with regard to derivational smoothing, since the
words within derivational families are generally re-
lated but often not synonymous (cf. the example
in Section 3). Thus, semantic similarity judgments
should profit more easily from derivational smooth-
ing than synonym choice.

Baseline. Our baseline is a standard bag-of-
words vector space (BOW), which represents target
words by the words occurring in their context. We
use standard parameters (±10 word window, 8.000
most frequent verb, noun, and adjective lemmas).
The model was created from the same corpus as
DM.DE. We also applied derivational smoothing
to this model, but did not obtain improvements.

Evaluation. To analyze the impact of smoothing,
we evaluate the coverage of models and the quality
of their predictions separately. In both tasks, cover-
age is the percentage of items for which we make
a prediction. We measure quality of the semantic
similarity task as the Pearson correlation between
the model predictions and the human judgments
for covered items (Zesch et al., 2007). For syn-
onym choice, we follow the method established by
Mohammad et al. (2007), measuring accuracy over
covered items, with partial credit for ties.

Results for Semantic Similarity. Table 1 shows
the results for the first task. The unsmoothed
DM.DE model attains a correlation of r = 0.44
and a coverage of 58.9%. Smoothing increases the
coverage substantially to 88%. Additionally, con-
servative, prototype-based smoothing (if sim = 0)
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Smoothing
trigger

Smoothing
scheme

r Cov
%

DM.DE, unsmoothed .44 58.9

DM.DE,
smooth always

avgSim .30 88.0
maxSim .43 88.0
centSim .44 88.0

DM.DE,
smooth if sim = 0

avgSim .43 88.0
maxSim .42 88.0
centSim .47 88.0

BOW baseline .36 94.9

Table 1: Results on the semantic similarity task
(r: Pearson correlation, Cov: Coverage)

increases correlation somewhat to r = 0.47. The
difference to the unsmoothed model is not signif-
icant at p = 0.05 according to Fisher’s (1925)
method of comparing correlation coefficients.

The bag-of-words baseline (BOW) has a greater
coverage than DM.DE models, but at the cost
of lower correlation across the board. The only
DM.DE model that performs worse than the BOW
baseline is the non-conservative avgSim (average
similarity) scheme. We attribute this weak per-
formance to the presence of many pairwise zero
similarities in the data, which makes the avgSim
predictions unreliable.

To our knowledge, there are no previous pub-
lished papers on distributional approaches to mod-
eling this dataset. The best previous result is a
GermaNet/Wikipedia-based model by Zesch et al.
(2007). It reports a higher correlation (r = 0.59)
but a very low coverage at 33.1%.

Results for Synonym Choice. The results for
the second task are shown in Table 2. The un-
smoothed model achieves an accuracy of 53.7%
and a coverage of 80.8%, as reported by Padó
and Utt (2012). Smoothing increases the cover-
age by almost 6% to 86.6% (for example, a ques-
tion item for inferior becomes covered after back-
ing off from the target to Inferiorität (inferiority)).
All smoothed models show a loss in accuracy, al-
beit small. The best model is again a conservative
smoothing model (sim = 0) with a loss of 1.1% ac-
curacy. Using bootstrap resampling (Efron and Tib-
shirani, 1993), we established that the difference
to the unsmoothed DM.DE model is not signifi-
cant at p < 0.05. This time, the avgSim (average
similarity) smoothing scheme performs best, with
the prototype-based scheme in second place. Thus,
the results for synonym choice are less clear-cut:
derivational smoothing can trade accuracy against

Smoothing
trigger

Smoothing
scheme

Acc
%

Cov
%

DM.DE, unsmoothed (Padó & Utt 2012) 53.7 80.8

DM.DE,
smooth always

avgSim 46.0 86.6
maxSim 50.3 86.6
centSim 49.1 86.6

DM.DE,
smooth if sim = 0

avgSim 52.6 86.6
maxSim 51.2 86.6
centSim 51.3 86.6

BOW “baseline” 56.9 98.5

Table 2: Results on the synonym choice task
(Acc: Accuracy, Cov: Coverage)

coverage but does not lead to a clear improvement.
What is more, the BOW “baseline” significantly
outperforms all syntactic models, smoothed and
unsmoothed, with an almost perfect coverage com-
bined with a higher accuracy.

6 Conclusions and Outlook

In this paper, we have introduced derivational
smoothing, a novel strategy to combating sparsity
in syntactic vector spaces by comparing and com-
bining the vectors of morphologically related lem-
mas. The only information strictly necessary for
the methods we propose is a grouping of lemmas
into derivationally related classes. We have demon-
strated that derivational smoothing improves two
tasks, increasing coverage substantially and also
leading to a numerically higher correlation in the
semantic similarity task, even for vectors created
from a very large corpus. We obtained the best re-
sults for a conservative approach, smoothing only
zero similarities. This also explains our failure
to improve less sparse word-based models, where
very few pairs are assigned a similarity of zero.
A comparison of prototype- and exemplar-based
schemes did not yield a clear winner. The estima-
tion of generic semantic similarity can profit more
from derivational smoothing than the induction of
specific lexical relations.

In future work, we plan to work on other eval-
uation tasks, application to other languages, and
more sophisticated smoothing schemes.
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Abstract
Although diathesis alternations have been
used as features for manual verb clas-
sification, and there is recent work on
incorporating such features in computa-
tional models of human language acquisi-
tion, work on large scale verb classifica-
tion has yet to examine the potential for
using diathesis alternations as input fea-
tures to the clustering process. This pa-
per proposes a method for approximating
diathesis alternation behaviour in corpus
data and shows, using a state-of-the-art
verb clustering system, that features based
on alternation approximation outperform
those based on independent subcategoriza-
tion frames. Our alternation-based ap-
proach is particularly adept at leveraging
information from less frequent data.

1 Introduction

Diathesis alternations (DAs) are regular alterna-
tions of the syntactic expression of verbal argu-
ments, sometimes accompanied by a change in
meaning. For example, The man broke the win-
dow ↔ The window broke. The syntactic phe-
nomena are triggered by the underlying semantics
of the participating verbs. Levin (1993)’s seminal
book provides a manual inventory both of DAs and
verb classes where membership is determined ac-
cording to participation in these alternations. For
example, most of the COOK verbs (e.g. bake,
cook, fry . . . ) can all take various DAs, such as
the causative alternation, middle alternation and
instrument subject alternation.

In computational linguistics, work inspired by
Levin’s classification has exploited the link be-
tween syntax and semantics for producing clas-
sifications of verbs. Such classifications are use-
ful for a wide variety of purposes such as se-
mantic role labelling (Gildea and Jurafsky, 2002),

predicting unseen syntax (Parisien and Steven-
son, 2010), argument zoning (Guo et al., 2011)
and metaphor identification (Shutova et al., 2010).
While Levin’s classification can be extended man-
ually (Kipper-Schuler, 2005), a large body of re-
search has developed methods for automatic verb
classification since such methods can be applied
easily to other domains and languages.

Existing work on automatic classification relies
largely on syntactic features such as subcatego-
rization frames (SCF)s (Schulte im Walde, 2006;
Sun and Korhonen, 2011; Vlachos et al., 2009;
Brew and Schulte im Walde, 2002). There has also
been some success incorporating selectional pref-
erences (Sun and Korhonen, 2009).

Few have attempted to use, or approximate,
diathesis features directly for verb classification
although manual classifications have relied on
them heavily, and there has been related work on
identifying the DAs themselves automatically us-
ing SCF and semantic information (Resnik, 1993;
McCarthy and Korhonen, 1998; Lapata, 1999;
McCarthy, 2000; Tsang and Stevenson, 2004).
Exceptions to this include Merlo and Stevenson
(2001), Joanis et al. (2008) and Parisien and
Stevenson (2010, 2011). Merlo and Stevenson
(2001) used cues such as passive voice, animacy
and syntactic frames coupled with the overlap
of lexical fillers between the alternating slots to
predict a 3-way classification (unergative, unac-
cusative and object-drop). Joanis et al. (2008)
used similar features to classify verbs on a much
larger scale. They classify up to 496 verbs us-
ing 11 different classifications each having be-
tween 2 and 14 classes. Parisien and Steven-
son (2010, 2011) used hierarchical Bayesian mod-
els on slot frequency data obtained from child-
directed speech parsed with a dependency parser
to model acquisition of SCF, alternations and ul-
timately verb classes which provided predictions
for unseen syntactic behaviour of class members.
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Frame Example sentence Freq
NP+PPon Jessica sprayed paint on the wall 40
NP+PPwith Jessica sprayed the wall with paint 30
PPwith *The wall sprayed with paint 0
PPon Jessica sprayed paint on the wall 30

Table 1: Example frames for verb spray

In this paper, like Sun and Korhonen (2009);
Joanis et al. (2008) we seek to automatically clas-
sify verbs into a broad range of classes. Like Joa-
nis et al., we include evidence of DA, but we do
not manually select features attributed to specific
alternations but rather experiment with syntactic
evidence for alternation approximation. We use
the verb clustering system presented in Sun and
Korhonen (2009) because it achieves state-of-the-
art results on several datasets, including those of
Joanis et al., even without the additional boost in
performance from the selectional preference data.
We are interested in the improvement that can be
achieved to verb clustering using approximations
for DAs, rather than the DA per se. As such we
make the simple assumption that if a pair of SCFs
tends to occur with the same verbs, we have a po-
tential occurrence of DA. Although this approx-
imation can give rise to false positives (pairs of
frames that co-occur frequently but are not DA)
we are nevertheless interested in investigating its
potential usefulness for verb classification. One
attractive aspect of this method is that it does not
require a pre-defined list of possible alternations.

2 Diathesis Alternation Approximation

A DA can be approximated by a pair of SCFs.
We parameterize frames involving prepositional
phrases with the preposition. Example SCFs for
the verb “spray” are shown in Table 1. The feature
value of a single frame feature is the frequency
of the SCF. Given two frames fv(i), fv(j) of a
verb v, they can be transformed into a feature pair
(fv(i), fv(j)) as an approximation to a DA. The
feature value of the DA feature (fv(i), fv(j)) is ap-
proximated by the joint probability of the pair of
frames p(fv(i), fv(j)|v), obtained by integrating
all the possible DAs. The key assumption is that
the joint probability of two SCFs has a strong cor-
relation with a DA on the grounds that the DA gives
rise to both SCFs in the pair. We use the DA feature
(fv(i), fv(j)) with its value p(fv(i), fv(j)|v) as a
new feature for verb clustering. As a comparison
point, we can ignore the DA and make a frame in-
dependence assumption. The joint probability is

decomposed as:

p(fv(i), fv(j)|v)′ , p(fv(i)|v) · p(fv(j)|v) (1)

We assume that SCFs are dependent as they are
generated by the underlying meaning components
(Levin and Hovav, 2006). The frame dependency
is represented by a simple graphical model in fig-
ure 1.

Figure 1: Graphical model for the joint probability of pairs of
frames. v represents a verb, a represents a DA and f repre-
sents a specific frame in total of M possible frames

In the data, the verb (v) and frames (f ) are ob-
served, and any underlying alternation (a) is hid-
den. The aim is to approximate but not to detect a
DA, so a is summed out:

p(fv(i), fv(j)|v) =
∑

a

p(fv(i), fv(j)|a) · p(a|v)

(2)
In order to evaluate this sum, we use a relaxation
1: the sum in equation 1 is replaced with the max-
imum (max). This is a reasonable relaxation, as a
pair of frames rarely participates in more than one
type of a DA.

p(fv(i), fv(j)|v) ≈ max(p(fv(i), fv(j)|a)·p(a|v))
(3)

The second relaxation further relaxes the first one
by replacing the max with the least upper bound
(sup): If fv(i) occurs a times, fv(j) occurs b times
and b < a, the number of times that a DA occurs
between fv(i) and fv(j) must be smaller or equal
to b.

p(fv(i), fv(j)|v) ≈ sup{p(fv(i), fv(j)|a)} · sup{p(a|v)}
(4)

sup{p(fv(i), fv(j)|a)} = Z−1 ·min(fv(i), fv(j))
sup{p(a|v)} = 1

Z =
∑

m

∑

n

min(fv(m), fv(n))

1A relaxation is used in mathematical optimization for re-
laxing the strict requirement, by either substituting it with an
easier requirement or dropping it completely.
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Frame pair Possible DA Frequency
NP+PPon NP+PPwith Locative 30
NP+PPon PPwith Causative(with) 0
NP+PPon PPon Causative(on) 30
NP+PPwith PPwith ? 0
NP+PPwith PPon ? 30
PPwith PPon ? 0
NP+PPon NP+PPon - 40
NP+PPwith NP+PPwith - 30
PPwith PPwith - 0
PPon PPon - 30

Table 2: Example frame pair features for spray

So we end up with a simple form:

p(fv(i), fv(j)|v) ≈ Z−1 ·min(fv(i), fv(j)) (5)

The equation is intuitive: If fv(i) occurs 40 times
and fv(j) 30 times, the DA between fv(i) and
fv(j) ≤ 30 times. This upper bound value is used
as the feature value of the DA feature. The original
feature vector f of dimension M is transformed
into M2 dimensions feature vector f̃ . Table 2
shows the transformed feature space for spray.
The feature space matches our expectation well:
valid DAs have a value greater than 0 and invalid
DAs have a value of 0.

3 Experiments

We evaluated this model by performing verb clus-
tering experiments using three feature sets:
F1: SCF parameterized with preposition. Exam-

ples are shown in Table 1.
F2: The frame pair features built from F1 with

the frame independence assumption (equa-
tion 1). This feature is not a DA feature as
it ignores the inter-dependency of the frames.

F3: The frame pair features (DAs) built from
F1 with the frame dependency assumption
(equation 4). This is the DA feature which
considers the correlation of the two frames
which are generated from the alternation.

F3 implicitly includes F1, as a frame can pair
with itself. 2 In the example in Table 2, the frame
pair “PP(on) PP(on)” will always have the same
value as the “PP(on)” frame in F1.

We extracted the SCFs using the system of
Preiss et al. (2007) which classifies each corpus

2We did this so that F3 included the SCF features as well
as the DA approximation features. It would be possible in
future work to exclude the pairs involving identical frames,
thereby relying solely on the DA approximations, and com-
pare performance with the results obtained here.

occurrence of a verb as a member of one of the 168
SCFs on the basis of grammatical relations iden-
tified by the RASP (Briscoe et al., 2006) parser.
We experimented with two datasets that have been
used in prior work on verb clustering: the test sets
7-11 (3-14 classes) in Joanis et al. (2008), and the
17 classes set in Sun et al. (2008).

We used the spectral clustering (SPEC) method
and settings as in Sun and Korhonen (2009) but
adopted the Bhattacharyya kernel (Jebara and
Kondor, 2003) to improve the computational effi-
ciency of the approach given the high dimension-
ality of the quadratic feature space.

wb(v, v
′) =

D∑

d=1

(vdv
′
d)

1/2 (6)

The mean-filed bound of the Bhattacharyya kernel
is very similar to the KL divergence kernel (Jebara
et al., 2004) which is frequently used in verb clus-
tering experiments (Korhonen et al., 2003; Sun
and Korhonen, 2009).

To further reduce computational complexity, we
restricted our scope to the more frequent features.
In the experiment described in this section we used
the 50 most frequent features for the 3-6 way clas-
sifications (Joanis et al.’s test set 7-9) and 100 fea-
tures for the 7-17 way classifications. In the next
section, we will demonstrate that F3 outperforms
F1 regardless of the feature number setting. The
features are normalized to sum 1.

The clustering results are evaluated using F-
Measure as in Sun and Korhonen (2009) which
provides the harmonic mean of precision (P ) and
recall (R)
P is calculated using modified purity – a global

measure which evaluates the mean precision of
clusters. Each cluster (ki ∈ K) is associated
with the gold-standard class to which the major-
ity of its members belong. The number of verbs
in a cluster (ki) that take this class is denoted by
nprevalent(ki).

P =

∑
ki∈K:nprevalent(ki)>2

nprevalent(ki)

|verbs|

R is calculated using weighted class accuracy:
the proportion of members of the dominant cluster
DOM-CLUSTi within each of the gold-standard
classes ci ∈ C.
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Datasets
Joanis et al. Sun et al.7 8 9 10 11

F1 54.54 49.97 35.77 46.61 38.81 60.03
F2 50.00 49.50 32.79 54.13 40.61 64.00
F3 56.36 53.79 52.90 66.32 50.97 69.62

Table 3: Results when using F3 (DA), F2 (pair of independent
frames) and F1 (single frame) features with Bhattacharyya
kernel on Joanis et al. and Sun et al. datasets

R =

∑|C|
i=1 |verbs in DOM-CLUSTi|

|verbs|

The results are shown in Table 3. The result of
F2 is lower than that of F3, and even lower than
that of F1 for 3-6 way classification. This indi-
cates that the frame independence assumption is
a poor assumption. F3 yields substantially better
result than F2 and F1. The result of F3 is 6.4%
higher than the result (F=63.28) reported in Sun
and Korhonen (2009) using the F1 feature.

This experiment shows, on two datasets, that DA

features are clearly more effective than the frame
features for verb clustering, even when relaxations
are used.

4 Analysis of Feature Frequency

A further experiment was carried out using F1 and
F3 on Joanis et al. (2008)’s test sets 10 and 11.
The frequency ranked features were added to the
clustering one at a time, starting from the most
frequent one. The results are shown in figure 2.
F3 outperforms F1 clearly on all the feature num-
ber settings. After adding some highly frequent
frames (22 for test set 10 and 67 for test set 11),
the performance for F1 is not further improved.
The performance of F3, in contrast, is improved
for almost all (including the mid-range frequency)
frames, although to a lesser degree for low fre-
quency frames.

5 Related work

Parisien and Stevenson (2010) introduced a hier-
archical Bayesian model capable of learning verb
alternations and constructions from syntactic in-
put. The focus was on modelling and explaining
the child alternation acquisition rather than on au-
tomatic verb classification. Therefore, no quanti-
tative evaluation of the clustering is reported, and
the number of verbs under the novel verb gen-
eralization test is relatively small. Parisien and
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Figure 2: Comparison between frame features (F1) and DA
features (F3) with different feature number settings. DA fea-
tures clearly outperform frame features. The top figure is the
result on test set 10 (8 ways). The bottom figure is the result
on test set 11 (14 ways). The x axis is the number of features.
The y axis is the F-Measure result.

Stevenson (2011) extended this work by adding
semantic features.

Parisien and Stevenson’s (2010) model 2 has a
similar structure to the graphic model in figure 1.
A fundamental difference is that we explicitly use
a probability distribution over alternations (pair of
frames) to represent a verb, whereas they represent
a verb by a distribution over the observed frames
similar to Vlachos et al. (2009) ’s approach. Also
the parameters in their model were inferred by
Gibbs sampling whereas we avoided this inference
step by using relaxation.

6 Conclusion and Future work

We have demonstrated the merits of using DAs for
verb clustering compared to the SCF data from
which they are derived on standard verb classi-
fication datasets and when integrated in a state-
of-the-art verb clustering system. We have also
demonstrated that the performance of frame fea-
tures is dominated by the high frequency frames.
In contrast, the DA features enable the mid-range
frequency frames to further improve the perfor-
mance.
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In the future, we plan to evaluate the perfor-
mance of DA features in a larger scale experiment.
Due to the high dimensionality of the transformed
feature space (quadratic of the original feature
space), we will need to improve the computational
efficiency further, e.g. via use of an unsupervised
dimensionality reduction technique Zhao and Liu
(2007). Moreover, we plan to use Bayesian in-
ference as in Vlachos et al. (2009); Parisien and
Stevenson (2010, 2011) to infer the actual param-
eter values and avoid the relaxation.

Finally, we plan to supplement the DA feature
with evidence from the slot fillers of the alternat-
ing slots, in the spirit of earlier work (McCarthy,
2000; Merlo and Stevenson, 2001; Joanis et al.,
2008). Unlike these previous works, we will use
selectional preferences to generalize the argument
heads but will do so using preferences from dis-
tributional data (Sun and Korhonen, 2009) rather
than WordNet, and use all argument head data in
all frames. We envisage using maximum average
distributional similarity of the argument heads in
any potentially alternating slots in a pair of co-
occurring frames as a feature, just as we currently
use the frequency of the less frequent co-occurring
frame.
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Abstract

We present the first attempt to perform full
FrameNet annotation with crowdsourcing
techniques. We compare two approaches:
the first one is the standard annotation
methodology of lexical units and frame
elements in two steps, while the second
is a novel approach aimed at acquiring
frames in a bottom-up fashion, starting
from frame element annotation. We show
that our methodology, relying on a single
annotation step and on simplified role defi-
nitions, outperforms the standard one both
in terms of accuracy and time.

1 Introduction

Annotating frame information is a complex task,
usually modeled in two steps: first annotators are
asked to choose the situation (or frame) evoked by
a given predicate (the lexical unit, LU) in a sen-
tence, and then they assign the semantic roles (or
frame elements, FEs) that describe the participants
typically involved in the chosen frame. Existing
frame annotation tools, such as Salto (Burchardt
et al., 2006) and the Berkeley system (Fillmore et
al., 2002) foresee this two-step approach, in which
annotators first select a frame from a large reposi-
tory of possible frames (1,162 frames are currently
listed in the online version of the resource), and
then assign the FE labels constrained by the cho-
sen frame to LU dependents.

In this paper, we argue that such workflow
shows some redundancy which can be addressed
by radically changing the annotation methodology
and performing it in one single step. Our novel an-
notation approach is also more compliant with the
definition of frames proposed in Fillmore (1976):
in his seminal work, Fillmore postulated that the
meanings of words can be understood on the basis
of a semantic frame, i.e. a description of a type

of event or entity and the participants in it. This
implies that frames can be distinguished one from
another on the basis of the participants involved,
thus it seems more cognitively plausible to start
from the FE annotation to identify the frame ex-
pressed in a sentence, and not the contrary.

The goal of our methodology is to provide full
frame annotation in a single step and in a bottom-
up fashion. Instead of choosing the frame first, we
focus on FEs and let the frame emerge based on
the chosen FEs. We believe this approach com-
plies better with the cognitive activity performed
by annotators, while the 2-step methodology is
more artificial and introduces some redundancy
because part of the annotators’ choices are repli-
cated in the two steps (i.e. in order to assign a
frame, annotators implicitly identify the partici-
pants also in the first step, even if they are anno-
tated later).

Another issue we investigate in this work is how
semantic roles should be annotated in a crowd-
sourcing framework. This task is particularly
complex, therefore it is usually performed by ex-
pert annotators under the supervision of linguis-
tic experts and lexicographers, as in the case of
FrameNet. In NLP, different annotation efforts
for encoding semantic roles have been carried out,
each applying its own methodology and annota-
tion guidelines (see for instance Ruppenhofer et
al. (2006) for FrameNet and Palmer et al. (2005)
for PropBank). In this work, we present a pilot
study in which we assess to what extent role de-
scriptions meant for ‘linguistics experts’ are also
suitable for annotators from the crowd. Moreover,
we show how a simplified version of these descrip-
tions, less bounded to a specific linguistic theory,
improve the annotation quality.

2 Related work

The construction of annotation datasets for NLP
tasks via non-expert contributors has been ap-
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proached in different ways, the most prominent
being games with a purpose (GWAP) and micro-
tasks. Verbosity (Von Ahn et al., 2006) was one
of the first attempts in gathering annotations with
a GWAP. Phrase Detectives (Chamberlain et al.,
2008; Chamberlain et al., 2009) was meant to
gather a corpus with coreference resolution an-
notations. Snow et al. (2008) described design
and evaluation guidelines for five natural language
micro-tasks. However, they explicitly chose a set
of tasks that could be easily understood by non-
expert contributors, thus leaving the recruitment
and training issues open. Negri et al. (2011) built
a multilingual textual entailment dataset for statis-
tical machine translation systems.

The semantic role labeling problem has been re-
cently addressed via crowdsourcing by Hong and
Baker (2011). Furthermore, Baker (2012) high-
lighted the crucial role of recruiting people from
the crowd in order to bypass the need for linguis-
tics expert annotations. Nevertheless, Hong and
Baker (2011) focused on the frame discrimination
task, namely selecting the correct frame evoked by
a given lemma. Such task is comparable to the
word sense disambiguation one as per (Snow et
al., 2008), although the complexity increased, due
to lower inter-annotator agreement values.

3 Experiments

In this section, we describe the anatomy and dis-
cuss the results of the tasks we outsourced to the
crowd via the CrowdFlower1 platform.

Golden data Quality control of the collected
judgements is a key factor for the success of
the experiments. Cheating risk is minimized by
adding gold units, namely data for which the re-
quester already knows the answer. If a worker
misses too many gold answers within a given
threshold, he or she will be flagged as untrusted
and his or her judgments will be automatically dis-
carded.

Worker switching effect Depending on their
accuracy in providing answers to gold units, work-
ers may switch from a trusted to an untrusted sta-
tus and vice versa. In practice, a worker submits
his or her responses via a web page. Each page
contains one gold unit and a variable number of
regular units that can be set by the requester dur-
ing the calibration phase. If a worker becomes un-

1https://crowdflower.com

trusted, the platform collects another judgment to
fill the gap. If a worker moves back to the trusted
status, his or her previous contribution is added
to the results as free extra judgments. Such phe-
nomenon typically occurs when the complexity of
gold units is high enough to induce low agree-
ment in workers’ answers. Thus, the requester is
constrained to review gold units and to eventually
forgive workers who missed them. This has mas-
sively happened in our experiments and is one of
the main causes of the overall cost decrease and
time increase.

Cost calibration The total cost of a generic
crowdsourcing task is naturally bound to a data
unit. This represents an issue in most of our ex-
periments, as the number of questions per unit
(i.e. a sentence) varies according to the number
of frames and FEs evoked by the LU contained in
a sentence. In order to enable cost comparison, for
each experiment we need to use the average num-
ber of questions per sentence as a multiplier to a
constant cost per sentence. We set the payment
per working page to 5 $ cents and the number of
sentences per page to 3, resulting in 1.83 $ cent
per sentence.

3.1 Assessing task reproducibility and
worker behavior change

Since our overall goal is to compare the perfor-
mance of FrameNet annotation using our novel
workflow to the performance of the standard, 2-
step approach, we first take into account past re-
lated works and try to reproduce them.

To our knowledge, the only attempt to annotate
frame information through crowdsourcing is the
one presented in Hong and Baker (2011), which
however did not include FE annotation.

Modeling The task is designed as follows. (a)
Workers are invited to read a sentence where a
LU is bolded. (b) The question Which is the
correct sense? is combined with the set of
frames evoked by the given LU, as well as the
None choice. Finally, (c) workers must select the
correct frame. A set of example sentences corre-
sponding to each possible frame is provided in the
instructions to facilitate workers.

As a preliminary study, we wanted to assess
to what extent the proposed task could be repro-
duced and if workers reacted in a comparable way
over time. Hong and Baker (2011) did not pub-
lish the input datasets, thus we ignore which sen-
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LU
2013 2011Sentences Accuracy Accuracy(Gold)

high.a 68 (9) 91.8 92
history.n 72 (9) 84.6 86
range.n 65 (8) 95 93

rip.v 88 (12) 81.9 92
thirst.n 29 (4) 90.4 95
top.a 36 (5) 98.7 96

Table 1: Comparison of the reproduced frame dis-
crimination task as per (Hong and Baker, 2011)

tences were used. Besides, the authors computed
accuracy values directly from the results upon a
majority vote ground truth. Therefore, we de-
cided to consider the same LUs used in Hong
and Baker’s experiments, i.e. high.a, history.n,
range.n, rip.v, thirst.n and top.a, but we lever-
aged the complete sets of FrameNet 1.5 expert-
annotated sentences as gold-standard data for im-
mediate accuracy computation.

Discussion Table 1 displays the results we
achieved, jointly with the experiments by Hong
and Baker (2011). For the latter, we only show ac-
curacy values, as the number of sentences was set
to a constant value of 18, 2 of which were gold.
If we assume that the crowd-based ground truth in
2011 experiments is approximately equivalent to
the expert one, workers seem to have reacted in
a similar manner compared to Hong and Baker’s
values, except for rip.v.

3.2 General task setting

We randomly chose the following LUs among
the set of all verbal LUs in FrameNet evoking 2
frames each: disappear.v [CEASING TO BE, DE-
PARTING], guide.v [COTHEME, INFLUENCE OF -
EVENT ON COGNIZER], heap.v [FILLING, PLAC-
ING], throw.v [BODY MOVEMENT, CAUSE MO-
TION]. We considered verbal LUs as they usually
have more overt arguments in a sentence, so that
we were sure to provide workers with enough can-
didate FEs to annotate. Linguistic tasks in crowd-
sourcing frameworks are usually decomposed to
make them accessible to the crowd. Hence, we
set the polysemy of LUs to 2 to ensure that all
experiments are executed using the smallest-scale
subtask. More frames can then be handled by just
replicating the experiments.

3.3 2-step approach

After observing that we were able to achieve sim-
ilar results on the frame discrimination task as in
previous work, we focused on the comparison be-
tween the 2-step and the 1-step frame annotation
approaches.

We first set up experiments that emulate the for-
mer approach both in frame discrimination and
FEs annotation. This will serve as the baseline
against our methodology. Given the pipeline na-
ture of the approach, errors in the frame discrim-
ination step will affect FE recognition, thus im-
pacting on the final accuracy. The magnitude of
such effect strictly depends on the number of FEs
associated with the wrongly detected frame.

3.3.1 Frame discrimination
Frame discrimination is the first phase of the 2-
step annotation procedure. Hence, we need to
leverage its output as the input for the next step.

Modeling The task is modeled as per Sec-
tion 3.1.

Discussion Table 2 gives an insight into the re-
sults, which confirm the overall good accuracy as
per the experiments discussed in Section 3.1.

3.3.2 Frame elements recognition
We consider all sentences annotated in the previ-
ous subtask with the frame assigned by the work-
ers, even if it is not correct.

Modeling The task is presented as follows. (a)
Workers are invited to read a sentence where a LU
is bolded and the frame that was identified in the
first step is provided as a title. (b) A list of FE def-
initions is then shown together with the FEs text
chunks. Finally, (c) workers must match each def-
inition with the proper FE.

Simplification Since FEs annotation is a very
challenging task, and FE definitions are usually
meant for experts in linguistics, we experimented
with three different types of FE definitions: the
original ones from FrameNet, a manually simpli-
fied version, and an automatically simplified one,
using the tool by Heilman and Smith (2010). The
latter simplifies complex sentences at the syntactic
level and generates a question for each of the ex-
tracted clauses. As an example, we report below
three versions obtained for the Agent definition in
the DAMAGING frame:
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Approach 2-STEP 1-STEP

Task FD FER
Accuracy .900 .687 .792
Answers 100 160 416
Trusted 100 100 84

Untrusted 21 36 217
Time (h) 102 69 130

Cost/question
1.83 2.74 8.41($ cents)

Table 2: Overview of the experimental results.
FD stands for Frame Discrimination, FER for FEs
Recognition

Original: The conscious entity, generally a per-
son, that performs the intentional action that re-
sults in the damage to the Patient.

Manually simplified: This element describes the
person that performs the intentional action result-
ing in the damage to another person or object.

Automatic system: What that performs the in-
tentional action that results in the damage to the
Patient?

Simplification was performed by a linguistic ex-
pert, and followed a set of straightforward guide-
lines, which can be summarized as follows:

• When the semantic type associated with the
FE is a common concept (e.g. Location),
replace the FE name with the semantic type.

• Make syntactically complex definitions as
simple as possible.

• Avoid variability in FE definitions, try to
make them homogeneous (e.g. they should
all start with “This element describes...” or
similar).

• Replace technical concepts such as
Artifact or Sentient with com-
mon words such as Object and Person
respectively.

Although these changes (especially the last
item) may make FE definitions less precise from
a lexicographic point of view (for instance, sen-
tient entities are not necessarily persons), annota-
tion became more intuitive and had a positive im-
pact on the overall quality.

After few pilot annotations with the three types
of FE definitions, we noticed that the simplified

one achieved a better accuracy and a lower num-
ber of untrusted annotators compared to the oth-
ers. Therefore, we use the simplified definitions
in both the 2-step and the 1-step approach (Sec-
tion 3.4).

Discussion Table 2 provides an overview of the
results we gathered. The total number of answers
differs from the total number of trusted judgments,
since the average value of questions per sentence
amounts to 1.5.2 First of all, we notice an increase
in the number of untrusted judgments. This is
caused by a generally low inter-worker agreement
on gold sentences due to FE definitions, which still
present a certain degree of complexity, even af-
ter simplification. We inspected the full reports
sentence by sentence and observed a propagation
of incorrect judgments when a sentence involves
an unclear FE definition. As FE definitions may
mutually include mentions of other FEs from the
same frame, we believe this circularity generated
confusion.

3.4 1-step approach

Having set the LU polysemy to 2, in our case a
sentence S always contains a LU with 2 possible
frames (f1, f2), but only conveys one, e.g. f1. We
formulate the approach as follows. S is replicated
in 2 data units (Sa, Sb). Then, Sa is associated to
the set E1 of f1 FE definitions, namely the correct
ones for that sentence. Instead, Sb is associated to
the set E2 of f2 FE definitions. We call Sb a cross-
frame unit. Furthermore, we allow workers to se-
lect the None answer. In practice, we ask a total
amount of |E1 ∪ E2| + 2 questions per sentence
S. In this way, we let the frame directly emerge
from the FEs. If workers correctly answer None
to a FE definition d ∈ E2, the probability that S
evokes f1 increases.

Modeling Figure 1 displays a screenshot of
the worker interface. The task is designed as per
Section 3.3.2, but with major differences with
respect to its content. This is better described
by an example. The sentence Karen threw
her arms round my neck, spilling
champagne everywhere contains the LU
throw.v evoking the frame BODY MOVEMENT.
However, throw.v is ambiguous and may also
evoke CAUSE MOTION. We ask to annotate both
the BODY MOVEMENT and the CAUSE MOTION

2Cf. Section 3 for more details
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Figure 1: 1-step approach worker interface

core FEs, respectively as regular and cross-frame
units.

Discussion We do not interpret the None choice
as an abstention from judgment, since it is a cor-
rect answer for cross-frame units. Instead of pre-
cision and recall, we are thus able to directly com-
pute workers’ accuracy upon a majority vote. We
envision an improvement with respect to the 2-
step methodology, as we avoid the proven risk of
error propagation originating from wrongly anno-
tated frames in the first step. Table 2 illustrates
the results we collected. As expected, accuracy
reached a consistent enhancement. This demon-
strates the hypothesis we stated in Section 1 on
the cognitive plausibility of a bottom-up approach
for frame annotation. Furthermore, the execu-
tion time decreases compared to the sum of the
2 steps, namely 130 hours against 171. Neverthe-
less, the cost is sensibly higher due to the higher
number of questions that need to be addressed, in
average 4.6 against 1.5. Untrusted judgments se-
riously grow, mainly because of the cross-frame
gold complexity. Workers seem puzzled by the
presence of None, which is a required answer for
such units. If we consider the English FrameNet
annotation agreement values between experts re-
ported by Padó and Lapata (2009) as the upper
bound (i.e., .897 for frame discrimination and .949

for FEs recognition), we believe our experimental
setting can be reused as a valid alternative.

4 Conclusion

In this work, we presented an approach to perform
frame annotation with crowdsourcing techniques,
based on a single annotation step and on manu-
ally simplified FE definitions. Since the results
seem promising, we are currently running larger
scale experiments with the full set of FrameNet 1.5
annotated sentences. Input data, interface screen-
shots and full results are available and regularly
updated at http://db.tt/gu2Mj98i.

Future work will include the investigation of a
frame assignment strategy. In fact, we do not take
into account the case of conflicting FE annotations
in cross-frame units. Hence, we need a confidence
score to determine which frame emerges if work-
ers selected contradictory answers in a subset of
cross-frame FE definitions.
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Abstract

The evaluation of whole-sentence seman-
tic structures plays an important role in
semantic parsing and large-scale seman-
tic structure annotation. However, there is
no widely-used metric to evaluate whole-
sentence semantic structures. In this pa-
per, we present smatch, a metric that cal-
culates the degree of overlap between two
semantic feature structures. We give an
efficient algorithm to compute the metric
and show the results of an inter-annotator
agreement study.

1 Introduction

The goal of semantic parsing is to generate all se-
mantic relationships in a text. Its output is of-
ten represented by whole-sentence semantic struc-
tures. Evaluating such structures is necessary for
semantic parsing tasks, as well as semantic anno-
tation tasks which create linguistic resources for
semantic parsing.

However, there is no widely-used evalua-
tion method for whole-sentence semantic struc-
tures. Current whole-sentence semantic parsing
is mainly evaluated in two ways: 1. task cor-
rectness (Tang and Mooney, 2001), which eval-
uates on an NLP task that uses the parsing re-
sults; 2. whole-sentence accuracy (Zettlemoyer
and Collins, 2005), which counts the number of
sentences parsed completely correctly.

Nevertheless, it is worthwhile to explore evalua-
tion methods that use scores which range from 0 to
1 (“partial credit”) to measure whole-sentence se-
mantic structures. By using such methods, we are
able to differentiate between two similar whole-
sentence semantic structures regardless of specific

tasks or domains. In this work, we provide an eval-
uation metric that uses the degree of overlap be-
tween two whole-sentence semantic structures as
the partial credit.

In this paper, we observe that the difficulty
of computing the degree of overlap between two
whole-sentence semantic feature structures comes
from determining an optimal variable alignment
between them, and further prove that finding such
alignment is NP-complete. We investigate how to
compute this metric and provide several practical
and replicable computing methods by using Inte-
ger Linear Programming (ILP) and hill-climbing
method. We show that our metric can be used
for measuring the annotator agreement in large-
scale linguistic annotation, and evaluating seman-
tic parsing.

2 Semantic Overlap

We work on a semantic feature structure represen-
tation in a standard neo-Davidsonian (Davidson,
1969; Parsons, 1990) framework. For example,
semantics of the sentence “the boy wants to go” is
represented by the following directed graph:

In this graph, there are three concepts: want-
01, boy, and go-01. Both want-01 and go-01 are
frames from PropBank framesets (Kingsbury and
Palmer, 2002). The frame want-01 has two argu-
ments connected with ARG0 and ARG1, and go-
01 has an argument (which is also the same boy
instance) connected with ARG0.
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Following (Langkilde and Knight, 1998) and
(Langkilde-Geary, 2002), we refer to this semantic
representation as AMR (Abstract Meaning Repre-
sentation).

Semantic relationships encoded in the AMR
graph can also be viewed as a conjunction of logi-
cal propositions, or triples:

instance(a, want-01) ∧
instance(b, boy) ∧
instance(c, go-01) ∧
ARG0(a, b) ∧
ARG1(a, c) ∧
ARG0(c, b)

Each AMR triple takes one of these forms:
relation(variable, concept) (the first three triples
above), or relation(variable1, variable2) (the last
three triples above).

Suppose we take a second AMR (for “the boy
wants the football”) and its associated proposi-
tional triples:

instance(x, want-01) ∧
instance(y, boy) ∧
instance(z, football) ∧
ARG0(x, y) ∧
ARG1(x, z)

Our evaluation metric measures precision, re-
call, and f-score of the triples in the second AMR
against the triples in the first AMR, i.e., the
amount of propositional overlap.

The difficulty is that variable names are not
shared between the two AMRs, so there are mul-
tiple ways to compute the propositional overlap
based on different variable mappings. We there-
fore define the smatch score (for semantic match)
as the maximum f-score obtainable via a one-to-
one matching of variables between the two AMRs.

In the example above, there are six ways to
match up variables between the two AMRs:

M P R F
x=a, y=b, z=c: 4 4/5 4/6 0.73
x=a, y=c, z=b: 1 1/5 1/6 0.18
x=b, y=a, z=c: 0 0/5 0/6 0.00
x=b, y=c, z=a: 0 0/5 0/6 0.00
x=c, y=a, z=b: 0 0/5 0/6 0.00
x=c, y=b, z=a: 2 2/5 2/6 0.36
----------------------------------
smatch score: 0.73

Here, M is the number of propositional triples that
agree given a variable mapping, P is the precision

of the second AMR against the first, R is its re-
call, and F is its f-score. The smatch score is the
maximum of the f-scores.

However, for AMRs that contain large number
of variables, it is not efficient to get the f-score by
simply using the method above. Exhaustively enu-
merating all variable mappings requires comput-
ing the f-score for n!/(n−m)! variable mappings
(assuming one AMR has n variables and the other
has m variables, and m ≤ n). This algorithm is
too slow for all but the shortest AMR pairs.

3 Computing the Metric

This section describes how to compute the smatch
score. As input, we are given AMR1 (withm vari-
ables) and AMR2 (with n variables). Without loss
of generality, m ≤ n.

Baseline. Our baseline first matches variables
that share concepts. For example, it would match
a in the first AMR example with x in the second
AMR example of Section 2, because both are in-
stances of want-01. If there are two or more vari-
ables to choose from, we pick the first available
one. The rest of the variables are mapped ran-
domly.

ILP method. We can get an optimal solution
using integer linear programming (ILP). We create
two types of variables:

• (Variable mapping) vij = 1 iff the ith vari-
able in AMR1 is mapped to the jth variable
in AMR2 (otherwise vij = 0)

• (Triple match) tkl = 1 iff AMR1 triple
k matches AMR2 triple l, otherwise tkl
= 0. A triple relation1(xy) matches
relation2(wz) iff relation1 = relation2, vxw
= 1, and vyz = 1 or y and z are the same con-
cept.

Our constraints ensure a one-to-one mapping of
variables, and they ensure that the chosen t values
are consistent with the chosen v values:

For all i,
∑

j

vij ≤ 1

For all j,
∑

i

vij ≤ 1

For all triple pairs r(xy)r(wz) (r for relation),

tr(xy)r(wz) ≤ vxw
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tr(xy)r(wz) ≤ vyz
when y and z are variables.

Finally, we ask the ILP solver to maximize:

∑

kl

tkl

which denotes the maximum number of matching
triples which lead to the smatch score.

Hill-climbing method. Finally, we develop a
portable heuristic algorithm that does not require
an ILP solver1. This method works in a greedy
style. We begin with m random one-to-one map-
pings between the m variables of AMR1 and the
n variables of AMR2. Each variable mapping is
a pair (i,map(i)) with 1 ≤ i ≤ m and 1 ≤
map(i) ≤ n. We refer to the m mappings as a
variable mapping state.

We first generate a random initial variable map-
ping state, compute its triple match number, then
hill-climb via two types of small changes:

1. Move one of the m mappings to a currently-
unmapped variable from the n.

2. Swap two of the m mappings.

Any variable mapping state has m(n − m) +
m(m − 1) = m(n − 1) neighbors during the
hill-climbing search. We greedily choose the best
neighbor, repeating until no neighbor improves the
number of triple matches.

We experiment with two modifications to the
greedy search: (1) executing multiple random
restarts to avoid local optima, and (2) using our
Baseline concept matching (“smart initialization”)
instead of random initialization.

NP-completeness. There is unlikely to be
an exact polynomial-time algorithm for comput-
ing smatch. We can reduce the 0-1 Maximum
Quadratic Assignment Problem (0-1-Max-QAP)
(Nagarajan and Sviridenko, 2009) and the sub-
graph isomorphism problem directly to the full
smatch problem on graphs.2

We note that other widely-used metrics, such as
TER (Snover et al., 2006), are also NP-complete.
Fortunately, the next section shows that the smatch
methods above are efficient and effective.

1The tool can be downloaded at
http://amr.isi.edu/evaluation.html.

2Thanks to David Chiang for observing the subgraph iso-
morphism reduction.

4 Using Smatch

We report an AMR inter-annotator agreement
study using smatch.

1. Our study has 4 annotators (A, B, C, D), who
then converge on a consensus annotation E.
We thus have 10 pairs of annotations: A-B,
A-C, . . . , D-E.

2. The study is carried out 5 times. Each
time annotators build AMRs for 4 sentences
from the Wall Street Journal corpus. Sen-
tence lengths range from 12 to 54 words, and
AMRs range from 6 to 29 variables.

3. We use 7 smatch calculation methods in our
experiments:

• Base: Baseline matching method
• ILP: Integer Linear Programming
• R: Hill-climbing with random initializa-

tion
• 10R: Hill-climbing with random initial-

ization plus 9 random restarts
• S: Hill-climbing with smart initializa-

tion
• S+4R: Hill-climbing with smart initial-

ization plus 4 random restarts
• S+9R: Hill-climbing with smart initial-

ization plus 9 random restarts

Table 1 shows smatch scores provided by the
methods. Columns labeled 1-5 indicate sen-
tence groups. Each individual smatch score is
a document-level score of 4 AMR pairs.3 ILP
scores are optimal, so lower scores (in bold) in-
dicate search errors.

Table 2 summarizes search accuracy as a per-
centage of smatch scores that equal that of ILP.
Results show that the restarts are essential for hill-
climbing, and that 9 restarts are sufficient to obtain
good quality. The table also shows total runtimes
over 200 AMR pairs (10 annotator pairs, 5 sen-
tence groups, 4 AMR pairs per group). Heuris-
tic search with smart initialization and 4 restarts
(S+4R) gives the best trade-off between accuracy
and speed, so this is the setting we use in practice.

Figure 1 shows smatch scores of each annotator
(A-D) against the consensus annotation (E). The

3For documents containing multiple AMRs, we use the
sum of matched triples over all AMR pairs to compute pre-
cision, recall, and f-score, much like corpus-level Bleu (Pap-
ineni et al., 2002).
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B C D E
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Base 0.68 0.74 0.84 0.71 0.83 0.69 0.70 0.80 0.69 0.78 0.77 0.72 0.75 0.68 0.63 0.79 0.86 0.92 0.85 0.89
ILP 0.74 0.80 0.84 0.76 0.88 0.75 0.78 0.80 0.77 0.88 0.83 0.77 0.75 0.72 0.76 0.85 0.92 0.92 0.89 0.92
R 0.74 0.79 0.84 0.75 0.86 0.74 0.75 0.80 0.77 0.88 0.83 0.76 0.75 0.72 0.75 0.85 0.92 0.92 0.89 0.89

A 10R 0.74 0.80 0.84 0.76 0.88 0.75 0.78 0.80 0.77 0.88 0.83 0.77 0.75 0.72 0.76 0.85 0.92 0.92 0.89 0.92
S 0.74 0.80 0.84 0.75 0.88 0.75 0.78 0.80 0.76 0.88 0.83 0.77 0.75 0.72 0.76 0.85 0.92 0.92 0.89 0.92

S+4R 0.74 0.80 0.84 0.76 0.88 0.75 0.78 0.80 0.77 0.88 0.83 0.77 0.75 0.72 0.76 0.85 0.92 0.92 0.89 0.92
S+9R 0.74 0.80 0.84 0.76 0.88 0.75 0.78 0.80 0.77 0.88 0.83 0.77 0.75 0.72 0.76 0.85 0.92 0.92 0.89 0.92
Base - - - - - 0.72 0.68 0.74 0.69 0.79 0.71 0.72 0.76 0.65 0.57 0.68 0.71 0.83 0.79 0.86
ILP - - - - - 0.74 0.83 0.74 0.75 0.85 0.78 0.83 0.76 0.68 0.73 0.76 0.81 0.83 0.83 0.89
R - - - - - 0.74 0.83 0.72 0.72 0.83 0.78 0.83 0.76 0.68 0.68 0.74 0.81 0.83 0.83 0.89

B 10R - - - - - 0.74 0.83 0.74 0.75 0.85 0.78 0.83 0.76 0.68 0.73 0.76 0.81 0.83 0.83 0.89
S - - - - - 0.73 0.83 0.74 0.75 0.85 0.78 0.83 0.76 0.68 0.73 0.76 0.81 0.83 0.83 0.89

S+4R - - - - - 0.74 0.83 0.74 0.75 0.85 0.78 0.83 0.76 0.68 0.73 0.76 0.81 0.83 0.83 0.89
S+9R - - - - - 0.74 0.83 0.74 0.75 0.85 0.78 0.83 0.76 0.68 0.73 0.76 0.81 0.83 0.83 0.89
Base - - - - - - - - - - 0.68 0.68 0.74 0.69 0.65 0.64 0.64 0.87 0.79 0.83
ILP - - - - - - - - - - 0.74 0.79 0.74 0.78 0.81 0.74 0.76 0.87 0.85 0.89
R - - - - - - - - - - 0.74 0.79 0.74 0.75 0.78 0.71 0.76 0.87 0.85 0.89

C 10R - - - - - - - - - - 0.74 0.79 0.74 0.78 0.81 0.74 0.76 0.87 0.85 0.89
S - - - - - - - - - - 0.74 0.79 0.74 0.77 0.81 0.74 0.76 0.87 0.85 0.89

S+4R - - - - - - - - - - 0.74 0.79 0.74 0.78 0.81 0.74 0.76 0.87 0.85 0.89
S+9R - - - - - - - - - - 0.74 0.79 0.74 0.78 0.81 0.74 0.76 0.87 0.85 0.89
Base - - - - - - - - - - - - - - - 0.68 0.69 0.81 0.74 0.64
ILP - - - - - - - - - - - - - - - 0.77 0.78 0.81 0.78 0.79
R - - - - - - - - - - - - - - - 0.77 0.73 0.81 0.78 0.79

D 10R - - - - - - - - - - - - - - - 0.77 0.78 0.81 0.78 0.79
S - - - - - - - - - - - - - - - 0.77 0.78 0.81 0.78 0.79

S+4R - - - - - - - - - - - - - - - 0.77 0.78 0.81 0.78 0.79
S+9R - - - - - - - - - - - - - - - 0.77 0.78 0.81 0.78 0.79

Table 1: Inter-annotator smatch agreement for 5 groups of sentences, as computed with seven different
methods (Base, ILP, R, 10R, S, S+4R, S+9R). The number 1-5 indicate the sentence group number. Bold
scores are search errors.

Base ILP R 10R S S+4R S+9R
Accuracy 20% 100% 66.5% 100% 92% 100% 100%
Time (sec) 0.86 49.67 5.85 64.78 2.31 28.36 59.69

Table 2: Accuracy and running time (seconds) of
various computing methods of smatch over 200
AMR pairs.

plot demonstrates that, as time goes by, annotators
reach better agreement with the consensus.

We also note that smatch is used to measure
the accuracy of machine-generated AMRs. (Jones
et al., 2012) use it to evaluate automatic seman-
tic parsing in a narrow domain, while Ulf Her-
mjakob4 has developed a heuristic algorithm that
exploits and supplements Ontonotes annotations
(Pradhan et al., 2007) in order to automatically
create AMRs for Ontonotes sentences, with a
smatch score of 0.74 against human consensus
AMRs.

5 Related Work

Related work on directly measuring the seman-
tic representation includes the method in (Dri-
dan and Oepen, 2011), which evaluates semantic
parser output directly by comparing semantic sub-
structures, though they require an alignment be-
tween sentence spans and semantic sub-structures.
In contrast, our metric does not require the align-

4personal communication
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Figure 1: Smatch scores of annotators (A-D)
against the consensus annotation (E) over time.

ment between an input sentence and its semantic
analysis. (Allen et al., 2008) propose a metric
which computes the maximum score by any align-
ment between LF graphs, but they do not address
how to determine the alignments.

6 Conclusion and Future Work

We present an evaluation metric for whole-
sentence semantic analysis, and show that it can
be computed efficiently. We use the metric to
measure semantic annotation agreement rates and
parsing accuracy. In the future, we plan to investi-
gate how to adapt smatch to other semantic repre-
sentations.
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Abstract

We introduce a scheme for optimally al-

locating a variable number of bits per

LSH hyperplane. Previous approaches as-

sign a constant number of bits per hyper-

plane. This neglects the fact that a subset

of hyperplanes may be more informative

than others. Our method, dubbed Variable

Bit Quantisation (VBQ), provides a data-

driven non-uniform bit allocation across

hyperplanes. Despite only using a fraction

of the available hyperplanes, VBQ outper-

forms uniform quantisation by up to 168%

for retrieval across standard text and image

datasets.

1 Introduction

The task of retrieving the nearest neighbours to a

given query document permeates the field of Nat-

ural Language Processing (NLP). Nearest neigh-

bour search has been used for applications as di-

verse as automatically detecting document transla-

tion pairs for the purposes of training a statistical

machine translation system (SMT) (Krstovski and

Smith, 2011), the large-scale generation of noun

similarity lists (Ravichandran et al., 2005) to an

unsupervised method for extracting domain spe-

cific lexical variants (Stephan Gouws and Metzle,

2011).

There are two broad approaches to nearest

neighbour based search: exact and approximate

techniques, which are differentiated by their abil-

ity to return completely correct nearest neighbours

(the exact approach) or have some possibility of

returning points that are not true nearest neigh-

bours (the approximate approach). Approximate

nearest neighbour (ANN) search using hashing

techniques has recently gained prominence within

NLP. The hashing-based approach maps the data

into a substantially more compact representation

referred to as a fingerprint, that is more efficient

for performing similarity computations. The re-

sulting compact binary representation radically re-

duces memory requirements while also permitting

fast sub-linear time retrieval of approximate near-

est neighbours.

Hashing-based ANN techniques generally com-

prise two main steps: a projection stage followed

by a quantisation stage. The projection stage

performs a neighbourhood preserving embedding,

mapping the input data into a lower-dimensional

representation. The quantisation stage subse-

quently reduces the cardinality of this represen-

tation by converting the real-valued projections

to binary. Quantisation is a lossy transformation

which can have a significant impact on the result-

ing quality of the binary encoding.

Previous work has quantised each projected di-

mension into a uniform number of bits (Indyk and

Motwani, 1998) (Kong and Li, 2012) (Kong et al.,

2012) (Moran et al., 2013). We demonstrate that

uniform allocation of bits is sub-optimal and pro-

pose a data-driven scheme for variable bit alloca-

tion. Our approach is distinct from previous work

in that it provides a general objective function for

bit allocation. VBQ makes no assumptions on the

data and, in addition to LSH, it applies to a broad

range of other projection functions.

2 Related Work

Locality sensitive hashing (LSH) (Indyk and Mot-

wani, 1998) is an example of an approximate

nearest neighbour search technique that has been

widely used within the field of NLP to preserve the

Cosine distances between documents (Charikar,

2002). LSH for cosine distance draws a large

number of random hyperplanes within the input

feature space, effectively dividing the space into

non-overlapping regions (or buckets). Each hy-

perplane contributes one bit to the encoding, the

value (0 or 1) of which is determined by comput-
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Figure 1: Left: Data points with identical shapes are 1-NN. Two hyperplanes h1, h2 are shown alongside

their associated normal vectors (n1, n2). Right top: Projection of points onto the normal vectors n1

and n2 of the hyperplanes (arrows denote projections). Right middle: Positioning of the points along

normal vector n2. Three quantisation thresholds (t1, t2, t3, and consequently 2 bits) can maintain the

neighbourhood structure. Right bottom: the high degree of mixing between the 1-NN means that this

hyperplane (h1) is likely to have 0 bits assigned (and therefore be discarded entirely).

ing the dot product of a data-point (x) with the

normal vector to the hyperplane (ni): that is, if

x.ni < 0, i ∈ {1 . . . k}, then the i-th bit is set

to 0, and 1 otherwise. This encoding scheme is

known as single bit quantisation (SBQ). More re-

cent hashing work has sought to inject a degree

of data-dependency into the positioning of the hy-

perplanes, for example, by using the principal di-

rections of the data (Wang et al., 2012) (Weiss

et al., 2008) or by training a stack of restricted

Boltzmann machines (Salakhutdinov and Hinton,

2009).

Existing quantisation schemes for LSH allocate

either one bit per hyperplane (Indyk and Motwani,

1998) or multiple bits per hyperplane (Kong et al.,

2012) (Kong and Li, 2012) (Moran et al., 2013).

For example, (Kong et al., 2012) recently pro-

posed the Manhattan Hashing (MQ) quantisation

technique where each projected dimension is en-

coded with multiple bits of natural binary code

(NBC). The Manhattan distance between the NBC

encoded data points is then used for nearest neigh-

bour search. The authors demonstrated that MQ

could better preserve the neighbourhood structure

between the data points as compared to SBQ with

Hamming distance.

Other recent quantisation work has focused on

the setting of the quantisation thresholds: for ex-

ample (Kong and Li, 2012) suggested encoding

each dimension into two bits and using an adaptive

thresholding scheme to set the threshold positions.

Their technique dubbed, Double Bit Quantisation

(DBQ), attempts to avoid placing thresholds be-

tween data points with similar projected values. In

other work (Moran et al., 2013) demonstrated that

retrieval accuracy could be enhanced by using a

topological quantisation matrix to guide the quan-

tisation threshold placement along the projected

dimensions. This topological quantisation matrix

specified pairs of ǫ-nearest neighbours in the orig-
inal feature space. Their approach, Neighbour-

hood Preserving Quantisation (NPQ), was shown

to achieve significant increases in retrieval accu-

racy over SBQ,MQ and DBQ for the task of image

retrieval. In all of these cases the bit allocation is

uniform: each hyperplane is assigned an identical

number of bits.

3 Variable Bit Quantisation

Our proposed quantisation scheme, Variable Bit

Quantisation (VBQ), assigns a variable number of

bits to each hyperplane subject to a maximum up-

per limit on the total number of bits1. To do so,

VBQ computes an F-measure based directly on the

positioning of the quantisation thresholds along a

projected dimension. The higher the F-measure

for a given hyperplane, the better that hyperplane

is at preserving the neighbourhood structure be-

tween the data points, and the more bits the hyper-

plane should be afforded from the bit budget B.

Figure 1(a) illustrates the original 2-

dimensional feature space for a toy example.

1Referred to as the bit budget B, typically 32 or 64 bits.
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The space is divided into 4 buckets by two

random LSH hyperplanes. The circles, diamonds,

squares and stars denote 1-nearest neighbours

(1-NN). Quantisation for LSH is performed by

projecting the data points onto the normal vectors

(n1, n2) to the hyperplanes (h1, h2). This leads

to two projected dimensions. Thresholding these

projected dimensions at zero, and determining

which side of zero a given data-point falls, yields

the bit encoding for a given data-point.

Figure 1(b) demonstrates our proposed quanti-

sation scheme. Similar to vanilla LSH, the data-

points are projected onto the normal vectors, to

yield two projected dimensions. This is illustrated

on the topmost diagram in Figure 1(b). VBQ dif-

fers in how these projected dimensions are thresh-

olded to yield the bit encoding: rather than one

threshold situated at zero, VBQ employs one or

more thresholds and positions these thresholds in

an adaptive manner based upon maximisation of

an F-measure. Using multiple thresholds enables

more than one bit to be assigned per hyperplane2.

Figure 1(b) (middle, bottom) depicts the F-

measure driven threshold optimisation along the

projected dimensions. We define as a positive

pair, those pairs of data points in the original fea-

ture space that are ǫ-nearest neighbours (ǫ-NN),
and a negative pair otherwise. In our toy exam-

ple, data points with the same shape symbol form

a positive pair, while points with different sym-

bols are negative pairs. Intuitively, the thresholds

should be positioned in such a way as to maxi-

mize the number of positive pairs that fall within

the same thresholded region, while also ensuring

the negative pairs fall into different regions.

This intuition can be captured by an F-measure

which counts the number of positive pairs that are

found within the same thresholded regions (true

positives, TP), the number of negative pairs found

within the same regions (false positives, FP), and

the number of positive pairs found in different re-

gions of the threshold partitioned dimension (false

negatives, FN). For n2, three thresholds are opti-

mal, given they perfectly preserve the neighbour-

hood structure. For n1, no thresholds can provide a

neighbourhood preserving quantisation and there-

fore it is better to discard the hyperplane h1. VBQ

uses random restarts to optimise the F-measure3.

The computed F-measure scores per hyper-

2b bits, requires 2b − 1 thresholds.
3More details on the computation of the F-measure per

hyperplane can be found in (Moran et al., 2013).

plane (h), per bit count (b) are an effective sig-

nal for bit allocation: more informative hyper-

planes tend to have higher F-measure, for higher

bit counts. VBQ applies a binary integer linear

program (BILP) on top of the F-measure scores

to obtain the bit allocation. To do so, the algo-

rithm collates the scores in a matrix F with ele-

ments Fb,h, where b ∈ {0, . . . , k} 4 indexes the

rows, with k being the maximum number of bits

allowable for any given hyperplane (set to 4 in this

work), and h ∈ {1 . . . , B} indexes the columns.

The BILP uses F to find the bit allocation that

maximises the cumulative F-measure across the B
hyperplanes (Equation 1).

max ‖F ◦ Z‖
subject to ‖Zh‖ = 1 h ∈ {1 . . . B}

‖Z ◦ D‖ ≤ B

Z is binary

(1)

‖.‖ denotes the Frobenius L1 norm, ◦ the

Hadamard product and D is a constraint matrix,

with Db,h = b, ensuring that the bit allocation

remains within the bit budget B. The BILP is

solved using the standard branch and bound op-

timization algorithm (Land and Doig, 1960). The

output from the BILP is an indicator matrix Z ∈
{0, 1}(k+1)×B

whose columns specify the optimal

bit allocation for a given hyperplane i.e. Zb,h = 1
if the BILP decided to allocate b bits for hyper-

plane h, and zero otherwise. Example matrices for

the toy problem in Figure 1 are given hereunder (in

this example, k = 2 and B = 2).




F h1 h2

b0 0.25 0.25
b1 0.35 0.50
b2 0.40 1.00







D

0 0
1 1
2 2







Z

1 0
0 0
0 1




Notice how the indicator matrix Z specifies an

assignment of 0 bits for hyperplane h1 and 2 bits

for hyperplane h2 as this yields the highest cu-

mulative F-measure across hyperplanes while also

meeting the bit budget. VBQ is therefore a princi-

pled method to select a discriminative subset of

hyperplanes, and simultaneously allocate bits to

the remaining hyperplanes, given a fixed overall

bit budget B, while maximizing cumulative F-

measure.

4For 0 bits, we compute the F-measure without any
thresholds along the projected dimension.
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Dataset CIFAR-10 TDT-2 Reuters-21578

SBQ MQ DBQ NPQ VBQ SBQ MQ DBQ VBQ SBQ MQ DBQ VBQ

SIKH 0.042 0.063 0.047 0.090 0.161 0.034 0.045 0.031 0.092 0.102 0.112 0.087 0.389

LSH 0.119 0.093 0.066 0.153 0.207 0.189 0.097 0.089 0.229 0.276 0.201 0.175 0.538

BLSI 0.038 0.135 0.111 0.155 0.231 0.283 0.210 0.087 0.396 0.100 0.030 0.030 0.156

SH 0.051 0.135 0.111 0.167 0.202 0.146 0.212 0.167 0.370 0.033 0.028 0.030 0.154

PCAH 0.036 0.137 0.107 0.153 0.219 0.281 0.208 0.094 0.374 0.095 0.034 0.027 0.154

Table 1: Area under the Precision Recall curve (AUPRC) for all five projection methods. Results are for

32 bits (images) and at 128 bits (text). The best overall score for each dataset is shown in bold face.

4 Experiments

4.1 Datasets

Our text datasets are Reuters-21578 and TDT-2.

The original Reuters-21578 corpus contains 21578

documents in 135 categories. We use theModApte

version and discard those documents with multi-

ple category labels. This leaves 8,293 documents

in 65 categories. The corpus contains 18,933 dis-

tinct terms. The TDT-2 corpus consists of 11,201

on-topic documents which are classified into 96

semantic categories. We remove those documents

appearing in two or more categories and keep only

the largest 30 categories. This leaves 9,394 docu-

ments in total with 36,771 distinct terms. Both text

datasets are TF-IDF and L2 norm weighted. To

demonstrate the generality of VBQ we also evalu-

ate on the CIFAR-10 image dataset (Krizhevsky,

2009), which consists of 60,000 images repre-

sented as 512 dimensional Gist descriptors (Oliva

and Torralba, 2001). All of the datasets are identi-

cal to those that have been used in previous ANN

hashing work (Zhang et al., 2010) (Kong and Li,

2012) and are publicly available on the Internet.

4.2 Projection Methods

VBQ is independent of the projection stage and

therefore can be used the quantise the projections

from a wide range of different projection func-

tions, including LSH. In our evaluation we take

a sample of the more popular data-independent

(LSH, SIKH) and data-dependent (SH, PCAH,

BLSI) projection functions used in recent hashing

work:

• SIKH: Shift-Invariant Kernel Hashing

(SIKH) uses random projections that approx-

imate shift invariant kernels (Raginsky and

Lazebnik, 2009). We follow previous work

and use a Gaussian kernel with a bandwidth

set to the average distance to the 50th nearest

neighbour (Kong et al., 2012) (Raginsky and

Lazebnik, 2009).

• LSH: Locality Sensitive Hashing uses a

Gaussian random matrix for projection (In-

dyk and Motwani, 1998) (Charikar, 2002).

• BLSI: Binarised Latent Semantic Indexing

(BLSI) forms projections through Singular

Value Decomposition (SVD) (Salakhutdinov

and Hinton, 2009).

• SH: Spectral Hashing (SH) uses the eigen-

functions computed along the principal com-

ponent directions of the data for projec-

tion (Weiss et al., 2008).

• PCAH: Principal Component Analysis

Hashing (PCAH) employs the eigenvectors

corresponding the the largest eigenvalues of

the covariance matrix for projection (Wang

et al., 2012).

4.3 Baselines

Single Bit Quantisation (SBQ) (Indyk and Mot-

wani, 1998), Manhattan Hashing (MQ) (Kong et

al., 2012), Double Bit Quantisation (DBQ) (Kong

and Li, 2012) and Neighbourhood Preserving

Quantisation (NPQ) (Moran et al., 2013). MQ,

DBQ and NPQ all assign 2 bits per hyperplane,

while SBQ assigns 1 bit per hyperplane. All meth-

ods, including VBQ, are constrained to be within

the allocated bit budget B. If a method assigns

more bits to one hyperplane, then it either dis-

cards, or assigns less bits to other hyperplanes.

4.4 Evaluation Protocol

We adopt the standard Hamming ranking evalua-

tion paradigm (Kong et al., 2012). We randomly

select 1000 query data points per run. Our re-

sults are averaged over 10 runs, and the average

reported. The ǫ-neighbours of each query point
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Figure 2: [1] LSH AUPRC vs bits for CIFAR-10 [2] LSH Precision-Recall curve for CIFAR-10 [3]

LSH AUPRC vs bits for TDT-2 [4] LSH Precision-Recall curve for TDT-2 [5] LSH AUPRC vs bits for

Reuters-21578 [6] LSH Precision-Recall curve for Reuters-21578

form the ground truth for evaluation. The thresh-

old ǫ is computed by sampling 100 training data-

points at random from the training dataset and de-

termining the distance at which these points have

50 nearest neighbours on average. Positive pairs

and negative pairs for F-measure computation are

computed by thresholding the training dataset

Euclidean distance matrix by ǫ. We adopt the

Manhattan distance and multi-bit binary encoding

method as suggested in (Kong et al., 2012). The

F-measure we use for threshold optimisation is:

Fβ = (1+β2)TP/((1+β2)TP +β2FN +FP ).
We select the parameter β on a held-out valida-

tion dataset. The area under the precision-recall

curve (AUPRC) is used to evaluate the quality of

retrieval.

4.5 Results

Table 1 presents our results. For LSH on text

(Reuters-21578) at 128 bits we find a substantial

95% gain in retrieval performance over uniformly

assigning 1 bit per hyperplane (SBQ) and a 168%

gain over uniformly assigning 2 bits per hyper-

plane (MQ). VBQ gain over SBQ at 128 bits is sta-

tistically significant based upon a paired Wilcoxon

signed rank test across 10 random train/test parti-

tions (p-value: ≤ 0.0054). This pattern is repeated
on TDT-2 (for 128 bits, SBQ vs VBQ: p-value

≤ 0.0054) and CIFAR-10 (for 32 bits, SBQ vs

VBQ: p-value: ≤ 0.0054). VBQ also reaps sub-

stantial gains for the Eigendecomposition based

projections (PCAH, SH, BLSI) effectively exploit-

ing the imbalanced variance across hyperplanes -

that is, those hyperplanes capturing higher propor-

tions of the variance in the data are allocated more

bits from the fixed bit budget. Figure 2 (top row)

illustrates that VBQ is effective across a range of

bit budgets. Figure 2 (bottom row) presents the

precision-recall (PR) curves at 32 bits (CIFAR-10)

and 128 bits (TDT-2, Reuters-21578). We confirm

our hypothesis that judicious allocation of variable

bits is significantly more effective than uniform al-

location.

5 Conclusions

Our proposed quantisation scheme computes a

non-uniform bit assignment across LSH hyper-

planes. The novelty of our approach is centred

upon a binary integer linear program driven by a

novel F-measure based objective function that de-

termines the most appropriate bit allocation: hy-

perplanes that better preserve the neighbourhood

structure of the input data points are awarded more

bits from a fixed bit budget. Our evaluation on

standard datasets demonstrated that VBQ can sub-

stantially enhance the retrieval accuracy of a se-

lection of popular hashing techniques across two

distinct modalities (text and images). In this paper

we concentrated on the hamming ranking based

scenario for hashing. In the future, we would like

to examine the performance of VBQ in the lookup

based hashing scenario where hash tables are used

for fast retrieval.
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Abstract
This paper presents an approach that ex-
tends the standard approach used for bilin-
gual lexicon extraction from comparable
corpora. We focus on the unresolved prob-
lem of polysemous words revealed by the
bilingual dictionary and introduce a use of
a Word Sense Disambiguation process that
aims at improving the adequacy of con-
text vectors. On two specialized French-
English comparable corpora, empirical ex-
perimental results show that our method
improves the results obtained by two state-
of-the-art approaches.

1 Introduction

Over the years, bilingual lexicon extraction from
comparable corpora has attracted a wealth of re-
search works (Fung, 1998; Rapp, 1995; Chiao
and Zweigenbaum, 2003). The basic assumption
behind most studies is a distributional hypothe-
sis (Harris, 1954), which states that words with a
similar meaning are likely to appear in similar con-
texts across languages. The so-called standard ap-
proach to bilingual lexicon extraction from com-
parable corpora is based on the characterization
and comparison of context vectors of source and
target words. Each element in the context vector
of a source or target word represents its associa-
tion with a word which occurs within a window
of N words. To enable the comparison of source
and target vectors, words in the source vectors are
translated into the target language using an exist-
ing bilingual dictionary.

The core of the standard approach is the bilin-
gual dictionary. Its use is problematic when a word
has several translations, whether they are synony-
mous or polysemous. For instance, the French

word action can be translated into English as
share, stock, lawsuit or deed. In such cases, it
is difficult to identify in flat resources like bilin-
gual dictionaries which translations are most rel-
evant. The standard approach considers all avail-
able translations and gives them the same impor-
tance in the resulting translated context vectors in-
dependently of the domain of interest and word
ambiguity. Thus, in the financial domain, trans-
lating action into deed or lawsuit would introduce
noise in context vectors.

In this paper, we present a novel approach that
addresses the word polysemy problem neglected
in the standard approach. We introduce a Word
Sense Disambiguation (WSD) process that iden-
tifies the translations of polysemous words that
are more likely to give the best representation of
context vectors in the target language. For this
purpose, we employ five WordNet-based semantic
similarity and relatedness measures and use a data
fusion method that merges the results obtained by
each measure. We test our approach on two spe-
cialized French-English comparable corpora (fi-
nancial and medical) and report improved results
compared to two state-of-the-art approaches.

2 Related Work

Most previous works addressing the task of bilin-
gual lexicon extraction from comparable corpora
are based on the standard approach. In order to
improve the results of this approach, recent re-
searches based on the assumption that more the
context vectors are representative, better is the
bilingual lexicon extraction were conducted. In
these works, additional linguistic resources such
as specialized dictionaries (Chiao and Zweigen-
baum, 2002) or transliterated words (Prochasson
et al., 2009) were combined with the bilingual dic-
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tionary to translate context vectors. Few works
have however focused on the ambiguity problem
revealed by the seed bilingual dictionary. (Hazem
and Morin, 2012) propose a method that filters the
entries of the bilingual dictionary on the base of
a POS-Tagging and a domain relevance measure
criteria but no improvements have been demon-
strated. Gaussier et al. (2004) attempted to solve
the problem of word ambiguities in the source and
target languages. They investigated a number of
techniques including canonical correlation analy-
sis and multilingual probabilistic latent semantic
analysis. The best results, with an improvement of
the F-Measure (+0.02 at Top20) were reported for
a mixed method. Recently, (Morin and Prochas-
son, 2011) proceed as the standard approach but
weigh the different translations according to their
frequency in the target corpus. Here, we propose a
method that differs from Gaussier et al. (2004) in
this way: If they focus on words ambiguities on
source and target languages, we thought that it
would be sufficient to disambiguate only trans-
lated source context vectors.

3 Context Vector Disambiguation

3.1 Semantic similarity measures
A large number of WSD techniques were pro-
posed in the literature. The most widely used ones
are those that compute semantic similarity1 with
the help of WordNet. WordNet has been used in
many tasks relying on word-based similarity, in-
cluding document (Hwang et al., 2011) and im-
age (Cho et al., 2007; Choi et al., 2012) retrieval
systems. In this work, we use it to derive a se-
mantic similarity between lexical units within the
same context vector. To the best of our knowledge,
this is the first application of WordNet to bilingual
lexicon extraction from comparable corpora.

Among semantic similarity measures using
WordNet, we distinguish: (1) measures based on
path length which simply counts the distance be-
tween two words in the WordNet taxonomy, (2)
measures relying on information content in which
a semantically annotated corpus is needed to com-
pute frequencies of words to be compared and (3)
the ones using gloss overlap which are designed
to compute semantic relatedness. In this work,
we use five similarity measures and compare
their performances. These measures include three

1For consiseness, we often use “semantic similarity” to
refer collectively to both similarity and relatedness.

path-based semantic similarity measures denoted
PATH,WUP (Wu and Palmer, 1994) and LEA-
COCK (Leacock and Chodorow, 1998). PATH is
a baseline that is equal to the inverse of the short-
est path between two words. WUP finds the depth
of the least common subsumer of the words, and
scales that by the sum of the depths of individual
words. The depth of a word is its distance to the
root node. LEACOCK finds the shortest path be-
tween two words, and scales that by the maximum
path length found in the is–a hierarchy in which
they occur. Path length measures have the advan-
tage of being independent of corpus statistics, and
therefor uninfluenced by sparse data.

Since semantic relatedness is considered to be
more general than semantic similarity, we also
use two relatedness measures: LESK (Banerjee
and Pedersen, 2002) and VECTOR (Patwardhan,
2003). LESK finds overlaps between the glosses
of word pairs, as well as words’ hyponyms. VEC-
TOR creates a co-occurrence matrix for each gloss
token. Each gloss is then represented as a vector
that averages token co-occurrences.

3.2 Disambiguation process

Once translated into the target language, the con-
text vectors disambiguation process intervenes.
This process operates locally on each context vec-
tor and aims at finding the most prominent trans-
lations of polysemous words. For this purpose,
we use monosemic words as a seed set of dis-
ambiguated words to infer the polysemous word’s
translations senses. We hypothesize that a word is
monosemic if it is associated to only one entry in
the bilingual dictionary. We checked this assump-
tion by probing monosemic entries of the bilingual
dictionary against WordNet and found that 95% of
the entries are monosemic in both resources. Ac-
cording to the above-described semantic similarity
measures, a similarity value SimV alue is derived
between all the translations provided for each pol-
ysemous word by the bilingual dictionary and all
monosemic words appearing within the same con-
text vector. In practice, since a word can belong to
more than one synset2 in WordNet, the semantic
similarity between two wordsw1 andw2 is defined
as the maximum of SimV alue between the synset
or the synsets that include the synsets(w1) and

2a group of a synonymous words in WordNet
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synsets(w2) according to the following equation:

SemSim(w1, w2) = max{SimV alue(s1, s2);

(s1, s2) ∈ synsets(w1)× synsets(w2)} (1)

Then, to identify the most prominent transla-
tions of each polysemous unit wp, an average sim-
ilarity is computed for each translation wjp of wp:

Ave Sim(wj
p) =

1

N

NX
i=1

SemSim(wi, w
j
p) (2)

where N is the total number of monosemic words
in each context vector and SemSim is the simi-
larity value of wjp and the ith monosemic word.
Hence, according to average similarity values
Ave Sim(wjp), we obtain for each polysemous
word wp an ordered list of translations w1

p . . . w
n
p .

4 Experiments and Results

4.1 Resources and Experimental Setup

We conducted our experiments on two French-
English comparable corpora specialized on the
corporate finance and the breast cancer sub-
domains. Both corpora were extracted from
Wikipedia3. We consider the domain topic in
the source language (for instance cancer du sein
[breast cancer]) as a query to Wikipedia and
extract all its sub-topics (i.e., sub-categories in
Wikipedia) to construct a domain-specific cate-
gories tree. Then we collected all articles belong-
ing to one of these categories and used inter-
language links to build the comparable corpus.
Both corpora have been normalized through the
following linguistic preprocessing steps: tokeni-
sation, part-of-speech tagging, lemmatisation and
function words removal. The resulting corpora4

sizes as well as their polysemy rate PR are given
in Table 1. The polysemy rate indicates how much
words in the comparable corpora are associated
to more than one translation in the seed bilingual
dictionary. The dictionary consists of an in-house
bilingual dictionary which contains about 120,000
entries belonging to the general language with an
average of 7 translations per entry.

In bilingual terminology extraction from com-
parable corpora, a reference list is required to
evaluate the performance of the alignment. Such
lists are often composed of about 100 single

3http://dumps.wikimedia.org/
4Comparable corpora will be shared publicly

Corpus French English PR

Corporate finance 402.486 756.840 41%
Breast cancer 396.524 524.805 47%

Table 1: Comparable corpora sizes in term of
words and polysemy rates (PR) associated to each
corpus

terms (Hazem and Morin, 2012; Chiao and
Zweigenbaum, 2002). Here, we created two ref-
erence lists5 for the corporate finance and the
breast cancer sub-domains. The first list is com-
posed of 125 single terms extracted from the glos-
sary of bilingual micro-finance terms6. The second
list contains 79 terms extracted from the French-
English MESH and the UMLS thesauri7. Note
that reference terms pairs appear more than five
times in each part of both comparable corpora.

Three other parameters need to be set up,
namely the window size, the association measure
and the similarity measure. We followed (Laroche
and Langlais, 2010) to define these parame-
ters. They carried out a complete study of the
influence of these parameters on the bilingual
alignment. The context vectors were defined by
computing the Discounted Log-Odds Ratio (equa-
tion 3) between words occurring in the same con-
text window of size 7.

Odds-Ratiodisc = log
(O11 +

1
2
)(O22 +

1
2
)

(O12 +
1
2
)(O21 +

1
2
)

(3)

where Oij are the cells of the 2 × 2 contingency
matrix of a token s co-occurring with the term S
within a given window size. As similarity mea-
sure, we chose to use the cosine measure.

4.2 Results of bilingual lexicon extraction
To evaluate the performance of our approach, we
used both the standard approach (SA) and the ap-
proach proposed by (Morin and Prochasson, 2011)
(henceforth MP11) as baselines. The experiments
were performed with respect to the five semantic
similarity measures described in section 3.1. Each
measure provides, for each polysemous word, a
ranked list of translations. A question that arises
here is whether we should introduce only the top-
ranked translation into the context vector or con-
sider a larger number of translations, mainly when
a translation list contains synonyms. For this

5Reference lists will be shared publicly
6http://www.microfinance.lu/en/
7http://www.nlm.nih.gov/
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a)
C

or
po

ra
te

Fi
na

nc
e

Method WN-T1 WN-T2 WN-T3 WN-T4 WN-T5 WN-T6 WN-T7

Standard Approach (SA) 0.172
MP11 0.336

Si
ng

le
m

ea
su

re
WUP 0.241 0.284 0.301 0.275 0.258 0.215 0.224
PATH 0.250 0.284 0.301 0.284 0.258 0.215 0.215

LEACOCK 0.250 0.293 0.301 0.275 0.275 0.241 0.232
LESK 0.272 0.293 0.293 0.275 0.258 0.250 0.215

VECTOR 0.267 0.310 0.284 0.284 0.232 0.232 0.232
CONDORCETMerge 0.362 0.379 0.353 0.362 0.336 0.275 0.267

b)
B

re
as

tC
an

ce
r

Method WN-T1 WN-T2 WN-T3 WN-T4 WN-T5 WN-T6 WN-T7

Standard Approach (SA) 0.493
MP11 0.553

Si
ng

le
m

ea
su

re

WUP 0.481 0.566 0.566 0.542 0.554 0.542 0.554
PATH 0.542 0.542 0.554 0.566 0.578 0.554 0.554

LEACOCK 0.506 0.578 0.554 0.566 0.542 0.554 0.542
LESK 0.469 0.542 0.542 0.590 0.554 0.554 0.542

VECTOR 0.518 0.566 0.530 0.566 0.542 0.566 0.554
CONDORCETMerge 0.566 0.614 0.600 0.590 0.600 0.578 0.578

Table 2: F-Measure at Top20 for the two domains; MP11 = (Morin and Prochasson, 2011). In each
column, italics shows best single similarity measure, bold shows best result. Underline shows best result
overall.

reason, we take into account in our experiments
different numbers of translations, noted WN-Ti,
ranging from the pivot translation (i = 1) to the
seventh word in the translation list. This choice is
motivated by the fact that words in both corpora
have on average 7 translations in the bilingual dic-
tionary. Both baseline systems use all translations
associated to each entry in the bilingual dictionary.
The only difference is that in MP11 translations
are weighted according to their frequency in the
target corpus.

The results of different works focusing on bilin-
gual lexicon extraction from comparable corpora
are evaluated on the number of correct candidates
found in the first N first candidates output by the
alignment process (the TopN ). Here, we use the
Top20 F-measure as evaluation metric. The results
obtained for the corporate finance corpus are pre-
sented in Table 2a. The first notable observation is
that disambiguating context vectors using seman-
tic similarity measures outperforms the SA. The
highest F-measure is reported by VECTOR. Us-
ing the top two words (WN-T2) in context vec-
tors increases the F-measure from 0.172 to 0.310.
However, compared to MP11, no improvement
is achieved. Concerning the breast cancer cor-
pus, Table 2b shows improvements in most cases
over both the SA and MP11. The maximum F-

measure was obtained by LESK when for each
polysemous word up to four translations (WN-T4)
are considered in context vectors. This method
achieves an improvement of respectively +0.097
and +0.037% over SA and MP11.

Each of the tested 5 semantic similarity mea-
sures provides a different view of how to rank
the translations of a given test word. Combining
the obtained ranked lists should reinforce the con-
fidence in consensus translations, while decreas-
ing the confidence in non-consensus translations.
We have therefore tested their combination. For
this, we used a voting method, and chose one in
the Condorcet family the Condorcet data fusion
method. This method was widely used to combine
document retrieval results from information re-
trieval systems (Montague and Aslam, 2002; Nu-
ray and Can, 2006). It is a single-winner election
method that ranks the candidates in order of pref-
erence. It is a pairwise voting, i.e. it compares ev-
ery possible pair of candidates to decide the pref-
erence of them. A matrix can be used to present
the competition process. Every candidate appears
in the matrix as a row and a column as well. If
there arem candidates, then we needm2 elements
in the matrix in total. Initially 0 is written to all the
elements. If di is preferred to dj , then we add 1 to
the element at row i and column j (aij). The pro-
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cess is repeated until all the ballots are processed.
For every element aij , if aij > m/2 , then di
beats dj ; if aij < m/2, then dj beats di; other-
wise (aij = m/2), there is a draw between di and
dj . The total score of each candidate is quantified
by summing the raw scores it obtains in all pair-
wise competitions. Finally the ranking is achiev-
able based on the total scores calculated.

Here, we view the ranking of the extraction re-
sults from different similarity measures as a spe-
cial instance of the voting problem where the
Top20 extraction results correspond to candidates
and different semantic similarity measures are the
voters. The combination method referred to as
CONDORCETMerge outperformed all the others
(see Tables 2a and 2b): (1) individual measures,
(2) SA, and (3) MP11. Even though the two cor-
pora are fairly different (subject and polysemy
rate), the optimal results are obtained when con-
sidering up to two most similar translations in con-
text vectors. This behavior shows that the fusion
method is robust to domain change. The addition
of supplementary translations, which are probably
noisy in the given domain, degrades the overall re-
sults. The F-measure gains with respect to SA are
+0.207 for corporate finance and +0.121 for the
breast cancer corpus. More interestingly, our ap-
proach outperforms MP11, showing that the role
of disambiguation is more important than that of
feature weighting.

5 Conclusion

We presented in this paper a novel method that
extends the standard approach used for bilingual
lexicon extraction. This method disambiguates
polysemous words in context vectors by selecting
only the most relevant translations. Five seman-
tic similarity and relatedness measures were used
for this purpose. Experiments conducted on two
specialized comparable corpora indicate that the
combination of similarity metrics leads to a better
performance than two state-of-the-art approaches.
This shows that the ambiguity present in special-
ized comparable corpora hampers bilingual lexi-
con extraction, and that methods such as the one
introduced here are needed. The obtained results
are very encouraging and can be improved in a
number of ways. First, we plan to mine much
larger specialized comparable corpora and focus
on their quality (Li and Gaussier, 2010). We also
plan to test our method on bilingual lexicon extrac-

tion from general-domain corpora, where ambigu-
ity is generally higher and disambiguation meth-
ods should be all the more needed.
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Abstract

Lexical resources such as WordNet and
VerbNet are widely used in a multitude
of NLP tasks, as are annotated corpora
such as treebanks. Often, the resources
are used as-is, without question or exam-
ination. This practice risks missing sig-
nificant performance gains and even entire
techniques.

This paper addresses the importance of
resource quality through the lens of a
challenging NLP task: detecting selec-
tional preference violations. We present
DAVID, a simple, lexical resource-based
preference violation detector. With as-
is lexical resources, DAVID achieves an
F1-measure of just 28.27%. When the
resource entries and parser outputs for
a small sample are corrected, however,
the F1-measure on that sample jumps
from 40% to 61.54%, and performance
on other examples rises, suggesting that
the algorithm becomes practical given re-
fined resources. More broadly, this pa-
per shows that resource quality matters
tremendously, sometimes even more than
algorithmic improvements.

1 Introduction

A variety of NLP tasks have been addressed
using selectional preferences or restrictions, in-
cluding word sense disambiguation (see Navigli
(2009)), semantic parsing (e.g., Shi and Mihalcea
(2005)), and metaphor processing (see Shutova
(2010)). These semantic problems are quite chal-
lenging; metaphor analysis, for instance, has long
been recognized as requiring considerable seman-
tic knowledge (Wilks, 1978; Carbonell, 1980).
The advent of extensive lexical resources, an-
notated corpora, and a spectrum of NLP tools

presents an opportunity to revisit such challenges
from the perspective of selectional preference vio-
lations. Detecting these violations, however, con-
stitutes a severe stress-test for resources designed
for other tasks. As such, it can highlight shortcom-
ings and allow quantifying the potential benefits of
improving resources such as WordNet (Fellbaum,
1998) and VerbNet (Schuler, 2005).

In this paper, we present DAVID (Detector of
Arguments of Verbs with Incompatible Denota-
tions), a resource-based system for detecting pref-
erence violations. DAVID is one component of
METAL (Metaphor Extraction via Targeted Anal-
ysis of Language), a new system for identifying,
interpreting, and cataloguing metaphors. One pur-
pose of DAVID was to explore how far lexical
resource-based techniques can take us. Though
our initial results suggested that the answer is “not
very,” further analysis revealed that the problem
lies less in the technique than in the state of exist-
ing resources and tools.

Often, it is assumed that the frontier of perfor-
mance on NLP tasks is shaped entirely by algo-
rithms. Manning (2011) showed that this may not
hold for POS tagging – that further improvements
may require resource cleanup. In the same spirit,
we argue that for some semantic tasks, exemplified
by preference violation detection, resource qual-
ity may be at least as essential as algorithmic en-
hancements.

2 The Preference Violation Detection
Task

DAVID builds on the insight of Wilks (1978) that
the strongest indicator of metaphoricity is the vi-
olation of selectional preferences. For example,
only plants can literally be pruned. If laws is
the object of pruned, the verb is likely metaphori-
cal. Flagging such semantic mismatches between
verbs and arguments is the task of preference vio-
lation detection.
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We base our definition of preferences on the
Pragglejaz guidelines (Pragglejaz Group, 2007)
for identifying the most basic sense of a word as
the most concrete, embodied, or precise one. Sim-
ilarly, we define selectional preferences as the se-
mantic constraints imposed by a verb’s most basic
sense. Dictionaries may list figurative senses of
prune, but we take the basic sense to be cutting
plant growth.

Several types of verbs were excluded from the
task because they have very lax preferences. These
include verbs of becoming or seeming (e.g., trans-
form, appear), light verbs, auxiliaries, and aspec-
tual verbs. For the sake of simplifying implemen-
tation, phrasal verbs were also ignored.

3 Algorithm Design

To identify violations, DAVID employs a simple
algorithm based on several existing tools and re-
sources: SENNA (Collobert et al., 2011), a seman-
tic role labeling (SRL) system; VerbNet, a com-
putational verb lexicon; SemLink (Loper et al.,
2007), which includes mappings between Prop-
Bank (Palmer et al., 2005) and VerbNet; and
WordNet. As one metaphor detection component
of METAL’s several, DAVID is designed to favor
precision over recall. The algorithm is as follows:

1. Run the Stanford CoreNLP POS tagger
(Toutanova et al., 2003) and the TurboParser
dependency parser (Martins et al., 2011).

2. Run SENNA to identify the semantic argu-
ments of each verb in the sentence using the
PropBank argument annotation scheme (Arg0,
Arg1, etc.). See Table 1 for example output.

3. For each verb V , find all VerbNet entries for
V . Using SemLink, map each PropBank argu-
ment name to the corresponding VerbNet the-
matic roles in these entries (Agent, Patient,
etc.). For example, the VerbNet class for prune
is carve-21.2-2. SemLink maps Arg0 to
the Agent of carve-21.2-2 and Arg1 to
the Patient.

4. Retrieve from VerbNet the selectional restric-
tions of each thematic role. In our running
example, VerbNet specifies +int control
and +concrete for the Agent and Patient of
carve-21.2-2, respectively.

5. If the head of any argument cannot be inter-
preted to meet V ’s preferences, flag V as a vi-
olation.

“The politician pruned laws regulating plastic
bags, and created new fees for inspecting dairy

farms.”
Verb Arg0 Arg1

pruned The politician laws . . . bags
regulating laws plastic bags
created The politician new fees
inspecting - - dairy farms

Table 1: SENNA’s SRL output for the example
sentence above. Though this example demon-
strates only two arguments, SENNA is capable of
labeling up to six.

Restriction WordNet Synsets

animate animate being.n.01
people.n.01
person.n.01

concrete physical object.n.01
matter.n.01
substance.n.01

organization social group.n.01
district.n.01

Table 2: DAVID’s mappings between some
common VerbNet restriction types and WordNet
synsets.

Each VerbNet restriction is interpreted as man-
dating or forbidding a set of WordNet hypernyms,
defined by a custom mapping (see Table 2).
For example, VerbNet requires both the Patient
of a verb in carve-21.2-2 and the Theme
of a verb in wipe manner-10.4.1-1 to
be concrete. By empirical inspection, concrete
nouns are hyponyms of the WordNet synsets
physical object.n.01, matter.n.03,
or substance.n.04. Laws (the Patient of
prune) is a hyponym of none of these, so prune
would be flagged as a violation.

4 Corpus Annotation

To evaluate our system, we assembled a corpus
of 715 sentences from the METAL project’s cor-
pus of sentences with and without metaphors. The
corpus was annotated by two annotators follow-
ing an annotation manual. Each verb was marked
for whether its arguments violated the selectional
preferences of the most basic, literal meaning of
the verb. The annotators resolved conflicts by dis-
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Error source Frequency

Bad/missing VN entries 4.5 (14.1%)
Bad/missing VN restrictions 6 (18.8%)
Bad/missing SL mappings 2 (6.3%)
Parsing/head-finding errors 3.5 (10.9%)
SRL errors 8.5 (26.6%)
VN restriction system too weak 4 (12.5%)
Confounding WordNet senses 3.5 (10.9%)

Endemic errors: 7.5 (23.4%)
Resource errors: 12.5 (39.1%)
Tool errors: 12 (37.5%)
Total: 32 (100%)

Table 3: Sources of error in 90 randomly selected
sentences. For errors that were due to a combi-
nation of sources, 1/2 point was awarded to each
source. (VN stands for VerbNet and SL for Sem-
Link.)

cussing until consensus.

5 Initial Results

As the first row of Table 4 shows, our initial eval-
uation left little hope for the technique. With
such low precision and F1, it seemed a lexical
resource-based preference violation detector was
out. When we analyzed the errors in 90 randomly
selected sentences, however, we found that most
were not due to systemic problems with the ap-
proach; rather, they stemmed from SRL and pars-
ing errors and missing or incorrect resource entries
(see Table 3). Armed with this information, we de-
cided to explore how viable our algorithm would
be absent these problems.

6 Refining The Data

To evaluate the effects of correcting DAVID’s in-
puts, we manually corrected the tool outputs and
resource entries that affected the aforementioned
90 sentences. SRL output was corrected for ev-
ery sentence, while SemLink and VerbNet entries
were corrected only for each verb that produced an
error.

6.1 Corrections to Tool Output (Parser/SRL)
Guided by the PropBank database and annotation
guidelines, we corrected all errors in core role
assignments from SENNA. These corrections in-
cluded relabeling arguments, adding missed argu-
ments, fixing argument spans, and deleting anno-

tations for non-verbs. The only parser-related er-
ror we corrected was a mislabeled noun.

6.2 Correcting Corrupted Data in VerbNet
The VerbNet download is missing several sub-
classes that are referred to by SemLink or that
have been updated on the VerbNet website. Some
roles also have not been updated to the latest ver-
sion, and some subclasses are listed with incor-
rect IDs. These problems, which caused SemLink
mappings to fail, were corrected before reviewing
errors from the corpus.

Six subclasses needed to be fixed, all of which
were easily detected by a simple script that did not
depend on the 90-sentence subcorpus. We there-
fore expect that few further changes of this type
would be needed for a more complete resource re-
finement effort.

6.3 Corpus-Based Updates to SemLink
Our modifications to SemLink’s mappings in-
cluded adding missing verbs, adding missing roles
to mappings, and correcting mappings to more ap-
propriate classes or roles. We also added null map-
pings in cases where a PropBank argument had no
corresponding role in VerbNet. This makes the
system’s strategy for ruling out mappings more re-
liable.

No corrections were made purely based on the
sample. Any time a verb’s mappings were edited,
VerbNet was scoured for plausible mappings for
every verb sense in PropBank, and any nonsensi-
cal mappings were deleted. For example, when
the phrase go dormant caused an error, we in-
spected the mappings for go. Arguments of all but
2 of the 7 available mappings were edited, either
to add missing arguments or to correct nonsensi-
cal ones. These changes actually had a net neg-
ative impact on test set performance because the
bad mappings had masked parsing and selectional
preference problems.

Based on the 90-sentence subcorpus, we mod-
ified 20 of the existing verb entries in SemLink.
These changes included correcting 8 role map-
pings, adding 13 missing role mappings to existing
senses, deleting 2 incorrect senses, adding 11 verb
senses, correcting 2 senses, deleting 1 superfluous
role mapping, and adding 46 null role mappings.
(Note that although null mappings represented the
largest set of changes, they also had the least im-
pact on system behavior.) One entirely new verb
was added, as well.
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6.4 Corpus-Based Updates to VerbNet

Nineteen VerbNet classes were modified, and one
class had to be added. The modifications gener-
ally involved adding, correcting, or deleting se-
lectional restrictions, often by introducing or re-
arranging subclasses. Other changes amounted to
fixing clerical errors, such as incorrect role names
or restrictions that had been ANDed instead of
ORed.

An especially difficult problem was an inconsis-
tency in the semantics of VerbNet’s subclass sys-
tem. In some cases, the restrictions specified on
a verb in a subclass did not apply to subcatego-
rization frames inherited from a superclass, but in
other cases the restrictions clearly applied to all
frames. The conflict was resolved by duplicating
subclassed verbs in the top-level class whenever
different selectional restrictions were needed for
the two sets of frames.

As with SemLink, samples determined only
which classes were modified, not what modifica-
tions were made. Any non-obvious changes to
selectional restrictions were verified by examin-
ing dozens of verb instances from SketchEngine’s
(Kilgarriff et al., 2004) corpus. For example, the
Agent of seek was restricted to +animate, but
the corpus confirmed that organizations are com-
monly described non-metaphorically as seeking,
so the restriction was updated to +animate |
+organization.

7 Results After Resource Refinement

After making corrections for each set of 10 sen-
tences, we incrementally recomputed F1 and pre-
cision, both on the subcorpus corrected so far and
on a test set of all 625 sentences that were never
corrected. (The manual nature of the correction ef-
fort made testing k-fold subsets impractical.) The
results for 30-sentence increments are shown in
Table 4.

The most striking feature of these figures is how
much performance improves on corrected sen-
tences: for the full 90 sentences, F1 rose from
30.43% to 61.54%, and precision rose even more
dramatically from 31.82% to 80.00%. Interest-
ingly, resource corrections alone generally made a
larger difference than tool corrections alone, sug-
gesting that resources may be the dominant fac-
tor in resource-intensive tasks such as this one.
Even more compellingly, the improvement from
correcting both the tools and the resources was

nearly double the sum of the improvements from
each alone: tool and resource improvements inter-
act synergistically.

The effects on the test corpus are harder to
interpret. Due to a combination of SRL prob-
lems and the small number of sentences cor-
rected, the scores on the test set improved little
with resource correction; in fact, they even dipped
slightly between the 30- and 60-sentence incre-
ments. Nonetheless, we contend that our results
testify to the generality of our corrections: after
each iteration, every altered result was either an
error fixed or an error that should have appeared
before but had been masked by another. Note also
that all results on the test set are without corrected
tool output; presumably, these sentences would
also have improved synergistically with more ac-
curate SRL. How long corrections would continue
to improve performance is a question that we did
not have the resources to answer, but our results
suggest that there is plenty of room to go.

Some errors, of course, are endemic to the ap-
proach and cannot be fixed either by improved re-
sources or by better tools. For example, we con-
sider every WordNet sense to be plausible, which
produces false negatives. Additionally, the selec-
tional restrictions specified by VerbNet are fairly
loose; a more refined set of categories might cap-
ture the range of verbs’ restrictions more accu-
rately.

8 Implications for Future Refinement
Efforts

Although improving resources is infamously
labor-intensive, we believe that similarly refining
the remainder of VerbNet and SemLink would be
doable. In our study, it took about 25-35 person-
hours to examine about 150 verbs and to mod-
ify 20 VerbNet classes and 25 SemLink verb en-
tries (excluding time for SENNA corrections, fix-
ing corrupt VerbNet data, and analysis of DAVID’s
errors). Extrapolating from our experience, we es-
timate that it would take roughly 6-8 person-weeks
to systematically fix this particular set of issues
with VerbNet.

Improving SemLink could be more complex,
as its mappings are automatically generated from
VerbNet annotations on top of the PropBank cor-
pus. One possibility is to correct the generated
mappings directly, as we did in our study, which
we estimate would take about two person-months.
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With the addition of some metadata from the gen-
eration process, it would then be possible to follow
the corrected mappings back to annotations from
which they were generated and fix those annota-
tions. One downside of this approach is that if the
mappings were ever regenerated from the anno-
tated corpus, any mappings not encountered in the
corpus would have to be added back afterwards.

Null role mappings would be particularly thorny
to implement. To add a null mapping, we must
know that a role definitely does not belong, and
is not just incidentally missing from an exam-
ple. For instance, VerbNet’s defend-85 class
truly has no equivalent to Arg2 in PropBank’s
defend.01, but Arg0 or Arg1 may be missing
for other reasons (e.g., in a passive). It may be best
to simply omit null mappings, as is currently done.
Alternatively, full parses from the Penn Treebank,
on which PropBank is based, might allow distin-
guishing phenomena such as passives where argu-
ments are predictably omitted.

The maintainers of VerbNet and PropBank are
aware of many of the issues we have raised, and
we have been in contact with them about possi-
ble approaches to fixing them. They are particu-
larly aware of the inconsistent semantics of selec-
tional restrictions on VerbNet subclasses, and they
hope to fix this issue within a larger attempt at re-
tooling VerbNet’s selectional restrictions. In the
meantime, we are sharing our VerbNet modifica-
tions with them for them to verify and incorporate.
We are also sharing our SemLink changes so that
they can, if they choose, continue manual correc-
tion efforts or trace SemLink problems back to the
annotated corpus.

9 Conclusion

Our results argue for investing effort in developing
and fixing resources, in addition to developing bet-
ter NLP tools. Resource and tool improvements
interact synergistically: better resources multiply
the effect of algorithm enhancements. Gains from
fixing resources may sometimes even exceed what
the best possible algorithmic improvements can
provide. We hope the NLP community will take
up the challenge of investing in its resources to the
extent that its tools demand.
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Abstract

The use of automatic word alignment to
capture sentence-level semantic relations
is common to a number of cross-lingual
NLP applications. Despite its proved
usefulness, however, word alignment in-
formation is typically considered from a
quantitative point of view (e.g. the number
of alignments), disregarding qualitative
aspects (the importance of aligned terms).
In this paper we demonstrate that integrat-
ing qualitative information can bring sig-
nificant performance improvements with
negligible impact on system complexity.
Focusing on the cross-lingual textual en-
tailment task, we contribute with a novel
method that: i) significantly outperforms
the state of the art, and ii) is portable, with
limited loss in performance, to language
pairs where training data are not available.

1 Introduction

Meaning representation, comparison and projec-
tion across sentences are major challenges for a
variety of cross-lingual applications. So far, de-
spite the relevance of the problem, research on
multilingual applications has either circumvented
the issue, or proposed partial solutions.

When possible, the typical approach builds on
the reduction to a monolingual task, burdening the
process with dependencies from machine transla-
tion (MT) components. For instance, in cross-
lingual question answering and cross-lingual tex-
tual entailment (CLTE), intermediate MT steps
are respectively performed to ease answer re-
trieval/presentation (Parton, 2012; Tanev et al.,
2006) and semantic inference (Mehdad et al.,
2010). Direct solutions that avoid such pivot-
ing strategies typically exploit similarity measures
that rely on bag-of-words representations. As an

example, most supervised approaches to MT qual-
ity estimation (Blatz et al., 2003; Callison-Burch
et al., 2012) and CLTE (Wäschle and Fendrich,
2012) include features that consider the amount of
equivalent terms that are found in the input sen-
tence pairs. Such simplification, however, disre-
gards the fact that semantic equivalence is not only
proportional to the number of equivalent terms,
but also to their importance. In other words, in-
stead of checking what of a given sentence can be
found in the other, current approaches limit the
analysis to the amount of lexical elements they
share, under the rough assumption that the more
the better.

In this paper we argue that:
(1) Considering qualitative aspects of word align-
ments to identify sentence-level semantic relations
can bring significant performance improvements
in cross-lingual NLP tasks.
(2) Shallow linguistic processing techniques (of-
ten a constraint in real cross-lingual scenarios due
to limited resources availability) can be leveraged
to set up portable solutions that still outperform
current bag-of-words methods.

To support our claims we experiment with the
CLTE task, which allows us to perform exhaus-
tive comparative experiments due to the availabil-
ity of comparable benchmarks for different lan-
guage pairs. In the remainder of the paper, we:
(1) Prove the effectiveness of our method over
datasets for four language combinations;
(2) Assess the portability of our models across lan-
guages in different testing conditions.

2 Objectives and Method

We propose a supervised learning approach for
identifying and classifying semantic relations be-
tween two sentences T1 and T2 written in different
languages. Beyond semantic equivalence, which
is relevant to applications such as MT quality es-
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Figure 1: System architecture in different training/evaluation conditions. (a): parallel data and CLTE
labeled data are available for language pair L1-L2. (b): the L1-L2 CLTE model is used to cope with the
unavailability of labeled data for L3-L4. (c): the same problem is tackled by combining multiple models.

timation (Mehdad et al., 2012b),1 we aim to cap-
ture a richer set of relations potentially relevant to
other tasks. For instance, recognizing unrelated-
ness, forward and backward entailment relations,
represents a core problem in cross-lingual docu-
ment summarization (Lenci et al., 2002) and con-
tent synchronization (Monz et al., 2011; Mehdad
et al., 2012a). CLTE, as proposed within the Se-
mEval evaluation exercises (Negri et al., 2012;
Negri et al., 2013), represents an ideal framework
to evaluate such capabilities. Within this frame-
work, our goal is to automatically identify the fol-
lowing entailment relations between T1 and T2:
forward (T1 → T2), backward (T1 ← T2), bidi-
rectional (T1 ↔ T2) and no entailment.

Our approach (see Figure 1) involves two core
components: i) a word alignment model, and ii) a
CLTE classifier. The former is trained on a par-
allel corpus, and associates equivalent terms in T1
and T2. The information about word alignments
is used to extract quantitative (amount and dis-
tribution of the alignments) and qualitative fea-
tures (importance of the aligned terms) to train the
CLTE classifier. Although in principle both com-
ponents need training data (respectively a paral-
lel corpus and labeled CLTE data), our goal is to
develop a method that is also portable across lan-
guages. To this aim, while the parallel corpus is
necessary to train the word aligner for any lan-
guage pair we want to deal with, the CLTE clas-

1A translation has to be semantically equivalent to the
source sentence.

sifier can be designed to learn from features that
capture language independent knowledge.2 This
allows us to experiment in different testing con-
ditions, namely: i) when CLTE training data are
available for a given language pair (Figure 1a),
and ii) when CLTE training data are missing, and
a model trained on other language pairs has to be
reused (Figure 1b-c).

Features. Considering word alignment informa-
tion, we extract three different groups of features:
AL, POS, and IDF.

The AL group provides quantitative informa-
tion about the aligned/unaligned words in each
sentence T∗ of the pair. These features are:

1. proportion of aligned words in T∗. We use
this indicator as our baseline (B henceforth);

2. number of sequences of unaligned words,
normalized by the length of T∗;

3. length of the longest a) sequence of aligned
words, and b) sequence of unaligned words,
both normalized by the length of T∗;

4. average length of a) the aligned word se-
quences, and b) the unaligned word se-
quences;

5. position of a) the first unaligned word, and
b) the last unaligned word, both normalized
by the lenght of T∗;

6. proportion of word n-grams in T∗ contain-
ing only aligned words (the feature was com-

2For instance, the fact that aligning all nouns and the most
relevant terms in T1 and T2 is a good indicator of semantic
equivalence.
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puted separately for values of n = 1 . . . 5).

The POS group considers the part of speech
(PoS) of the words in T∗ as a source of qualitative
information about their importance. To compute
these features we use the TreeTagger (Schmid,
1995), manually mapping the fine-grained set of
assigned PoS labels into a more general set of tags
(P ) based on the universal PoS tag set by Petrov
et al. (2012). POS features differentiate between
aligned words (words in T1 that are aligned to one
or more words in T2) and alignments (the edges
connecting words in T1 and T2). Features consid-
ering the aligned words in T∗ are:

7. for each PoS tag p ∈ P , proportion of aligned
words in T∗ tagged with p;

8. proportion of words in T1 aligned with words
with the same PoS tag in T2 (and vice-versa);

9. for each PoS tag p ∈ P , proportion of words
in T1 tagged as p which are aligned to words
with the same tag in T2 (and vice-versa).

Features considering the alignments are:

10. proportion of alignments connecting words
with the same PoS tag p;

11. for each PoS tag p ∈ P , proportion of align-
ments connecting two words tagged as p.

IDF, the last feature, uses the inverse docu-
ment frequency (Salton and Buckley, 1988) as an-
other source of qualitative information under the
assumption that rare words (and, therefore, with
higher IDF) are more informative:

12. summation of all the IDF scores of the
aligned words in T∗ over the summation of
the IDF scores of all words in T∗.

3 Experiments

Our experiments cover two different scenarios.
First, the typical one, in which the CLTE model
is trained on labeled data for the same pair of lan-
guages L1–L2 of the test set. Then, simulating
the less favorable situation in which labeled train-
ing data for L1–L2 are missing, we investigate the
possibility to use existing CLTE models trained on
labeled data for a different language pair L3–L4.

The SemEval 2012 CLTE datasets used in our
experiments are available for four language pairs:
Es–En, De–En, Fr–En, and It–En. Each dataset
was created with the crowdsourcing-based method

described in Negri et al. (2011), and consists of
1000 T1–T2 pairs (500 for training, 500 for test).

To train the word alignment models we used
the Europarl parallel corpus (Koehn, 2005), con-
catenated with the News Commentary corpus3

for three language pairs: De–En (2,079,049
sentences), Es–En (2,123,036 sentences), Fr–En
(2,144,820 sentences). For It–En we only used
the parallel data available in Europarl (1,909,115
sentences) since this language pair is not covered
by the News Commentary corpus. IDF values for
the words in each language were calculated on the
monolingual part of these corpora, using the aver-
age IDF value of each language for unseen terms.

To build the word alignment models we used the
MGIZA++ package (Gao and Vogel, 2008). Ex-
periments have been carried out with the hidden
Markov model (HMM) (Vogel et al., 1996) and
IBM models 3 and 4 (Brown et al., 1993).4 We also
explored three symmetrization techniques (Koehn
et al., 2005): union, intersection, and grow-diag-
final-and. A greedy feature selection process on
training data, with different combinations of word
alignment models and symmetrization methods,
indicated HMM/intersection as the best perform-
ing combination. For this reason, all our experi-
ments use this setting.

The SVM implementation of Weka (Hall et
al., 2009) was used to build the CLTE model.5

Two binary classifiers were trained to separately
check T1 → T2 and T1 ← T2, merging
their output to obtain the 4-class judgments (e.g.
yes/yes=bidirectional, yes/no=forward).

3.1 Evaluation with CLTE training data

Figure 2 shows the accuracy obtained by the dif-
ferent feature groups.6 For the sake of compari-
son, state-of-the-art results achieved for each lan-
guage combination at SemEval 2012 are also re-
ported. As regards Es–En (63.2% accuracy) and
De–En (55.8%), the top scores were obtained by
the system described in (Wäschle and Fendrich,
2012), where a combination of binary classifiers
for each entailment direction is trained with a mix-

3http://www.statmt.org/wmt11/
translation-task.html#download

4Five iterations of HMM, and three iterations of IBM
models 3 and 4 have been performed on the training corpora.

5The polynomial kernel was used with parameters empir-
ically estimated on the training set (C = 2.0, and d = 1)

6In Figures 2 and 3, the “*” indicates statistically signif-
icant improvements over the state of the art at p ≤ 0.05,
calculated with approximate randomization (Padó, 2006).
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ture of monolingual (i.e. with the input sentences
translated in the same language using Google
Translate7) and cross-lingual features. Although
such system exploits word-alignment information
to some extent, this is only done at quantitative
level (e.g. number of unaligned words, percentage
of aligned words, length of the longest unaligned
subsequence). As regards It–En, the state of the
art (56.6%) is represented by the system described
in (Jimenez et al., 2012), which uses a pure pivot-
ing method (using Google Translate) and adaptive
similarity functions based on “soft” cardinality for
flexible term comparisons. The two systems ob-
tained the same result on Fr–En (57.0%).
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Figure 2: Accuracy obtained by each feature
group on four language combinations.

As can be seen in Figure 2, the combination of
all our features outperforms the state of the art
for each language pair. The accuracy improve-
ment ranges from 6.6% for Es–En (from 63.2% to
67.4%) to 14.6% for De–En (from 55.8% to 64%).
Except for Es–En, that has very competitive state-
of-the-art results, the combination of AL with POS
or IDF feature groups always outperforms the best
systems. Furthermore, the performance increase
with qualitative features (POS and IDF) shows co-
herent trends across all language pairs. It is worth
noting that, while we rely on a pure cross-lingual
approach, both the state-of-the-art CLTE systems
include features from the translation of T1 into the
language of T2. For De–En, quantitative features
alone achieve lower results compared to the other
languages. This can be motivated by the higher
difficulty in aligning De–En pairs (this hypothesis
is supported by the fact that the average number
of alignments per sentence pair is 18 for De–En,
and >22 for the other combinations). Neverthe-
less, qualitative features lead to results comparable

7http://translate.google.com/

with the other language pairs.
The selection of the best performing features

for each language pair produces further improve-
ments of varying degrees in Es–En (from 67.4%
to 68%), De–En (64% – 64.8%) and It–En (63.4%
– 66.8%), while performance remains stable for
Fr–En (63%). All these configurations include
the IDF feature (12) and the proportion of aligned
words for each PoS category (7), proving the ef-
fectiveness of qualitative word alignment features.

The fact that HMM/intersection is the best com-
bination of alignment model and symmetrization
method is interesting, since it contradicts the gen-
eral notion that IBM models 3 and 4 perform bet-
ter than HMM (Och and Ney, 2003). A possible
explanation is that, while word alignment models
are usually trained on parallel corpora, the major-
ity of CLTE sentence pairs are not parallel. In
this setting, where producing reliable alignments
is more difficult, IBM models are less effective for
at least two reasons. First, including a word fertil-
ity model, IBM 3 and 4 limit (typically to the half
of the source sentence length) the number of tar-
get words that can be aligned with the nullword.
Therefore, when such limit is reached, these mod-
els tend to force low probability, hence less reli-
able, word alignments. Second, in IBM model 4,
the larger distortion limit makes it possible to align
distant words. In the case of non-parallel sen-
tences, this often results in wrong or noisy align-
ments that affect final results. For these reasons,
CLTE data seem more suitable for the simpler and
more conservative HMM model, and a precision-
oriented symmetrization method like intersection.

3.2 Evaluation without CLTE training data

The goal of our second round of experiments is to
investigate if, and to what extent, our approach can
be considered as language-independent. Confirm-
ing this would allow to reuse models trained for
a given language pair in situations where CLTE
training data is missing. This is a rather realistic
situation since, while bitexts to train word aligners
are easier to find, the availability of labeled CLTE
data is far from being guaranteed.

Our experiments have been carried out, over the
same SemEval datasets, with two methods that do
not use labeled data for the target language com-
bination. The first one (method b in Figure 1)
uses a CLTE model trained for a language pair
L1–L2 for which labeled training data are avail-
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able, and applies this model to a language pair
L3–L4 for which only parallel corpora are avail-
able. The second method (c in Figure 1) addresses
the same problem, but exploits a combination of
CLTE models trained for different language pairs.
For each test set, the models trained for the other
three language pairs are used in a voting scheme,
in order to check whether they can complement
each other to increase final results.

All the experiments have been performed using
the best CLTE model for each language pair, com-
paring results with those presented in Section 3.1.
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Figure 3: Accuracy obtained by reusing CLTE
models (alone and in a voting scheme).

As shown in Figure 3, reusing models for a new
language pair leads to results that still outperform
the state of the art.6 Remarkably, when used for
other language combinations, the Es–En, It–En,
and Fr–En models always lead to results above,
or equal to the state of the art. For similar lan-
guages such as Spanish, French, and Italian, the
accuracy increase over the state of the art is up to
14.8% (from 56.6% to 65.0%) and 13.4% (from
56.6% to 64.2%) when the Fr–En and Es–En mod-
els are respectively used to label the It–En dataset.
Although not always statistically significant and
below the performance obtained in the ideal sce-
nario where CLTE training data are available (full
sys.), such improvements suggest that our features
can be re-used, at least to some extent, across dif-
ferent language settings. As expected, the major
incompatibilities arise between German and the
other languages due to the linguistic differences
between this language and the others. However, it
is interesting to note that: i) at least in one case
(i.e. when tested on It–En) the De–En model still
achieves results above the state of the art, and ii)
on the De–En evaluation setting the worst model
(Fr–En) still achieves state of the art results.

The results obtained with the voting scheme
suggest that our models can complement each
other when used on a new language pair. Although
statistically significant only over It–En data, vot-
ing results both outperform the state of the art and
the results achieved by single models.

4 Conclusion

We investigated the usefulness of qualitative infor-
mation from automatic word alignment to iden-
tify semantic relations between sentences in dif-
ferent languages. With coherent results in CLTE,
we demonstrated that features considering the im-
portance of aligned terms can successfully inte-
grate the quantitative evidence (number and pro-
portion of aligned terms) used by previous su-
pervised learning approaches. A study on the
portability across languages of the learned mod-
els demonstrated that word alignment information
can be exploited to train reusable models for new
language combinations where bitexts are available
but CLTE labeled data are not.
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Montréal, Canada.

Matteo Negri, Alessandro Marchetti, Yashar Mehdad,
Luisa Bentivogli, and Danilo Giampiccolo. 2013.
Semeval-2013 Task 8: Cross-Lingual Textual En-
tailment for Content Synchronization. In Proceed-
ings of the 7th International Workshop on Semantic
Evaluation (SemEval 2013), Atlanta, GA.

Franz J. Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Mod-
els. Computational Linguistics, 29(1):19–51.
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Abstract
We present an information theoretic objec-
tive for bilingual word clustering that in-
corporates both monolingual distributional
evidence as well as cross-lingual evidence
from parallel corpora to learn high qual-
ity word clusters jointly in any number of
languages. The monolingual component
of our objective is the average mutual in-
formation of clusters of adjacent words in
each language, while the bilingual com-
ponent is the average mutual information
of the aligned clusters. To evaluate our
method, we use the word clusters in an
NER system and demonstrate a statisti-
cally significant improvement in F1 score
when using bilingual word clusters instead
of monolingual clusters.

1 Introduction

A word cluster is a group of words which ideally
captures syntactic, semantic, and distributional
regularities among the words belonging to the
group. Word clustering is widely used to reduce
the number of parameters in statistical models
which leads to improved generalization (Brown et
al., 1992; Kneser and Ney, 1993; Clark, 2003; Koo
et al., 2008; Turian et al., 2010), and multilingual
clustering has been proposed as a means to im-
prove modeling of translational correspondences
and to facilitate projection of linguistic resource
across languages (Och, 1999; Täckström et al.,
2012). In this paper, we argue that generally more
informative clusters can be learned when evidence
from multiple languages is considered while cre-
ating the clusters.

We propose a novel bilingual word clustering
objective (§2). The first term deals with each

language independently and ensures that the data
is well-explained by the clustering in a sequence
model (§2.1). The second term ensures that the
cluster alignments induced by a word alignment
have high mutual information across languages
(§2.2). Since the objective consists of terms rep-
resenting the entropy monolingual data (for each
language) and parallel bilingual data, it is partic-
ularly attractive for the usual situation in which
there is much more monolingual data available
than parallel data. Because of its similarity to the
variation of information metric (Meilǎ, 2003), we
call this bilingual term in the objective the aligned
variation of information.

2 Word Clustering

A word clustering C is a partition of a vocabulary
Σ = {x1, x2, . . . , x|Σ|} into K disjoint subsets,
C1, C2, . . . , CK . That is, C = {C1, C2, . . . , CK};
Ci ∩ Cj = ∅ for all i 6= j and

⋃K
k=1Ck = Σ.

2.1 Monolingual objective

We use the average surprisal in a probabilistic se-
quence model to define the monolingual clustering
objective. Let ci denote the word class of word
wi. Our objective assumes that the probability of
a word sequence w = 〈w1, w2, . . . , wM 〉 is

p(w) =

M∏

i=1

p(ci | ci−1)× p(wi | ci), (2.1)

where c0 is a special start symbol. The term p(ci |
ci−1) is the probability of class ci following class
ci−1, and p(wi | ci) is the probability of class ci
emitting word wi. Using the MLE esitmates after
taking the negative logarithm, this term reduces to
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the following as shown in (Brown et al., 1992):

H(C; w) = 2

K∑

k=1

#(Ck)

M
log

#(Ck)

M

−
∑

i

∑

j 6=i

#(Ci, Cj)

M
log

#(Ci, Cj)

M

where #(Ck) is the count of Ck in the corpus w
under the clustering C, #(Ci, Cj) is the count of
the number of times that cluster Ci precedes Cj
and M is the size of the corpus. Using the mono-
lingual objective to cluster, we solve the following
search problem:

Ĉ = arg min
C
H(C; w). (2.2)

2.2 Bilingual objective

Now let us suppose we have a second lan-
guage with vocabulary Ω = {y1, y2, . . . , y|Ω|},
which is clustered into K disjoint subsets D =
{D1, D2, . . . , DK}, and a corpus of text in the
second language, v = 〈v1, v2, . . . , vN 〉. Obvi-
ously we can cluster both languages using the
monolingual objective above:

Ĉ, D̂ = arg min
C,D

H(C; w) +H(D; v).

This joint minimization for the clusterings for both
languages clearly has no benefit since the two
terms of the objective are independent. We must
alter the object by further assuming that we have
a priori beliefs that some of the words in w and v
have the same meaning.

To encode this belief, we introduce the notion
of a weighted vocabulary alignment A, which is
a function on pairs of words in vocabularies Σ and
Ω to a value greater than or equal to 0, i.e., A :
Σ× Ω 7→ R≥0. For concreteness, A(x, y) will be
the number of times that x is aligned to y in a word
aligned parallel corpus. By abuse of notation, we
write marginal weights A(x) =

∑
y∈ΩA(x, y)

and A(y) =
∑

x∈ΣA(x, y). We also define the
set marginals A(C,D) =

∑
x∈C

∑
y∈DA(x, y).

Using this weighted vocabulary alignment, we
state an objective that encourages clusterings to
have high average mutual information when align-
ment links are followed; that is, on average how
much information does knowing the cluster of a
word x ∈ Σ impart about the clustering of y ∈ Ω,
and vice-versa?

C DC

Figure 1: Factor graphs of the monolingual (left)
& proposed bilingual clustering problem (right).

We call this quantity the aligned variation of
information (AVI).

AVI(C,D;A) =

EA(x,y) [− log p(cx | dy)− log p(dy | cx)]

Writing out the expectation and gathering terms,
we obtain

AVI(C,D;A) = −
∑

x∈Σ

∑

y∈Ω

A(x, y)

A(·, ·) ×
[
2 log

A(C,D)

A(·, ·) − log p(C)− log p(D)

]
,

where it is assumed that 0 log x = 0.
Our bilingual clustering objective can therefore

be stated as the following search problem over a
linear combination of the monolingual and bilin-
gual objectives:

arg min
C,D

monolingual︷ ︸︸ ︷
H(C; w) +H(D; v) +

β×bilingual︷ ︸︸ ︷
βAVI(C,D) .

(2.3)

Understanding AVI. Intuitively, we can imag-
ine sampling a random alignment from the distri-
bution obtained by normalizing A(·, ·). AVI gives
us a measure of how much information do we ob-
tain, on average, from knowing the cluster in one
language about the clustering of a linked element
chosen at random proportional to A(x, ·) (or con-
ditioned the other way around). In the following
sections, we denote AVI(C,D;A) by AVI(C,D).
To further understand AVI, we remark that AVI re-
duces to the VI metric when the alignment maps
words to themselves in the same language. As a
proper metric, VI has a number of attractive prop-
erties, and these can be generalized to AVI (with-
out restriction on the alignment map), namely:

• Non-negativity: AVI(C,D) ≥ 0;

• Symmetry: AVI(C,D) = AVI(D,C);

• Triangle inequality:
AVI(C,D) + AVI(D,E) ≥ AVI(C,E);
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• Identity of indiscernables:
AVI(C,D) = 0 iff C ≡ D.1

2.3 Example
Figure 2 provides an example illustrating the dif-
ference between the bilingual vs. monolingual
clustering objectives. We compare two different
clusterings of a two-sentence Arabic-English par-
allel corpus (the English half of the corpus con-
tains the same sentence, twice, while the Ara-
bic half has two variants with the same mean-
ing). While English has a relatively rigid SVO
word order, Arabic can alternate between the tradi-
tional VSO order and an more modern SVO order.
Since our monolingual clustering objective relies
exclusively on the distribution of clusters before
and after each token, flexible word order alterna-
tions like this can cause unintuitive results. To
further complicate matters, verbs can inflect dif-
ferently depending on whether their subject pre-
cedes or follows them (Haywood and Nahmad,
1999), so a monolingual model, which knows
nothing about morphology and may only rely
on distributional clues, has little chance of per-
forming well without help. This is indeed what
we observe in the monolingual objective opti-
mal solution (center), in which AwlAd (boys) and
yElbwn (play+PRES + 3PL) are grouped into a
single class, while yElb (play+PRES + 3SG) is in
its own class. However, the AVI term (which is of
course not included) has a value of 1.0, reflecting
the relatively disordered clustering relative to the
given alignment. On the right, we see the optimal
solution that includes the AVI term in the cluster-
ing objective. This has an AVI of 0, indicating that
knowing the clustering of any word is completely
informative about the words it is aligned to. By in-
cluding this term, a slightly worse monolingual so-
lution is chosen, but the clustering corresponds to
the reasonable intuition that words with the same
meaning (i.e., the two variants of to play) should
be clustered together.

2.4 Inference
Figure 1 shows the factor graph representation
of our clustering models. Finding the optimal
clustering under both the monolingual and bilin-
gual objectives is a computationally hard combi-
natorial optimization problem (Och, 1995). We
use a greedy hill-climbing word exchange algo-
rithm (Martin et al., 1995) to find a minimum

1C ≡ D iff ∀i|{D(y)|∀(x, y) ∈ A, C(x) = i}| = 1

value for our objective. We terminate the opti-
mization procedure when the number of words
exchanged at the end of one complete iteration
through both the languages is less than 0.1% of
the sum of vocabulary of the two languages and
at least five complete iterations have been com-
pleted.2 For every language the word clusters are
initialised in a round robin order according to the
token frequency.

3 Experiments

Evaluation of clustering is not a trivial problem.
One branch of work seeks to recast the problem
as the of part-of-speech (POS) induction and at-
tempts to match linguistic intuitions. However,
hard clusters are particularly useful for down-
stream tasks (Turian et al., 2010). We therefore
chose to focus our evaluation on the latter prob-
lem. For our evaluation, we use our word clusters
as an input to a named entity recognizer which
uses these clusters as a source of features. Our
evaluation task is the German corpus with NER
annotation that was created for the shared task
at CoNLL-2003 3. The training set contains ap-
proximately 220,000 tokens and the development
set and test set contains 55,000 tokens each. We
use Stanford’s Named Entity Recognition system4

which uses a linear-chain conditional random field
to predict the most likely sequence of NE la-
bels (Finkel and Manning, 2009).

Corpora for Clustering: We used parallel cor-
pora for {Arabic, English, French, Korean &
Turkish}-German pairs from WIT-3 corpus (Cet-
tolo et al., 2012) 5, which is a collection of trans-
lated transcriptions of TED talks. Each language
pair contained around 1.5 million German words.
The corpus was word aligned in two directions
using an unsupervised word aligner (Dyer et al.,
2013), then the intersected alignment points were
taken.

Monolingual Clustering: For every language
pair, we train German word clusters on the mono-
lingual German data from the parallel data. Note
that the parallel corpora are of different sizes and
hence the monolingual German data from every
parallel corpus is different. We treat the F1 score

2
In practice, the number of exchanged words drops of exponentially,

so this threshold is typically reached in not many iterations.
3
http://www.cnts.ua.ac.be/conll2003/ner/

4
http://nlp.stanford.edu/ner/index.shtml

5
https://wit3.fbk.eu/mt.php?release=2012-03
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H(D;v) = 4H(C;w) = 4.56H(C;w) = 4H(D;v) = 3.88

H(C;w) + H(D;v)= 8.56H(C;w) + H(D;v)= 7.88

AVI(C,D)= 0AVI(C,D)= 1.0

Figure 2: A two-sentence English-Arabic parallel corpus (left); a 3-class clustering that maximizes the
monolingual objective (β = 0; center); and a 3-class clustering that maximizes the joint monolingual
and bilingual objective (any β > 0.68; right).

obtained using monolingual word clusters (β = 0)
as the baseline. Table 1 shows the F1 score of
NER6 when trained on these monolingual German
word clusters.

Bilingual Clustering: While we have formu-
lated a joint objective that enables using both
monolingual and bilingual evidence, it is possible
to create word clusters using the bilingual signal
only by removing the first term in Eq. 2.3. Ta-
ble 1 shows the performance of NER when the
word clusters are obtained using only the bilingual
information for different language pairs. As can
be seen, these clusters are helpful for all the lan-
guage pairs. For Turkish the F1 score improves
by 1.0 point over when there are no distributional
clusters which clearly shows that the word align-
ment information improves the clustering quality.
We now need to supplement the bilingual infor-
mation with monolingual information to see if the
improvement sustains.

We varied the weight of the bilingual objec-
tive (β) from 0.05 to 0.9 and observed the ef-
fect in NER performance on English-German lan-
guage pair. The F1 score is maximum for β =
0.1 and decreases monotonically when β is ei-
ther increased or decreased. This indicates that
bilingual information is helpful, but less valuable
than monolingual information. Preliminary exper-
iments showed that the value of β = 0.1 is fairly
robust across other language pairs and hence we
fix it to that for all the experiments.

We run our bilingual clustering model (β =

6
Faruqui and Padó (2010) show that for the size of our generalization

data in German-NER, K = 100 should give us the optimum value.

0.1) across all language pairs and note the F1

scores. Table 1 (unrefined) shows that except for
Arabic-German & French-German, all other lan-
guage pairs deliver a better F1 score than only us-
ing monolingual German data. In case of Arabic-
German there is a drop in score by 0.25 points.
Although, we have observed improvement in F1

score over the monolingual case, the gains do
not reach significance according to McNemar’s
test (Dietterich, 1998).

Thus we propose to further refine the quality of
word alignment links as follows: Let x be a word
in language Σ and y be a word in language Ω and
let there exists an alignment link between x and
y. Recall that A(x, y) is the count of the align-
ment links between x and y observed in the par-
allel data, and A(x) and A(y) are the respective
marginal counts. Then we define an edge associ-
ation weight e(x, y) = 2×A(x,y)

A(x)+A(y) This quantity
is an association of the strength of the relationship
between x and y, and we use it to remove all align-
ment links whose e(x, y) is below a given thresh-
old before running the bilingual clustering model.
We vary e from 0.1 to 0.7 and observe the new F1

scores on the development data. Table 1 (refined)
shows the results obtained by our refined model.
The values shown in bold are the highest improve-
ments over the monolingual model.

For English and Turkish we observe a statisti-
cally significant improvement over the monolin-
gual model (cf. Table 1) with p < 0.007 and
p < 0.001 according to McNemar’s test. Ara-
bic improves least with just an improvement of
0.02 F1 points over the monolingual baseline. We
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Dev Test

Language Pair — β = 0 β = 0.1 β = 0.1 β = 0 β = 0.1
(only bi) (only mono) (unrefined) (refined) (only mono) (refined)

No clusters 68.27 72.32
En-De 68.95 70.04 70.33 70.64† 72.30 72.98†

Fr-De 69.16 69.74 69.69 69.89 72.66 72.83
Ar-De 69.01 69.65 69.40 69.67 72.90 72.37
Tr-De 69.29 69.46 69.64 70.05† 72.41 72.54
Ko-De 68.95 69.70 69.78 69.95 72.71 72.54
Average 69.07 69.71 69.76 70.04† 72.59 72.65

Table 1: NER performance using different word clustering models. Bold indicates an improvement over
the monolingual (β = 0) baseline; † indicates a significant improvement (McNemar’s test, p < 0.01).

see that the optimal value of e changes from one
language pair to another. For French and English
e = 0.1 gives the best results whereas for Turk-
ish and Arabic e = 0.5 and for Korean e = 0.7.
Are these thresholds correlated with anything? We
suggest that higher values of e correspond to more
intrinsically noisy alignments. Since alignment
models are parameterized based on the vocabu-
laries of the languages they are aligning, larger
vocabularies are more prone to degenerate solu-
tions resulting from overfitting. So we are not
surprised to see that sparser alignments (resulting
from higher values of e) are required by languages
like Korean, while languages like French and En-
glish make due with denser alignments.

Evaluation on Test Set: We now verify our re-
sults on the test set. We take the best bilin-
gual word clustering model obtained for every lan-
guage pair (e = 0.1 for En, Fr. e = 0.5 for Ar,
Tr. e = 0.7 for Ko) and train NER classifiers
using these. Table 1 shows the performance of
German NER classifiers on the test set. All the
values shown in bold are better than the mono-
lingual baselines. English again has a statistically
significant improvement over the baseline. French
and Turkish show the next best improvements.
The English-German cluster model performs bet-
ter than the mkcls7 tool (72.83%).

4 Related Work

Our monolingual clustering model is purely distri-
butional in nature. Other extensions to word clus-
tering have incorporated morphological and or-
thographic information (Clark, 2003). The work
of Snyder and Barzilay (2010), which focused on
POS induction is very closely related. The ear-
liest work on bilingual word clustering was pro-
posed by (Och, 1999) which, like us, uses a lan-

7
http://www.statmt.org/moses/giza/mkcls.html

guage modeling approach (Brown et al., 1992;
Kneser and Ney, 1993) for monolingual optimiza-
tion and a similarity function for bilingual simi-
larity. Täckström et al. (2012) use cross-lingual
word clusters to show transfer of linguistic struc-
ture. While their clustering method is superficially
similar, the objective function is more heuristic in
nature than our information-theoretic conception
of the problem. Multilingual learning has been
applied to a number of unsupervised and super-
vised learning problems, including word sense dis-
ambiguation (Diab, 2003; Guo and Diab, 2010),
topic modeling (Mimno et al., 2009; Boyd-Graber
and Blei, 2009), and morphological segmenta-
tion (Snyder and Barzilay, 2008).

Also closely related is the technique of cross-
lingual annotation projection. This has been
applied to bootstrapping syntactic parsers (Hwa
et al., 2005; Smith and Smith, 2007; Co-
hen et al., 2011), morphology (Fraser, 2009),
tense (Schiehlen, 1998) and T/V pronoun us-
age (Faruqui and Padó, 2012).

5 Conclusions

We presented a novel information theoretic model
for bilingual word clustering which seeks a clus-
tering with high average mutual information be-
tween clusters of adjacent words, and also high
mutual information across observed word align-
ment links. We have shown that improvement in
clustering can be obtained across a range of lan-
guage pairs, evaluated in terms of their value as
features in an extrinsic NER task. Our model can
be extended for clustering any number of given
languages together in a joint framework, and in-
corporate both monolingual and parallel data.

Acknowledgement: We woud like to thank W.
Ammar, V. Chahuneau and W. Ling for valuable
discussions.

781



References
J. Boyd-Graber and D. M. Blei. 2009. Multilingual

topic models for unaligned text. In Proceedings of
the Twenty-Fifth Conference on Uncertainty in Arti-
ficial Intelligence, UAI ’09, pages 75–82, Arlington,
Virginia, United States. AUAI Press.

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra,
and J. C. Lai. 1992. Class-based n-gram models
of natural language. Comput. Linguist., 18(4):467–
479, December.

M. Cettolo, C. Girardi, and M. Federico. 2012. Wit3:
Web inventory of transcribed and translated talks. In
Proceedings of the 16th Conference of the European
Association for Machine Translation (EAMT), pages
261–268, Trento, Italy, May.

A. Clark. 2003. Combining distributional and mor-
phological information for part of speech induction.
In Proceedings of the tenth conference on Euro-
pean chapter of the Association for Computational
Linguistics - Volume 1, EACL ’03, pages 59–66,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

S. B. Cohen, D. Das, and N. A. Smith. 2011. Unsuper-
vised structure prediction with non-parallel multilin-
gual guidance. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP ’11, pages 50–61, Stroudsburg, PA,
USA. Association for Computational Linguistics.

M. T. Diab. 2003. Word sense disambiguation within a
multilingual framework. Ph.D. thesis, University of
Maryland at College Park, College Park, MD, USA.
AAI3115805.

T. G. Dietterich. 1998. Approximate statistical tests
for comparing supervised classification learning al-
gorithms. Neural Computation, 10:1895–1923.

C. Dyer, V. Chahuneau, and N. A. Smith. 2013.
A simple, fast, and effective reparameterization of
IBM Model 2. In Proc. NAACL.
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Abstract

We report on the first structured dis-
tributional semantic model for Croatian,
DM.HR. It is constructed after the model
of the English Distributional Memory (Ba-
roni and Lenci, 2010), from a dependency-
parsed Croatian web corpus, and covers
about 2M lemmas. We give details on the
linguistic processing and the design prin-
ciples. An evaluation shows state-of-the-
art performance on a semantic similarity
task with particularly good performance on
nouns. The resource is freely available.

1 Introduction

Most current work in lexical semantics is based
on the Distributional Hypothesis (Harris, 1954),
which posits a correlation between the degree of
words’ semantic similarity and the similarity of
the contexts in which they occur. Using this hy-
pothesis, word meaning representations can be ex-
tracted from large corpora. Words are typically rep-
resented as vectors whose dimensions correspond
to context features. The vector similarities, which
are interpreted as semantic similarities, are used in
numerous applications (Turney and Pantel, 2010).

Most vector spaces in current use are either word-
based (co-occurrence defined by surface window,
context words as dimensions) or syntax-based (co-
occurrence defined syntactically, syntactic objects
as dimensions). Syntax-based models have sev-
eral desirable properties. First, they are model to
fine-grained types of semantic similarity such as
predicate-argument plausibility (Erk et al., 2010).
Second, they are more versatile – Baroni and Lenci
(2010) have presented a generic framework, the
Distributional Memory (DM), which is applicable

to a wide range of tasks beyond word similarity.
Third, they avoid the “syntactic assumption” in-
herent in word-based models, namely that context
words are relevant iff they are in an n-word window
around the target. This property is particularly rele-
vant for free word order languages with many long
distance dependencies and non-projective structure
(Kübler et al., 2009). Their obvious problem, of
course, is that they require a large parsed corpus.

In this paper, we describe the construction of
a Distributional Memory for Croatian (DM.HR),
a free word order language. To do so, we parse
hrWaC (Ljubešić and Erjavec, 2011), a 1.2B-token
Croatian web corpus. We evaluate DM.HR on a
synonym choice task, where it outperforms the
standard bag-of-word model for nouns and verbs.

2 Related Work

Vector space semantic models have been applied
to a number of Slavic languages, including Bul-
garian (Nakov, 2001a), Czech (Smrž and Rychlý,
2001), Polish (Piasecki, 2009; Broda et al., 2008;
Broda and Piasecki, 2008), and Russian (Nakov,
2001b; Mitrofanova et al., 2007). Previous work
on distributional semantic models for Croatian
dealt with similarity prediction (Ljubešić et al.,
2008; Janković et al., 2011) and synonym detec-
tion (Karan et al., 2012), however using only word-
based and not syntactic-based models.

So far the only DM for a language other than
English is the German DM.DE by Padó and Utt
(2012), who describe the process of building
DM.DE and the evaluation on a synonym choice
task. Our work is similar, though each language
has its own challenges. Croatian, like other Slavic
languages, has rich inflectional morphology and
free word order, which lead to errors in linguistic
processing and affect the quality of the DM.
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3 Distributional Memory

DM represents co-occurrence information in a gen-
eral, non-task-specific manner, as a tensor, i.e., a
three-dimensional matrix, of weighted word-link-
word tuples. Each tuple is mapped onto a number
by scoring function σ : W × L ×W → R+, that
reflects the strength of the association. When a par-
ticular task is selected, a vector space for this task
can be generated from the tensor by matricization.
Regarding the examples from Section 1, synonym
discovery would use a word by link-word space
(W × LW ), which contains vectors for words w
represented by pairs 〈l, w〉 of a link and a context
word. Analogy discovery would use a word-word
by link space (WW × L), which represents word
pairs 〈w1, w2〉 by vectors over links l.

The links can be chosen to model any relation
of interest between words. However, as noted by
Padó and Utt (2012), dependency relations are the
most obvious choice. Baroni and Lenci (2010) in-
troduce three dependency-based DM variants: De-
pDM, LexDM, and TypeDM. DepDM uses links
that correspond to dependency relations, with sub-
categorization for subject (subj tr and subj intr)
and object (obj and iobj). Furthermore, all prepo-
sitions are lexicalized into links (e.g., 〈sun, on,
Sunday〉). Finally, the tensor is symmetrized: for
each tuple 〈w1, l, w2〉, its inverse 〈w2, l−1, w1〉 is
included. The other two variants are more complex:
LexDM uses more lexicalized links, encoding, e.g.,
lexical material between the words, while TypeDM
extends LexDM with a scoring function based on
lexical variability.

Following the work of Padó and Utt (2012), we
build a DepDM variant for DM.HR. Although Ba-
roni and Lenci (2010) show that TypeDM can out-
perform the other two variants, DepDM often per-
forms at a comparable level, while being much
simpler to build and more efficient to compute.

4 Building DM.HR

To build DM.HR, we need to collect co-occurrence
counts from a corpus. Since no sufficiently large
suitable corpus exists for Croatian, we first explain
how we preprocessed, tagged, and parsed the data.

Corpus and preprocessing. We adopted hrWaC,
the 1.2B-token Croatian web corpus (Ljubešić and
Erjavec, 2011), as starting point. hrWaC was built
with the aim of obtaining a cleaner-than-usual web
corpus. To this end, a conservative boilerplate re-

moval procedure was used; Ljubešić and Erjavec
(2011) report a precision of 97.9% and a recall of
70.7%. Nonetheless, our inspection revealed that,
apart from the unavoidable spelling and grammati-
cal errors, hrWaC still contains non-textual content
(e.g., code snippets and formatting structure), en-
coding errors, and foreign-language content. As
this severely affects linguistic processing, we addi-
tionally filtered the corpus.

First, we removed from hrWaC the content
crawled from main discussion forum and blog web-
sites. This content is highly ungrammatical and
contains a lot of non-diacriticized text, typical for
user-generated content. This step alone removed
one third of the data. We processed the remaining
content with a tokenizer and a sentence segmenter
based on regular expressions, obtaining 66M sen-
tences. Next, we applied a series of heuristic filters
at the document- and sentence-level. At the doc-
ument level, we discard all documents (1) whose
length is below a specified threshold, (2) contain
no diacritics, (3) contain no words from a list of fre-
quent Croatian words, or (4) contain a single word
from lists of distinctive foreign-language words
(for Serbian). The last two steps serve to eliminate
foreign-language content. In particular, the last
step serves to filter out the text in Serbian, which at
the sentence-level is difficult to automatically dis-
criminate from Croatian. At the sentence-level, we
discard sentences that are (1) shorter than a speci-
fied threshold, (2) contain non-standard symbols,
(3) contain non-diacriticized Croatian words, or
(4) contain too many foreign words from a list of
foreign-language words (for English and Slovene).
The last step filters out specifically the sentences
in English and Slovene, as we found that these of-
ten occur mixed with text in Croatian. The final
filtered version of hrWaC contains 51M sentences
and 1.2B tokens. The corpus is freely available for
download, along with a more detailed description
of the preprocessing steps.1

Tagging, lemmatization, and parsing. For mor-
phosyntactic (MSD) tagging, lemmatization, and
dependency parsing of hrWaC, we use freely avail-
able tools with models trained on the new SETimes
Corpus of Croatian (SETIMES.HR), based on the
Croatian part of the SETimes parallel corpus.2 SE-
TIMES.HR and the derived tools are prototypes

1http://takelab.fer.hr/data
2http://www.nljubesic.net/resources/

corpora/setimes/
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SETIMES.HR Wikipedia

HunPos (POS only) 97.1 94.1
HunPos (full MSD) 87.7 81.5
CST lemmatizer 97.7 96.5
MSTParser 77.5 68.8

Table 1: Tagging, lemmatization, and parsing accu-
racy

that are about to be released as parts of another
work. Here we give a general description and a
re-evaluation that we consider relevant for building
DM.HR.

SETIMES.HR consists of 90K tokens and 4K
sentences, manually lemmatized and MSD-tagged
according to Multext East v4 tagset (Erjavec, 2012),
with the help of the Croatian Lemmatization Server
(Tadić, 2005). It is used also as a basis for a novel
formalism for syntactic annotation and dependency
parsing of Croatian (Agić and Merkler, 2013).

On the basis of previous evaluation for Croa-
tian (Agić et al., 2008; Agić et al., 2009; Agić,
2012) and availability and licensing considerations,
we chose HunPos tagger (Halácsy et al., 2007),
CST lemmatizer (Ingason et al., 2008), and MST-
Parser (McDonald et al., 2006) to process hrWaC.
We evaluated the tools on 100-sentence test sets
from SETIMES.HR and Wikipedia; performance
on Wikipedia should be indicative of the perfor-
mance on a cross-domain dataset, such as hrWaC.
In Table 1 we show lemmatization and tagging ac-
curacy, as well as dependency parsing accuracy
in terms of labeled attachment score (LAS). The
results show that lemmatization, tagging and pars-
ing accuracy improves on the state of the art for
Croatian. The SETIMES.HR dependency parsing
models are publicly available.3

Syntactic patterns. We collect the co-occur-
rence counts of tuples using a set of syntactic pat-
terns. The patterns effectively define the link types,
and hence the dimensions of the semantic space.
Similar to previous work, we use two sorts of links:
unlexicalized and lexicalized.

For unlexicalized links, we use ten syntactic pat-
terns. These correspond to the main dependency re-
lations produced by our parser: Pred for predicates,
Atr for attributes, Adv for adverbs, Atv for verbal
complements, Obj for objects, Prep for preposi-
tions, and Pnom for nominal predicates. We sub-
categorized the subject relation into Sub tr (sub-

3http://zeljko.agic.me/resources/

Link P (%) R (%) F1 (%)

Unlexicalized
Adv 57.3 52.7 54.9
Atr 85.0 89.3 87.1
Atv 75.3 70.9 73.1
Obj 71.4 71.7 71.5
Pnom 55.7 50.8 53.1
Pred 81.8 70.6 75.8
Prep 50.0 28.6 36.4
Sb tr 67.8 73.8 70.7
Sb intr 64.5 64.8 64.7
Verb 61.6 73.6 67.1

Lexicalized
Prepositions 67.2 67.9 67.5
Verbs 61.6 73.6 67.1

All links 73.7 75.5 74.6

Table 2: Tuple extraction performance on SE-
TIMES.HR

jects of transitive verbs) and Sub intr (subject of
intransitive verbs). The motivation for this is better
modeling of verb semantics by capturing diathe-
sis alternations. In particular, for many Croatian
verbs reflexivization introduces a meaning shift,
e.g., predati (to hand in/out) vs. predati se (to
surrender). With subject subcategorization, re-
flexive and irreflexive readings will have differ-
ent tensor representations; e.g., 〈student, Subj tr,
zadaća〉 (〈student, Subj tr, homework〉) vs. 〈trupe,
Subj intr, napadač〉 (〈troops, Subj intr, invadors〉).
Finally, similar to Padó and Utt (2012), we use
Verb as an underspecified link between subjects
and objects linked by non-auxiliary verbs.

For lexicalized links, we use two more extraction
patterns for prepositions and verbs. Prepositions
are directly lexicalized as links; e.g., 〈mjesto, na,
sunce〉 (〈place, on, sun〉). The same holds for non-
auxiliary verbs linking subjects to objects; e.g.,
〈država, kupiti, količina〉 (〈state, buy, amount〉).
Tuple extraction and scoring. The overall qual-
ity of the DM.HR depends on the accuracy of ex-
tracted tuples, which is affected by all preprocess-
ing steps. We computed the performance of tu-
ple extraction by evaluating a sample of tuples
extracted from a parsed version of SETIMES.HR

against the tuples extracted from the SETIMES.HR

gold annotations (we use the same sample as for
tagging and parsing performance evaluation). Ta-
ble 2 shows Precision, Recall, and F1 score. Over-
all, we achieve the best performance on the Atr
links, followed by Pred links. The performance is
generally higher on unlexicalized links than on lex-
icalized links (note that performance on unlexical-
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Link Word LMI Link Word LMI

Atv moći 225107 Adv moguće 9669
Atv željeti 22049 Atv namjeravati 9095
Obj stan 19997 Obj karta 8936
po cijena 18534 prije godina 8584
Pred kada 14408 Adv nedavno 7842
Obj dionica 13720 Atv odlučiti 7578
Atv morati 12097 Adv godina 7496
Obj ulaznica 11126 Obj zemljište 7180

Table 3: Top 16 LMI-scored tuples for the verb
kupiti (to buy)

ized Verb links is identical to overall performance
on lexicalized verb links). The overall F1 score of
tuple extraction is 74.6%.

Following DM and DM.DE, we score each
extracted tuple using Local Mutual Information
(LMI) (Evert, 2005):

LMI(i, j, k) = f(i, j, k) log
P (i, j, k)

P (i)P (j)P (k)

For a tuple (w1, l, w2), LMI scores the association
strength between word w1 and word w2 via link l
by comparing their joint distribution against the dis-
tribution under the independence assumption, mul-
tiplied with the observed frequency f(w1, l, w2) to
discount infrequent tuples. The probabilities are
computed from tuple counts as maximum likeli-
hood estimates. We exclude from the tensor all
tuples with a negative LMI score. Finally, we sym-
metrize the tensor by introducing inverse links.

Model statistics. The resulting DM.HR tensor
consists of 2.3M lemmas, 121M links and 165K
link types (including inverse links). On average,
each lemma has 53 links. This makes DM.HR

more sparse than English DM (796 link types), but
less sparse than German DM (220K link types; 22
links per lemma). Table 3 shows an example of
the extracted tuples for the verb kupiti (to buy).
DM.HR tensor is freely available for download.4

5 Evaluating DM.HR

Task. We present a pilot evaluation DM.HR on a
standard task from distributional semantics, namely
synonym choice. In contrast to tasks like predict-
ing word similarity We use the dataset created by
Karan et al. (2012), with more than 11,000 syn-
onym choice questions. Each question consists of
one target word (nouns, verbs, and adjectives) with

4http://takelab.fer.hr/dmhr

Accuracy (%) Coverage (%)

Model N A V N A V

DM.HR 70.0 66.3 63.2 99.9 99.1 100
BOW-LSA 67.2 68.9 61.0 100 100 100

BOW baseline 59.9 65.7 55.9 99.9 99.7 100

Table 4: Results on synonym choice task

four synonym candidates (one is correct). The ques-
tions were extracted automatically from a machine-
readable dictionary of Croatian. An example item
is težak (farmer): poljoprivrednik (farmer), um-
jetnost (art), radijacija (radiation), bod (point).
We sampled from the dataset questions for nouns,
verbs, and adjectives, with 1000 questions each.5

Additionally, we manually corrected some errors
in the dataset, introduced by the automatic extrac-
tion procedure. To make predictions, we compute
pairwise cosine similarities of the target word vec-
tors with the four candidates and predict the can-
didate(s) with maximal similarity (note that there
may be ties).

Evaluation. Our evaluation follows the scheme
developed by Mohammad et al. (2007), who define
accuracy as the average number of correct predic-
tions per covered question. Each correct prediction
with a single most similar candidate receives a full
credit (A), while ties for maximal similarity are
discounted (B: two-way tie, C: three-way tie, D:
four-way tie): A+ 1

2B+ 1
3C+ 1

4D. We consider a
question item to be covered if the target and at least
one answer word are modeled. In our experiments,
ties occur when vector similarities are zero for all
word pairs (due to vector sparsity). Note that a
random baseline would perform at 0.25 accuracy.

As baseline to compare against the DM.HR, we
build a standard bag-of-word model from the same
corpus. It uses a ±5-word within-sentence con-
text window, and the 10,000 most frequent context
words (nouns, adjectives, and verbs) as dimensions.
We also compare against BOW-LSA, a state-of-
the-art synonym detection model from Karan et
al. (2012), which uses 500 latent dimensions and
paragraphs as contexts. We determine the signifi-
cance of differences between the models by com-
puting 95% confidence intervals with bootstrap re-
sampling (Efron and Tibshirani, 1993).

Results. Table 4 shows the results for the three
considered models on nouns (N), adjectives (A),

5Available at: http://takelab.fer.hr/crosyn
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and verbs (V). The performance of BOW-LSA
differs slightly from that reported by Karan et al.
(2012), because we evaluate on a sample of their
dataset. DM.HR outperforms the baseline BOW
model for nouns and verbs (differences are sig-
nificant at p < 0.05). Moreover, on these cate-
gories DM.HR performs slightly better than BOW-
LSA, but the differences are not statistically sig-
nificant. Conversely, on adjectives BOW-LSA per-
forms slightly better than DM.HR, but the differ-
ence is again not statistically significant. All mod-
els achieve comparable and almost perfect cov-
erage on this dataset (BOW-LSA achieves com-
plete coverage because of the way how the original
dataset was filtered).

Overall, the biggest improvement over the base-
line is achieved for nouns. Nouns occur as heads
and dependents of many link types (unlexicalized
and lexicalized), and are thus well represented in
the semantic space. On the other hand, adjectives
seem to be less well modeled. Although the major-
ity of adjectives occur as heads or dependents of
the Atr relation, for which extraction accuracy is
the highest (cf. Table 2), it is likely that a single link
type is not sufficient. As noted by a reviewer, more
insight could perhaps be gained by comparing the
predictions of BOW-LSA and DM.HR models. The
generally low performance on verbs suggests that
their semantic is not fully covered in word- and
syntax-based spaces.

6 Conclusion

We have described the construction of DM.HR, a
syntax-based distributional memory for Croatian
built from a dependency-parsed web corpus. To the
best of our knowledge, DM.HR is the first freely
available distributional memory for a Slavic lan-
guage. We have conducted a preliminary evalua-
tion of DM.HR on a synonym choice task, where
DM.HR outperformed the bag-of-word model and
performed comparable to an LSA model.

This work provides a starting point for a sys-
tematic study of dependency-based distributional
semantics for Croatian and similar languages. Our
first priority will be to analyze how corpus prepro-
cessing and the choice of link types relates to model
performance on different semantic tasks. Better
modeling of adjectives and verbs is also an impor-
tant topic for future research.
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Tomaž Erjavec. 2012. MULTEXT-East: Morphosyn-
tactic resources for Central and Eastern European
languages. Language Resources and Evaluation,
46(1):131–142.

Katrin Erk, Sebastian Padó, and Ulrike Padó. 2010.
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Abstract

The ever growing amount of web images
and their associated texts offers new op-
portunities for integrative models bridging
natural language processing and computer
vision. However, the potential benefits of
such data are yet to be fully realized due
to the complexity and noise in the align-
ment between image content and text. We
address this challenge with contributions
in two folds: first, we introduce the new
task of image caption generalization, for-
mulated as visually-guided sentence com-
pression, and present an efficient algo-
rithm based on dynamic beam search with
dependency-based constraints. Second,
we release a new large-scale corpus with
1 million image-caption pairs achieving
tighter content alignment between images
and text. Evaluation results show the in-
trinsic quality of the generalized captions
and the extrinsic utility of the new image-
text parallel corpus with respect to a con-
crete application of image caption transfer.

1 Introduction

The vast number of online images with accom-
panying text raises hope for drawing synergistic
connections between human language technolo-
gies and computer vision. However, subtleties and
complexity in the relationship between image con-
tent and text make exploiting paired visual-textual
data an open and interesting problem.

Some recent work has approached the prob-
lem of composing natural language descriptions
for images by using computer vision to retrieve
images with similar content and then transferring

“A house being 

pulled by a boat.” 
“I saw her in the light 

of her reading lamp 

and sneaked back to 

her door with the 

camera.” 

“Sections of the 

bridge sitting in the 

Dyer Construction 

yard south of 

Cabelas Driver.” 

Circumstantial 

information that is not 

visually present 

Visually relevant, 

but with overly 

extraneous details 

Visually truthful, 

but for an uncommon 

situation 

Figure 1: Examples of captions that are not readily
applicable to other visually similar images.

text from the retrieved samples to the query im-
age (e.g. Farhadi et al. (2010), Ordonez et al.
(2011), Kuznetsova et al. (2012)). Other work
(e.g. Feng and Lapata (2010a), Feng and Lapata
(2010b)) uses computer vision to bias summariza-
tion of text associated with images to produce de-
scriptions. All of these approaches rely on ex-
isting text that describes visual content, but many
times existing image descriptions contain signifi-
cant amounts of extraneous, non-visual, or other-
wise non-desirable content. The goal of this paper
is to develop techniques to automatically clean up
visually descriptive text to make it more directly
usable for applications exploiting the connection
between images and language.

As a concrete example, consider the first image
in Figure 1. This caption was written by the photo
owner and therefore contains information related
to the context of when and where the photo was
taken. Objects such as “lamp”, “door”, “camera”
are not visually present in the photo. The second
image shows a similar but somewhat different is-
sue. Its caption describes visible objects such as
“bridge” and “yard”, but “Cabelas Driver” are
overly specific and not visually detectable. The
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Dependency Constraints with Examples Additional Dependency ConstraintsConstraints Sentence Dependency
advcl*(←) Taken when it was running... taken←running acomp*(↔), advmod(←), agent*(←), attr(↔)
amod(←) A wooden chair in the living room chair← wooden auxpass(↔), cc*(↔),complm(←), cop*(↔)
aux(↔) This crazy dog was jumping... jumping↔was csubj*/csubjpass*(↔),expl(↔), mark*(↔)
ccomp*(→) I believe a bear was in the box... believe→was infmod*(↔), mwe(↔), nsubj*/nsubjpass*(↔)
prep(←) A view from the balcony view←from npadvmod(←), nn(←), conj*(↔), num*(←)
det(↔) A cozy street cafe... cafe↔A number(↔), parataxis(←),↔
dobj*(↔) A curious cow surveys the road... surveys↔road partmod*(←), pcomp*(↔), purpcl*(←)
iobj*(↔) ...rock gives the water the color gives↔water possessive(↔), preconj*(←), predet*(←)
neg(↔) Not a cloud in the sky... cloud↔Not prt(↔), quantmod(←), rcmod(←), ref(←)
pobj*(↔) This branch was on the ground... on↔ground rel*(↔), tmod*(←), xcomp*(→), xsubj(→)

Table 1: Dependency-based Constraints

text of the third image, “A house being pulled by a
boat”, pertains directly to the visual content of the
image, but is unlikely to be useful for tasks such as
caption transfer because the depiction is unusual.1

This phenomenon of information gap between the
visual content of the images and their correspond-
ing narratives has been studied closely by Dodge
et al. (2012).

The content misalignment between images and
text limits the extent to which visual detectors
can learn meaningful mappings between images
and text. To tackle this challenge, we introduce
the new task of image caption generalization that
rewrites captions to be more visually relevant and
more readily applicable to other visually similar
images. Our end goal is to convert noisy image-
text pairs in the wild (Ordonez et al., 2011) into
pairs with tighter content alignment, resulting in
new simplified captions over 1 million images.
Evaluation results show both the intrinsic quality
of the generalized captions and the extrinsic util-
ity of the new image-text parallel corpus. The new
parallel corpus will be made publicly available.2

2 Sentence Generalization as Constraint
Optimization

Casting the generalization task as visually-guided
sentence compression with lightweight revisions,
we formulate a constraint optimization problem
that aims to maximize content selection and lo-
cal linguistic fluency while satisfying constraints
driven from dependency parse trees. Dependency-
based constraints guide the generalized caption

1Open domain computer vision remains to be an open
problem, and it would be difficult to reliably distinguish pic-
tures of subtle visual differences, e.g., pictures of “a water
front house with a docked boat” from those of “a floating
house pulled by a boat”.

2Available at http://www.cs.stonybrook.edu/
˜ychoi/imgcaption/

to be grammatically valid (e.g., keeping articles
in place, preventing dangling modifiers) while re-
maining semantically compatible with respect to a
given image-text pair (e.g., preserving predicate-
argument relations). More formally, we maximize
the following objective function:

F (y;x) = Φ(y;x, v) + Ψ(y;x)

subject to C(y;x, v)

where x = {xi} is the input caption (a sentence),
v is the accompanying image, y = {yi} is the
output sentence, Φ(y;x, v) is the content selection
score, Ψ(y;x) is the linguistic fluency score, and
C(y;x, v) is the set of hard constraints. Let l(yi)
be the index of the word in x that is selected as the
i’th word in the output y so that xl(yi) = yi. Then,
we factorize Φ(·) and Ψ(·) as:

Φ(y;x, v) =
∑

i

φ(yi, x, v) =
∑

i

φ(xl(yi), v)

Ψ(y;x) =
∑

i

ψ(yi, ..., yi−K)

=
∑

i

ψ(xl(yi), ..., xl(yi−K))

where K is the size of local context.

Content Selection – Visual Estimates:
The computer vision system used consists of 7404
visual classifiers for recognizing leaf level Word-
Net synsets (Fellbaum, 1998). Each classifier is
trained using labeled images from the ImageNet
dataset (Deng et al., 2009) – an image database
of over 14 million hand labeled images orga-
nized according to the WordNet hierarchy. Image
similarity is represented using a Spatial Pyramid
Match Kernel (SPM) (Lazebnik et al., 2006) with
Locality-constrained Linear Coding (Wang et al.,
2010) on shape based SIFT features (Lowe, 2004).
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Figure 2: Number of sentences (y-axis) for each
average (x-axis in (a)) and maximum (x-axis in
(b)) number of words with future dependencies

Models are linear SVMs followed by a sigmoid to
produce probability for each node.3

Content Selection – Salient Topics:
We consider Tf.Idf driven scores to favor salient
topics, as those are more likely to generalize
across many different images. Additionally, we
assign a very low content selection score (−∞) for
proper nouns and numbers and a very high score
(larger then maximum idf or visual score) for the
2k most frequent words in our corpus.

Local Linguistic Fluency:
We model linguistic fluency with 3-gram condi-
tional probabilities:

ψ(xl(yi), xl(yi−1), xl(yi−2)) (1)

= p(xl(yi)|xl(yi−2), xl(yi−1))

We experiment with two different ngram statis-
tics, one extracted from the Google Web 1T cor-
pus (Brants and Franz., 2006), and the other com-
puted from the 1M image-caption corpus (Or-
donez et al., 2011).

Dependency-driven Constraints:
Table 1 defines the list of dependencies used
as constraints driven from the typed dependen-
cies (de Marneffe and Manning, 2009; de Marn-
effe et al., 2006). The direction of arrows indi-
cate the direction of inclusion requirements. For
example, dep(X ←− Y ), denotes that “X” must
be included whenever “Y ” is included. Similarly,
dep(X ←→ Y ) denotes that “X” and “Y ” must
either be included together or eliminated together.
We determine the uni- or bi-directionality of these
constraints by manually examining a few example
sentences corresponding to each of these typed de-
pendencies. Note that some dependencies such as
det(←→) would hold regardless of the particular

3Code was provided by Deng et al. (2012).

Method-1 (M1) v.s. Method-2 (M2) M1 wins
over M2

SALIENCY ORIG 76.34%
VISUAL ORIG 81.75%
VISUAL SALIENCY 72.48%
VISUAL VISUAL W/O CONSTR 83.76%
VISUAL NGRAM-ONLY 90.20%
VISUAL HUMAN 19.00%

Table 2: Forced Choice Evaluation (LM Corpus =
Google)

lexical items, while others, e.g., dobj(←→) may
or may not be necessary depending on the context.
Those dependencies that we determine as largely
context dependent are marked with * in Table 1.

One could consider enforcing all dependency
constraints in Table 1 as hard constraints so that
the compressed sentence must not violate any of
those directed dependency constraints. Doing so
would lead to overly conservative compression
with least compression ratio however. Therefore,
we relax those that are largely context dependent
as soft constraints (marked in Table 1 with *) by
introducing a constant penalty term in the objec-
tive function. Alternatively, the dependency based
constraints can be learned statistically from the
training corpus of paired original and compressed
sentences. Since we do not have such in-domain
training data at this time, we leave this exploration
as future research.

Dynamic Programming with Dynamic Beam:
The constraint optimization we formulated corre-
sponds to an NP-hard problem. In our work, hard
constraints are based only on typed dependencies,
and we find that long range dependencies occur in-
frequently in actual image descriptions, as plotted
in Figure 2. With this insight, we opt for decoding
based on dynamic programming with dynamically
adjusted beam.4 Alternatively, one can find an ap-
proximate solution using Integer Linear Program-
ming (e.g., Clarke and Lapata (2006), Clarke and
Lapata (2007), Martins and Smith (2009)).

3 Evaluation

Since there is no existing benchmark data for im-
age caption generalization, we crowdsource evalu-
ation using Amazon Mechanical Turk (AMT). We
empirically compare the following options:

4The required beam size at each step depends on how
many words have dependency constraints involving any word
following the current one – beam size is at most 2p, where p
is the max number of words dependent on any future words.
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Big elm tree over 

the house is no 

their anymore. 

 Tree over the house. 

Abandonned 

houses in the 

forest. 

 Houses in the 

     forest. 

A woman paints a tree in 

bloom near the duck pond 

in the Boston Public 

Garden, April 15, 2006. 

 A tree in bloom . 

Pillbox in field 

behind a pub 

car park. 

 Pub car. 

Flowering tree in 

mixed forest at 

Wakehurst. 

 Flowering tree  

    in forest. 

The insulbrick matches 

the yard. This is outside 

of medina ohio near the 

tonka truck house. 

 The yard. This is 

     outside the house. 

Query Image Retrieved Images 

Figure 3: Example Image Caption Transfer

Method LM strict matching semantic matching
Corpus BLEU P R F BLEU P R F

ORIG N/A 0.063 0.064 0.139 0.080 0.215 0.220 0.508 0.276
SALIENCY Image Corpus 0.060 0.074 0.077 0.068 0.302 0.411 0.399 0.356
VISUAL Image Corpus 0.060 0.075 0.075 0.068 0.305 0.422 0.397 0.360
SALIENCY Google Corpus 0.064 0.070 0.101 0.074 0.286 0.337 0.459 0.340
VISUAL Google Corpus 0.065 0.071 0.098 0.075 0.296 0.354 0.457 0.350

Table 3: Image Description Transfer: performance in BLEU and F1 with strict & semantic matching.

• ORIG: original uncompressed captions
• HUMAN: compressed by humans (See § 3.2)
• SALIENCY: linguistic fluency + saliency-based

content selection + dependency constraints
• VISUAL: linguistic fluency + visually-guided

content selection + dependency constraints
• x W/O CONSTR: method xwithout dependency

constraints
• NGRAM-ONLY: linguistic fluency only

3.1 Intrinsic Evaluation: Forced Choice
Turkers are provided with an image and two cap-
tions (produced by different methods) and are
asked to select a better one, i.e., the most relevant
and plausible caption that contains the least extra-
neous information. Results are shown in Table 2.
We observe that VISUAL (full model with visually
guided content selection) performs the best, being
selected over SALIENCY (content-selection with-
out visual information) in 72.48% cases, and even
over the original image caption in 81.75% cases.

This forced-selection experiment between VI-
SUAL and ORIG demonstrates the degree of noise
prevalent in the image captions in the wild. Of
course, if compared against human-compressed
captions, the automatic captions are preferred
much less frequently – in 19% of the cases. In
those 19% cases when automatic captions are pre-
ferred over human-compressed ones, it is some-
times that humans did not fully remove informa-
tion that is not visually present or verifiable, and
other times humans overly compressed. To ver-

ify the utility of dependency-based constraints,
we also compare two variations of VISUAL, with
and without dependency-based constraints. As ex-
pected, the algorithm with constraints is preferred
in the majority of cases.

3.2 Extrinsic Evaluation: Image-based
Caption Retrieval

We evaluate the usefulness of our new image-text
parallel corpus for automatic generation of image
descriptions. Here the task is to produce, for a
query image, a relevant description, i.e., a visu-
ally descriptive caption. Following Ordonez et al.
(2011), we produce a caption for a query image
by finding top k most similar images within the
1M image-text corpus (Ordonez et al., 2011) and
then transferring their captions to the query im-
age. To compute evaluation measures, we take the
average scores of BLEU(1) and F-score (unigram-
based with respect to content-words) over k = 5
candidate captions.

Image similarity is computed using two global
(whole) image descriptors. The first is the GIST
feature (Oliva and Torralba, 2001), an image de-
scriptor related to perceptual characteristics of
scenes – naturalness, roughness, openness, etc.
The second descriptor is also a global image de-
scriptor, computed by resizing the image into a
“tiny image” (Torralba et al., 2008), which is ef-
fective in matching the structure and overall color
of images. To find visually relevant images, we
compute the similarity of the query image to im-
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Huge wall of glass 

at the Conference 

Centre in 

Yohohama Japan. 

 Wall of glass  

My footprint in a 

sand box 

 A sand box  

James the cat is 

dreaming of running 

in a wide green 

valley 

 Running in 

a valley (not 

relevant) 

This little boy was so 

cute. He was flying his 

spiderman kite all by 

himself on top of Max 

Patch  

 This little boy was so 

cute. He was flying 

(semantically odd) 

A view of the post office 

building in Manila from 

the other side of the 

Pasig River  

 A view of the post 

office building from 

the side  

Cell phone shot of 

a hat stall in the 

Northeast Market, 

Baltimore, MD. 

 Cell phone shot. 

(visually not 

verifiable) 

Figure 4: Good (left three, in blue) and bad examples (right three, in red) of generalized captions

ages in the whole dataset using an unweighted sum
of gist similarity and tiny image similarity.

Gold standard (human compressed) captions are
obtained using AMT for 1K images. The results
are shown in Table 3. Strict matching gives credit
only to identical words between the gold-standard
caption and the automatically produced caption.
However, words in the original caption of the
query image (and its compressed caption) do not
overlap exactly with words in the retrieved cap-
tions, even when they are semantically very close,
which makes it hard to see improvements even
when the captions of the new corpus are more gen-
eral and transferable over other images. Therefore,
we also report scores based on semantic matching,
which gives partial credits to word pairs based on
their lexical similarity.5 The best performing ap-
proach with semantic matching is VISUAL (with
LM = Image corpus), improving BLEU, Precision,
F-score substantially over those of ORIG, demon-
strating the extrinsic utility of our newly gener-
ated image-text parallel corpus in comparison to
the original database. Figure 3 shows an example
of caption transfer.

4 Related Work

Several recent studies presented approaches to
automatic caption generation for images (e.g.,
Farhadi et al. (2010), Feng and Lapata (2010a),
Feng and Lapata (2010b), Yang et al. (2011),
Kulkarni et al. (2011), Li et al. (2011), Kuznetsova
et al. (2012)). The end goal of our work differs in
that we aim to revise original image captions into

5We take Wu-Palmer Similarity as similarity mea-
sure (Wu and Palmer, 1994). When computing BLEU with
semantic matching, we look for the match with the highest
similarity score among words that have not been matched be-
fore. Any word matched once (even with a partial credit) will
be removed from consideration when matching next words.

descriptions that are more general and align more
closely to the visual image content.

In comparison to prior work on sentence com-
pression, our approach falls somewhere between
unsupervised to distant-supervised approach (e.g.,
Turner and Charniak (2005), Filippova and Strube
(2008)) in that there is not an in-domain train-
ing corpus to learn generalization patterns directly.
Future work includes exploring more direct su-
pervision from human edited sample generaliza-
tion (e.g., Knight and Marcu (2000), McDonald
(2006)) Galley and McKeown (2007), Zhu et al.
(2010)), and the inclusion of edits beyond dele-
tion, e.g., substitutions, as has been explored by
e.g., Cohn and Lapata (2008), Cordeiro et al.
(2009), Napoles et al. (2011).

5 Conclusion

We have introduced the task of image caption gen-
eralization as a means to reduce noise in the paral-
lel corpus of images and text. Intrinsic and extrin-
sic evaluations confirm that the captions in the re-
sulting corpus align better with the image contents
(are often preferred over the original captions by
people), and can be practically more useful with
respect to a concrete application.
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Abstract

Identifying news stories that discuss the
same real-world events is important for
news tracking and retrieval. Most exist-
ing approaches rely on the traditional vec-
tor space model. We propose an approach
for recognizing identical real-world events
based on a structured, event-oriented doc-
ument representation. We structure docu-
ments as graphs of event mentions and use
graph kernels to measure the similarity be-
tween document pairs. Our experiments
indicate that the proposed graph-based ap-
proach can outperform the traditional vec-
tor space model, and is especially suitable
for distinguishing between topically simi-
lar, yet non-identical events.

1 Introduction

News stories typically describe real-world events.
Topic detection and tracking (TDT) aims to de-
tect stories that discuss identical or directly related
events, and track these stories as they evolve over
time (Allan, 2002). Being able to identify the sto-
ries that describe the same real-world event is es-
sential for TDT, and event-based information re-
trieval in general.

In TDT, an event is defined as something hap-
pening in a certain place at a certain time (Yang
et al., 1999), while a topic is defined as a set of
news stories related by some seminal real-world
event (Allan, 2002). To identify news stories on
the same topic, most TDT approaches rely on tra-
ditional vector space models (Salton et al., 1975),
as more sophisticated natural language processing
techniques have not yet proven to be useful for
this task. On the other hand, significant advances
in sentence-level event extraction have been made
over the last decade, in particular as the result of

standardization efforts such as TimeML (Puste-
jovsky et al., 2003a) and TimeBank (Pustejovsky
et al., 2003b), as well as dedicated evaluation tasks
(ACE, 2005; Verhagen et al., 2007; Verhagen et
al., 2010). However, these two lines of research
have largely remained isolated from one another.

In this paper we bridge this gap and address
the task of recognizing stories discussing identical
events by considering structured representations
from sentence-level events. More concretely, we
structure news stories into event graphs built from
individual event mentions extracted from text. To
measure event-based similarity of news stories, we
compare their event graphs using graph kernels
(Borgwardt, 2007). We conduct preliminary ex-
periments on two event-oriented tasks and show
that the proposed approach can outperform tradi-
tional vector space model in recognizing identical
real-world events. Moreover, we demonstrate that
our approach is especially suitable for distinguish-
ing between topically similar, yet non-identical
real-world events.

2 Related Work

The traditional vector space model (VSM) (Salton
et al., 1975) computes the cosine between bag-of-
words representations of documents. The VSM is
at the core of most approaches that identify same-
topic news stories (Hatzivassiloglou et al., 2000;
Brants et al., 2003; Kumaran and Allan, 2005;
Atkinson and Van der Goot, 2009). However, it
has been observed that some word classes (e.g.,
named entities, noun phrases, collocations) have
more significance than the others. Among them,
named entities have been considered as particu-
larly important, as they often identify the partici-
pants of an event. In view of this, Hatzivassiloglou
et al. (2000) restrict the set of words to be used
for document representation to words constituting
noun phrases and named entities. Makkonen et
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al. (2004) divide document terms into four seman-
tic categories (locations, temporal expressions,
proper names, and general terms) and construct
separate vector for each of them. Kumaran and
Allan (2004) represent news stories with three dif-
ferent vectors, modeling all words, named-entity
words, and all non-named-entity words occurring
in documents. When available, recognition of
identical events can rely on meta-information as-
sociated with news stories, such as document cre-
ation time (DCT). Atkinson and Van der Goot
(2009) combine DCT with VSM, assuming that
temporally distant news stories are unlikely to de-
scribe the same event.

In research on event extraction, the task of rec-
ognizing identical events is known as event coref-
erence resolution (Bejan and Harabagiu, 2010;
Lee et al., 2012). There, however, the aim is to
identify sentence-level event mentions referring to
the same real-world events, and not stories that
discuss identical events.

3 Kernels on Event Graphs

To identify the news describing the same real-
world event, we (1) structure event-oriented in-
formation from text into event graphs and (2) use
graph kernels to measure the similarity between a
pair of event graphs.

3.1 Event graphs

An event graph is a vertex- and edge-labeled
mixed graph in which vertices represent individ-
ual event mentions and edges represent temporal
relations between event mentions. We adopt a
generic representation of event mentions, as pro-
posed by Glavaš and Šnajder (2013): each men-
tion consists of an anchor (a word that conveys
the core meaning) and four types of arguments
(agent, target, time, location). Furthermore, we
consider four types of temporal relations between
event mentions: before, after, overlap, and equal
(Allen, 1983). As relations overlap and equal are
symmetric, whereas before and after are not, an
event graph may contain both directed and undi-
rected edges.

Formally, an event graph G is represented as a
tuple G = (V,E,A,m, r), where V is the set of
vertices, E is the set of undirected edges, A is the
set of directed edges (arcs), m : V → M is a
bijection mapping the vertices to event mentions,
and r : E → R is the edge-labeling function, as-

signing temporal relations to edges (cf. Fig. 1).
The construction of an event graph from a news

story involves the extraction of event mentions
(anchors and arguments) and the extraction of
temporal relations between mentions. We use a
supervised model (with 80% F1 extraction perfor-
mance) based on a rich set of features similar to
those proposed by Bethard (2008) to extract event
anchors. We then employ a robust, rule-based ap-
proach proposed by Glavaš and Šnajder (2013) to
extract generic event arguments. Finally, we em-
ploy a supervised model (60% micro-averaged F1
classification performance) with a rich set of fea-
tures, similar to those proposed by Bethard (2008),
to extract temporal relations between event men-
tions. A detailed description of the graph con-
struction steps is outside the scope of this paper.

To compute event graph kernels (cf. Section
3.2), we need to determine whether two event
mentions co-refer. To resolve cross-document
event coreference, we use the model proposed
by Glavaš and Šnajder (2013). The model de-
termines coreference by comparing factual event
anchors and arguments of four coarse-grained se-
mantic types (agent, target, location, and time),
and achieves an F-score of 67% (79% precision
and 57% recall) on the cross-document mention
pairs from the EventCorefBank dataset (Bejan and
Harabagiu, 2008). In what follows, cf (m1,m2)
denotes whether event mentions m1 and m2 co-
refer (equals 1 if mentions co-refer, 0 otherwise).

3.2 Graph kernels
Graph kernels are fast polynomial alternatives
to traditional graph comparison techniques (e.g.,
subgraph isomorphism), which provide an expres-
sive measure of similarity between graphs (Borg-
wardt, 2007). We employ two different graph ker-
nels: product graph kernel and weighted decom-
position kernel. We chose these kernels because
their general forms have intuitive interpretations
for event matching. These particular kernels have
shown to perform well on a number of tasks from
chemoinformatics (Mahé et al., 2005; Menchetti
et al., 2005).

Product graph kernel. A product graph kernel
(PGK) counts the common walks between two in-
put graphs (Gärtner et al., 2003). The graph prod-
uct of two labeled graphs, G and G

′
, denoted

GP = G×G′, is a graph with the vertex set

VP =
{
(v, v′) | v ∈ VG, v′ ∈ VG′ , δ(v, v′)

}

798



where δ(v, v′) is a predicate that holds when
vertices v and v′ are identically labeled (Ham-
mack et al., 2011). Given event graphs G =
(V,E,A,m, r) and G′ = (V ′, E′, A′,m′, r′), we
consider the vertices to be identically labeled if
the corresponding event mentions co-refer, i.e.,
δ(v, v′) .

= cf (m(v),m′(v′)). The edge set of the
graph product depends on the type of the product.
We experiment with two different products: ten-
sor product and conormal product. In the tensor
product, an edge is introduced iff the correspond-
ing edges exist in both input graphs and the labels
of those edges match (i.e., both edges represent the
same temporal relation). In the conormal product,
an edge is introduced iff the corresponding edge
exists in at least one input graph. Thus, a conor-
mal product may compensate for omitted temporal
relations in the input graphs.

Let AP be the adjacency matrix of the graph
productGP built from input graphsG andG′. The
product graph kernel that counts common walks in
G and G′ can be computed efficiently as:

KPG(G,G
′) =

|VP |∑

i,j=1

[(I − λAP )−1]ij (1)

when λ < 1/t , where t is the maximum degree of
a vertex in the graph product GP . In our experi-
ments, we set λ to 1/(t+ 1) .

Weighted decomposition kernel. A weighted
decomposition kernel (WDK) compares small
graph parts, called selectors, being matched ac-
cording to an equality predicate. The importance
of the match is weighted by the similarity of the
contexts in which the matched selectors occur.
For a description of a general form of WDK, see
Menchetti et al. (2005).

Let S(G) be the set of all pairs (s, z), where s is
the selector (subgraph of interest) and z is the con-
text of s. We decompose event graphs into individ-
ual vertices, i.e., we define selectors to be the indi-
vidual vertices. In this case, similarly as above, the
equality predicate δ(v, v′) for two vertices v ∈ G
and v′ ∈ G′ holds if and only if the correspond-
ing event mentions m(v) and m′(v′) co-refer. Us-
ing selectors that consist of more than one vertex
would require a more complex and perhaps a less
intuitive definition of the equality predicate δ. The
selector context Zv of vertex v is a subgraph of G
that contains v and all its immediate neighbors. In
other words, we consider as context all event men-

tions that are in a direct temporal relation with the
selected mention. WDK between event graphs G
and G′ is computed as:

KWD(G,G
′) =

∑

v∈VG,v′∈VG′

cf (m(v),m′(v′)) κ(Zv, Z ′v′)

(2)
where κ(Zv, Z ′v′) is the context kernel measuring
the similarity between the context Zv of selector
v ∈ G and the context Z ′v′ of selector v′ ∈ G′.
We compute the context kernel κ as the number of
coreferent mention pairs found between the con-
texts, normalized by the context size:

κ(Zv, Z
′
v′) =

∑
w∈VZv ,w

′∈VZ′
v′
cf(m(w),m′(w′))

max(|VZv |, |VZ′
v′
|)

The intuition behind this is that a pair of corefer-
ent mentions m(v) and m′(v′) should contribute
to the overall event similarity according to the
number of pairs of coreferent mentions,m(w) and
m′(w′), that are in temporal relation with v and v′,
respectively.

Graph kernels example. As an example, con-
sider the following two story snippets describing
the same sets of real-world events:

Story 1: A Cezanne masterpiece worth at least $131
million that was the yanked from the wall of a Zurich
art gallery in 2008 has been recovered, Serbian po-
lice said today. Four arrests were made overnight
in connection with the theft, which was one of the
biggest art heists in recent history.

Story 2: Serbian police have recovered a painting
by French impressionist Paul Cezanne worth an esti-
mated 100 million euros (131.7 million U.S. dollars),
media reported on Thursday. The painting ”A boy in
a red vest” was stolen in 2008 from a Zurich museum
by masked perpetrators. Four members of an interna-
tional crime ring were arrested Wednesday.

The corresponding event graphs G and G′ are
shown in Fig. 1a and 1b, respectively, while their
product is shown in Fig. 1c. There are three pairs
of coreferent event mentions between G and G′:
(yanked, stolen), (recovered, recovered), and (ar-
rests, arrested). Accordingly, the product graph
P has three nodes. The dashed edge between ver-
tices (yanked, stolen) and (arrests, arrested) exists
only in the conormal product graph. By substi-
tuting into (1) the adjacency matrix and maximum
vertex degree of tensor product graph P , we obtain
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(a) Event graph G (Story 1) (b) Event graph G′ (Story 2) (c) Product graph P

Figure 1: Example event graphs and their product

the tensor PGK score as:

KPG =
3∑

i,j=1



(
I − 1

3

(
0 0 1
0 0 1
1 1 0

))−1

i,j

≈ 5.6

Similarly, for the conormal product graph P we
obtain the conormal PGK score of KPG = 9. By
substitutingG andG′ into (2), we obtain the WDK
score as:

KWD =
∑

(v,v′)∈VP
κ(Zv, Z

′
v′) =

2

3
+

3

4
+

2

4
≈ 1.9

where VP contains pairs of coreferent event men-
tions: (yanked, stolen), (recovered, recovered),
and (arrests, arrested).

4 Experiments

We conducted two preliminary experiments to in-
vestigate whether kernels on event graphs can be
used to recognize identical events.

4.1 Task 1: Recognizing identical events
Dataset. In the first experiment, we classify
pairs of news stories as either describing identical
real-world events or not. For this we need a collec-
tion of stories in which pairs of stories on identi-
cal events have been annotated as such. TDT cor-
pora (Wayne, 2000) is not directly usable because
it has no such annotations. We therefore decided
to build a small annotated dataset.1 To this end,
we use the news clusters of the EMM NewsBrief
service (Steinberger et al., 2009). EMM clusters
news stories from different sources using a docu-
ment similarity score. We acquired 10 randomly
chosen news clusters, manually inspected each of
them, and retained in each cluster only the doc-
uments that describe the same real-world events.
Additionally, we ensured that no documents from

1Datasets for both experiments are available at:
http://takelab.fer.hr/evkernels

Model P R F

Tensor PGK 89.7 82.3 85.8
Conormal PGK 89.3 77.8 83.2
WDK 88.6 73.7 80.5

SVM Graph 91.1 87.6 89.3
SVM Graph + VSM 93.8 96.2 95.0

VSM baseline 90.9 82.9 86.7

Table 1: Results for recognition of identical events

different clusters discuss the same event. To ob-
tain the gold standard dataset, we build all pairs
of documents. The final dataset consists of 64
documents in 10 clusters, with 195 news pairs
from the same clusters (positive pairs) and 1821
news pairs from different clusters (negative pairs).
We divide the dataset into a train and a test set
(7:3 split ratio). Note that, although our dataset
has ground-truth annotations, it is incomplete in
the sense that some pairs of documents describ-
ing the same events, which were not recognized
as such by the EMM, are not included. Further-
more, because EMM similarity score uses VSM
cosine similarity as one of the features, VSM co-
sine similarity constitutes a competitive baseline
on this dataset.

Results. For each graph kernel and the VSM
baseline, we determine the optimal threshold on
the train set and evaluate the classification per-
formance on the test set. The results are given
in Table 1. The precision is consistently higher
than recall for all kernels and the baseline. High
precision is expected, as clusters represent topi-
cally dissimilar events. PGK models (both ten-
sor and conormal) outperform the WDK model,
indicating that common walks correlate better to
event-based document similarity than common
subgraphs. Individually, none of the graph kernels
outperforms the baseline. To investigate whether
the two kernels complement each other, we fed the
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Original
“Taliban militants have attacked a prison in north-west
Pakistan, freeing at least 380 prisoners. . . ”

Event-preserving paraphrase
“Taliban militants in northwest Pakistan attacked the
prison, liberated at least 380 prisoners . . . ”

Event-shifting paraphrase
“Taliban militants have been arrested in north-west Pak-
istan. At least 380 militants have been arrested. . . ”

Table 2: Event paraphrasing example

individual kernel scores to an SVM model (with
RBF kernel), along with additional graph-based
features such as the number of nodes and the num-
ber of edges (SVM graph model). Finally, we com-
bined the graph-based features with the VSM co-
sine similarity (SVM graph + VSM model). SVM
graph model significantly (at p < 0.05, student’s
2-tailed t-test) outperforms the individual kernel
models and the baseline. The combined model
(SVM graph + VSM) significantly (at p < 0.01)
outperforms the baseline and all kernel models.

4.2 Task 2: Event-based similarity ranking
Dataset. In the second experiment we focus
on the task of distinguishing between news sto-
ries that describe topically very similar, yet dis-
tinct events. For this purpose, we use a small
set of event paraphrases, constructed as fol-
lows. We manually selected 10 news stories from
EMM NewsBrief and altered each of them to
obtain two meaning-preserving (event-preserving)
and two meaning-changing (event-shifting) para-
phrases. To obtain the meaning-preserving para-
phrases, we use Google translate and round-trip
translation via two pairs of arbitrarily chosen lan-
guages (Danish/Finnish and Croatian/Hungarian).
Annotators manually corrected lexical and syn-
tactic errors introduced by the round-trip transla-
tion. To obtain meaning-changing paraphrases, we
asked human annotators to alter each story so that
it topically resembles the original, but describes a
different real-world event. The extent of the al-
teration was left to the annotators, i.e., no specific
transformations were proposed. Paraphrase exam-
ples are given in Table 2. The final dataset consists
of 60 news pairs: 30 positive and 30 negative.

Results. For each method we ranked the pairs
based on the assigned similarity scores. An ideal
method would rank all positive pairs above all neg-
ative pairs. We evaluated the performance using

Model R-prec. Avg. prec.

Tensor PGK 86.7 96.8
Conormal PGK 93.3 97.5
WDK 86.7 95.7

VSM baseline 80.0 77.1

Table 3: Results for event-based similarity ranking

two different rank evaluation metrics: R-precision
(precision at rank 30, as there are 30 positive pairs)
and average precision. The performance of graph
kernel models and the VSM baseline is given in
Table 3. We tested the significance of differences
using stratified shuffling (Yeh, 2000). When con-
sidering average precision, all kernel models sig-
nificantly (at p < 0.01) outperform the baseline.
However, when considering R-precision, only the
conormal PGK model significantly (at p < 0.05)
outperforms the baseline. There is no statistical
significance in performance differences between
the considered kernel methods. Inspection of the
rankings reveals that graph kernels assign very low
scores to negative pairs, i.e., they distinguish well
between textual representations of topically simi-
lar, but different real-world events.

5 Conclusion

We proposed a novel approach for recognizing
identical events that relies on structured, graph-
based representations of events described in a
document. We use graph kernels as an expres-
sive framework for modeling the similarity be-
tween structured events. Preliminary results on
two event-similarity tasks are encouraging, indi-
cating that our approach can outperform tradi-
tional vector-space model, and is suitable for dis-
tinguishing between topically very similar events.
Further improvements could be obtained by in-
creasing the accuracy of event coreference resolu-
tion, which has a direct influence on graph kernels.

The research opens up many interesting direc-
tions for further research. Besides a systematic
evaluation on larger datasets, we intend to inves-
tigate the applications in event tracking and event-
oriented information retrieval.
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Abstract

While the resolution of term ambiguity is
important for information extraction (IE)
systems, the cost of resolving each in-
stance of an entity can be prohibitively
expensive on large datasets. To combat
this, this work looks at ambiguity detec-
tion at the term, rather than the instance,
level. By making a judgment about the
general ambiguity of a term, a system is
able to handle ambiguous and unambigu-
ous cases differently, improving through-
put and quality. To address the term
ambiguity detection problem, we employ
a model that combines data from lan-
guage models, ontologies, and topic mod-
eling. Results over a dataset of entities
from four product domains show that the
proposed approach achieves significantly
above baseline F-measure of 0.96.

1 Introduction

Many words, phrases, and referring expressions
are semantically ambiguous. This phenomenon,
commonly referred to as polysemy, represents a
problem for NLP applications, many of which in-
herently assume a single sense. It can be particu-
larly problematic for information extraction (IE),
as IE systems often wish to extract information
about only one sense of polysemous terms. If
nothing is done to account for this polysemy, fre-
quent mentions of unrelated senses can drastically
harm performance.

Several NLP tasks, such as word sense disam-
biguation, word sense induction, and named en-
tity disambiguation, address this ambiguity prob-
lem to varying degrees. While the goals and initial
data assumptions vary between these tasks, all of
them attempt to map an instance of a term seen
in context to an individual sense. While making

a judgment for every instance may be appropri-
ate for small or medium sized data sets, the cost
of applying these ambiguity resolution procedures
becomes prohibitively expensive on large data sets
of tens to hundreds of million items. To combat
this, this work zooms out to examine the ambigu-
ity problem at a more general level.

To do so, we define an IE-centered ambiguity
detection problem, which ties the notion of am-
biguity to a given topical domain. For instance,
given that the terms Call of Juarez and A New
Beginning can both reference video games, we
would like to discover that only the latter case is
likely to appear frequently in non-video game con-
texts. The goal is to make a binary decision as
to whether, given a term and a domain, we can
expect every instance of that term to reference an
entity in that domain. By doing so, we segregate
ambiguous terms from their unambiguous coun-
terparts. Using this segregation allows ambiguous
and unambiguous instances to be treated differ-
ently while saving the processing time that might
normally be spent attempting to disambiguate in-
dividual instances of unambiguous terms.

Previous approaches to handling word ambigu-
ity employ a variety of disparate methods, vari-
ously relying on structured ontologies, gleaming
insight from general word usage patterns via lan-
guage models, or clustering the contexts in which
words appear. This work employs an ambiguity
detection pipeline that draws inspiration from all
of these methods to achieve high performance.

2 Term Ambiguity Detection (TAD)

A term can be ambiguous in many ways. It may
have non-referential senses in which it shares a
name with a common word or phrase, such as in
the films Brave and 2012. A term may have refer-
ential senses across topical domains, such as The
Girl with the Dragon Tattoo, which may reference
either the book or the film adaptation. Terms may
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also be ambiguous within a topical domain. For
instance, the term Final Fantasy may refer to the
video game franchise or one of several individual
games within the franchise. In this work we con-
cern ourselves with the first two types of ambigu-
ity, as within topical domain ambiguity tends to
pose a less severe problem for IE systems.

IE systems are often asked to perform extrac-
tion over a dictionary of terms centered around
a single topic. For example, in brand manage-
ment, customers may give a list of product names
and ask for sentiment about each product. With
this use case in mind, we define the term ambigu-
ity detection (TAD) problem as follows: Given a
term and a corresponding topic domain, determine
whether the term uniquely references a member
of that topic domain. That is, given a term such
as Brave and a category such as film, the task is
make a binary decision as to whether all instances
of Brave reference a film by that name.

2.1 Framework

Our TAD framework is a hybrid approach consist-
ing of three modules (Figure 1). The first module
is primarily designed to detect non-referential am-
biguity. This module examines n-gram data from
a large text collection. Data from The Corpus of
Contemporary American English (Davies, 2008 )
was used to build our n-grams.

The rationale behind the n-gram module is
based on the understanding that terms appearing
in non-named entity contexts are likely to be non-
referential, and terms that can be non-referential
are ambiguous. Therefore, detecting terms that
have non-referential usages can also be used to
detect ambiguity. Since we wish for the ambigu-
ity detection determination to be fast, we develop
our method to make this judgment solely on the
n-gram probability, without the need to examine
each individual usage context. To do so, we as-
sume that an all lowercased version of the term is
a reasonable proxy for non-named entity usages in
formal text. After removing stopwords from the
term, we calculate the n-gram probability of the
lower-cased form of the remaining words. If the
probability is above a certain threshold, the term
is labeled as ambiguous. If the term is below the
threshold, it is tentatively labeled as unambiguous
and passed to the next module. To avoid making
judgments of ambiguity based on very infrequent
uses, the ambiguous-unambiguous determination

threshold is empirically determined by minimiz-
ing error over held out data.

The second module employs ontologies to de-
tect across domain ambiguity. Two ontologies
were examined. To further handle the common
phrase case, Wiktionary1 was used as a dictionary.
Terms that have multiple senses in Wiktionary
were labeled as ambiguous. The second ontology
used was Wikipedia disambiguation pages. All
terms that had a disambiguation page were marked
as ambiguous.

The final module attempts to detect both non-
referential and across domain ambiguity by clus-
tering the contexts in which words appear. To do
so, we utilized the popular Latent Dirichlet Allo-
cation (LDA (Blei et al., 2003)) topic modeling
method. LDA represents a document as a distri-
bution of topics, and each topic as a distribution
of words. As our domain of interest is Twitter,
we performed clustering over a large collection of
tweets. For a given term, all tweets that contained
the term were used as a document collection. Fol-
lowing standard procedure, stopwords and infre-
quent words were removed before topic modeling
was performed. Since the clustering mechanism
was designed to make predictions over the already
filtered data of the other modules, it adopts a con-
servative approach to predicting ambiguity. If the
category term (e.g., film) or a synonym from the
WordNet synset does not appear in the 10 most
heavily weighted words for any cluster, the term is
marked as ambiguous.

A term is labeled as ambiguous if any one of
the three modules predicts that it is ambiguous,
but only labeled as unambiguous if all three mod-
ules make this prediction. This design allows each
module to be relatively conservative in predicting
ambiguity, keeping precision of ambiguity predic-
tion high, under the assumption that other modules
will compensate for the corresponding drop in re-
call.

3 Experimental Evaluation

3.1 Data Set
Initial Term Sets We collected a data set of terms
from four topical domains: books, films, video
games, and cameras. Terms for the first three do-
mains are lists of books, films, and video games
respectively from the years 2000-2011 from db-
pedia (Auer et al., 2007), while the initial terms

1http://www.wiktionary.org/
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Tweet Term Category Judgment
Woke up from a nap to find a beautiful mind on. #win A Beautiful Mind film yes
I Love Tyler Perry ; He Has A Beautiful Mind. A Beautiful Mind film no
I might put it in the top 1. RT @CourtesyFlushMo Splice. Top 5 worst movies ever Splice film yes
Splice is a great, free replacement to iMove for your iPhone, Splice film no

Table 1: Example tweet annotations.

Figure 1: Overview of the ambiguity detection
framework.

for cameras includes all the cameras from the six
most popular brands on flickr2.
Gold Standard A set of 100 terms per domain
were chosen at random from the initial term sets.
Rather than annotating each term directly, am-
biguity was determined by examining actual us-
age. Specifically, for each term, usage examples
were extracted from large amounts of Twitter data.
Tweets for the video game and film categories were
extracted from the TREC Twitter corpus.3 The
less common book and camera cases were ex-
tracted from a subset of all tweets from September
1st-9th, 2012.

For each term, two annotators were given the
term, the corresponding topic domain, and 10 ran-
domly selected tweets containing the term. They
were then asked to make a binary judgment as to
whether the usage of the term in the tweet referred
to an instance of the given category. The degree
of ambiguity is then determined by calculating the
percentage of tweets that did not reference a mem-
ber of the topic domain. Some example judgments
are given in Table 1. If all individual tweet judg-
ments for a term were marked as referring to a

2http://www.flickr.com/cameras/
3http://trec.nist.gov/data/tweets/

Configuration Precision Recall F-measure
Baseline 0.675 1.0 0.806

NG 0.979 0.848 0.909
ON 0.979 0.704 0.819
CL 0.946 0.848 0.895

NG + ON 0.980 0.919 0.948
NG + CL 0.942 0.963 0.952
ON + CL 0.945 0.956 0.950

NG + ON + CL 0.943 0.978 0.960

Table 2: Performance of various framework con-
figurations on the test data.

member of the topic domain, the term was marked
as fully unambiguous within the data examined.
All other cases were considered ambiguous.4

Inter-annotator agreement was high, with raw
agreement of 94% (κ = 0.81). Most disagree-
ments on individual tweet judgments had little ef-
fect on the final judgment of a term as ambiguous
or unambiguous, and those that did were resolved
internally.

3.2 Evaluation and Results

Effectiveness To understand the contribution of
the n-gram (NG), ontology (ON), and clustering
(CL) based modules, we ran each separately, as
well as every possible combination. Results are
shown in Table 2, where they are compared to a
majority class (ambiguous) baseline.

As shown, all configurations outperform the
baseline. Of the three individual modules, the n-
gram and clustering methods achieve F-measure
of around 0.9, while the ontology-based module
performs only modestly above baseline. Unsur-
prisingly, the ontology method is affected heav-
ily by its coverage, so its poor performance is pri-
marily attributable to low recall. As noted, many
IE tasks may involve sets of entities that are not
found in common ontologies, limiting the ability
of the ontology-based method alone. Additionally,
ontologies may be apt to list cases of strict ambi-
guity, rather than practical ambiguity. That is, an
ontology may list a term as ambiguous if there are

4The annotated data is available at http:
//researcher.watson.ibm.com/researcher/
view_person_subpage.php?id=4757.
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several potential named entities it could refer to,
even if the vast majority of references were to only
a single entity.

Combining any two methods produced substan-
tial performance increases over any of the individ-
ual runs. The final system that employed all mod-
ules produced an F-measure of 0.960, a significant
(p < 0.01) absolute increase of 15.4% over the
baseline.
Usefulness To establish that term ambiguity de-
tection is actually helpful for IE, we conducted
a preliminary study by integrating our pipeline
into a commercially available rule-based IE sys-
tem (Chiticariu et al., 2010; Alexe et al., 2012).
The system takes a list of product names as input
and outputs tweets associated with each product.
It utilizes rules that employ more conservative ex-
traction for ambiguous entities.

Experiments were conducted over several mil-
lion tweets using the terms from the video game
and camera domains. When no ambiguity detec-
tion was performed, all terms were treated as un-
ambiguous. The system produced very poor pre-
cision of 0.16 when no ambiguity detection was
used, due to the extraction of irrelevant instances
of ambiguous objects. In contrast, the system pro-
duced precision of 0.96 when ambiguity detection
was employed. However, the inclusion of disam-
biguation did reduce the overall recall; the system
that employed disambiguation returned only about
57% of the true positives returned by the system
that did not employ disambiguation. Although
this reduction in recall is significant, the overall
impact of disambiguation is clearly positive, due
to the stark difference in precision. Nonetheless,
this limited study suggests that there is substantial
room for improvement in the extraction system, al-
though this is out of the scope of the current work.

4 Related Work

Polysemy is a known problem for many NLP-
related applications. Machine translation systems
can suffer, as ambiguity in the source language
may lead to incorrect translations, and unambigu-
ous sentences in one language may become am-
biguous in another (Carpuat and Wu, 2007; Chan
et al., 2007). Ambiguity in queries can also hin-
der the performance of information retrieval sys-
tems (Wang and Agichtein, 2010; Zhong and Ng,
2012).

The ambiguity detection problem is similar to

the well studied problems of named entity dis-
ambiguation (NED) and word sense disambigua-
tion (WSD). However, these tasks assume that
the number of senses a word has is given, essen-
tially assuming that the ambiguity detection prob-
lem has already been solved. This makes these
tasks inapplicable in many IE instances where the
amount of ambiguity is not known ahead of time.
Both named entity and word sense disambigua-
tion are extensively studied, and surveys on each
are available (Nadeau and Sekine, 2007; Navigli,
2009).

Another task that shares similarities with TAD
is word sense induction (WSI). Like NED and
WSD, WSI frames the ambiguity problem as one
of determining the sense of each individual in-
stance, rather than the term as a whole. Unlike
those approaches, the word sense induction task
attempts to both figure out the number of senses a
word has, and what they are. WSI is unsupervised,
relying solely on the information that surrounds
word mentions in the text.

Many different clustering-based WSI methods
have been examined. Pantel and Lin (2002) em-
ploy a clustering by committee method that itera-
tively adds words to clusters based on their sim-
ilarities. Topic model-based methods have been
attempted using variations of Latent Dirichlet Al-
location (Brody and Lapata, 2009) and Hierarchi-
cal Dirichlet Processes (Lau et al., 2012). Sev-
eral graph-based methods have also been exam-
ined (Klapaftis and Manandhar, 2010; Navigli and
Crisafulli, 2010). Although the words that sur-
round the target word are the primary source of
contextual information in most cases, additional
feature sources such as syntax (Van de Cruys,
2008) and semantic relations (Chen and Palmer,
2004) have also been explored.

5 Conclusion

This paper introduced the term ambiguity detec-
tion task, which detects whether a term is am-
biguous relative to a topical domain. Unlike other
ambiguity resolution tasks, the ambiguity detec-
tion problem makes general ambiguity judgments
about terms, rather than resolving individual in-
stances. By doing so, it eliminates the need for
ambiguity resolution on unambiguous objects, al-
lowing for increased throughput of IE systems on
large data sets.

Our solution for the term ambiguity detection
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task is based on a combined model with three dis-
tinct modules based on n-grams, ontologies, and
clustering. Our initial study suggests that the com-
bination of different modules designed for differ-
ent types of ambiguity used in our solution is ef-
fective in determining whether a term is ambigu-
ous for a given domain. Additionally, an exami-
nation of a typical use case confirms that the pro-
posed solution is likely to be useful in improving
the performance of an IE system that does not em-
ploy any disambiguation.

Although the task as presented here was mo-
tivated with information extraction in mind, it is
possible that term ambiguity detection could be
useful for other tasks. For instance, TAD could
be used to aid word sense induction more gener-
ally, or could be applied as part of other tasks such
as coreference resolution. We leave this avenue of
examination to future work.
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Abstract

Distant supervision (DS) is an appealing
learning method which learns from exist-
ing relational facts to extract more from
a text corpus. However, the accuracy is
still not satisfying. In this paper, we point
out and analyze some critical factors in
DS which have great impact on accuracy,
including valid entity type detection,
negative training examples construction
and ensembles. We propose an approach
to handle these factors. By experimenting
on Wikipedia articles to extract the facts in
Freebase (the top 92 relations), we show
the impact of these three factors on the
accuracy of DS and the remarkable im-
provement led by the proposed approach.

1 Introduction

Recently there are great efforts on building large
structural knowledge bases (KB) such as Free-
base, Yago, etc. They are composed of relational
facts often represented in the form of a triplet,
(SrcEntity, Relation, DstEntity),
such as “(Bill Gates, BornIn, Seattle)”. An impor-
tant task is to enrich such KBs by extracting more
facts from text. Specifically, this paper focuses on
extracting facts for existing relations. This is dif-
ferent from OpenIE (Banko et al., 2007; Carlson et
al., 2010) which needs to discover new relations.

Given large amounts of labeled sentences,
supervised methods are able to achieve good
performance (Zhao and Grishman, 2005; Bunescu
and Mooney, 2005). However, it is difficult to
handle large scale corpus due to the high cost
of labeling. Recently an approach called distant
supervision (DS) (Mintz et al., 2009) was pro-
posed, which does not require any labels on the
text. It treats the extraction problem as classifying
∗ The contact author.

a candidate entity pair to a relation. Then an
existing fact in a KB can be used as a labeled
example whose label is the relation name. Then
the features of all the sentences (from a given text
corpus) containing the entity pair are merged as
the feature of the example. Finally a multi-class
classifier is trained.

However, the accuracy of DS is not satisfying.
Some variants have been proposed to improve
the performance (Riedel et al., 2010; Hoffmann
et al., 2011; Takamatsu et al., 2012). They ar-
gue that DS introduces a lot of noise into the
training data by merging the features of all the
sentences containing the same entity pair, because
a sentence containing the entity pair of a relation
may not talk about the relation. Riedel et al.
(2010) and Hoffmann et al. (2011) introduce
hidden variables to indicate whether a sentence
is noise and try to infer them from the data.
Takamatsu et al. (2012) design a generative model
to identify noise patterns. However, as shown in
the experiments (Section 4), the above variants do
not lead to much improvement in accuracy.

In this paper, we point out and analyze some
critical factors in DS which have great impact on
the accuracy but has not been touched or well han-
dled before. First, each relation has its own schema
definition, i.e., the source entity and the destina-
tion entity should be of valid types, which is over-
looked in DS. Therefore, we propose a component
of entity type detection to check it. Second, DS
introduces many false negative examples into the
training set and we propose a new method to con-
struct negative training examples. Third, we find it
is difficult for a single classifier to achieve high ac-
curacy and hence we train multiple classifiers and
ensemble them.

We also notice that Nguyen and Moschitti
(2011a) and Nguyen and Moschitti (2011b) utilize
external information such as more facts from Yago
and labeled sentences from ACE to improve the
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performance. These methods can also be equipped
with the approach proposed in this paper.

2 Critical Factors Affecting the Accuracy

DS has four steps: (1) Detect candidate entity
pairs in the corpus. (2) Label the candidate pairs
using the KB. (3) Extract features for the pair
from sentences containing the pair. (4) Train a
multi-class classifier. Among these steps, we find
the following three critical factors have great
impact on the accuracy (see Section 4 for the
experimental results).

Valid entity type detection. In DS, a sentence
with a candidate entity pair a sentence with two
candidate entities is noisy. First, the schema of
each relation in the KB requires that the source
and destination entities should be of valid types,
e.g., the source and destination entity of the
relation “DirectorOfFilm” should be of the types
“Director” and “Film” respectively. If the two
entities in a sentence are not of the valid types, the
sentence is noisy. Second, the sentence may not
talk about the relation even when the two entities
are of the valid types. The previous works (Riedel
et al., 2010; Hoffmann et al., 2011; Takamatsu et
al., 2012) do not distinguish the two types of noise
but directly infer the overall noise from the data.
We argue that the first type of noise is very difficult
to be inferred just from the noisy relational labels.
Instead, we decouple the two types of noise, and
utilize external labeled data, i.e., the Wikipedia
anchor links, to train an entity type detection mod-
ule to handle the first type of noise. We notice that
when Ling and Weld (2012) studied a fine-grained
NER method, they applied the method to relation
extraction by adding the recognized entity tags to
the features. We worry that the contribution of the
entity type features may be drowned when many
other features are used. Their method works well
on relatively small relations, but not that well on
big ones (Section 4.2).

Negative examples construction. DS treats the
relation extraction as a multi-class classification
task. For a relation, it implies that the facts of all
the other relations together with the “Other” class
are negative examples. This introduces many false
negative examples into the training data. First,
many relations are not exclusive with each other,
e.g., “PlaceOfBorn” and “PlaceOfDeath”, the
born place of a person can be also the death place.

Second, in DS, the “Other” class is composed
of all the candidate entity pairs not existed in
the KB, which actually contains many positive
facts of non-Other relations because the KB is
not complete. Therefore we use a different way to
construct negative training examples.

Feature space partition and ensemble. The
features used in DS are very sparse and many
examples do not contain any features. Thus we
employ more features. However we find it is
difficult for a single classifier on all the features
to achieve high accuracy and hence we divide
the features into different categories and train
a separate classifier for each category and then
ensemble them finally.

3 Accurate Distant Supervision (ADS)

Different from DS, we treat the extraction
problem as N binary classification problems,
one for each relation. We modify the four steps
of DS (Section 2). In step (1), when detecting
candidate entity pairs in sentences, we use our
entity type detection module (Section 3.1) to filter
out the sentences where the entity pair is of invalid
entity types. In step (2), we use our new method
to construct negative examples (Section 3.2). In
step (3), we employ more features and design an
ensemble classifier (Section 3.3). In step (4), we
train N binary classifiers separately.

3.1 Entity Type Detection

We divide the entity type detection into two steps.
The first step, called boundary detection, is to
detect phrases as candidate entities. The second
step, called named entity disambiguation, maps
a detected candidate entity to some entity types,
e.g., “FilmDirector”. Note that an entity might be
mapped to multiple types. For instance, ”Ventura
Pons” is a “FilmDirector” and a “Person”.

Boundary Detection Two ways are used for
boundary detection. First, for each relation, from
the training set of facts, we get two dictionaries
(one for source entities and one for destination en-
tities). The two dictionaries are used to detect the
source and destination entities. Second, an exist-
ing NER tool (StanfordNER here) is used with the
following postprocessing to filter some unwanted
entities, because a NER tool sometimes produces
too many entities. We first find the compatible N-
ER tags for an entity type in the KB. For example,
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for the type “FilmDirector”, the compatible NER
tag of Standford NER is “Person”. To do this,
for each entity type in the KB, we match all the
entities of that type (in the training set) back to the
training corpus and get the probability Ptag(ti) of
each NER tag (including the “NULL” tag meaning
not recognized as a named entity) recognized
by the NER tool. Then we retain the top k tags
Stags = {t1, · · · , tk} with the highest probabil-
ities to account for an accumulated mass z:

k = arg min
k

((
k∑

i=1

Ptag(ti)

)
≥ z

)
(1)

In the experiments we set z = 0.9. The compati-
ble ner tags are Stags\{“NULL”}. If the retained
tags contain only “NULL”, the candidate entities
recognized by NER tool will be discarded.

Named Entity Disambiguation (NED) With
a candidate entity obtained by the boundary
detection, we need a NED component to assign
some entity types to it. To obtain such a NED, we
leverage the anchor text in Wikipedia to generate
training data and train a NED component. The
referred Freebase entity and the types of an anchor
link in Wikipedia can be obtained from Freebase.

The following features are used to train the
NED component. Mention Features: Uni-grams,
Bi-grams, POS tags, word shapes in the mention,
and the length of the mention. Context Features:
Uni-grams and Bi-grams in the windows of the
mention (window size = 5).

3.2 Negative Examples Construction
Treating the problem as a multi-class classification
implies introducing many false negative examples
for a relation; therefore, we handle each relation
with a separate binary classifier. However, a KB
only tells us which entity pairs belong to a relation,
i.e., it only provides positive examples for each re-
lation. But we also need negative examples to train
a binary classifier. To reduce the number of false
negative examples, we propose a new method
to construct negative examples by utilizing the
1-to-1/1-to-n/n-to-1/n-to-n property of a relation.

1-to-1/n-to-1/1-to-n Relation A 1-to-1 or n-to-
1 relation is a functional relation: for a relation r,
for each valid source entity e1, there is only one
unique destination entity e2 such that (e1, e2) ∈ r.
However, in a real KB like Freebase, very few
relations meet the exact criterion. Thus we use the

following approximate criterion instead: relation
r is approximately a 1-to-1/n-to-1 relation if the
Inequalities (2,3) hold, where M is the number of
unique source entities in relation r, and δ(·) is an
indicator function which returns 1 if the condition
is met and returns 0 otherwise. Inequality (2)
says the proportion of source entities which have
exactly one counterpart destination entity should
be greater than a given threshold. Inequality (3)
says the average number of destination entities of
a source entity should be less than the threshold.
To check whether r is a 1-to-n relation, we simply
swap the source and destination entities of the
relation and check whether the reversed relation
is a n-to-1 relation by the above two inequalities.
In experiments we set θ = 0.7 and γ = 1.1.

1

M

M∑

i=1

δ
(∣∣{e′|(ei, e

′) ∈ r}
∣∣ = 1

)
≥ θ (2)

1

M

M∑

i=1

∣∣{e′|(ei, e
′) ∈ r}

∣∣ ≤ γ (3)

n-to-n Relation Relations other than 1-to-1/n-
to-1/1-to-n are n-to-n relations. We approximately
categorize a n-to-n relation to n-to-1 or 1-to-n by
checking which one it is closer to. This is done
by computing the following two values αsrc and
αdst. r is treated as a 1-to-n relation if αsrc > αdst

and as a 1-to-n relation otherwise.

αsrc =
1

Msrc

Msrc∑

i=1

∣∣{e′|(ei, e
′) ∈ r}

∣∣

αdst =
1

Mdst

Mdst∑

i=1

∣∣{e′|(e′, ei) ∈ r}
∣∣

(4)

Negative examples For a candidate entity pair
(e1, e2) not in the relation r of the KB, we first
determine whether it is 1-to-n or n-to-1 using the
above method. If r is 1-to-1/n-to-1 and e1 exists in
some fact of r as the source entity, then (e1, e2) is
a negative example as it violates the 1-to-1/n-to-1
constraint. If r is 1-to-n, the judgement is similar
and just simply swap the source and destination
entities of the relation.

3.3 Feature Space Partition and Ensemble
The features of DS (Mintz et al., 2009) are very
sparse in the corpus. We add some features in (Yao
et al., 2011): Trigger Words (the words on the
dependency path except stop words) and Entity
String (source entity and destination entity).
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Relation Taka Ensemble
works written 0.76 0.98

river/basin countries 0.48 1
/film/director/film 0.82 1

Average 0.79 0.89

Table 1: Manual evaluation of top-ranked 50 rela-
tion instances for the most frequent 15 relations.

We find that without considering the reversed
order of entity pairs in a sentence, the precision
can be higher, but the recall decreases. For exam-
ple, for the entity pair ⟨Ventura Pons, Actrius⟩, we
only consider sentences with the right order (e.g.
Ventura Pons is directed by Actrius.). For each re-
lation, we train four classifiers: C1 (without con-
sidering reversed order), C2 (considering reversed
order), C1more (without considering reversed or-
der and employ more feature) and C2more (con-
sidering reversed order and employ more feature).
We then ensemble the four classifiers by averaging
the probabilities of predictions:

P (y|x) =
P1 + P2 + P1more + P2more

4
(5)

4 Experiments

4.1 Dataset and Configurations
We aimed to extract facts of the 92 most frequent
relations in Freebase 2009. The facts of each
relation were equally split to two parts for training
and testing. Wikipedia 2009 was used as the target
corpus, where 800,000 articles were used for
training and 400,000 for testing. During the NED
phrase, there are 94 unique entity types (they are
also relations in Freebase) for the source and desti-
nation entities. Note that some entity types contain
too few entities and they are discarded. We used
500,000 Wikipedia articles (2,000,000 sentences)
for generating training data for the NED compo-
nent. We used Open NLP POS tagger, Standford
NER (Finkel et al., 2005) and MaltParser (Nivre
et al., 2006) to label/tag sentences. We employed
liblinear (Fan et al., 2008) as classifiers for NED
and relation extraction and the solver is L2LR.

4.2 Performance of Relation Extraction
Held-out Evaluation. We evaluate the perfor-
mance on the half hold-on facts for testing. We
compared performance of the n = 50, 000 best ex-
tracted relation instances of each method and the
Precision-Recall (PR) curves are in Figure 1 and
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Figure 1: Performance of different methods.
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Figure 2: Contributions of different components.

Figure 2. For a candidate fact without any enti-
ty existing in Freebase, we are not able to judge
whether it is correct. Thus we only evaluate the
candidate facts that at least one entity occurs as
the source or destination entity in the test fact set.

In Figure 1, we compared our method with
two previous methods: MultiR (Hoffmann et al.,
2011) and Takamatsu et al. (2012) (Taka). For
MultiR, we used the author’s implementation1.
We re-implemented Takamatsu’s algorithm. As
Takamatsu’s dataset (903,000 Wikipedia articles
for training and 400,000 for testing) is very similar
to ours, we used their best reported parameters.
Our method leads to much better performance.

Manual Evaluation. Following (Takamatsu et
al., 2012), we selected the top 50 ranked (accord-
ing to their classification probabilities) relation
facts of the 15 largest relations. We compared our
results with those of Takamatsu et al. (2012) and
we achieved greater average precision (Table 1).

1available at http://www.cs.washington.edu/ai/raphaelh/mr
We set T = 120, which leads to the best performance.
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Pmicro Rmicro Pmacro Rmacro

0.950 0.845 0.947 0.626

Table 2: Performance of the NED component

4.3 Contribution of Each Component
In Figure 2, with the entity type detection (ETD),
the performance is better than the original DS
method (OrigDS). As for the performance of NED
in the Entity Type Detection, the Micro/Macro
Precision-Recall of our NED component are in
Table 2. ETD is also better than adding the entity
types of the pair to the feature vector (DS Figer)2

as in (Ling and Weld, 2012). If we also employ the
negative example construction strategy in Section
3.2 (ETD+Neg), the precision of the top ranked
instances is improved. By adding more features
(More) and employing the ensemble learning
(Ensemble(ADS)) to ETD+Neg, the performance
is further improved.

5 Conclusion

This paper dealt with the problem of improving the
accuracy of DS. We find some factors are crucial-
ly important, including valid entity type detection,
negative training examples construction and en-
sembles. We have proposed an approach to handle
these issues. Experiments show that the approach
is very effective.
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Abstract

Determining the stance expressed by an
author from a post written for a two-
sided debate in an online debate forum
is a relatively new problem. We seek to
improve Anand et al.’s (2011) approach
to debate stance classification by model-
ing two types of soft extra-linguistic con-
straints on the stance labels of debate
posts, user-interaction constraints and ide-
ology constraints. Experimental results on
four datasets demonstrate the effectiveness
of these inter-post constraints in improv-
ing debate stance classification.

1 Introduction

While a lot of work on document-level opinion
mining has involved determining the polarity ex-
pressed in a customer review (e.g., whether a re-
view is “thumbs up” or “thumbs down”) (see Pang
and Lee (2008) and Liu (2012) for an overview
of the field), researchers have begun exploring
new opinion mining tasks in recent years. One
such task isdebate stance classification: given
a post written for atwo-sidedtopic discussed in
an online debate forum (e.g.,“Should abortion be
banned?”), determine which of the two sides (i.e.,
for andagainst) its author is taking.

Debate stance classification is potentially more
interesting and challenging than polarity classifi-
cation for at least two reasons. First, while in po-
larity classification sentiment-bearing words and
phrases have proven to be useful (e.g., “excellent”
correlates strongly with the positive polarity), in
debate stance classification it is not uncommon to
find debate posts where stances are not expressed
in terms of sentiment words, as exemplified in Fig-
ure 1, where the author isfor abortion.

Second, while customer reviews are typically
written independently of other reviews in an on-
line forum, the same is not true for debate posts. In

The fetus is simply a part of the mother’s body and she
can have an abortion because it is her human rights. Also
I take this view because every woman can face with sit-
uation when two lives are at stake and the moral obli-
gation is to save the one closest at hand — namely, that
of the mother, whose life is always more immediate than
that of the unborn child within her body. Permission for
an abortion could then be based on psychiatric consider-
ations such as prepartum depression, especially if there
is responsible psychiatric opinion that a continued preg-
nancy raises the strong probability of suicide in a clini-
cally depressed patient.

Figure 1: A sample post on abortion.

a debate forum, debate posts formthreads, where
later posts often support or oppose the viewpoints
raised in earlier posts in the same thread.

Previous approaches to debate stance classifica-
tion have focused on three debate settings, namely
congressional floor debates (Thomas et al., 2006;
Bansal et al., 2008; Balahur et al., 2009; Yesse-
nalina et al., 2010; Burfoot et al., 2011), company-
internal discussions (Murakami and Raymond,
2010), and online social, political, and ideologi-
cal debates in public forums (Agrawal et al., 2003;
Somasundaran and Wiebe, 2010; Wang and Rosé,
2010; Biran and Rambow, 2011; Hasan and Ng,
2012). As Walker et al. (2012) point out, debates
in public forums differ from congressional debates
and company-internal discussions in terms of lan-
guage use. Specifically, online debaters use color-
ful and emotional language to express their points,
which may involve sarcasm, insults, and question-
ing another debater’s assumptions and evidence.
These properties can potentially make stance clas-
sification of online debates more challenging than
that of the other two types of debates.

Our goal in this paper is to improve the state-
of-the-art supervised learning approach to debate
stance classification of online debates proposed by
Anand et al. (2011), focusing in particular onideo-
logical debates. Specifically, we hypothesize that
there are two types of soft extra-linguistic con-
straints on the stance labels of debate posts that,
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Number “for” % of posts Average thread
Domain of posts posts (%) in a thread length

ABO 1741 54.9 75.1 4.1
GAY 1376 63.4 74.5 4.0
OBA 985 53.9 57.1 2.6
MAR 626 69.5 58.0 2.5

Table 1: Statistics of the four datasets.

if explicitly modeled, could improve a learning-
based stance classification system. We refer to
these two types of inter-post constraints asuser-
interaction constraintsand ideology constraints.
We show how they can be learned from stance-
annotated debate posts in Sections 4.1 and 4.2, re-
spectively.

2 Datasets

For our experiments, we collect debate posts
from four popular domains, Abortion (ABO),
Gay Rights (GAY), Obama (OBA), and Marijuana
(MAR), from an online debate forum1. All de-
bates are two-sided, so each post receives one of
two domain labels, for or against, depending on
whether the author of the postsupportsor opposes
abortion, gay rights, Obama, or the legalization of
marijuana.

We construct one dataset for each domain (see
Table 1 for statistics). The fourth column of the
table shows the percentage of posts in each domain
that appear in athread. More precisely, athread
is a tree with one or more nodes such that (1) each
node corresponds to a debate post, and (2) a postyi

is the parent of another postyj if yj is a reply toyi.
Given a thread, we can generatepost sequences,
each of which is a path from the root of the thread
to one of its leaves.

3 Baseline Systems

We employ as baselines two stance classification
systems, Anand et al.’s (2011) approach and an en-
hanced version of it, as described below.

Our first baseline, Anand et al.’s approach is a
supervised method that trains a stance classifier
for determining whether the stance expressed in
a debate post isfor or against the topic. Hence,
we create one training instance from each post in
the training set, using the stance it expresses as
its class label. Following Anand et al., we repre-
sent a training instance using three types of lexico-
syntactic features, which are briefly summarized
in Table 2. In our implementation, we train the

1http://www.createdebate.com/

Feature type Features
Basic Unigrams, bigrams, syntactic and POS-

generalized dependencies
Sentiment LIWC counts, opinion dependencies
Argument Cue words, repeated punctuation, context

Table 2: Anand et al.’s features.

stance classifier using SVMlight (Joachims, 1999).
After training, we can apply the classifier to clas-
sify the test instances, which are generated in the
same way as the training instances.

Related work on stance classification ofcon-
gressional debateshas found that enforcingau-
thor constraints(ACs) can improve classification
performance (e.g., Thomas et al. (2006), Bansal et
al. (2008), Burfoot et al. (2011), Lu et al. (2012),
Walker et al. (2012)). ACs are a type of inter-
post constraints that specify that two posts written
by the same author for the same debate domain
should have the same stance. We hypothesize that
ACs could similarly be used to improve stance
classification of ideological debates, and therefore
propose a second baseline where we enhance the
first baseline with ACs. Enforcing ACs is simple.
We first use the learned stance classifier to classify
the test posts as in the first baseline, and thenpost-
processthe labels of the test posts. Specifically,
we sum up the confidence values2 assigned to the
set of test posts written by the same author for the
same debate domain. If the sum is positive, then
we labelall the posts in this set asfor; otherwise
we label them asagainst.

4 Extra-Linguistic Constraints

In this section, we introduce two types of inter-
post constraints on debate stance classification.

4.1 User-Interaction Constraints

We call the first type of constraintsuser-
interaction constraints(UCs). UCs are motivated
by the observation that the stance labels of the
posts in a post sequence are not independent of
each other. Consider the post sequence in Fig-
ure 2, where each post is a response to the preced-
ing post. It shows an opening anti-abortion post
(P1), followed by a pro-abortion comment (P2),
which is in turn followed by another anti-abortion
view (P3). While this sequence contains alternat-
ing posts from opposing stances, in general there
is no hard constraint on the stance of a post given

2We use as the confidence value the signed distance of the
associated test point from the SVM hyperplane.
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[P1: Anti-abortion] There are thousands of people who
want to take these children because they cannot have their
own. If you do not want a child, have it and put it up for
adoption. At least you will be preserving a human life rather
than killing one.

[P2: Pro-abortion] I agree that if people don’t want
their babies, they should have the choice of putting it
up for adoption. But it should not be made compulsory,
which is essentially what happens if you ban abortion.

[P3: Anti-abortion] Why should it not be made
compulsory? Those children have as much right to
live as you and I. Besides, no one loses with adop-
tion, so why wouldn’t you utilize it?

Figure 2: A sample post sequence. P2 and P3 are
replies to P1 and P2, respectively.

the preceding sequence of posts. Nevertheless, we
found that in our training data, afor (against) post
is followed by aagainst(for) post 80% of the time.

UCs aim to model the regularities in how users
interact with each other in a post sequence as soft
constraints. These kinds of soft constraints can be
naturally encoded asfactorsover adjacent posts in
a post sequence (see Kschischang et al. (2001)),
which can in turn be learned by recasting stance
classification as asequence labelingtask. In our
experiments, we seek to derive the best sequence
of stance labels for each post sequence of length≥
1 using a Conditional Random Field (CRF) (Laf-
ferty et al., 2001).

We train the CRF model using the CRF im-
plementation in Mallet (McCallum, 2002). Each
training sequence corresponds to a post sequence.
Each post in a sequence is represented using the
same set of features as in the baselines.

After training, the resulting CRF model can be
used to assign a stance sequence to each test post
sequence. There is a caveat, however. Since a
given test post may appear in more than one se-
quence, different occurrences of it may be as-
signed different stance labels by the CRF. To deter-
mine the final stance label for the post, we average
the probabilities assigned to thefor stance over all
its occurrences; if the average is≥ 0.5, then its
final label isfor; otherwise, its label isagainst.

4.2 Ideology Constraints

Next, we introduce our second type of inter-post
constraints,ideology constraints(ICs). ICs are
cross-domain, author-basedconstraints: they are
only applicable to debate posts written by the same
author in different domains. ICs model the fact
that for some authors, their stances on various is-
sues are determined in part by their ideological

values, and in particular, their stances on different
issues may be correlated. For example, someone
who opposes abortion is likely to be a conserva-
tive and has a good chance of opposing gay rights.
ICs aim to capture this kind of inter-domain corre-
lation of stances. Below we describe how we im-
plement ICs and show how they can be integrated
with ACs.

4.2.1 Implementing Ideology Constraints

We first compute a set of conditional probabil-
ities, P (stance(dq )=sd|stance(dp)=sc), where (1)
dp, dq ∈ Domains(i.e., the set of four domains),
(2) sc, sd ∈ {for, against}, and (3)dp 6= dq.
To computeP (stance(dq )=sd|stance(dp)=sc), we
(1) determine for each authora in the train-
ing set and each domaindp the stance ofa
in dp (denoted by author-stance(dp ,a)), where
author-stance(dp ,a) is computed as the majority
stance labels associated with the debate posts
in the training set thata wrote for dp; and
(2) computeP (stance(dq )=sd|stance(dp)=sc) as
the ratio of

∑
a∈A Count(author-stance(dp ,a)=sc,

author-stance(dq ,a)=sd) to
∑

a∈A Count(author-
stance(dp,a)=sc), whereA is the set of authors in
the training set who posted in bothdp anddq. It
should be fairly easy to see that these conditional
probabilities measure the degree of correlation be-
tween the stances in different domains.

4.2.2 Inference Using ILP

Recall that in our second baseline, we employ
ACs to postprocess the output of the stance clas-
sifier simply by summing up the confidence val-
ues assigned to the posts written by the same au-
thor for the same debate domain. However, since
we now want to enforce two types of inter-post
constraints (namely, ACs and ICs), we will have
to employ a more sophisticated inference mecha-
nism. Previous work has focused on employing
graph minimum cut (MinCut) as the inference al-
gorithm. However, since MinCut suffers from the
weakness of not being able to enforce negative
constraints (i.e., two posts cannot receive the same
label) (Bansal et al., 2008), we propose to use in-
teger linear programming (ILP) as the underlying
inference mechanism. Below we show how to im-
plement ACs and ICs within the ILP framework.

Owing to space limitations, we refer the reader
to Roth and Yih (2004) for details of the ILP
framework. Briefly, ILP seeks to optimize an
objective function subject to a set of linear con-
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straints. Below we focus on describing the ILP
program and how the ACs and ICs can be encoded.

Let Y = y1, . . . , yn be the set of debate posts.
For eachyi, we create one (binary-valued) indi-
cator variablexi, which will be used in the ILP
program. Letpi = P (for|yi) be the “benefit” of
settingxi to 1, whereP (for|yi) is provided by the
CRF. Consequently, after optimization,yi’s stance
is for if its xi is set to 1. We optimize the following
objective function:

max
∑

i

pixi + (1 − pi)(1 − xi)

subject to a set oflinear constraints, which encode
the ACs and the ICs, as described below.

Implementing author constraints. If yi andyj

are composed by the same author, we ensure that
xi andxj will be assigned the same value by em-
ploying the linear constraint|xi − xj| = 0.

Implementing ideology constraints. For con-
venience, below we use the notation introduced in
Section 4.2.1, and assume thatyi andyj are two
arbitrary posts written by the same author in do-
mainsdp anddq, respectively.
Case 1: If P (stance(dq )=for|stance(dp)=for) ≥ t,
we want to ensure thatxi=1 =⇒ xj=1.3 This can
be achieved using the constraint (1−xj) ≤ (1−xi).
Case 2: If P (stance(dq )=against|stance(dp )=against)
≥ t, we want to ensure thatxi=0 =⇒ xj=0. This
can be achieved using the constraintxj ≤ xi.
Case 3: If P (stance(dq )=against|stance(dp )=for)
≥ t, we want to ensure thatxi=1 =⇒ xj=0. This
can be achieved using the constraintxj ≤ (1−xi).
Case 4: If P (stance(dq )=for|stance(dp)=against)
≥ t, we want to ensure thatxi=0 =⇒ xj=1. This
can be achieved using the constraint (1−xj) ≤ xi.

Two points deserve mention. First, cases 3 and
4 correspond to negative constraints, and unlike in
MinCut, they can be implemented easily in ILP.
Second, if ICs are used, one ILP program will be
created to perform inference over the debate posts
in all four domains.

5 Evaluation

5.1 Experimental Setup

Results are expressed in terms ofaccuracyob-
tained via 5-fold cross validation, where accuracy

3Intuitively, if this condition is satisfied, it means that
there is sufficient evidence that the two nodes from differ-
ent domains should have the same stance, and so we convert
the soft ICs into (hard) linear constraints in ILP. Note thatt is
a threshold to be tuned using development data.

System ABO GAY OBA MAR
Anand 61.4 62.6 58.1 66.9

Anand+AC 72.0 64.9 62.7 67.8
Anand+AC+UC 73.7 69.9 64.1 75.4

Anand+AC+UC+IC 74.9 70.9 72.7 75.4

Table 3: 5-fold cross-validation accuracies.

is the percentage of test instances correctly classi-
fied. Since all experiments require the use of de-
velopment data for parameter tuning, we use three
folds for model training, one fold for development,
and one fold for testing in each fold experiment.

5.2 Results

Results are shown in Table 3. Row 1 shows the
results of the Anand et al. (2011) baseline (see
Section 3) on the four datasets, obtained by train-
ing a SVM stance classifier using the SVMlight

software.4 Row 2 shows the results of the sec-
ond baseline, Anand et al.’s system enhanced with
ACs. As we can see, incorporating ACs into
Anand et al.’s system improves its performance
significantly on all datasets and yields a system
that achieves an average improvement of 4.6 ac-
curacy points.5

Next, we incorporate our first type of con-
straints, UCs, into the better of the two baselines
(i.e., the second baseline). Results of applying the
CRF for modeling UCs to the test posts and post-
processing them using the ACs are shown in row 3
of Table 3. As we can see, incorporating UCs into
the second baseline significantly improves its per-
formance and yields a system that achieves an av-
erage improvement of 3.93 accuracy points.

Finally, we incorporate our second type of con-
straints, ICs, effectively performing inference over
the CRF output using ILP with ACs and ICs as the
inter-post constraints. Results of this experiment
are shown in row 4 of Table 3. As we can see, in-
corporating the ICs significantly improves the per-
formance of the system on all but MAR and yields
a system that achieves an average improvement of
2.7 accuracy points.

Overall, our inter-post constraints yield a stance
classification system that significantly outper-
forms the better baseline on all four datasets, with
an average improvement of 6.63 accuracy points.

4For all SVM experiments, the regularization parameter C
is tuned using development data, but the remaining learning
parameters are set to their default values.

5All significance tests are pairedt-tests, withp < 0.05.
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5.3 Discussion

Next, we make some observations on the results of
applying ICs to our datasets.

First, ICs do not improve the MAR dataset. An
examination of the domains reveals the reason. We
find three pairs of ICs involving the other three do-
mains — ABO, GAY, and OBA — in our training
data. More specifically, the stances of the posts
written by an author for these three domains are
all positively co-related. In other words, if an au-
thor supports abortion, it is likely that she supports
both gay rights and Obama as well. On the other
hand, we find no co-relation between MAR and
the remaining domains. This means that no ICs
can be established between the posts in MAR and
those in the remaining domains.

Second, the improvement resulting from the ap-
plication of ICs is much larger on the OBA dataset
than on ABO and GAY. The reason can be at-
tributed to the fact that ICs exist more frequently
between OBA and ABO and between OBA and
GAY than between ABO and GAY. Specifically,
ICs are seen in all five folds of the data in the
first two pairs of domains, whereas they are seen
in only two folds in the last pair of domains.

6 Related Work

Previous work has investigated the use of extra-
linguistic constraints to improve stance classifica-
tion. Introduced by Thomas et al. (2006), ACs are
arguably the most commonly used extra-linguistic
constraints. Since then, they have been employed
and extended in different ways (see, for example,
Bansal et al. (2008), Burfoot et al. (2011), Lu et al.
(2012), and Walker et al. (2012)).

ICs are different from ACs in at least two re-
spects. First, ICs are softer than ACs, so accu-
rate modeling of ICs has to be based on stance-
annotated data. Although we employ ICs as hard
constraints (owing in part to our use of the ILP
framework), they can be used directly as soft con-
straints in other frameworks, such as MinCut. Sec-
ond, ICs are inter-domain constraints, whereas
ACs are intra-domain constraints. To our knowl-
edge, this is the first time inter-domain constraints
are employed for stance classification.

There has been work related to the modeling of
user interaction in a post sequence. Recall that be-
tween two adjacent posts in a post sequence that
have opposing stances, there exists arebuttal link.
Walker et al. (2012) employ manually identified

rebuttal links as hard inter-post constraints dur-
ing inference. However, since automatic discov-
ery of rebuttal links is a non-trivial problem, em-
ploying gold rebuttal links substantially simplifies
the stance classification task. Lu et al. (2012), on
the other hand, predict whether a link is of type
agreementor disagreementusing a bootstrapped
classifier. Anand et al. (2011) do not predict links.
Instead, hypothesizing that the content of the pre-
ceding post in a post sequence would be useful
for predicting the stance of the current post, they
employ features computed based on the preceding
post when training a stance classifier. Hence, un-
like us, they classify each post independently of
the others, whereas we classify the posts in a se-
quence in dependent relation to each other.

The ILP framework has been applied to perform
joint inference for a variety of stance prediction
tasks. Lu et al. (2012) address the task of discov-
ering opposing opinion networks, where the goal
is to partition the authors in a debate (e.g., gay
rights) based on whether they support or oppose
the given issue. To this end, they employ ILP
to coordinate different sources of information. In
our previous work on debate stance classification
(Hasan and Ng, 2012), we employ ILP to coor-
dinate the output oftwo classifiers: apost-stance
classifier, which determines the stance of a debate
post written for a domain (e.g., gay rights); and
a topic-stanceclassifier, which determines the au-
thor’s stance on eachtopic mentioned in her post
(e.g., gay marriage, gay adoption). In this work,
on the other hand, we train only one classifier,
but use ILP to coordinate two types of constraints,
ACs and ICs.

7 Conclusions

We examined the under-studied task of stance
classification of ideological debates. Employing
our two types of extra-linguistic constraints yields
a system that outperforms an improved version of
Anand et al.’s approach by 2.9–10 accuracy points.
While the effectiveness of ideology constraints de-
pends to some extent on the “relatedness” of the
underlying ideological domains, we believe that
the gains they offer will increase with the num-
ber of authors posting in different domains and the
number of related domains.6

6Only a small fraction of the authors posted in multiple
domains in our datasets: 12% and 5% of them posted in two
and three domains, respectively.
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conversational structure explicit: Identification of
initiation-response pairs within online discussions.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter
of the Association for Computational Linguistics,
pages 673–676.

Ainur Yessenalina, Yisong Yue, and Claire Cardie.
2010. Multi-level structured models for document-
level sentiment classification. InProceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, pages 1046–1056.

821



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 822–828,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Are School-of-thought Words Characterizable? 

 
 

Xiaorui Jiang¶1      Xiaoping Sun¶2      Hai Zhuge¶†‡3* 
 

¶ Key Lab of Intelligent Information Processing, Institute 
of Computing Technology, CAS, Beijing, China 

† Nanjing University of Posts and Telecommunications, Nanjing, China 
‡ Aston University, Birmingham, UK 

 1xxiaoruijiang@gmail.com 2 sunxp@kg.ict.ac.cn 
3 zhuge@ict.ac.cn

 
  

 

Abstract 

School of thought analysis is an important yet 
not-well-elaborated scientific knowledge dis-
covery task. This paper makes the first attempt 
at this problem. We focus on one aspect of the 
problem: do characteristic school-of-thought 
words exist and whether they are characteriza-
ble? To answer these questions, we propose a 
probabilistic generative School-Of-Thought 
(SOT) model to simulate the scientific author-
ing process based on several assumptions. SOT 
defines a school of thought as a distribution of 
topics and assumes that authors determine the 
school of thought for each sentence before 
choosing words to deliver scientific ideas. SOT 
distinguishes between two types of school-of-
thought words for either the general back-
ground of a school of thought or the original 
ideas each paper contributes to its school of 
thought. Narrative and quantitative experi-
ments show positive and promising results to 
the questions raised above. 

1 Introduction 

With more powerful computational analysis tools, 
researchers are now devoting efforts to establish 
a “science of better science” by analyzing the 
ecosystem of scientific discovery (Goth, 2012). 
Amongst this ambition, school of thought analy-
sis has been identified an important fine-grained 
scientific knowledge discovery task. As men-
tioned by Teufel (2010), it is important for an 
experienced scientist to know which papers be-
long to which school of thought (or technical 
route) through years of knowledge accumulation. 
Schools of thought typically emerge with the 
evolution of a research domain or scientific topic.  

Take reachability indexing for example, which 
we will repeatedly turn to later, there are two 
schools of thought, the cover-based (since about 
1990) and hop-based (since the beginning of the 
2000s) methods. Most of the following works 
belong to either school of thought and thus two 
streams of innovative ideas emerge. Figure 1 il-
lustrates this situation. Two chains of subsequen-
tially published papers represent two schools of 
thought of the reachability indexing domain. The 
top chain of white double-line circles and the 
bottom chain of shaded circles represent the cov-
er-based and hop-based streams respectively.  

However it is not easy to gain this knowledge 
about school of thought. Current citation index-
ing services are not very helpful for this kind of 
knowledge discovery tasks. As explained in Fig-
ure 1, papers of different schools of thought cite 
each other heavily and form a rather dense cita-
tion graph. An extreme example is p14, which 
cites more hop-based papers than its own school 
of thought.  

If the current citation indexing service can be 
equipped with school of thought knowledge, it 
will help scientists, especially novice researchers, 
a lot in grasping the core ideas of a scientific 
domain quickly and making their own way of 
innovation (Upham et al., 2010). School of 
thought analysis is also useful for knowledge 

Figure 1. The citation graph of the reachability 
indexing domain (c.f. the RE data set in Table 1). 

———————————————— 
* Corresponding author. 
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flow discovery (Zhuge, 2006; Zhuge, 2012), 
knowledge mapping (Chen, 2004; Herrera et al., 
2010) and scientific paradigm summarization 
(Joang and Kan, 2010; Qazvinian et al., 2013) 
etc.  

This paper makes the first attempts to unsu-
pervised school of thought analysis. Three main 
aspects of school of thought analysis can be iden-
tified: determining the number of schools of 
thought, characterizing school-of-thought words 
and categorizing papers into one or several 
school(s) of thought (if applicable). This paper 
focuses on the second subproblem and leaves the 
other two as future work. Particularly, we pur-
pose to investigate whether characteristic school-
of-thought words exist and whether they can be 
automatically characterized. To answer these 
questions, we propose the probabilistic genera-
tive School-Of-Thought model (SOT for short) 
based on the following assumptions on the scien-
tific authoring process. 

Assumption A1. The co-occurrence patterns 
are useful for revealing which words and sen-
tences are school-of-thought words and which 
schools of thought they describe. Take reachabil-
ity indexing for example, hop-based papers try to 
get the “optimum labeling” by finding the 
“densest intermediate hops” to encode reach-
ability information captured by an intermediate 
data structure called “transitive closure con-
tour”. To accomplish this, they solve the “dens-
est subgraph problem” on specifically created 
“bipartite” graphs centered at “hops” by trans-
forming the problem into an equivalent “mini-
mum set cover” framework. Thus, these bold-
faced words often occur as hop-based school-of-
thought words. In cover-based methods, however, 
one or several “spanning tree(s)” are extracted 
and “(multiple) intervals” are assigned to each 
node as reachability labels by “pre-(order)” and 
“post-order traversals”. Meanwhile, graph the-
ory terminologies like “root”, “child” and “an-
cestor” etc. also frequently occur as cover-based 
school-of-thought words. 

Assumption A2. Before writing a sentence to 
deliver their ideas, the authors need to determine 
which school of thought this sentence is to por-
tray. This is called the one-sot-per-sentence as-
sumption, where “sot” abbreviates “school of 
thought”. The one-sot-per-sentence assumption 
does not mean that authors intentionally write 
this way, but only simulates the outcome of the 
scientific paper organization. Investigations into 
scientific writing reveal that sentences of differ-
ent schools of thought can occur anywhere and 
are often interleaved. This is because authors of a 
scientific paper not only contribute to the school 
of thought they follow but also discuss different 

schools of thought. For example, in the Method 
part, the authors may turn to discuss another pa-
per (possibly of a different school of thought) for 
comparison. This phenomenon also occurs fre-
quently in the Results or Discussions section. 
Besides, citation sentences often acknowledge 
related works of different schools of thought.  

Assumption A3. All the papers of a domain 
talk about the general domain backgrounds. For 
example, reachability indexing aims to build 
“compact indices” for facilitating “reachability 
queries” between “source” and “target nodes”. 
Other background words include “(complete) 
transitive closure”, “index size” and “reach” 
etc., as well as classical graph theory terminolo-
gies like “predecessors” and “successors” etc.  

Assumption A4. Besides contributing original 
ideas, papers of the same school of thought typi-
cally need to follow some general strategies that 
make them fall into the same school of thought. 
For example, all the hop-based methods follow 
the general ideas of designing approximate algo-
rithms for choosing good hops, while the original 
ideas of each paper lead to different labeling al-
gorithms. Scientific readers pay attention to the 
original ideas of each paper as well as the gen-
eral ideas of each school of thought. This as-
sumes that a word can be either a generality or 
originality word to deliver general and original 
ideas of a school of thought respectively.  

2 The School-of-Thought Model 

Figure 2 shows the proposed SOT model. SOT 
reflects all the assumptions made in Sect. 1. The 
plate notation follows Bishop (2006) where a 
shaded circle means an observed variable, in this 
context word occurrence in text, a white circle 
denotes either a latent variable or a model pa-
rameter, and a small solid dot represents a hyper-
parameter of the corresponding model parameter. 
The generative scientific authoring process illus-
trated in Figure 2 is elaborated as follows. 

Step 1. School of thought assignment (A2). 

Figure 2. The SOT Model 
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To simulate the one-sot-per-sentence assump-
tion, we introduce a latent school-of-thought as-
signment variable cd,s (1 ≤ cd,s ≤ C, where C is the 
number of schools of thought) for each sentence 
s in paper d, dependent on which are topic as-
signment and word occurrence variables. As dif-
ferent papers and their authors have different foci, 
flavors and writing styles, it is appropriate to as-
sume that each paper d has its own Dirichlet dis-
tribution of schools of thought ( )c c

d Dirπ α   
(refer to Heinrich (2008) for Dirichlet analysis of 
texts). cd,s is thus multinomially sampled from 

c
dπ , that is, , ( )c

d s dc Mutl π .  

Step 2. Background word emission (A3). 
Before choosing a word wd,s,n to deliver scien-

tific ideas, the authors first need to determine 
whether this word describes domain backgrounds 
or depicts a specific school-of-thought. This in-
formation is indicated by the latent background 
word indicator variable bd,s,n ( )b

dBern π , where 
0 1( , )b b b

d Betaπ α α is the probability of Bernoulli 
test. bd,s,n = 1 means wd,s,n is a background word 
that is multinomially sampled from the Dirichlet 
background word distribution ( )bg bgDirϕ β

  , 
i.e. , , ( )bg

d s nw Mutl ϕ . 
Step 3. Originality indicator assignment (A4). 

If bd,s,n = 0, wd,s,n is a school-of-thought word. 
Then the authors need to determine whether wd,s,n 
talks about the general ideas of a certain school 
of thought (i.e. a generality word when od,s,n = 0) 
or delivers original contributions to the specific 
school of thought (i.e. an originality word when 
od,s,n = 1). The latent originality indicator variable 
od,s,n is assigned in a similar way to bd,s,n. 

Step 4. Topical word emission. 
SOT regards schools of thought and topics as 

two different levels of semantic information. A 
school of thought is modeled as a distribution of 
topics discussed by the papers of a research do-
main. Each topic in turn is defined as a distribu-
tion of the topical words. Reflected in Figure 1, 

g
cθ


 and o
cθ


 are Dirichlet distributions of general-

ity and originality topics respectively, with gγ  
and oγ  being the Dirichlet priors. According to 
the assignment of the originality indicator, the 
topic td,s,n of the current token is multinomially 
selected from either g

cθ


 (od,s,n = 0) or o
cθ


 (od,s,n = 
1). After that, a word wd,s,n is multinomially emit-
ted from the topical word distribution 

, ,d s n

tp
tϕ , 

where ( )tp tp
t Dirϕ β   for each 1 ≤ t ≤ T. 

Gibbs sampling is used for SOT model infer-
ence. Considering the logic of presentation, it is 
detailed in Appendix B.  

3 Experiments  

3.1 Datasets 

Lacking standard test benchmarks, we compiled 
7 data sets according to well-known recent sur-
veys (see Appendix A). Each data set consists of 
several dozens of papers of the same domain. 
When constructing these data sets, the only place 
of human intervention is the de-duplication step, 
which means typically only one of a number of 
highly duplicated references is kept in the data 
set. Different from previous studies reviewed in 
Sect. 4, full texts but not abstracts are used. We 
extracted texts from the collected papers and re-
moved tables, figures and sentences full of math 
equations or unrecognizable symbols. The statis-
tics of the resulting data sets are listed in Table 1. 
The gold-standard number and the classification 
of schools of thoughts reflect not only the view-
points of the survey authors but also the consen-
sus of the corresponding research communities. 

3.2 Qualitative Results 

This section looks at the capabilities of SOT in 
learning background and school-of-thought words 
using the RE data set as an example. Given the 
estimated model parameters, the distributions of 
the school-of-thought words of SOT can be cal-
culated as weighted sums of topical word emis-
sion probabilities ( ,

tp
t wϕ  for each word w) over all 

the topics (t) and papers (d), as in Eq. (1).  

DATA 

SETS 
NL W S 

Nd 
(avg) 

C 
SCHOOLS OF THOUGHT  
(NUMBER OF PAPERS UNDER THIS SCHOOL OF THOUGHT) 

RE 18 54035 5300 294 2 Hop-Based (9), Cover-Based (9) 
NP 24 36227 3329 138 3 Mention-Pair Models (14), Entity-Mention Models (5), Ranking Models (5) 

PP 20 21941 2182 109 4 
Using Single Monolingual Corpus (3), Using Monolingual Parallel Corpora (6), Using Monolingual 
Comparable Corpora (5), Using Bilingual Parallel Corpora (5) 

TE 34 55671 5335 156 2 Finite-State Transducer models (17), Synchronous Context-Free Grammar models (17) 

WA 18 19219 1807 100 3 Asymmetric Models (5), Symmetric Alignment Models (9), Supervised Learning for Alignment (4)
DP 56 68384 6021 107 3 Transition-Based (20), Graph-Based (17), Grammar-Based (19) 
LR 44 77024 7395 168 3 Point-wise Approach (11), Pair-wise Approach (17), List-wise Approach (16) 

Notes: RE – REachability indexing; NP – Noun Phrase co-reference resolution; PP – ParaPhrase; TE – Translational Equivalence; WA – 
Word Alignment; DP – Dependency Parsing; LR – Learning to Rank; W – number of words; S – number of sentences; C – gold-standard 
number of schools of thought; Nd − number of sentences in document d. 

Table 1. Data Sets 
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=  

 
 

 (1)

The first row of Table 2 lists the top-60 back-
ground and school-of-thought words learned by 
SOT for the RE data set sorted in descending or-
der of their probabilities column by column. The 
words at the bottom are some of the remaining 
characteristic words together with their positions 
on the top-120 list. In the experiments, T is set to 
20. As the data sets are relative small, it is not 
appropriate to set T too large, otherwise most of 
the topics are meaningless or duplicate. Either 
case will impose additive negative influences on 
the usefulness of the model, for example when 
applied to schools of thought clustering in the 
next section. C is set to the gold-standard number 
of schools of thought as in this study we are 
mainly interested in whether school-of-thought 
words are characterizable. The problems of iden-
tifying the existence and number of schools of 
thought are left to future work. Other parameter 
settings follow Griffiths and Steyvers (2010). 
The learned word distributions are shown very 
meaningful at the first glance. They are further 
explained as follows. 

For domain backgrounds, reachability index-
ing is a classical problem of the graph database 
“domain” which talks about the reachability be-
tween the “source” and “destination nodes” on 
a “graph”. Reachability “index” or “indices” 
aim at a “reduction” of the “transitive closure” 
so as to make the “required storage” smaller. 

All current works preprocess the input graphs by 
“merging strongly connected components” 
into representative nodes to remove “cycles”. 

We then give a deep investigation into the 
hop-based school-of-thought words (SoT-2). 
Cover-based ones conform well to the assump-
tions in Sect. 1 too. “2-hop”, “3-hop” and “path-
hop” are three representative hop-based reacha-
bility “labeling schemes” (a phrase preferred 
by hop-based papers). Hop-based methods aim at 
“finding” the “optimum labeling” with “mini-
mum cost” and achieving a higher “compres-
sion ratio” than cover-based methods. To ac-
complish this, hop-based methods define a 
“densest subgraph problem” on a “bipartite” 
graph, transform it to an equivalent “set cover” 
problem, and then apply “greedy” algorithms 
based on several “heuristics” to find “approxi-
mate” solutions. The “intermediate hops” with 
the highest “density” are found as labels and 
assigned to “Lout” and “Lin” of certain “contour” 
vertices. “contour” is used by hop-based meth-
ods as a concise representation of the remaining 
to-be-encoded reachability information.  

The underlined bold italic words such as “set” 
and “cover” are misleading (yet not necessarily 
erroneous) words as both schools of thought use 
them heavily, but in quite different contexts, for 
example, a “set” of labels versus “set cover”, 
and “cover(s)” partial reachability information 
versus tree “cover”. To improve, one of our fu-
ture works shall integrate multi-word expressions 
or n-grams (Wallach, 2006) and syntactic analy-
sis (Griffiths et al., 2004) into the current model. 

BACKGROUND WORDS 
SCHOOL-OF-THOUGHT WORDS 

SOT-1 (COVER-BASED) SOT-2 (HOP-BASED) 
node   arc   figure   node reachable find 2-hop   problem   hop   
closure   size   deleted   graph reach reachability vertex   tree   subgraph 
chain   lists   incremental   nodes size cover vertices  edges   proposed  
graph   procedure predecessor   closure chains acyclic cover construction   large   
nodes   arcs   directed   tree graphs database graph   approach   path-hop   
compressed update   edge   edges storage traversal algorithm indexing lin   
list   off-chain   systems   chain instance components size  contour spanning  
transitive acyclic   connected   transitive intervals directed chain   processing smaller   
successor reduction techniques   non-tree spanning lists labeling   chain  optimal   
compression relation   single   number segment reduction closure  pairs densest   
storage   source   cycles   compressed order g. reachability compression decomposition
chains   reach   updates   path connected addition transitive  reachable   dag   
required effort   depth   edge component technique graphs  property   paths  
index   obtained   materialize   index case degree time   figure   data   
number   component concatenation  list postorder gs number  path-tree   ratio   
database path   presented   set strongly successors 3-hop   bipartite   nodes  
case   assignment added   interval original structure index   scheme   edge   
technique   predecessors original  successor ris single labels   density   finding   
degree   addition   components   figure required paths query  queries   rank   
successors indices   strongly   compression source arc set   reach   note 
destination (65), determine (76), pair 
(77), resulting (84), merging (86), 
reached (87), store (96) 

root (67), pre- (85), topological (96), sub-
tree (102), ancestor (105), child (106), 
multiple (113), preorder (117)

lout (66), segment (68), minimum (69), in-
termediate (77), greedy (87), faster (88), 
heuristics (92), approximate (120) 

Table 2. The distributions of top-120 background and school-of-thought words. 
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3.3 Quantitative Results 

To see the usefulness of school-of-thought words, 
we use the SOT model as a way to feature space 
reduction for a more precise text representation 
in the school-of-thought clustering task. A subset 
of school-of-thought words whose accumulated 
probability exceeds a given threshold fsThr are 
used as the reduced feature vector. Text is repre-
sented in the vector space model weighted using 
tf⋅idf. K-means is used for clustering. To obtain a 
stable and reliable result, we choose 300 random 
seeds as initial cluster centroids, run K-means 
300 times and, following the heuristic suggestion 
by Manning et al. (2009), output the best cluster-
ing by the minimum residual squared sum prin-
ciple. Two baselines are the “RAW” method 
without dimension reduction and LDA-based 
(Blei et al., 2003) feature selection. Table 3 re-
ports the F-measure values of different competi-
tors. In the parentheses are the corresponding 
threshold values under which the reported clus-
tering result is obtained. The larger the threshold 
value is, the less effective the method in dimen-
sion reduction. 

Compared to the baselines, SOT has consist-
ently the best clustering qualities. When fsThr ≤ 
0.70, the feature space is reduced from several 
thousand words to only a few hundreds. LDA is 
typically better than RAW (except on LR) but 
less efficient in dimension reduction, e.g. on WA 
and DP. In the latter two cases, fsThr = 0.80 typ-
ically means LDA is much less efficient in fea-
ture reduction than SOT on these two data sets. 

 

DATA SETS 
F-MEASURE (β = 2.0) 

RAW LDA (fsThr) SOT (fsThr) 
RE .7464 .7464 (.50) .7482 (.60) 
NP .4528 .6150 (.75) .6911 (.75) 
PP .3256 .4179 (.60) .6025 (.75) 
TE .2580 .5148(.60) .9405 (.40) 
WA .3125 .4569 (.80) .5519 (.60) 
DP .4787 .6762 (.80) .7155 (.50) 
LR .5413 .5276 (.95) .6583 (.75) 

Table 3. School-of-thought clustering results
 

4 Related Work 

An early work in semantic analysis of scientific 
articles is Griffiths and Steyvers (2004) which 
focused on efficient browsing of large literature 
collections based on scientific topics. Other re-
lated researches include topic-based reviewer 
assignment (Mimno and McCallum, 2007), cita-
tion influence estimation (Dietz et al., 2007), re-
search topic evolution (Hall et al., 2008) and ex-
pert finding (Tu et al., 2010) etc.  

Another line of research is the joint modeling 
of topics and other types of semantic units such 

as perspectives (Lin et al., 2006), sentiment (Mei 
et al., 2007) and opinions (Zhao et al., 2010) etc. 
These works also took a multi-dimensional view 
of document semantics. The TAM model (Paul 
and Girju, 2010) might be the most relevant to 
SOT. TAM simultaneously models aspects and 
topics with different assumptions from SOT and 
it models purely on word level.  

Studies that introduce an explicit background 
distribution include Chemudugunta et al. (2006), 
Haghighi and Vanderwende (2009), and Li et al. 
(2010) etc. Different from these works, SOT as-
sumes that not only some “meaningless” general-
purpose words but also more meaningful words 
about the specific domain backgrounds can be 
learned. What’s more these works all model on a 
word level.  

However, it is very useful to regard sentence 
as the basic processing unit, for example in the 
text scanning approach simulating human read-
ing process by Xu and Zhuge (2013). Indeed, 
sentence-level school of thought assignment is 
crucial to SOT as it allows SOT to model the sci-
entific authoring process. There are also other 
works that model text semantics on different lev-
els other than words or tokens, such as Wallach 
(2006) on n-grams and Titov and McDonald 
(2008) on words within multinomially sampled 
sliding windows. The latter also distinguishes 
between different levels of topics, say global ver-
sus local topics, while in SOT such discrimina-
tion is generality versus originality topics.  

5 Conclusion 

This paper proposes a probabilistic generative 
model SOT for characterizing school-of-thought 
words. In SOT, a school of thought is modeled as 
a distribution of topics, with the latter defined as 
a distribution of topical words. School of thought 
assignment to each sentence is vital as it allows 
SOT to simulate the scientific authoring process 
in which each sentence conveys a piece of idea 
contributed to a certain school of thought as well 
as the domain backgrounds. Narrative and quan-
titative analysis show that high-quality school-of-
thought words can be captured by the proposed 
model. 
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B  Gibbs Sampling of the SOT Model 

Using collapsed Gibbs sampling (Griffiths and 
Steyvers, 2004), the latent variable c


 is infer-

enced in Eq. (B1). In Eq. (B1), , , , ( ,0, , )c b o tN c o t  
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is the number of words of topic t describing the 
common ideas (o = 0) or original ideas (o = 1) of 
school of thought c. The superscript ( , )d s¬  
means that words in sentence s of paper d are not 
counted. ( , )

, ( , )d s
d cN d c¬ ) counts the number of sen-

tences in paper d describing school of thought c 
with sentence s removed from consideration. In 
Eqs. (B1)–(B4), the symbol Σ means summation 
over the corresponding variable. For example,  

, , , , , ,1, ,
( ,0, , ) ( ,0, , )c b o t c b o tt T

N c o N c o t
=

Σ = 
 (B5)

Latent variables b


, o


 and t


 are jointly sam-
pled in Eqs. (B2)–(B4). ( , , )

, ( , )d s n
d bN d b¬ counts the 

number of background (b = 0) or school-of-
thought (b = 1) words in document d without 
counting the n-th token in sentence s. 

( , , )
, (1, )d s n

b vN v¬   is the number of times vocabulary 
item v occurs as background word in the litera-
ture collection without counting the n-th token in 
sentence s of paper d. ( , , )

, , ( ,0, )d s n
d b oN d o¬ is the 

number of words describing either common ideas 
(o = 0) or original ideas (o = 1) of some school 
of thought without considering the n-th token in 
sentence s of paper d. ( , , )

, , , ( ,0, , )d s n
c b o tN c o t¬  is the 

number of words of topic t in the literature col-
lection describing either common ideas (o = 0) or 
original ideas (o = 1) of school of thought c 

without counting the n-th token in sentence s of 
paper d. ( , , )

, , (0, , )d s n
b t vN t v¬  is the number of school-

of-thought words of topic t which is instantiated 
by vocabulary item v in the literature collection 
without counting the n-th token in sentence s of 
paper d. 
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Figure B1. The SOT model inference. 
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Abstract

In this paper, we use Arabic natural lan-
guage processing techniques to analyze
Arabic debates. The goal is to identify
how the participants in a discussion split
into subgroups with contrasting opinions.
The members of each subgroup share the
same opinion with respect to the discus-
sion topic and an opposing opinion to
the members of other subgroups. We
use opinion mining techniques to identify
opinion expressions and determine their
polarities and their targets. We opinion
predictions to represent the discussion in
one of two formal representations: signed
attitude network or a space of attitude vec-
tors. We identify opinion subgroups by
partitioning the signed network represen-
tation or by clustering the vector space
representation. We evaluate the system us-
ing a data set of labeled discussions and
show that it achieves good results.

1 Introduction

Arabic is one of the fastest growing languages
on the internet. The number of internet users in
the Arab region grew by 2500% over the past 10
years. As of January 2012, the number of Arabic-
speaking internet users was 86 millions. The re-
cent political and civic movements in the Arab
World resulted in a revolutionary growth in the
number of Arabic users on social networking sites.
For example, Arabic is the fastest growing lan-

guage in Twitter history 1.
This growth in the presence of Arab users on

social networks and all the interactions and dis-
cussions that happen among them led to a huge
amount of opinion-rich Arabic text being avail-
able. Analyzing this text could reveal the different
viewpoints of Arab users with respect to the topics
that they discuss online.

When a controversial topic is discussed, it is
normal for the discussants to adopt different view-
points towards it. This usually causes rifts in dis-
cussion groups and leads to the split of the dis-
cussants into subgroups with contrasting opinions.
Our goal in this paper is to use natural language
processing techniques to detect opinion subgroups
in Arabic discussions. Our approach starts by
identifying opinionated (subjective) text and deter-
mining its polarity (positive, negative, or neutral).
Next, we determine the target of each opinion ex-
pression. The target of opinion can be a named
entity mentioned in the discussion or an aspect of
the discussed topic. We use the identified opinion-
target relations to represent the discussion in one
of two formal representations. In the first repre-
sentation, each discussant is represented by a vec-
tor that encodes all his or her opinion information
towards the discussion topic. In the second repre-
sentation, each discussant is represented by a node
in a signed graph. A positive edge connects two
discussants if they have similar opinion towards
the topic, otherwise the sign of the edge is nega-

1http://semiocast.com/publications/
2011_11_24_Arabic_highest_growth_on_
Twitter
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tive. To identify opinion subgroups, we cluster the
vector space (the first representation) or partition
the signed network (the second representation).

We evaluate this system using a data set of Ara-
bic discussions collected from an Arabic debating
site. We experiment with several variations of the
system. The results show that the clustering the
vector space representation achieves better results
than partitioning the signed network representa-
tion.

2 Previous Work

Our work is related to a large body of research on
opinion mining and sentiment analysis. Pang &
Lee (2008) and Liu & Zhang (2012) wrote two re-
cent comprehensive surveys about sentiment anal-
ysis and opinion mining techniques and applica-
tions.

Previous work has proposed methods for iden-
tifying subjective text that expresses opinion
and distinguishing it from objective text that
presents factual information (Wiebe, 2000; Hatzi-
vassiloglou and Wiebe, 2000a; Banea et al., 2008;
Riloff and Wiebe, 2003).

Subjective text may express positive, negative,
or neutral opinion. Previous work addressed the
problem of identifying the polarity of subjective
text (Hatzivassiloglou and Wiebe, 2000b; Hassan
et al., 2010; Riloff et al., 2006). Many of the pro-
posed methods for text polarity identification de-
pend on the availability of polarity lexicons (i.e.
lists of positive and negative words). Several ap-
proaches have been devised for building such lex-
icons (Turney and Littman, 2003; Kanayama and
Nasukawa, 2006; Takamura et al., 2005; Hassan
and Radev, 2010). Other research efforts focused
on identifying the holders and the targets of opin-
ion (Zhai et al., 2010; Popescu and Etzioni, 2007;
Bethard et al., 2004).

Opinion mining and sentiment analysis tech-
niques have been used in various applications.
One example of such applications is identifying
perspectives (Grefenstette et al., 2004; Lin et al.,
2006) which is most similar to the topic of this
paper. For example, in (Lin et al., 2006), the au-
thors experiment with several supervised and sta-
tistical models to capture how perspectives are ex-
pressed at the document and the sentence levels.

Laver et al. (2003) proposed a method for extract-
ing perspectives from political texts. They used
their method to estimate the policy positions of po-
litical parties in Britain and Ireland, on both eco-
nomic and social policy dimensions.

Somasundaran and Wiebe (2009) present an un-
supervised opinion analysis method for debate-
side classification. They mine the web to learn
associations that are indicative of opinion stances
in debates and combine this knowledge with dis-
course information. Anand et al. (2011) present a
supervised method for stance classification. They
use a number of linguistic and structural fea-
tures such as unigrams, bigrams, cue words, re-
peated punctuation, and opinion dependencies to
build a stance classification model. In previous
work, we proposed a method that uses participant-
to-participant and participant-to-topic attitudes to
identify subgroups in ideological discussions us-
ing attitude vector space clustering (Abu-Jbara and
Radev, 2012). In this paper, we extend this method
by adding latent similarity features to the attitude
vectors and applying it to Arabic discussions. In
another previous work, our group proposed a su-
pervised method for extracting signed social net-
works from text (Hassan et al., 2012a). The
signed networks constructed using this method
were based only on participant-to-participant at-
titudes that are expressed explicitly in discussions.
We used this method to extract signed networks
from discussions and used a partitioning algo-
rithm to detect opinion subgroups (Hassan et al.,
2012b). In this paper, we extend this method by
using participant-to-topic attitudes to construct the
signed network.

Unfortunately, not much work has been done
on Arabic sentiment analysis and opinion min-
ing. Abbasi et al. (2008) applies sentiment anal-
ysis techniques to identify and classify document-
level opinions in text crawled from English and
Arabic web forums. Hassan et al. (2011) pro-
posed a method for identifying the polarity of non-
English words using multilingual semantic graphs.
They applied their method to Arabic and Hindi.
Abdul-Mageed and Diab (2011) annotated a cor-
pus of Modern Standard Arabic (MSA) news text
for subjectivity at the sentence level. In a later
work (2012a), they expanded their corpus by la-
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beling data from more genres using Amazon Me-
chanical Turk. Abdul-Mageed et al. (2012a) de-
veloped SAMAR, a system for subjectivity and
Sentiment Analysis for Arabic social media gen-
res. We use this system as a component in our
approach.

3 Approach

In this section, we present our approach to de-
tecting opinion subgroups in Arabic discussions.
We propose a pipeline that consists of five com-
ponents. The input to the pipeline is a discussion
thread in Arabic language crawled from a discus-
sion forum. The output is the list of participants
in the discussion and the subgroup membership of
each discussant. We describe the components of
the pipeline in the following subsections.

3.1 Preprocessing

The input to this component is a discussion thread
in HTML format. We parse the HTML file to iden-
tify the posts, the discussants, and the thread struc-
ture. We transform the Arabic content of the posts
and the discussant names that are written in Arabic
to the Buckwalter encoding (Buckwalter, 2004).
We use AMIRAN (Diab, 2009), a system for pro-
cessing Arabic text, to tokenize the text and iden-
tify noun phrases.

3.2 Identifying Opinionated Text

To identify opinion-bearing text, we start from the
word level. We identify the polarized words that
appear in text by looking each word up in a lexicon
of Arabic polarized words. In our experiments, we
use Sifat (Abdul-Mageed and Diab, 2012b), a lex-
icon of 3982 Arabic adjectives labeled as positive,
negative, or neutral.

The polarity of a word may be dependant on
its context (Wilson et al., 2005). For example,
a positive word that appears in a negated context
should be treated as expressing negative opinion
rather than positive. To identify the polarity of
a word given the sentence it appears in, we use
SAMAR (Abdul-Mageed et al., 2012b), a system
for Subjectivity and Sentiment Analysis for Ara-
bic social media genres. SAMAR labels a sen-
tence that contains an opinion expression as pos-
itive, negative, or neutral taking into account the
context of the opinion expression. The reported

accuracy of SAMAR on different data sets ranges
between 84% and 95% for subjectivity classifica-
tion and 65% and 81% for polarity classification.

3.3 Identifying Opinion Targets

In this step, we determine the targets that the opin-
ion is expressed towards. We treat as an opin-
ion target any noun phrase (NP) that appears in
a sentence that SAMAR labeled as polarized (pos-
itive or negative) in the previous step. To avoid
the noise that may result from including all noun
phrases, we limit what we consider as an opinion
target, to the ones that appear in at least two posts
written by two different participants. Since, the
sentence may contain multiple possible targets for
every opinion expression, we associate each opin-
ion expression with the target that is closest to it in
the sentence. For each discussant, we keep track
of the targets mentioned in his/her posts and the
number of times each target was mentioned in a
positive/negative context.

3.4 Latent Textual Similarity

If two participants share the same opinion, they
tend to focus on similar aspects of the discus-
sion topic and emphasize similar points that sup-
port their opinion. To capture this, we follow
previous work (Guo and Diab, 2012; Dasigi et
al., 2012) and apply Latent Dirichelet Allocation
(LDA) topic models to the text written by the dif-
ferent participants. We use an LDA model with
100 topics. So, we represent all the text written
in the discussion by each participant as a vector
of 100 dimensions. The vector of each participant
contains the topic distribution of the participant, as
produced by the LDA model.

3.5 Subgroup Detection

At this point, we have for every discussant the tar-
gets towards which he/she expressed explicit opin-
ion and a 100-dimensions vector representing the
LDA distribution of the text written by him/her.
We use this information to represent the discussion
in two representations. In the first representation,
each discussant is represented by a vector. For ev-
ery target identified in steps 3 of the pipeline, we
add three entries in the vector. The first entry holds
the total number of times the target was mentioned
by the discussant. The second entry holds the
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بعد صدور قرار من النائب العام بضبط وإحضار باسم يوسف بتهمة 

 ازدراء الأديان وإهانة الرئيس هل تتوقع حبسه وما رأيك في القرار؟

المتهم بريء حتي تثبت إدانته والنائب العام غير شرعي وجماعة الاخوان 

ضد كل معارضي مرسي وليس باسم يوسف ببلاغات تدفع محاميها للتقدم 

الشعب كله يعارضه وباسم لم يفتري عليه بل . مرسيفقط من يعارض 
 يعرض له لقطات شاهدها الجميع تدل علي ان مرسي لا يصلح رجل دولة

باسم جعل منا نحن . رئيسهاباسم يوسف يهين مصر قبل ان يهين 

المصريون أضحوكة في العالم بسخريته من كل رموز المجتمع 

المصري وباسفافه وابتذاله وفي صراعه الاخير مع مرتضي 
 منصور خير دليل علي تدني اخلاقهما معا

(a) 

(c) (b) 

Figure 1: An example debate taken from our dataset. (a) is the discussion topic. (b) and (c) are two posts
expressing contrasting viewpoints with respect to the topic.

number of times the target was mentioned in a pos-
itive context. The third entry holds the number of
target mentions in a negative context. We also add
to this vector the 100 topic entries from the LDA
vector of that discussant. So, if the number of tar-
gets identified in step 3 of the pipeline is t then
the number of entries in the discussant vector is
3 ∗ t+ 100.

To identify opinion subgroups, we cluster
the vector space. We experiment with several
clustering algorithms including K-means (Mac-
Queen, 1967), Farthest First (FF) (Hochbaum and
Shmoys, 1985; Dasgupta, 2002), and Expectation
Maximization (EM) (Dempster et al., 1977).

The second representation is a signed network
representation. In this representation, each dis-
cussant is represented by a node in a graph. Two
discussants are connected by an edge if they both
mention at least one common target in their posts.
If a discussant mentions a target multiple times in
different contexts with different polarities, the ma-
jority polarity is assumed as the opinion of this
discussant with respect to this target. A positive
sign is assigned to the edge connecting two discus-
sants if the number of targets that they have simi-
lar opinion towards is greater than the targets that
they have opposing opinion towards, otherwise a
negative sign is assigned to the edge.

To identify subgroups, we use a signed net-
work partitioning algorithm to partition the net-
work. Each resulting partition constitutes a sub-
group. Following (Hassan et al., 2012b), we use
the Dorian-Mrvar (1996) algorithm to partition the
signed network. The optimization criterion aims

to have dense positive links within groups and
dense negative links between groups.

The optimization function is as follows:

F (C) = α× |NEG|+ (1− α)× |POS| (1)

where C is the clustering under evaluation,
|NEG| is the number of negative links between
nodes in the same subgroup, |POS| is the number
of positive links between nodes in different sub-
groups, and α is a parameter that specifies impor-
tance of the two terms. We set α to 0.5 in all our
experiments.

Clusters are selected such that P (C) is mini-
mum. The best clustering that minimizes P (C) is
found by moving nodes around clusters in a greedy
way starting with a random clustering. To han-
dle the possibility of finding a local minima, the
whole process is repeated k times with random
restarts and the clustering with the minimum value
of P (C) is returned. We set k to 3 in all our ex-
periments.

4 Data

We use data from an Arabic discussion forum
called Naqeshny.2. Naqeshny is a platform for
two-sided debates. The debate starts when a per-
son asks a question (e.g. which political party do
you support?) and gives two possible answers or
positions. The registered members of the web-
site who are interested in the topic participate in
the debate by selecting a position and then post-
ing text to support that position and dispute the

2www.Naqeshny.com
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opposing position. This means that the data set is
self-labeled for subgroup membership. Since the
tools used in our system are trained on Modern
Standard Arabic (MSA) text, we selected debates
that are mostly MSA. The data set consists of 36
debates comprising a total of 711 posts written by
326 users. The average number of posts per dis-
cussion is 19.75 and the average number of partic-
ipants per discussion is 13.08. Figure 1 shows an
example from the data.

5 Experiments and Results

We use three metrics to evaluate the resulting sub-
groups: Purity (Manning et al., 2008), Entropy,
and F-measure. We ran several variations of the
system on the data set described in the previous
section. In one variation, we use the signed net-
work partitioning approach to detect subgroups.
In the other variations, we use the vector space
clustering approach. We experiment with differ-
ent clustering algorithms. We also run two experi-
ments to evaluate the contribution of both opinion-
target counts and latent similarity features on the
clustering accuracy. In one run, we use target-
opinion counts only. In the other run, we use latent
similarity features only. EM was used as the clus-
tering algorithm in these two runs. Table 1 shows
the results. All the results have been tested for sta-
tistical significance using a 2-tailed paired t-test.
The differences between the results of the different
methods shown in the table are statistically signif-
icant at the 0.05 level. The results show that the
clustering approach achieves better results than the
signed network partitioning approach. This can be
explained by the fact that the vector representa-
tion is a richer representation and encodes all the
discussants’ opinion information explicitly. The
results also show that Expectation Maximization
achieves significantly better results than the other
clustering algorithms that we experimented with.
The results also show that both latent text similar-
ity and opinion-target features are important and
contribute to the performance.

6 Conclusion

In this paper, we presented a system for iden-
tifying opinion subgroups in Arabic online dis-
cussions. The system uses opinion and text sim-

System Purity F-Measure Entropy
Signed Network 0.71 0.67 0.68

Clustering - K-means 0.72 0.70 0.67

Clustering - EM 0.77 0.76 0.50
Clustering - FF 0.72 0.69 0.70

Opinion-Target Only 0.67 0.65 0.72

Text Similarity Only 0.64 0.65 0.74

Table 1: Comparison of the different variations of
the proposed approach

ilarity features to encode discussants’ opinions.
Two approaches were explored for detecting sub-
groups. The first approach clusters a space of dis-
cussant opinion vectors. The second approach par-
titions a signed network representation of the dis-
cussion. Our experiments showed that the former
approach achieves better results. Our experiments
also showed that both opinion and similarity fea-
tures are important.
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Language Technologies Institute, Carnegie Mellon University
{mwen,zeyuz,hyejuj,guangx,cprose}@cs.cmu.edu

Abstract

We present a system for extracting the
dates of illness events (year and month of
the event occurrence) from posting histo-
ries in the context of an online medical
support community. A temporal tagger re-
trieves and normalizes dates mentioned in-
formally in social media to actual month
and year referents. Building on this, an
event date extraction system learns to in-
tegrate the likelihood of candidate dates
extracted from time-rich sentences with
temporal constraints extracted from event-
related sentences. Our integrated model
achieves 89.7% of the maximum perfor-
mance given the performance of the tem-
poral expression retrieval step.

1 Introduction

In this paper we present a challenging new event
date extraction task. Our technical contribution
is a temporal tagger that outperforms previously
published baseline approaches in its ability to
identify informal temporal expressions (TE) and
that normalizes each of them to an actual month
and year (Chang and Manning, 2012; Strotgen
and Gertz, 2010). This temporal tagger then con-
tributes towards high performance at matching
event mentions with the month and year in which
they occurred based on the complete posting his-
tory of users. It does so with high accuracy on
informal event mentions in social media by learn-
ing to integrate the likelihood of multiple candi-
date dates extracted from event mentions in time-
rich sentences with temporal constraints extracted
from event-related sentences.

Despite considerable prior work in temporal in-
formation extraction, to date state-of-the-art re-
sources are designed for extracting temporally
scoped facts about public figures/organizations
from newswire or Wikipedia articles (Ji et al.,
2011; McClosky and Manning, 2012; Garrido et

[11/15/2008] I have noticed some pulling recently and I 

won't start rads until March.

[11/20/2008] It is sloowwwly healing, so slowly, in fact, 

that she said she HOPES it will be healed by March, when 

I am supposed to start rads.

[1/13/2009] I still have one last chemo to go on the 19th 

and then start rads in 5 wks.

[1/31/2009] I go for my first meeting with the rad onc on 

 2/10 (my 50th birthday!).

[2/23/2009] I had my first rad today.

[3/31/2009] Tomorrow will be my last full rads

[4/2/2009] I started rads in Feb, just did #29 today.

[4/8/2009] The rad onc wants to see me again next week 

for a skin check as I have had cellulitis twice since August.

[6/21/2010] My friend Lisa had her port put in last week 

and will begin 2 weeks of radiation on Tuesday.

Figure 1: User posts containing keywords for the
start of Radiation. Event keywords are in bold and
temporal expressions are in italics.

al., 2012). When people are instead communi-
cating informally about their lives, they refer to
time more informally and frequently from their
personal frame of reference rather than from an
impersonal third person frame of reference. For
example, they may use their own birthday as a
time reference. The proportion of relative (e.g.,
“last week”, “two days from now”), or personal
time references in our data is more than one and a
half times as high as in newswire and Wikipedia.
Therefore, it is not surprising that there would be
difficulty in applying a temporal tagger designed
for newswire to social media data (Strotgen and
Gertz, 2012; Kolomiyets et al., 2011). Recent be-
havioral studies (Choudhury et al., 2013; Park and
Choi, 2012; Wen et al., 2012) demonstrate that
user-focused event mentions extracted from social
media data can provide a useful timeline-like tool
for studying how behavior patterns change over
time in response to mentioned events. Our re-
search contributes towards automating this work.

2 Task

Our task is to extract personal illness events men-
tioned in the posting histories of online commu-
nity participants. The input to our system is
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a candidate event and a posting history. The
output is the event date (month and year) for
the event if it occurred, or “unknown” if it
did not occur. The process iterates through a
list of 10 cancer events (CEs). This list in-
cludes breast cancer Diagnosis, Metastasis, Re-
currence, Mastectomy, Lumpectomy, Reconstruc-
tion, Chemotherapy-Start, Chemotherapy-End,
Radiation-Start and Radiation-End. For each of
these target CEs, we manually designed an event
keyword set that includes the name of the event,
abbreviations, slang, aliases and related words.

For each of the 10 events, all sentences that
mention a related event keyword are extracted
from the user’s posting history. Figure 1 shows
sevaral sentences that were extracted for one user
for the start date of Radiation. The task is to de-
termine that the beginning of this user’s Radiation
therapy was 2/2009. Note that the user began to
post about Radiation before she started it. She first
reported planning to start Radiation in March, but
then rescheduled for February. Most of the TEs
are non-standard and need to be resolved to calen-
dar dates (year and month).

Once the full set of event mention sentences has
been extracted for a user, all the temporal expres-
sions (TEs) that appear in the same sentence with
an event mention are resolved to a set of candi-
date dates. Besides a standard event-time classi-
fier for within-sentence event-time anchoring, we
leverage a new source of temporal information to
train a constraint-based event-time classifier. Pre-
vious work only retrieves time-rich sentences that
include both the query and some TEs (Ji et al.,
2011; McClosky and Manning, 2012; Garrido et
al., 2012). However, sentences that contain only
the event mention but no explicit TE can also be
informative. For example, the post time (usually
referred to as document creation time or DCT) of
the sentence “metastasis was found in my bone”
might be labeled as being after the “metastasis”
event date. These DCTs impose constraints on
the possible event dates, which can be integrated
with the event-time classifier, as a variant on re-
lated work(Chambers, 2012).

3 Related Work

Previous work on TE extraction has focused
mainly on newswire text (Strotgen and Gertz,
2010; Chang and Manning, 2012). This paper
presents a rule-based TE extractor that identifies

and resolves a higher percentage of nonstandard
TEs than earlier state-of-art temporal taggers.

Our task is closest to the temporal slot filling
track in the TAC-KBP 2011 shared task (Ji et al.,
2011) and timelining task (McClosky and Man-
ning, 2012). Their goal was to extract the tempo-
ral bounds of event relations. Our task has two key
differences. First, they used newswire, Wikipedia
and blogs as data sources from which they extract
temporal bounds of facts found in Wikipedia in-
foboxes. Second, in the KBP task, the set of gold
event relations are provided as input, so that the
task is only to identify a date for an event that is
guaranteed to have been mentioned. In our task,
we provide a set of potential events. However,
most of the candidate events won’t have ever been
reported within a user’s posting history.

Temporal constraints have proven to be use-
ful for producing a globally consistent timeline.
In most temporal relation bound extraction sys-
tems, the constraints are included as input rather
than learned by the system (Talukdar et al., 2012;
Wang et al., 2011). A notable exception is Mc-
Closkyet al. (2012) who developed an approach to
learning constraints such as that people cannot at-
tend school if they have not been born yet. A no-
table characteristic of our task is that constraints
are softer. Diseases may occur in very different
ways across patients. Recurring illnesses falsely
appear to have an unpredictable order. Thus, there
can be no universal logical constraints on the order
of cancer events.

Our approach to using temporal constraints is a
variant on previously published approaches. Gar-
rido et al. (2012) made use of DCT (document cre-
ation time) as well, however, they have assumed
the DCT is within the time-range of the event
stated in the document, which is often not true
in our data. Chambers (2012) utilized the within-
sentence time-DCT relation to learn constrains for
predicting DCT. We learn the event-DCT relations
to produce constrains for the event date.

4 Corpus Annotation

We have scraped the posts, users, and profiles from
a large online cancer support community. From
this collection we extracted and then annotated
two separate corpora, one for evaluating our TE
retrieval and normalization, the other one for event
date extraction.

For creating the TE extraction corpus, we ran-
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domly picked one post from each of 1,000 ran-
domly selected users. We used this sampling tech-
nique because each user tends to use a narrow
range of date expression forms. From these posts,
we manually extracted 601 TEs and resolved them
to a specific month and year or just year if the
month was not mentioned. Events not reported
to have occurred were annotated as “unknown”.
Our corpus for event date extraction consists of
the complete posting history of 300 users that were
randomly drawn from our dataset. Three annota-
tors were provided with guidelines for how to in-
fer the date of the events (Wen et al., 2013). We
achieved .94 Kappa on identification of whether an
event has a reported event date in a user’s history
or not. In evaluation of agreement on extracted
dates, we achieved a .99 Cronbach’s alpha. From
this corpus, 509 events were annotated with occur-
rence dates (year and month). In our evaluation,
we use data from 250 users for training, and 50 for
testing.

5 Method

Now we explain on a more technical level how our
system works on our task. Given an event and a
user’s post history, the system searches for all of
the sentences that contain an event keyword (key-
word sentence) and all the sentences that contain
both a keyword and a TE (date sentence). The TEs
in the date sentences are resolved and then used as
candidate dates for the event. For selecting among
candidate dates, our model integrates two main
components. First, the Date Classifier is trained
from date sentences to predict how likely its can-
didate TE and the gold event date are to overlap.
Then, because constraints over event dates can be
informed by temporal relations between the event
date and the DCT, the Constraint-based Classifier
provides an indication of the plausibility of can-
didate dates. The integrated system combines the
predictions from both classifiers.

5.1 Temporal Tagger

We design a rule-based temporal tagger that is
built using regular expression patterns to recog-
nize informal TEs. Similar to SUTime (Chang and
Manning, 2012), we identify and resolve a wide
range of non-standard TE types such as “Feb ’07
(2/2007)”. The additional types of TE we han-
dle include: 1)user-specific TEs: A user’s age,
cancer anniversary and survivorship can provide

temporal information about the user’s CEs. We
obtain the birth date of users from their personal
profile to resolve age date expressions such as “at
the age of 57”. 2)non-whole numbers such as “a
year and half” and “1/2 weeks”. 3)abbreviations
of time units : e.g. “wk” as the abbreviation of
“week”. 4)underspecified month mentions, we
resolve the year information according to the DCT
month, the mentioned month and the verb tense.

5.2 Date Classifier
We train a MaxEnt classifier to predict the tem-
poral relationship between the retrieved TE and
the event date as overlap or no-overlap, similar
to the within-sentence event-time anchoring task
in TempEval-2 (UzZaman and Allen, 2010). Fea-
tures for the classifier include many of those in
(McClosky and Manning, 2012; Yoshikawa et al.,
2009): namely, event keyword and its dominant
verb, verb and preposition that dominate TE, de-
pendency path between TE and keyword and its
length, unigram and bigram word and POS fea-
tures. New features include the Event-Subject,
Negative and Modality features. In online sup-
port groups, users not only tell stories about them-
selves, they also share other patients’ stories (as
shown in Figure 1). So we add subject fea-
tures to remove this kind of noise, which in-
cludes the governing subject of the event key-
word and its POS tag. Modality features include
the appearance of modals before the event key-
word (e.g., may, might). Negative features include
the presence/absence of negative words (e.g., no,
never). These two features indicate a hypothetical
or counter-factual expression of the event.

To calculate the likelihood of a candidate date
for an event, we need to aggregate the hard de-
cisions from the classifier. Let DSu be the set
of the user’s date sentences, let Du be the set of
dates resolved from each TE. We represent a Max-
Ent classifier by Prelation(R|t, ds) for a candidate
date t in date sentence ds and possible relation
R = {overlap, no-overlap}. We map the distri-
bution over relations to a distribution over dates
by defining PDateSentence(t|DSu):
PDateSentence(t|DSu) = (1)

1

Z(Du)

∑

tj∈Du

δtj (t)Prelation(overlap|tj , dsj)

δtj (t) =

{
1 if t = tj

0 otherwise
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We refer to this model as the Date Classifier.

5.3 Constraint-based Classifier

Previous work only retrieves time-rich sentences
(i.e., date sentences) (Ling and Weld, 2010; Ji et
al., 2011; McClosky and Manning, 2012; Garrido
et al., 2012). However, keyword sentences can in-
form temporal constraints for events and therefore
should not be ignored. For example, “Well, I’m
officially a Radiation grad!” indicates the user has
done radiation by the time of the post (DCT). “Ra-
diation is not a choice for me.” indicates the user
probably never had radiation. The topic of the
sentence can also indicate the temporal relation.
For example, before chemotherapy, the users tend
to talk about choices of drug combinations. After
chemotherapy, they talk about side-effects.

This section departs from the above Date Clas-
sifier and instead predicts whether each keyword
sentence is posted before or overlap-or-after the
user’s event date. The goal is to automatically
learn time constraints for the event. This task is
similar to the sentence event-DCT ordering task
in TempEval-2 (UzZaman and Allen, 2010). We
create training examples by computing the tempo-
ral relation between the DCT and the user’s gold
event date. If the user has not reported an event
date, the label should be unknown.

We train a MaxEnt classifier on each event
mention paired with its corresponding DCT. All
the features used in the classifier component that
are not related to the TEs are included. Let
KSu be the set of the user’s keyword sentences,
let Du be the set of dates resolved from each
date sentence. We define a MaxEnt classifier by
Prelation(R|ks) for a keyword sentence ks and
possible relation R = {before, overlap-or-after,
unknown}. DCT is the post time of the keyword
sentence ks. The rel(DCT, t) function simply de-
termines if the DCT is before or overlap-or-after
the candidate date t. We map this distribution over
relations to a distribution over dates by defining
PKeywordSentence(t,KSu):

PKeywordSentence(t,KSu) = (2)
1

Z(Du)

∑

ksj∈KSu

Prelation(rel(dctj , t)|ksj)

rel(dct, t) =

{
before if dct < t

overlap-or-after if dct ≥ t

5.4 Integrated Model
Given the Date Classifier of Section 5.2 and the
Constraint-based Classifier of Section 5.3, we cre-
ate a Integrated Model combining the two with the
following linear interpolation as follows:
P (t|postsu) = λPDateSentence(t|DSu)
+ (1− λ)PKeywordSentence(t|KSu)
where t is a candidate event date. The system will
output t that maximizes P (t|postsu) and unknown
if DSu is empty. λ was set to 0.7 by maximizing
accuracy using five-fold cross-validation over the
training set.

6 Evaluation Metric and Results

6.1 Temporal Expression Retrieval
We compare our temporal tagger’s performance
with SUTime (Chang and Manning, 2012) on the
601 manually extracted TEs. We exclude user-
specific TEs such as birthday references since SU-
Time cannot handle those. We first evaluate iden-
tification of the extent of a TE and then production
of the correctly resolved date for each recognized
expression. Table 1 shows that our tagger has sig-
nificantly higher precision and recall for both.

P R F1
Extents SUTime 97.5 75.4 85.0

Our tagger 97.9 91.8 94.8
Normalization SUTime 89.4 71.2 79.3

Our tagger 91.3 85.5 88.3

Table 1: Temporal expression retrieval results

6.2 Event-date Extraction
6.2.1 Evaluation metric
The extracted date is only considered correct if it
completely matches the gold date. For less than
4% of users, we have multiple dates for the same
event (e.g., a user had a mastectomy twice). Sim-
ilar to the evaluation metric in a previous study(Ji
et al., 2011), in these cases, we give the system the
benefit of the doubt and the extracted date is con-
sidered correct if it matches one of the gold dates.
In previous work (McClosky and Manning, 2012;
Ji et al., 2011), the evaluation metric score is de-
fined as 1/((1 + |d|)) where d is the difference
between the values in years. We choose a much
stricter evaluation metric because we need a pre-
cise event date to study user behavior changes.

6.2.2 Baselines and oracle
Based on our temporal tagger, we provide two
baselines to describe heuristic methods of ag-
gregating the hard decisions from the classifier
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Baseline1 Baseline2 Date Integrated Oracle
CE count P R F1 P R F1 P R F1 P R F1 F1

Diagnosis 112 .64 .70 .67 .60 .66 .63 .68 .75 .71 .68 .75 .71 .80
Metastasis 7 .16 .58 .25 .12 .43 .19 .25 .86 .39 .25 .86 .39 .86
Recurrence 14 .14 .35 .20 .11 .29 .16 .13 .36 .19 .13 .36 .19 .47
Chemo-start 54 .49 .61 .54 .42 .52 .46 .52 .66 .58 .58 .74 .65 .76
Chemo-end 43 .44 .59 .50 .36 .49 .42 .47 .63 .54 .48 .66 .56 .84

Rad-start 38 .35 .47 .40 .30 .40 .34 .36 .47 .41 .40 .53 .46 .64
Rad-end 35 .48 .63 .54 .30 .39 .34 .50 .66 .57 .50 .66 .57 .84

Mastectomy 68 .58 .71 .64 .52 .62 .57 .62 .76 .68 .62 .76 .68 .77
Lumpectomy 33 .49 .71 .58 .43 .76 .46 .46 .79 .58 .46 .79 .62 .91

Reconstruction 43 .38 .57 .46 .29 .44 .35 .41 .63 .50 .43 .65 .52 .86
Table 2: Event-level five-fold cross-validation performance of models and baselines on training data.

learned in Section 5.3. The first baseline, Base-
line1, is to pick the date with the highest clas-
sifier’s prediction confidence. The second base-
line, Baseline2, is along the same lines as the
Combined Classifier used in (McClosky and Man-
ning, 2012). For example, if the candidate
date is “6/2009” and we have retrieved two TEs
that are resolved to “6/2009” and “4/2008”, then
P (“6/2009”) = Prelation(overlap|“6/2009”) ×
Prelation(no-overlap|“4/2008”).

To set an upper bound on performance given our
TE retrieval system, we calculate the oracle score
by considering an extraction as correct if the gold
date is one of the retrieved candidate dates. The
oracle score can differ from a perfect score since
we can only use candidate temporal expressions
if (a)the relation is known and (b)mentions of the
event are retrievable, (c)the TE and event keyword
appear in the same sentence, and (d)our temporal
tagger is able to recognize and resolve it correctly.

6.2.3 Results
We present the performance of our models, base-
lines and the oracle in Table 2. Both the Date Clas-
sifier and Integrated model significantly outper-
form the baselines (p < 0.0001, McNemar’s test,
2-tailed). This shows the value of our approach to
leveraging redundancy of event date mentions. In-
corporating time constraints further improves the
F1 of the Date Classifier by 3%. The Integrated
model achieves 89.7% of the oracle result.

Model P R F1
Baseline1 46.1 63.7 53.5
Baseline2 39.3 54.4 45.6
Date Classifier 49.6 67.7 57.3
Integrated Model 51.0 69.3 58.8
Oracle 77.3 77.3 77.3

Table 3: Performance of systems on the test set.

Table 3 shows the performance of our systems
and baselines on individual event types. The Joint

Model derives most of its improvement from per-
formance related to the Chemotherapy/Radiation-
start date. This is mainly because Chemotherapy
and Radiation last for a period of time and there
are more event-related discussions containing the
event keyword. None of our systems improves on
cancer Metastasis and Recurrence. This is likely
due to the sparsity of these events.

7 Conclusion

We presented a novel event date extraction task
that requires extraction and resolution of non-
standard TEs, namely personal illness event dates,
from the posting histories of online community
participants. We constructed an evaluation corpus
and designed a temporal tagger for non-standard
TEs in social media. Using a much stricter stan-
dard correctness measure than in previous work,
our method achieves promising results that are sig-
nificantly better than two types of baseline. By
creating an analogous keyword set, our event date
extraction method could be easily adapted to other
datasets.
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Coding Manual for Illness Event Date Extraction.
Carnegie Mellon University, School of Computer
Science, Language Technology Institute.

K.-Y. Wen, F. McTavish, G. Kreps, M. Wise, and D.
Gustafson. 2012. From diagnosis to death: A
case study of coping with breast cancer as seen
through online discussion group messages. Jour-
nal of Computer-Mediated Communication, 16:331-
361.

Katsumasa Yoshikawa, Sebastian Riedel, Masayuki
Asahara, and Yuji Matsumoto. 2009. Jointly identi-
fying temporal relations with markov logic. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP.

Li Zhou and George Hripcsak. 2007. Temporal rea-
soning with medical data–a review with emphasis
on medical natural language processing. Journal of
biomedical informatics 40.2 (2007): 183.

842



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 843–847,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Multimodal DBN for Predicting High-Quality Answers in cQA portals

Haifeng Hu, Bingquan Liu, Baoxun Wang, Ming Liu, Xiaolong Wang
School of Computer Science and Technology

Harbin Institute of Technology, China
{hfhu, liubq, bxwang, mliu, wangxl}@insun.hit.edu.cn

Abstract

In this paper, we address the problem for
predicting cQA answer quality as a clas-
sification task. We propose a multimodal
deep belief nets based approach that op-
erates in two stages: First, the joint rep-
resentation is learned by taking both tex-
tual and non-textual features into a deep
learning network. Then, the joint repre-
sentation learned by the network is used
as input features for a linear classifier. Ex-
tensive experimental results conducted on
two cQA datasets demonstrate the effec-
tiveness of our proposed approach.

1 Introduction

Predicting the quality of answers in communi-
ty based Question Answering (cQA) portals is a
challenging task. One straightforward approach
is to use textual features as a text classification
task (Agichtein et al., 2008). However, due to
the word over-sparsity and inherent noise of user-
generated content, the classical bag-of-words rep-
resentation, is not appropriate to estimate the qual-
ity of short texts (Huang et al., 2011). Another typ-
ical approach is to leverage non-textual features to
automatically identify high quality answers (Jeon
et al., 2006; Zhou et al., 2012). However, in this
way, the mining of meaningful textual features
usually tends to be ignored.

Intuitively, combining both textual and non-
textual information extracted from answers is
helpful to improve the performance for predict-
ing the answer quality. However, textual and non-
textual features usually have different kinds of rep-
resentations and the correlations between them are
highly non-linear. Previous study (Ngiam et al.,
2011) has shown that it is hard for a shallow model
to discover the correlations over multiple sources.

To this end, a deep learning approach, called

multimodal deep belief nets (mDBN), is intro-
duced to address the above problems to predict the
answer quality. The approach includes two stages:
feature learning and supervised training. In the
former stage, a specially designed deep network is
given to learn the unified representation using both
textual and non-textual information. In the latter
stage, the outputs of the network are then used as
inputs for a linear classifier to make prediction.

The rest of this paper is organized as follows:
The related work is surveyed in Section 2. Then,
the proposed approach and experimental results
are presented in Section 3 and Section 4 respec-
tively. Finally, conclusions and future directions
are drawn in Section 5.

2 Related Work

The typical way to predict the answer quality is
exploring various features and employing machine
learning methods. For example, Jeon et al. (2006)
have proposed a framework to predict the qual-
ity of answers by incorporating non-textual fea-
tures into a maximum entropy model. Subsequent-
ly, Agichtein et al. (2008) and Bian et al. (2009)
both leverage a larger range of features to find high
quality answers. The deep research on evaluating
answer quality has been taken by Shah and Pomer-
antz (2010) using the logistic regression model.
We borrow some of their ideas in this paper.

In deep learning field, extensive studies have
been done by Hinton and his co-workers (Hin-
ton et al., 2006; Hinton and Salakhutdinov, 2006;
Salakhutdinov and Hinton, 2009), who initial-
ly propose the deep belief nets (DBN). Wang
et.al (2010; 2011) firstly apply the DBNs to model
semantic relevance for qa pairs in social communi-
ties. Meanwhile, the feature learning for disparate
sources has also been the hot research topic. Lee
et al. (2009) demonstrate that the hidden represen-
tations computed by a convolutional DBN make
excellent features for visual recognition.
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3 Approach

We consider the problem of high-quality answer
prediction as a classification task. Figure 1 sum-
marizes the framework of our proposed approach.
First, textual features and non-textual features ex-

Textual

Features

Non-textual

Features
CQA

Archives

Classifier

Fusion Representation
Feature

Learning
 Supervised Training

High-quality

Answers

Figure 1: Framework of our proposed approach.

tracted from cQA portals are used to train two DB-
N models to learn the high-level representation-
s independently for answers. The two high-level
representations learned by the deep architectures
are then joined together to train a RBM model.
Finally, a linear classifier is trained with the final
shared representation as input to make prediction.

In this section, a deep network for the cQA an-
swer quality prediction is presented. Textual and
non-textual features are typically characterized by
distinct statistical properties and the correlations
between them are highly non-linear. It is very dif-
ficult for a shallow model to discover these corre-
lations and form an informative unified represen-
tation. Our motivation of proposing the mDBN is
to tackle these problems using an unified represen-
tation to enhance the classification performance.

3.1 The Restricted Boltzmann Machines
The basic building block of our feature leaning
component is the Restricted Boltzmann Machine
(RBM). The classical RBM is a two-layer undi-
rected graphical model with stochastic visible u-
nits v and stochastic hidden units h.The visible
layer and the hidden layer are fully connected to
the units in the other layer by a symmetric matrix
w. The classical RBM has been used effectively in
modeling distributions over binary-value data. As
for real-value inputs, the gaussian RBM (Bengio
et al., 2007) can be employed. Different from the
former, the hypothesis for the visible unit in the
gaussian RBM is the normal distribution.

3.2 Feature Learning
The illustration of the feature learning model is
given by Figure 2. Basically, the model consists
of two parts.

In the bottom part (i.e., V -H1, H1-H2), each
data modality is modeled by a two-layer DBN sep-
arately. For clarity, we take the textual modality
as an example to illustrate the construction of the
mDBN in this part. Given a textual input vector v,
the visible layer generates the hidden vector h, by

p(hj = 1|v) = σ(cj +
∑
iwijvi).

Then the conditional distribution of v given h, is
p(vi = 1|h) = σ(bi +

∑
j wijhj).

where σ(x) = (1 + e−x)−1 denotes the logistic
function. The parameters are updated by perform-
ing gradient ascent using Contrastive Divergence
(CD) algorithm (Hinton, 2002).

After learning the RBMs in the bottom layer,
we treat the activation probabilities of its hidden
units driven by the inputs, as the training data for
training a new layer. The construction procedures
for the non-textual modality are similar to the tex-
tual one, except that we use the gaussian RBM to
model the real-value inputs in the bottom layer.

Finally, we combine the two models by adding
an additional layer, H3, on the top of them to form
the mDBN. The training method is also similar to
the bottom’s, but the input vector is the concatena-
tion of the mapped textual vector and the mapped
non-textual vector.

Figure 2: mDBN for Feature Learning

It should be noted in the network, the bottom
part is essential to form the joint representation
because the correlations between the textual and
non-textual features are highly non-linear. It is
hard for a RBM directly combining the two dis-
parate sources to learn their correlations.

3.3 Supervised Training and Classification
After the above steps, a deep network for feature
learning between textual and non-textual data is
established. Classifiers, either support vector ma-
chine (SVM) or logistic regression (LR), can then
be trained with the unified representation (Ngiam
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et al., 2011; Srivastava and Salakhutdinov, 2012).
Specifically, the LR classifier is used to make the
final prediction in our experiments since it keeps
to deliver the best performance.

3.4 Basic Features

Textual Features: The textual features ex-
tract from 1,500 most frequent words in the train-
ing dataset after standard preprocessing steps,
namely word segmentation, stopwords removal
and stemming1. As a result, each answer is repre-
sented as a vector containing 1,500 distinct terms
weighted by binary scheme.
Non-textual Features: Referring to

the previous work (Jeon et al., 2006; Shah and
Pomerantz, 2010), we adopt some features used
in theirs and also explore three additional features
marked by ‡ sign. The complete list is described
in Table 1.

Features Type
Length of question title (description) Integer
Length of answer Integer
Number of unique words for the answer ‡ Integer
Ratio of the qa length ‡ Float
Answer’s relative position ‡ Integer
Number of answers for the question Integer
Number of comments for the question Integer
Number of questions asked by asker (answerer) Integer
Number of questions resolved by asker (answerer) Integer
Asker’s (Answerer’s) total points Integer
Asker’s (Answerer’s) level Integer
Asker’s (Answerer’s) total stars Integer
Asker’s (Answerer’s) best answer ratio Float

Table 1: Summary of non-textual features.

4 Experiments

4.1 Experiment Setup

Datasets: We carry out experiments on two
datasets. One dataset comes from Baidu Zhi-
dao2, which contains 33,740 resolved questions
crawled by us from the “travel” category. The oth-
er dataset is built by Chen and Nayak (2008) from
Yahoo! Answers3. We refer to these two dataset-
s as ZHIDAO and YAHOO respectively and ran-
domly sample 10,000 questions from each to form
our experimental datasets. According to the us-
er name, we have crawled all the user profile web
pages for non-textual feature collection. To allevi-
ate unnecessary noise, we only select those ques-
tions with number of answers no less than 3 (one

1The stemming step is only used in English corpus.
2http://zhidao.baidu.com
3http://answers.yahoo.com

best answer among them), and those answers at
least have 10 tokens. The statistics on the datasets
used for experiments are summarized in Table 2.

Statistics Items YAHOO ZHIDAO
# of questions 6841 5368
# of answers 74485 22435

# of answers per question 10.9 4.1
# of users 28812 12734

Table 2: Statistics on experimental datasets.

Baselines and Evaluation Metrics: We com-
pare against the following methods as our base-
lines. (1) Logistic Regression (LR): We imple-
ment the approach used by Shah and Pomer-
antz (2010) with textual features LR-T, non-
textual features LR-N and their simple combina-
tion LR-C. (2) DBN: Similar to the mDBN, the
outputs of the last hidden layer by the DBN are
used as inputs for LR model. Based on the fea-
ture sets, we have DBN-T for textual features and
DBN-N for non-textual features.

Since we mainly focus on the high quality an-
swers, the precision, recall and f1 for positive class
and the overall accuracy for both classes are em-
ployed as our evaluation metrics.

Model Architecture and Training Details: To
create the mDBN architecture, we use the classi-
cal RBM with 1500 visible units followed by 2
hidden layers with 1000 and 800 units respective-
ly for the textual branch, and the gaussian RBM
with 20 visible units followed by 2 hidden layers
with 100 and 200 units respectively for the non-
textual branch. On the joint layer of the network,
the layer contains 1000 real-value units.

Each RBM is trained using 1-step CD algorith-
m. During the training stage, a small weight-cost
of 0.0002 is used, and the learning rate for textu-
al data modal is 0.05 while the non-textual data is
0.001. We also adopt a monument of 0.5 for the
first five epochs and 0.9 for the rest epochs. In
addition, all non-textual data vectors are normal-
ized to have zero mean and unit standard variance.
More details for training the deep architecture can
be found in Hinton (2012).

4.2 Results and Analysis
In the first experiment, we compare the perfor-
mance of mDBN with different methods. To make
a fare comparison, we use the liblinear toolkit4 for
logistic regression model with L2 regularization
and randomly select 70% QA pairs as training data

4available at http://www.csie.ntu.edu.tw/ cjlin/liblinear
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and the rest 30% as testing data. Table 3 and Ta-
ble 4 summarize the average results of the 5 round
experiments on YAHOO and ZHIDAO respectively.

Methods P R F1 Accu.
LR-T 0.374 0.558 0.448 0.542
LR-N 0.524 0.614 0.566 0.686
LR-C 0.493 0.557 0.523 0.662

DBN-T 0.496 0.571 0.531 0.663
DBN-N 0.505 0.578 0.539 0.670
mDBN 0.534 0.631 0.579 0.694

Table 3: Comparing results on YAHOO

It is promising to see that the proposed mDBN
method notably outperforms almost all the other
methods on both datasets over all the metrics as
expected, except for the recall on ZHIDAO. The
main reason for the improvements is that the joint
representation learned by mDBN is able to com-
plement each modality perfectly. In addition, the
mDBN can extract stronger representation through
modeling semantic relationship between textual
and non-textual information, which can effectively
help distinguish more complicated answers from
high quality to low quality.

Methods P R F1 Accu.
LR-T 0.380 0.540 0.446 0.553
LR-N 0.523 0.735 0.611 0.688
LR-C 0.537 0.695 0.606 0.698

DBN-T 0.527 0.730 0.612 0.692
DBN-N 0.539 0.760 0.631 0.703
mDBN 0.590 0.755 0.662 0.743

Table 4: Comparing results on ZHIDAO

The classification performance of the textu-
al features are worse on average compared with
non-textual features, even when the feature learn-
ing strategy is employed. More interestingly, we
find the simple combinations of textual and non-
textual features don’t improve the classification
results compared with using non-textual features
alone.We conjecture that there are mainly three
reasons for the phenomena: First, this is due to the
fact that user-generated content is inherently noisy
with low word frequency, resulting in the sparsity
of employing textual feature. Second, non-textual
features (e.g., answer length) usually own strongly
statistical properties and feature sparsity problem
can be better relieved to some extent. Finally, s-
ince correlations between the textual features and
non-textual features are highly non-linear, con-
catenating these features simply sometimes can
submerge classification performance. In contrast,
mDBN enjoys the advantage of the shared repre-

sentation between textual features and non-textual
features using the deep learning architecture.

We also note that neither the mDBN nor other
approaches perform very well in predicting answer
quality across the two datasets. The best precision
on ZHIDAO and YAHOO are respectively 59.0%
and 53.4%, which means that there are nearly half
of the high quality answers not effectively identi-
fied. One of the possible reason is that the quali-
ty of the corpora influences the result significant-
ly. As shown in Table 2, each question on aver-
age receives more than 4 answers on ZHIDAO and
more than 10 on YAHOO. Therefore, it is possi-
ble that there are several answers with high quali-
ty to the same question. Selecting only one as the
high quality answer is relatively difficult for our
humans, not to mention for the models.

100 500 1000 2000 5000
# iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Precision Recall F1 Accuracy

Figure 3: Influences of iterations for mDBN

In the second experiment, we intend to exam-
ine the performance of mDBN with different num-
ber of iterations. Figure 3 depicts the metrics on
ZHIDAO when the iteration number is varied from
100 to 5000. From the result, the first observa-
tion is that increasing the number of iterations the
performance of mDBN can improve significant-
ly, obtaining the best results for iteration of 1000.
This clearly shows the representation power of the
mDBN again. However, after a large number of it-
erations (large than 1000), the mDBN has a detri-
mental performance. This may be explained by
with large number of iterations, the deep learning
architecture is easier to be overfitting. The similar
trend is also observed on YAHOO.

5 Conclusions and Future work

In this paper, we have provided a new perspec-
tive to predict the cQA answer quality: learning
an informative unified representation between tex-
tual and non-textual features instead of concate-
nating them simply. Specifically, we have pro-
posed a multimodal deep learning framework to
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form the unified representation. We compare this
with the basic features both in isolation and in
combination. Experimental results have demon-
strated that our proposed approach can capture the
complementarity between textual and non-textual
features, which is helpful to improve the perfor-
mance for cQA answer quality prediction.

For the future work, we plan to explore more se-
mantic analysis to approach the issue for short tex-
t quality evaluation. Additionally, more research
will be taken to put forward other approaches for
learning multimodal representation.
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Abstract

Opinion mining is often regarded as a clas-
sification or segmentation task, involving
the prediction of i) subjective expressions,
ii) their target and iii) their polarity. In-
tuitively, these three variables are bidirec-
tionally interdependent, but most work has
either attempted to predict them in isolation
or proposing pipeline-based approaches
that cannot model the bidirectional interac-
tion between these variables. Towards bet-
ter understanding the interaction between
these variables, we propose a model that
allows for analyzing the relation of target
and subjective phrases in both directions,
thus providing an upper bound for the im-
pact of a joint model in comparison to a
pipeline model. We report results on two
public datasets (cameras and cars), show-
ing that our model outperforms state-of-
the-art models, as well as on a new dataset
consisting of Twitter posts.

1 Introduction

Sentiment analysis or opinion mining is the task of
identifying subjective statements about products,
their polarity (e. g. positive, negative or neutral)
in addition to the particular aspect or feature of
the entity that is under discussion, i. e., the so-
called target. Opinion analysis is thus typically
approached as a classification (Täckström and Mc-
Donald, 2011; Sayeed et al., 2012; Pang and Lee,
2004) or segmentation (Choi et al., 2010; Johans-
son and Moschitti, 2011; Yang and Cardie, 2012)
task by which fragments of the input are classi-
fied or labelled as representing a subjective phrase
(Yang and Cardie, 2012), a polarity or a target (Hu
and Liu, 2004; Li et al., 2010; Popescu and Etzioni,
2005; Jakob and Gurevych, 2010). As an example,
the sentence “I like the low weight of the camera.”

contains a subjective term “like”, and the target
“low weight”, which can be classified as a positive
statement.

While the three key variables (subjective phrase,
polarity and target) intuitively influence each other
bidirectionally, most work in the area of opinion
mining has concentrated on either predicting one
of these variables in isolation (e. g. subjective ex-
pressions by Yang and Cardie (2012)) or modeling
the dependencies uni-directionally in a pipeline ar-
chitecture, e. g. predicting targets on the basis of
perfect and complete knowledge about subjective
terms (Jakob and Gurevych, 2010). However, such
pipeline models do not allow for inclusion of bidi-
rectional interactions between the key variables. In
this paper, we propose a model that can include
bidirectional dependencies, attempting to answer
the following questions which so far have not been
addressed but provide the basis for a joint model:

• What is the impact of the performance loss
of a non-perfect subjective term extraction in
comparison to perfect knowledge?
• Further, how does perfect knowledge about

targets influence the prediction of subjective
terms?
• How is the latter affected if the knowledge

about targets is imperfect, i. e. predicted by a
learned model?

We study these questions using imperatively de-
fined factor graphs (IDFs, McCallum et al. (2008),
McCallum et al. (2009)) to show how these bi-
directional dependencies can be modeled in an ar-
chitecture which allows for further steps towards
joint inference. IDFs are a convenient way to define
probabilistic graphical models that make structured
predictions based on complex dependencies.
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2 A Model for the Extraction of Target
Phrases and Subjective Expressions

This section gives a brief introduction to impera-
tively defined factor graphs and then introduces our
model.

2.1 Imperatively Defined Factor Graphs

A factor graph (Kschischang et al., 2001) is a bi-
partite graph over factors and variables. Let factor
graph G define a probability distribution over a
set of output variables y conditioned on input vari-
ables x. A factor Ψi computes a scalar value over
the subset of variables xi and yi that are neighbors
of Ψi in the graph. Often this real-valued function
is defined as the exponential of an inner product
over sufficient statistics {fik(xi,yi)} and parame-
ters {θik}, where k ∈ [1,Ki] and Ki is the number
of parameters for factor Ψi.

A factor template Tj consists of parameters
{θjk}, sufficient statistic functions {fjk}, and a
description of an arbitrary relationship between
variables, yielding a set of tuples {(xj ,yj)}. For
each of these tuples, the factor template instan-
tiates a factor that shares {θjk} and {fjk} with
all other instantiations of Tj . Let T be the set of
factor templates and Z(x) be the partition func-
tion for normalization. The probability distri-
bution can then be written as p(y|x) = 1

Z(x)∏
Tj∈T

∏
(xi,yi)∈Tj exp

(∑Kj

k=1 θjkfjk(xi,yi)
)
.

FACTORIE1 (McCallum et al., 2008; McCallum
et al., 2009) is an implementation of imperatively
defined factor graphs in the context of Markov

1http://factorie.cs.umass.edu

better than CCD shift systems

POS=JJR
W=better
POS-W=better JJR

ONE-EDGE-POS=JJR
ONE-EDGE-W=better
ONE-EDGE-POS-W=better JJR
ONE-EDGE-POS-SEQ=JJR
BOTH-POS=JJR
BOTH-W=better
BOTH-POS-W=better JJR
BOTH-POS-POS-SEQ=JJR

POS=NN
W=shift
W=systems
POS-W=shift NN
POS-W=systems NNS
POS-SEQ=NN-NNS

NO-CLOSE-NOUN
ONE-EDGE-POS=NN
ONE-EDGE-POS=NNS
ONE-EDGE-W=shift
ONE-EDGE-W=sensors
BOTH-POS=NN
BOTH-POS=NNS
. . .
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Figure 1: Example for features extracted for target
and subjective expressions (text snippet taken from
the camera data set (Kessler et al., 2010)). IOB-like
features are merged for simplicity in this depiction.

chain Monte Carlo (MCMC) inference, a common
approach for inference in very large graph struc-
tures (Culotta and McCallum, 2006; Richardson
and Domingos, 2006; Milch et al., 2006). The
term imperative is used to denote that actual code
in an imperative programming language is writ-
ten to describe templates and the relationship of
tuples they yield. This flexibility is beneficial for
modeling inter-dependencies as well as designing
information flow in joint models.

2.2 Model

Our model is similar to a semi-Markov conditional
random field (Sarawagi and Cohen, 2004). It pre-
dicts the offsets for target mentions and subjective
phrases and can use the information of each other
during inference. In contrast to a linear chain con-
ditional random field (Lafferty et al., 2001), this al-
lows for taking distant dependencies of unobserved
variables into account and simplifies the design of
features measuring characteristics of multi-token
phrases. The relevant variables, i. e. target and sub-
jective phrase, are modelled via complex span vari-
ables of the form s = (l, r, c) with a left and right
offset l and r, and a class c ∈ {target, subjective}.
These offsets denote the span on a token sequence
t = (t1, . . . , tn).

We use two different templates to define factors
between variables: a single span template and an
inter-span template. The single span template de-
fines factors with scores based on features of the
tokens in the span and its vicinity. In our model,
all features are boolean. As token-based features
we use the POS tag, the lower-case representation
of the token as well as both in combination. The
actual span representation consists of these features
prefixed with “I” for all tokens in the span, with “B”
for the token at the beginning of the span, and with
“E” for the token at the end of the span. In addition,
the sequence of POS tags of all tokens in the span
is included as a feature.

The inter-span template takes three characteris-
tics of spans into account: Firstly, we measure if
a potential target span contains a noun which is
the closest noun to a subjective expression. Sec-
ondly, we measure for each span if a span of the
other class is in the same sentence. A third fea-
ture indicates whether there is only one edge in the
dependency graph between the tokens contained
in spans of a different class. These features are
to a great extent inspired by Jakob and Gurevych
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(2010). For parsing, we use the Stanford parser
(Klein and Manning, 2003).

The features described so far, however, cannot
differentiate between a possible aspect mention
which is a target of a subjective expression and
one which is not. Therefore, the features of the
inter-span template are actually built by taking the
cross-product of the three described characteristics
with all single-span features. Spans which are not
in the context of a span of a different class are rep-
resented by a ‘negated’ feature (namely No-Close-
Noun, No-Single-Edge, and Not-Both-In-Sentence).
The example in Figure 1 shows features for two
spans which are in context of each other. All of
these features representing the text are taken into
account for each class, i. e., target and subjective
expression.

Inference is performed via Markov Chain Monte
Carlo (MCMC) sampling. In each sampling step,
only the variables which actually change need to
be evaluated, and therefore the sampler directs the
process of unrolling the templates to factors. These
world changes are necessary to find the maximum
a posteriori (MAP) configuration as well as learn-
ing the parameters of the model. For each token
in the sequence, a span of length one of each class
is proposed if no span containing the token exists.
For each existing span, it is proposed to change
its label, shorten or extend it by one token if pos-
sible (all at the beginning and at the end of the
span, respectively). Finally, a span can be removed
completely.

In order to learn the parameters of our model, we
apply SampleRank (Wick et al., 2011). A crucial
component in the framework is the objective func-
tion which gives feedback about the quality of a
sample proposal during training. We use the follow-
ing objective function f(t) to evaluate a proposed
span t:

f(t) = max
g∈s

o(t,g)

|g| − α · p(t,g) ,

where s is the set of all spans in the gold standard.
Further, the function o calculates the overlap in
terms of tokens of two spans and the function p
returns the number of tokens in t that are not con-
tained in g, i. e., those which are outside the overlap
(both functions taking into account the class of the
span). Thus, the first part of the objective function
represents the fraction of correctly proposed con-
tiguous tokens, while the second part penalizes a

span for containing too many tokens that are out-
side the best span. Here, α is a parameter which
controls the penalty.

3 Results and Discussion

3.1 Experimental Setting

We report results on the J.D. Power and Associates
Sentiment Corpora2, an annotated data set of blog
posts in the car and in the camera domain (Kessler
et al., 2010). From the rich annotation set, we
use subjective terms and entity mentions which
are in relation to them as targets. We do not con-
sider comitter, negator, neutralizer,
comparison, opo, or descriptor annota-
tions to be subjective expressions. Results on these
data sets are compared to Jakob and Gurevych
(2010).

In addition, we report results on a Twitter data
set3 for the first time (Spina et al., 2012). Here,
we use a Twitter-specific tokenizer and POS tag-
ger4 (Owoputi et al., 2013) instead of the Stanford
parser. Hence, the single-edge-based feature de-
scribed in Section 2.2 is not used for this dataset. A
short summary of the datasets is given in Table 1.

As evaluation metric we use the F1 measure, the
harmonic mean between precision and recall. True
positive spans are evaluated in a perfect match and
approximate match mode, where the latter regards
a span as positive if one token within it is included
in a corresponding span in the gold standard. In this
case, other predicted spans matching the same gold
span do not count as false positives. In the objective
function, α is set to 0.01 to prefer spans which are
longer than the gold phrase over predicting no span.

Four different experiments are performed (all
via 10-fold cross validation): First, predicting sub-
jectivity expressions followed by predicting targets
while making use of the previous prediction. Sec-

2http://verbs.colorado.edu/jdpacorpus/
3http://nlp.uned.es/˜damiano/datasets/

entityProfiling_ORM_Twitter.html
4In version 0.3, http://www.ark.cs.cmu.edu/

TweetNLP/

Car Camera Twitter

Texts 457 178 9238
Targets 11966 4516 1418
Subjectives 15056 5128 1519

Table 1: Statistics of the data sets.
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Figure 2: Results for the workflow of first predicting subjective phrases, then targets (pred. S.→ T.), and
vice versa (pred. T.→ S.), as well as in comparison to having perfect information for the first step for the
camera data set.
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Figure 3: Results for the car data set.

ond, predicting targets followed by predicting sub-
jective expressions. Third, assuming perfect knowl-
edge of subjective expressions when predicting tar-
gets, and fourth, assuming perfect knowledge of
targets in predicting subjective expressions. This
provides us with the information how good a pre-
diction can be with perfect knowledge of the other
variable as well as an estimate of how good the
prediction can be without any previous knowledge.

3.2 Results

Figures 2, 3 and 4 show the results for the four
different settings compared to the results by Jakob
and Gurevych (2010) for cars and cameras. The
darker bars correspond to perfect match, the lighter
ones to the increase when taking partial matches
into account. In the following we only discuss the
perfect match.

Comparing the results (for the car and camera

data sets, Figure 2 and 3) for subjectivity predic-
tion, one can observe a limited performance when
targets are not known (0.54F1 for the camera set,
0.56F1 for the car set), an upper bound with per-
fect target information is much higher (0.65F1,
0.7F1). When first predicting targets followed by
subjective term prediction, we obtain results of
0.6F1 and 0.66F1. The results for target predic-
tion are much lower when not knowing subjec-
tive expressions in advance (0.32F1, 0.33F1), and
clearly increase with predicted subjective expres-
sions (0.48F1, 0.43F1) and outperform previous
results when compared to Jakob and Gurevych
(2010) (0.58F1, 0.55F1 in comparison to their
0.5F1 on both sets).

The results for the Twitter data set show the same
characteristics (in Figure 4). However, they are
generally much lower. In addition, the difference
between exact and partial match evaluation modes
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Figure 4: Results for the Twitter data set.
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Figure 5: Evaluation of the impact of different features.

is higher. This is due to the existence of many more
phrases spanning multiple tokens.

Exemplarily, the impact of the three features in
the inter-span templates for the camera data set is
depicted in Figure 5 for (a) given subjective terms
(b) given targets, respectively. Detecting the clos-
est noun is mainly of importance for target iden-
tification and only to a minor extent for detecting
subjective phrases. A short path in the dependency
graph and detecting if both phrases are in the same
sentence have a high positive impact for both sub-
jective and target phrases.

3.3 Conclusion and Discussion
The experiments in this paper show that target
phrases and subjective terms are clearly interde-
pendent. However, the impact of knowledge about
one type of entity for the prediction of the other
type of entity has been shown to be asymmetric.
The results clearly suggest that the impact of sub-

jective terms on target terms is higher than the other
way round. Therefore, if a pipeline architecture is
chosen, this order is to be preferred. However, the
results with perfect knowledge of the counterpart
entity show (in both directions) that the entities
influence each other positively. Therefore, the chal-
lenge of extracting subjective expressions and their
targets is a great candidate for applying supervised,
joint inference.
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Abstract

Sentiment Word Identification (SWI) is a
basic technique in many sentiment analy-
sis applications. Most existing research-
es exploit seed words, and lead to low ro-
bustness. In this paper, we propose a novel
optimization-based model for SWI. Unlike
previous approaches, our model exploits
the sentiment labels of documents instead
of seed words. Several experiments on re-
al datasets show that WEED is effective
and outperforms the state-of-the-art meth-
ods with seed words.

1 Introduction

In recent years, sentiment analysis (Pang et al.,
2002) has become a hotspot in opinion mining and
attracted much attention. Sentiment analysis is to
classify a text span into different sentiment polar-
ities, i.e. positive, negative or neutral. Sentimen-
t Word Identification (SWI) is a basic technique
in sentiment analysis. According to (Ku et al.,
2006)(Chen et al., 2012)(Fan et al., 2011), SWI
can be applied to many fields, such as determin-
ing critics opinions about a given product, tweeter
classification, summarization of reviews, and mes-
sage filtering, etc. Thus in this paper, we focus on
SWI.

Here is a simple example of how SWI is applied
to comment analysis. The sentence below is an
movie review in IMDB database:

• Bored performers and a lackluster plot and
script, do not make a good action movie.

In order to judge the sentence polarity (thus we can
learn about the preference of this user), one must
recognize which words are able to express senti-
ment. In this sentence, “bored” and “lackluster”
are negative while “good” should be positive, yet

∗Corresponding author

its polarity is reversed by “not”. By such analy-
sis, we then conclude such movie review is a nega-
tive comment. But how do we recognize sentiment
words?

To achieve this, previous supervised approach-
es need labeled polarity words, also called seed
words, usually manually selected. The words
to be classified by their sentiment polarities are
called candidate words. Prior works study the re-
lations between labeled seed words and unlabeled
candidate words, and then obtain sentiment polar-
ities of candidate words by these relations. There
are many ways to generate word relations. The
authors of (Turney and Littman, 2003) and (Kaji
and Kitsuregawa, 2007) use statistical measures,
such as point wise mutual information (PMI), to
compute similarities in words or phrases. Kanaya-
ma and Nasukawa (2006) assume sentiment word-
s successively appear in the text, so one could
find sentiment words in the context of seed words
(Kanayama and Nasukawa, 2006). In (Hassan and
Radev, 2010) and (Hassan et al., 2011), a Markov
random walk model is applied to a large word re-
latedness graph, constructed according to the syn-
onyms and hypernyms in WordNet (Miller, 1995).

However, approaches based on seed words has
obvious shortcomings. First, polarities of seed
words are not reliable for various domains. As
a simple example, “rise” is a neutral word most
often, but becomes positive in stock market. Sec-
ond, manually selection of seed words can be very
subjective even if the application domain is deter-
mined. Third, algorithms using seed words have
low robustness. Any missing key word in the set
of seed words could lead to poor performance.
Therefore, the seed word set of such algorithms
demands high completeness (by containing com-
mon polarity words as many as possible).

Unlike the previous research work, we identi-
fy sentiment words without any seed words in this
paper. Instead, the documents’ bag-of-words in-
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formation and their polarity labels are exploited in
the identification process. Intuitively, polarities of
the document and its most component sentimen-
t words are the same. We call such phenomenon
as “sentiment matching”. Moreover, if a word is
found mostly in positive documents, it is very like-
ly a positive word, and vice versa.

We present an optimization-based model, called
WEED, to exploit the phenomenon of “sentimen-
t matching”. We first measure the importance of
the component words in the labeled documents se-
mantically. Here, the basic assumption is that im-
portant words are more sentiment related to the
document than those less important. Then, we
estimate the polarity of each document using it-
s component words’ importance along with their
sentiment values, and compare the estimation to
the real polarity. After that, we construct an op-
timization model for the whole corpus to weigh
the overall estimation error, which is minimized
by the best sentiment values of candidate words.
Finally, several experiments demonstrate the ef-
fectiveness of our approach. To the best of our
knowledge, this paper is the first work that identi-
fies sentiment words without seed words.

2 The Proposed Approach

2.1 Preliminary

We formulate the sentiment word identification
problem as follows. Let D = {d1, . . . , dn} denote

document set. Vector l⃗ =




l1
...
ln


 represents their

labels. If document di is a positive sample, then
li = 1; if di is negative, then li = −1. We use the
notation C = {c1, . . . , cV } to represent candidate
word set, and V is the number of candidate words.
Each document is formed by consecutive words in
C. Our task is to predict the sentiment polarity of
each word cj ∈ C.

2.2 Word Importance

We assume each document di ∈ D is presented

by a bag-of-words feature vector f⃗i =




fi1
...

fiV


,

where fij describes the importance of cj to di. A
high value of fij indicates word cj contributes a
lot to document di in semantic view, and vice ver-
sa. Note that fij > 0 if cj appears in di, while

fij = 0 if not. For simplicity, every f⃗i is normal-
ized to a unit vector, such that features of different
documents are relatively comparable.

There are several ways to define the word
importance, and we choose normalized TF-IDF
(Jones, 1972). Therefore, we have fij ∝
TF−IDF (di, cj), and ∥f⃗i∥ = 1.

2.3 Polarity Value

In the above description, the sentiment polarity has
only two states, positive or negative. We extend
both word and document polarities to polarity val-
ues in this section.

Definition 1 Word Polarity Value: For each word
cj ∈ C, we denote its word polarity value as
w(cj). w(cj) > 0 indicates cj is a positive word,
while w(cj) < 0 indicates cj is a negative word.
|w(cj)| indicates the strength of the belief of cj’s
polarity. Denote w(cj) as wj , and the word polar-

ity value vector w⃗ =




w1
...

wV


.

For example, if w(“bad”) < w(“greedy”) < 0, we
can say “bad” is more likely to be a negative word
than “greedy”.

Definition 2 Document Polarity Value: For each
document di, document polarity value is

y(di) = cosine(f⃗i, w⃗) =
f⃗i

T · w⃗

∥w⃗∥ . (1)

We denote y(di) as yi for short.
Here, we can regard yi as a polarity estimate

for di based on w⃗. To explain this, Table 1 shows
an example. “MR1”, “MR2” and “MR3” are
three movie review documents, and “compelling”
and “boring” are polarity words in the vocabu-
lary. we simply use TF to construct the document
feature vectors without normalization. In the ta-
ble, these three vectors, f⃗1, f⃗2 and f⃗3, are (3, 1),
(2, 1) and (1, 3) respectively. Similarly, we can get
w⃗ = (1, −1), indicating “compelling” is a positive
word while “boring” is negative. After normaliz-
ing f⃗1, f⃗2 and f⃗3, and calculating their cosine sim-
ilarities with w⃗, we obtain y1 > y2 > 0 > y3.
These inequalities tell us the first two reviews are
positive, while the last review is negative. Further-
more, we believe that “MR1” is more positive than
“MR2”.
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“compelling” “boring”
MR1 3 1
MR2 2 1
MR3 1 3
w 1 -1

Table 1: Three rows in the middle shows the fea-
ture vectors of three movie reviews, and the last
row shows the word polarity value vector w⃗. For
simplicity, we use TF value to represent the word
importance feature.

2.4 Optimization Model
As mentioned above, we can regard yi as a polari-
ty estimate for document di. A precise prediction
makes the positive document’s estimator close to
1, and the negative’s close to -1. We define the
polarity estimate error for document di as:

ei = |yi − li| = | f⃗i
T · w⃗

∥w⃗∥ − li|. (2)

Our learning procedure tries to decrease ei. We
obtain w⃗ by minimizing the overall estimation er-

ror of all document samples
n∑

i=1
e2
i . Thus, the op-

timization problem can be described as

min
w⃗

n∑

i=1

(
f⃗i

T · w⃗

∥w⃗∥ − li)
2. (3)

After solving this problem, we not only obtain the
polarity of each word cj according to the sign of
wj , but also its polarity belief based on |wj |.

2.5 Model Solution
We use normalized vector x⃗ to substitute w⃗

∥w⃗∥ , and
derive an equivalent optimization problem:

min
x⃗

E(x⃗) =
n∑

i=1

(f⃗i
T · x⃗ − li)

2

s.t. ∥x⃗∥ = 1.

(4)

The equality constraint of above model makes
the problem non-convex. We relax the equality
constraint to ∥x⃗∥ ≤ 1, then the problem becomes
convex. We can rewrite the objective function
as the form of least square regression: E(x⃗) =
∥F · x⃗ − l⃗∥2, where F is the feature matrix, and

equals to




f⃗1
T

...

f⃗n
T


.

Now we can solve the problem by convex op-
timization algorithms (Boyd and Vandenberghe,
2004), such as gradient descend method. In each
iteration step, we update x⃗ by ∆x⃗ = η · (−∇E) =
2η · (F T l⃗ − F T F x⃗), where η > 0 is the learning
rate.

3 Experiment

3.1 Experimental Setup

We leverage two widely used document dataset-
s. The first dataset is the Cornell Movie Review
Data 1, containing 1,000 positive and 1,000 nega-
tive processed reviews. The other is the Stanford
Large Dataset 2 (Maas et al., 2011), a collection
of 50,000 comments from IMDB, evenly divided
into training and test sets.

The ground-truth is generated with the help of
a sentiment lexicon, MPQA subjective lexicon 3.
We randomly select 20% polarity words as the
seed words, and the remaining are candidate ones.
Here, the seed words are provided for the baseline
methods but not for ours. In order to increase the
difficulty of our task, several non-polarity words
are added to the candidate word set. Table 2 shows
the word distribution of two datasets.

Dataset Word Set pos neg non total

Cornell seed 135 201 - 336
candidate 541 806 1232 2579

Stanford seed 202 343 - 545
candidate 808 1370 2566 4744

Table 2: Word Distribution

In order to demonstrate the effectiveness of our
model, we select two baselines, SO-PMI (Turney
and Littman, 2003) and COM (Chen et al., 2012).
Both of them need seed words.

3.2 Top-K Test

In face of the long lists of recommended polarity
words, people are only concerned about the top-
ranked words with the highest sentiment value. In
this experiment we consider the accuracy of the
top K polarity words. The quality of a polarity
word list is measured by p@K =

Nright,K

K , where
Nright,K is the number of top-K words which are
correctly recommended.

1http://www.cs.cornell.edu/people/pabo/movie-review-
data/

2http://ai.stanford.edu/ amaas/data/sentiment/
3http://www.cs.pitt.edu/mpqa/
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WEED SO-PMI COM
positive words negative words positive words negative words positive words negative words
great excellent bad stupid destiny lush cheap worst best great ridiculous bad

perfect perfectly worst mess brilliant skillfully ridiculous annoying will star plot evil
terrific best boring ridiculous courtesy courtesy damn pathetic bad fun star garish

true wonderfully awful plot gorgeous magnificent inconsistencies fool better plot dreadfully stupid
brilliant outstanding worse terrible temptation marvelously desperate giddy love horror pretty fun

Table 3: Case Study

(a) Cornell Dataset

(b) Stanford Dataset
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Figure 1: Top-K Test

Figure 1 shows the final result of p@K, which
is the average score of the positive and negative
list. We can see that in both datasets, our approach
highly outperforms two baselines, and the preci-
sion is 14.4%-33.0% higher than the best baseline.
p@10s of WEED for Cornell and Stanford dataset-
s reach to 93.5% and 89.0%, and it shows the top
10 words in our recommended list is exceptionally
reliable. As the size of K increases, the accuracy
of all methods falls accordingly. This shows three
approaches rank the most probable polarity words
in the front of the word list. Compared with the
small dataset, we obtain a better result with large
K on the Stanford dataset.

3.3 Case Study

We conduct an experiment to illustrate the char-
acteristics of three methods. Table 3 shows top-
10 positive and negative words for each method,

where the bold words are the ones with correc-
t polarities. From the first two columns, we can
see the accuracy of WEED is very high, where
positive words are absolutely correct and negative
word list makes only one mistake, “plot”. The oth-
er columns of this table shows the baseline meth-
ods both achieve reasonable results but do not per-
form as well as WEED.

Our approach is able to identify frequently used
sentiment words, which are vital for the applica-
tions without prior sentiment lexicons. The sen-
timent words identified by SO-PMI are not so
representative as WEED and COM. For example,
“skillfully” and “giddy” are correctly classified but
they are not very frequently used. COM tends to
assign wrong polarities to the sentiment words al-
though these words are often used. In the 5th and
6th columns of Table 3, “bad” and “horror” are
recognized as positive words, while “pretty” and
“fun” are recognized as negative ones. These con-
crete results show that WEED captures the gener-
ality of the sentiment words, and achieves a higher
accuracy than the baselines.

4 Conclusion and Future Work

We propose an effective optimization-based mod-
el, WEED, to identify sentiment words from the
corpus without seed words. The algorithm exploit-
s the sentiment information provided by the docu-
ments. To the best of our knowledge, this paper is
the first work that identifies sentiment words with-
out any seed words. Several experiments on real
datasets show that WEED outperforms the state-
of-the-art methods with seed words.

Our work can be considered as the first step
of building a domain-specific sentiment lexicon.
Once some sentiment words are obtained in a cer-
tain domain, our future work is to improve WEED
by utilizing these words.
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Detecting Turnarounds in Sentiment Analysis: Thwarting 

 

  

  

Abstract 

Thwarting and sarcasm are two uncharted 

territories in sentiment analysis, the for-

mer because of the lack of training corpo-

ra and the latter because of the enormous 

amount of world knowledge it demands. 

In this paper, we propose a working defi-

nition of thwarting amenable to machine 

learning and create a system that detects if 

the document is thwarted or not. We focus 

on identifying thwarting in product re-

views, especially in the camera domain. 

An ontology of the camera domain is cre-

ated. Thwarting is looked upon as the 

phenomenon of polarity reversal at a 

higher level of ontology compared to the 

polarity expressed at the lower level.   

This notion of thwarting defined with re-

spect to an ontology is novel, to the best 

of our knowledge. A rule based imple-

mentation building upon this idea forms 

our baseline. We show that machine learn-

ing with annotated corpora (thwarted/non-

thwarted) is more effective than the rule 

based system. Because of the skewed dis-

tribution of thwarting, we adopt the Area-

under-the-Curve measure of performance. 

To the best of our knowledge, this is the 

first attempt at the difficult problem of 

thwarting detection, which we hope will at 

least provide a baseline system to compare 

against. 

1 Credits 

The authors thank the lexicographers at Center 

for Indian Language Technology (CFILT) at IIT 

Bombay for their support for this work. 

2 Introduction 

Although much research has been done in the 

field of sentiment analysis (Liu et al., 2012), 

thwarting and sarcasm are not addressed, to the 

best of our knowledge. Thwarting has been iden-

tified as a common phenomenon in sentiment 

analysis (Pang et al., 2002, Ohana et al., 2009, 

Brooke, 2009) in various forms of texts but no 

previous work has proposed a solution to the 

problem of identifying thwarting. We focus on 

identifying thwarting in product reviews. 

The definition of an opinion as specified in 

Liu (2012) is  

“An opinion is a quintuple, (   ,     ,      , 

  ,   ), where    is the name of an entity,     is 

an aspect of   ,       is the sentiment on aspect 

    of entity   ,    is the opinion holder, and     

is the time when the opinion is expressed by   .” 

 

If the sentiment towards the entity or one of its 

important attribute contradicts the sentiment to-

wards all other attributes, we can say that the 

document is thwarted. 
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A domain ontology is an ontology of various 

features pertaining to a domain, arranged in a 

hierarchy. Subsumption in this hierarchy implies 

that the child is a part or feature of the parent. 

Domain ontology has been used by various 

works in NLP (Saggion et al., 2007 and Polpinij 

et al., 2008). In our work, we use domain ontol-

ogy of camera. We look upon thwarting as the 

phenomenon of reversal of polarity from the 

lower level of the ontology to the higher level. At 

the higher level of ontology the entities men-

tioned are the whole product or a large critical 

part of the product. So while statements about 

entities at the lower level of the ontology are on 

“details”, statements about entities at higher lev-

els are on the “big picture”. Polarity reversal 

from details to the big picture is at the heart 

of thwarting. 

The motivation for our study on thwarting 

comes from the fact that: a) Thwarting is a chal-

lenging NLP problem and b) Special ML ma-

chinery is needed in view of the fact that the 

training data is so skewed. Additionally large 

amount of world and domain knowledge maybe 

called for to solve the problem. In spite of the 

relatively fewer occurrence of the thwarting phe-

nomenon the problem poses an intellectually 

stimulating exercise. We may also say that in the 

limit, thwarting approaches the very difficult 

problem of sarcasm detection (Tsur et al. 2010). 

We start by defining and understanding the 

problem of thwarting in section 2. In section 3, 

we describe a method to create the domain on-

tology. In section 4, we propose a naïve rule 

based approach to detect thwarting. In section 5 

we discuss a machine learning based approach 

which could be used to identify whether a docu-

ment is thwarted or not. This is followed by ex-

perimental results in section 6. Section 7 draws 

conclusions and points to future work. 

3 Definition 

Thwarting is defined by Pang et al., (2008) as 

follows:  

“Thwarted expectations basically refer to the 

phenomenon wherein the author of the text first 

builds up certain expectations for the topic, only 

to produce a deliberate contrast to the earlier 

discussion."       

 

For our computational purposes, we define 

thwarting as:  

“The phenomenon wherein the overall polarity of 

the document is in contrast with the polarity of 

majority of the document.” 

 

This definition emphasizes thwarting as piggy-

backing on sentiment analysis to improve the 

latter’s performance. The current work however 

only addresses the problem of whether a docu-

ment is thwarted or not and does not output the 

sentiment of the document. The basic block dia-

gram for our system is shown in figure 1. 

 

 

 

 

 

 
Figure 1: Basic Block Diagram 

 

An example of a thwarted document is: 

“I love the sleek design. The lens is impressive. 

The pictures look good but, somehow this cam-

era disappoints me. I do not recommend it.” 

 

While thwarting occurs in various forms of sen-

timent bearing texts, it is not a very frequent one. 

It accounts for hardly 1-2% of any given corpus. 

Thus, it becomes hard to find sufficient number 

of examples of thwarting to train a classifier.  

Since thwarting is a complex natural language 

phenomenon we require basic NLP tools and 

resources, whose accuracy in turn can affect the 

overall performance of a thwarting detection sys-

tem. 

4 Building domain ontology 

Domain ontology comprises of features and enti-

ties from the domain and the relationships be-

tween them. The process thus has two steps, viz. 

(a) identify the features and entities, and (b) con-

nect them in the form of a hierarchy. We decided 

to use a combination of review corpora mining 

and manual means for identifying key features. 

Our approach to building the domain ontology is 

as follows: 

Step 1: We use Latent Dirichlet Allocation 

(LDA) (Blei et al., 2003) on a corpus containing 

reviews of a particular product (camera, in our 

case) to identify key features from the domain. 

The output is then analyzed manually to finally 

select the key features. Some additional features 

get added by human annotator to increase the 

coverage of the ontology. For Example, in the 

camera domain, the corpus may include words 

Thwarting 

Detection 

System 

Input 

 Document 
Thwarted or 

 Not -Thwarted 

861



 

 

like memory, card, gb, etc. but, may not contain 

the word storage. The abstract concept of stor-

age is contributed by the human annotator 

through his/her world knowledge. 

Step 2: The features thus obtained are ar-

ranged in the form of a hierarchy by a human 

annotator. 

 

 
Figure 2: Ontology for the camera domain 

5 A rule based approach to thwarting 

recognition 

As per the definition of thwarting, most of the 

thwarted document carries a single sentiment; 

however, a small but critical portion of the text, 

carrying the contrary sentiment, actually decides 

the overall polarity. The critical statement, thus, 

should be strongly polar (either positive or nega-

tive), and it should be on some critical feature of 

the product. 

From the perspective of the domain ontology, the 

sentiment towards the overall product or towards 

some critical feature mentioned near the root of 

the ontology should be opposite to the sentiment 

towards features near the leaves. 
 

Based on these observations we propose the fol-

lowing naïve approach to thwarting detection: 

 

For each sentence in a review to be tested 

   1. Get the dependency parse of the sentence. 

This step is essential. It makes explicit the adjec-

tive noun dependencies, which in turn uncovers 

the sentiment on a specific part or feature of the 

product. 

   2. Identify the polarities towards all nouns, us-

ing the dependency parse and sentiment lexicons.    

   3. If a domain feature, identified using the do-

main ontology, exists in the sentence, anno-

tate/update the ontology node, containing the 

feature, using the polarity obtained. 

Once the entire review is processed, we obtain 

the domain ontology, with polarity marking on 

nodes, for the corresponding review. 

The given review is thwarted if there is a con-

tradiction of sentiment among different levels of 

the domain ontology with polarity marking on 

nodes. 

The sentiment lexicons used are SentiWord-

Net (Esuli et al., 2006), Taboada (Taboada et al., 

2004), BL lexicon (Hu et al., 2004) and Inquirer 

(Stone et al., 1966). 

The procedure is illustrated by an example.  

“I love the sleek design. The lens is impressive. 

The pictures look good but, somehow this cam-

era disappoints me. I do not recommend it.” 

 

A part of the ontology, with polarity marking on 

nodes, for this example is shown in figure 3. 

 
Figure 3: ontology with polarity marking on nodes: 

example 

Based on this ontology we see that there is an 

opposition of sentiment between the root (“cam-

era”) and the lower nodes. We thus determine 

that this document is thwarted. 

However, since the nodes, within the same 

level, might have different weighting based upon 

the product under consideration, this method 

fails to perform well. For example, the body and 

video capability might be subjective whereas any 

fault in the lens or the battery will render the 

camera useless, hence they are more critical. We 

thus see a need for relative weighting among all 

features in the ontology. 

Camera - 
negative 

Lens  - 
positive 

Body 
Design - 
positive 

Display 
Picture - 
positive 
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6 A Machine Learning based approach 

Manual fixing of relative weightages for the fea-

tures of the product is possible, but that would be 

ad hoc. We now propose a machine learning 

based approach to detect thwarting in documents. 

It uses the domain ontology to identify key fea-

tures related to the domain. The approach in-

volves two major steps namely learning the 

weights and building a model that classifies the 

reviews using the learnt weights. 

6.1  Learning Weights 

The weights are learnt using the loss-

regularization framework. The key idea is that 

the overall polarity of the document is deter-

mined by the polarities of individual words in the 

document. Since, we need to find the weights for 

the nodes in the domain ontology; we consider 

only the words belonging to the ontology for fur-

ther processing. Thus, if P is the polarity of the 

review and    is the polarity associated with 

word i then   ∑        gives the linear model. 

The word i should belong to the ontology as well 

as the review. Similarly, the hinge loss is given 

by                where w is the weight 

vector and x is the feature vector consisting of   

    .  

Based on the intuition, that every word con-

tributes some polarity to its parent node in the 

domain ontology, we also learnt weights on the 

ontology by percolating polarities towards the 

root. We experimented with complete percola-

tion, wherein the polarity at a node is its polarity 

in the document summed with the polarities of 

all its descendants. We also define controlled 

percolation, wherein the value added for a par-

ticular descendant is a function of its distance 

from the node. We halved the polarity value per-

colated, for each edge between the two nodes. 

Thus, for the example in figure 2, the polarity 

value of camera would be 

                  
     

 
 

     

 
  

        

 

  
       

 
  

        

 
 

Where         is the final polarity for camera 

and       is the polarity of the word ϵ {camera, 

body, display, design, picture}.  

6.2 Classifier 

We use the SVM classifier with features generat-

ed using the following steps. We first create a 

vector of weighted polarity values for each re-

view. This is constructed by generating a value 

for each word in the domain ontology encoun-

tered while reading the review sequentially. The 

value is calculated by multiplying the weight, 

found in the previous step (5.1), with the polarity 

of the word as determined from the sentence. 

Since, these vectors will be of different dimen-

sionality for each review, we extract features 

from these reviews. These features are selected 

based on our understanding of the problem and 

the fact that thwarting is a function of the change 

of polarity values and also the position of 

change. 

The Features extracted are: 

Document polarity, number of flips of sign (i.e. 

change of polarity from positive to negative and 

vice versa), the maximum and minimum values 

in a sequence, the length of the longest contigu-

ous subsequence of positive values (LCSP), the 

length of the longest contiguous subsequence of 

negative values (LCSN), the mean of all values, 

total number of positive values in the sequence, 

total number of negative values in the sequence, 

the first and the last value in the sequence, the 

variance of the moving averages, the difference 

in the means of LCSP and LCSN. 

7 Results 

Experiments were performed on a dataset ob-

tained by crawling product reviews from Ama-

zon
1
. We focused on the camera domain. We 

obtained 1196 reviews from this domain. The 

reviews were annotated for thwarting, i.e., 

thwarted or non-thwarted as well as polarity. The 

reviews crawled were given to three different 

annotators. The instructions given for annotation 

were as follows: 

1. Read the entire review and try to form a 

mental picture of how sentiment in the 

document is distributed. Ignore anything 

that is not the opinion of the writer. 

2. Try to determine the overall polarity of 

the document. The star rating of the doc-

ument can be used for this purpose. 

3. If the overall polarity of the document is 

negative but, most of the words in the 

document indicate positive sentiment, or 

vice versa, then consider the document 

as thwarted. 

Since, identifying thwarting is a difficult task 

even for humans, we calculated the Cohen’s 

kappa score (Cohen 1960) in order to determine 

the inter annotator agreement. It was found out to 

                                                 
1
Reviews crawled from http://www.amazon.com/ 
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be 0.7317. The annotators showed high agree-

ment (98%) in the non-thwarted class whereas 

they agreed on 70% of the thwarted documents. 

Out of the 1196 reviews, exactly 21 were 

thwarted documents, agreed upon by all annota-

tors. We used the Stanford Core NLP tools
2
 

(Klein et al., 2003, Toutanova et al., 2003) for 

basic NL processing. The system was tested on 

the entire dataset.  

Since, the data is highly skewed; we used Area 

under the Curve (AUC) for the ROC curve as the 

measure of evaluation (Ling et al., 2003). The 

AUC for a random baseline is expected to be 

50%, and the rule based approach is close to the 

baseline (56.3%). 

Table 1 shows the results for the experiments 

with the machine learning model. We used the 

CVX
3
 library in Matlab to solve the optimization 

problem for learning weights and the LIBSVM
4
 

library to implement the svm classifier. In order 

to account for the data skew, we assign a class 

weight of 50 (determined empirically) to the 

thwarted instances and 1 for non-thwarted in-

stances in the classifier. All results were obtained 

using a 10 fold cross validation. The same da-

taset was used for this set of experiments. 

 
Loss type 

for 

weights 

Percolation 

type for 

weights 

AUC value for 

classification 

Linear Complete 73% 

 Controlled 81% 

Hinge Complete 70% 

 Controlled 76% 

 

Table 1: Results of the machine learning based  

approach to thwarting detection 

 

We see that the overall system for identification 

of thwarting performs well for the weights ob-

tained using the linear model with a controlled 

percolation of polarity values in the ontology. 

The system outperforms both the random base-

line as well as the rule based system. These re-

sults though great are to be taken with a pinch of 

salt. The basic objective for creating a thwarting 

detection system was to include such a module in 

the general sentiment analysis framework. Thus, 

using document polarity as a feature contradicts 

the objective of sentiment analysis, which is to 

find the document polarity. Without the docu-

                                                 
2
http://nlp.stanford.edu/software/corenlp.shtml  

3
http://cvxr.com/cvx 

4
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

ment polarity feature, the values drop by 10% 

which is not acceptable. 

8 Conclusions and Future Work 

We have described a system for detecting thwart-

ing, based on polarity reversal between opinion 

on most parts of the product and opinion on the 

overall product or a critical part of the product. 

The parts of the product are related to one anoth-

er through an ontology. This ontology guides a 

rule based approach to thwarting detection, and 

also provides features for an SVM based learning 

system.  The ML based system scores over the 

rule based system. Future work consists in trying 

out the approach across products and across do-

mains, doing better ontology harnessing from the 

reviews and investing and searching for distribu-

tions and learning algorithms more suitable for 

the problem. 

References  

Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. Latent   

Dirichlet allocation. In the Journal of machine 

Learning research, 3, pages 993-1022. 

Brooke, J. 2009. A Semantic Approach to Automated 

Text Sentiment Analysis. Ph.D. thesis, Simon Fra-

ser University. 

Chang, C. C., and Lin, C. J. 2011. LIBSVM: a library 

for support vector machines. ACM Transactions on 

Intelligent Systems and Technology (TIST),2(3), 

27. 

Cohen, J. 1960. A coefficient of agreement for nomi-

nal scales.  Educational and psychological meas-

urement 20, no. 1, pages 37-46. 

Esuli, A. and Sebastiani, F. 2006. Sentiwordnet: A 

publicly available lexical resource for opinion min-

ing. In Proceedings of LREC, Volume 6, pages 

417-422. 

Hu, M. and Liu, B. 2004. Mining and summarizing 

customer reviews. In Proceedings of the tenth 

ACM SIGKDD international conference on 

Knowledge discovery and data mining, pages 168-

177. ACM. 

Klein, D. and Manning, C. D. 2003. Accurate Unlexi-

calized Parsing. In Proceedings of the 41st Meeting 

of the Association for Computational Linguistics, 

pages 423-430. 

Ling, C. X., Huang, J. and Zhang, H.2003. AUC: A 

better measure than accuracy in comparing learn-

ing algorithms. In Advances in Artificial Intelli-

gence, pages 329-341, Springer Berlin Heidelberg. 

864



 

 

Liu, B., and Zhang, L. 2012. A survey of opinion 

mining and sentiment analysis. In Mining Text Da-

ta (pp. 415-463).Springer US. 

Liu B., 2012. Sentiment analysis and opinion min-

ing. Synthesis Lectures on Human Language Tech-

nologies, 5(1), 1-167. 

Ohana, B. and Tierney, B. 2009.Sentiment classifica-

tion of reviews using SentiWordNet. In 9th. IT & T 

Conference, page 13. 

Pang, B., and Lee, L. 2008. Opinion mining and sen-

timent analysis. Foundations and trends in infor-

mation retrieval, 2(1-2), 1-135. 

Pang, B., Lee, L. and Vaithyanathan S. 2002. Thumbs 

up? Sentiment Classification using Machine Learn-

ing Techniques. In Proceedings of EMNLP pages 

79-86). 

Polpinij, J. and Ghose, A. K. 2008.An ontology-based 

sentiment classification methodology for online 

consumer reviews. In Web Intelligence and Intelli-

gent Agent Technology. 

Taboada, M. and Grieve, J. 2004. Analyzing appraisal 

automatically. In Proceedings of AAAI Spring 

Symposium on Exploring Attitude and Affect in 

Text (AAAI Technical Report SS# 04# 07), Stanford 

University, CA, pages. 158-161. AAAI Press. 

Toutanova, K., Klein, D., Manning, C. D. and Singer 

Y. 2003. Feature-Rich Part-of-Speech Tagging 

with a Cyclic Dependency Network. 

In Proceedings of HLT-NAACL, pages 252-259. 

Tsur, O., Davidov, D., & Rappoport, A. 2010. IC-

WSM–A great catchy name: Semi-supervised 

recognition of sarcastic sentences in online product 

reviews. In Proceedings of the fourth international 

AAAI conference on weblogs and social me-

dia, pages. 162-169. 

Saggion, H., Funk, A., Maynard, D. and Bontcheva, 

K. 2007. Ontology-based information extraction 

for business intelligence. In The Semantic 

Web pages 843-856, Springer Berlin Heidelberg. 

Stone, P. J., Dunphy, D. C., Smith, M. S., Ogilvie, D. 

M. and Associates. 1966. The General Inquirer: A 

Computer Approach to Content Analysis. The MIT 

Press. 

865



Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 866–872,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Explicit and Implicit Syntactic Features for Text Classification

Matt Post1 and Shane Bergsma1,2

1Human Language Technology Center of Excellence
2Center for Language and Speech Processing

Johns Hopkins University
Baltimore, MD

Abstract

Syntactic features are useful for many
text classification tasks. Among these,
tree kernels (Collins and Duffy, 2001)
have been perhaps the most robust and
effective syntactic tool, appealing for
their empirical success, but also be-
cause they do not require an answer
to the difficult question of which tree
features to use for a given task. We
compare tree kernels to different ex-
plicit sets of tree features on five diverse
tasks, and find that explicit features of-
ten perform as well as tree kernels on
accuracy and always in orders of mag-
nitude less time, and with smaller mod-
els. Since explicit features are easy to
generate and use (with publicly avail-
able tools), we suggest they should al-
ways be included as baseline compar-
isons in tree kernel method evaluations.

1 Introduction

Features computed over parse trees are use-
ful for a range of discriminative tasks, in-
cluding authorship attribution (Baayen et al.,
1996), parse reranking (Collins and Duffy,
2002), language modeling (Cherry and Quirk,
2008), and native-language detection (Wong
and Dras, 2011). A major distinction among
these uses of syntax is how the features are rep-
resented. The implicit approach uses tree
kernels (Collins and Duffy, 2001), which make
predictions with inner products between tree
pairs. These products can be computed effi-
ciently with a dynamic program that produces
weighted counts of all the shared tree frag-
ments between a pair of trees, essentially in-
corporating all fragments without representing
any of them explicitly. Tree kernel approaches

have been applied successfully in many areas
of NLP (Collins and Duffy, 2002; Moschitti,
2004; Pighin and Moschitti, 2009).

Tree kernels were inspired in part by ideas
from Data-Oriented Parsing (Scha, 1990; Bod,
1993), which was in turn motivated by uncer-
tainty about which fragments to include in a
grammar. However, manual and automatic
approaches to inducing tree fragments have
recently been found to be useful in an ex-
plicit approach to text classification, which
employs specific tree fragments as features in
standard classifiers (Post, 2011; Wong and
Dras, 2011; Swanson and Charniak, 2012).
These feature sets necessarily represent only a
small subset of all possible tree patterns, leav-
ing open the question of what further gains
might be had from the unusued fragments.

Somewhat surprisingly, explicit and implicit
syntactic features have been explored largely
independently. Here, we compare them on a
range of classification tasks: (1,2) grammati-
cal classification (is a sentence written by a hu-
man?), (3) question classification (what type
of answer is sought by this question?), and
(4,5) native language prediction (what is the
native language of a text’s author?).

Our main contribution is to show that an ex-
plicit syntactic feature set performs as well or
better than tree kernels on each tested task,
and in orders of magnitude less time. Since
explicit features are simple to generate (with
publicly available tools) and flexible to use, we
recommend they be included as baseline com-
parisons in tree kernel method evaluations.

2 Experimental setup

We used the following feature sets:

N-grams All unigrams and bigrams.1

1Experiments with trigrams did not show any im-

866



CFG rules Counts of depth-one context-
free grammar (CFG) productions obtained
from the Berkeley parser (Petrov et al., 2006).

C&J features The parse-tree reranking
feature set of Charniak and Johnson (2005),
extracted from the Berkeley parse trees.

TSG features We also parsed with a
Bayesian tree substitution grammar (Post and
Gildea, 2009, TSG)2 and extracted fragment
counts from Viterbi derivations.

We build classifiers with Liblinear3 (Fan
et al., 2008). We divided each dataset into
training, dev, and test sets. We then trained
an L2-regularized L1-loss support vector ma-
chine (-s 3) with a bias parameter of 1 (-B 1),
optimizing the regularization parameter (-c)
on the dev set over the range {0.0001 . . . 100}
by multiples of 10. The best model was then
used to classify the test set. A sentence length
feature was included for every sentence.

For tree kernels, we used SVM-light-TK4

(Moschitti, 2004; Moschitti, 2006) with the
default settings (-t 5 -D 1 -L 0.4),5 which
also solves an L2-regularized L1-loss SVM op-
timization problem. We tuned the regulariza-
tion parameter (-c) on the dev set in the same
manner as described above, providing 4 GB of
memory to the kernel cache (-m 4000).6 We
used subset tree kernels, which compute the
similarity between two trees by implicitly enu-
merating all possible fragments of the trees (in
contrast with subtree kernels, where all frag-
ments fully extend to the leaves).

3 Tasks

Table 1 summarizes our datasets.

3.1 Coarse grammatical classification

Our first comparison is coarse grammatical
classification, where the goal is to distin-
guish between human-written sentences and
“pseudo-negative” sentences sampled from a
trigram language model constructed from in-

provement.
2github.com/mjpost/dptsg
3www.csie.ntu.edu.tw/~cjlin/liblinear/
4disi.unitn.it/moschitti/Tree-Kernel.htm
5Optimizing SVM-TK’s decay parameter (-L) did

not improve test-set accuracy, but did increase training
time (squaring the number of hyperparameter combi-
nations to evaluate), so we stuck with the default.

6Increased from the default of 40 MB, which halves
the running time.

train dev test

Coarse grammaticality (BLLIP)
sentences 100,000 6,000 6,000

Fine grammaticality (PTB)
sentences 79,664 3,978 3,840

Question classification (TREC-10)
sentences 4,907 545 500

Native language (ICLE; 7 languages)
documents 490 105 175
sentences 17,715 3,968 6,777

Native language (ACL; 5 languages)
documents 987 195 185
sentences 146,257 28,139 28,403

Table 1: Datasets.

system accuracy CPU time

Chance 50.0 -
N-gram 68.4 minutes

CFG 86.3 minutes
TSG 89.8 minutes
C&J 92.9 an hour

SVM-TK 91.0 a week

Table 2: Coarse grammaticality. CPU time is
for classifier setup, training, and testing.

domain data (Okanohara and Tsujii, 2007).
Cherry and Quirk (2008) first applied syn-
tax to this task, learning weighted parameters
for a CFG with a latent SVM. Post (2011)
found further improvements with fragment-
based representations (TSGs and C&J) with a
regular SVM. Here, we compare their results
to kernel methods. We repeat Post’s experi-
ments on the BLLIP dataset,7 using his exact
data splits (Table 2). To our knowledge, tree
kernels have not been applied to this task.

3.2 Fine grammatical classification

Real-world grammaticality judgments require
much finer-grained distinctions than the
coarse ones of the previous section (for exam-
ple, marking dropped determiners or wrong
verb inflections). For this task, we too pos-
itive examples from all sentences of sections
2–21 of the WSJ portion of the Penn Tree-
bank (Marcus et al., 1993). Negative exam-
ples were created by inserting one or two errors

7LDC Catalog No. LDC2000T43
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system accuracy CPU time

Wong & Dras 60.6 -

Chance 50.0 -
N-gram 61.4 minutes

CFG 64.5 minutes
TSG 67.0 minutes
C&J 71.9 an hour

SVM-TK 67.8 weeks

Table 3: Fine-grained classification accuracy
(the Wong and Dras (2010) score is the highest
score from the last column of their Table 3).

system accuracy CPU time

Pighin & Moschitti 86.6 -

Bigram 73.2 seconds

CFG 90.0 seconds
TSG 85.6 seconds
C&J 89.6 minutes

SVM-TK 87.7 twenty min.

Table 4: Question classification (6 classes).

into the parse trees from the positive data us-
ing GenERRate (Foster and Andersen, 2009).
An example sentence pair is But the ballplay-
ers disagree[ing], where the negative exam-
ple incorrectly inflects the verb. Wong and
Dras (2010) reported good results with parsers
trained separately on the positive and negative
sides of the training data and classifiers built
from comparisons between the CFG produc-
tions of those parsers. We obtained their data
splits (described as NoisyWSJ in their paper)
and repeat their experiments here (Table 3).

3.3 Question Classification

We look next at question classification (QC).
Li and Roth (2002) introduced the TREC-10
dataset,8 a set of questions paired with labels
that categorize the question by the type of an-
swer it seeks. The labels are organized hi-
erarchically into six (coarse) top-level labels
and fifty (fine) refinements. An example ques-
tion from the ENTY/animal category is What
was the first domesticated bird?. Table 4 con-
tains results predicting just the coarse labels.
We compare to Pighin and Moschitti (2009),
and also repeat their experiments, finding a
slightly better result for them.

8cogcomp.cs.illinois.edu/Data/QA/QC/

system sent. voting whole

Wong & Dras - - 80.0

Style 42.0 75.3 86.8

CFG 39.5 73.2 83.7
TSG 38.7 72.1 83.2
C&J 42.9 76.3 86.3

SVM-TK 40.7 69.5 -

Style 42.5 65.3 83.7

CFG 39.2 52.6 86.3
TSG 40.4 56.8 84.7
C&J 49.2 66.3 81.1

SVM-TK 42.1 52.6 -

Table 5: Accuracy on ICLE (7 languages, top)
and ACL (five, bottom) datasets at the sen-
tence and document levels. All documents
were signature-stylized (§3.4).

We also experimented with the refined ver-
sion of the task, where we directly predict one
of the fifty refined categories, and found nearly
identical relative results, with the best explicit
feature set (CFG) returning an accuracy of
83.6% (in seconds), and the tree kernel system
69.8% (in an hour). For reference, Zhang and
Lee (2003) report 80.2% accuracy when train-
ing on the full training set (5,500 examples)
with an SVM and bag-of-words features.9

3.4 Native language identification

Native language identification (NLI) is the
task of determining a text’s author’s native
language. This is usually cast as a document-
level task, since there are often not enough
cues to identify native languages at smaller
granularities. As such, this task presents a
challenge to tree kernels, which are defined at
the level of a single parse tree and have no ob-
vious document-level extension. Table 5 there-
fore presents three evaluations: (a) sentence-
level accuracy, and document-level accuracy
from (b) sentence-level voting and (c) direct,
whole-document classification.

We perform these experiments on two
datasets. In order to mitigate topic bias10 and
other problems that have been reported with

9Pighin and Moschitti (2009) did not report results
on this version of the task.

10E.g., when we train with all words, the keyword
’Japanese’ is a strong indicator for Japanese authors,
while ’Arabic’ is a strong indicator for English ones.
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the ICLE dataset (Tetreault et al., 2012),11 we
preprocessed each dataset into two signature-
stylized versions by replacing all words not in a
stopword list.12 The first version replaces non-
stopwords with word classes computed from
surface-form signatures,13 and the second with
POS tags.14 N-gram features are then taken
from both stylized versions of the corpus.

Restricting the feature representation to be
topic-independent is standard-practice in sty-
lometric tasks like authorship attribution, gen-
der identification, and native-language identi-
fication (Mosteller and Wallace, 1984; Koppel
et al., 2003; Tomokiyo and Jones, 2001).

3.4.1 ICLE v.2

The first dataset is a seven-language subset
of the International Corpus of Learner En-
glish, Version 2 (ICLE) (Granger et al., 2009),
which contains 3.7 million words of English
documents written by people with sixteen dif-
ferent native languages. Table 1 contains
scores, including one reported by Wong and
Dras (2011), who used the CFG and C&J fea-
tures, and whose data splits we mirror.15

3.4.2 ACL Anthology Network

We also experimented with native language
classification on scientific documents using
a version of the ACL Anthology Network
(Radev et al., 2009, AAN) annotated for ex-
periments in stylemetric tasks, including a
native/non-native author judgment (Bergsma
et al., 2012). For NLI, we further anno-
tated this dataset in a semi-automatic fash-
ion for the five most-common native languages
of ACL authors in our training era: English,
Japanese, German, Chinese, and French. The
annotation heuristics, designed to favor pre-
cision over recall, provided annotations for
1,959 of 8,483 papers (23%) in the 2001–2009
AAN.16

11Including prompts, characters, and special tokens
that correlate strongly with particular outcomes.

12The stopword list contains the set of 524 SMART-
system stopwords used by Tomokiyo and Jones (2001),
plus punctuation and Latin abbreviations.

13For example, suffix and capitalization.
14Via CRFTagger (Phan, 2006).
15Tetreault et al. reported accuracies up to 90.1 in a

cross-validation setting that isn’t directly comparable.
16Details and data at old-site.clsp.jhu.edu/

~sbergsma/Stylo/.
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size CFG CFG TSG TSG TSG+ TSG+ C&J C&J SVM-TK SVM-TK uSVM-TK USVM-TK
100 7 62.6 6 61.0 8 73.1 407 72.8 13 62.9 27 62.7
300 7 68.0 6 65.0 8 77.9 412 77.5 46 70.8 174 70.9
1000 7 73.3 6 70.9 9 78.4 433 82.2 227 77.1 1475 77.4
3000 9 75.8 7 77.5 12 82.3 465 87.1 1034 81.4 4394 81.2
10000 13 80.8 11 82.5 32 85.2 708 89.9 8984 85.5 6691 85.3
30000 37 83.5 29 85.8 108 87.7 1276 92.7 72859 88.8 7789 87.8
100000 133 86.3 85 89.1 406 89.8 3152 93.0 873969 91.0 8488 89.0

CFG
TSG
C&J
SVM-TK
uSVM-TK

uSVM-TK USVM-TK
1010.35 62.7
2628.84 70.9
7264.65 77.4
25447.47 81.2
29298.76 85.3
45938.05 87.8
48570.46 89.0

OLD VALUES

Figure 1: Training time (1000s of seconds) vs.
test accuracy for coarse grammaticality, plot-
ting test scores from models trained on 100,
300, 1k, 3k, 10k, 30k, and 100k instances.

4 Discussion

Syntactic features improve upon the n-gram
baseline for all tasks except whole-document
classification for ICLE. Tree kernels are often
among the best, but always trail (by orders
of magnitude) when runtime is considered.
Constructing the multi-class SVM-TK models
for the NLI tasks in particular was computa-
tionally burdensome, requiring cpu-months of
time. The C&J features are similarly often the
best, but incur a runtime cost due to the large
models. CFG and TSG features balance per-
formance, model size, and runtime. We now
compare these approaches in more depth.

4.1 Training time versus accuracy

Tree kernel training is quadratic in the size of
the training data, and its empirical slowness
is known. It is informative to examine learn-
ing curves to see how the time-accuracy trade-
offs extrapolate. We compared models trained
on the first 100, 300, 1k, 3k, 10k, 30k, and
100k data points of the coarse grammaticality
dataset, split evenly between positive and neg-
ative examples (Figure 1). SVM-TK improves
over the TSG and CFG models in the limit,
but at an extraordinary cost in training time:
100k training examples is already pushing the
bounds of practicality for tree kernel learning,
and generating curve’s next point would re-
quire several months of time. Kernel methods
also produce large models that result in slow
test-time performance, a problem dubbed the
“curse of kernelization” (Wang et al., 2010).

Approximate kernel methods designed to
scale to large datasets address this (Severyn

869



and Moschitti, 2010). We investigated the
uSVM-TK toolkit,17 which enables tuning the
tradeoff between training time and accuracy.
While faster than SVM-TK, its performance
was never better than explicit methods along
both dimensions (time and accuracy).

4.2 Overfitting

Overfitting is also a problem for kernel meth-
ods. The best models often had a huge number
of support vectors, achieving near-perfect ac-
curacy on the training set but making many
errors on the dev. and test sets. On the ICLE
task, close to 75% of all the training exam-
ples were used as support vectors. We found
only half as many support vectors used for the
explicit representations, implying less error
(Vapnik, 1998), and saw much lower variance
between training and testing performance.

4.3 Which fragments?

Our findings support the observations of
Cumby and Roth (2003), who point out that
kernels introduce a large number of irrelevant
features that may be especially harmful in
small-data settings, and that, when possible, it
is often better to have a set of explicit, relevant
features. In other words, it is better to have
the right features than all of them. Tree ker-
nels provide a robust, efficiently-computable
measure of comparison, but they also skirt the
difficult question, Which fragments?

So what are the “right” features? Table 6)
presents an intuitive list from the coarse gram-
maticality task: phenomena such as balanced
parenthetical phrases and quotations are asso-
ciated with grammaticality, while small, flat,
abstract rules indicate samples from the n-
gram model. Similar intuitive results hold for
the other tasks. The immediate interpretabil-
ity of the explicit formalisms is another ad-
vantage, although recent work has shown that
weights on the implicit features can also be ob-
tained after a kind of linearization of the tree
kernel (Pighin and Moschitti, 2009).

Ultimately, which features matter is task-
dependent, and skirting the question is ad-
vantageous in many settings. But it is also
encouraging that methods for selecting frag-
ments and other tree features work so well,

17disi.unitn.it/~severyn/code.html

(TOP (S “ S , ” NP (VP (VBZ says) ADVP) .))
(FRAG (X SYM) VP .)
(PRN (-LRB- -LRB-) S (-RRB- -RRB-))
(PRN (-LRB- -LRB-) NP (-RRB- -RRB-))
(S NP VP .)
(NP (NP DT CD (NN %)) PP)
(NP DT)
(PP (IN of))
(TOP (NP NP PP PP .))
(NP DT JJ NNS)

Table 6: The highest- and lowest-weighted
TSG features (coarse grammaticality).

yielding quick, light-weight models that con-
trast with the heavy machinery of tree kernels.

5 Conclusion

Tree kernels provide a robust measure of com-
parison between trees, effectively making use
of all fragments. We have shown that for
some tasks, it is sufficient (and advantageous)
to instead use an explicitly-represented subset
of them. In addition to their flexibility and
interpetability, explicit syntactic features of-
ten outperformed tree kernels in accuracy, and
even where they did not, the cost was multiple
orders of magnitude increase in both training
and testing time. These results were consistent
across a range of task types, dataset sizes, and
classification arities (binary and multiclass).

There are a number of important caveats.
We explored a range of data settings, but
there are many others where tree kernels have
been proven useful, such as parse tree rerank-
ing (Collins and Duffy, 2002; Shen and Joshi,
2003), sentence subjectivity (Suzuki et al.,
2004), pronoun resolution (Yang et al., 2006),
relation extraction (Culotta and Sorensen,
2004), machine translation evaluation (Liu
and Gildea, 2005), predicate-argument recog-
nition, and semantic role labeling (Pighin and
Moschitti, 2009). There are also tree ker-
nel variations such as dependency tree kernels
(Culotta and Sorensen, 2004) and shallow se-
mantic tree kernels (Moschitti et al., 2007).
These variables provide a rich environment for
future work; in the meantime, we take these re-
sults as compelling motivation for the contin-
ued development of explicit syntactic features
(both manual and automatically induced), and
suggest that such features should be part of
the baseline systems on applicable discrimina-
tive NLP tasks.
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Abstract 

Computational models of infant word 

segmentation have not been tested on a 

wide range of languages. This paper ap-

plies a phonotactic segmentation model 

to Korean. In contrast to the underseg-

mentation pattern previously found in 

English and Russian, the model exhibited 

more oversegmentation errors and more 

errors overall. Despite the high error rate, 

analysis suggested that lexical acquisition 

might not be problematic, provided that 

infants attend only to frequently seg-

mented items. 

1 Introduction 

The process by which infants learn to parse the 

acoustic signal into word-sized units—word 

segmentation—is an active area of research in 

developmental psychology (Polka and Sundara 

2012; Saffran et al. 1996) and cognitive model-

ing (Daland and Pierrehumbert 2011 [DP11], 

Goldwater et al. 2009 [GGJ09]). Word segmen-

tation is a classic bootstrapping problem: to learn 

words, infants must segment the input, because 

around 90% of the novel word types they hear 

are never uttered in isolation (Aslin et al. 1996; 

van de Weijer 1998). However, in order to seg-

ment infants must know some words, or gener-

alizations about the properties of words. How 

can infants form generalizations about words 

before learning words themselves? 

1.1 DiBS 

Two approaches in the literature might be termed 

lexical and phonotactic. Under the lexical ap-

proach, exemplified by GGJ09, infants are as-

sumed to exploit the Zipfian distribution of lan-

guage, identifying frequently recurring and mu-

tually predictive sequences as words. In the pho-

notactic approach, infants are assumed to lever-

age universal and/or language-specific knowl-

edge about the phonological content of se-

quences to infer the optimal segmentation. The 

present study focuses on the phonotactic ap-

proach outlined in DP11, termed DiBS. For other 

examples of approaches that use phonotactics, 

see Fleck 2008, Blanchard et al. 2010.  

A (Di)phone-(B)ased (S)egmentation model 

consists of an inventory of segment-segment se-

quences, with an estimated probability that a 

word boundary falls between the two segments. 

For example, when [pd] occurs in English, the 

probability of an intervening word boundary is 

very high: Pr(# | [pd]) ≈ 1. These probabilities 

are the parameters of the model to be learned. In 

the supervised setting (baseline model), these 

parameters may be estimated directly from data 

in which the word boundaries are labeled: Pr(# | 

pd) = Fr(# ^ pd) / (Fr(# ^ pd) + Fr(⌐# ^ pd)) 

where Fr(# ^ pd) is the number of [pd] sequences 

separated by a word boundary, and Fr(⌐# ^ pd) 

the number of [pd]’s not separated by a word 

boundary. For assessment purposes, these prob-

abilities are converted to hard decisions. 

DP11 describe an unsupervised learning algo-

rithm for DiBS that exploits a positional inde-

pendence assumption, treating phrase edges as a 

proxy for word edges (phrasal model). This 

learning model’s performance on English is on 

par with state-of-the-art lexical models (GGJ09), 

reflecting the high positional informativeness of 

diphones in English. We apply the baseline and 

phrasal models to Korean. 

1.2 Linguistic properties of Korean 

Korean is unrelated to languages previously 

modeled (English, Dutch, French, Spanish, Ara-
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bic, Greek, Russian), and it is an interesting test 

case for both phonotactic and lexical approaches. 

Korean syntax and morphology (Sohn 1999) 
present a particular challenge for unsupervised 
learning. Most noun phrases are marked with a 
limited set of case suffixes, and clauses generally 
end in a verb, inflected with suffixes ending in a 
limited set of sounds ([a,ʌ,i,jo]). Thus, the 

phrase-final distribution may not reflect the 
overall word-final distribution—problematic for 
some phonotactic approaches. Similarly, the high 
frequency and positional predictability of affixes 
could lead a lexical model to treat them as words. 
A range of phonological processes apply in Ko-

rean, even across word boundaries (Sohn 1999), 
yielding extensive allomorphy. Phonotactic 
models may be robust to this kind of variation, 
but it is challenging for current lexical models 
(see DP11).  

Korean consonantal phonology gives diphones 

several informative properties, including: 

• Various consonant clusters (obstruent-

lenis, lenis-nasal, et al.) are possible only 

if they span a word boundary 

• Various consonants cannot precede a 

word boundary 

• [ŋ] cannot follow a word boundary  

Conversely, unlike in previously studied lan-

guages, vowel-vowel sequences are common 

word-internally. This is likely to be problematic 

for phonotactic models, but not for lexical ones. 

2 Methods 

We obtained a phonetic corpus representing Ko-

rean speech by applying a grapheme-to-phonetic 

converter to a text corpus. First, we conducted an 

analysis of this phonetic corpus, with results in 

Table 1. Next, for comparability with previous 

studies, two 750,000-word samples (representing 

approximately one month of child input each) 

were randomly drawn from the phonetic cor-

pus—the training and test corpora. The phrasal 

and baseline DiBS models described above were 

trained and tested on these corpora; results are 

reported in Table 2. Finally, we inspected one 

‘day’ worth of segmentations, and offer a quali-

tative assessment of errors. 

2.1 Corpus and phonetic conversion 

The Korean Advanced Institute of Science and 

Technology Raw Corpus, available from the Se-

mantic Web Research Center, semantic-

web.kaist.ac.kr/home/index.php/KAIST_Corpus 

contains approximately 70,000,000 words from 

speeches, novels, newspapers, and more. The 

corpus was preprocessed to supply phrase breaks 

at punctuation marks and strip XML.  

The grapheme-to-phonetic conversion system 

of Kim et al. (2002) was generously shared by its 

creators. It includes morphosyntactic processing, 

phrase-break detection, and a dictionary of pho-

netic exceptions. It applies regular and lexically-

conditioned phonological rules, but not optional 

rules. Kim et al. reported per-grapheme accuracy 

of 99.7% in one corpus and 99.98% in another. 

An example of original text and the phonetic 

conversion is given below, with phonological 

changes in bold: 

 

orthographic: 경기도 1 여주에서 2 출생 3. 중앙대 4 문예창작학과를 5 졸업했다 6. 

phonetic: ㄱㅕㅇㄱㅣㄷㅗ1 ㅕㅈㅜㅔㅅㅓ 2 ㅊㅜㄹㅆㅆㅆㅆㅐㅇ 3 # ㅈㅜㅇㅏㅇㄷㅐ 4 ㅁㅜㄴㅖㅊㅏㅇㅈㅏㅋㅋㅋㅋㅏㄱㄲㄲㄲㄲㅘㄹㅡㄹ 5 ㅈㅗㄹㅓㅍㅍㅍㅍㅐㄷㄸㄷㄸㄷㄸㄷㄸㅏ 6 

IPA: k jʌ ŋ k i t o1  jʌ tɕ u e s ʌ2   tɕʰ u l s
* ɛ 

ŋ3   #   tɕ u ŋ a ŋ t ɛ4   m u n e tɕʰ a ŋ tɕ a kʰ a k 
k* wa l ɨ l5   tɕ o l ʌ pʰ ɛ t t

* a6 

(the 
*
 diacritic indicates tense consonants) 

gloss: Born3 in Yeoju2, Gyeonggi-do1. 
Graduated6 from Jungang University4 

Department of Creative Writing5. 

We relied on spaces in the corpus to indicate 
word boundaries, although, as in all languages, 
there can be inconsistencies in written Korean.  

2.2 Error analysis 

An under-researched issue is the nature of the 

errors that segmentation algorithms make. For a 

given input word in the test corpus, we defined 

the output projection as the minimal sequence of 

segmented words containing the entire input 

word. For example, if the#kitty were segmented 

as thekitty, then thekitty would be the output pro-

jection for both the and kitty. Similarly, for a 

posited word in the segmentation/output of the 

test corpus, we defined the input projection. For 

example, if the#kitty were segmented as 

theki#tty, then the the#kitty would be the input 

projection of both theki and tty. For each word, 

we examined the input-output relationship. Sev-

eral questions were of interest. Are highly fre-

quent items segmented frequently enough that 

the child is likely to be able to learn them? Is it 
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the case that all or most items which are seg-

mented frequently are themselves words? Are 

there predicted errors which seem especially se-

rious or difficult to overcome? 

3 Results and discussion 

The 1350 distinct diphones found in the phonetic 

corpus were grouped into phonological classes. 

Table 1 indicates the probabilities (percentage) 

that a word boundary falls inside the diphone; 

when the class contains 3 or more diphones, the 

median and range are shown. Because of various 

phonological processes, some sequences cannot 

exist (blank cells), some can occur only word-

internally (marked int), and some can occur only 

across word boundaries (marked span). For ex-

ample, the velar nasal [ŋ] cannot begin a word, 

so diphones of the form Xŋ must be word-

internal. Conversely, a lenis-/h/ sequence indi-

cates a word boundary, because within a word a 

lenis stop merges with following /h/ to become 

an aspirated stop. If all diphones in a cell have a 

spanning rate above 90%, the cell says span*, 

and if below 10%, int*. This means that all the 

diphones in that class are highly informative; 

other classes contain a mix of more and less in-

formative diphones. 

The performance of the DiBS models is 

shown in Table 2. An undersegmentation error is 

a true word boundary which the segmentation 

algorithm fails to find (miss), while an overseg-

mentation error is a falsely posited boundary 

(false alarm). The under- and over-segmentation 

error rates are defined as the number of such er-

rors per word (percent). We also report the preci-

sion, recall, and F scores for boundary detection, 

word token segmentation, and type segmentation 

(for details see DP11, GGJ09). 

 

model baseline phrasal 

under (errs per wd) 43.4 72.5 

over (errs per wd) 17.7 22.0 

prec (bdry/tok/type) 68/36/34 28/11/12 

recall (bdry/tok/type) 46/27/29 11/6/8 

F (bdry/tok/type) 55/31/31 15/8/9 

Table 2: Results of DiBS models 

 

On the basis of the fact that the oversegmenta-

tion error rate in English and Russian was con-

sistently below 10% (<1 error/10 wds), DP11 

conjectured that phonotactic segmenters will, 

cross-linguistically, avoid significant overseg-

mentation. The results in Table 2 provide a coun-

terexample: oversegmentation is distinctly higher 

than in English and Russian. Indeed, Korean is a 

more challenging language for purely phonotac-

tic segmentation.  

3.1 Phonotactic cues to word segmentation 

Because phonological processes are more likely 

to apply word-internally, word-internal se-

quences are more predictable (Aslin et al. 1996; 

DP11; GGJ09; Saffran et al. 1996; van de Weijer 

1998). The phonology of Korean is a potentially 

        seg. 2 

seg. 1   

lenis 

stop 

lenis 

non-stop 

tense asp. h n m ŋ liquid vowel diphth. 

lenis stop span 100 

4-100 

int* 27 

5-53 

span 100 

98-100 

span  100 

10-100 

int* 7 

0-100 

lenis  

  non-stop 

         int int 

tense          int int 

aspirated          int int 

h          int int 

n 65 

29-66 

46, 57 38 

18-82 

45 

32-67 

35 32 61  span* 12 

1-37 

53 

20-99 

m 19 

14-21 

18, 18 14 

4-57 

14 

12-26 

14 int* 21  span int* 12 

1-92 

ŋ 12 

11-13 

10, 12 9 

6-55 

11 

10-15 

int* int* 10  span 6 

0-64 

18 

4-86 

liquid 55 

43-63 

84, 88 71 

6-90 

53 

17-68 

42 90 53  int* 3 

0-14 

39 

7-95 

vowel 16 

6-87 

32 

12-82 

36 

4-97 

18 

3-88 

38 

9-84 

5 

1-31 

13 

2-70 

int int* 44 

1-90 

51 

3-100 

diphthong 10 

0-79 

12 

0-55 

21 

0-100 

11 

0-87 

16 

0-88 

3 

0-15 

19 

0-74 

int int* 26 

0-100 

31 

0-100 

Table 1: Diphone behavior 
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rich source of information for word segmenta-

tion: obstruent-initial diphones are generally in-

formative as to the presence/absence of word 

boundaries. However, as we suspected, vowel-

vowel sequences are problematic, since they oc-

cur freely both within words and across word 

boundaries. Korean differs from English in that 

most English diphones occur nearly exclusively 

within words, or nearly exclusively across word 

boundaries (DP11), while in Korean most sono-

rant-obstruent sequences occur both within and 

across words. 

3.2 Errors and word-learning 

It seems reasonable to assume that word-learning 

is best facilitated by seeing multiple occurrences 

of a word. A segmentation that is produced only 

once might be ignored; thus we defined an input 

or output projection as frequent if it occurred 

more than once in the test sample. 

A word learner relying on a phonotactic model 
could expect to successfully identify many fre-

quent words. For 73 of the 100 most frequent 
input words, the only frequent output projection 
in the baseline model was the input word itself, 
meaning that the word was segmented correctly 
in most contexts. For 20 there was no frequent 
output projection, meaning that the word was not 

segmented consistently across contexts, which 
we assume is noise to the learner. In the phrasal 
model, for 16 items the most frequent output pro-
jection was the input word itself and for 64 there 
was no frequent output projection. 

Conversely, of the 100 most frequent potential 

words identified by the baseline model, in 26 
cases the most frequent input projection was the 
output word itself: a real word was correctly 
identified. In 26 cases there was no frequent in-
put projection, and in 48 another input projection 
was at least as frequent as the output word. One 

such example is [mjʌn] ‘cotton’, frequently seg-
mented out when it was a bound morpheme (‘if’ 
or ‘how many’). The most frequently segmented 
item was [ke], which can be a freestanding word 
(‘there/thing’), but was often segmented out from 
words suffixed with [-ke] ‘-ly/to’ and [-eke] ‘to’. 

What do these results mean for a child using a 
phonotactic strategy? First, many of the types 
segmented in a day would be experienced only 
once (and presumably ignored). Second, infants 
would not go far astray if they learned fre-
quently-segmented items as words. 

3.3 Phrase edges and independence 

We suspected the reason that the phrasal DiBS 

model performed so much worse than baseline 

was its assumption that phrase-edge distributions 

approximate word-edge distributions. Phrase be-

ginnings were a good proxy for word beginnings, 

but there were mismatches phrase-finally. For 

example, [a] is much more frequent phrase-

finally than word-finally (because of common 

verb suffixes ending in [a]), while [n] is much 

more frequent word-finally (because of non-

sentence-final suffixes ending in [n]). The posi-

tional independence assumption is too strong. 

4 Conclusion 

This paper extends previous studies by applying 

a computational learning model of phonotactic 

word segmentation to Korean. Various properties 

of Korean led us to believe it would challenge 

both unsupervised phonotactic and lexical ap-

proaches. 

Phonological and morphological analysis of 

errors yielded novel insights. For example, the 

generally greater error rate in Korean is partly 

caused by a high tolerance for vowel-vowel se-

quences within words. Interactions between 

morphology and word order result in violations 

of a key positional independence assumption.  

Phonotactic segmentation was distinctly worse 

than in previous languages (English, Russian), 

particularly for oversegmentation errors. This 

implies the segmentation of simplistic diphone 

models is not cross-linguistically stable, a find-

ing that aligns with other cross-linguistic com-

parisons of segmentation algorithms. In general, 

distinctly worse performance is found for lan-

guages other than English (Sesotho: Blanchard et 

al. 2010; Arabic and Spanish: Fleck 2008). These 

facts suggest that the successful segmentation 

model must incorporate richer phonotactics, or 

integrate some lexical processing. On the bright 

side, we found that frequently segmented items 

were mostly words, so a high segmentation error 

rate does not necessarily translate to a high error 

rate for word-learning. 
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Abstract

We investigated the effect of word sur-
prisal on the EEG signal during sen-
tence reading. On each word of 205 ex-
perimental sentences, surprisal was esti-
mated by three types of language model:
Markov models, probabilistic phrase-
structure grammars, and recurrent neu-
ral networks. Four event-related poten-
tial components were extracted from the
EEG of 24 readers of the same sentences.
Surprisal estimates under each model type
formed a significant predictor of the am-
plitude of the N400 component only, with
more surprising words resulting in more
negative N400s. This effect was mostly
due to content words. These findings
provide support for surprisal as a gener-
ally applicable measure of processing dif-
ficulty during language comprehension.

1 Introduction

Many studies of human language comprehension
measure the brain’s electrical activity during read-
ing. Such electroencephalography (EEG) experi-
ments have revealed that the EEG signal displays
systematic variation in response to the appearance
of each word. The different components that can
be observed in this signal are known as event-
related potentials (ERPs). Probably the most reli-
ably observed (and most studied) of these compo-
nents is a negative-going deflection at centropari-
etal electrodes that peaks at around 400 ms after
word onset and is therefore referred to as the N400
component.

It is well known that the N400 increases in am-
plitude (i.e., becomes more negative) when the
word leads to comprehension difficulty. To study
the general relation between word predictability
and the N400, Dambacher et al. (2006) obtained

subjective word-probability estimates (so-called
cloze probabilities) by asking participants to pre-
dict the upcoming word at each point in a large
number of sentences. A different group of subjects
read these same sentences while their EEG signal
was recorded. Results showed a correlation be-
tween N400 amplitude and cloze probability: Less
predictable words yielded stronger N400s.

We investigated whether similar results can be
obtained using more objective, model-based word
probabilities. For each word in a collection of
English sentences, estimates of itssurprisal (i.e.,
its negative log-transformed conditional probabil-
ity: − log P (wt|w1, . . . , wt−1)) were generated
by three types of language model: Markov (i.e.,n-
gram) models, phrase-structure grammars (PSGs),
and recurrent neural networks (RNNs). Next, EEG
signals of participants reading the same sentences
were recorded. A comparison of word surprisal to
different ERP components revealed that, indeed,
N400 amplitude was predicted by surprisal values:
More surprising words resulted in more negative
N400s, at least for content words.

2 Language models

A range of models of each type was trained, al-
lowing to investigate whether models that capture
the language statistics more accurately also yield
better predictions of ERP size. Such a relation is
generally found in studies that use word-reading
time as the dependent variable (Fernandez Mon-
salve et al., 2012; Frank and Bod, 2011; Frank
and Thompson, 2012), providing additional sup-
port that these psychological data are indeed ex-
plained by the surprisal values and not by some
confounding variable.

2.1 Corpus data

All models were trained on sentences from the
written texts in the British National Corpus
(BNC). First, the 10,000 word types with highest

878



frequency were selected from the BNC. Next, all
sentences were extracted that contained only those
words. This resulted in a training corpus of 1.06
million sentences (12.6 million word tokens).

Each trained model estimated a surprisal value
for each word of the 205 sentences (1931 word to-
kens) for which eye-tracking data are available in
the UCL corpus of reading times (Frank et al., in
press). These sentences, which were selected from
three unpublished novels, only contained words
from the 10,000 high-frequency word list.

2.2 Markov models

Markov models were trained with modified
Kneser-Ney smoothing (Chen and Goodman,
1999) as implemented in SRILM (Stolcke, 2002).
Model order was varied:n = 2, 3, 4. No unigram
model was computed because word frequency was
factored out during data analysis (see Section 4.2).

2.3 Recurrent neural networks

The RNN model architecture has been thoroughly
described elsewhere (Fernandez Monsalve et al.,
2012; Frank, in press) so it is not discussed here.
The only difference with previous versions was
that the current RNN was trained on a substantially
larger data set with more word types. A range of
RNN models was obtained by training on nine in-
creasingly large subsets of the BNC data, compris-
ing 2K, 5K, 10K, 20K, 50K, 100K, 200K, 400K,
and all 1.06M sentences. In addition, the network
was trained on the full set twice, making a total of
ten instantiations of the RNN model.

2.4 Phrase-structure grammars

To prepare data for PSG training, the selected
BNC sentences were parsed by the Stanford parser
(Klein and Manning, 2003). The resulting tree-
bank was divided into nine increasingly large sub-
sets, equal to those used for RNN training.1 Gram-
mars were induced from these subsets using the
algorithm by Roark (2001) with its standard set-
tings. Next, surprisal values on the experimental
sentences were generated by Roark’s incremental
parser. Since increasing the parser’s beam width
has been shown to improve both word-probability
estimates and the fit to word-reading times (Frank,
2009), the parser’s ‘base beam threshold’ parame-
ter was reduced to10−20.

1Because not all experimental sentences could be parsed
when the treebank comprised only 2K sentences, 1K sen-
tences were added to the smallest subset.

3 EEG data collection

Twenty-four healthy, adult volunteers from the
UCL Psychology subject pool took part in the
reading study. Their EEG was recorded contin-
uously from 32 channels during the presentation
of 5 practice sentences and the 205 experimental
items. Participants were asked to minimise blinks,
eye movements, and head movements during sen-
tence presentation.

Each sentence was preceded by a centrally pre-
sented fixation cross. As soon as the partici-
pant pressed a key, the cross was replaced by the
sentence’s first word, which was then automati-
cally replaced by each subsequent word. Word
presentation duration (in milliseconds) equalled
190 + 20k, wherek is the number of characters
in the word (including any attached punctuation).
After the word disappeared, there was a 390 ms
interval before the next word appeared.

The sentences were presented in random or-
der, one word at a time, always centrally located
on the monitor. One-hundred and ten of the ex-
perimental sentences were followed by a yes/no-
comprehension question, to ensure that partici-
pants tried to understand the sentences. All par-
ticipants answered at least 80% of the comprehen-
sion questions correctly.

4 Data analysis

4.1 ERP components

Four ERP components of interest were identified
from the literature on EEG and sentence reading:
Early Left Anterior Negativity (ELAN), P200,
N400, and a post-N400 positivity (PNP). Table 1
lists the corresponding time windows and approx-
imate electrode sites.2 For each component, the
average electrode potential over the corresponding
time window and electrodes was computed. These
average ERP amplitudes served as the four depen-
dent variables for data analysis.

The ELAN component is generally thought of
as indicative of difficulty with constructing syntac-
tic phrase structure (Friederici et al., 1999; Gunter
et al., 1999; Neville et al., 1991). Hence, if any
of the model types predicts ELAN size, we would
expect this to be the PSG.

Dambacher et al. (2006) found effects of word
frequency or length (which are strongly correlated

2The P600 component (Osterhout and Holcomb, 1992)
was not included because the shortest interval between con-
secutive word onsets was only 600 ms.
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Component Time window Location
ELAN 125–175 ms left anterior
P200 140–200 ms frontocentral
N400 300–500 ms centroparietal
PNP 400–600 ms frontopolar

Table 1: Investigated ERP components, their time
windows, and approximate scalp locations.

and therefore difficult to tease apart) on the P200
amplitude. Since we factor out these two lexical
factors in the analysis, we expect no additional ef-
fect of surprisal on P200.

If any of the components is sensitive to word
surprisal, this is most likely to be the N400 as
many studies have already shown that N400 am-
plitude depends on subjective word predictabil-
ity (Dambacher et al., 2006; Kutas and Hillyard,
1984; Moreno et al., 2002). Whether an effect
will appear on the PNP is more doubtful. Van
Petten and Luka (2012) argue that word expec-
tations that are confirmed result in reduced N400
size, whereas expectations that aredisconfirmed
increase the PNP. However, in a probabilistic set-
ting, expectations are not all-or-nothing so there
is no strict distinction between confirmation and
disconfirmation. Nevertheless, surprisal effects on
PNP may occur. Since the PNP has received rel-
atively little attention, the component may not be
such a reliable index of comprehension difficulty
as the N400 has proven to be.

4.2 Regression analysis

Data were discarded on words attached to a
comma, clitics, sentence-initial, and sentence-
final words. Moreover, artifacts in the EEG data
(mostly due to eye blinks) were identified and re-
moved, leaving 32,010 analysed data points per in-
vestigated ERP component. For each data point
and ERP component, a baseline potential was de-
termined by averaging over the component’s elec-
trodes in the 100 ms leading up to word onset.

In order to quantify the fit of surprisal to ERP
size, a linear mixed-effects regression model was
fitted to each of the four ERPs, using the pre-
dictors: baseline potential, log-transformed word
frequency, word length (number of characters),
word position in the sentence, and sentence po-
sition in the experiment.3 Also, all significant

3For word and sentence position, both linear and squared
factors were included in order to capture possible non-linear

two-way interactions were included (main effects
were removed if they were not significant and did
not appear in any interaction). In addition, there
were by-subject and by-item random intervals, as
well as significant by-subject and by-item random
slopes. Parameters for the correlation between
random intercept and slope where also estimated,
if they significantly contributed to model fit.

When the surprisal estimates by a particular lan-
guage model are included in the analysis, the re-
gression model’s deviance decreases. The size of
this decrease is theχ2-statistic of a likelihood-
ratio test for significance of the surprisal effect,
and was taken as the measure of the surprisal val-
ues’ fit to the ERP data.4 Negative values will be
used to indicate effects in the negative direction,
that is, when higher surprisal results in more neg-
ative (or less positive) going ERP deflections.

5 Results

5.1 Surprisal effects

Figure 1 plots the fit of each model’s surprisal esti-
mates to ERP amplitude as a function of the aver-
age naturallog P (wt|w1, . . . , wt−1), which quan-
tifies to what extent the model has acquired accu-
rate language statistics.5 For the ELAN, P200 and
PNP components, there were no significant effects
after correcting for multiple comparisons. In con-
trast, effects on the N400 were highly significant.

5.2 Model comparison

Table 2 shows results of pairwise comparisons be-
tween the best models of each type (i.e., those
whose surprisal estimates fit the N400 data best).
Clearly, RNN-based surprisal explains variance
over and above each of the other two models
whereas neither then-gram nor the PSG model
outperforms the RNN. Moreover, the RNN’s sur-
prisals explain a marginally significant (χ2 =
3.47; p < .07) amount of variance over and above
thecombined PSG andn-gram surprisals.

changes over the course of the sentence or experiment.
4This definition equals what Frank and Bod (2011) call

‘psychological accuracy’ in an analysis of reading times.
5This measure, which Frank and Bod (2011) call ‘linguis-

tic accuracy’, equals the negative logarithm of the model’s
perplexity. Increasing the amount of training data (or the
value ofn) resulted in higher linguistic accuracy, except for
the three PSG models trained on the smallest amounts of data.
This shows that the models did not suffer from overfitting.
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Figure 1: Fit to surprisal of ERP amplitude (for ELAN, P200, N400, and PNP components) as a function
of averagelog P (wt|w1, . . . , wt−1). Each plotted point corresponds to predictions by one of the trained
models. Dotted lines indicateχ2 = ±3.84, beyond which effects are statistically significant (p < .05)
if no correction for multiple comparisons is applied. The dashed line indicates the level below which
effects are significant after applying the correction proposed by Benjamini and Hochberg (1995), on
each ERP component separately because of our prior expectation that effects would occur mostly (if not
exclusively) on the N400 component.

Model n-gram RNN PSG
n-gram χ2 = 1.34 χ2 = 1.66

p > .2 p > .1

RNN χ2 = 6.52 χ2 = 4.78
p < .02 p < .05

PSG χ2 = 4.20 χ2 = 2.14
p < .05 p > .1

Table 2: Pairwise comparisons between surprisal
estimates by the best models of each type. Shown
are the results of likelihood-ratio tests for the ef-
fect of one set of surprisal estimates (rows) over
and above the other (columns).

5.3 Comparing word classes

N400 effects are nearly exclusively investigated
on content (i.e., open-class) words. Dambacher et
al. (2006), too, investigated the relation between
ERP amplitudes and cloze probabilities on con-
tent words only. When running separate analyses
on content and function words (constituting 53.2%
and 46.8% of the data, respectively), we found that
the N400 effect of Figure 1 is nearly fully driven
by content words (see Figure 2). None of the mod-
els’ surprisal estimates formed a significant pre-
dictor of N400 amplitude on function words, after
correction for multiple comparisons.

6 Discussion

We demonstrated a clear effect of word surprisal,
as estimated by different language models, on the
EEG signal: The larger a (content) word’s sur-
prisal value, the more negative the resulting N400.
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Figure 2: Fit to surprisal of N400 amplitude, for
content words (left) and function words (right).
Dotted lines indicateχ2 = ±3.84, beyond which
effects are statistically significant (p < .05) with-
out correcting for multiple comparisons. Dashed
lines indicates the levels beyond which effects
are significant after multiple-comparison correc-
tion (Benjamini and Hochberg, 1995).

The N400 component is generally viewed as in-
dicative of lexical rather than syntactic processing
(Kaan, 2007), which may explain why surprisal
under the PSG model did not have any significant
explanatory value over and above RNN-based sur-
prisal. The relatively weak performance of our
Markov models is most likely due to their strict
(and cognitively unrealistic) limit on the size of
the prior context upon which word-probability es-
timates are conditioned.

Unlike the ELAN, P200, and PNP components,
the N400 is known to be sensitive to the cloze
probability of content words. The fact that sur-
prisal effects were found on the N400 only, there-
fore suggests that subjective predictability scores
and model-based surprisal estimates form opera-
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tionalisations of one and the same underlying cog-
nitive factor. Needless to say, our statistical mod-
els fail to capture many information sources, such
as semantics and discourse, that do affect cloze
probabilities. However, it is possible in principle
to integrate these into probabilistic language mod-
els (Dubey et al., 2011; Mitchell et al., 2010).

To the best of our knowledge, only one other
published study relates language model predic-
tions to the N400: Parviz et al. (2011) found that
surprisal estimates (corrected for word frequency)
from ann = 4 Markov model predicted N400 size
as measured by magnetoencephalography (rather
than EEG). Although their PSG-based surprisals
did not correlate with N400 size, a related measure
derived from the PSG –lexical entropy– did. How-
ever, Parviz et al. (2011) only looked at effects
on the sentence-final content word of items con-
structed for a speech perception experiment (Ka-
likow et al., 1977), rather than investigating sur-
prisal’s general predictive value across words of
naturally occurring sentences, as we did here.

Our experimental design was parametric rather
than factorial, which allowed us to study the effect
of surprisal over a sample of English sentences
rather than carefully manipulating surprisal while
holding other factors constant. This has the ad-
vantage that our findings are likely to generalise to
other sentence stimuli, but it can also raise a pos-
sible concern: The N400 effect may not be due
to surprisal itself, but to an unknown confound-
ing variable that was not included in the regression
analysis. However, this seems unlikely because of
two additional findings that only follow naturally
if surprisal is indeed the relevant predictor: Signif-
icant results only appeared where they were most
expected a priori (i.e., on N400 but not on other
components) and there was a nearly monotonic re-
lation between the models’ word-prediction accu-
racy and their ability to account for N400 size.

7 Conclusion

Although word surprisal has often been shown
to be predictive of word-reading time (Fernan-
dez Monsalve et al., 2012; Frank and Thompson,
2012; Smith and Levy, in press), a general effect
on the EEG signal has not before been demon-
strated. Hence, these results provide additional ev-
idence in support of surprisal as a reliable measure
of cognitive processing difficulty during sentence
comprehension (Hale, 2001; Levy, 2008).
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Abstract

We present a system for automated pho-
netic clustering analysis of cognitive tests
of phonemic verbal fluency, on which one
must name words starting with a specific
letter (e.g., ‘F’) for one minute. Test re-
sponses are typically subjected to man-
ual phonetic clustering analysis that is
labor-intensive and subject to inter-rater
variability. Our system provides an au-
tomated alternative. In a pilot study,
we applied this system to tests of 55
novice and experienced professional fight-
ers (boxers and mixed martial artists) and
found that experienced fighters produced
significantly longer chains of phonetically
similar words, while no differences were
found in the total number of words pro-
duced. These findings are preliminary, but
strongly suggest that our system can be
used to detect subtle signs of brain damage
due to repetitive head trauma in individu-
als that are otherwise unimpaired.

1 Introduction

The neuropsychological test of phonemic verbal
fluency (PVF) consists of asking the patient to
generate as many words as he or she can in a lim-
ited time (usually 60 seconds) that begin with a
specific letter of the alphabet (Benton et al., 1989).
This test has been used extensively as part of larger
cognitive test batteries to study cognitive impair-
ment resulting from a number of neurological con-
ditions, including Parkinson’s and Huntington’s
diseases, various forms of dementia, and traumatic
brain injury (Troyer et al., 1998a,b; Raskin et al.,
1992; Ho et al., 2002). Patients with these dis-
orders tend to generate significantly fewer words
on this test than do healthy individuals. Prior
studies have also found that clustering (the degree

to which patients generate groups of phonetically
similar words) and switching (transitioning from
one cluster to the next) behaviors are also sensi-
tive to the effects of these neurological conditions.

Contact sports such as boxing, mixed martial
arts, football, and hockey are well known for
high prevalence of repetitive head trauma. In re-
cent years, the long-term effects of repetitive head
trauma in athletes has become the subject of inten-
sive research. In general, repetitive head trauma
is a known risk factor for chronic traumatic en-
cephalopathy (CTE), a devastating and untreat-
able condition that ultimately results in permanent
disability and premature death (Omalu et al., 2010;
Gavett et al., 2011). However, little is currently
known about the relationship between the amount
of exposure to head injury and the magnitude of
risk for developing these conditions. Furthermore,
the development of new behavioral methods aimed
at detection of subtle early signs of brain impair-
ment is an active area of research.

The PVF test is an excellent target for this re-
search because it is very easy to administer and has
been shown to be sensitive to the effects of acute
traumatic brain injury (Raskin and Rearick, 1996).
However, a major obstacle to using this test widely
for early detection of brain impairment is that clus-
tering and switching analyses needed to detect
these subtle changes have to be done manually.
These manual approaches are extremely labor-
intensive, and are therefore limited in the types of
clustering analyses that can be performed. Manual
methods are also not scalable to large numbers of
tests and are subject to inter-rater variability, mak-
ing the results difficult to compare across subjects,
as well as across different studies. Moreover, tra-
ditional manual clustering and switching analyses
rely primarily on word orthography to determine
phonetic similarity (e.g., by comparing the first
two letters of two words), rather than phonetic rep-
resentations, which would be prohibitively time-
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Figure 1: High-level system architecture and
workflow.

consuming to obtain by hand.
Phonetic similarity has been investigated in ap-

plication to a number of research areas, including
spelling correction (Toutanova and Moore, 2002),
machine translation (Knight and Graehl, 1998;
Kondrak et al., 2003), cross-lingual information
retrieval (Melamed, 1999; Fujii and Ishikawa,
2001), language acquisition (Somers, 1998), his-
torical linguistics (Raman et al., 1997), and social-
media informatics (Liu et al., 2012); we propose a
novel clinical application.

Our objective was to develop and pilot-test a
relatively simple, but robust, system for automatic
identification of word clusters, based on phonetic
content, that uses the CMU Pronouncing Dictio-
nary, a decision tree-based algorithm for gener-
ating pronunciations for out-of-dictionary words,
and two different approaches to calculating pho-
netic similarity between words.

We first describe the system architecture and
our phonetic-similarity computation methods, and
then present the results of a pilot study, using data
from professional fighters, demonstrating the util-
ity of this system for early detection of subtle signs
of brain impairment.

2 Automated Clustering Analysis

Figure 1 shows the high-level architecture and
workflow of our system.

2.1 Pronunciation Dictionary

We use a dictionary developed for speech recog-
nition and synthesis applications at the Carnegie
Mellon University (CMUdict). CMUdict contains
phonetic transcriptions, using a phone set based on
ARPABET (Rabiner and Juang, 1993), for North
American English word pronunciations (Weide,
1998). We used the latest version, cmudict.0.7a,
which contains 133,746 entries.

From the full set of entries in CMUdict,
we removed alternative pronunciations for each
word, leaving a single phonetic representation for
each heteronymous set. Additionally, all vowel
symbols were stripped of numeric stress mark-
ings (e.g., AH1 → AH), and all multicharacter
phone symbols were converted to arbitrary single-
character symbols, in lowercase to distinguish
these symbols from the original single-character
ARPABET symbols (e.g., AH → c). Finally,
whitespace between the symbols constituting each
phonetic representation was removed, yielding
compact phonetic-representation strings suitable
for computing our similarity measures.

To illustrate, the CMUdict pronunciation entry
for the word phonetic, [F AH0 N EH1 T IH0
K], would be represented as FcNiTmK.

2.2 Similarity Computation

Our system uses two methods for determining
phonetic similarity: edit distance and a common-
biphone check. Each of these methods gives a
measure of similarity for a pair of phonetic repre-
sentations, which we respectively call a phonetic-
similarity score (PSS) and a common-biphone
score (CBS).

For PSS, we first compute the Levenshtein
distance (Levenshtein, 1966) between compact
phonetic-representation strings and normalize that
to the length of the longer string; then, that value
is subtracted from 1. PSS values range from 0 to
1, with higher scores indicating greater similarity.
The CBS is binary, with a score of 1 given for two
phonetic representations that have a common ini-
tial and/or final biphone, and 0 for two strings that
have neither in common.

885



Figure 2: Phonetic chain and common-biphone
chain (below) for an example PVF response.

2.3 Phonetic Clustering
We distinguish between two ways of defining pho-
netic clusters. Traditionally, any sequence of n
words in a PVF response is deemed to form a clus-
ter if all pairwise word combinations for that se-
quence are determined to be phonetically similar
by some metric. In addition to this method, we
developed a less stringent approach in which we
define chains instead of clusters.

A chain comprises a sequence for which the
phonetic representation of each word is similar
to that of the word immediately prior to it in the
chain (unless it is chain-initial) and the word sub-
sequent to it (unless it is chain-final). Lone words
that do not belong to any cluster constitute sin-
gleton clusters. We call chains based on the edit-
distance method phonetic chains, and chains based
on the common-biphone method common-biphone
chains; both are illustrated in Figure 2.

Unlike the binary CBS method, the PSS
method produces continuous edit-distance values,
and therefore requires a threshold for categorizing
a word pair as similar or dissimilar. We determine
the threshold empirically for each letter by taking
a random sample of 1000 words starting with that
letter in CMUdict, computing PSS scores for each
pairwise combination (n = 499, 500), and then
setting the threshold as the value separating the
upper quintile of these scores. With the common-
biphone method, two words are considered pho-
netically similar simply if their CBS is 1.

2.4 System Overview
Our system is written in Python, and is available
online.1 The system accepts transcriptions of a

1http://rxinformatics.umn.edu/
downloads.html

PVF response for a specific letter and, as a pre-
processing step, removes any words that do not be-
gin with that letter. After pre-processing, all words
are phoneticized by dictionary lookup in our mod-
ified CMUdict. For out-of-dictionary words, we
automatically generate a phonetic representation
with a decision tree-based grapheme-to-phoneme
algorithm trained on the CMUdict (Pagel et al.,
1998).

Next, PSSs and CBSs are computed sequen-
tially for each pair of contiguous phonetic rep-
resentations, and are used in their respective
methods to compute the following measures:
mean pairwise similarity score (MPSS), mean
chain length (MCL), and maximum chain length
(MXCL). Singletons are included in these calcula-
tions as chains of length 1.

We also calculate equivalent measures for clus-
ters, but do not present these results here due to
space limitations, as they are similar to those for
chains. In addition to these measures, our sys-
tem produces a count of the total number of words
that start with the letter specified for the PVF test
(WCNT), and a count of repeated words (RCNT).

3 Pilot Study

3.1 Participants

We used PVF tests from 55 boxers and mixed
martial artists (4 women, 51 men; mean age 27.7
y.o., SD 6.0) that participated in the Professional
Fighters Brain Health Study (PFBH). The PFBH
is a longitudinal study of unarmed active profes-
sional fighters, retired professional fighters, and
age/education matched controls (Bernick et al., in
press). It is designed to enroll over 400 partici-
pants over the next five years. The 55 participants
in our pilot represent a sample from the first wave
of assessments, conducted in summer of 2012. All
55 participants were fluent speakers of English and
were able to read at at least a 4th-grade level. None
of these participants fought in a professional or
amateur competition within 45 days prior to test-
ing.

3.2 Methods

Each participant’s professional fighting history
was used to determine his or her total number of
pro fights and number of fights per year. These
figures were used to construct a composite fight-
exposure index as a summary measure of cumula-
tive traumatic exposure, as follows.
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Figure 3: Computation-method and exposure-group comparisons showing significant differences be-
tween the low- and high-exposure fighter groups on MPSS, MCL, and MXCL measures. Error bars
represent 95% confidence intervals around the means.

Fighters with zero professional fights were as-
signed a score of 0; fighters with between 1 and 15
total fights, but only one or fewer fights per year,
were assigned a score of 1; fighters with 1-15 to-
tal fights, and more than one fight per year, got a
score of 2; fighters with more than 15 total fights,
but only one or fewer fights per year, got a score
of 3; remaining fighters, with more than 15 fights
and more than one fight per year, were assigned
the highest score of 4.

Due to the relatively small sample size in our
pilot study, we combined groups with scores of
0 and 1 to constitute the low-exposure group
(n = 25), and the rest were assigned to the high-
exposure group (n = 30).

All participants underwent a cognitive test bat-
tery that included the PVF test (letter ‘F’). Their
responses were processed by our system, and
means for our chaining variables of interest, as
well as counts of total words and repetitions,
were compared across the low- and high-exposure
groups. Additionally, all 55 PVF responses were
subjected to manual phonetic clustering analysis,
following the methodology of Troyer et al. (1997).
With this approach, clusters are used instead of
chains, and two words are considered phonetically
similar if they meet any of the following condi-
tions: they begin with the same two orthographic
letters; they rhyme; they differ by only a vowel
sound (e.g., flip and flop); or they are homophones.

For each clustering method, the differences in
means between the groups were tested for sta-
tistical significance using one-way ANOVA ad-
justed for the effects of age and years of education.
Spearman correlation was used to test for associ-

ations between continuous variables, due to non-
linearity, and to directly compare manually deter-
mined clustering measures with corresponding au-
tomatically determined chain measures.

4 Results

The results of comparisons between the clustering
methods, as well as between the low- and high-
exposure groups, are illustrated in Figure 3.2

We found a significant difference (p < 0.02)
in MPSS between the high- and low-exposure
groups using the common-biphone method (0.15
vs. 0.11), while with edit distance the difference
was small (0.29 vs. 0.28) and not significant (Fig-
ure 3a). Due to infeasibility, MPSS was not calcu-
lated manually.

Mean chain sizes determined by the common-
biphone method correlated with manually deter-
mined cluster sizes more strongly than did chain
sizes determined by edit distance (ρ = 0.73, p <
0.01 vs. ρ = 0.48, p < 0.01). Comparisons of
maximum chain and cluster sizes showed a sim-
ilar pattern (ρ = 0.71, p < 0.01 vs. ρ = 0.39,
p < 0.01).

Both automatic methods showed significant dif-
ferences (p < 0.01) between the two groups in
MCL and MXCL, with each finding longer chains
in the high-exposure group (Figure 3b, 3c); how-
ever, slightly larger differences were observed us-
ing the common-biphone method (MCL: 2.79 vs.
2.21 by common-biphone method, 3.23 vs. 2.80
by edit-distance method; MXCL: 3.94 vs. 2.64 by

2Clustering measures rely on chains for our automatic
methods, and on clusters for manual analysis.
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common biphone, 4.94 vs. 3.76 by edit distance).
Group differences for manually determined MCL
and MXCL were also significant (p < 0.05 and
p < 0.02, respectively), but less so (MCL: 1.71
vs. 1.46; MXCL: 4.0 vs. 3.04).

5 Discussion

While manual phonetic clustering analysis yielded
significant differences between the low- and high-
exposure fighter groups, our automatic approach,
which utilizes phonetic word representations, ap-
pears to be more sensitive to these differences; it
also appears to produce less variability on cluster-
ing measures. Furthermore, as discussed above,
automatic analysis is much less labor-intensive,
and thus is more scalable to large numbers of tests.
Moreover, our system is not prone to human error
during analysis, nor to inter-rater variability.

Of the two automatic clustering methods, the
common-biphone method, which uses binary sim-
ilarity values, found greater differences between
groups in MPSS, MCL, and MXCL; thus, it ap-
pears to be more sensitive than the edit-distance
method in detecting group differences. Common-
biphone measures were also found to better cor-
relate with manual measures; however, both au-
tomated methods disagreed with the manual ap-
proach to some extent. The fact that the auto-
mated common-biphone method shows significant
differences between group means, while having
less variability in measurements, suggests that it
may be a more suitable measure of phonetic clus-
tering than the traditional manual method.

These results are particularly important in light
of the difference in WCNT means between low-
and high-exposure groups being small and not sig-
nificant (WCNT: 17.6, SD 5.1 vs. 18.7, SD 4.7;
p = 0.24). Other studies that used manual cluster-
ing and switching analyses reported significantly
more switches for healthy controls than for indi-
viduals with neurological conditions (Troyer et al.,
1997). These studies also reported differences in
the total number of words produced, likely due to
investigating already impaired individuals.

Our findings show that the low- and high-
exposure groups produced similar numbers of
words, but the high-exposure group tended to
produce longer sequences of phonetically simi-
lar words. The latter phenomenon may be inter-
preted as a mild form of perseverative (stuck-in-
set/repetitive) behavior that is characteristic of dis-

orders involving damage to frontal and subcortical
brain structures.

To test this interpretation, we correlated MCL
and MXCL, the two measures with greatest dif-
ferences between low- and high-exposure fighters,
with the count of repeated words (RCNT). The
resulting correlations were 0.41 (p = 0.01) and
0.48 (p < 0.001), respectively, which supports the
perseverative-behavior interpretation of our find-
ings.

Clearly, these findings are preliminary and need
to be confirmed in larger samples; however, they
plainly demonstrate the utility of our fully auto-
mated and quantifiable approach to characteriz-
ing and measuring clustering behavior on PVF
tests. Pending further clinical validation, this sys-
tem may be used for large-scale screening for sub-
tle signs of certain types of brain damage or de-
generation not only in contact-sports athletes, but
also in the general population.
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Abstract

We have elicited human quantitative judg-
ments of semantic relatedness for 122
pairs of nouns and compiled them into a
new set of relatedness norms that we call
Rel-122. Judgments from individual sub-
jects in our study exhibit high average cor-
relation to the resulting relatedness means
(r = 0.77, σ = 0.09, N = 73), although not
as high as Resnik’s (1995) upper bound
for expected average human correlation to
similarity means (r = 0.90). This suggests
that human perceptions of relatedness are
less strictly constrained than perceptions
of similarity and establishes a clearer ex-
pectation for what constitutes human-like
performance by a computational measure
of semantic relatedness.

We compare the results of several
WordNet-based similarity and relatedness
measures to our Rel-122 norms and
demonstrate the limitations of WordNet
for discovering general indications of
semantic relatedness. We also offer a cri-
tique of the field’s reliance upon similarity
norms to evaluate relatedness measures.

1 Introduction

Despite the well-established technical distinc-
tion between semantic similarity and relatedness
(Agirre et al., 2009; Budanitsky and Hirst, 2006;
Resnik, 1995), comparison to established similar-
ity norms from psychology remains part of the
standard evaluative procedure for assessing com-
putational measures of semantic relatedness. Be-
cause similarity is only one particular type of re-
latedness, comparison to similarity norms fails to
give a complete view of a relatedness measure’s
efficacy.

In keeping with Budanitsky and Hirst’s (2006)
observation that “comparison with human judg-
ments is the ideal way to evaluate a measure of
similarity or relatedness,” we have undertaken the
creation of a new set of relatedness norms.

2 Background

The similarity norms of Rubenstein and Goode-
nough (1965; henceforth R&G) and Miller and
Charles (1991; henceforth M&C) have seen ubiq-
uitous use in evaluation of computational mea-
sures of semantic similarity and relatedness.

R&G established their similarity norms by pre-
senting subjects with 65 slips of paper, each of
which contained a pair of nouns. Subjects were
directed to read through all 65 noun pairs, then
sort the pairs “according to amount of ‘similarity
of meaning.’” Subjects then assigned similarity
scores to each pair on a scale of 0.0 (completely
dissimilar) to 4.0 (strongly synonymous).

The R&G results have proven to be highly repli-
cable. M&C repeated R&G’s study using a subset
of 30 of the original word pairs, and their resulting
similarity norms correlated to the R&G norms at
r = 0.97. Resnik’s (1995) subsequent replication
of M&C’s study similarly yielded a correlation of
r = 0.96. The M&C pairs were also included in a
similarity study by Finkelstein et al. (2002), which
yielded correlation of r = 0.95 to the M&C norms.

2.1 WordSim353

WordSim353 (Finkelstein et al., 2002) has re-
cently emerged as a potential surrogate dataset for
evaluating relatedness measures. Several studies
have reported correlation to WordSim353 norms
as part of their evaluation procedures, with some
studies explicitly referring to it as a collection of
human-assigned relatedness scores (Gabrilovich
and Markovitch, 2007; Hughes and Ramage,
2007; Milne and Witten, 2008).

890



Yet, the instructions presented to Finkelstein et
al.’s subjects give us pause to reconsider Word-
Sim353’s classification as a set of relatedness
norms. They repeatedly framed the task as one in
which subjects were expected to assign word simi-
larity scores, although participants were instructed
to extend their definition of similarity to include
antonymy, which perhaps explains why the au-
thors later referred to their data as “relatedness”
norms rather than merely “similarity” norms.

Jarmasz and Szpakowicz (2003) have raised fur-
ther methodological concerns about the construc-
tion of WordSim353, including: (a) similarity was
rated on a scale of 0.0 to 10.0, which is intrin-
sically more difficult for humans to manage than
the scale of 0.0 to 4.0 used by R&G and M&C,
and (b) the inclusion of proper nouns introduced
an element of cultural bias into the dataset (e.g.,
the evaluation of the pair Arafat–terror).

Cognizant of the problematic conflation of sim-
ilarity and relatedness in WordSim353, Agirre et
al. (2009) partitioned the data into two sets:
one containing noun pairs exhibiting similarity,
and one containing pairs of related but dissimilar
nouns. However, pairs in the latter set were not
assessed for scoring distribution validity to ensure
that strongly related word pairs were not penalized
by human subjects for being dissimilar.1

3 Methodology

In our experiments, we elicited human ratings of
semantic relatedness for 122 noun pairs. In doing
so, we followed the methodology of Rubenstein
and Goodenough (1965) as closely as possible:
participants were instructed to read through a set
of noun pairs, sort them by how strongly related
they were, and then assign each pair a relatedness
score on a scale of 0.0 (“completely unrelated”) to
4.0 (“very strongly related”).

We made two notable modifications to the ex-
perimental procedure of Rubenstein and Goode-
nough. First, instead of asking participants to
judge “amount of ‘similarity of meaning,’” we
asked them to judge “how closely related in mean-
ing” each pair of nouns was. Second, we used a
Web interface to collect data in our study; instead
of reordering a deck of cards, participants were
presented with a grid of cards that they were able

1Perhaps not surprisingly, the highest scores in Word-
Sim353 (all ratings from 9.0 to 10.0) were assigned to pairs
that Agirre et al. placed in their similarity partition.

to rearrange interactively with the use of a mouse
or any touch-enabled device, such as a tablet PC.2

3.1 Experimental Conditions
Each participant in our study was randomly as-
signed to one of four conditions. Each condition
contained 32 noun pairs for evaluation.

Of those pairs, 10 were randomly selected
from from WordNet++ (Ponzetto and Navigli,
2010) and 10 from SGN (Szumlanski and Gomez,
2010)—two semantic networks that categori-
cally indicate strong relatedness between Word-
Net noun senses. 10 additional pairs were gen-
erated by randomly pairing words from a list of
all nouns occurring in Wikipedia. The nouns
in the pairs we used from each of these three
sources were matched for frequency of occurrence
in Wikipedia.

We manually selected two additional pairs that
appeared across all four conditions: leaves–rake
and lion–cage. These control pairs were included
to ensure that each condition contained examples
of strong semantic relatedness, and potentially to
help identify and eliminate data from participants
who assigned random relatedness scores. Within
each condition, the 32 word pairs were presented
to all subjects in the same random order. Across
conditions, the two control pairs were always pre-
sented in the same positions in the word pair grid.

Each word pair was subjected to additional
scrutiny before being included in our dataset. We
eliminated any pairs falling into one or more
of the following categories: (a) pairs containing
proper nouns, (b) pairs in which one or both nouns
might easily be mistaken for adjectives or verbs,
(c) pairs with advanced vocabulary or words that
might require domain-specific knowledge in or-
der to be properly evaluated, and (d) pairs with
shared stems or common head nouns (e.g., first
cousin–second cousin and sinner–sinning). The
latter were eliminated to prevent subjects from
latching onto superficial lexical commonalities as
indicators of strong semantic relatedness without
reflecting upon meaning.

3.2 Participants
Participants in our study were recruited from in-
troductory undergraduate courses in psychology
and computer science at the University of Cen-
tral Florida. Students from the psychology courses

2Online demo: http://www.cs.ucf.edu/∼seansz/rel-122
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participated for course credit and accounted for
89% of respondents.

92 participants provided data for our study. Of
these, we identified 19 as outliers, and their data
were excluded from our norms to prevent interfer-
ence from individuals who appeared to be assign-
ing random scores to noun pairs. We considered
an outlier to be any individual whose numeric rat-
ings fell outside two standard deviations from the
means for more than 10% of the word pairs they
evaluated (i.e., at least four word pairs, since each
condition contained 32 word pairs).

For outlier detection, means and standard de-
viations were computed using leave-one-out sam-
pling. That is, data from individual J were not in-
corporated into means or standard deviations when
considering whether to eliminate J as an outlier.3

Of the 73 participants remaining after outlier
elimination, there was a near-even split between
males (37) and females (35), with one individual
declining to provide any demographic data. The
average age of participants was 20.32 (σ = 4.08,
N = 72). Most students were freshmen (49), fol-
lowed in frequency by sophomores (16), seniors
(4), and juniors (3). Participants earned an average
score of 42% on a standardized test of advanced
vocabulary (σ = 16%, N = 72) (Test I – V-4 from
Ekstrom et al. (1976)).

4 Results

Each word pair in Rel-122 was evaluated by at
least 20 human subjects. After outlier removal
(described above), each word pair retained eval-
uations from 14 to 22 individuals. The resulting
relatedness means are available online.4

An excerpt of the Rel-122 norms is shown in
Table 1. We note that the highest rated pairs in our
dataset are not strictly similar entities; exactly half
of the 10 most strongly related nouns in Table 1 are
dissimilar (e.g., digital camera–photographer).

Judgments from individual subjects in our study
exhibited high average correlation to the elicited
relatedness means (r = 0.769, σ = 0.09, N =
73). Resnik (1995), in his replication of the

3We used this sampling method to prevent extreme out-
liers from masking their own aberration during outlier de-
tection, which is potentially problematic when dealing with
small populations. Without leave-one-out-sampling, we
would have identified fewer outliers (14 instead of 19), but
the resulting means would still have correlated strongly to
our final relatedness norms (r = 0.991, p < 0.01).

4http://www.cs.ucf.edu/∼seansz/rel-122

# Word Pair µ

1. underwear lingerie 3.94
2. digital camera photographer 3.85
3. tuition fee 3.85
4. leaves rake 3.82
5. symptom fever 3.79
6. fertility ovary 3.78
7. beef slaughterhouse 3.78
8. broadcast commentator 3.75
9. apparel jewellery 3.72
10. arrest detention 3.69

. . .
122. gladiator plastic bag 0.13

Table 1: Excerpt of Rel-122 norms.

M&C study, reported average individual correla-
tion of r = 0.90 (σ = 0.07, N = 10) to similar-
ity means elicited from a population of 10 gradu-
ate students and postdoctoral researchers. Presum-
ably Resnik’s subjects had advanced knowledge of
what constitutes semantic similarity, as he estab-
lished r = 0.90 as an upper bound for expected
human correlation on that task.

The fact that average human correlation in our
study is weaker than in previous studies suggests
that human perceptions of relatedness are less
strictly constrained than perceptions of similarity,
and that a reasonable computational measure of re-
latedness might only approach a correlation of r =
0.769 to relatedness norms.

In Table 2, we present the performance of a va-
riety of relatedness and similarity measures on our
new set of relatedness means.5 Coefficients of cor-
relation are given for Pearson’s product-moment
correlation (r), as well as Spearman’s rank corre-
lation (ρ). For comparison, we include results for
the correlation of these measures to the M&C and
R&G similarity means.

The generally weak performance of the
WordNet-based measures on this task is not
surprising, given WordNet’s strong disposition
toward codifying semantic similarity, which
makes it an impoverished resource for discovering
general semantic relatedness. We note that the
three WordNet-based measures from Table 2
that are regarded in the literature as relatedness
measures (Banerjee and Pedersen, 2003; Hirst and
St-Onge, 1998; Patwardhan and Pedersen, 2006)

5Results based on standard implementations in the Word-
Net::Similarity Perl module of Pedersen et al. (2004) (v2.05).
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Rel-122 M&C R&G
Measure r ρ r ρ r ρ

* Szumlanski and Gomez (2010) 0.654 0.534 0.852 0.859 0.824 0.841
* Patwardhan and Pedersen (2006) 0.341 0.364 0.865 0.906 0.793 0.795
Path Length 0.225 0.183 0.755 0.715 0.784 0.783
* Banerjee and Pedersen (2003) 0.210 0.258 0.356 0.804 0.340 0.718
Resnik (1995) 0.203 0.182 0.806 0.741 0.822 0.757
Jiang and Conrath (1997) 0.188 0.133 0.473 0.663 0.575 0.592
Leacock and Chodorow (1998) 0.173 0.167 0.779 0.715 0.839 0.783
Wu and Palmer (1994) 0.187 0.180 0.764 0.732 0.797 0.768
Lin (1998) 0.145 0.148 0.739 0.687 0.726 0.636
* Hirst and St-Onge (1998) 0.141 0.160 0.667 0.782 0.726 0.797

Table 2: Correlation of similarity and relatedness measures to Rel-122, M&C, and R&G. Starred rows
(*) are considered relatedness measures. All measures are WordNet-based, except for the scoring metric
of Szumlanski and Gomez (2010), which is based on lexical co-occurrence frequency in Wikipedia.

# Noun Pair Sim. Rel. # Noun Pair Sim. Rel.
1. car automobile 3.92 4.00 16. lad brother 1.66 2.68
2. gem jewel 3.84 3.98 17. journey car 1.16 3.00
3. journey voyage 3.84 3.97 18. monk oracle 1.10 2.54
4. boy lad 3.76 3.97 19. cemetery woodland 0.95 1.69
5. coast shore 3.70 3.97 20. food rooster 0.89 2.59
6. asylum madhouse 3.61 3.91 21. coast hill 0.87 1.59
7. magician wizard 3.50 3.58 22. forest graveyard 0.84 2.01
8. midday noon 3.42 4.00 23. shore woodland 0.63 1.63
9. furnace stove 3.11 3.67 24. monk slave 0.55 1.31
10. food fruit 3.08 3.91 25. coast forest 0.42 1.89
11. bird cock 3.05 3.71 26. lad wizard 0.42 2.12
12. bird crane 2.97 3.96 27. chord smile 0.13 0.68
13. tool implement 2.95 2.86 28. glass magician 0.11 1.30
14. brother monk 2.82 2.89 29. rooster voyage 0.08 0.63
15. crane implement 1.68 0.90 30. noon string 0.08 0.14

Table 3: Comparison of relatedness means to M&C similarity means. Correlation is r = 0.91.

have been hampered by their reliance upon Word-
Net. The disparity between their performance on
Rel-122 and the M&C and R&G norms suggests
the shortcomings of using similarity norms for
evaluating measures of relatedness.

5 (Re-)Evaluating Similarity Norms

After establishing our relatedness norms, we cre-
ated two additional experimental conditions in
which subjects evaluated the relatedness of noun
pairs from the M&C study. Each condition again
had 32 noun pairs: 15 from M&C and 17 from
Rel-122. Pairs from M&C and Rel-122 were uni-
formly distributed between these two new condi-

tions based on matched normative similarity or re-
latedness scores from their respective datasets.

Results from this second phase of our study are
shown in Table 3. The correlation of our relat-
edness means on this set to the similarity means
of M&C was strong (r = 0.91), but not as strong
as in replications of the study that asked subjects
to evaluate similarity (e.g. r = 0.96 in Resnik’s
(1995) replication and r = 0.95 in Finkelstein et
al.’s (2002) M&C subset).

That the synonymous M&C pairs garner high
relatedness ratings in our study is not surprising;
strong similarity is, after all, one type of strong
relatedness. The more interesting result from
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our study, shown in Table 3, is that relatedness
norms for pairs that are related but dissimilar (e.g.,
journey–car and forest–graveyard) deviate signif-
icantly from established similarity norms. This in-
dicates that asking subjects to evaluate “similar-
ity” instead of “relatedness” can significantly im-
pact the norms established in such studies.

6 Conclusions

We have established a new set of relatedness
norms, Rel-122, that is offered as a supplementary
evaluative standard for assessing semantic related-
ness measures.

We have also demonstrated the shortcomings
of using similarity norms to evaluate such mea-
sures. Namely, since similarity is only one type of
relatedness, comparison to similarity norms fails
to provide a complete view of a measure’s abil-
ity to capture more general types of relatedness.
This is particularly problematic when evaluating
WordNet-based measures, which naturally excel at
capturing similarity, given the nature of the Word-
Net ontology.

Furthermore, we have found that asking judges
to evaluate “relatedness” of terms, rather than
“similarity,” has a substantive impact on resulting
norms, particularly with respect to the M&C sim-
ilarity dataset. Correlation of individual judges’
ratings to resulting means was also significantly
lower on average in our study than in previous
studies that focused on similarity (e.g., Resnik,
1995). These results suggest that human percep-
tions of relatedness are less strictly constrained
than perceptions of similarity and validate the
need for new relatedness norms to supplement ex-
isting gold standard similarity norms in the evalu-
ation of relatedness measures.
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