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Preface by the General Chair

Welcome to EMNLP 2018 in Brussels, Belgium! I hope that EMNLP 2018 will be a memorable
experience filled with exciting research presentations, outstanding keynote speakers, and many
stimulating conversations with colleagues and friends, both old and new. In the evenings, I hope that
you will explore the wonderful city of Brussels! Admire the historic buildings, visit great museums, and
enjoy the Belgian cuisine.

EMNLP 2018 will have an extensive technical program that includes 14 workshops, 6 tutorials, 3 invited
speakers, 351 long paper presentations, 198 short paper presentations, 10 TACL paper presentations, and
29 demos. I want to give special thanks to the Program Co-Chairs: David Chiang, Julia Hockenmaier, and
Jun’ichi Tsujii. EMNLP 2018 received a record-breaking 2,231 valid submissions, a 48% increase over
EMNLP 2017! Despite the massive volume of submissions, the PC chairs put tremendous care into every
decision, big and small, and gracefully handled numerous inquiries and requests. Their commitment to a
high-quality program was inspiring. Of course, the PC Chairs did not handle the workload alone: we all
owe an enormous debt of gratitude to the 60 Area Chairs and 1,436 reviewers (yes, 1,400+ reviewers!)
who took on the critical responsibilities of reviewing paper submissions and providing feedback to the
program chairs. Thank you all!

The Demo Co-Chairs, Eduardo Blanco and Wei Lu, also had to handle an usually high workload.
EMNLP 2018 received 77 demo submissions, which was a 40% increase over EMNLP 2017. They
recruited an additional 150+ reviewers to assess the demo submissions, and managed the review process
seamlessly. Thank you, Eduardo and Wei!

The EMNLP 2018 Workshop Co-Chairs, Marieke van Erp and Vincent Ng, and the EMNLP 2018
Tutorial Co-Chairs, Mausam and Lu Wang, oversaw the selection of workshops and tutorials and
coordinated planning with the organizers. Many thanks to Marieke, Vincent, Mausam, and Lu for
orchestrating terrific workshop and tutorial programs! And I am thrilled to have three exceptional NLP
researchers as our keynote speakers: Johan Bos, Julia Hirschberg, and Gideon Mann.

For EMNLP 2018, we added two new initiatives to provide financial support to conference participants.
We introduced childcare grants that offer financial support for childcare expenses incurred to participate
in the conference. These childcare grants give families broad flexibility to utilize many different types
of childcare services and arrangements. A giant thank you to Swapna Somasundaran for navigating this
new terrain and drafting the policy guidelines, and to both Swapna and Aoife Cahill for overseeing the
application and decision processes.

EMNLP 2018 also introduced travel scholarships for non-students to attend the conference. The non-
student travel scholarships provide support to people with financial need who might otherwise not be able
to participate in the conference. We created this initiative with an eye toward supporting researchers from
historically under-representated regions and young researchers or others with limited financial means.
I want to thank Anna Rumshisky and Hugo Van hamme for managing these new non-student travel
scholarships, along with the student travel scholarship and volunteer applications.

Nitin Madnani deserves special thanks for taking charge of both the EMNLP 2018 web site and
conference app, and doing a fantastic job. Nitin was a pleasure to work with, and incredibly responsive,
answering emails impossibly fast and accommodating every request. Thanks also to our Publicity Chair,
Mohit Iyyer, for advertising the conference on social media and elsewhere, and our Video Chair, Bonan
Min, for handling the video recordings.

Managing the conference proceedings and compiling the handbook are extremely time-consuming and
tedious jobs, but less visible to conference attendggs, who only see the final products. Enormous



thanks to the Publication Chairs, Micha Elsner (junior chair) and Preethi Raghavan (senior chair),
the Conference Handbook Chair, Kai-Wei Chang, the Handbook Advisor, Joachim Bingel, and the
Handbook Proofreader, He He. They were truly a fantastic team!

And a huge thanks to the Local Organization Committee from KU Leuven: Marie-Francine Moens
(chair), Dominique De Brabanter, Frieda Steurs, and Hugo Van hamme, as well as the Local Sponsorship
Chair, Katrien Beuls from Vrije Universiteit Brussel. Their hard work and enthusiasm were key to
making EMNLP 2018 a success! In addition, a large conference like EMNLP depends heavily on
sponsorship, and I want to sincerely thank all of the EMNLP 2018 sponsors for their generous support!

I must also thank SIGDAT for their support throughout this past year. With extra thanks to Noah Smith,
the SIGDAT Secretary-Treasurer and EMNLP liaison, for his support of our new initiatives, valuable
feedback, and quick responses. Finally, I owe a huge debt of gratitude to Priscilla Rasmussen, who
managed so many aspects of the conference that I can’t even begin to name them. A heartfelt thanks to
Priscilla for her hard work, sage advice, and for patiently answering an endless stream of questions from
me, and many others.

And thanks to all of YOU for participating in EMNLP 2018! I hope you enjoy the conference and your
time in Brussels!

EMNLP 2018 General Chair

Ellen Riloff, University of Utah, USA
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Preface by the Program Committee Co-Chairs

Welcome to EMNLP 2018! This year’s technical program consists of three invited talks, 224 oral
presentations (including three papers appearing in the Transactions of the ACL), and 335 poster
presentations (including seven papers appearing in TACL). To our knowledge, it’s the largest NLP
conference ever, and it would not have been possible without the help of our program committee
members.

This year, we organized the program committee into eight broad areas. For each area, one of our amazing
senior area chairs (Jordan Boyd-Graber, Xavier Carreras, Yejin Choi, Philipp Koehn, Alessandro
Moschitti, Slav Petrov, Massimo Poesio, and Kam-Fai Wong) headed a team of several other area chairs
(totaling 52 across all areas) and an army of reviewers (totaling 1,436 across all areas). We’d like to
especially thank those reviewers who agreed to review a full load of papers, which turned out to be a bit
heavier than expected!

2018 appears to have been the year of experimentation with new review forms, and EMNLP was
no exception. We eliminated many of the traditional numerical ratings and divided up the free-form
comments into a small number of separate free-response questions. We tried to make this new structure
mirror the structure of a typical review, while encouraging more comprehensive reviewing.

Extrapolating exponentially from the past two years, we expected to receive about 1,800 submissions, but
the eventual number exceeded our expectations at 2,231 (excluding empty and duplicate submissions).
After removal of invalid submissions and some withdrawals, we sent 2,116 papers out for review. Despite
the growing number of submissions, we tried to keep acceptance rates at the same level as past years.
The acceptance statistics are shown below.

Long Short Total TACL
Submitted 1,376 855 2,231 -
Accepted as talk | 140 (10.2%) | 81 (9.5%) 221 (9.9%) 3
Accepted as poster | 211 (15.3%) | 117 (13.7%) | 328 (14.7%) 7
Accepted (total) | 351 (25.5%) | 198 (23.2%) | 549 (24.6%) 10

As in past years, three awards will be given for Best Long Paper, Best Short Paper, and Best Resource
Paper. We solicited recommendations for awards from reviewers and area chairs. Following these
recommendations, we sent 7 long papers, 5 short papers, and 5 resource papers to three committees
chosen from among the area chairs. In the end, we selected two winners for Best Long Paper and one
each for Best Short Paper and Best Resource Paper, all of which will be presented in a final plenary
session.

We are delighted to have keynote addresses from three giants of our field: Johan Bos, on the future of
computational semantics; Julia Hirschberg, on deception detection in speech; and Gideon Mann, on the
use of NLP in finance.
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In addition to our entire program committee, we would also like to give thanks to:

e Our general chair, Ellen Riloff,

e Priscilla Rasmussen,

e Last year’s program chairs, Rebecca Hwa and Sebastian Riedel,

e Our local chair, Marie-Francine Moens, and the local organizing committee,
e Our web and publicity chairs, Nitin Madnani and Mohit Iyyer,

e Our publications chairs, Micha Elsner and Preethi Raghavan,

e Our handbook chair, Kai-Wei Chang,

e Rich Gerber and the technical support team at SoftConf.

Again, welcome! We hope that you enjoy this year’s conference, and return home with new insights,
ideas, and opportunities!

EMNLP 2018 Program Co-Chairs

David Chiang, University of Notre Dame, USA
Julia Hockenmaier, University of Illinois Urbana-Champaign, USA
Jun’ichi Tsujii, Artificial Intelligence Research Center, Japan
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Program Committee

Program Committee Co-chairs

David Chiang, University of Notre Dame, USA

Julia Hockenmaier, University of Illinois Urbana-Champaign, USA
Junichi Tsujii, Artificial Intelligence Research Center, Japan

Area Chairs

Information Extraction, Information Retrieval, and Question Answering
Jordan Boyd-Graber, University of Maryland, USA (senior chair)
Isabelle Augenstein, University of Copenhagen, Denmark
Ming-Wei Chang, Google, USA
Doug Downey, Northwestern University, USA
Ruihong Huang, Texas A&M University, USA
Mausam, IIT Delhi, India
Makoto Miwa, Toyota Technological Institute, Japan
William Wang, University of California at Santa Barbara, USA
Scott Yih, Allen Institute for Artificial Intelligence, USA

Text Mining and Information Retrieval
Alessandro Moschitti, University of Trento, Italy (senior chair)
Sophia Ananiadou, University of Manchester, United Kingdom
Hsin-Hsi Chen, National Taiwan University
Marius Pasca, Google, USA
Xiang Ren, University of Southern California, USA
Alan Ritter, Ohio State University, USA
David Smith, Northeastern University, USA

Social Media, Computational Social Science, and Sentiment/Opinion Analysis
Kam-Fai Wong, Chinese University of Hong Kong (senior chair)
Eiji Aramaki, Nara Institute of Science and Technology, Japan
Mona Diab, George Washington University, USA
Yulan He, Aston University, United Kingdom
Dirk Hovy, Bocconi University, Italy
Rada Mihalcea, University of Michigan, USA
Alice Oh, KAIST, Korea
Wei Xu, Ohio State University, USA

Morphology, Syntax, and Psycholinguistics
Slav Petrov, Google, USA (senior chair)
Liang Huang, Oregon State University, USA
Roger Levy, Massachusetts Institute of Technology, USA
Stephan Oepen, University of Oslo, Norway
Emily Pitler, Google, USA
Reut Tsarfaty, Open University of Isra
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Semantics
Massimo Poesio, Queen Mary University of London, United Kingdom (senior chair)
Omri Abend, Hebrew University of Jerusalem, Israel
Raffaella Bernardi, University of Trento, Italy
Michael Lewis, Facebook, USA
Yulia Tsvetkov, Carnegie Mellon University, USA
Benjamin Van Durme, Johns Hopkins University, USA
Nianwen Xue, Brandeis University, USA

Discourse, Dialogue, Summarization, Generation, and Multimodal NLP
Yejin Choi, University of Washington, USA (senior chair)
Mohit Bansal, University of North Carolina, USA
Michel Galley, Microsoft, USA
Grzegorz Chrupata, Tilburg University, Netherlands
Haizhou Li, National University of Singapore
Fei Liu, University of Central Florida, USA
Karen Livescu, Toyota Technological Institute - Chicago, USA
Meg Mitchell, Google, USA
Rashmi Prasad, Interactions, USA
Xiaojun Wan, Peking University, China
Zhou Yu, University of California at Davis, USA

Machine Translation and Multilinguality
Philipp Koehn, Johns Hopkins University, USA (senior chair)
Arianna Bisazza, Leiden University, Netherlands
Qun Liu, Dublin City University, Ireland
Yang Liu, Tsinghua University, China
Zhaopeng Tu, Tencent, China
Taro Watanabe, Google, Japan

Machine Learning
Xavier Carreras, dMetrics, USA (senior chair)
Shay Cohen, University of Edinburgh, United Kingdom
Kevin Gimpel, Toyota Technological Institute - Chicago, USA
Stefan Riezler, Heidelberg University, Germany
Karl Stratos, Toyota Technological Institute - Chicago, USA
Jun Suzuki, Tohoku University, Japan

Reviewers
We would like to recognize the following 100 reviewers with the Best Reviewer Award.

Natalie Ahn, Emilia Apostolova, Miguel Ballesteros, Daniel Bauer, Yonatan Belinkov, Darina Benikova,
Luciana Benotti, Robert Berwick, Chloé Braud, Hendrik Buschmeier, Jan Buys, Dallas Card, Asli Ce-
likyilmaz, Arun Chaganty, Kai-Wei Chang, Colin Cherry, Maximin Coavoux, Zeyu Dai, Cedric De
Boom, Miryam de Lhoneux, Mark Dredze, Greg Durrett, Ondrej Dusek, Jason Eisner, Michael Elhadad,
M. Amin Farajian, Shi Feng, Simone Filice, Stefan L. Frank, Lea Frermann, Matthias Gall¢, Ekaterina
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Garmash, Michaela Geierhos, Lieke Gelderloos, Kallirroi Georgila, Alborz Geramifard, Matthew R.
Gormley, Yvette Graham, Jiatao Gu, Bo Han, Shuguang Han, Abram Handler, Hua He, Lisa Anne
Hendricks, Daniel Hershcovich, Jack Hessel, Gerold Hintz, Ari Holtzman, Peter Jansen, Akos Kadar,
Sarvnaz Karimi, Ekaterina Kochmar, Parisa Kordjamshidi, Gaurav Kumar, Adhiguna Kuncoro, Yan-
ran Li, Jing Li, Chen Li, Lucelene Lopes, Adam Lopez, Kate Loveys, Chandler May, Nafise Sadat
Moosavi, Andrea Moro, Philippe Muller, Shashi Narayan, Dong Nguyen, Hitoshi Nishikawa, Peyman
Passban, Laura Perez-Beltrachini, Ana-Maria Popescu, Piotr Przybyla, Peng Qi, Will Radford, Roi Re-
ichart, Anna Rohrbach, Shigehiko Schamoni, Yves Scherrer, Sebastian Schuster, Matthew Shardlow,
Tianze Shi, Carina Silberer, Kevin Small, Luca Soldaini, Gabriel Stanovsky, Kristina Striegnitz, Jannik
Strotgen, Liling Tan, Hao Tang, Yi Tay, Mariét Theune, Yuen-Hsien Tseng, Subhashini Venugopalan,
Henning Wachsmuth, Eric Wallace, Bonnie Webber, Michael White, Shuly Wintner, Andrew Yates,
Justine Zhang.

We also thank the remaining reviewers for their hard work.

Mourad Abbas, Muhammad Abdul-Mageed, Amjad Abu-Jbara, Oliver Adams, Heike Adel, Stergos
Afantenos, Apoorv Agarwal, Zeljko Agié¢, Roee Aharoni, Chaitanya Ahuja, Zeynep Akata, Alan Akbik,
Ahmet Aker, Cem Akkaya, Chris Alberti, Hanan Aldarmaki, Nikolaos Aletras, Afra Alishahi, Alexan-
dre Allauzen, Tim Althoff, Bharat Ram Ambati, Waleed Ammar, Antonios Anastasopoulos, Jesse An-
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Invited Speaker: Johan Bos, University of Groningen
The Moment of Meaning and the Future of Computational Semantics

Abstract: There are many recent advances in semantic parsing: we see a rising number of semantically
annotated corpora and there is exciting technology (such as neural networks) to be explored. In this
talk I will discuss what role computational semantics could play in future natural language processing
applications (including fact checking and machine translation). I will argue that we should not just
look at semantic parsing, but that things can get really interesting when we can use language-neutral
meaning representations to draw (transparent) inferences. The main ideas will be exemplified by the
parallel meaning bank, a new corpus comprising texts annotated with formal meaning representations
for English, Dutch, German and Italian.

Bio: Johan Bos is Professor of Computational Semantics at the University of Groningen (Netherlands).
He received his doctorate from the Computational Linguistics Department at the University of the Saar-
land (Germany) and held post-doc positions at the University of Edinburgh (UK) and the La Sapienza
University in Rome (Italy). In 2010, he moved to his current position in Groningen, leading the com-
putational semantics group. Bos is the developer of Boxer, a state-of-the-art wide-coverage semantic
parser for English, initiator of the Groningen Meaning Bank, a large semantically-annotated corpus of
texts, and inventor of Wordrobe, a game with a purpose for semantic annotation. Bos received a $1.5-
million Vici grant from NWO (Netherlands Organisation for Scientific Research) in 2015 to investigate
the role of meaning in human and machine translation. A concrete outcome of this project is the Paral-
lel Meaning Bank containing detailed meaning representations for English, German, Dutch and Italian
sentences.
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Invited Speaker: Julia Hirschberg, Columbia University
Truth or Lie? Spoken Indicators of Deception in Speech

Abstract: Detecting deception from various forms of human behavior is a longstanding research goal
which is of considerable interest to the military, law enforcement, corporate security, social services
and mental health workers. However, both humans and polygraphs are very poor at this task. We
describe more accurate methods we have developed to detect deception automatically from spoken lan-
guage. Our classifiers are trained on the largest cleanly recorded corpus of within-subject deceptive and
non-deceptive speech that has been collected. To distinguish truth from lie we make use of acoustic-
prosodic, lexical, demographic, and personality features. We further examine differences in deceptive
behavior based upon gender, personality, and native language (Mandarin Chinese vs. English), com-
paring our systems to human performance. We extend our studies to identify cues in trusted speech vs.
mistrusted speech and how these features differ by speaker and by listener. Why does a listener believe
alie?

Bio: Julia Hirschberg is Percy K. and Vida L. W. Hudson Professor and Chair of Computer Science at
Columbia University. She previously worked at Bell Laboratories and AT&T Labs where she created
the HCI Research Department. She has been editor of Computational Linguistics and Speech Commu-
nication, is a fellow of AAAI ISCA, ACL, ACM, and IEEE, and a member of the National Academy
of Engineering. She received the IEEE James L. Flanagan Speech and Audio Processing Award and
the ISCA Medal for Scientific Achievement. She currently serves on the IEEE Speech and Language
Processing Technical Committee, is co-chair of the CRA-W Board, and has worked for diversity for
many years at AT&T and Columbia. She works on spoken language processing and NLP, studying
text-to-speech synthesis, spoken dialogue systems, entrainment in conversation, detection of deceptive
and emotional speech, hedging behavior, and linguistic code-switching (language mixing).
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Invited Speaker: Gideon Mann, Bloomberg L.P.
Understanding the News that Moves Markets

Abstract: Since the dawn of human civilization, finance and language technology have been connected.
However, only recently have advances in statistical language understanding, and an ever-increasing
thirst for market advantage, led to the widespread application of natural language technology across the
global capital markets. This talk will review the ways in which language technology is enabling market
participants to quickly understand and respond to major world events and breaking business news. It
will outline the state of the art in applications of NLP to finance and highlight open problems that are
being addressed by emerging research.

Bio: Gideon Mann is the Head of Data Science at Bloomberg L.P., where he guides the strategic
direction for machine learning, natural language processing (NLP) and search across the company. He
is part of the leadership team for the Office of the CTO. He served as a founding member of both the
Data for Good Exchange (D4GX), an annual conference on data science applications for social good,
and the Shift Commission on Work, Workers and Technology. He has also been active in academic
research in fact extraction, weakly-supervised learning, and distributed optimization. Recently, he has
also been interested in applications of machine learning to problems in software engineering. From
2007 to 2014, he worked at Google Research in New York City, and his team built core machine
learning libraries, released the Google Prediction API, and developed Colaboratory. Mann graduated
Brown University in 1999 and received a Ph.D. from The Johns Hopkins University in 2006.
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Sergey Edunov, Myle Ott, Michael Auli and David Grangier

Bootstrapping Transliteration with Constrained Discovery for Low-Resource Lan-
guages
Shyam Upadhyay, Jordan Kodner and Dan Roth

NORMA: Neighborhood Sensitive Maps for Multilingual Word Embeddings
Ndapa Nakashole

Adaptive Multi-pass Decoder for Neural Machine Translation
Xinwei Geng, Xiaocheng Feng, Bing Qin and Ting Liu

Improving the Transformer Translation Model with Document-Level Context

Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei Zhai, Jingfang Xu, Min Zhang
and Yang Liu
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Friday, November 2, 2018 (continued)

12:30-13:45

13:45-14:45

13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

MTNT: A Testbed for Machine Translation of Noisy Text
Paul Michel and Graham Neubig

Demo: CytonMT: an Efficient Neural Machine Translation Open-source Toolkit
Implemented in C++
Xiaolin Wang, Masao Utiyama, and Eiichiro Sumita

Demo: SentencePiece: A simple and language independent subword tokenizer and

detokenizer for Neural Text Processing
Taku Kudo and John Richardson

Lunch

Short Papers (Orals and Posters) 1

Session 2A: Question Answering I (Gold Hall)

SimpleQuestions Nearly Solved: A New Upperbound and Baseline Approach
Michael Petrochuk and Luke Zettlemoyer

Phrase-Indexed Question Answering: A New Challenge for Scalable Document
Comprehension

Minjoon Seo, Tom Kwiatkowski, Ankur Parikh, Ali Farhadi and Hannaneh Ha-
jishirzi

Ranking Paragraphs for Improving Answer Recall in Open-Domain Question An-
swering

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung Ko and Jaewoo Kang

Cut to the Chase: A Context Zoom-in Network for Reading Comprehension
Sathish Reddy Indurthi, Seunghak Yu, Seohyun Back and Heriberto Cuayahuitl

Adaptive Document Retrieval for Deep Question Answering
Bernhard Kratzwald and Stefan Feuerriegel
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Friday, November 2, 2018 (continued)

13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

Session 2B: Semantics II (Copper Hall)

Why is unsupervised alignment of English embeddings from different algorithms so
hard?
Mareike Hartmann, Yova Kementchedjhieva and Anders Sggaard

Quantifying Context Overlap for Training Word Embeddings
Yimeng Zhuang, Jinghui Xie, Yinhe Zheng and Xuan Zhu

Neural Latent Relational Analysis to Capture Lexical Semantic Relations in a Vector
Space
Koki Washio and Tsuneaki Kato

Generalizing Word Embeddings using Bag of Subwords
Jinman Zhao, Sidharth Mudgal and Yingyu Liang

Neural Metaphor Detection in Context

Ge Gao, Eunsol Choi, Yejin Choi and Luke Zettlemoyer

Session 2C: Multilingual Methods I (Silver Hall)

Distant Supervision from Disparate Sources for Low-Resource Part-of-Speech Tag-
ging

Barbara Plank and Zeljko Agié¢

Unsupervised Bilingual Lexicon Induction via Latent Variable Models
Zi-Yi Dou, Zhi-Hao Zhou and Shujian Huang

Learning Unsupervised Word Translations Without Adversaries
Tanmoy Mukherjee, Makoto Yamada and Timothy Hospedales

Adversarial Training for Multi-task and Multi-lingual Joint Modeling of Utterance
Intent Classification

Ryo Masumura, Yusuke Shinohara, Ryuichiro Higashinaka and Yushi Aono

Surprisingly Easy Hard-Attention for Sequence to Sequence Learning
Shiv Shankar, Siddhant Garg and Sunita Sarawagi
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Friday, November 2, 2018 (continued)

13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

Session 2D: Social Media (Hall 100)

Joint Learning for Emotion Classification and Emotion Cause Detection
Ying Chen, Wenjun Hou, Xiyao Cheng and Shoushan Li

Exploring Optimism and Pessimism in Twitter Using Deep Learning
Cornelia Caragea, Liviu P. Dinu and Bogdan Dumitru

Predicting News Headline Popularity with Syntactic and Semantic Knowledge Us-
ing Multi-Task Learning
Sotiris Lamprinidis, Daniel Hardt and Dirk Hovy

Hybrid Neural Attention for Agreement/Disagreement Inference in Online Debates
Di Chen, Jiachen Du, Lidong Bing and Ruifeng Xu

Increasing In-Class Similarity by Retrofitting Embeddings with Demographic Infor-
mation
Dirk Hovy and Tommaso Fornaciari

Session 2E: Short Posters I (Grand Hall 2)

A Syntactically Constrained Bidirectional-Asynchronous Approach for Emotional
Conversation Generation
Jingyuan Li and Xiao Sun

Auto-Dialabel: Labeling Dialogue Data with Unsupervised Learning
Chen Shi, Qi Chen, Lei Sha, Sujian Li, Xu Sun, Houfeng Wang and Lintao Zhang

Extending Neural Generative Conversational Model using External Knowledge
Sources
Prasanna Parthasarathi and Joelle Pineau

Modeling Temporality of Human Intentions by Domain Adaptation
Xiaolei Huang, Lixing Liu, Kate Carey, Joshua Woolley, Stefan Scherer and Brian
Borsari

An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Depen-

dency in Dialogue Generation
Liangchen Luo, Jingjing Xu, Junyang Lin, Qi Zeng and Xu Sun

Ixiv



Friday, November 2, 2018 (continued)

A Dataset for Document Grounded Conversations
Kangyan Zhou, Shrimai Prabhumoye and Alan W Black

Out-of-domain Detection based on Generative Adversarial Network
Seonghan Ryu, Sangjun Koo, Hwanjo Yu and Gary Geunbae Lee

Listening Comprehension over Argumentative Content
Shachar Mirkin, Guy Moshkowich, Matan Orbach, Lili Kotlerman, Yoav Kantor,
Tamar Lavee, Michal Jacovi, Yonatan Bilu, Ranit Aharonov and Noam Slonim

Using active learning to expand training data for implicit discourse relation recog-
nition
Yang Xu, Yu Hong, Huibin Ruan, Jianmin Yao, Min Zhang and Guodong Zhou

Learning To Split and Rephrase From Wikipedia Edit History
Jan A. Botha, Manaal Faruqui, John Alex, Jason Baldridge and Dipanjan Das

BLEU is Not Suitable for the Evaluation of Text Simplification
Elior Sulem, Omri Abend and Ari Rappoport

S2SPMN: A Simple and Effective Framework for Response Generation with Rele-
vant Information
Jiaxin Pei and Chenliang Li

Improving Reinforcement Learning Based Image Captioning with Natural Lan-
guage Prior
Tszhang Guo, Shiyu Chang, Mo Yu and Kun Bai

Training for Diversity in Image Paragraph Captioning
Luke Melas-Kyriazi, Alexander Rush and George Han

A Graph-theoretic Summary Evaluation for ROUGE
Elaheh ShafieiBavani, Mohammad Ebrahimi, Raymond Wong and Fang Chen

Guided Neural Language Generation for Abstractive Summarization using Abstract
Meaning Representation
Hardy Hardy and Andreas Vlachos

Evaluating Multiple System Summary Lengths: A Case Study

Ori Shapira, David Gabay, Hadar Ronen, Judit Bar-Ilan, Yael Amsterdamer, Ani
Nenkova and Ido Dagan
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Friday, November 2, 2018 (continued)

15:00-15:12

Neural Latent Extractive Document Summarization
Xingxing Zhang, Mirella Lapata, Furu Wei and Ming Zhou

On the Abstractiveness of Neural Document Summarization
Fangfang Zhang, Jin-ge Yao and Rui Yan

Automatic Essay Scoring Incorporating Rating Schema via Reinforcement Learning
Yucheng Wang, Zhongyu Wei, Yaqian Zhou and Xuanjing Huang

Identifying Well-formed Natural Language Questions
Manaal Faruqui and Dipanjan Das

Self-Governing Neural Networks for On-Device Short Text Classification
Sujith Ravi and Zornitsa Kozareva

HFT-CNN: Learning Hierarchical Category Structure for Multi-label Short Text
Categorization
Kazuya Shimura, Jiyi Li and Fumiyo Fukumoto

A Hierarchical Neural Attention-based Text Classifier
Koustuv Sinha, Yue Dong, Jackie Chi Kit Cheung and Derek Ruths

Labeled Anchors and a Scalable, Transparent, and Interactive Classifier
Jeffrey Lund, Stephen Cowley, Wilson Fearn, Emily Hales and Kevin Seppi

Coherence-Aware Neural Topic Modeling
Ran Ding, Ramesh Nallapati and Bing Xiang

Utilizing Character and Word Embeddings for Text Normalization with Sequence-
to-Sequence Models
Daniel Watson, Nasser Zalmout and Nizar Habash

Topic Intrusion for Automatic Topic Model Evaluation
Shraey Bhatia, Jey Han Lau and Timothy Baldwin

Supervised and Unsupervised Methods for Robust Separation of Section Titles and

Prose Text in Web Documents
Abhijith Athreya Mysore Gopinath, Shomir Wilson and Norman Sadeh
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Friday, November 2, 2018 (continued)

14:45-15:00

15:00-16:00

15:00-15:12

15:12-15:24

15:24-15:36

15:36-15:48

15:48-16:00

15:00-15:12

15:12-15:24

15:24-15:36

Mini-Break

Short Papers (Orals and Posters) I1

Session 3A: Machine Translation I (Gold Hall)

SwitchOut: an Efficient Data Augmentation Algorithm for Neural Machine Trans-
lation
Xinyi Wang, Hieu Pham, Zihang Dai and Graham Neubig

Improving Unsupervised Word-by-Word Translation with Language Model and De-
noising Autoencoder

Yunsu Kim, Jiahui Geng and Hermann Ney

Decipherment of Substitution Ciphers with Neural Language Models
Nishant Kambhatla, Anahita Mansouri Bigvand and Anoop Sarkar

Rapid Adaptation of Neural Machine Translation to New Languages
Graham Neubig and Junjie Hu

Compact Personalized Models for Neural Machine Translation
Joern Wuebker, Patrick Simianer and John DeNero
Session 3B: Machine Learning I (Copper Hall)

Self-Governing Neural Networks for On-Device Short Text Classification
Sujith Ravi and Zornitsa Kozareva

Supervised Domain Enablement Attention for Personalized Domain Classification
Joo-Kyung Kim and Young-Bum Kim

A Deep Neural Network Sentence Level Classification Method with Context Infor-

mation
Xingyi Song, Johann Petrak and Angus Roberts

Ixvii



Friday, November 2, 2018 (continued)

15:36-15:48

15:48-16:00

15:00-15:12

15:12-15:24

15:24-15:36

15:36-15:48

15:48-16:00

Towards Dynamic Computation Graphs via Sparse Latent Structure
Vlad Niculae, André F. T. Martins and Claire Cardie

Convolutional Neural Networks with Recurrent Neural Filters
Yi Yang

Session 3C: Semantic Parsing / Generation (Silver Hall)

Exploiting Rich Syntactic Information for Semantic Parsing with Graph-to-
Sequence Model
Kun Xu, Lingfei Wu, Zhiguo Wang, Mo Yu, Liwei Chen and Vadim Sheinin

Retrieval-Based Neural Code Generation
Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, An-
thony Tomasic and Graham Neubig

SQL-to-Text Generation with Graph-to-Sequence Model
Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng and Vadim Sheinin

Generating Syntactic Paraphrases
Emilie Colin and Claire Gardent

Neural-Davidsonian Semantic Proto-role Labeling

Rachel Rudinger, Adam Teichert, Ryan Culkin, Sheng Zhang and Benjamin Van
Durme
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Friday, November 2, 2018 (continued)

15:00-15:12

15:12-15:24

15:24-15:36

15:36-15:48

15:48-16:00

Session 3D: Vision / Discourse (Hall 100)

Conversational Decision-Making Model for Predicting the King’s Decision in the
Annals of the Joseon Dynasty

JinYeong Bak and Alice Oh

Toward Fast and Accurate Neural Discourse Segmentation
Yizhong Wang, Sujian Li and Jingfeng Yang

A Dataset for Telling the Stories of Social Media Videos
Spandana Gella, Mike Lewis and Marcus Rohrbach

Cascaded Mutual Modulation for Visual Reasoning
Yiqun Yao, Jiaming Xu, Feng Wang and Bo Xu

How agents see things: On visual representations in an emergent language game
Diane Bouchacourt and Marco Baroni
Session 3E: Short Posters II (Grand Hall 2)

Attention-Based Capsule Networks with Dynamic Routing for Relation Extraction
Ningyu Zhang, Shumin Deng, Zhanling Sun, Xi Chen, Wei Zhang and Huajun Chen

Put It Back: Entity Typing with Language Model Enhancement
Ji Xin, Hao Zhu, Xu Han, Zhiyuan Liu and Maosong Sun

Event Detection with Neural Networks: A Rigorous Empirical Evaluation
Walker Orr, Prasad Tadepalli and Xiaoli Fern

PubSE: A Hierarchical Model for Publication Extraction from Academic Home-
pages
Yiqing Zhang, Jianzhong Qi, Rui Zhang and Chuandong Yin

A Neural Transition-based Model for Nested Mention Recognition
Bailin Wang, Wei Lu, Yu Wang and Hongxia Jin
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Friday, November 2, 2018 (continued)

Genre Separation Network with Adversarial Training for Cross-genre Relation Ex-
traction

Ge Shi, Chong Feng, Lifu Huang, Boliang Zhang, Heng Ji, Lejian Liao and Heyan
Huang

Effective Use of Context in Noisy Entity Linking
David Mueller and Greg Durrett

Exploiting Contextual Information via Dynamic Memory Network for Event Detec-
tion
Shaobo Liu, Rui Cheng, Xiaoming Yu and Xueqi Cheng

Do explanations make VQA models more predictable to a human?
Arjun Chandrasekaran, Viraj Prabhu, Deshraj Yadav, Prithvijit Chattopadhyay and
Devi Parikh

Facts That Matter
Marco Ponza, Luciano Del Corro and Gerhard Weikum

Entity Tracking Improves Cloze-style Reading Comprehension
Luong Hoang, Sam Wiseman and Alexander Rush

Adversarial Domain Adaptation for Duplicate Question Detection
Darsh Shah, Tao Lei, Alessandro Moschitti, Salvatore Romeo and Preslav Nakov

Translating a Math Word Problem to a Expression Tree
Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang and Xiaojiang Liu

Semantic Linking in Convolutional Neural Networks for Answer Sentence Selection
Massimo Nicosia and Alessandro Moschitti

A dataset and baselines for sequential open-domain question answering
Ahmed Elgohary, Chen Zhao and Jordan Boyd-Graber

Improving the results of string kernels in sentiment analysis and Arabic dialect iden-
tification by adapting them to your test set
Radu Tudor Ionescu and Andrei M. Butnaru

Parameterized Convolutional Neural Networks for Aspect Level Sentiment Classifi-

cation
Binxuan Huang and Kathleen Carley
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Friday, November 2, 2018 (continued)

Improving Multi-label Emotion Classification via Sentiment Classification with
Dual Attention Transfer Network
Jianfei Yu, Luis Marujo, Jing Jiang, Pradeep Karuturi and William Brendel

Learning Sentiment Memories for Sentiment Modification without Parallel Data
Yi Zhang, Jingjing Xu, Pengcheng Yang and Xu Sun

Joint Aspect and Polarity Classification for Aspect-based Sentiment Analysis with
End-to-End Neural Networks
Martin Schmitt, Simon Steinheber, Konrad Schreiber and Benjamin Roth

Representing Social Media Users for Sarcasm Detection
Y. Alex Kolchinski and Christopher Potts

Syntactical Analysis of the Weaknesses of Sentiment Analyzers
Rohil Verma, Samuel Kim and David Walter

Is Nike female? Exploring the role of sound symbolism in predicting brand name
gender
Sridhar Moorthy, Ruth Pogacar, Samin Khan and Yang Xu

Improving Large-Scale Fact-Checking using Decomposable Attention Models and
Lexical Tagging
Nayeon Lee, Chien-Sheng Wu and Pascale Fung

Harnessing Popularity in Social Media for Extractive Summarization of Online
Conversations

Ryuji Kano, Yasuhide Miura, Motoki Taniguchi, Yan-Ying Chen, Francine Chen
and Tomoko Ohkuma

Identifying Locus of Control in Social Media Language
Masoud Rouhizadeh, Kokil Jaidka, Laura Smith, H. Andrew Schwartz, Anneke
Buffone and Lyle Ungar

Somm: Into the Model
Shengli Hu

Fine-Grained Emotion Detection in Health-Related Online Posts
Hamed Khanpour and Cornelia Caragea

The Remarkable Benefit of User-Level Aggregation for Lexical-based Population-
Level Predictions

Salvatore Giorgi, Daniel Preotiuc-Pietro, Anneke Buffone, Daniel Rieman, Lyle
Ungar and H. Andrew Schwartz
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Friday, November 2, 2018 (continued)

16:00-16:30

16:30-18:00

16:30-16:48

16:48-17:06

17:06-17:24

17:24-17:42

17:42-18:00

16:30-16:48

16:48-17:06

17:06-17:24

Coffee Break

Long Papers and Demos (Orals and Posters) 11

Session 4A: Language Models (Gold Hall)

Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refine-
ment
Jason Lee, Elman Mansimov and Kyunghyun Cho

Large Margin Neural Language Model
Jiaji Huang, Yi Li, Wei Ping and Liang Huang

Targeted Syntactic Evaluation of Language Models
Rebecca Marvin and Tal Linzen

Rational Recurrences
Hao Peng, Roy Schwartz, Sam Thomson and Noah A. Smith

Efficient Contextualized Representation: Language Model Pruning for Sequence
Labeling
Liyuan Liu, Xiang Ren, Jingbo Shang, Xiaotao Gu, Jian Peng and Jiawei Han

Session 4B: Information Extraction (Copper Hall)

Automatic Event Salience Identification
Zhengzhong Liu, Chenyan Xiong, Teruko Mitamura and Eduard Hovy

Temporal Information Extraction by Predicting Relative Time-lines
Artuur Leeuwenberg and Marie-Francine Moens

Jointly Multiple Events Extraction via Attention-based Graph Information Aggre-

gation
Xiao Liu, Zhunchen Luo and Heyan Huang
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Friday, November 2, 2018 (continued)

17:24-17:42

17:42-18:00

16:30-16:48

16:48-17:06

17:06-17:24

17:24-17:42

17:42-18:00

RESIDE: Improving Distantly-Supervised Neural Relation Extraction using Side
Information

Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga, Chiranjib Bhattacharyya and
Partha Talukdar

Collective Event Detection via a Hierarchical and Bias Tagging Networks with
Gated Multi-level Attention Mechanisms
Yubo Chen, Hang Yang, Kang Liu, Jun Zhao and Yantao Jia

Session 4C: Syntactic Parsing (Silver Hall)

Valency-Augmented Dependency Parsing
Tianze Shi and Lillian Lee

Unsupervised Learning of Syntactic Structure with Invertible Neural Projections
Junxian He, Graham Neubig and Taylor Berg-Kirkpatrick

Dynamic Oracles for Top-Down and In-Order Shift-Reduce Constituent Parsing
Daniel Fernandez-Gonzalez and Carlos Gémez-Rodriguez

Constituent Parsing as Sequence Labeling
Carlos Gémez-Rodriguez and David Vilares

Synthetic Data Made to Order: The Case of Parsing
Dingquan Wang and Jason Eisner

Ixxiii



Friday, November 2, 2018 (continued)

16:30-16:48

16:48-17:06

17:06-17:24

17:24-17:42

17:42-18:00

Session 4D: Visual QA (Hall 100)

Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes
and Captions
Qing Li, Jianlong Fu, Dongfei Yu, Tao Mei and Jiebo Luo

Learning a Policy for Opportunistic Active Learning
Aishwarya Padmakumar, Peter Stone and Raymond Mooney

RecipeQA: A Challenge Dataset for Multimodal Comprehension of Cooking
Recipes
Semih Yagcioglu, Aykut Erdem, Erkut Erdem and Nazli Ikizler-Cinbis

TVQA: Localized, Compositional Video Question Answering
Jie Lei, Licheng Yu, Mohit Bansal and Tamara Berg

Localizing Moments in Video with Temporal Language
Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell and
Bryan Russell

Session 4E: Semantics III (Posters and Demos, Grand Hall 2)

Card-660: Cambridge Rare Word Dataset - a Reliable Benchmark for Infrequent
Word Representation Models
Mohammad Taher Pilehvar, Dimitri Kartsaklis, Victor Prokhorov and Nigel Collier

Leveraging Gloss Knowledge in Neural Word Sense Disambiguation by Hierarchi-
cal Co-Attention
Fuli Luo, Tianyu Liu, Zexue He, Qiaolin Xia, Zhifang Sui and Baobao Chang

Weeding out Conventionalized Metaphors: A Corpus of Novel Metaphor Annota-
tions

Erik-Lan Do Dinh, Hannah Wieland and Iryna Gurevych

Streaming word similarity mining on the cheap
Olof Gornerup and Daniel Gillblad

Memory, Show the Way: Memory Based Few Shot Word Representation Learning
Jingyuan Sun, Shaonan Wang and Chengqing Zong
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Friday, November 2, 2018 (continued)

Disambiguated skip-gram model
Karol Grzegorczyk and Marcin Kurdziel

Picking Apart Story Salads
Su Wang, Eric Holgate, Greg Durrett and Katrin Erk

Dynamic Meta-Embeddings for Improved Sentence Representations
Douwe Kiela, Changhan Wang and Kyunghyun Cho

A Probabilistic Model for Joint Learning of Word Embeddings from Texts and Im-
ages

Melissa Ailem, Bowen Zhang, Aurélien Bellet, Pascal Denis and Fei Sha

Transfer and Multi-Task Learning for Noun—Noun Compound Interpretation
Murhaf Fares, Stephan Oepen and Erik Velldal

Dissecting Contextual Word Embeddings: Architecture and Representation
Matthew Peters, Mark Neumann, Luke Zettlemoyer and Wen-tau Yih

Preposition Sense Disambiguation and Representation
Hongyu Gong, Jiaqi Mu, Suma Bhat and Pramod Viswanath

Auto-Encoding Dictionary Definitions into Consistent Word Embeddings
Tom Bosc and Pascal Vincent

Spot the Odd Man Out: Exploring the Associative Power of Lexical Resources
Gabriel Stanovsky and Mark Hopkins

Ixxv



Friday, November 2, 2018 (continued)

(TACL) Linear Algebraic Structure of Word Senses, with Applications to Polysemy
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski

Neural Multitask Learning for Simile Recognition
Lizhen Liu, Xiao Hu, Wei Song, Ruiji Fu, Ting Liu and Guoping Hu

Structured Alignment Networks for Matching Sentences
Yang Liu, Matt Gardner and Mirella Lapata

Compare, Compress and Propagate: Enhancing Neural Architectures with Align-
ment Factorization for Natural Language Inference
Yi Tay, Anh Tuan Luu and Siu Cheung Hui

Convolutional Interaction Network for Natural Language Inference
Jingjing Gong, Xipeng Qiu, Xinchi Chen, Dong Liang and Xuanjing Huang

Lessons from Natural Language Inference in the Clinical Domain
Alexey Romanov and Chaitanya Shivade

Question Generation from SQL Queries Improves Neural Semantic Parsing
Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao, Peng
Chen and Ming Zhou

SemRegex: A Semantics-Based Approach for Generating Regular Expressions from
Natural Language Specifications

Zexuan Zhong, Jiaqi Guo, Wei Yang, Jian Peng, Tao Xie, Jian-Guang Lou, Ting Liu
and Dongmei Zhang

Decoupling Structure and Lexicon for Zero-Shot Semantic Parsing
Jonathan Herzig and Jonathan Berant

A Span Selection Model for Semantic Role Labeling
Hiroki Ouchi, Hiroyuki Shindo and Yuji Matsumoto

Mapping Language to Code in Programmatic Context
Srinivasan Iyer, Ioannis Konstas, Alvin Cheung and Luke Zettlemoyer

SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-Domain Text-to-SQL
Task

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li and
Dragomir Radev
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Cross-lingual Decompositional Semantic Parsing
Sheng Zhang, Xutai Ma, Rachel Rudinger, Kevin Duh and Benjamin Van Durme

Learning to Learn Semantic Parsers from Natural Language Supervision
Igor Labutov, Bishan Yang and Tom Mitchell

DeepCx: A transition-based approach for shallow semantic parsing with complex
constructional triggers
Jesse Dunietz, Jaime Carbonell and Lori Levin

What It Takes to Achieve 100% Condition Accuracy on WikiSQL
Semih Yavuz, 1zzeddin Gur, Yu Su and Xifeng Yan

Better Transition-Based AMR Parsing with a Refined Search Space
Zhijiang Guo and Wei Lu

Demo: TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic
Parsing and Code Generation
Xiaolin Wang, Masao Utiyama, and Eiichiro Sumita

Demo: Visual Interrogation of Attention-Based Models for Natural Language In-
ference and Machine Comprehension

Shusen Liu, Tao Li, Zhimin Liu, Vivek Srikumar, Valerio Pascucci, and Peer-Timo
Bremer

Demo: Magnitude: A Fast, Efficient Universal Vector Embedding Utility Package
Ajay Patel, Alexander Sands, Chris Callison-Burch, and Marianna Apidianaki

Demo: Universal Sentence Encoder for English

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian
Strope, and Ray Kurzweil
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Saturday, November 3, 2018

09:00-10:30

09:00-09:18

09:18-09:36

09:36-09:54

09:54-10:12

10:12-10:30

09:00-09:18

09:18-09:36

09:36-09:54

09:54-10:12

Long Papers and Demos (Orals and Posters) II1

Session 5A: Semantics IV (Gold Hall)

Heuristically Informed Unsupervised Idiom Usage Recognition
Changsheng Liu and Rebecca Hwa

Coming to Your Senses: on Controls and Evaluation Sets in Polysemy Research
Haim Dubossarsky, Eitan Grossman and Daphna Weinshall

Predicting Semantic Relations using Global Graph Properties
Yuval Pinter and Jacob FEisenstein

Learning Scalar Adjective Intensity from Paraphrases
Anne Cocos, Veronica Wharton, Ellie Pavlick, Marianna Apidianaki and Chris
Callison-Burch

Pointwise HSIC: A Linear-Time Kernelized Co-occurrence Norm for Sparse Lin-
guistic Expressions
Sho Yokoi, Sosuke Kobayashi, Kenji Fukumizu, Jun Suzuki and Kentaro Inui

Session 5B: Summarization (Copper Hall)

Neural Related Work Summarization with a Joint Context-driven Attention Mecha-
nism
Yongzhen Wang, Xiaozhong Liu and Zheng Gao

Improving Neural Abstractive Document Summarization with Explicit Information
Selection Modeling
Wei Li, Xinyan Xiao, Yajuan Lyu and Yuanzhuo Wang

Don’t Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural
Networks for Extreme Summarization

Shashi Narayan, Shay B. Cohen and Mirella Lapata

Improving Abstraction in Text Summarization
Woijciech KrySciniski, Romain Paulus, Caiming Xiong and Richard Socher
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Saturday, November 3, 2018 (continued)

10:12-10:30  Content Selection in Deep Learning Models of Summarization
Chris Kedzie, Kathleen McKeown and Hal Daume III
Session 5C: IR / Text Mining (Silver Hall)

09:00-09:18  Improved Semantic-Aware Network Embedding with Fine-Grained Word Alignment
Dinghan Shen, Xinyuan Zhang, Ricardo Henao and Lawrence Carin

09:18-09:36  Learning Context-Sensitive Convolutional Filters for Text Processing
Dinghan Shen, Martin Renqiang Min, Yitong Li and Lawrence Carin

09:36-09:54  Deep Relevance Ranking Using Enhanced Document-Query Interactions
Ryan McDonald, George Brokos and Ion Androutsopoulos

09:54-10:12  Learning Neural Representation for CLIR with Adversarial Framework
Bo Li and Ping Cheng

10:12-10:30  AD3: Attentive Deep Document Dater
Swayambhu Nath Ray, Shib Sankar Dasgupta and Partha Talukdar
Session SD: Machine Learning II (Hall 100)

09:00-09:18  Gromov-Wasserstein Alignment of Word Embedding Spaces
David Alvarez-Melis and Tommi Jaakkola

09:18-09:36  Deep Probabilistic Logic: A Unifying Framework for Indirect Supervision
Hai Wang and Hoifung Poon

09:36-09:54  Deriving Machine Attention from Human Rationales
Yujia Bao, Shiyu Chang, Mo Yu and Regina Barzilay

09:54-10:12  Semi-Supervised Sequence Modeling with Cross-View Training
Kevin Clark, Minh-Thang Luong, Christopher D. Manning and Quoc Le

Ixxix



Saturday, November 3, 2018 (continued)

10:12-10:30  (TACL) Comparing Bayesian Models of Annotation
Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk Hovy, Udo Kruschwitz, and
Massimo Poesio

Session SE: Information Extraction, Question Answering (Posters and Demos,
Grand Hall 2)

A Probabilistic Annotation Model for Crowdsourcing Coreference
Silviu Paun, Jon Chamberlain, Udo Kruschwitz, Juntao Yu and Massimo Poesio

A Deterministic Algorithm for Bridging Anaphora Resolution
Yufang Hou

A Knowledge Hunting Framework for Common Sense Reasoning
Ali Emami, Noelia De La Cruz, Adam Trischler, Kaheer Suleman and Jackie Chi
Kit Cheung

Mapping Text to Knowledge Graph Entities using Multi-Sense LSTMs
Dimitri Kartsaklis, Mohammad Taher Pilehvar and Nigel Collier

Differentiating Concepts and Instances for Knowledge Graph Embedding
Xin Lv, Lei Hou, Juanzi Li and Zhiyuan Liu

One-Shot Relational Learning for Knowledge Graphs
Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo and William Yang Wang

Regular Expression Guided Entity Mention Mining from Noisy Web Data
Shanshan Zhang, Lihong He, Slobodan Vucetic and Eduard Dragut

HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding
Shib Sankar Dasgupta, Swayambhu Nath Ray and Partha Talukdar

Neural Adaptation Layers for Cross-domain Named Entity Recognition
Bill Yuchen Lin and Wei Lu

Entity Linking within a Social Media Platform: A Case Study on Yelp
Hongliang Dai, Yangqiu Song, Liwei Qiu and Rijia Liu
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Annotation of a Large Clinical Entity Corpus
Pinal Patel, Disha Davey, Vishal Panchal and Parth Pathak

Visual Supervision in Bootstrapped Information Extraction
Matthew Berger, Ajay Nagesh, Joshua Levine, Mihai Surdeanu and Helen Zhang

Learning Named Entity Tagger using Domain-Specific Dictionary
Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren, Teng Ren and Jiawei Han

Zero-Shot Open Entity Typing as Type-Compatible Grounding
Ben Zhou, Daniel Khashabi, Chen-Tse Tsai and Dan Roth

Attention-Guided Answer Distillation for Machine Reading Comprehension
Minghao Hu, Yuxing Peng, Furu Wei, Zhen Huang, Dongsheng Li, Nan Yang and
Ming Zhou

Interpretation of Natural Language Rules in Conversational Machine Reading
Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer Singh, Tim Rocktidschel, Mike
Sheldon, Guillaume Bouchard and Sebastian Riedel

A State-transition Framework to Answer Complex Questions over Knowledge Base
Sen Hu, Lei Zou and Xinbo Zhang

A Multi-answer Multi-task Framework for Real-world Machine Reading Compre-
hension
Jiahua Liu, Wan Wei, Maosong Sun, Hao Chen, Yantao Du and Dekang Lin

Logician and Orator: Learning from the Duality between Language and Knowledge
in Open Domain
Mingming Sun, Xu Li and Ping Li

MemoReader: Large-Scale Reading Comprehension through Neural Memory Con-
troller
Seohyun Back, Seunghak Yu, Sathish Reddy Indurthi, Jihie Kim and Jaegul Choo

Multi-Granular Sequence Encoding via Dilated Compositional Units for Reading
Comprehension

Yi Tay, Anh Tuan Luu and Siu Cheung Hui

Neural Compositional Denotational Semantics for Question Answering
Nitish Gupta and Mike Lewis

Ixxx1



Saturday, November 3, 2018 (continued)

Cross-Pair Text Representations for Answer Sentence Selection
Kateryna Tymoshenko and Alessandro Moschitti

QuAC: Question Answering in Context
Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy
Liang and Luke Zettlemoyer

Knowledge Base Question Answering via Encoding of Complex Query Graphs
Kangqi Luo, Fengli Lin, Xusheng Luo and Kenny Zhu

Neural Relation Extraction via Inner-Sentence Noise Reduction and Transfer Learn-

ing
Tianyi Liu, Xinsong Zhang, Wanhao Zhou and Weijia Jia

Graph Convolution over Pruned Dependency Trees Improves Relation Extraction
Yuhao Zhang, Peng Qi and Christopher D. Manning

Multi-Level Structured Self-Attentions for Distantly Supervised Relation Extraction
Jinhua Du, Jingguang Han, Andy Way and Dadong Wan

N-ary Relation Extraction using Graph-State LSTM
Linfeng Song, Yue Zhang, Zhiguo Wang and Daniel Gildea

Hierarchical Relation Extraction with Coarse-to-Fine Grained Attention
Xu Han, Pengfei Yu, Zhiyuan Liu, Maosong Sun and Peng Li

Label-Free Distant Supervision for Relation Extraction via Knowledge Graph Em-
bedding

Guanying Wang, Wen Zhang, Ruoxu Wang, Yalin Zhou, Xi Chen, Wei Zhang, Hai
Zhu and Huajun Chen

Extracting Entities and Relations with Joint Minimum Risk Training
Changzhi Sun, Yuanbin Wu, Man Lan, Shiliang Sun, Wenting Wang, Kuang-Chih
Lee and Kewen Wu

Large-scale Exploration of Neural Relation Classification Architectures
Hoang-Quynh Le, Duy-Cat Can, Sinh T. Vu, Thanh Hai Dang, Mohammad Taher
Pilehvar and Nigel Collier

Possessors Change Over Time: A Case Study with Artworks
Dhivya Chinnappa and Eduardo Blanco
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Demo: CogCompTime: A Tool for Understanding Time in Natural Language
Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng, and Dan Roth

Demo: DERE: A Task and Domain-Independent Slot Filling Framework for Declar-
ative Relation Extraction

Heike Adel, Laura Ana Maria Bostan, Sean Papay, Sebastian Pad6, and Roman
Klinger

Demo: Integrating Knowledge-Supported Search into the INCEpTION Annotation
Platform

Beto Boullosa, Richard Eckart de Castilho, Naveen Kumar, Jan-Christoph Klie, and
Iryna Gurevych

Demo: OpenKE: An Open Toolkit for Knowledge Embedding
Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi
Li

Demo: An Interactive Web-Interface for Visualizing the Inner Workings of the
Question Answering LSTM
Ekaterina Loginova and Giinter Neumann

Demo: An Interface for Annotating Science Questions

Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Ra-
jarshi Das, Andrew McCallum, Maria Chang, Achille Fokoue, Pavan Kapanipathi,
Nicholas Mattei, Ryan Musa, Kartik Talamadupula, and Michael Witbrock

Demo: Interactive Instance-based Evaluation of Knowledge Base Question Answer-
ing

Daniil Sorokin and Iryna Gurevych

10:30-11:00 Coffee Break

11:00-12:30 Long Papers and Demos (Orals and Posters) IV
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11:00-11:18

11:18-11:36

11:36-11:54

11:54-12:12

12:12-12:30

11:00-11:18

11:18-11:36

11:36-11:54

11:54-12:12

12:12-12:30

Session 6A: Dialogue I (Gold Hall)

Using Lexical Alignment and Referring Ability to Address Data Sparsity in Situated
Dialog Reference Resolution
Todd Shore and Gabriel Skantze

Subgoal Discovery for Hierarchical Dialogue Policy Learning
Da Tang, Xiujun Li, Jianfeng Gao, Chong Wang, Lihong Li and Tony Jebara

Supervised Clustering of Questions into Intents for Dialog System Applications
Iryna Haponchyk, Antonio Uva, Seunghak Yu, Olga Uryupina and Alessandro Mos-
chitti

Towards Exploiting Background Knowledge for Building Conversation Systems
Nikita Moghe, Siddhartha Arora, Suman Banerjee and Mitesh M. Khapra

Decoupling Strategy and Generation in Negotiation Dialogues
He He, Derek Chen, Anusha Balakrishnan and Percy Liang
Session 6B: Question Answering II (Copper Hall)

Large-scale Cloze Test Dataset Created by Teachers
Qizhe Xie, Guokun Lai, Zihang Dai and Eduard Hovy

emrQA: A Large Corpus for Question Answering on Electronic Medical Records
Anusri Pampari, Preethi Raghavan, Jennifer Liang and Jian Peng

HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan
Salakhutdinov and Christopher D. Manning

Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question
Answering

Todor Mihaylov, Peter Clark, Tushar Khot and Ashish Sabharwal

Evaluating Theory of Mind in Question Answering
Aida Nematzadeh, Kaylee Burns, Erin Grant, Alison Gopnik and Tom Griffiths
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11:00-11:18

11:18-11:36

11:36-11:54

11:54-12:12

12:12-12:30

11:00-11:18

11:18-11:36

11:36-11:54

11:54-12:12

12:12-12:30

Session 6C: Semantics V (Silver Hall)

A Unified Syntax-aware Framework for Semantic Role Labeling
Zuchao Li, Shexia He, Jiaxun Cai, Zhuosheng Zhang, Hai Zhao, Gongshen Liu,
Linlin Li and Luo Si

Semantics as a Foreign Language
Gabriel Stanovsky and Ido Dagan

An AMR Aligner Tuned by Transition-based Parser
Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin and Ting Liu

Dependency-based Hybrid Trees for Semantic Parsing
Zhanming Jie and Wei Lu

Policy Shaping and Generalized Update Equations for Semantic Parsing from De-
notations
Dipendra Misra, Ming-Wei Chang, Xiaodong He and Wen-tau Yih

Session 6D: Multilingual Methods II (Hall 100)

Sentence Compression for Arbitrary Languages via Multilingual Pivoting
Jonathan Mallinson, Rico Sennrich and Mirella Lapata

Unsupervised Cross-lingual Transfer of Word Embedding Spaces
Ruochen Xu, Yiming Yang, Naoki Otani and Yuexin Wu

XNLI: Evaluating Cross-lingual Sentence Representations
Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bow-
man, Holger Schwenk and Veselin Stoyanov

Joint Multilingual Supervision for Cross-lingual Entity Linking
Shyam Upadhyay, Nitish Gupta and Dan Roth

Fine-grained Coordinated Cross-lingual Text Stream Alignment for Endless Lan-
guage Knowledge Acquisition

Tao Ge, Qing Dou, Heng Ji, Lei Cui, Baobao Chang, Zhifang Sui, Furu Wei and
Ming Zhou
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Session 6E: Syntax, Morphology, Vision and Language I (Posters and Demos,
Grand Hall 2)

WECA:A WordNet-Encoded Collocation-Attention Network for Homographic Pun
Recognition

Yufeng Diao, Hongfei Lin, Di Wu, Liang Yang, Kan Xu, Zhihao Yang, Jian Wang,
Shaowu Zhang, Bo Xu and Dongyu Zhang

A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Check
Dingmin Wang, Yan Song, Jing Li, Jialong Han and Haisong Zhang

Neural Quality Estimation of Grammatical Error Correction
Shamil Chollampatt and Hwee Tou Ng

Transferring from Formal Newswire Domain with Hypernet for Twitter POS Tag-
ging

Tao Gui, Qi Zhang, Jingjing Gong, Minlong Peng, di liang, Keyu Ding and Xuan-
jing Huang

Free as in Free Word Order: An Energy Based Model for Word Segmentation and
Morphological Tagging in Sanskrit

Amrith Krishna, Bishal Santra, Sasi Prasanth Bandaru, Gaurav Sahu, Vishnu Dutt
Sharma, Pavankumar Satuluri and Pawan Goyal

A Challenge Set and Methods for Noun-Verb Ambiguity
Ali Elkahky, Kellie Webster, Daniel Andor and Emily Pitler

What do character-level models learn about morphology? The case of dependency
parsing
Clara Vania, Andreas Grivas and Adam Lopez

Learning Better Internal Structure of Words for Sequence Labeling
Yingwei Xin, Ethan Hart, Vibhuti Mahajan and Jean David Ruvini

ICON: Interactive Conversational Memory Network for Multimodal Emotion De-
tection

Devamanyu Hazarika, Soujanya Poria, Rada Mihalcea, Erik Cambria and Roger
Zimmermann

Discriminative Learning of Open-Vocabulary Object Retrieval and Localization by
Negative Phrase Augmentation

Ryota Hinami and Shin’ichi Satoh

Grounding Semantic Roles in Images
Carina Silberer and Manfred Pinkal
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Commonsense Justification for Action Explanation
Shaohua Yang, Qiaozi Gao, Sari Sadiya and Joyce Chai

Learning Personas from Dialogue with Attentive Memory Networks
Eric Chu, Prashanth Vijayaraghavan and Deb Roy

Grounding language acquisition by training semantic parsers using captioned
videos

Candace Ross, Andrei Barbu, Yevgeni Berzak, Battushig Myanganbayar and Boris
Katz

Translating Navigation Instructions in Natural Language to a High-Level Plan for
Behavioral Robot Navigation

Xiaoxue Zang, Ashwini Pokle, Marynel Vazquez, Kevin Chen, Juan Carlos Niebles,
Alvaro Soto and Silvio Savarese

Mapping Instructions to Actions in 3D Environments with Visual Goal Prediction
Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind Niklasson, Max Shatkhin
and Yoav Artzi

Deconvolutional Time Series Regression: A Technique for Modeling Temporally
Diffuse Effects
Cory Shain and William Schuler

Is this Sentence Difficult? Do you Agree?
Dominique Brunato, Lorenzo De Mattei, Felice Dell’Orletta, Benedetta Iavarone
and Giulia Venturi

Neural Transition Based Parsing of Web Queries: An Entity Based Approach
Rivka Malca and Roi Reichart

An Investigation of the Interactions Between Pre-Trained Word Embeddings, Char-
acter Models and POS Tags in Dependency Parsing
Aaron Smith, Miryam de Lhoneux, Sara Stymne and Joakim Nivre

Depth-bounding is effective: Improvements and evaluation of unsupervised PCFG
induction
Lifeng Jin, Finale Doshi-Velez, Timothy Miller, William Schuler and Lane
Schwartz
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(TACL) In-Order Transition-based Constituent Parsing
Jiangming Liu and Yue Zhang

(TACL) Surface Statistics of an Unknown Language Indicate How to Parse It
Dingquan Wang and Jason Eisner

Incremental Computation of Infix Probabilities for Probabilistic Finite Automata
Marco Cognetta, Yo-Sub Han and Soon Chan Kwon

Syntax Encoding with Application in Authorship Attribution
Richong Zhang, Zhiyuan Hu, Hongyu Guo and Yongyi Mao

Sanskrit Word Segmentation Using Character-level Recurrent and Convolutional
Neural Networks
Oliver Hellwig and Sebastian Nehrdich

(TACL) Universal Word Segmentation: Implementation and Interpretation
Yan Shao, Christian Hardmeier, and Joakim Nivre

Demo: MorAz: an Open-source Morphological Analyzer for Azerbaijani Turkish
Berke Ozenc, Razieh Ehsani, and Ercan Solak

Demo: Juman++: A Morphological Analysis Toolkit for Scriptio Continua
Arseny Tolmachev, Daisuke Kawahara, and Sadao Kurohashi

12:30-13:45 Lunch

13:45-14:45 Short Papers (Orals and Posters) 111
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13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

Session 7A: Dialogue II (Gold Hall)

Session-level Language Modeling for Conversational Speech
Wayne Xiong, Lingfeng Wu, Jun Zhang and Andreas Stolcke

Towards Less Generic Responses in Neural Conversation Models: A Statistical Re-
weighting Method
Yahui Liu, Wei Bi, Jun Gao, Xiaojiang Liu, Jian Yao and Shuming Shi

Training Millions of Personalized Dialogue Agents
Pierre-Emmanuel Mazare, Samuel Humeau, Martin Raison and Antoine Bordes

Towards Universal Dialogue State Tracking
Liliang Ren, Kaige Xie, Lu Chen and Kai Yu

Semantic Parsing for Task Oriented Dialog using Hierarchical Representations
Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar and Mike Lewis
Session 7B: Social Applications II (Copper Hall)

The glass ceiling in NLP
Natalie Schluter

Reducing Gender Bias in Abusive Language Detection
Ji Ho Park, Jamin Shin and Pascale Fung

SafeCity: Understanding Diverse Forms of Sexual Harassment Personal Stories
Sweta Karlekar and Mohit Bansal

Learning multiview embeddings for assessing dementia
Chloé Pou-Prom and Frank Rudzicz

WikiConv: A Corpus of the Complete Conversational History of a Large Online
Collaborative Community

Yiqing Hua, Cristian Danescu-Niculescu-Mizil, Dario Taraborelli, Nithum Thain,
Jeffery Sorensen and Lucas Dixon
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13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

Session 7C: NER (Silver Hall)

Marginal Likelihood Training of BiLSTM-CRF for Biomedical Named Entity Recog-
nition from Disjoint Label Sets
Nathan Greenberg, Trapit Bansal, Patrick Verga and Andrew McCallum

Adversarial training for multi-context joint entity and relation extraction
Giannis Bekoulis, Johannes Deleu, Thomas Demeester and Chris Develder

Structured Multi-Label Biomedical Text Tagging via Attentive Neural Tree Decoding
Gaurav Singh, James Thomas, Iain Marshall, John Shawe-Taylor and Byron C. Wal-
lace

Deep Exhaustive Model for Nested Named Entity Recognition
Mohammad Golam Sohrab and Makoto Miwa

Evaluating the Utility of Hand-crafted Features in Sequence Labelling
Minghao Wu, Fei Liu and Trevor Cohn

Session 7D: Morphology / Parsing (Hall 100)

Improved Dependency Parsing using Implicit Word Connections Learned from Un-
labeled Data
Wenhui Wang, Baobao Chang and Mairgup Mansur

A Framework for Understanding the Role of Morphology in Universal Dependency
Parsing
Mathieu Dehouck and Pascal Denis

The Lazy Encoder: A Fine-Grained Analysis of the Role of Morphology in Neural
Machine Translation

Arianna Bisazza and Clara Tump

Imitation Learning for Neural Morphological String Transduction
Peter Makarov and Simon Clematide

An Encoder-Decoder Approach to the Paradigm Cell Filling Problem
Miikka Silfverberg and Mans Hulden
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Session 7E: Short Posters I1I (Grand Hall 2)

Generating Natural Language Adversarial Examples
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava
and Kai-Wei Chang

Multi-Head Attention with Disagreement Regularization
Jian Li, Zhaopeng Tu, Baosong Yang, Michael R. Lyu and Tong Zhang

Deep Bayesian Active Learning for Natural Language Processing: Results of a
Large-Scale Empirical Study
Aditya Siddhant and Zachary C. Lipton

Bayesian Compression for Natural Language Processing
Nadezhda Chirkova, Ekaterina Lobacheva and Dmitry Vetrov

Multimodal neural pronunciation modeling for spoken languages with logographic
origin
Minh Nguyen, Gia H Ngo and Nancy Chen

Chinese Pinyin Aided IME, Input What You Have Not Keystroked Yet
Yafang Huang and Hai Zhao

Estimating Marginal Probabilities of n-grams for Recurrent Neural Language Mod-
els
Thanapon Noraset, Doug Downey and Lidong Bing

How to represent a word and predict it, too: Improving tied architectures for lan-
guage modelling

Kiristina Gulordava, Laura Aina and Gemma Boleda

The Importance of Generation Order in Language Modeling
Nicolas Ford, Daniel Duckworth, Mohammad Norouzi and George Dahl

Document-Level Neural Machine Translation with Hierarchical Attention Networks
Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas and James Henderson

Three Strategies to Improve One-to-Many Multilingual Translation
Yining Wang, Jiajun Zhang, Feifei Zhai, Jingfang Xu and Chengqing Zong
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Multi-Source Syntactic Neural Machine Translation
Anna Currey and Kenneth Heafield

Fixing Translation Divergences in Parallel Corpora for Neural MT
Minh Quang Pham, Josep Crego, Jean Senellart and Francois Yvon

Adversarial Evaluation of Multimodal Machine Translation
Desmond Elliott

Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion
Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Hervé Jégou and Edouard Grave

Learning When to Concentrate or Divert Attention: Self-Adaptive Attention Tem-
perature for Neural Machine Translation
Junyang Lin, Xu Sun, Xuancheng Ren, Muyu Li and Qi Su

Accelerating Asynchronous Stochastic Gradient Descent for Neural Machine Trans-
lation

Nikolay Bogoychev, Kenneth Heafield, Alham Fikri Aji and Marcin Junczys-
Dowmunt

Learning to Jointly Translate and Predict Dropped Pronouns with a Shared Recon-
struction Mechanism
Longyue Wang, Zhaopeng Tu, Andy Way and Qun Liu

Getting Gender Right in Neural Machine Translation
Eva Vanmassenhove, Christian Hardmeier and Andy Way

Towards Two-Dimensional Sequence to Sequence Model in Neural Machine Trans-
lation
Parnia Bahar, Christopher Brix and Hermann Ney

End-to-End Non-Autoregressive Neural Machine Translation with Connectionist
Temporal Classification

Jindfich Libovicky and Jindfich Helcl

Prediction Improves Simultaneous Neural Machine Translation
Ashkan Alinejad, Maryam Siahbani and Anoop Sarkar

Training Deeper Neural Machine Translation Models with Transparent Attention
Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao and Yonghui Wu
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14:45-15:00

15:00-16:00

16:00-16:30

Context and Copying in Neural Machine Translation
Rebecca Knowles and Philipp Koehn

Encoding Gated Translation Memory into Neural Machine Translation
Qian Cao and Deyi Xiong

Automatic Post-Editing of Machine Translation: A Neural Programmer-Interpreter
Approach
Thuy-Trang Vu and Gholamreza Haffari

Breaking the Beam Search Curse: A Study of (Re-)Scoring Methods and Stopping
Criteria for Neural Machine Translation

Yilin Yang, Liang Huang and Mingbo Ma

Multi-Multi-View Learning: Multilingual and Multi-Representation Entity Typing
Yadollah Yaghoobzadeh and Hinrich Schiitze

Word Embeddings for Code-Mixed Language Processing
Adithya Pratapa, Monojit Choudhury and Sunayana Sitaram

On the Strength of Character Language Models for Multilingual Named Entity
Recognition

Xiaodong Yu, Stephen Mayhew, Mark Sammons and Dan Roth

Code-switched Language Models Using Dual RNNs and Same-Source Pretraining
Saurabh Garg, Tanmay Parekh and Preethi Jyothi

FPart-of-Speech Tagging for Code-Switched, Transliterated Texts without Explicit
Language Identification
Kelsey Ball and Dan Garrette

Mini-Break

Keynote I1: Gideon Mann ''Understanding the News that Moves Markets'' (Gold
Hall)

Coffee Break
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16:30-18:00

16:30-16:48

16:48-17:06

17:06-17:24

17:24-17:42

17:42-18:00

16:30-16:48

16:48-17:06

17:06-17:24

17:24-17:42

Long Papers and Demos (Orals and Posters) V

Session 8A: Text Categorization (Gold Hall)

Zero-shot User Intent Detection via Capsule Neural Networks
Congying Xia, Chenwei Zhang, Xiaohui Yan, Yi Chang and Philip Yu

Hierarchical Neural Networks for Sequential Sentence Classification in Medical
Scientific Abstracts

Di Jin and Peter Szolovits

Investigating Capsule Networks with Dynamic Routing for Text Classification
Min Yang, Wei Zhao, Jianbo Ye, Zeyang Lei, Zhou Zhao and Soufei Zhang

Topic Memory Networks for Short Text Classification
Jichuan Zeng, Jing Li, Yan Song, Cuiyun Gao, Michael R. Lyu and Irwin King

Few-Shot and Zero-Shot Multi-Label Learning for Structured Label Spaces
Anthony Rios and Ramakanth Kavuluru
Session 8B: Generation (Copper Hall)

Automatic Poetry Generation with Mutual Reinforcement Learning
Xiaoyuan Yi, Maosong Sun, Ruoyu Li and Wenhao Li

Variational Autoregressive Decoder for Neural Response Generation
Jiachen Du, Wenjie Li, Yulan He, Ruifeng Xu, Lidong Bing and Xuan Wang

Integrating Transformer and Paraphrase Rules for Sentence Simplification
Sanqgiang Zhao, Rui Meng, Daqing He, Andi Saptono and Bambang Parmanto

Learning Neural Templates for Text Generation
Sam Wiseman, Stuart Shieber and Alexander Rush
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17:42-18:00

16:30-16:48

16:48-17:06

17:06-17:24

17:24-17:42

17:42-18:00

16:30-16:48

16:48-17:06

17:06-17:24

17:24-17:42

Multi-Reference Training with Pseudo-References for Neural Translation and Text
Generation
Renjie Zheng, Mingbo Ma and Liang Huang

Session 8C: Knowledge Graphs (Silver Hall)

Knowledge Graph Embedding with Hierarchical Relation Structure
Zhao Zhang, Fuzhen Zhuang, Meng Qu, Fen Lin and Qing He

Embedding Multimodal Relational Data for Knowledge Base Completion
Pouya Pezeshkpour, Liyan Chen and Sameer Singh

Multi-Task Identification of Entities, Relations, and Coreference for Scientific
Knowledge Graph Construction
Yi Luan, Luheng He, Mari Ostendorf and Hannaneh Hajishirzi

Playing 20 Question Game with Policy-Based Reinforcement Learning
Huang Hu, Xianchao Wu, Bingfeng Luo, Chongyang Tao, Can Xu, wei wu and
Zhan Chen

Multi-Hop Knowledge Graph Reasoning with Reward Shaping
Xi Victoria Lin, Richard Socher and Caiming Xiong

Session 8D: Morphology / Phonology (Hall 100)

Neural Transductive Learning and Beyond: Morphological Generation in the
Minimal-Resource Setting
Katharina Kann and Hinrich Schiitze

Implicational Universals in Stochastic Constraint-Based Phonology
Giorgio Magri

Explaining Character-Aware Neural Networks for Word-Level Prediction: Do They
Discover Linguistic Rules?

Fréderic Godin, Kris Demuynck, Joni Dambre, Wesley De Neve and Thomas De-
meester

Adapting Word Embeddings to New Languages with Morphological and Phonolog-
ical Subword Representations

Aditi Chaudhary, Chunting Zhou, Lori Levin, Graham Neubig, David R. Mortensen
and Jaime Carbonell
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17:42-18:00

(TACL) Recurrent Neural Networks in Linguistic Theory: Revisiting Pinker and
Prince (1988) and the Past Tense Debate
Christo Kirov and Ryan Cotterell

Session 8E: Sentiment, Social Applications, Multimodal Semantics, Discourse
(Posters and Demos, Grand Hall 2)

A Computational Exploration of Exaggeration
Enrica Troiano, Carlo Strapparava, Gozde Ozbal and Serra Sinem Tekiroglu

Building Context-aware Clause Representations for Situation Entity Type Classifi-
cation
Zeyu Dai and Ruihong Huang

Hierarchical Dirichlet Gaussian Marked Hawkes Process for Narrative Reconstruc-
tion in Continuous Time Domain
Yeon Seonwoo, Alice Oh and Sungjoon Park

Investigating the Role of Argumentation in the Rhetorical Analysis of Scientific Pub-
lications with Neural Multi-Task Learning Models

Anne Lauscher, Goran Glavas, Simone Paolo Ponzetto and Kai Eckert

Neural Ranking Models for Temporal Dependency Structure Parsing
Yuchen Zhang and Nianwen Xue

Causal Explanation Analysis on Social Media
Youngseo Son, Nipun Bayas and H. Andrew Schwartz

LRMM: Learning to Recommend with Missing Modalities
Cheng Wang, Mathias Niepert and Hui Li

Content Explorer: Recommending Novel Entities for a Document Writer
Michal Lukasik and Richard Zens

A Genre-Aware Attention Model to Improve the Likability Prediction of Books
Suraj Maharjan, Manuel Montes, Fabio A. Gonzélez and Thamar Solorio

Thread Popularity Prediction and Tracking with a Permutation-invariant Model
Hou Pong Chan and Irwin King
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Saturday, November 3, 2018 (continued)

IARM: Inter-Aspect Relation Modeling with Memory Networks in Aspect-Based
Sentiment Analysis

Navonil Majumder, Soujanya Poria, Alexander Gelbukh, Md Shad Akhtar, Erik
Cambria and Asif Ekbal

Limbic: Author-Based Sentiment Aspect Modeling Regularized with Word Embed-
dings and Discourse Relations
Zhe Zhang and Munindar Singh

An Interpretable Neural Network with Topical Information for Relevant Emotion
Ranking
Yang Yang, Deyu ZHOU and Yulan He

Multi-grained Attention Network for Aspect-Level Sentiment Classification
Feifan Fan, Yansong Feng and Dongyan Zhao

Attentive Gated Lexicon Reader with Contrastive Contextual Co-Attention for Sen-
timent Classification
Yi Tay, Anh Tuan Luu, Siu Cheung Hui and Jian Su

Contextual Inter-modal Attention for Multi-modal Sentiment Analysis
Deepanway Ghosal, Md Shad Akhtar, Dushyant Chauhan, Soujanya Poria, Asif
Ekbal and Pushpak Bhattacharyya

Adaptive Semi-supervised Learning for Cross-domain Sentiment Classification
Ruidan He, Wee Sun Lee, Hwee Tou Ng and Daniel Dahlmeier

ExtRA: Extracting Prominent Review Aspects from Customer Feedback
Zhiyi Luo, Shanshan Huang, Frank F. Xu, Bill Yuchen Lin, Hanyuan Shi and Kenny
Zhu

Cross-Lingual Cross-Platform Rumor Verification Pivoting on Multimedia Content
Weiming Wen, Songwen Su and Zhou Yu

Extractive Adversarial Networks: High-Recall Explanations for Ildentifying Per-
sonal Attacks in Social Media Posts

Samuel Carton, Qiaozhu Mei and Paul Resnick

Automatic Detection of Vague Words and Sentences in Privacy Policies
Logan Lebanoff and Fei Liu

Multi-view Models for Political Ideology Detection of News Articles
Vivek Kulkarni, Junting Ye, Steve Skiena and William Yang Wang
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Saturday, November 3, 2018 (continued)

Predicting Factuality of Reporting and Bias of News Media Sources
Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov, James Glass and Preslav
Nakov

Legal Judgment Prediction via Topological Learning
Haoxi Zhong, Guo Zhipeng, Cunchao Tu, Chaojun Xiao, Zhiyuan Liu and Maosong
Sun

Hierarchical CVAE for Fine-Grained Hate Speech Classification
Jing Qian, Mai ElSherief, Elizabeth Belding and William Yang Wang

Residualized Factor Adaptation for Community Social Media Prediction Tasks
Mohammadzaman Zamani, H. Andrew Schwartz, Veronica Lynn, Salvatore Giorgi
and Niranjan Balasubramanian

Framing and Agenda-setting in Russian News: a Computational Analysis of Intri-
cate Political Strategies

Anjalie Field, Doron Kliger, Shuly Wintner, Jennifer Pan, Dan Jurafsky and Yulia
Tsvetkov

Identifying the sentiment styles of YouTube’s vioggers
Bennett Kleinberg, Maximilian Mozes and Isabelle van der Vegt

Native Language Identification with User Generated Content
Gili Goldin, Ella Rabinovich and Shuly Wintner

Demo: Visualization of the Topic Space of Argument Search Results in args.me

Yamen Ajjour, Henning Wachsmuth, Dora Kiesel, Patrick Riehmann, Fan Fan, Giu-
liano Castiglia, Rosemary Adejoh, Bernd Frohlich, and Benno Stein

Xcviil



Saturday, November 3, 2018 (continued)

Demo: A Multilingual Information Extraction Pipeline for Investigative Journalism
Gregor Wiedemann, Seid Muhie Yimam, and Chris Biemann

Demo: When science journalism meets artificial intelligence : An interactive
demonstration

Raghuram Vadapalli, Bakhtiyar Syed, Nishant Prabhu, Balaji Vasan Srinivasan, and
Vasudeva Varma

19:00-22:00 Social Event (Royal Museums of Fine Arts of Belgium)

Sunday, November 4, 2018

09:00-10:30 Long Papers and Demos (Orals and Posters) VI

09:00-09:18

09:18-09:36

09:36-09:54

09:54-10:12

10:12-10:30

Session 9A: Machine Translation II (Gold Hall)
Beyond Error Propagation in Neural Machine Translation: Characteristics of Lan-
guage Also Matter

Lijun Wu, Xu Tan, Di He, Fei Tian, Tao Qin, Jianhuang Lai and Tie-Yan Liu

A Study of Reinforcement Learning for Neural Machine Translation
Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai and Tie-Yan Liu

Meta-Learning for Low-Resource Neural Machine Translation
Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li and Kyunghyun Cho

Unsupervised Statistical Machine Translation
Mikel Artetxe, Gorka Labaka and Eneko Agirre

A Visual Attention Grounding Neural Model for Multimodal Machine Translation
Mingyang Zhou, Runxiang Cheng, Yong Jae Lee and Zhou Yu
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Sunday, November 4, 2018 (continued)

09:00-09:18

09:18-09:36

09:36-09:54

09:54-10:12

10:12-10:30

09:00-09:18

09:18-09:36

09:36-09:54

09:54-10:12

10:12-10:30

Session 9B: Sentiment I (Copper Hall)

Sentiment Classification towards Question-Answering with Hierarchical Matching
Network

Chenlin Shen, Changlong Sun, Jingjing Wang, Yangyang Kang, Shoushan Li, Xi-
aozhong Liu, Luo Si, Min Zhang and Guodong Zhou

Cross-topic Argument Mining from Heterogeneous Sources
Christian Stab, Tristan Miller, Benjamin Schiller, Pranav Rai and Iryna Gurevych

Summarizing Opinions: Aspect Extraction Meets Sentiment Prediction and They
Are Both Weakly Supervised
Stefanos Angelidis and Mirella Lapata

CARER: Contextualized Affect Representations for Emotion Recognition
Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu and Yi-Shin Chen

(TACL) Adversarial Deep Averaging Networks for Cross-Lingual Sentiment Clas-
sification
Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie, and Kilian Weinberger

Session 9C: Machine Learning III (Silver Hall)

Noise Contrastive Estimation and Negative Sampling for Conditional Models: Con-
sistency and Statistical Efficiency
Zhuang Ma and Michael Collins

CaLcs: Continuously Approximating Longest Common Subsequence for Sequence
Level Optimization
Semih Yavuz, Chung-Cheng Chiu, Patrick Nguyen and Yonghui Wu

Pathologies of Neural Models Make Interpretations Difficult
Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez and Jordan
Boyd-Graber

Phrase-level Self-Attention Networks for Universal Sentence Encoding
Wei Wu, Houfeng Wang, Tianyu Liu and Shuming Ma

BanditSum: Extractive Summarization as a Contextual Bandit
Yue Dong, Yikang Shen, Eric Crawford, Herke van Hoof and Jackie Chi Kit Cheung



Sunday, November 4, 2018 (continued)

09:00-09:18

09:18-09:36

09:36-09:54

09:54-10:12

10:12-10:30

Session 9D: Semantics VI (Hall 100)

A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical
Simplification
Mounica Maddela and Wei Xu

Learning Latent Semantic Annotations for Grounding Natural Language to Struc-
tured Data
Guanghui Qin, Jin-Ge Yao, Xuening Wang, Jinpeng Wang and Chin-Yew Lin

Syntactic Scaffolds for Semantic Structures
Swabha Swayamdipta, Sam Thomson, Kenton Lee, Luke Zettlemoyer, Chris Dyer
and Noah A. Smith

Hierarchical Quantized Representations for Script Generation
Noah Weber, Leena Shekhar, Niranjan Balasubramanian and Nate Chambers

Semantic Role Labeling for Learner Chinese: the Importance of Syntactic Parsing
and L2-L1 Parallel Data
Zi Lin, Yuguang Duan, Yuanyuan Zhao, Weiwei Sun and Xiaojun Wan

Session 9E: Generation, Dialog, Summarization; Vision and Language II
(Posters and Demos, Grand Hall 2)

A Teacher-Student Framework for Maintainable Dialog Manager

Weikang Wang, Jiajun Zhang, Han Zhang, Mei-Yuh Hwang, Chengqing Zong and
Zhifei Li

Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning
Shang-Yu Su, Xiujun Li, Jianfeng Gao, Jingjing Liu and Yun-Nung Chen

A Self-Attentive Model with Gate Mechanism for Spoken Language Understanding
Changliang Li, Liang Li and Ji Qi

Learning End-to-End Goal-Oriented Dialog with Multiple Answers
Janarthanan Rajendran, Jatin Ganhotra, Satinder Singh and Lazaros Polymenakos

AirDialogue: An Environment for Goal-Oriented Dialogue Research
Wei Wei, Quoc Le, Andrew Dai and Jia Li
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Sunday, November 4, 2018 (continued)

(TACL) Polite Dialogue Generation Without Parallel Data
Tong Niu and Mohit Bansal

QuaSE: Sequence Editing under Quantifiable Guidance
Yi Liao, Lidong Bing, Piji Li, Shuming Shi, Wai Lam and Tong Zhang

Paraphrase Generation with Deep Reinforcement Learning
Zichao Li, Xin Jiang, Lifeng Shang and Hang Li

Operation-guided Neural Networks for High Fidelity Data-To-Text Generation
Feng Nie, Jinpeng Wang, Jin-Ge Yao, Rong Pan and Chin-Yew Lin

Generating Classical Chinese Poems via Conditional Variational Autoencoder and
Adversarial Training

Juntao Li, Yan Song, Haisong Zhang, Dongmin Chen, Shuming Shi, Dongyan Zhao
and Rui Yan

Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-
attention Networks
Yao Zhao, Xiaochuan Ni, Yuanyuan Ding and Qifa Ke

Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain
Semantic Parsing and Text-to-SQL Task

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang and Dragomir Radev

Unsupervised Natural Language Generation with Denoising Autoencoders
Markus Freitag and Scott Roy

Answer-focused and Position-aware Neural Question Generation
Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun Ma and Shi Wang

Diversity-Promoting GAN: A Cross-Entropy Based Generative Adversarial Net-
work for Diversified Text Generation

Jingjing Xu, Xuancheng Ren, Junyang Lin and Xu Sun

Towards a Better Metric for Evaluating Question Generation Systems
Preksha Nema and Mitesh M. Khapra

Stylistic Chinese Poetry Generation via Unsupervised Style Disentanglement
Cheng Yang, Maosong Sun, Xiaoyuan Yi and Wenhao Li
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Sunday, November 4, 2018 (continued)

Generating More Interesting Responses in Neural Conversation Models with Dis-
tributional Constraints
Ashutosh Baheti, Alan Ritter, Jiwei Li and Bill Dolan

Better Conversations by Modeling, Filtering, and Optimizing for Coherence and
Diversity
Xinnuo Xu, Ondfej Dusek, loannis Konstas and Verena Rieser

Incorporating Background Knowledge into Video Description Generation
Spencer Whitehead, Heng Ji, Mohit Bansal, Shih-Fu Chang and Clare Voss

Multimodal Differential Network for Visual Question Generation
Badri Narayana Patro, Sandeep Kumar, Vinod Kumar Kurmi and Vinay Namboodiri

Entity-aware Image Caption Generation
Di Lu, Spencer Whitehead, Lifu Huang, Heng Ji and Shih-Fu Chang

Learning to Describe Differences Between Pairs of Similar Images
Harsh Jhamtani and Taylor Berg-Kirkpatrick

Object Hallucination in Image Captioning
Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell and Kate
Saenko

Abstractive Text-Image Summarization Using Multi-Modal Attentional Hierarchical
RNN
Jinggiang Chen and Hai Zhuge

Keyphrase Generation with Correlation Constraints
Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan and Zhoujun Li

Closed-Book Training to Improve Summarization Encoder Memory
Yichen Jiang and Mohit Bansal

Improving Neural Abstractive Document Summarization with Structural Regular-
ization
Wei Li, Xinyan Xiao, Yajuan Lyu and Yuanzhuo Wang

Iterative Document Representation Learning Towards Summarization with Polish-

ing
Xiuying Chen, Shen Gao, Chongyang Tao, Yan Song, Dongyan Zhao and Rui Yan
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Sunday, November 4, 2018 (continued)

Bottom-Up Abstractive Summarization
Sebastian Gehrmann, Yuntian Deng and Alexander Rush

Controlling Length in Abstractive Summarization Using a Convolutional Neural
Network
Yizhu Liu, Zhiyi Luo and Kenny Zhu

APRIL: Interactively Learning to Summarise by Combining Active Preference
Learning and Reinforcement Learning
Yang Gao, Christian M. Meyer and Iryna Gurevych

Adapting the Neural Encoder-Decoder Framework from Single to Multi-Document
Summarization
Logan Lebanoff, Kaigiang Song and Fei Liu

Semi-Supervised Learning for Neural Keyphrase Generation
Hai Ye and Lu Wang

MSMO: Multimodal Summarization with Multimodal Output
Junnan Zhu, Haoran Li, Tianshang Liu, Yu Zhou, Jiajun Zhang and Chengqing
Zong

Frustratingly Easy Model Ensemble for Abstractive Summarization
Hayato Kobayashi

Automatic Pyramid Evaluation Exploiting EDU-based Extractive Reference Sum-
maries
Tsutomu Hirao, Hidetaka Kamigaito and Masaaki Nagata

Learning to Encode Text as Human-Readable Summaries using Generative Adver-

sarial Networks
Yaushian Wang and Hung-yi Lee

civ



Sunday, November 4, 2018 (continued)

Demo: Visualizing Group Dynamics based on Multiparty Meeting Understanding
Ni Zhang, Tongtao Zhang, Indrani Bhattacharya, Heng Ji, and Rich Radke

Demo: PizzaPal: Conversational Pizza Ordering using a High-Density Conversa-
tional Al Platform
Antoine Raux, Yi Ma, Paul Yang, and Felicia Wong

Demo: Developing Production-Level Conversational Interfaces with Shallow Se-
mantic Parsing

Arushi Raghuvanshi, Lucien Carroll, and Karthik Raghunathan

Demo: SyntaViz: Visualizing Voice Queries through a Syntax-Driven Hierarchical

Ontology
Md Iftekhar Tanveer and Ferhan Ture

Demo: LIA: A Natural Language Programmable Personal Assistant
Igor Labutov, Shashank Srivastava, and Tom Mitchell

Demo: Data2Text Studio: Automated Text Generation from Structured Data
Longxu Dou, Guanghui Qin, Jinpeng Wang, Jin-Ge Yao, and Chin-Yew Lin

Demo: Demonstrating Par4Sem - A Semantic Writing Aid with Adaptive Para-
phrasing

Seid Muhie Yimam and Chris Biemann

10:30-11:00 Coffee Break

11:00-12:30 Long Papers and Demos (Orals and Posters) VII
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Sunday, November 4, 2018 (continued)

11:00-11:18

11:18-11:36

11:36-11:54

11:54-12:12

12:12-12:30

11:00-11:18

11:18-11:36

11:36-11:54

11:54-12:12

12:12-12:30

Session 10A: Question Answering III (Gold Hall)

Joint Multitask Learning for Community Question Answering Using Task-Specific
Embeddings
Shafiq Joty, Lluis Marquez and Preslav Nakov

What Makes Reading Comprehension Questions Easier?
Saku Sugawara, Kentaro Inui, Satoshi Sekine and Akiko Aizawa

Commonsense for Generative Multi-Hop Question Answering Tasks
Lisa Bauer, Yicheng Wang and Mohit Bansal

Open Domain Question Answering Using Early Fusion of Knowledge Bases and
Text

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhut-
dinov and William Cohen

A Nil-Aware Answer Extraction Framework for Question Answering
Souvik Kundu and Hwee Tou Ng

Session 10B: Machine Translation III (Copper Hall)

Exploiting Deep Representations for Neural Machine Translation
Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi and Tong Zhang

Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Archi-
tectures
Gongbo Tang, Mathias Miiller, Annette Rios and Rico Sennrich

Simplifying Neural Machine Translation with Addition-Subtraction Twin-Gated Re-
current Networks
Biao Zhang, Deyi Xiong, jinsong su, Qian Lin and Huiji Zhang

Speeding Up Neural Machine Translation Decoding by Cube Pruning
Wen Zhang, Liang Huang, Yang Feng, Lei Shen and Qun Liu

Revisiting Character-Based Neural Machine Translation with Capacity and Com-

pression
Colin Cherry, George Foster, Ankur Bapna, Orhan Firat and Wolfgang Macherey
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Sunday, November 4, 2018 (continued)

11:00-11:18

11:18-11:36

11:36-11:54

11:54-12:12

12:12-12:30

11:00-11:18

11:18-11:36

11:36-11:54

11:54-12:12

12:12-12:30

Session 10C: Discourse (Silver Hall)

A Skeleton-Based Model for Promoting Coherence Among Sentences in Narrative
Story Generation
Jingjing Xu, Xuancheng Ren, Yi Zhang, Qi Zeng, Xiaoyan Cai and Xu Sun

NEXUS Network: Connecting the Preceding and the Following in Dialogue Gener-
ation
Xiaoyu Shen, Hui Su, Wenjie Li and Dietrich Klakow

A Neural Local Coherence Model for Text Quality Assessment
Mohsen Mesgar and Michael Strube

Deep Attentive Sentence Ordering Network
Baiyun Cui, Yingming Li, Ming Chen and Zhongfei Zhang

Getting to "Hearer-old": Charting Referring Expressions Across Time

Ieva Stalitinaité, Hannah Rohde, Bonnie Webber and Annie Louis

Session 10D: Evolution / Sociolinguistics (Hall 100)

Making "fetch” happen: The influence of social and linguistic context on nonstan-
dard word growth and decline

Ian Stewart and Jacob Eisenstein

Analyzing Correlated Evolution of Multiple Features Using Latent Representations
Yugo Murawaki

Capturing Regional Variation with Distributed Place Representations and Geo-
graphic Retrofitting
Dirk Hovy and Christoph Purschke

Characterizing Interactions and Relationships between People
Farzana Rashid and Eduardo Blanco

Why Swear? Analyzing and Inferring the Intentions of Vulgar Expressions
Eric Holgate, Isabel Cachola, Daniel Preotiuc-Pietro and Junyi Jessy Li
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Sunday, November 4, 2018 (continued)

Session 10E: Machine Learning (Posters and Demos, Grand Hall 2)

Is it Time to Swish? Comparing Deep Learning Activation Functions Across NLP
tasks
Steffen Eger, Paul Youssef and Iryna Gurevych

Hard Non-Monotonic Attention for Character-Level Transduction
Shijie Wu, Pamela Shapiro and Ryan Cotterell

Speed Reading: Learning to Read ForBackward via Shuttle
Tsu-Jui Fu and Wei-Yun Ma

Modeling Localness for Self-Attention Networks
Baosong Yang, Zhaopeng Tu, Derek F. Wong, Fandong Meng, Lidia S. Chao and
Tong Zhang

Chargrid: Towards Understanding 2D Documents
Anoop R Katti, Christian Reisswig, Cordula Guder, Sebastian Brarda, Steffen
Bickel, Johannes Hohne and Jean Baptiste Faddoul

Simple Recurrent Units for Highly Parallelizable Recurrence
Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai and Yoav Artzi

NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information
Retrieval

Canjia Li, Yingfei Sun, Ben He, Le Wang, Kai Hui, Andrew Yates, Le Sun and
Jungang Xu

Co-Stack Residual Affinity Networks with Multi-level Attention Refinement for
Matching Text Sequences
Yi Tay, Anh Tuan Luu and Siu Cheung Hui

Spherical Latent Spaces for Stable Variational Autoencoders
Jiacheng Xu and Greg Durrett

Learning Universal Sentence Representations with Mean-Max Attention Autoen-
coder
Minghua Zhang, Yunfang Wu, Weikang Li and Wei Li

Word Mover’s Embedding: From Word2Vec to Document Embedding

Lingfei Wu, Ian En-Hsu Yen, Kun Xu, Fangli Xu, Avinash Balakrishnan, Pin-Yu
Chen, Pradeep Ravikumar and Michael J. Witbrock
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Sunday, November 4, 2018 (continued)

Multilingual Clustering of Streaming News
Sebastido Miranda, Arturs Znotins, Shay B. Cohen and Guntis Barzdins

Multi-Task Label Embedding for Text Classification
Honglun Zhang, Ligiang Xiao, Wenqing Chen, Yongkun Wang and Yaohui Jin

Semantic-Unit-Based Dilated Convolution for Multi-Label Text Classification
Junyang Lin, Qi Su, Pengcheng Yang, Shuming Ma and Xu Sun

MCapsNet: Capsule Network for Text with Multi-Task Learning
Ligiang Xiao, Honglun Zhang, Wenqing Chen, Yongkun Wang and Yaohui Jin

Uncertainty-aware generative models for inferring document class prevalence
Katherine Keith and Brendan O’Connor

Challenges of Using Text Classifiers for Causal Inference
Zach Wood-Doughty, Ilya Shpitser and Mark Dredze

Direct Output Connection for a High-Rank Language Model
Sho Takase, Jun Suzuki and Masaaki Nagata

Disfluency Detection using Auto-Correlational Neural Networks
Paria Jamshid Lou, Peter Anderson and Mark Johnson

Pyramidal Recurrent Unit for Language Modeling
Sachin Mehta, Rik Koncel-Kedziorski, Mohammad Rastegari and Hannaneh Ha-
jishirzi

On Tree-Based Neural Sentence Modeling
Haoyue Shi, Hao Zhou, Jiaze Chen and Lei Li

Language Modeling with Sparse Product of Sememe Experts
Yihong Gu, Jun Yan, Hao Zhu, Zhiyuan Liu, Ruobing Xie, Maosong Sun, Fen Lin
and Leyu Lin
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Sunday, November 4, 2018 (continued)

(TACL) Language Modeling for Morphologically Rich Languages: Character-
Aware Modeling for Word-Level Prediction

Daniela Gerz, Ivan Vulic, Edoardo Maria, Jason Naradowsky, Roi Reichart, and
Anna Korhonen

(TACL) Low-rank RNN Adaptation for Context-Aware Language Modeling
Aaron Jaech and Mari Ostendorf

Siamese Network-Based Supervised Topic Modeling
Minghui Huang, Yanghui Rao, Yuwei Liu, Haoran Xie and Fu Lee Wang

GraphBTM: Graph Enhanced Autoencoded Variational Inference for Biterm Topic
Model
Qile Zhu, Zheng Feng and Xiaolin Li

Modeling Online Discourse with Coupled Distributed Topics
Akshay Srivatsan, Zachary Wojtowicz and Taylor Berg-Kirkpatrick

Learning Disentangled Representations of Texts with Application to Biomedical Ab-
stracts

Sarthak Jain, Edward Banner, Jan-Willem van de Meent, lain J Marshall and Byron
C. Wallace

Multi-Source Domain Adaptation with Mixture of Experts
Jiang Guo, Darsh Shah and Regina Barzilay

Demo: Sisyphus, a Workflow Manager Designed for Machine Translation and Au-
tomatic Speech Recognition
Jan-Thorsten Peter, Eugen Beck, and Hermann Ney

Demo: APLenty: annotation tool for creating high-quality datasets using active and

proactive learning
Minh-Quoc Nghiem and Sophia Ananiadou

cX



Sunday, November 4, 2018 (continued)

12:30-13:45

13:00-13:45

13:45-14:45

13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

Demo: KT-Speech-Crawler: Automatic Dataset Construction for Speech Recogni-
tion from YouTube Videos
Egor Lakomkin, Sven Magg, Cornelius Weber, and Stefan Wermter

Demo: Term Set Expansion based NLP Architect by Intel Al Lab
Jonathan Mamou, Oren Pereg, Moshe Wasserblat, Alon Eirew, Yael Green, Shira

Guskin, Peter 1zsak, and Daniel Korat

Lunch

Business Meeting

Short Papers (Orals and Posters) IV

Session 11A: Analyzing Models (Gold Hall)

A Neural Model of Adaptation in Reading
Marten van Schijndel and Tal Linzen

Understanding Deep Learning Performance through an Examination of Test Set
Difficulty: A Psychometric Case Study
John Lalor, Hao Wu, Tsendsuren Munkhdalai and Hong Yu

Lexicosyntactic Inference in Neural Models
Aaron Steven White, Rachel Rudinger, Kyle Rawlins and Benjamin Van Durme

Dual Fixed-Size Ordinally Forgetting Encoding (FOFE) for Competitive Neural
Language Models
Sedtawut Watcharawittayakul, Mingbin Xu and Hui Jiang

The Importance of Being Recurrent for Modeling Hierarchical Structure
Ke Tran, Arianna Bisazza and Christof Monz

cxi



Sunday, November 4, 2018 (continued)

13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

Session 11B: Sentiment II (Copper Hall)

Joint Learning for Targeted Sentiment Analysis
Dehong Ma, Sujian Li and Houfeng Wang

Revisiting the Importance of Encoding Logic Rules in Sentiment Classification
Kalpesh Krishna, Preethi Jyothi and Mohit Iyyer

A Co-Attention Neural Network Model for Emotion Cause Analysis with Emotional
Context Awareness
Xiangju Li, Kaisong Song, Shi Feng, Daling Wang and Yifei Zhang

Modeling Empathy and Distress in Reaction to News Stories
Sven Buechel, Anneke Buffone, Barry Slaff, Lyle Ungar and Joao Sedoc

Interpretable Emoji Prediction via Label-Wise Attention LSTMs
Francesco Barbieri, Luis Espinosa Anke, Jose Camacho-Collados, Steven Schock-
aert and Horacio Saggion

Session 11C: Machine Translation IV (Silver Hall)

A Tree-based Decoder for Neural Machine Translation
Xinyi Wang, Hieu Pham, Pengcheng Yin and Graham Neubig

Greedy Search with Probabilistic N-gram Matching for Neural Machine Translation
Chenze Shao, Xilin Chen and Yang Feng

Exploring Recombination for Efficient Decoding of Neural Machine Translation
Zhisong Zhang, Rui Wang, Masao Utiyama, Eiichiro Sumita and Hai Zhao

Has Machine Translation Achieved Human Parity? A Case for Document-level
Evaluation

Samuel Liubli, Rico Sennrich and Martin Volk

Automatic Reference-Based Evaluation of Pronoun Translation Misses the Point
Liane Guillou and Christian Hardmeier
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Sunday, November 4, 2018 (continued)

13:45-13:57

13:57-14:09

14:09-14:21

14:21-14:33

14:33-14:45

Session 11D: QA / Knowledge Graphs (Hall 100)

FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with
State-of-the-Art Evaluation

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu and Maosong
Sun

A strong baseline for question relevancy ranking
Ana Gonzalez, Isabelle Augenstein and Anders S@gaard

Learning Sequence Encoders for Temporal Knowledge Graph Completion
Alberto Garcia-Duran, Sebastijan Dumanci¢ and Mathias Niepert

Similar but not the Same: Word Sense Disambiguation Improves Event Detection
via Neural Representation Matching
Weiyi Lu and Thien Huu Nguyen

Learning Word Representations with Cross-Sentence Dependency for End-to-End
Co-reference Resolution
Hongyin Luo and Jim Glass

Session 11E: Short Posters IV (Grand Hall 2)

Word Relation Autoencoder for Unseen Hypernym Extraction Using Word Embed-
dings

Hong-You Chen, Cheng-Syuan Lee, Keng-Te Liao and Shou-de Lin

Refining Pretrained Word Embeddings Using Layer-wise Relevance Propagation
Akira Utsumi

Learning Gender-Neutral Word Embeddings
Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang and Kai-Wei Chang

Learning Concept Abstractness Using Weak Supervision
Ella Rabinovich, Benjamin Sznajder, Artem Spector, Ilya Shnayderman, Ranit

Aharonov, David Konopnicki and Noam Slonim

Word Sense Induction with Neural biLM and Symmetric Patterns
Asaf Amrami and Yoav Goldberg
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InferLite: Simple Universal Sentence Representations from Natural Language In-
ference Data
Jamie Kiros and William Chan

Similarity-Based Reconstruction Loss for Meaning Representation
Olga Kovaleva, Anna Rumshisky and Alexey Romanov

What can we learn from Semantic Tagging?
Mostafa Abdou, Artur Kulmizev, Vinit Ravishankar, Lasha Abzianidze and Johan
Bos

Conditional Word Embedding and Hypothesis Testing via Bayes-by-Backprop
Rujun Han, Michael Gill, Arthur Spirling and Kyunghyun Cho

Classifying Referential and Non-referential It Using Gaze
Victoria Yaneva, Le An Ha, Richard Evans and Ruslan Mitkov
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Abstract

This article deals with adversarial attacks to-
wards deep learning systems for Natural Lan-
guage Processing (NLP), in the context of pri-
vacy protection. We study a specific type of at-
tack: an attacker eavesdrops on the hidden rep-
resentations of a neural text classifier and tries
to recover information about the input text.
Such scenario may arise in situations when
the computation of a neural network is shared
across multiple devices, e.g. some hidden rep-
resentation is computed by a user’s device and
sent to a cloud-based model. We measure the
privacy of a hidden representation by the abil-
ity of an attacker to predict accurately specific
private information from it and characterize
the tradeoff between the privacy and the util-
ity of neural representations. Finally, we pro-
pose several defense methods based on modi-
fied training objectives and show that they im-
prove the privacy of neural representations.

1 Introduction

This article presents an adversarial scenario meant
at characterizing the privacy of neural representa-
tions for NLP tasks, as well as defense methods
designed to improve the privacy of those represen-
tations. A deep neural network constructs inter-
mediate hidden representations to extract features
from its input. Such representations are trained to
predict a label, and therefore should contain use-
ful features for the final prediction. However, they
might also encode information about the input that
a user wants to keep private (e.g. personal data)
and can be exploited for adversarial usages.

We study a specific type of attack on neural rep-
resentations: an attacker eavesdrops on the hidden
representations of novel input examples (that are
not in the training set) and tries to recover informa-
tion about the content of the input text (Figure 1).
A typical scenario where such attacks would oc-
cur is when the computation of a deep neural net

1

Latent representation,
sent over a channel

0
o— @
0

-y

Attacker

©00O0 -

Figure 1: General setting illustration. The main classi-
fier predicts a label y from a text x, the attacker tries to
recover some private information z contained in x from
the latent representation used by the main classifier.

Desired
Output

—e

0000

Private input

is shared between several devices (Li et al., 2017).
For example, a user’s device computes a represen-
tation of a textual input, and sends it a to cloud-
based neural network to obtain, e.g. the topic of
the text or its sentiment. The scenario is illustrated
in Figure 1.

Private information can take the form of key
phrases explicitly contained in the text. However,
it can also be implicit. For example, demographic
information about the author of a text can be pre-
dicted with above chance accuracy from linguistic
cues in the text itself (Rosenthal and McKeown,
2011; Preotiuc-Pietro et al., 2015).

Independently of its explicitness, some of this
private information correlates with the output la-
bels, and therefore will be learned by the network.
In such a case, there is a tradeoff between the util-
ity of the representation (measured by the accu-
racy of the network) and its privacy. It might be
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necessary to sacrifice some accuracy in order to
satisfy privacy requirements.

However, this is not the case of all private in-
formation, since some of it is not relevant for the
prediction of the text label. Still, private infor-
mation might be learned incidentally. This non-
intentional and incidental learning also raises pri-
vacy concerns, since an attacker with an access to
the hidden representations, may exploit them to re-
cover information about the input.

In this paper we explore the following situation:
(1) a main classifier uses a deep network to predict
a label from textual data; (ii) an attacker eaves-
drops on the hidden layers of the network and tries
to recover information about the input text of un-
seen examples. In contrast to previous work about
neural networks and privacy (Papernot et al., 2016;
Carlini et al., 2018) we do not protect the privacy
of examples from the training set, but the privacy
of unseen examples provided, e.g., by a user.

An example of a potential application would be
a spam detection service with the following con-
straints: the service provider does not access ver-
batim emails sent to users, only their vector repre-
sentations. Theses vector representations should
not be usable to gather information about the
user’s contacts or correspondents, i.e. protect the
user from profiling.

This paper makes the following contributions:

e We propose a metric to measure the privacy
of the neural representation of an input for
Natural Language Processing tasks. The met-
ric is based on the ability of an attacker to
recover information about the input from the
latent representation only.

e We present defense methods designed against
this type of attack. The methods are based
on modified training objectives and lead to an
improved privacy-accuracy tradeoft.

2 Adversarial Scenario

In the scenario we propose, each example consists
of a triple (z,y,z), where x is a natural language
text, y is a single label (e.g. topic or sentiment),
and z is a vector of private information contained
in z. Our base setting has two entities: (i) a main
classifier whose role is to learn to predict y from
x, (i1) an attacker who learns to predict z from the

"The source code used for the experiments described

in this paper is available at https://github.com/
mcoavoux/pnet.

latent representation of x used by the main classi-
fier. We illustrate this setting in Figure 1.

In order to evaluate the utility and privacy of a
specific model, we proceed in three phases:

Phase 1. Training of the main classifier on
(x,y) pairs and evaluation of its accuracy;

Phase 2. Generation of a dataset of pairs
(r(x),z) for the attacker, r is the representation
function of the main classifier (r is defined in Sec-
tion 2.1);

Phase 3. Training of the attacker’s network and
evaluation of its performance for measuring pri-
vacy.

In the remainder of this section, we describe the
main classifier (Section 2.1), and the attacker’s
model (Section 2.2).

2.1 Text Classifier

As our base model, we chose a standard LSTM
architecture (Hochreiter and Schmidhuber, 1997)
for sequence classification. LSTM-based archi-
tectures have been applied to many NLP tasks,
including sentiment classification (Wang et al.,
2016) and text classification (Zhou et al., 2016).
First, an LSTM encoder computes a fixed-size
representation r(z) from a sequence of tokens
x = (x1,x9,...,x,) projected to an embedding
space. We use 0, to denote the parameters used
to construct r. They include the parameters of the
LSTM, as well as the word embeddings. Then, the
encoder output r(z) is fed as input to a feedfor-
ward network with parameters 6, that predicts the
label y of the text, with a softmax output activa-
tion. In the standard setting, the model is trained to
minimize the negative log-likelihood of y labels:

N

Ln(6r,0,) = Z - IOgP(y(i)’x(i); 6:,0,),
i=1

where NV is the number of training examples.

2.2 Attacker’s Classifier

Once the main model has been trained, we assume
that its parameters 6, and 6,, are fixed. We gen-
erate a new dataset made of pairs (r(z),z(x)),
where r(x) is the hidden representation used by
the main model and z(x) is a vector of private cat-
egorical variables. In practice, z is a vector of bi-
nary variables, (representing e.g. demographic in-
formation about the author). In our experiments,
we use the same training examples = for the main



classifier and the classifier of the attacker. How-
ever, since the attacker has access to the repre-
sentation function r parameterized by 6,., they can
generate a dataset from any corpus containing the
private variables they want to recover. In other
words, it is not necessary that they have access to
the original training corpus to train their classifier.

The attacker trains a second feedforward net-
work on the new dataset { (r(2(*)), z())},< . This
classifier uses a sigmoid output activation to com-
pute the probabilities of each binary variable in z:

P(z|r(x);0,) = o(FeedForward(r(z))).

It is trained to minimize the negative log-
likelihood of z:

N
Ea(aa) = Z - IOgP(Z(Z)|I‘(x(Z)), 0&)
=1
N K ) .
=53 —log P(2)|r(z19); 8,),
i=1 j=1

assuming that the K variables in z are indepen-
dent. Since the parameters used to construct r are
fixed, the attacker only acts upon its own parame-
ters 8, to optimize this loss.

We use the performance of the attacker’s clas-
sifier as a proxy for privacy. If its accuracy is
high, then an eavesdropper can easily recover in-
formation about the input document. In contrast,
if its accuracy is low (i.e. close to that of a most-
frequent label baseline), then we may reasonably
conclude that r does not encode enough informa-
tion to reconstruct x, and mainly contains infor-
mation that is useful to predict y.

In general, the performance of a single attacker
does not provide sufficient evidence to conclude
that the input representation r is robust to an at-
tack. It should be robust to any type of reconstruc-
tion method. In the scope of this paper though,
we only experiment with a feedforward network
reconstructor, i.e. a powerful learner.

In the following sections, we propose several
training method modifications aimed at obfuscat-
ing private information from the hidden represen-
tation r(x). Intuitively, the aim of these modifica-
tions is to minimize some measure of information
between r and z to make the prediction of z hard.
An obvious choice for that measure would be the
Mutual Information (MI) between r and z. How-
ever, Ml is hard to compute due to the continuous
distribution of r and does not lend itself well to
stochastic optimization.

3 Defenses Against Adversarial Attacks

In this section, we present three training methods
designed as defenses against the type of attack we
described in Section 2.2. The first two methods are
based on two neural networks with rival objective
functions (Section 3.1). The last method is meant
at discouraging the model to cluster together train-
ing examples with similar private variables z (Sec-
tion 3.2).

3.1 Adversarial Training

First, we propose to frame the training of the main
classifier as a two-agent process: the main agent
and an adversarial generator, exploiting a set-
ting similar to Generative Adversarial Networks
(GAN, Goodfellow et al., 2014). The generator
learns to reconstruct examples from the hidden
representation, whereas the main agent learns (i)
to perform its main task (ii) to make the task of
the generator difficult.

We experiment with two types of generators: a
classifier that predicts the binary attributes z(x)
used as a proxy for the reconstruction of = (Sec-
tion 3.1.1) and a character-based language model
that directly optimizes the likelihood of the train-
ing examples (Section 3.1.2).

3.1.1 Adversarial Classification:
Multidetasking

In order not to make r(z) a good representation
for reconstructing z, we make two modifications
to the training setup of the main model (Phase 1):

e We use a duplicate adversarial classifier,
with parameters 6/, that tries to predict z
from r(z). It is trained simultaneously with
the main classifier. Its training examples are
generated on the fly, and change overtime as
the main classifier updates its own parame-
ters. This classifier simulates an attack dur-
ing training.

o We modify the objective function of the main
classifier to incorporate a penalty when the
adversarial classifier is good at reconstruct-
ing z. In other words, the main classifier tries
to update its parameters so as to confuse the
duplicate attacker.

Formally, for a single data point (x,y,z), the
adversarial classifier optimizes:

[’a’ (:Ba Y, Z; 0:1)2 - lOgP(Z‘I‘(ZE), 0:1)7



whereas the main classifier optimizes:

£m($7y7 Z; 07’7 0p>= - alogP(y|x, 07“7 Gp)
— Blog P(—z|r(z);8,).

The first term of this equation is the log-likelihood
of the y labels. The second term is designed to de-
ceive the adversary. The hyperparameters o > 0
and S > 0 control the relative importance of both
terms.

As in a GAN, the losses of both classifiers are
interdependent, but their parameters are distinct:
the adversary can only update 0/, and the main
classifier can only update 6, and 0,,.

The duplicate adversarial classifier is identical
to the classifier used to evaluate privacy after the
main model has been trained and its parameters
are fixed. However, both classifiers are completely
distinct: the former is used during the training of
the main model (Phase 1) to take privacy into ac-
count whereas the latter is used to evaluate the pri-
vacy of the final model (Phase 3), as is described
in Section 2.

3.1.2 Adversarial Generation

The second type of generator we use is a character-
based LSTM language model that is trained to re-
construct full training examples. For a single ex-
ample (x;y), the hidden state of the LSTM is ini-
tialized with r(x), computed by the main model.
The generator optimizes:

Ly(2,y;84;0,) = —log P(z[r(x); 6¢)
C .
=— Z log P(zi|2i %, r(x); 0y),
i=1

where 6, is the set of parameters of the LSTM
generator, x; is the it" character in the document,
and C' is the length of the document in number
of characters. The generator has no control over
r(z), and optimizes the objective only by updat-
ing its own parameters 6.

Conversely, the loss of the main model is modi-
fied as follows:

Ly (z,y;0,,60,)= — alog P(y|z;0,,0),)
- /Bﬁg(xa Y; efa 97")

The first term maximizes the likelihood of the y
labels whereas the second term is meant at mak-
ing the reconstruction difficult by maximizing the
loss of the generator. As in the loss function de-
scribed in the previous section, « and /3 control

the relative importance of both terms. Once again,
the main classifier can optimize the second term
only by updating 8, since it has no control over
the parameters of the adversarial generator.

A key property of this defense method is that it
has no awareness of what the private variables z
are. Therefore, it has the potential to protect the
neural representation against an attack on any pri-
vate information. From a broader perspective, the
goal of this defense method is to specialize the hid-
den representation r(x) to the task at hand (sen-
timent or topic prediction) and to avoid learning
anything not relevant to it.

3.2 Declustering

The last strategy we employ to make the task of the
attacker harder is based on the intuition that pri-
vate variables z are easier to predict from r when
the main model learns implicitly to cluster exam-
ples with similar z in the same regions of the rep-
resentation space.

In order to avoid such implicit clustering, we
add a term to the training objective of the main
model that penalizes pairs of examples (x, 2) that
(i) have similar reconstructions z(x) =~ z(x’) (ii)
have hidden representations r(x) and r(z’) in the
same region of space. We use the following modi-
fied loss for a single example:

Lon(z,y,2;0,,0,) = —log P(y|z;0,,0,)
+a(0.5 — ((z,2'))||r(z) — r(2')]]3,

where (2/,2z') is another example sampled uni-
formly from the training set, « is a hyperparame-
ter controlling the importance of the second term,
and £(-,-) € [0,1] is the normalized Hamming dis-
tance.

4 Experiments

Our experiments are meant to characterize the
privacy-utility tradeoff of neural representations
on text classification tasks, and evaluating if the
proposed defense methods have a positive im-
pact on it. We first describe the datasets we
used (Section 4.1) and the experimental protocol
(Section 4.2), then we discuss the results (Sec-
tion 4.3). We found that in the normal train-
ing regime, where no defense is taken into ac-
count, the adversary can recover private informa-
tion with higher accuracy than a most frequent
class baseline. Furthermore, we found that the de-



Dataset Train Dev Test
TP US 22142 2767 2767
TP Germany 12596 1574 1574
TP Denmark 82193 10274 10274
TP France 9136 1141 1141
TP UK 48647 6080 6080
AG news 11657 1457 1457
DW corpus 5435 1772 1830
Blog posts 5144 642 642

Table 1: Sizes of datasets in number of examples.

fenses we implemented have a positive effect on
the accuracy-privacy tradeoff.

4.1 Datasets

We experiment with two text classification tasks:
sentiment analysis (Section 4.1.1) and topic clas-
sification (Section 4.1.2). The sizes of each dataset
are summarized in Table 1.

4.1.1 Sentiment Analysis

We use the Trustpilot dataset (Hovy et al., 2015)
for sentiment analysis. This corpus contains re-
views associated with a sentiment score on a five
point scale, and self-reported information about
the users. We use the five subcorpora correspond-
ing to five areas (Denmark, France, Germany,
United Kingdom, United States).

We filter examples containing both the birth
year and gender of the author of the review and use
these variables as the private information. As in
previous work on this dataset (Hovy, 2015; Hovy
and Sggaard, 2015), we bin the age of the author
into two categories (‘under 35’ and ‘over 45°). Fi-
nally, we randomly split each subcorpus into a
training set (80%), a development set (10%) and
atest (10%).

As an additional experimental setting, we use
both demographic variables (gender and age) as
input to the main model. We do so by adding two
additional tokens at the beginning of the input text,
one for each variable. It has been shown that those
variables can be used to improve text classifica-
tion (Hovy, 2015). Also, we would like to evalu-
ate whether the attacker’s task is easier when the
variables to predict are explicitly in the input, com-
pared to when these information are only poten-
tially and implicitly in the input. In other words,
this setting simulates the case where private in-

formation may be used by the model to improve
classification, but should not be exposed too obvi-
ously. In the rest of this section, we use RAW to
denote the setting where only the raw text is used
as input and +DEMO, the setting where the demo-
graphic variables are also used as input.

4.1.2 Topic Classification

We perform topic classification on two genres of
documents: news articles and blog posts.

News article For topic classification of news ar-
ticle, we use two datasets: the AG news corpus’
(Del Corso et al., 2005) and the English part of the
Deutsche Welle (DW) news corpus (Pappas and
Popescu-Belis, 2017).

For the AG corpus, following Zhang et al.
(2015), we construct the dataset by extracting doc-
uments belonging to the four most frequent topics,
and use the concatenation of the ‘title’ and ‘de-
scription’ fields as the input to the classifier. We
randomly split the corpus into a training set (80%),
a development set (10%) and a test set (10%). For
the DW dataset, we use the ‘text’ field as input,
and the standard split. We kept only documents
belonging to the 20 most frequent topics.

The attacker tries to detect which named enti-
ties appear in the input text (each coefficient in
z(x) indicates whether a specific named entity oc-
curs in the text). For both datasets, we used the
named entity recognition system from the NLTK
package (Bird et al., 2009) to associate each ex-
ample with the list of named entities that occur in
it. We select the five most frequent named entities
with type ‘person’, and only keep examples con-
taining at least one of these named entities. This
filtering is necessary to avoid a very unbalanced
dataset (since each selected named entity appears
usually in very few articles).

Blog posts We used the blog authorship corpus
presented by Schler et al. (2006), a collection of
blog posts associated with the age and gender of
the authors, as provided by the authors themselves.
Since the blog posts have no topic annotation, we
ran the LDA algorithm (Blei et al., 2003) on the
whole collection (with 10 topics). The LDA out-
puts a distribution on topics for each blog post.
We selected posts with a single dominating topic
(> 80%) and discarded the other posts. We binned
age into two category (under 20 and over 30). We

http://www.di.unipi.it/~qulli/AG_
corpus_of_news_articles.html



Baselines Best adversaries
Lower bound (most  Upper bound
frequent class) (trained) +DEMO RAW

Gender Age Gender Age | Gender Age Gender Age
TP (Denmark)  61.6 58.4 705 780 | 685 753 620 634
TP (France) 61.0 50.1 69.0 634 61.0 57.1 61.0 60.6
TP (Germany)  75.2 50.9 752 752 | 752 604 752 58.6
TP (UK) 58.8 56.7 70.0 763 | 664 635 599 61.8
TP (US) 63.5 63.7 74.1 748 | 81.3 749 647 639
Blogs 50.0 50.3 65.7  56.1 - - 639 558

Table 2: Comparisons between baselines and best adversaries. All metrics reported in this table are accuracies.

used the age and gender of the author as the private
variables. These variables have a very unbalanced
distribution in the dataset, we randomly select ex-
amples to obtain uniform distributions of private
variables. Finally, we split the corpus into a train-
ing set (80%), a validation set and a test set (10%
each).

4.2 Protocol

Evaluation For the main task, we report a single
accuracy measure. For measuring the privacy of a
representation, we compute the following metrics:

e For demographic variables (sentiment analy-
sis and blog post topic classification): 1 — X,
where X is the average of the accuracy of the
attacker on the prediction of gender and age;

e For named entities (news topic classifica-
tion): 1 —F, where F' is an F-score computed
over the set of binary variables in z that in-
dicate the presence of named entities in the
input example.

Training protocol We implemented our model
using Dynet (Neubig et al., 2017). The feedfor-
ward components (both of the main model and of
the attacker) have a single hidden layer of 64 units
with a ReLU activation. Word embeddings have
32 units. The LSTM encoder has a single layer of
varying sizes, since it is expected that the amount
of information that can be learned depends on the
size of these representations. We used the Adam
optimizer (Kingma and Ba, 2014) with the default
learning rate, and 0.2 dropout rate for the LSTM.
We used o = 0.1 for the declustering method,
based on preliminary experiments. For the other
defense methods, we used & = 8 = 1 and did not
experiment with other values.

For each dataset, and each LSTM state di-
mension ({8, 16,32, 64,128}), we train the main
model for 8 epochs (sentiment classification) or
16 epochs (topic classification), and select the
model with the best accuracy on the development
set. Then, we generate the dataset for the attacker,
train the adversarial model for 16 epochs and se-
lect the model with the worst privacy on the devel-
opment set (i.e. the most successful attacker).

It has to be noted that we select the models that
implement defenses on their accuracy, rather than
their privacy or a combination thereof. In prac-
tice, we could also base the selection strategy on a
privacy budget: selecting the most accurate model
with privacy above a certain threshold.

4.3 Results

This section discusses results for the sentiment
analysis task (Section 4.3.1) and the topic classi-
fication task (Section 4.3.2).

4.3.1 Sentiment Analysis

How private are neural representations? Be-
fore discussing the effect of proposed defense
methods, we motivate empirically our approach by
showing that adversarial models can recover pri-
vate information with reasonable accuracy when
the attack is targeted towards a model that imple-
ments none of the presented defense methods.

To do so, we compare the accuracy of adversar-
ial models to two types of baselines:

e As a lower bound, we use the most frequent
class baseline.

e As an upper bound, we trained a classi-
fier that can optimize the hidden represen-
tations (r) for the attacker’s tasks. In other
words, this baseline is trained to predict de-



Standard M-Detask. A-Gener. Decl. a = 0.1
Main Priv. | Main Priv. Main Priv. Main Priv.

Corpus

Standard M-Detask. A-Gener. Decl. o = 0.1
Main Priv. | Main Priv. Main Priv. Main Priv.

Corpus

Germany | 85.1 322 | -06 -03 -13 +0.6 -08 +1.9
baseline 78.6 369

Germany | 85.5 32.1 | +0.3 +0.5 -0.8 +0.9 -1.7 +2.2
baseline 78.6  36.9

Denmark | 82.6 28.1 02 +44 -0.1 +6.0 -03 +7.6
baseline 704  40.0

Denmark | 823 373 | -06 +0.6 -0.1 -03 -0.2 -0.1
baseline 70.4  40.0

France 75.1 41.1| -08 +0.7 -14 -64 -15 -182 France 7277 406 | +1.8 -0.1 +19 -04 -03 -0.1
baseline 69.2 444 baseline 69.2 444
UK 87.0 393 | -05 +09 -02 +0.2 -0.1 +0.3 UK 869 40.1| -02 +1.0 -00 +1.2 -0.0 0.0
baseline 77.1 422 baseline 77.1 422
us 850 339 | -0.1 +2.6 -02 +1.8 +0.7 +2.2 Us 845 361 | -1.1 +0.2 +0.5 +0.1 +0.3  +0.5

baseline 794 364

baseline 794 364

Table 3: Results on the test sets of the Trustpilot
dataset, +DEMO setting. Main is the accuracy on senti-
ment analysis. Priv. is the privacy measure (i.e. the in-
verse accuracy of the attacker: higher is better, see Sec-
tion 4.2). The baselines are most-frequent class clas-
sifiers. The values reported for the defense methods
indicate absolute differences with the standard training
regime (no defense implemented) for both metrics.

mographic variables from z, as if it were the
main task.

In Table 2, we compare both baselines to the
best adversary in the two settings (RAW and
+DEMO) among the models trained with no de-
fenses. First of all, we observe that apart from
gender on the German dataset, the trained baseline
outperforms the most frequent class baseline by a
wide margin (8 to 25 absolute difference). Sec-
ond of all, the attacker is able to outperform the
most frequent class baseline overall, even in the
RAW setting. In more details, for age, the adver-
sary is well over the baseline in all cases except
US. On the other hand, gender seems harder to
predict: the adversary outperforms the most fre-
quent class baseline only in the +DEMO setting.

The same pattern is visible for the blog post
dataset, also presented in the last line of Table 2:
the best adversaries are 14 points over the base-
line for gender and 5 points for age, i.e. almost
as good as a model that can fine tune the hidden
representations.

These results justify our approach, since they
demonstrate that hidden representations learn pri-
vate information about the input, and can be ex-
ploited to recover this information with reasonable
accuracy.

Effect of defenses We report results for the main
task accuracy and the representation privacy in Ta-
ble 3 for the +DEMO setting and in Table 4 for
the RAW setting. Recall that the privacy measure

Table 4: Results on the test sets of the Trustpilot
dataset, RAW setting. See Section 4.2 and caption of
Table 3 for details about the metrics.

Standard
Main  Priv.

M-Detask. A-Gener. Decl. = 0.1
Main  Priv. Main  Priv. Main Priv.

AGnews | 765 33.7|-145 +145 +0.2 -7.8 25 +8.6
baseline 57.8

DWnews‘ 443 78.3‘ 57 4217

Corpus

+59 +131 -54 +184
baseline 22.1

Blogs 583 408 | -0.8 +34 +11 +09 -02 +1.2
baseline 47.8 498

Table 5: Results for topic classification (test sets). See
Section 4.2 and caption of Table 3 for details about the
metrics.

(Priv.) is computed by 1 — X where X is the av-
erage accuracy of the attacker on gender and age
predictions. When this privacy metric is higher,
it is more difficult to exploit the hidden repre-
sentation of the network to recover information
about . The ‘Standard’ columns contain the ac-
curacy and privacy of the base model described
in Section 2. The next columns present the abso-
lute variation in accuracy and privacy for the three
defense methods presented in Section 3: Multi-
detasking, Adversarial Generation, and Decluster-
ing. We also report for each corpus the most fre-
quent class baseline for the main task accuracy,
and the privacy of the most frequent class base-
lines on private variables (i.e. the upper bound for
privacy).

The three modified training methods designed
as defenses have a positive effect on privacy. De-
spite a model selection based on accuracy, they
lead to an improvement in privacy on all datasets,
except on the France subcorpus. In most cases, we
observe only a small decrease in accuracy, or even
an improvement at times (e.g. multidetasking on
the Germany dataset, RAW setting), thus improv-
ing the tradeoff between the utility and the privacy
of the text representations.



4.3.2 Topic Classification

We report results on topic classification in Table 5.

News articles For the news corpora, the privacy
metric is based on the F-score on the binary vari-
ables z indicating the presence or absence of a
named entity in the text. First of all, we ob-
serve that defense methods that explicitly use z
(i.e. multidetasking and declustering), have a very
positive effect on privacy, but also a detrimental
effect on the main task. We hypothesize that this
is due to the strong correlations between the main
task labels y and the private information z. As a
result, improving the privacy of the neural repre-
sentations comes at a cost in accuracy.

In contrast, the adversarial generation defense
method lead to an improvement in accuracy, that
is quite substantial for the DW corpus. We specu-
late that this is due to the secondary term in the ob-
jective function of the main model (Section 3.1.2)
that helps avoiding overfitting the main task or
learning spurious features.

Blog posts On the blog post dataset, the effects
are smaller, which we attribute to the nature of the
task of the attacker. The defense methods con-
sistently improve privacy and, in one case, accu-
racy. The best effects on the tradeoff are achieved
with the multidetasking and adversarial generation
methods.

5 Discussion

The main result of our experiments is that the de-
fenses we propose improve privacy with usually a
small effect, either positive or negative, on accu-
racy, thus improving the tradeoff between the util-
ity and the privacy of neural representations.

An important direction for future work is the
choice of a strategy for model selection. The
tradeoff between utility and privacy can be con-
trolled in many ways. For example, the impor-
tance of both terms in the loss functions in Sec-
tion 3.1 can be controlled to favor either privacy
or utility. In the scope of this paper, we did not
perform thorough hyperparameter tuning, but be-
lieve that doing so is important for achieving better
results, since the effects of defense method can be
more drastic than desired in some cases, as exem-
plified on the news corpora (Table 5).

Overall, we found that the multidetasking ap-
proach lead to the more stable improvements and
should be preferred in most cases, since it is also

the less computationnally expensive defense. On
the other hand, the adversarial generation method
does not require the specification of private vari-
ables, and thus is a more general approach.

6 Related Work

The deployment of machine learning in both
academic and industrial contexts raises concerns
about adversarial uses of machine learning, as well
as concerns about attacks specifically targeted at
these algorithms that often rely on large amounts
of data, including personal data.

More generally, the framework of differential
privacy (Dwork, 2006) provides privacy guaran-
tees for the problem of releasing information with-
out compromising confidential data, and usually
involves adding noise in the released information.
It has been applied to the training of deep learning
models (Abadi et al., 2016; Papernot et al., 2016;
Papernot et al., 2018), and Bayesian topic models
(Schein et al., 2018).

The notion of privacy is particularly crucial to
NLP, since it deals with textual data, oftentimes
user-generated data, that contain a lot of private in-
formation. For example, textual data contain a lot
of signal about authors (Hovy and Spruit, 2016).
and can be leveraged to predict demographic vari-
ables (Rosenthal and McKeown, 2011; Preotiuc-
Pietro et al., 2015). Oftentimes, this information
is not explicit in the text but latent and related to
the usage of various linguistic traits. Our work is
based on a stronger hypothesis: this latent infor-
mation is still present in vectorial representations
of texts, even if the representations have not been
supervised by these latent variables.

Li et al. (2017) study the privacy of unsuper-
vised representations of images, and measures
their privacy with the peak signal to noise ratio
between an original image and its reconstruction
by an attacker. They find a tradeoff between the
privacy of the learned representations and the ac-
curacy of an image classification model that uses
these representations as inputs. Our setting is
complementary since it is applied to NLP tasks,
but explores a similar problem in the case of rep-
resentations learned with a task supervision.

A related problem is the unintended memoriza-
tion of private data from the training set and has
been addressed by Carlini et al. (2018). They
tackle this problem in the context of text gener-
ation (machine translation, language modelling).



If an attacker has access to e.g. a trained language
model, they are likely to be able to generate sen-
tences from the training set, since the language
model is trained to assign high probabilities to
those sentences. Such memorization is problem-
atic when the training data contains private infor-
mation and personal data. The experimental set-
ting we explore is different from these works: we
assume that the attacker has access to a hidden
layer of the network and tries to recover informa-
tion about an input example that is not in the train-
ing set.

In a recent study, Li et al. (2018) proposed a
method based on GAN designed to improve the
robustness and privacy of neural representations,
applied to part-of-speech tagging and sentiment
analysis. They use a training scheme with two
agents similar to our multidetasking strategy (Sec-
tion 3.1.1), and found that it made neural represen-
tations more robust and accurate. However, they
only use a single adversary to alter the training
of the main model and to evaluate the privacy of
the representations, with the risk of overestimat-
ing privacy. In contrast, once the parameters of
our main model are fixed, we train a new classifier
from scratch to evaluate privacy.

7 Conclusion

We have presented an adversarial scenario and
used it to measure the privacy of hidden repre-
sentations in the context of two NLP tasks: senti-
ment analysis and topic classification of news arti-
cle and blog posts. We have shown that in general,
it is possible for an attacker to recover private vari-
ables with higher than chance accuracy, using only
hidden representations. In order to improve the
privacy of hidden representations, we have pro-
posed defense methods based on modifications of
the training objective of the main model. Empiri-
cally, the proposed defenses lead to models with a
better privacy.
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Abstract

Recent advances in Representation Learning
and Adversarial Training seem to succeed in
removing unwanted features from the learned
representation. We show that demographic in-
formation of authors is encoded in—and can
be recovered from—the intermediate repre-
sentations learned by text-based neural classi-
fiers. The implication is that decisions of clas-
sifiers trained on textual data are not agnostic
to—and likely condition on—demographic at-
tributes. When attempting to remove such de-
mographic information using adversarial train-
ing, we find that while the adversarial com-
ponent achieves chance-level development-set
accuracy during training, a post-hoc classi-
fier, trained on the encoded sentences from the
first part, still manages to reach substantially
higher classification accuracies on the same
data. This behavior is consistent across several
tasks, demographic properties and datasets.
We explore several techniques to improve the
effectiveness of the adversarial component.
Our main conclusion is a cautionary one: do
not rely on the adversarial training to achieve
invariant representation to sensitive features.

1 Introduction

Consider automated systems that are used for de-
termining credit ratings, setting insurance policy
rates, or helping in hiring decisions about individ-
uals. We would like such decisions to not take
into account factors such as the gender or the race
of the individual, or any other factor which we
deem to be irrelevant to the decision. We refer to
such irrelevant factors as protected attributes. The
naive solution of not including protected attributes
in the features to a Machine Learning system is
insufficient: other features may be highly corre-
lated with—and thus predictive of—the protected
attributes (Pedreshi et al., 2008). For example, in
Credit Score modeling, text might help in credit
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score decisions (Ghailan et al., 2016). By using
the raw text as is, a discrimination issue might
arise, as textual information can be predictive of
some demographic factors (Hovy et al., 2015) and
author’s attributes might correlate with target vari-
ables (Zhao et al., 2017).

In this paper we are interested in language-
based features. It is well established that textual
information can be predictive of age, race, gender,
and many other social factors of the author (Kop-
pel et al., 2002; Burger et al., 2011; Nguyen et al.,
2013; Weren et al., 2014; Verhoeven and Daele-
mans, 2014; Rangel et al., 2016; Verhoeven et al.,
2016; Blodgett et al., 2016), or even the audience
of the text (Voigt et al., 2018).

Thus, any system that incorporates raw text into
its decision process is at risk of indirectly condi-
tioning on such signals. Recent advances in repre-
sentation learning suggest adversarial training as
a mean to hide the protected attributes from the de-
cision function (Section 2). We perform a series of
experiments and show that: (1) Information about
race, gender and age is indeed encoded into inter-
mediate representations of neural networks, even
when training for seemingly unrelated tasks and
the training data is balanced in terms of the pro-
tected attributes (Section 4); (2) The adversarial
training method is indeed effective for reducing
the amount of protected encoded information... (3)
...but in some cases even though the adversarial
component seems to be doing a perfect job, a fair
amount of protected information still remains, and
can be extracted from the encoded representations
(Section 5.1).

This suggests that when working with text data
it is very easy to condition on sensitive properties
by mistake. Even when explicitly using the adver-
sarial training method to remove such properties,
one should not blindly trust the adversary, and be
careful to ensure the protected attributes are in-
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deed fully removed. We explore means for im-
proving the effectiveness of the adversarial train-
ing procedure (section 5.2).!

However, while successful to some extent, none
of the methods fully succeed in removing all de-
mographic information. Our main message, then,
remains cautionary: if the goal is to ensure fair-
ness or invariant representation, do not trust
adversarial removal of features from text in-
puts for achieving it.

2 Learning Setup

We follow a setup in which we have some la-
beled data D composed of documents z1, ..., x,
and task labels ¥, ..., y,. We wish to train a clas-
sifier f that accurately predicts the main task la-
bels y;. Each data point z; is also associated with
a protected attribute z;, and we want the decision
y; = f(x;) to be oblivious to z;. Following (Ganin
and Lempitsky, 2015; Xie et al., 2017), we struc-
ture f as an encoder h(x) that maps « into a rep-
resentation vector h,, and a classifier c¢(h(x)) that
is used for predicting y based on h,. If h;, is
not predictive of z;, then the main task prediction
f(x;) = ¢(h(x;)) does not depend on z;.

We say that a protected attribute z has leaked if
we can train a classifier ¢/(hy,) to predict z; with
an accuracy beyond chance level, and that the pro-
tected attribute is guarded if we cannot train such a
classifier. We say that a classifier f(z) = c¢(h(z))
is guarded if z is guarded, and that it is leaky with
respect to z if z leaked.

Adversarial Training In order to make f obliv-
ious to z, we follow the adversarial training setup
(Goodfellow et al., 2014; Ganin and Lempitsky,
2015; Beutel et al., 2017; Xie et al., 2017). Dur-
ing training, an adversarial classifier adv(h,) is
trained to predict z, while the encoder h is trained
to make adv fail. Concretely, the training proce-
dure tries to jointly optimize both quantities:

arg mdin L(adv(h(x;)), zi)
adv

argmin  L(c(h(z;)),v:) — L(adv(h(z;)), i)

h,c
where L(y/,y) is the loss function (in our case,
cross entropy). This objective results in creating

the representation h, s.t. it’s maximally infor-
mative for the main task, while at the same time

!The code and data acquisition are available in: https:
//github.com/yanaiela/demog—text-removal

minimally informative of the protected attribute.
The optimization is performed in practice using
the gradient-reversal layer (GRL) method (Ganin
and Lempitsky, 2015). The GRL is a layer g, that
is inserted between the encoded vector h, and the
adversarial classifier adv. During the forward pass
the layer acts as the identity, while during back-
propagation it scales the gradients passed through
it by —A, causing the encoder to receive the op-
posite gradients from the adversary. The meta-
parameter A controls the intensity of the reversal
layer. This results in the objective:

arg min L(c(h(xi)), yi)+L(adv(gx(h(2:))), 2)

h,c,adv

Attacker Network To test the effectiveness of
the adversarial training, we use an attacker net-
work att(h,). After the classifier c(h(x)) is fully
trained, we use the encoder to obtain representa-
tions h, and train the attacker network to predict
z based on h, without access to the encoder or to
the original inputs x that resulted in h. If, after
training, the attacker can predict z on unseen ex-
amples with an accuracy of beyond chance level,
then the attribute z leaked to the representation,
and the classifier is not guarded.

Network Architecture In our setup, an example
x; 1s a sequence of tokens wy, ..., wy,, and the en-
coder is a one layer LSTM network that reads in
the associated embedding vectors and returns the
final state: h = LSTM (w1.,,). The classifier ¢
and the adversarial adv are both multi-layer per-
ceptrons with one hidden layer, sharing the same
hidden layer size and activation function (tanh).?

3 Data, Tasks, and Protected Attributes

To perform our experiments, we need a reasonably
large dataset in which the data-points = contain
textual information, and for which we have both
main-task labels y and protected attribute labels
z. While our motivating example used prediction
tasks for credit rating, insurance rates or hiring
decisions, to the best of our knowledge there are
no publicly available datasets for these sensitive
tasks that meet our criteria. We thus opted to use
much less sensitive main-tasks, for which we can
obtain the needed data. We focus on Twitter mes-
sages, and our protected attributes are binary-race
(non-hispanic Whites vs. non-hispanic Blacks),

Further details regarding the architecture and training pa-
rameters can be found in the supplementary materials.



binary-gender (Male vs. Female)® and binary-
age (18-34 vs. 35+). As main tasks we chose
binary emoji-based sentiment prediction and bi-
nary tweet-mention prediction. Both the sentiment
and the mention prediction tasks are not inher-
ently correlated with race, gender or age. Pro-
tected attributes leakage in these seemingly benign
main-tasks is a strong indicator that such leakage
is likely to occur also in more sensitive tasks.

Main Tasks: Sentiment and Mention-detection
Both tasks can be derived automatically from twit-
ter data. We construct a binary “sentiment” task by
identifying a subset of emojis which are associated
with positive and negative sentiment,* identify-
ing tweets containing these emojis, assigning them
with the corresponding sentiment and removing
the emojis. Tweets containing emojis from both
sentiment lists are discarded. The binary men-
tion task is to determine if a tweet mentions an-
other user, i.e, classifying conversational vs. non-
conversational tweets. We derive this dataset by
identifying tweets that include @mentions tokens,
and removing all such tokens from the tweets.

Protected: Race The race annotation is based
on the dialectal tweets (DIAL) corpus from (Blod-
gett et al., 2016), consisting of 59.2 million tweets
by 2.8 million users. Each tweet is associated with
predicted “race” information which was predicted
using a technique that takes into account the geo-
location of the author and the words in the tweet.
We focus on the AAE (African-American English)
and SAE (Standard American English) categories,
which we use as proxies for non-Hispanic blacks
and non-Hispanic whites.

We chose only annotations with confidence (the
probability of the authors’ race) of above 80%.
Due to its construction, the race annotations in this
dataset are highly correlated with the language be-
ing used. As such, the data reflects an extreme
case in which the underlying language is very pre-
dictive of the protected attribute.

Protected: Age and Gender We use data from
the PAN16 dataset (Rangel et al., 2016), contain-
ing manually annotated Age and Gender informa-
tion of 436 Twitter users, along with up to 1k

3While gender is a non-binary construct, many decisions
in the real-world are unfortunately still influenced by hard
binary gender categories. We thus consider binary-gender to
be a useful approximation in our context.

*Complete list is available in Appendix C
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tweets for each user. User annotation was per-
formed by consulting the user’s LinkedIn profile.
Gender was determined by considering the user’s
name and photograph, discarding unclear cases.
Age range was determined by birth-date which
was published on the user’s profile, or by mapping
their degree starting date.

Data-splits From the DIAL corpus we extracted
166K and 10K tweets for training and develop-
ment purpose respectively (after cleaning and ex-
tracting relevant tweets), whereas for the PAN16
dataset we collected 160K tweets for training and
10K for development. The train/development split
in both phases of the training (task-training and
attacker-training) is the same. This is the worst
possible scenario for the attacker, as it is train-
ing on the exact representations the adversary at-
tempted to remove the protected attribute from.
Each split is balanced with respect to both the
main and the protected labels: a random prediction
of each variable is likely to result in 50% accuracy.

Metrics Throughout this paper, we measure
leakage using accuracy. We say that the protected
attribute has leaked if an atfacker manages to pre-
dict the protected attribute with better than 50%
accuracy, which is always the probability of that
attribute (P(Z) = 0.5). In Appendix A we relate
our metric to more standard fairness metrics, and
prove that in our setup a guarded predictor guar-
antees demographic parity, equality of odds, and
equality of opportunity. Note however that we also
show empirically that such guarded predictors are
very hard to attain in practice.

4 Baselines and Data Leakage

In-dataset Accuracy Upper-bounds We begin
by examining how well can we perform on each
task (both main-tasks and protected attributes)
when training the encoder and classifier directly
on that task, without any adversarial component.
This provides an upper bound on the protected at-
tribute leakage for the main tasks results. The re-
sults in Table 1 indicate that the classifiers achieve
reasonable accuracies for the main tasks.’ For

SWhile the sentiment score may seem low, we manually
verified the erroneous predictions and found out that many
of them are indeed ambiguous with respect to sentiment, e.g.
sentences like “I can’t take Amanda seriously &” and “You
make me so angry, yet you make me so happy. ©” which
were predicted negative and positive respectively, but their
gold label was the opposite.
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Figure 1: Balanced (a) vs. Unbalanced (b)
dataset. Red(M+)/Blue(M-): Main Task.
Light(P+)/Dark(P-): Protected attribute. Each
class is globally balanced, but in (b) the propor-
tion of the protected attribute within each main
task split is unbalanced.

the protected attributes, race is highly predictable
(83.9%) while age and gender can also be recov-
ered at above 64% accuracy.

Data Task Accuracy

DiaL Sentiment 67.4
Mention 81.2
Race 83.9

PAN16  Mention 717.5
Gender 67.7
Age 64.8

Table 1: Accuracies when training directly towards
a single task.

Leakage When training directly for the protected
attributes, we can recover them with relatively
high accuracies. But is information about them
being encoded when we train on the main tasks?
In this set of experiments, we encode the train-
ing and validation sets using the encoder trained
on the main task, and train the attacker network
to predict the protected attributes based on these
vectors. This experiment suggests an upper bound
on the amount of leakage of protected attributes
when we do not actively attempt to prevent it.
The Balanced section in Table 2 summarizes the
validation-set accuracies. While the numbers are
lower than when training directly (Table 1), they
are still high enough to extract meaningful and
possibly highly sensitive information (e.g. DIAL
Race direct prediction is 83.9% while DIAL Race
leakage on the balanced Sentiment task is 64.5%).

Leakage: Unbalanced Data The datasets we
considered were perfectly balanced with respect to
both main task and protected attribute labels (Fig-
ure la). Such extreme case is not representative
of real-world datasets, in which a dataset may be
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well balanced w.r.t. the main task labels but not
the protected attribute. For example, when train-
ing a classifier to predict a fit for managerial po-
sition based on Curriculum Vitae (CV) of candi-
dates, the CV dataset may be perfectly balanced
according to the managerial / non-managerial vari-
able, but, because of existing social biases, CVs of
females might be under-represented in the man-
agerial category and over-represented in the non-
managerial one. In such a situation, the classi-
fier may perpetuate the bias by learning to favor
males over females for managerial positions. We
simulate this more realistic scenario by construct-
ing unbalanced datasets in which the main tasks
(sentiment/mention) remain balanced but the pro-
tected class proportions within each main class are
not, as demonstrated in Figure 1b. For example,
in the sentiment/gender case, we set the positive-
sentiment class to contain 80% male and 20% fe-
male tweets, while the negative-sentiment class
contains 20% male and 80% female tweets. We
then follow the leakage experiment on the unbal-
anced datasets. The attacker is trained and tested
on a balanced dataset. Otherwise, the attacker can
perform quite well on the male/female task simply
by learning to predict sentiment, which does not
reflect leakage of gender data to the representa-
tion. When training the attacker on balanced data,
its decisions cannot rely on the sentiment informa-
tion encoded in the vectors, and must look for en-
coded information about the protected attributes.
The results in Table 2 indicate that both task accu-
racy and attribute leakage are stronger in the un-
balanced case.

Leakage: Real-world Example The above ex-
periments used artificially constructed datasets.
Here, we demonstrate leakage using a popular en-
coder trained for emotion detection: the Deep-
Moji encoder (Felbo et al., 2017) trained to predict
the most suitable emoji usage for a sentence (one
of 64 in total), based on 1.2 billion tweets. The
model is advertised as a good encoder for encod-
ing sentences into a representation that is highly
predictive of sentiment, mood, emotion and sar-
casm. Does it also capture protected attributes?
We encode the sentences of the different protected
attributes using the DeepMoji encoder and train
three different attackers to predict race, gender
and age. The best scores on the development set
are 84.7%, 67.2% and 67.1% respectively. This
should not come as a surprise, as indeed some



Balanced Unbalanced
Data Task Protected Attribute | Task Acc  Leakage | Task Acc  Leakage
DIAL Sentiment  Race 67.4 64.5 79.5 73.5
Mention Race 81.2 71.5 86.0 73.8
PAN16  Mention Gender 71.5 60.1 76.8 64.0
Age 74.7 59.4 77.5 59.7

Table 2: Protected attribute leakage: balanced & unbalanced data splits.

emoji usage is highly correlated with these prop-
erties.

5 Mitigating Data Leakage

Leakage of protected attributes information into
the internal representation of the network when
training on seemingly unrelated tasks is very com-
mon. We explore the means of mitigating such
leakage.

5.1 Adversarial Training

We repeat the experiments in Table 2 with an ad-
versarial component (Ganin and Lempitsky, 2015)
as described in Section 2, in order to actively re-
move the protected attribute information from the
encoded representation during training. Note that
the adversarial objective is in odds with the main-
task one: by removing the protected attribute in-
formation from the encoder, we may also hurt its
ability to encode information about the main task.

Figure 2 shows the main task and adversary pre-
diction accuracies on the development set as train-
ing progresses, for the Sentiment/Race pair.

Adversarial Training

".."'.p.\r —e- sentiment —— adversary race
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Figure 2: Main task and Adversary accuracy curves
for Sentiment/Race.

After an initial peak in task prediction accuracy,
the adversary prediction drops and starts to fluctu-
ate around chance level (50%), as desired, along
with a drop in main task accuracy as well. The
adversary’s accuracy remain around chance level
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throughout the entire training process, suggesting
that the adversarial training is indeed effective for
removing the protected attribute information from
the encoded representation. These trends are per-
sistent for all main-task/protected-attribute pairs
we tried.

However, training the attacker network on the
resulting encoder vectors reveals a different story.
For example, when considering the encoder after
50 training epochs (adversary accuracy of 49.0%),
the attacker reaches 56.0% accuracy: substantially
higher than the adversarial’s success rate, despite
sharing the exact same architecture, and being
trained and tested on the exact same dataset.

Table 3 summarizes the attacker’s recovery rate
on the adversarialy-trained encoders for the differ-
ent settings. In all cases, the adversarial’s success
rate is around 50%, while the attacker’s rate is sub-
stantially higher. The attacker’s rates are lower
than in Table 1, indicating the adversarial train-
ing is effective in removing some of the protected
attribute. However, a substantial amount of in-
formation managed to leak past the adversary,
despite its seemingly perfect performance.

Protected  Task
Data Task Attribute  Acc Leakage A
DIAL Sentiment  Race 64.7 56.0 5.0
Mention Race 81.5 63.1 9.2
PAN16 Mention Gender 75.6 58.5 8.0
Mention Age 72.5 573 69

Table 3: Performances on different datasets with
an adversarial training. A is the difference be-
tween the attacker score and the corresponding ad-
versary’s accuracy.

Attacker’s Accuracy on Unseen Data We ver-
ify that the attacker’s recovery accuracy persists
also on the more realistic scenario in which the
attacker is applied to encoded sentences that did
not participate in the adversarial training. We con-
structed an additional dataset of 166K completely
unseen samples from the Sentiment/Race case. As



expected, the attacker works even better in this
case, reaching an accuracy of 59.7% Vs. 56.0%
on the original development set.

5.2 Strengthening the Adversarial
Component

We explore means of strengthening the adversarial
component, by tuning its capacity and its weight,
as well as by using a novel adversarial-ensemble
configuration.

Capacity We increase the capacity of the adver-
sarial component by increasing its hidden dimen-
sion, while keeping the attacker’s hidden dimen-
sion constant at 300 dimensions. We try hidden di-
mensions of size 500, 1000, 2000, 5000 and 8000.

Weight We experiment with different weighting
of the adversarial component during training by
tuning the A\ parameter, trying the values 0.5, 1.0
(default), 1.5, 2, 3, 5 (with values above 5 the main
task training became extremely unstable, not rais-
ing above 50%).

Ensemble An alternative to using larger A val-
ues is to introduce several adversaries. The po-
tential benefit of this approach is that rather than
focusing harder on removing a single feature, here
the different adversaries could each focus on a dif-
ferent aspect of the representation. This approach
is potentially better suited to deal with language
variability. Concretely, we suggest the following
adaptation to the adversarial loss to incorporate k
adversaries with different random initializations:

k

Ly(c(h(@)),y) + Y L:(advj(gr(h(2))), 2)

j=1

Other Attempts We also experienced with sev-
eral other techniques: reinitializing the adversar-
ial weights every t epochs; training the adver-
sary without propagating the error to the encoder
components for ¢ epochs and only then starting
to propagate; using adversaries with more hidden
layers; adding dropout on the encoded vectors and
within the encoder. None of these yielded im-
provements over the above methods.

Results All methods are effective to some ex-
tent, Table 4 summarizes the results.

Increasing the capacity of the adversarial net-
work helped reduce the protected attribute’s leak-
age, though different capacities work best on each
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setup. On the Sentiment/Race task, none of the
higher dimensional adversaries worked better than
the 300-dim one, on the PAN16 dataset it did.
On PAN16/Gender the 8000-dim adversary per-
formed best, and on PAN16/Age, the 500-dim one.

Increasing the weight of the adversary through
the A parameter also has a positive effect on the
result (except on the Sentiment/Race pair). How-
ever, too large A\ values make training unstable,
and require many more epochs for the main-task
to stabilize around a satisfying accuracy.

The adversarial ensemble method with 2 adver-
saries achieves 57.4% on Sentiment/Race, as op-
posed to 56.0% with a single one, but when using
5 different adversaries, we achieve 54.8%. On the
PAN16 dataset larger ensembles are more effec-
tive. However, a potential issue with the ensemble
method is that larger ensembles reduces training
stability, similar to increasing the A value. For ex-
ample, with 5 adversaries, the main-task accuracy
remained at random for 5 epochs, and only begun
rising at the 6th epoch. Using 10 adversaries, the
main task could not be trained.

To summarize, while all methods are effective
to some extent, it appears that (a) no method and
parameter setting performs equally well across the
different setups; and (b) no method succeeds in
completely preventing the leakage of the protected
attributes. Combining the different methods (en-
sembles of larger networks, larger networks with
larger A, etc.) did not improve the results.

Unbalanced Data Results We repeated the
same set of experiments on the unbalanced Sen-
timent/Race corpus (Table 5). In this setup, the
results are somewhat similar: increasing the ad-
versarial capacity and A is ineffective, and even
increases the attacker’s recovery rate. However,
using an ensemble of 5 adversaries does manage
to reduce the leakage, but it is still far from a sat-
isfying result.

6 Analysis

The gap between the adversary’s dev-set accu-
racy and the after-the-fact attacker accuracy on the
same data is surprising. To better understand the
phenomenon, we perform further analysis on the
Sentiment/Race pair with the default single adver-
sary.

Embedding Vs. RNN Recall that the attacker
network tries to extract as much information from



DiAL PAN16

Method Parameter | Sentiment Race A Mention Gender A | Mention Age A
No Adversary Baseline - 67.4 14.5 - 71.5 10.1 - 74.7 9.4 -
Standard Adversary (300/1.0/1) 64.7 6.0 5.0 75.6 8.5 8.0 72.5 73 69
Adv-Capacity 500 64.1 6.7 5.2 73.8 8.1 6.7 71.4 43 4.1
1000 63.4 7.1 49 752 8.9 7.0 71.6 63 4.0
2000 65.2 8.1 6.9 76.1 6.7 6.4 71.9 6.0 5.7
5000 63.9 6.2 3.7 74.5 5.6 1.6 73.0 102 9.6
8000 65.0 7.1 4.8 75.7 54 4.2 71.9 98 73
A 0.5 63.9 6.8 6.2 75.6 7.8 6.8 73.1 48 34
1.5 64.9 7.4 54 75.6 4.9 24 72.5 6.8 5.8
2.0 64.2 7.3 59 76.0 -7.2 6.7 72.1 85 1.7
3.0 65.8 10.2  10.1 73.7 6.4 6.1 72.5 -63 52
5.0 50.0 - - 73.6 6.5 5.7 69.0 32 29
Ensemble 2 62.4 7.4 54 74.8 6.4 5.0 72.8 88 83
3 66.5 6.5 5.0 75.3 4.9 3.1 72.1 6.7 6.0
5 63.8 4.8 2.6 74.3 4.1 3.0 70.1 57 54

Table 4: Results of different adversarial configurations. Sentiment/Mention: main task accuracy.

Race/Gender/Age: protected attribute recovery difference from 50% rate by the attacker (values be-
low 50% are as informative as those above it). A: the difference between the attacker score and the
corresponding adversary’s accuracy. The bold numbers are the best oblivious classifiers within each

configuration.

Method Param [ Sentiment  Race
No Adversary Baseline - 79.5 235
Standard Adversary 1.0 76.8 10.6
Adv-Capacity 500 74.8 13.8
1000 705 184

2000 739 185

5000 71.5 194

8000 73.6 18.7

Lambda 0.5 75.0 155
1.5 712 182

2.0 73.0 12.1

3.0 715 120

5.0 50.0 -

Ensemble 2 70.6  20.8
3 736 179

5 71.5 8.6

Table 5: Unbalanced Sentiment/Race with the dif-
ferent methods. Sentiment: task accuracy. Race:
Attacker’s recovery accuracy beyond 50%.

the encoder’s output as possible. The encoder con-
sists of two components: (1) Embedding Matrix
and (2) an RNN. Therefore, the leakage can be
caused due to one of them (or due to their com-
bination).

We conduct the following experiment to deter-
mine which part affects the leakage more: we cre-
ate a new encoder by composing 2 existing en-
coders: an encoder with high leakage (Leaky, us-
ing the baseline encoder) and an encoder with low
leakage (Guarded, using the 5-Ensemble adver-
sary). We fuse the two encoders by combining
the embedding matrix of the Leaky encoder with
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the RNN module of the Guarded encoder, and
vice versa. This yields two new encoders: an en-
coder with a “leaky” Embedding Matrix module
and a “strong” RNN module (Leaky-EMB), and an
encoder with a “strong” Embedding Matrix mod-
ule and a “leaky” RNN module (Leaky-RNN). We
compare encoders Leaky-EMB and Leaky-RNN to
gauge which module has a greater contribution to
the data leakage. We train attacker-networks over
the encoders’ output to predict the protected at-
tributes.

Embedding
Leaky Guarded

Z | Leaky 64.5 67.8
® | Guarded 59.3 54.8

Table 6: Accuracies of the protected attribute with
different encoders.

Table 6 summarize the results, implying that the
leakage is caused mainly by the RNN, and less by
the Embedding Matrix.

A discrepancy exists to some extent in the new en-
coders, as their parts originate from different models that
were trained separately. To test if the fusion is valid, we
train a different classifier on top of the new encoders to pre-
dict the main task. The combination of the leaked RNN with
the guarded embeddings results in 65.4% on the sentiment
task and the other combination results in 60.9% as opposed
to 67.5% and 63.8% on the leaked and guarded models, re-
spectively. As the new models are on par with the original
ones, we conclude that the new encoders are valid.



Consistent Leakage: Examples Inspection
We are interested in tweets whose protected at-
tribute (race) is correctly predicted by the adver-
sary. However, at accuracy rates below 60%, many
of the correct predictions could be attributed to
chance. To identify the relevant examples, we re-
peated the Sentiment/Race default adversary ex-
periment 10 times with different random seeds.
We then trained 10 attacker networks, and used
each of them to label all examples in the devel-
opment set. We then looked for tweets which are
consistently and correctly classified by at least 9
attackers.” Table 7 shows some of these cases.
Many of them include tokens (Naw, Bestfrand,
tan) and syntactic structures (Going over Bae
house) which are indeed predictive, though not the
most salient features.

Leakage via Embeddings Even though we
found out the RNN is much more responsible
to the leakage then the Embedding, those still
contribute to the leakage and are easier to in-
spect. Therefore, we turn to inspect the en-
coders’ Embedding. We hypothesize that a pos-
sible reason for the adversarial network’s inabil-
ity to completely remove the protected race infor-
mation is word frequency. Namely, rare words,
which might be strongly identified with one group,
didn’t get enough updates during training and
therefore remained predictive towards one of the
groups. To quantify this, we compared two vo-
cabularies: words appearing in tweets where the
predictions were consistently predicted (9 or 10
out of 10 times) by the different attackers, and
words appearing in tweets that were randomly dis-
tributed (50%) between the attackers. If our hy-
pothesis is correct, we expect words from the sec-
ond group to be more frequent than words in the
first group. We discard words appearing in both
groups, and associate each word with its training
set frequency. One-tailed Mann-Whitney U test
(Mann and Whitney, 1947) showed the effect is
highly significant with p < e~ 12

Data Overfitting? Standard ML setups often
suffer from overfitting on the training data, es-
pecially when using neural-networks which tend
to memorize the data they encounter. In the ad-
versarial setup, the overfitting could result in the
encoder-adversary pair working together to per-
fectly clean the attributes from the training data,

7776 correct and 946 consistent examples in total
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without generalization. Such overfitting could ex-
plain the attacker success. Is this what happened?
We test this hypothesis by using the same at-
tacker networks experiments solely on the train-
ing data. We train the attackers on 90% of the
training data while using the rest 10% as held-
out. If overfitting has occurred, the accuracy is
likely to result in 50% accuracy. Alas, this is not
the case. Table 8 summarize the training accura-
cies of the attacker network. The Mention/Race
task achieves the highest score of 64.3% whereas
the Mention/Gender task achieves the lowest -
58.1%. Even though when trained directly to pre-
dict these attributes without the adversarial setup,
the training accuracies are much higher, a substan-
tial amount of signal is still left, even in the train-
ing data.

7 Related Work

The fact that intermediary vector representa-
tions that are trained for one task are predic-
tive of another is not surprising: it is at the
core of the success of NLP methods for deriv-
ing “generic” word and sentence representations
(e.g. Word2vec (Mikolov et al., 2013), Skip-
thought vectors (Kiros et al., 2015), Contextual-
ized Word Representations (Melamud et al., 2016;
Peters et al., 2018) etc.). While usually consid-
ered a positive feature, it can often have unde-
sired consequences one should be aware of and po-
tentially control for. Several works document bi-
ases and stereotypes that are captured by unsuper-
vised word embeddings (Bolukbasi et al., 2016;
Caliskan et al., 2017) and ways of mitigating them
(Bolukbasi et al., 2016; Zhang et al., 2018). Bias
and stereotyping were also documented on a com-
mon NLP dataset (Rudinger et al., 2017). While
these work are concerned with the learned rep-
resentations encoding unwanted biases about the
world, our concern is with capturing potentially
sensitive demographic information about individ-
ual authors of the text.

Removing sensitive attributes (demographic or
otherwise) from intermediate representations in
order to achieve fair classification has been ex-
plored by solving an optimization problem (Zemel
et al., 2013), as well as by employing adversar-
ial training (Edwards and Storkey, 2015; Louizos
et al., 2015; Xie et al., 2017; Zhang et al., 2018),
focusing on structured features. Adversarial train-
ing was also applied for Image anonymization



AAE (“non-hispanic blacks”)

SAE (“non-hispanic whites”)

My Brew Eattin

_Naw im cool

Tonoght was cool

My momma Bestfrand died

Enoy yall day

Going over Bae house

She not texting or calling ? Ok

Real relationships go thru real shit
About to spend my entire check IDGAF
Getting ready for school

I want to be tan again

Why is it so hot in the house ?!

Been doing Spanish homework for 2 hours .
I wish I was still in Spain

Ahhhhh so much homework .
_TWITTER-ENTITY_ I miss you too !

I want to move to california

Lol , I don’t even go here .

Ahhhhh so much homework .

I’'m so tired .

Table 7: Examples for correct dialectal/race predictions, which were predicted consistently by at least 9

different attacker-classifiers.

Protected
Data Task Attribute A
DiaL Sentiment  Race 12.2
Mention Race 14.3
PAN16  Mention Gender 8.1
Mention Age 9.7
Table 8: Attacker’s performance on different

datasets. Results are on a training set 10% held-
out. A is the difference between the attacker score
and the corresponding adversary’s accuracy.

(Edwards and Storkey, 2015; Feutry et al., 2018).
In contrast, we consider features that are based on
short user-authored text.

Several works apply adversarial training to tex-
tual data, in order to learn encoders that are in-
variant to some properties of the text (Chen et al.,
2016; Conneau et al., 2017; Zhang et al., 2017; Xie
etal., 2017). As their main motivation is to remove
information about domain or language in order to
improve transfer learning, domain adaptation, or
end task accuracy, they were less concerned with
the ability to recover information from the result-
ing representation, and did not evaluate it directly
as we do here.

Recent work on creating private representation
in the text domain (Li et al., 2018) share our mo-
tivation of removing unintended demographic at-
tributes from the learned representation using ad-
versarial training. However, they report only the
discrimination accuracies of the adversarial com-
ponent, and do not train another classifier to verify
that the representations are indeed clear of the pro-
tected attribute. As our work shows, trusting the
adversary is insufficient, and external verification
is crucial.

Finally, our work is motivated by the desire for
fairness. We use a definition in which a fair classi-
fication is one that does not condition on a certain
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attribute (fairness by blindness), and evaluate the
ability to achieve text-derived representations that
are blind to a property we wish to protect. Many
other definitions of fairness exist, including demo-
graphic parity, equality of odds and equality of
opportunity (see e.g. discussion in (Hardt et al.,
2016; Beutel et al., 2017)). Under our setup, blind-
ness guarantees these metrics (Appendix A).

8 Conclusions

We show that demographic information leaks into
intermediate representations of neural networks
trained on text data. Systems that train on text data
and do not want to condition on demographic in-
formation must take active steps against accidental
conditioning. Our experiments suggest that:

(1) Adversarial training is effective for mitigating
protected attribute leakage, but, when dealing with
text data, may fail to remove it completely.

(2) When using the adversarial training method,
the adversary score during training cannot be
trusted, and must be verified with an externally-
trained attacker, preferably on unseen data.

(3) Tuning the capacity and weight of the adver-
sary, as well as using an ensemble of several ad-
versaries, can improve the results. However, no
single method is the most effective in all cases.
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Abstract

Misinformation such as fake news is one of
the big challenges of our society. Research on
automated fact-checking has proposed meth-
ods based on supervised learning, but these
approaches do not consider external evidence
apart from labeled training instances. Recent
approaches counter this deficit by considering
external sources related to a claim. However,
these methods require substantial feature mod-
eling and rich lexicons. This paper overcomes
these limitations of prior work with an end-to-
end model for evidence-aware credibility as-
sessment of arbitrary textual claims, without
any human intervention. It presents a neural
network model that judiciously aggregates sig-
nals from external evidence articles, the lan-
guage of these articles and the trustworthiness
of their sources. It also derives informative
features for generating user-comprehensible
explanations that makes the neural network
predictions transparent to the end-user. Exper-
iments with four datasets and ablation studies
show the strength of our method.

1 Introduction

Motivation: Modern media (e.g., news feeds, mi-
croblogs, etc.) exhibit an increasing fraction of
misleading and manipulative content, from ques-
tionable claims and “alternative facts” to com-
pletely faked news. The media landscape is be-
coming a twilight zone and battleground. This so-
cietal challenge has led to the rise of fact-checking
and debunking websites, such as Snopes.com
and PolitiFact.com, where people research claims,
manually assess their credibility, and present their
verdict along with evidence (e.g., background ar-
ticles, quotations, etc.). However, this manual ver-
ification is time-consuming. To keep up with the
scale and speed at which misinformation spreads,
we need tools to automate this debunking process.
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State of the Art and Limitations: Prior work on
“truth discovery” (see Li et al. (2016) for survey)!
largely focused on structured facts, typically in
the form of subject-predicate-object triples, or on
social media platforms like Twitter, Sina Weibo,
etc. Recently, methods have been proposed to as-
sess the credibility of claims in natural language
form (Popat et al., 2017; Rashkin et al., 2017;
Wang, 2017), such as news headlines, quotes from
speeches, blog posts, etc.

The methods geared for general text input ad-
dress the problem in different ways. On the one
hand, methods like Rashkin et al. (2017); Wang
(2017) train neural networks on labeled claims
from sites like PolitiFact.com, providing credibil-
ity assessments without any explicit feature mod-
eling. However, they use only the text of ques-
tionable claims and no external evidence or inter-
actions that provide limited context for credibil-
ity analysis. These approaches also do not offer
any explanation of their verdicts. On the other
hand, Popat et al. (2017) considers external evi-
dence in the form of other articles (retrieved from
the Web) that confirm or refute a claim, and jointly
assesses the language style (using subjectivity lex-
icons), the trustworthiness of the sources, and the
credibility of the claim. This is achieved via a
pipeline of supervised classifiers. On the upside,
this method generates user-interpretable explana-
tions by pointing to informative snippets of evi-
dence articles. On the downside, it requires sub-
stantial feature modeling and rich lexicons to de-
tect bias and subjectivity in the language style.
Approach and Contribution: To overcome the
limitations of the prior works, we present De-
ClarE?, an end-to-end neural network model for
assessing and explaining the credibility of arbi-

'As fully objective and unarguable truth is often elusive
or ill-defined, we use the term credibility rather than “truth”.
’Debunking Claims with Interpretable Evidence
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trary claims in natural-language text form. Our
approach combines the best of both families of
prior methods. Similar to Popat et al. (2017), De-
ClarE incorporates external evidence or counter-
evidence from the Web as well as signals from the
language style and the trustworthiness of the un-
derlying sources. However, our method does not
require any feature engineering, lexicons, or other
manual intervention. Rashkin et al. (2017); Wang
(2017) also develop an end-to-end model, but De-
ClarE goes far beyond in terms of considering ex-
ternal evidence and joint interactions between sev-
eral factors, and also in its ability to generate user-
interpretable explanations in addition to highly
accurate assessments. For example, given the
natural-language input claim “the gun epidemic
is the leading cause of death of young African-
American men, more than the next nine causes put
together” by Hillary Clinton, DeClarE draws on
evidence from the Web to arrive at its verdict cred-
ible, and returns annotated snippets like the one
in Table 6 as explanation. These snippets, which
contain evidence in the form of statistics and as-
sertions, are automatically extracted from web ar-
ticles from sources of varying credibility.

Given an input claim, DeClarE searches for web
articles related to the claim. It considers the con-
text of the claim via word embeddings and the
(language of) web articles captured via a bidirec-
tional LSTM (biLSTM), while using an attention
mechanism to focus on parts of the articles accord-
ing to their relevance to the claim. DeClarE then
aggregates all the information about claim source,
web article contexts, attention weights, and trust-
worthiness of the underlying sources to assess the
claim. It also derives informative features for in-
terpretability, like source embeddings that capture
trustworthiness and salient words captured via at-
tention. Key contributions of this paper are:

e Model: An end-to-end neural network model
which automatically assesses the credibility
of natural-language claims, without any hand-
crafted features or lexicons.

Interpretability: An attention mechanism in
our model that generates user-comprehensible
explanations, making credibility verdicts
transparent and interpretable.

Experiments: Extensive experiments on four
datasets and ablation studies, demonstrating
effectiveness of our method over state-of-the-
art baselines.
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2 End-to-end Framework for Credibility
Analysis

Consider a set of N claims (C,,) from the respec-
tive origins/sources (C'S,), where n € [1, N].
Each claim C), is reported by a set of M arti-
cles (A, ) along with their respective sources
(ASy,.n), where m € [1, M]. Each corresponding
tuple of claim and its origin, reporting articles and
article sources — (Cy,, C'Sy,, Ay n, ASm, n) forms
a training instance in our setting, along with the
credibility label of the claim used as ground-truth
during network training. Figure 1 gives a pictorial
overview of our model. In the following sections,
we provide a detailed description of our approach.

2.1 Input Representations

The input claim C), of length [ is represented as
[c1,¢a, ..., ;] where ¢; € R? is the d-dimensional
word embedding of the [-th word in the input
claim. The source/origin of the claim C'S,, is rep-
resented by a ds-dimensional embedding vector
csy € Rs.

A reporting article A,,,, consisting of k to-
kens is represented by [@m.n.1, Gmn,2, s G k)
where a1 € R is the d-dimensional word
embedding vector for the k-th word in the report-
ing article A, ,. The claim and article word em-
beddings have shared parameters. The source of
the reporting article AS,, ,, is represented as a d-
dimensional vector, as,,, € R For the sake
of brevity, we drop the notation subscripts n and
m in the following sections by considering only a
single training instance — the input claim C', from
source C'S,,, the corresponding article A, , and
its sources AS,, , given by: (C,CS, A, AS).

2.2 Article Representation

To create a representation of an article, which may
capture task-specific features such as whether it
contains objective language, we use a bidirectional
Long Short-Term Memory (LSTM) network as
proposed by Graves et al. (2005). A basic LSTM
cell consists of various gates to control the flow of
information through timesteps in a sequence, mak-
ing LSTMSs suitable for capturing long and short
range dependencies in text that may be difficult
to capture with standard recurrent neural networks
(RNNs). Given an input word embedding of to-
kens (aj), an LSTM cell performs various non-
linear transformations to generate a hidden vector
state hj, for each token at each timestep k.
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Figure 1: Framework for credibility assessment. Upper part of the pipeline combines the article and
claim embeddings to get the claim specific attention weights. Lower part of the pipeline captures the
article representation through biLSTM. Attention focused article representation along with the source
embeddings are passed through dense layers to predict the credibility score of the claim.

We use bidirectional LSTMs in place of stan-
dard LSTMs. Bidirectional LSTMs capture both
the previous timesteps (past features) and the fu-
ture timesteps (future features) via forward and
backward states respectively. Correspondingly,
there are two hidden states that capture past and
future information that are concatenated to form
the final output as: hy = [hg, h].

2.3 Claim Specific Attention

As we previously discussed, it is important to con-
sider the relevance of an article with respect to the
claim; specifically, focusing or attending to parts
of the article that discuss the claim. This is in con-
trast to prior works (Popat et al., 2017; Rashkin
et al., 2017; Wang, 2017) that ignore either the ar-
ticle or the claim, and therefore miss out on this
important interaction.

We propose an attention mechanism to help our
model focus on salient words in the article with
respect to the claim. To this end, we compute
the importance of each term in an article with
respect to an overall representation of the corre-
sponding claim. Additionally, incorporating atten-
tion helps in making our model transparent and in-
terpretable, because it provides a way to generate
the most salient words in an article as evidence of
our model’s verdict.

Following Wieting et al. (2015), the overall rep-
resentation of an input claim is generated by tak-
ing an average of the word embeddings of all the
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words therein:
1
C = 7 El ]

We combine this overall representation of the
claim with each article term:

ar=apPc

where, a; € R4 and @ denotes the concatenate
operation. We then perform a transformation to
obtain claim-specific representations of each arti-
cle term:

ay, = f(Wyay + by)

where W, and b, are the corresponding weight
matrix and bias terms, and f is an activation func-
tion®, such as ReLU, tanh, or the identity func-
tion. Following this, we use a softmax activation
to calculate an attention score «y for each word
in the article capturing its relevance to the claim
context:

exp(a},)

>k exp(ay)
2.4 Per-Article Credibility Score of Claim

Now that we have article term representations
given by (hx) and their relevance to the claim
given by (ay), we need to combine them to pre-
dict the claim’s credibility. In order to create an

(D

A —

3In our model, the fanh activation function gives best re-
sults.



attention-focused representation of the article con-
sidering both the claim and the article’s language,
we calculate a weighted average of the hidden
state representations for all article tokens based on
their corresponding attention scores:

g:%Zak'hk
k

We then combine all the different feature repre-
sentations: the claim source embedding (cs), the
attention-focused article representation (g), and
the article source embedding (as). In order to
merge the different representations and capture
their joint interactions, we process them with two
fully connected layers with non-linear activations.

2)

dq
do

relu(We(g @ cs @ as) + be)
relu(Wadi + ba)

where, W and b are the corresponding weight ma-
trix and bias terms.

Finally, to generate the overall credibility label
of the article for classification tasks, or credibil-
ity score for regression tasks, we process the final
representation with a final fully connected layer:

Classification: s = sigmoid(dz) 3)
4)

Regression: s = linear(ds)

2.5 Credibility Aggregation

The credibility score in the above step is obtained
considering a single reporting article. As previ-
ously discussed, we have M reporting articles per
claim. Therefore, once we have the per-article
credibility scores from our model, we take an av-
erage of these scores to generate the overall credi-
bility score for the claim:

cred(C) = % Z Sm )

This aggregation is done after the model is
trained.

3 Datasets

We evaluate our approach and demonstrate its gen-
erality by performing experiments on four differ-
ent datasets: a general fact-checking website, a po-
litical fact-checking website, a news review com-
munity, and a SemEval Twitter rumour dataset.

25

3.1 Snopes

Snopes (www.snopes.com) is a general fact-
checking website where editors manually investi-
gate various kinds of rumors reported on the In-
ternet. We used the Snopes dataset provided by
Popat et al. (2017). This dataset consists of ru-
mors analyzed on the Snopes website along with
their credibility labels (true or false), sets of re-
porting articles, and their respective web sources.

3.2 PolitiFact

PolitiFact is a political fact-checking website
(www.politifact.com) in which editors rate
the credibility of claims made by various politi-
cal figures in US politics. We extract all articles
from PolitiFact published before December 2017.
Each article includes a claim, the speaker (polit-
ical figure) who made the claim, and the claim’s
credibility rating provided by the editors.

PolitiFact assigns each claim to one of six pos-
sible ratings: true, mostly true, half true, mostly
false, false and pants-on-fire. Following Rashkin
et al. (2017), we combine true, mostly true and
half true ratings into the class label true and the
rest as false — hence considering only binary cred-
ibility labels. To retrieve the reporting articles for
each claim (similar to Popat et al. (2017)), we is-
sue each claim as a query to a search engine* and
retrieve the top 30 search results with their respec-
tive web sources.

3.3 NewsTrust

NewsTrust is a news review community in which
members review the credibility of news articles.
We use the NewsTrust dataset made available by
Mukherjee and Weikum (2015). This dataset con-
tains NewsTrust stories from May 2006 to May
2014. Each story consists of a news article along
with its source, and a set of reviews and ratings by
community members. NewsTrust aggregates these
ratings and assigns an overall credibility score (on
a scale of 1 to 5) to the posted article. We map the
attributes in this data to the inputs expected by De-
ClarE as follows: the title and the web source of
the posted (news) article are mapped to the input
claim and claim source, respectively. Reviews and
their corresponding user identities are mapped to
reporting articles and article sources, respectively.
We use this dataset for the regression task of pre-
dicting the credibility score of the posted article.

“We use the Bing search API.



Dataset SN PF NT SE Parameter SN PF NT SE

Total claims 4341 3568 5344 272 Word embedding length 100 100 300 100
True claims 1164 1867 - 127 Claim source embedding length 4 8 4
False claims 3177 1701 - 50 Article source embedding length 8 4 8 4
Unverified claims - - - 95 LSTM size (for each pass) 64 64 64 16

Claim sources _ 95 161 10 Size of fully connected layers 32 32 64 8

Dropout 05 05 03 03
Articles 29242 29556 25128 3717
Article sources 336 336 251 89

Table 1: Data statistics (SN: Snopes, PF: Politi-
Fact, NT: NewsTrust, SE: SemEval).

3.4 SemEval-2017 Task 8

As the fourth dataset, we consider the benchmark
dataset released by SemEval-2017 for the task of
determining credibility and stance of social media
content (Twitter) (Derczynski et al., 2017). The
objective of this task is to predict the credibility
of a questionable tweet (true, false or unverified)
along with a confidence score from the model. It
has two sub-tasks: (i) a closed variant in which
models only consider the questionable tweet, and
(i1) an open variant in which models consider both
the questionable tweet and additional context con-
sisting of snapshots of relevant sources retrieved
immediately before the rumor was reported, a
snapshot of an associated Wikipedia article, news
articles from digital news outlets, and preceding
tweets about the same event. Testing and devel-
opment datasets provided by organizers have 28
tweets (1021 reply tweets) and 25 tweets (256 re-
ply tweets), respectively.

3.5 Data Processing

In order to have a minimum support for training,
claim sources with less than 5 claims in the dataset
are grouped into a single dummy claim source,
and article sources with less than 10 articles are
grouped similarly (5 articles for SemEval as it is a
smaller dataset).

For Snopes and PolitiFact, we need to extract
relevant snippets from the reporting articles for
a claim. Therefore, we extract snippets of 100
words from each reporting article having the maxi-
mum relevance score: sim = SiMpow X STMsemantic
where simypow 1 the fraction of claim words that
are present in the snippet, and simgemantic repre-
sents the cosine similarity between the average
of claim word embeddings and snippet word em-
beddings. We also enforce a constraint that the
sim score is at least §. We varied § from 0.2
to 0.8 and found 0.5 to give the optimal perfor-
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Table 2: Model parameters used for each dataset
(SN: Snopes, PF: PolitiFact, NT: NewsTrust, SE:
SemkEval).

mance on a withheld dataset. We discard all arti-
cles related to Snopes and PolitiFact websites from
our datasets to have an unbiased model. Statis-
tics of the datasets after pre-processing is pro-
vided in Table 1. All the datasets are made pub-
licly available at https://www.mpi-inf.
mpg.de/dl-cred-analysis/.

4 Experiments

We evaluate our approach by conducting experi-
ments on four datasets, as described in the previ-
ous section. We describe our experimental setup
and report our results in the following sections.

4.1 Experimental Setup

When using the Snopes, PolitiFact and NewsTrust
datasets, we reserve 10% of the data as valida-
tion data for parameter tuning. We report 10-fold
cross validation results on the remaining 90% of
the data; the model is trained on 9-folds and the
remaining fold is used as test data. When us-
ing the SemEval dataset, we use the data splits
provided by the task’s organizers. The objective
for Snopes, PolitiFact and SemEval experiments is
binary (credibility) classification, while for New-
sTrust the objective is to predict the credibility
score of the input claim on a scale of 1 to 5 (i.e.,
credibility regression). We represent terms us-
ing pre-trained GloVe Wikipedia 6B word embed-
dings (Pennington et al., 2014). Since our train-
ing datasets are not very large, we do not tune the
word embeddings during training. The remaining
model parameters are tuned on the validation data;
the parameters chosen are reported in Table 2. We
use Keras with a Tensorflow backend to imple-
ment our system. All the models are trained using
Adam optimizer (Kingma and Ba, 2014) (learn-
ing rate: 0.002) with categorical cross-entropy loss
for classification and mean squared error loss for
regression task. We use L2-regularizers with the



. True Claims False Claims Macro

Dataset Configuration Accuracy (%) Accuracy (%) F1-Score AUC
LSTM-text 64.65 64.21 0.66 0.70
CNN-text 67.15 63.14 0.66 0.72
Distant Supervision 83.21 80.78 0.82 0.88

Snopes :
DeClarE (Plain) 74.37 78.57 0.78 0.83
DeClarE (Plain+Attn) 78.34 78.91 0.79 0.85
DeClarE (Plain+SrEmb) 77.43 79.80 0.79 0.85
DeClarE (Full) 78.96 78.32 0.79 0.86
LSTM-text 63.19 61.96 0.63 0.66
CNN-text 63.67 63.31 0.64 0.67
Distant Supervision 62.53 62.08 0.62 0.68

PolitiFact =1y JarE (Plain) 62.67 69.05 0.66 0.70
DeClarE (Plain+Attn) 65.53 68.49 0.66 0.72
DeClarE (Plain+SrEmb) 66.71 69.28 0.67 0.74
DeClarE (Full) 67.32 69.62 0.68 0.75

Table 3: Comparison of various approaches for credibility classification on Snopes and PolitiFact datasets.

fully connected layers as well as dropout. For all
the datasets, the model is trained using each claim-
article pair as a separate training instance.

To evaluate and compare the performance of
DeClarE with other state-of-the-art methods, we
report the following measures:

e Credibility Classification (Snopes, PolitiFact
and SemEval): accuracy of the models in clas-
sifying true and false claims separately, macro
F1-score and Area-Under-Curve (AUC) for
the ROC (Receiver Operating Characteristic)
curve.

o Credibility Regression (NewsTrust): Mean
Square Error (MSE) between the predicted and
true credibility scores.

4.2 Results: Snopes and Politifact

We compare our approach with the following
state-of-the-art models: (i) LSTM-text, a recent
approach proposed by Rashkin et al. (2017). (ii)
CNN-text: a CNN based approach proposed by
Wang (2017). (iii) Distant Supervision: state-
of-the-art distant supervision based approach pro-
posed by Popat et al. (2017). (iv) DeClare
(Plain): our approach with only biLSTM (no at-
tention and source embeddings). (v) DeClarE
(Plain+Attn): our approach with only biLSTM
and attention (no source embeddings). (vi) De-
ClarE (Plain+SrEmb): our approach with only
biLSTM and source embeddings (no attention).
(vii) DeClarE (Full): end-to-end system with bil-
STM, attention and source embeddings.

The results when performing credibility classi-
fication on the Snopes and PolitiFact datasets are
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shown in Table 3. DeClarE outperforms LSTM-
text and CNN-text models by a large margin on
both datasets. On the other hand, for the Snopes
dataset, performance of DeClarE (Full) is slightly
lower than the Distant Supervision configuration
(p-value of 0.04 with a pairwise t-test). How-
ever, the advantage of DeClarE over Distant Su-
pervision approach is that it does not rely on hand
crafted features and lexicons, and can generalize
well to arbitrary domains without requiring any
seed vocabulary. It is also to be noted that both of
these approaches use external evidence in the form
of reporting articles discussing the claim, which
are not available to the LSTM-text and CNN-text
baselines. This demonstrates the value of external
evidence for credibility assessment.

On the PolitiFact dataset, DeClarE outperforms
all the baseline models by a margin of 7-9%
AUC (p-value of 9.12e—05 with a pairwise t-test)
with similar improvements in terms of Macro F1.
A performance comparison of DeClarE’s various
configurations indicates the contribution of each
component of our model, i.e, biLSTM capturing
article representations, attention mechanism and
source embeddings. The additions of both the
attention mechanism and source embeddings im-
prove performance over the plain configuration in
all cases when measured by Macro F1 or AUC.

4.3 Results: NewsTrust

When performing credibility regression on the
NewsTrust dataset, we evaluate the models in
terms of mean squared error (MSE; lower is bet-
ter) for credibility rating prediction. We use the



Configuration MSE
CNN-text 0.53
CCRF+SVR 0.36
LSTM-text 0.35
DistantSup 0.35
DeClarE (Plain) 0.34
DeClarE (Full) 0.29

Table 4: Comparison of various approaches for
credibility regression on NewsTrust dataset.

first three models described in Section 4.2 as base-
lines. For CNN-text and LSTM-text, we add a lin-
ear fully connected layer as the final layer of the
model to support regression. Additionally, we also
consider the state-of-the-art CCRF+SVR model
based on Continuous Conditional Random Field
(CCRF) and Support Vector Regression (SVR)
proposed by Mukherjee and Weikum (2015). The
results are shown in Table 4. We observe that De-
ClarE (Full) outperforms all four baselines, with
a 17% decrease in MSE compared to the best-
performing baselines (i.e., LSTM-text and Dis-
tant Supervision). The DeClarE (Plain) model
performs substantially worse than the full model,
illustrating the value of including attention and
source embeddings. CNN-text performs substan-
tially worse than the other baselines.

4.4 Results: SemEval

On the SemEval dataset, the objective is to per-
form credibility classification of a tweet while also
producing a classification confidence score. We
compare the following approaches and consider
both variants of the SemEval task: (i) NileTMRG
(Enayet and El-Beltagy, 2017): the best perform-
ing approach for the close variant of the task, (ii)
IITP (Singh et al., 2017): the best performing ap-
proach for the open variant of the task, (iii) De-
Clare (Plain): our approach with only biLSTM
(no attention and source embeddings), and (iv)
DeClarE (Full): our end-to-end system with bil-
STM, attention and source embeddings.

We use the evaluation measure proposed by the
task’s organizers: macro F1-score for overall clas-
sification and Root-Mean-Square Error (RMSE)
over confidence scores. Results are shown in Ta-
ble 5. We observe that DeClarE (Full) outperforms
all the other approaches — thereby, re-affirming
its power in harnessing external evidence.
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Macro

Configuration RMSE
Accuracy

IITP (Open) 0.39 0.746

NileTMRG (Close) 0.54 0.673

DeClarE (Plain) 0.46 0.687

DeClarE (Full) 0.57 0.604

Table 5: Comparison of various approaches for
credibility classification on SemEval dataset.

5 Discussion

5.1 Analyzing Article Representations

In order to assess how our model separates articles
reporting false claims from those reporting true
ones, we employ dimensionality reduction using
Principal Component Analysis (PCA) to project
the article representations (g in Equation 2) from
a high dimensional space to a 2d plane. The pro-
jections are shown in Figure 2a. We observe that
DeClarE obtains clear separability between credi-
ble versus non-credible articles in Snopes dataset.

5.2 Analyzing Source Embeddings

Similar to the treatment of article representations,
we perform an analysis with the claim and arti-
cle source embeddings by employing PCA and
plotting the projections. We sample a few popu-
lar news sources from Snopes and claim sources
from PolitiFact. These news sources and claim
sources are displayed in Figure 2b and Figure 2c,
respectively. From Figure 2b we observe that
DeClarE clearly separates fake news sources like
nationalreport, empirenews, huzlers, etc. from
mainstream news sources like nytimes, cnn, wsj,
foxnews, washingtonpost, etc. Similarly, from Fig-
ure 2¢ we observe that DeClarE locates politicians
with similar ideologies and opinions close to each
other in the embedding space.

5.3 Analyzing Attention Weights

Attention weights help understand what DeClarE
focuses on during learning and how it affects its
decisions — thereby, making our model transparent
to the end-users. Table 6 illustrates some interest-
ing claims and salient words (highlighted) that De-
ClarE focused on during learning. Darker shades
indicate higher weights given to the corresponding
words. As illustrated in the table, DeClarE gives
more attention to important words in the report-
ing article that are relevant to the claim and also
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(a) Projections of article representations
using PCA; DeClarE obtains clear sep-
aration between representations of non-
credible articles (red) vs. true ones
(green).

thentic ones.

(b) Projections of article source repre-
sentations using PCA; DeClarE clearly
separates fake news sources from au-

(c) Projections of claim source repre-
sentations using PCA; DeClarE clusters
politicians of similar ideologies close to
each other in the embedding space.

Figure 2: Dissecting the article, article source and claim source representations learned by DeClarE.

[False] Barbara Boxer: "Fiorina's plan would mean slashing Social Security and Medicare."

Article Source: nytimes.com

least of of Futh while ignoring critical faets that would give a different impression mr adair cited a couple examples of barely true claims
including this one in california democratic sen barbara boxer claimed that republican challenger carly fiorina s plan would mean slashing social security
and medicare but we found there was gvidence to support that fiorina hasn t said much about her ideas on social security and medicare and what
she has said doesn t provide much Proef of slashing and then there s this one in pennsylvania in the pennsylvania senate race republican pat toomey

[True] Hillary Clinton: "The gun epidemic is the leading cause of death of young African-American men, more than the next nine causes put together."
Article Source: thetrace.org

away the cause of death by francesca mirabile September 87 BOI6 during the fitsi presidential debate monday night democratic nominee hillary
clinton Bffered a chilling Statistié on firearm homicides and the victimization of black ales the gun epidemic is the leading cause of death of young african
american men fiore than the next fiine causes put together she said data from the centers for disease control and prevention confirms her assertion of all
black males between the Gges of Imajority 54 percent were killed with a gun earb) nineé in 10

and 24 that died in 2014 a

[False] : Coca-Cola’s original diet cola drink, TaB, took its name from an acronym for “totally artificial beverage.”

Article Source: foxnews.com

the first diet colas being the first in 1952 COCACOI execs at that time were hesitant to affix the term diet to B0CACOIA so the name tab was chosen as a tribute
to those who were keeping tab of their weight according to cola [€gemd the drink was actually dubbed tab as an GerORYM for totally artificial beverage a
great story which unfortunately COCa€old says is completely lntrue the name was actually chosen by computer and market research the saccharin scandal
in the 70s did its damage and the introduction of diet coke in the early 1980s pushed tab even

[True] : Household paper shredders can pose a danger to children and pets.

Article Source: byegoff.com

packages while still protecting any private information that may be contained in the papers in theory the personal home paper shredder makes much sense
personal or pet injuries from paper shredders a growing number of reported injuries Feveal that home shredders pose a danger to any user and are
especially dangerous to children and pets in fact the federal consumer product safety commission issued a paper shredder safety alert documenting reports

of incidents involving finger amputations lacerations and other finger injuries directly connected to the use of home shredders

Table 6: Interpretation via attention (weights) ([Truel/[False] indicates the verdict from DeClarE).

play a major role in deciding the corresponding
claim’s credibility. In the first example on Table 6,
highlighted words such as “.barely true...” and
“..sketchy evidence...” help our system to identify
the claim as not credible. On the other hand, high-
lighted words in the last example, like, “..reveal...”
and “..documenting reports...” help our system to
assess the claim as credible.

6 Related Work

Our work is closely related to the following areas:
Credibility analysis of Web claims: Our work
builds upon approaches for performing credibility
analysis of natural language claims in an open-
domain Web setting. The approach proposed in
Popat et al. (2016, 2017) employs stylistic lan-
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guage features and the stance of articles to as-
sess the credibility of the natural language claims.
However, their model heavily relies on hand-
crafted language features. Rashkin et al. (2017);
Wang (2017) propose neural network based ap-
proaches for determining the credibility of a tex-
tual claim, but it does not consider external
sources like web evidence and claim sources.
These can be important evidence sources for cred-
ibility analysis. The method proposed by Samadi
et al. (2016) uses the Probabilistic Soft Logic
(PSL) framework to estimate source reliability and
claim correctness. Vydiswaran et al. (2011) pro-
poses an iterative algorithm which jointly learns
the veracity of textual claims and trustworthiness
of the sources. These approaches do not consider



the deeper semantic aspects of language, however.
Wiebe and Riloff (2005); Lin et al. (2011); Re-
casens et al. (2013) study the problem of detecting
bias in language, but do not consider credibility.

Truth discovery: Prior approaches for truth dis-
covery (Yin et al., 2008; Dong et al., 2009, 2015;
Li et al., 2011, 2014, 2015; Pasternack and Roth,
2011, 2013; Ma et al., 2015; Zhi et al., 2015;
Gao et al., 2015; Lyu et al., 2017) have focused
on structured data with the goal of addressing
the problem of conflict resolution amongst multi-
source data. Nakashole and Mitchell (2014) pro-
posed a method to extract conflicting values from
the Web in the form of Subject-Predicate-Object
(SPO) triplets and uses language objectivity analy-
sis to determine the true value. Like the other truth
discovery approaches, however, this approach is
mainly suitable for use with structured data.

Credibility analysis in social media: Mukher-
jee et al. (2014); Mukherjee and Weikum (2015)
propose PGM based approaches to jointly in-
fer a statement’s credibility and the reliability of
sources using language specific features. Ap-
proaches like (Castillo et al., 2011; Qazvinian
etal., 2011; Yang et al., 2012; Xu and Zhao, 2012;
Gupta et al., 2013; Zhao et al., 2015; Volkova
et al., 2017) propose supervised methods for de-
tecting deceptive content in social media plat-
forms like Twitter, Sina Weibo, etc. Similarly, ap-
proaches like Ma et al. (2016); Ruchansky et al.
(2017) use neural network methods to identify
fake news and rumors on social media. Ku-
mar et al. (2016) studies the problem of detect-
ing hoax articles on Wikipedia. All these rely on
domain-specific and community-specific features
like retweets, likes, upvotes, etc.

7 Conclusion

In this work, we propose a completely automated
end-to-end neural network model, DeClarE, for
evidence-aware credibility assessment of natural
language claims without requiring hand-crafted
features or lexicons. DeClarE captures signals
from external evidence articles and models joint
interactions between various factors like the con-
text of a claim, the language of reporting articles,
and trustworthiness of their sources. Extensive ex-
periments on real world datasets demonstrate our
effectiveness over state-of-the-art baselines.
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Abstract

People use online platforms to seek out sup-
port for their informational and emotional
needs. Here, we ask what effect does reveal-
ing one’s gender have on receiving support. To
answer this, we create (i) a new dataset and
method for identifying supportive replies and
(i1) new methods for inferring gender from text
and name. We apply these methods to create a
new massive corpus of 102M online interac-
tions with gender-labeled users, each rated by
degree of supportiveness. Our analysis shows
wide-spread and consistent disparity in sup-
port: identifying as a woman is associated with
higher rates of support—but also higher rates
of disparagement.

1

Despite substantial efforts to reduce gender dis-
parities in online social contexts, gender gaps per-
sist and, increasingly, negatively affect women
through online harassment (Duggan, 2017). On-
line social platforms still serve a critical role for
individuals as they seek to fill informational and
emotional needs, frequently by interacting with
others (Goswami et al., 2010; Chuang and Yang,
2012; Hether et al., 2016). The supportive replies
of others help promote personal well-being (Mac-
George et al., 2011), yet unsupportive replies can
not only lead to distress but discourage online en-
gagement altogether. Given gender disparity in
the receipt of anti-social behavior, to what degree
does this disparity persist in individuals’ receipt
of support? We answer this question, illustrated in
Figure 1, by examining supportive and unsupport-
ive message rates across millions of online inter-
actions, using a new computational model of sup-
port. Our work is motivated by an agenda of pro-
moting supportive online platforms where people
can participate equally.

This work connects with the growing body of
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Comment: Kat 1ez22: I'm nervous about my differential

calculus exam next week. My current idea is work through

problems on previous exams. But yiiiikes.

L Reply: PizzaMagic: You can ace that test! Your plan
seems smart and you have plenty of time to prepare. :)

Figure 1: In this fictitious example, KatieZz22
receives a supportive reply from PizzaMagic. In
choosing their names, each user has chosen a partic-
ular gender performance, signaling female and gender-
anonymity, respectively. In online settings, such gender
performances evoke stereotypes that affect how others
interact and provide access to online resources. Our
study asks what effect does this gender signaling have
on individuals receiving support and disparagement?

computational studies of gender disparity in online
behavior (e.g., Lam et al., 2011; Magno and We-
ber, 2014; Garimella and Mihalcea, 2016; Liet al.,
2018); our work here examines this disparity along
a new dimension, support, and unlike prior work,
examines disparity along the full spectrum of both
pro-social (supportive) and anti-social (unsupport-
ive) behaviors. Prior works have also examined
the language of support in online support forums
for health-related issues (Biyani et al., 2014; Wang
et al., 2012; De Choudhury and De, 2014; Althoff
et al., 2016; De Choudhury and Kiciman, 2017),
often with the aim of improving people’s access.
Here, we aim to study support in general, everyday
interactions, drawing upon theories of how sup-
port is expressed in language (Cutrona and Suhr,
1992; Wright et al., 2003).

Our investigation provides four main contribu-
tions. First, we introduce a new task of rating
the supportiveness of a message and provide an
accompanying dataset of 9,032 post-reply pairs
with annotations (§2). Second, using this data,
we develop a new computational model for au-
tomatically identifying supportive and unsupport-
ive replies (§3), using theory-based features that
operationalize linguistic strategies for giving sup-
port. Third, we develop a new state-of-the-art sys-
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tem for classifying the gender of a username (§4)
and construct a massive dataset of over 102M post-
reply pairs from three online platforms (§5), where
participants are labeled by gender. Further, the text
of each post is rated for its gender predictiveness,
enabling studying gender performance at the name
and textual levels. Finally, we apply our support
classifier to our social interaction dataset to re-
veal wide-spread disparity on the basis of gender
(§6). Our results show that when gender is per-
formed, female performances are associated both
with higher rates of supportive comments and with
higher rates of unsupportive comments, highlight-
ing that gender disparity is not just for negative
behaviors online.

2 The Language of Support

Individuals engage in online platforms for a va-
riety of reasons and supportive responses to this
engagement can take many forms (Shumaker and
Brownell, 1984; Vaux, 1985), from informational
support like advice to emotional support like ex-
pressions of sympathy. Responders may choose
from different linguistic support strategies de-
pending on the speaker and context (Cutrona and
Suhr, 1992). For example, given an individ-
uval commenting on a Wikipedia talk page about
their idea for adding new content, a responder
may point to an additional resource they can use,
whereas given an individual posting to Reddit for
relationship advice, a responder may express sym-
pathy. Our goal is to study the language and be-
havior of everyday supportive or unsupportive in-
teractions as they occur on three large social plat-
forms: Reddit, StackExchange, and Wikipedia.
These platforms represent common settings peo-
ple seek out to engage in discussions and ask for
help. Therefore, we annotate a dataset by degrees
of support and analyze how linguistic expectations
of support manifest in online interactions.

Data and Annotation Post and reply pairs were
selected from the three platforms. Many of these
interactions are short and therefore to increase di-
versity, annotated pairs were sampled by balanc-
ing by platform and the lengths of posts and replies
seen in each.

As a social activity, support is often expressed
by drawing upon other social strategies such as
politeness (Feng et al., 2013). To help focus
annotators’ attention on support specifically and
disentangle related social cues, we pair our sup-
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—*— Agreement
Politeness

—#— Support
Offensive

1 2 3 4 5
Likert Scale Rating

Figure 2: Annotators’ rating distributions.

Rating Example Reply
1.33  see your arse mate, stop talking out of it.
2.0 We dont like your kind.
3.0 I was referring to <link>
3.33  thanks chief.
3.66  Not many people, apparently, but I'm listening!
4.0 Im in as well! Meet up at the Tavern?!
433 Ilike your style!
4.66  Love this. Thank you, more please.

Table 1: Examples of annotator ratings of Support from
1 to 5. Additional examples are in Supplemental §2.

port annotation with contrastive annotation ques-
tions for three other related phenomena: agree-
ment (with the post’s message), politeness, and of-
fensiveness. Annotators were asked to rate support
on a five-point Likert scale from very unsupport-
ive and very supportive, with analogous questions
each for agreement and politeness; offensiveness
was rated on a five point scale from inoffensive to
very offensive.

All data was annotated using CrowdFlower with
detailed instructions and example replies for each
level of the Likert scale. Each task presented five
post-reply pairs and with detailed instructions that
ask annotators to focus on rating each reply along
these four dimensions. Annotators were required
to pass a training phase where they had at least
70% agreement with a gold standard annotation
on 10 items. After training, each task included one
control question, which was used to remove anno-
tators whose agreement with the gold standard fell
below 70%.

In total, 9,032 instances were annotated by three
annotators, who had a Krippendorff’s o of 0.766,
indicating substantial agreement on the data (Art-
stein and Poesio, 2008). Figure 2 shows the distri-
bution of ratings. Support is positively correlated
with agreement (r=0.71) and politeness (r=0.51),
though annotators rated replies as having more po-
liteness than support on average. Support annota-
tion examples are shown in Table 1. Offensiveness
was negatively correlated (r=-0.38) with support.
Analysis Supportive replies can use a variety of
strategies for offering support, depending on need



Strategy Support  In Top-25% Example

= Suggestion advice 0.043 16.3% You might try...

é Referral 0.091 1.3% Please see [URL]

£  Situational appraisal —0.071** 1.5% Your situation sounds like...

g Teaching —0.065*** 2.7% The reason that’s happening...

= Direct offer to do something —0.020 0.04% Do you want me to?

2 Willingness 0.266*** 1.6% I could help you...

. Compliment 0.337** 23.8% Great idea!

¢ Validation 0.248*** 27.2% You’re right about...

“  Relief of blame 0.490*** 1.2% It’s not your fault that...
Companionship Reminder =~ —0.089* 0.7% Your friends and family still...
Sympathy 0.041 0.1% Sorry to hear that

% Listening —0.104*** 3.1% Why did you feel...

§ Empathy 0.067 0.08% I know how you feel...

: Encouragement 0.423*** 1.6% Go for it
Accommodation 0.035 74.7%

Emotion 0.081*** 27.2%

Table 2:

Support strategies and their presence in our data, as shown through the mean supportiveness rating (-2

to 2) for replies using that strategy and the percentage of posts in the top 25% of the most-supportive that employ
the strategy. For supportiveness, posts are compared with all others not employing that strategy, with significance
measured using the Mann-Whitney U test. Throughout the paper, *** denotes p<0.001, ** p<0.01, and * p<0.05.

and context. Cutrona and Suhr (1992) proposed a
broad taxonomy of support strategies based on in-
person interactions, such as offering an appraisal
of the current situation or seeking to relieve the
other person of blame. We examine to what degree
are these strategies employed in online, relatively-
anonymous settings and whether their usage on-
line is associated with higher perceived support.
To test this, support strategies were automatically
identified using a combination of regular expres-
sions for lexical patterns and dependency-parsed
trees, together with specialized lexicons matching
each strategy and rules for detecting negation. For
example, suggestions were detected by identifying
a second-person subject with a modal verb indicat-
ing possibility (Quirk et al., 1985, p. 219).

Many of the strategies suggested by Cutrona
and Suhr (1992) for expressing support in per-
son were also observed online; Table 2 shows the
average supportiveness rating for replies contain-
ing each strategy, where supportiveness is cen-
tered to [—2, 2|. Further, their effect on perception
of supportiveness, while small, is significant and
positive for many. However, we do observe two
notable negative trends. First informational sup-
port strategies of aiding a person by reassessing
their situation (e.g., offering a new perspective)
and by teaching were considered less supportive.
We observed that in several cases these strategies
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were employed when an individual was not seek-
ing support, in which case unrequested new infor-
mation can appear condescending. Indeed, replies
employing these two support strategies were still
rated polite, 0.30 and 0.31 mean politeness respec-
tively, suggesting the context in which new infor-
mation is given weighs heavily on whether it is
treated as supporting the individual.

Support can also be conveyed implicitly
through unconscious stylistic choices.  Rains
(2016) notes linguistic accommodation is fre-
quently observed in supportive responses, where
individuals match the function word frequency
of the original communication (Bucholtz and
Hall, 2005; Danescu-Niculescu-Mizil et al., 2011).
Shown in the bottom of Table 2, we observe only a
weak non-significant positive association between
support and accommodation (as measured using
Danescu-Niculescu-Mizil et al. (2011)), though
the single post-reply unit of analysis limits our
ability to detect long-term accommodation across
multiple dialog turns. Liviatan et al. (2008)
and Li and Feng (2014) found that supportive
replies often to contain more emotional language,
which evokes a personal connection and intensity
(Spottswood et al., 2013; Braithwaite et al., 1999).
Shown in the bottom of Table 2, we find a signifi-
cant and positive association where more emotive
posts are viewed as more supportive.



Finally, we note that a few strategies suggested
by Cutrona and Suhr (1992) were not seen in our
annotated dataset. Strategies of offering to partici-
pate, using physical affection, assurances of confi-
dentiality, material and financial loans, and prayer
were not seen; a broader scan of our unannotated
data did find these attested but rare in practice. We
attribute this rareness to the public, online nature
of the interactions, in contrast to the interpersonal
setting studied by Cutrona and Suhr (1992).

3 Computational Model of Support

Our primary objective is to measure the relation-
ship between identity and support in online social
systems. Therefore, we next develop a classifier to
automatically label replies with support.

Features As a social activity, the language of sup-
port draws upon multiple lexical and stylistic cues.
We base on classifier on theory-inspired and data-
driven features. The first set consists of the opera-
tionalized linguistic strategies for expressing sup-
port, shown in Table 2. Further, in constructing
our feature set, we build upon past linguistic anal-
yses of related social-situated language. Wellman
and Wortley (1990) note that the availability of
support is related to social distance, which is in
part expressed linguistically through the degree of
formality (Hovy, 1987; Sigley, 1997). Therefore,
we include features from Pavlick and Tetreault
(2016), which examined linguistic markers of for-
mality. Advice giving is a core component of
many theories of support (MacGeorge et al., 2011)
and such advice is frequently wrapped in polite-
ness language (Feng et al., 2013), e.g., hedging
suggestions rather than imposing direction, which
provides face-saving opportunities for the per-
son receiving support (Clark and Schunk, 1980).
Therefore, we include the feature set of Danescu-
Niculescu-Mizil et al. (2013), which though fo-
cused on requests, provides many general lexical
patterns for politeness.

Beyond these, we include features motivated by
observational studies of support. In analyzing on-
line support groups, Alpers et al. (2005) found that
LIWC (Pennebaker and Stone, 2003) was valid
as a construct for analyzing messages and com-
pared similarly human judgments about the cat-
egories. To capture emotional language (Li and
Feng, 2014; Liviatan et al., 2008), we include the
NRC emotion lexicons of Mohammad and Turney
(2013). Given the informational support strategy,
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we include lexicons from argumentation for cap-
turing explanatory replies (Teufel, 2000).

Support may be given in response to stressors,
which change in nature throughout a person’s life-
time (Vaux, 1985; Segrin, 2003). To potentially
capture variation in the language of support based
on the posting individuals, we include features
known to be associated with age such as elon-
gation and capitalization (Goswami et al., 2009;
Barbieri, 2008), grammatical differences in sen-
tence construction and length (Hovy and Sg¢gaard,
2015), and a lexicon for age of acquisition (Kuper-
man et al., 2012).

Data-driven features include (1) lexical fea-
tures capturing the presence of n-grams, their rel-
ative frequency, (2) grammatical features from
dependency-parsed triples, which are also backed
off to parts of speech, (3) word lexicons for for-
mality, sentiment, and subjectivity, (4) style fea-
tures such as word and sentence length, complex-
ity, and use of contractions, and (5) the average
word vector for the sentence.

In total, our model includes 23,903 features, the
bulk of which are n-grams and dependency triples.
A detailed listing of all features is provided in Sup-
plemental §1.

One notable feature that we did not include was
the presence of self-disclosure in a reply, which
has been linked to high-social support as a way
of conveying connection and empathy (Wright
etal., 2003). While computational models for self-
disclosure have been proposed (Bak et al., 2014;
De Choudhury and De, 2014), we were unable to
scale these methods to the size of our analysis.

Task Setup Support ratings are discretized to
create a ternary classification task with labels
{-1,0,1}, denoting unsupportive, neutral, and
supportive comments. Ratings were discretized by
treating all those ratings <-0.67 as negative and
those with a rating >0.67 as positive.

A Random Forest classifier was trained on all
23,903 features; random forests are robust to over-
fitting even with large numbers of features, mak-
ing them suitable for this high-dimensional fea-
ture space (Fernandez-Delgado et al., 2014). Fur-
thermore, random forests are able to learn con-
junctive features, allowing us to learn how com-
binations of strategies are employed to yield sup-
port. As the majority of posts are neutral, we mit-
igate the class imbalance using SMOTE (Chawla
et al., 2002) to generate synthetic examples in the



Model Macro-F1
Our Model 0.52
Bigram Features 0.43
Unigram Features 0.42
Support Features (Table 2) 0.40
Majority 0.29
Random 0.26

Table 3: Support classification performance

training fold using the 5 nearest neighbors, taking
care to avoid contamination of the test set. The
classifier is implemented using Scikit-learn (Pe-
dregosa et al., 2011) and syntactic processing was
done using spaCy (Honnibal and Johnson, 2015).
Word vectors are the publicly released Google-
News word2vec vectors (Mikolov et al., 2013).

Three works have examined related tasks where
Biyani et al. (2014) and Khanpour et al. (2018)
classify posts in online cancer support groups as
providing informational or emotional support and
Wang et al. (2012) classify the degree of support
along these dimensions. Here, we solve a more
general task that includes unsupportive comments
and is in the general domain.

Evaluation We compare our full model for pre-
dicting support against three models: our 14 fea-
tures for detecting support strategies from Table
2, a model trained on the subset of unigram fea-
tures (4,352), and a model trained on bigram fea-
tures (8,897), the latter of which is known to
be a strong lexical baseline (Wang and Manning,
2012). All models were tested using five-fold
cross-validation with Macro-F1 for evaluation and
including baselines for labeling instances at ran-
dom or choosing the most frequent.

Our full model obtains substantial improve-
ments over all baselines and models, as shown in
Table 3. Further, the simple support strategy fea-
tures provide a large and statically-significant im-
provement over the two baselines. The model us-
ing support strategy features performs similarity
to the unigram model, despite having two orders
of magnitude fewer features. A follow-up analysis
on cross-platform performance, described in Sup-
plemental §1.2, showed that while within-platform
performance was relatively high (0.54 Macro F1
for Reddit and 0.53 for Wikipedia), performance
for the more technical StackExchange site was
lower both within (0.44) and across (0.40 when
trained on Reddit and 0.42 when on Wikipedia).

Examining our full model’s most important fea-
tures showed that the two support strategies for
validation and compliments (cf. Table 2) were
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the most important features, followed closely by
lexicons for emotion: Anger in LIWC, Disgust
in NRC, and the positive sentiment in Liu et al.
(2005), all of which were motivated by theory.
These results confirm that our theory-inspired fea-
tures are both salient for supportiveness and effec-
tive as features.

4 Inferring Gender

As a part of interacting, individuals present a view
of themselves as an interlocutor, revealing aspects
about themselves such as gender through explicit
means (Marwick, 2013; Allen and Wiles, 2016),
e.g., profile pictures, or through implicit—and
potentially unconscious—cues such as stylistic
choices in language (e.g., Eckert and McConnell-
Ginet, 2003; Bamman et al., 2014). In the rela-
tively anonymous and deindividuated online set-
ting, these identity cues can have a profound im-
pact on how other perceive and interact with them
(e.g., Mickelson et al., 1995; Herring, 2003; Am-
mari et al., 2014; Megarry, 2014) and these min-
imal gender cues give rise to full-fledged social
stereotypes and, potentially, the negative behav-
ior that comes when treating someone as a stereo-
type (Kiesler et al., 1984; Lea and Spears, 1991;
Postmes et al., 1998; Wang et al., 2009). Here,
we develop methods for inferring gender from two
signals: (1) names that users chose; and (2) im-
plicit cues conveyed by linguistic features.

4.1 Gender from Names

Prior work has developed models for inferring
gender from username alone (e.g., Tang et al.,
2011; Liu and Ruths, 2013; Jaech and Osten-
dorf, 2015; Knowles et al., 2016). Here, we de-
velop a new character-based neural model that
incorporates rich gender-labeled username infor-
mation for identifying additional gender-salience
cues in usernames from roles and attributes, e.g.,
SuperDadl Or AspiringActress99.

Data Individuals convey their gender in multi-
ple ways beyond using gender-associated names.
Therefore, to capture this variety, we collect user-
names from two online platforms where users have
self-declared their perceived gender. First, Twit-
ter usernames and screen names were collected
from a 10% sample from 2014 to 2017. Here,
we identify usernames whose biography contains
an explicit mention of their gender, e.g., by stat-
ing a gendered role “mom to two kids” or spec-



ifying pronoun preferences “he/him/his.” Gen-
dered profiles were collected for 4,900,250 indi-
viduals using a selection of lexical patterns with
aggressive filtering to remove false positives. Sec-
ond, we collect 283,427 usernames from Reddit
identified through self-declarations of gender in
/R/RELATIONSHIPS, e.g., “I [23F] need to talk
to my boyfriend [27M]”, and 84,068 usernames
where the user has chosen a gender-indicating
flair (a visual icon displayed within the subreddit).
These two sources provide much-needed variation
for gender in usernames beyond those mirroring
full names.

Model Given a username, we infer gender us-
ing a character-based encoder consisting of three
stacked LSTM networks (Hochreiter and Schmid-
huber, 1997). Following platform restrictions on
usernames, character sequences are restricted to
being in ascii range and are embedded into 16 di-
mensional vectors as input. Adopting best prac-
tices (Ioffe and Szegedy, 2015), batch normaliza-
tion is applied prior to the dense layer used to com-
pute the gender prediction. LSTMs were sized at
256 after limited hyperparameter tuning on devel-
opment data. We optimize with Adam (Kingma
and Ba, 2014) with a learning rate of 0.002.

Training and Evaluation All data is partitioned
into 80% train, 10% development, and 10% test
splits. As some usernames are repeated in dif-
ferent communities, we keep only one unique in-
stance prior to partitioning to avoid leakage be-
tween partitions.

Training mini-batches were balanced for both
genders, which yielded better performance in tests
on the development data. We compare the perfor-
mance of our model on the test set against two cur-
rent state-of-art systems available off the shelf for
inferring gender from usernames, demographer
(Knowles et al., 2016) and Jaech and Ostendorf
(2015). Demographer is trained on names from
the Social Security Administration and the method
of Jaech and Ostendorf (2015) is trained on user-
names from OkCupid and uses 3.5M Snapchat
usernames for self-learning to improve accuracy.

As shown in Table 4, our model outperforms
both systems by substantial margins for both Twit-
ter and Reddit data. In tests on data from both pa-
pers reported in Supplemental §3, our model also
outperforms their systems. High accuracy is not
expected for these models in most domains, as
many usernames do not signal gender.

38

Method Twitter Reddit

Our Model 0.7785 0.6299

Jaech and Ostendorf (2015) 0.7028 0.5935
Knowles et al. (2016) 0.6520 0.5216

Table 4: Gender inference (Macro-F1)

4.2 Gender from Text

Gender can also manifest through more subtle,
stylistic cues (e.g., Schnoebelen, 2012; Flekova
and Gurevych, 2013; Bamman et al., 2014;
Volkova et al., 2015; Garimella and Mihalcea,
2016; Carpenter et al., 2016). Thus, even when a
person chooses a neutral username, their linguis-
tic style may reveal their gender. Therefore, we
construct a regression model to infer the degree to
which either gender is expressed through text.
Data and Model Gender-labeled post data was
constructed using held-out data from our three
platforms where posts were authored by a user
with a high-confidence gender prediction. Posts
were randomly sampled across forums (e.g., sub-
reddits) from the held-out data to achieve gender
parity with 555K posts for Wikipedia, and 58K
for StackExchange; Reddit was subsampled to 1M
posts total due to its size.

Features were selected by drawing upon prior
work: (1) stylistic features like punctuation and
number frequencies, casing, word length and (ii)
content features including n-grams, sentiment,
and specialized lexicons like LIWC. A full listing
of features is reported in Supplemental §1.

Following prior work (Bamman et al., 2014),
a logistic regression model was trained for each
platform using L2 regression; we adopt separate
models for each to better adapt to any platform-
specific gender variation.

Evaluation Models were evaluated using AUC
with five-fold cross validation, with 0.661 AUC
for StackExchange, 0.700 for Wikipedia, and
0.661 for Reddit. The models perform substan-
tially better than random choice (0.5) for the chal-
lenging task of inferring gender from a single post,
as many posts contain no signal of gender. Addi-
tional analyses are reported in Supplemental §1.2.

5 Gender-Salient Interaction Data

To quantify the social support people receive on-
line, we examine communications from three ma-
jor online communities: Reddit, StackExchange,
and Wikipedia. We refer to a communication be-
tween individuals as a post with a reply, defining



Male Female Neutral

Reddit 1,017,455 213,849 1,211,813
SE 2,431,234 289,864 836,531
Wiki. 80,876 14,073 46,954

Table 5: Users with high-confidence or neutral gender

Gender: Female Gender: Male Gender: Neutral

Shanakitty AdamMcAdamson kazkeb

cassycas ChipCarlsonl1 xuebin671
kelseylenae BaBa_Dad Configurational Yes
Mrs_BruceWayne BarryCA67 thelizardof_Oz
madelaine00x BenJewish oibird
norma-gaspard dojoguy Merpageddon

Table 6: High-confidence and neutral name examples.

these for each platform next.

Reddit Reddit data was selected using a longitu-
dinal sample of one month (July) per year, from
2006 to 2017, and a continuous sample of one full
year’s data in 2017. Our initial data consists of the
top 10,000 subreddits ordered by the total num-
ber of posts in the data. From these communi-
ties we restrict our analysis to a comment and its
first reply, which reduces confounds from multi-
party communication. These post-reply pairs were
further filtered to remove non-English posts us-
ing Google CLD2 (McCandless, 2010), yielding
434.29M candidate communications.
StackExchange StackExchange (SE) contains
substantial social interaction in the comment to
posts and replies (Ahn et al., 2013; Danescu-
Niculescu-Mizil et al., 2013). These communi-
cations often expand beyond the immediate topic.
Directed communication within these comments
is frequently signaled using an explicit mention
starting with an “@,” which we use to identify
pairs. In total, we collected post-reply pairs from
the full history of all StackExchange, yielding
3.16M pairs across 162 sites.

Wikipedia Wikipedia features an active social
component in its talk pages, with more per-
sonal communication—or even personal attacks—
during debates around appropriateness or sug-
gested changes (Bender et al., 2011). Similar to
Reddit, we construct post-reply pairs by identify-
ing each comment and its first response on a talk
page, yielding 26.7M pairs from 387K talk pages.
Assigning Gender All post-reply pairs were la-
beled using our post classifier (§4.1). Posts
with high-confidence gender predictions (softmax
probability > 0.9 or < 0.1) were labeled with the
predicted gender. To contrast the effects of having
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a gendered name, we construct a complementary
dataset where the posting user’s username is effec-
tively gender neutral, e.g., user1209; these neu-
tral names are chosen from those with near-chance
probability in the output softmax 0.45 < p <
0.55. The relative counts of high-confidence and
neutral gender names in each platform are shown
in Table 5, along with examples in Table 6.
Restricting the dataset to pairs where we have a
salient identity, our final dataset for analysis con-
sists of 49.58M, 0.72M, and 3.69M pairs for gen-
der in Reddit, StackExchange, and Wikipedia; and
46.19M, 201.7K, and 1.60M for neutral in each,
respectively. Where possible, we also record any
high-salience identities for replying users.

6 Gender and Support

The gender cues provided through computer medi-
ated communication provide enough information
that a person will fill in the result with a stereotype
(Lea and Spears, 1991; Spears and Lea, 1992).
What effect might this stereotyping have for ac-
cess to support? While establishing full causality
for an answer is infeasible in our current observa-
tional study, we take the first step by quantifying
whether disparity in support exists and examine
what contextual factors may affect support giving.
Using our classifier, we label the 102M post-reply
pairs from our dataset (§5), which includes both
high-confidence and gender-neutral users.

Model To quantify access to support, we construct
separate mixed-effect logistic regression models
for predicting the dependent variable of whether
a post will receive a supportive reply and for
whether it will receive an unsupportive reply. Ran-
dom effects are added for each community within
a platform, which capture the variance in sup-
port rates between communities, e.g., due to dif-
ferences in community norms, topic, or size. As
fixed effects, we include a categorical variable for
name-inferred gender, always using the gender-
neutral condition as the reference coding, which,
critically, allows us to examine the changes of sup-
port for revealing gender relative to users whose
identity is effectively anonymous. We include the
predicted probability of a user’s gender from their
writing (§4.2), centered to [—0.5,0.5] such that 0
denotes a gender-neutral writing style. Finally, we
include interaction terms for writing and names to
capture effects of joint gender performance.
Results Three main results are observed. First,



SUPPORTIVE UNSUPPORTIVE
Reddit StackExchange Wikipedia Reddit StackExchange Wikipedia
intercept —2.3775"* —2.4729*** —2.9298*** —3.0232%** —4.3734*** —2.9787***
@name  0.5480*** 0.5409*** 0.7376*** 0.2927*** 0.6071*** 0.3543***
Cname  (0.4652*** 0.6639*** 0.6422%** 0.3230*** 0.6445*** 0.3313***
QW 1.1174% —1.0778*** 0.5261*** 0.2520* 0.7398*** —0.1451**

QPname A Q& 0.8802*** 1.2751%%* 0.1155 0.2662* 0.0537 0.1695

Cname A Q' 0.0535 0.8119*** —0.2070*** 0.2016 0.3556* 0.4750***
Table 7: Logistic regression coefficients for predicting whether a post will receive a supportive reply (left) or

unsupportive reply (right) on the basis of a gendered name and writing (denoted (£), with coefficients for name
and writing interactions. Name gender is categorical with the reference coding is neutral. The writing coefficient
is center at O (neutral) with positive values being more female.

the use of a gender-conveying name is associated
with both higher rates of supportive comments
and unsupportive comments. Our results agree
with those from the small scale study of Feng
et al. (2013) who found that accounts with hu-
man pictures and person-sounding usernames re-
ceive higher social support. Indeed, while several
studies have touted the benefits of anonymity on-
line for discussing sensitive topics (Campbell and
Wright, 2002; Wright, 2002a,b), our results sug-
gest that selecting a gender neutral name may lead
to lower support overall. Our findings also rein-
force the observation that the personal-anonymity
online does not lead to equal support due to cues
about identity (Postmes and Spears, 2002).

Second, the rates of supportive and unsupport-
ive comments are significantly associated with
both kinds of gender performances (i.e., names
and writing style). These results suggest that on-
line audiences are sensitive to both kinds of overt
and implicit gender displays and that even innocu-
ous choices such as gendered usernames can shape
our online interactions.

Third, when gender is performed in together
name and writing, female performances are con-
sistently associated across all three platforms with
higher rates of receiving supportive replies and un-
supportive replies. Note that this trend is seen
in the cumulative effect on support after combin-
ing coefficients for the interactions term with the
coefficients for writing and name. We illustrate
this cumulative effect for two types of gender per-
formances in Reddit, shown as separate axes in
Figure 3. Indeed, when a user has a gendered
username, the cumulative effect of male writing
performance is consistently associated with fewer
supportive replies. In small-scale interpersonal
studies, Abbey et al. (1991) and Barbee et al.
(1993) note men are more likely to receive unsup-
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Figure 3: Cumulative effect of name and writing per-
formances on the log-odds coefficients for receiving
comments of each type in Reddit when the gender is
maximally performed (cf. Table 7), excluding the inter-
cept effect for clarity (& denotes neutral performance).
Positive values (red) denote increased comment fre-
quency and negative values (blue) show decreased fre-
quency. This plot shows that as female performance
becomes more salient (shown bottom to top visually),
such users receive increasingly-higher rates of support-
ive and unsupportive replies in Reddit.

portive comments; however, we did not observe
this disparity in our online setting.

Does the replier’s gender matter? Mickelson
et al. (1995) note that men and women differ in
how they receive support, with the gender com-
position of the interacting pair driving the kind of
supportive behavior. Here, we examine whether
men and women differ in the rates they give sup-
port to one another, using gendered names as a
proxy for identity. Because only Reddit has suffi-
cient data, we construct a mixed-effect regression
model for Reddit using the 4.5M post-reply pairs
where the replier has a high-confidence or neutral
gender and include the replier’s gender as a factor
with interactions for the poster. The results shown
in Table 8 reveal two main conclusions. First, men
and women give supportive comments at different
rates, with women being far more likely to leave
supportive replies and less likely to leave unsup-
portive replies. Second, the interaction terms show
that there is minimal dyadic interaction between
the gender identities of the poster and replier with



SuP. UNSUP.
intercept  —2.391*** —3.107***
P:@name 0.561**  (.288***
P:G'name  0.450***  0.330***
pQE 1.263***  0.290***
R:@name 0.249***  —0.153***
R:name —0.057*** —0.036**
P:Qname AP:Q& 0.914**  0.212**
P:Fname AP:Q(& 0.082 0.131
P:@name AR:@Qname —0.103*** —0.037
P:name AR:@name —0.033 0.026
P:@name AR:G"name —0.004 0.036*
P:name AR:C'name  0.031*  —0.003
PR AR@Qname 0209  —0.202
PR AR:GFname —0.331** —0.228*
P:Qname AP:Q AR:Q@name —0.343 0.376
P:Qname AP:Q AR:Cname  0.329 0.312
P:Fname AP:Q(& AR:@name  0.067 0.178
P:Fname AP: Q€ AR:Gname  0.024 0.203

Table 8: Regression coefficients for Reddit when the
gender identity of the replier is known. The post au-
thor’s identity is denoted with a P and replier’s with R.

respect to rates of giving supportive or unsupport-
ive comments. We only observe significant inter-
actions indicating (1) replying users with female
names are less likely to leave supportive replies to
posting users with female names and (2) replying
users with male names are i) more likely to leave
supportive replies to other users with male names,
ii) less likely to leave supportive comments if the
writing appears more female, iii) more likely to
leave unsupportive comments if the posters name
is female, and iv) less likely to leave unsupportive
comments if the writing appears more female.

Limitations The observations of our study should
still be viewed within its practical limitations, of
which we note two. First, in examining the content
of replies, we do not control for potential direct
or indirect requests for help in text that may ulti-
mately affect the rates of support. This issue could
be a potential confound, as the cultural norms
for masculinity often promote self reliance (Ad-
dis and Mabhalik, 2003), ultimately leading to gen-
dered differences in requests. Second, this obser-
vational study cannot establish causality between
gender displays and support; while the disparity is
real, exogenous factors could potentially explain
the disparity without finding gender displays as a
cause, though the mixed effects still control for
some contextual variability in the different sup-
port frequencies across communities. In spite of
these limitations, we view this work as an impor-
tant first step for demonstrating gender disparity in
support—both positive and negative—and inviting
future work to establish a causal explanation.
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7 Ethical Considerations

The use of gender as a variable in NLP requires
that we also discuss ethical considerations result-
ing from this work, as it directly relates to identity
and the dignity of persons being studied. Follow-
ing the guidelines of Larson (2017) for using gen-
der in NLP, our use of gender is intentional and
central to this study on gender disparities in re-
ceived support. We base our notion of gender as
one of linguistic performance (DeFrancisco et al.,
2013), in which individuals adapt their style and
name to emphasize or de-emphasize certain as-
pects of their gender identity (Eckert, 2008). Ac-
cordingly, we have opted represent gender per-
formance along a graded scale, though we recog-
nize that this representation does not capture non-
binary gender identities.

The gender inference methods introduced here
raise ethical considerations as they ultimately en-
able automatic identification of gender for any
person on the basis of name or writing (Hamidi
et al., 2018). Such technology could be used to
unfairly identify and target persons of either gen-
der for malicious behavior or may harm through
misgendering individuals. Ultimately, we decided
that such risk was acceptable given the positive
impact of our study on revealing gender dispar-
ity. We hope to also use our method to bet-
ter support privacy-preserving behavior (Allen and
Wiles, 2016; Reddy and Knight, 2016) by help-
ing individuals identify and change names or state-
ments that would indicate a particular gender. Fur-
ther, we hope that when used in combination with
our support classifier and a larger context of gen-
dered interactions (Voigt et al., 2018), these tech-
nologies can identify healthy communities that are
supportive of all people.

8 Conclusion

Individuals use social media to support their in-
formational and emotional needs. Our study has
shown wide-spread disparity in the levels of sup-
port individuals receive on the basis of their per-
ceived gender. Our results were made possible
through the development of a new massive 102M
post-reply dataset tagged with high-salience and
neutral gender and the introduction of a new task,
annotated dataset, and model for classifying sup-
portive messages. All data, code, and annota-
tion guidelines are publicly released at https:
//github.com/davidjurgens/support.
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Abstract

Gang-involved youth in cities such as Chicago
have increasingly turned to social media to
post about their experiences and intents online.
In some situations, when they experience the
loss of a loved one, their online expression of
emotion may evolve into aggression towards
rival gangs and ultimately into real-world vio-
lence. In this paper, we present a novel system
for detecting Aggression and Loss in social
media. Our system features the use of domain-
specific resources automatically derived from
a large unlabeled corpus, and contextual repre-
sentations of the emotional and semantic con-
tent of the user’s recent tweets as well as their
interactions with other users. Incorporating
context in our Convolutional Neural Network
(CNN) leads to a significant improvement.

1 Introduction

In cities such as Chicago, gang-involved youth
have increasingly turned to social media to post
about their experience, often expressing grief when
friends or family members are shot and killed. As
grief turns to anger, their posts turn to retribution
and ultimately to plans for revenge (Patton et al.,
2018b). Research in this space has shown that on-
line posts often affect life in the real world (Moule
et al., 2013; Patton et al., 2013; Pyrooz et al., 2015;
Patton et al., 2016, 2017a). In some communities,
violence outreach workers manually scour online
spaces to identify such possibilities and intervene
to diffuse situations. A tool that identifies Aggres-
sion or Loss posts could help them filter irrelevant
posts, but resources to develop a tool like this are
scarce.

In this paper, we present automatic approaches
for constructing resources and context features in
this domain, and apply them to detecting Aggres-
sion and Loss in the social media posts of gang-
involved youth in Chicago. We exploit both a small
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labeled dataset (4,936 posts) and a much larger
unlabeled dataset (approximately 1 million posts),
which we constructed using a method that enabled
us to gather Twitter posts representative of the com-
munity we study. We incorporate our approaches
into a CNN system, as well as a Support Vector
Machine (SVM) to match the architecture of prior
work, thus enabling analysis of the impact in differ-
ent frameworks'.

Key features of our system are the use of domain-
specific word embeddings and a lexicon automat-
ically induced from our unlabeled dataset. When
classifying an individual tweet, our system consid-
ers the content and emotional impact of the tweets
in the author’s recent history. If applicable, our sys-
tem additionally takes into account a model of the
pairwise interactions between the author and other
users in the tweet referenced via either retweet or
mention.

We compare our approaches with previous work
that used a smaller dataset (800 tweets) and hand-
curated resources with an SVM (Blevins et al.,
2016). By integrating our induced domain-specific
and context information in a CNN, we achieve a
significant increase over their reported results.

Our contributions include:

e A new labeled dataset, six times larger than
that of prior work;

e Domain-specific resources, automatically in-
duced from our constructed unlabeled dataset;

e Context features that capture semantic and
emotion content in the user’s recent posts as

'"We will make tweet IDs for the data available to re-
searchers who sign an MOU specifying their intended use
of the data and their agreement with our ethical guidelines.
Contact Serina Chang (sc3003 @columbia.edu) or Kathleen
McKeown (kathy @cs.columbia.edu). Our code is available at
https://github.com/serinachang5/contextifier.

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 46—-56
Brussels, Belgium, October 31 - November 4, 2018. (©2018 Association for Computational Linguistics



well as their interactions with other users in
the dataset.

Our approach brings us one step closer to build-
ing a useful tool that can help reduce gang violence
in urban neighborhoods. In the remainder of the
paper, we present related work, the dataset that we
used, and our methodology. We conclude with an
error analysis and a discussion of the impact of our
contributions.

2 Related Work

Researchers have begun to explore how online data
can be used to help prevent gun violence. Pavlick
et al. 2016 are creating the Gun Violence Data
Base by crowdsourcing annotations on newspaper
articles that report on gun violence, labeling the
sections of text that report on incidents, the shooter,
and the victim. Researchers have also explored
identifying deaths from police shootings with semi-
supervised methods for both CNNs and logistic
regression (Keith et al., 2017) and found that logis-
tic regression using a soft-labeling approach gave
the best results. Researchers studying gun control
issues analyzed social media for posts related to any
issue around guns in the year following the Sandy
Hook elementary school shooting (Benton et al.,
2016) and argued that online media can be used to
understand trends in gun violence and gun-related
behaviors (Ayers et al., 2016).

Closely related research aims to automatically
identify gang members’ Twitter profiles (Bala-
suriya et al., 2016). After collecting profiles using
bootstrapping, they trained different classifiers on
the tweets and meta-information about the authors.
Further research analyzes the social networks of
gangs (Radil et al., 2010) and predicts gang affil-
iation based on the analysis of graffiti style fea-
tures (Piergallini et al., 2014).

The most relevant work in automatically analyz-
ing social media posts by gang-involved youth is
that of Blevins et al. 2016. The labeled dataset
that Blevins and collaborators used is extremely
challenging, in part due to its size, but also because
it contains text in a particular dialect of English —
African American English (AAE) — which has very
little core NLP tool support. Other research investi-
gating the development of tools for understanding
AAE in social media (Blodgett et al., 2016) shows
that existing tools (e.g., dependency parsers) per-
form poorly on this language. Previous work by
Patton on a subset of our dataset notes that due
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to the linguistic style, tweets from gang-involved
youth in Chicago can be challenging for outsiders
to interpret and thus are often open to misinterpre-
tation and potential criminalization (Patton et al.,
2017b).

The challenges of interpreting our data are fur-
ther compounded by the usual difficulties with Twit-
ter data. Twitter data is sometimes handled by
translating it to Standard American English (SAE)
through the use of a phrasebook. The NoSlang
Slang Translator (NoSlang, 2018b), and the accom-
panying NoSlang Drug Slang Translator (NoSlang,
2018a), have been used in other tasks to translate
social media communication (Sarker et al., 2016),
(Han and Baldwin, 2011).

To engineer features for an SVM classifier,
Blevins et al. 2016 learned a part-of-speech (POS)
tagger for their data and constructed a word level
translation phrasebook to map emojis and slang
to the Dictionary of Affect in Language (DAL) in
order to identify their emotion.

In contrast to Blevins’ translation approach,
we leverage our large unlabeled dataset to auto-
matically induce resources, such as word embed-
dings, that function well within the domain of our
task. Previous research on domain-specific word
embeddings includes work in cybersecurity (Roy
et al., 2017), disease surveillance (Ghosh et al.,
2016), and construction (Tixier et al., 2016). These
domain-specific word embeddings tend to improve
performance on tasks within that domain.

Context has been used in previous research on
detecting hate speech in social media. Qian et al.
2018 found significant improvements by collecting
the entire history of a user’s tweets and feeding
them to a encoder to create an intra-user represen-
tation, which was used as input to a Bidirectional
LSTM. They also used a representation of tweets
similar to the tweet being classified. While their ap-
proach captures a user profile based on everything
the user has posted, in our approach we investigate
how the recent history of tweets and interactions
with others can improve classification. Others also
make use of a user profile, though not one learned
from unlabeled data (Dadvar et al., 2013).

3 Data

Our dataset consists of two parts: first, a collection
of 4,936 tweets authored or retweeted by Gakirah
Barnes, a powerful female Chicago gang mem-
ber, and her top communicators, as well as ad-



ditional Twitter users in the same demographic,
annotated by social work researchers who have
been studying Gakirah and the associated Chicago
gangs. Second, we use a much larger collection of
approximately one million unlabeled tweets auto-
matically scraped from 279 users in the same so-
cial network. This social network is comprised of
214 users snowball-sampled from Gakirah Barnes’
top 14 communicators. Traditionally, snowball
sampling has been used to recruit hard-to-reach
research subjects (Atkinson and Flint, 2001) and
we have adapted it for social media. The remaining
65 users were added to this network by retaining
those with the highest IQI score 2 from the full list
of Gakirah’s Twitter followers. Our tweets thus
form a representative sample of Twitter dialogue
between youth from Chicago neighborhoods with
high levels of gang activity during that time period.

The social work researchers performed a de-
tailed, qualitative analysis of a subset of the dataset,
with a focus on analyzing how context influences
determination of a label. For example, they note
that an aggressive tweet may reference a previous
event, and will often use coded language to do
so. Since much of the language used in our data
differs significantly from standard American En-
glish, local youth active in similar environments
served as consultants to answer questions about the
language, as they were able to interpret the slang
terms present in these tweets. The social work re-
searchers conducted a fine-grained analysis using
an online tool for annotation, identifying insults,
threats, bragging, hypervigilance and challenges to
authority, all of which were collapsed into a sin-
gle category, Aggression. Posts including distress,
sadness, loneliness and death were collapsed into
the category Loss. The Other category includes
discussion of other aspects of their life, such as
friendships, relationships, drugs, general conver-
sations, and happiness. We developed our system
(as did Blevins et al. 2016) on the collapsed la-
bels, as the task is difficult even with three-way
categorization.

Each tweet in a subset of the entire dataset con-
sisting of 3,000 tweets was reviewed by two differ-
ent annotators. Inter-rater reliability between raters
was tracked, with dissimilar annotations flagged
for further review. Flagged tweets were further
analyzed by the social work researchers, which in-

https://www.brookings.edu/wp-content/

uploads/2016/06/isis_twitter_census_
berger_morgan.pdf
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Table 1: Example tweets

No. Tweet Text Label
1 #FreeDaDommmmm [URL] Loss
Damn juss peeped shorty on
) tha news out here Loss
@USER ..smh..
crazyy.. #RIPShorty
3 I’'m smokin on Dat DMoney Agaress
man Im high as fuck
Lost Ty to Sum Fuck Shit dont
Fuck around wit Fuck rounds n
4 . .. | Loss
u a type of Niggas Ion fuck wit
9100
My bro Mooki thirsty he jus
> wzna sum & v};—ﬂ-" : Aggress

cluded youth from Chicago who currently live in
the same community as, or an adjacent one to, that
in which the deceased Gakirah Barnes resided, to
adjudicate disagreement. Among the set of tweets
coded by two annotators, inter-annotator agreement
on the Aggression class was high even before adju-
dication, with a Cohen’s kappa coefficient of .94;
agreement on the Loss class was somewhat lower,
with a Cohen’s kappa of .83. Examples of labeled
Twitter posts from Gakirah and her followers are
shown in Table 1 3.

In order to mitigate potential issues with training
and test data being drawn from different time peri-
ods or having different distributions of labels, we
shuffled our data and drew stratified samples with
equal distribution across classes for our training,
validation, and test sets for each of the cross vali-
dation folds, using 64%, 16%, and 20% of our data
for each respectively. The Aggression and Loss
classes are relatively small, reflecting their low dis-
tribution in real life: we have only 329 Aggression
tweets and 734 Loss tweets, with the Other class
comprising the remaining 3,873 tweets.

4 Methods

We approach this classification task using a stan-
dard CNN classifier architecture (Kim, 2014; Col-
lobert et al., 2011) as our starting point. We initially
experimented with both character and word level
CNNs s but found the word level to be 1.6 macro-F1

3Qur data was scraped from publicly available posts and
was determined exempt by our organization’s IRB. User names
are replaced with USER in the table, and text has been modi-
fied to render tweets unsearchable.



points better than the character level, so we only
include the word level here. We leveraged the
unlabeled corpora by constructing domain-specific
embeddings and a lexicon that better fit our unique
and low-resource domain. We then integrated our
domain-specific resources into the CNN to repre-
sent the given tweet as well as to represent context
features. Our context features represent a window
of the user’s recent tweets as well as the interac-
tions of the author with other users via references
in their tweets.

4.1 Domain-Specific Resources

We exploited the large unlabeled corpus to build
two domain-specific resources for this task: word
embeddings and a task-specific lexicon.

4.1.1 Word Embeddings

Word embeddings have proven useful in represent-
ing the semantic content of sentences. The seman-
tic representation of a word by its associated em-
bedding, however, depends on its usage in the cor-
pus the embedding was trained on, and so off-the-
shelf word embeddings do not always adapt well
to tasks with a unique domain (Roy et al., 2017),
(Ghosh et al., 2016), (Tixier et al., 2016). Thus,
we were motivated to use our unlabeled corpus
to create domain-specific word embeddings. We
used the Word2Vec (Mikolov et al., 2013) CBOW
model to train the embeddings which is the default
training algorithm available in Gensim *. We used
a window size of 5 words with a minimum word
count of 5 to train w € R3%°, The CBOW model
was trained for 20 epochs.

4.1.2 Computing a Lexicon of Aggression
and Loss

Given the domain-specific nature of our users’ lan-
guage, we could not rely on standard NLP lexicons
to represent emotion in their tweets. For our task,
the two emotions of interest are Aggression and
Loss. Previous work (Blevins et al., 2016) used a
phrasebook to translate the domain-specific words
of their corpus to Standard American English so
that they could access emotion in the Dictionary of
Affect in Language (DAL) (Whissell, 2009), but
this approach does not generalize to capture new
words.

We therefore adapted the SENTPROP algorithm
(Hamilton et al., 2016) to automatically induce a

*nttps://radimrehurek.com/gensim/
models/word2vec.html
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lexicon of Aggression and Loss from our unlabeled
corpus. The SENTPROP algorithm constructs a
lexical graph out of the word embeddings, then
propagates labels from the seed sets over the un-
labeled nodes via a random walk method. The
resulting output for each word indicates the proba-
bility of a random walk from the seed set landing
on that node. We chose SENTPROP as an induc-
tion method because it performs especially well for
domain-specific corpora, and it is resource-light
and interpretable.

We created word embeddings by employing an
SVD-based method that was reported by the SENT-
PROP authors to perform optimally with their algo-
rithm. We first constructed the positive point-wise
mutual information matrix, MPPMI gver the unla-
beled corpus, then computed singular value decom-
position (SVD) to derive MPPMI - ISV, The
word embedding for word w; was thus given by Uj,
truncated to a standard length of dimension 300.
To construct our seed sets, we asked our annotators
to consider words for Loss and Aggression which
they associated most strongly with each class. They
generated a set of 29 words for Aggression and a
set of 40 words for Loss, which we include in our
appendix.

We ran SENTPROP with our SVD-based em-
beddings and the seed sets from our annotators.
We used the output probabilities from the random
walks to map words to their association with Ag-
gression and Loss, thus forming our lexicon of
Aggression and Loss. Finally, we scaled the proba-
bilities per class to mean 0 and variance 1.

4.2 Context Features

Our context features utilize the domain-specific re-
sources that we induced from the unlabeled corpora.
To capture context, we first considered the author’s
recent history, separately exploring representations
by our domain-specific word embeddings and by
the SENTPROP lexicon (SPLex). If applicable, we
also considered the interactions between the author
and other users who were referenced in the tweet,
either via retweet or mention.

4.2.1 User History

To obtain the user’s recent history, we ordered all
the tweets chronologically and bucketed them by
author. Thus, for any given tweet occurring at
time t, a;, we were able to retrieve previous tweets
a¢—1,a¢—2, ... by that user. We treated recent his-
tory as a sliding window and fetched tweets within



the past d days from when the current tweet was
tweeted, such that recent history tweets would be
the set {a¢—1,...,a;_x}, where t — k < d.

To represent the tweets within the context of
recent history, we first combined word level rep-
resentations into tweet level, then tweet level rep-
resentations into context level. At each stage of
combination, we tried both summing and averag-
ing. Thus, our recent history representations were
built by aggregating either word embeddings or
SPLex scores, which maintained their dimensional-
ity of 300 or 2, respectively.

We also considered three types of tweets that
would be relevant to a user. The user’s own
tweets (SELF) would always be relevant; we ex-
perimented with also including tweets where the
user was retweeted (RETWEET) and tweets where
the user was mentioned (MENTION). We included
these parameters as additional sources of context
because a user’s tweet may be a response to a recent
mention or retweet from another user.

We also experimented with weighting the most
recent tweets more heavily than further tweets
within the recent history window. This became
especially important when we experimented with
larger windows of a month or more, since tweets
from a few days ago are more likely to be related
to the current tweet than tweets from a few weeks
ago. To model this diminishing relevance, we intro-
duced a weighting protocol with a variable half-life
where weights decay exponentially over time. The
parameter we tuned was the half-life ratio r, which
is the proportion of the window size d that cor-
responds to the window’s half-life. Then, before
combining tweet level representations into context
level, we multiplied each tweet representation b;
by its weight, 27%, where At = ¢ — i is the dis-
tance in days between the context tweet a; and the
current tweet a;, and f = d * r is the half life.

4.2.2 User Interactions

As an additional context feature, we modeled the
pairwise interactions between users. To identify
interactions, we iterated through our unlabeled and
labeled corpora and checked which users were in-
volved in each tweet. We counted a user as in-
volved in a tweet if they posted the tweet or were
referenced via retweet or mention. For each pair
of users, we aggregated all their tweets of mutual
involvement into one document and averaged the
document’s word embeddings to create a represen-
tation of their pairwise interactions in R3%,
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5 Experiments

We experimented with the efficacy of our domain-
specific resources, the impact of different context
parameters, and the contribution of context to pre-
dicting Aggression and Loss.

5.1 Corpus pre-processing

For word level models, we preprocess each tweet
by: i) lowercasing every character, ii) replacing ev-
ery user mention and url with special tokens “user”
and “url”, iii) considering each emoji an individual
token, whether space separated or not, and iv) re-
moving emoji modifiers to reduce sparsity, just as
we used lowercasing. We select the top 40K to-
kens based on frequency, replacing the remaining
tokens with “UNKNOWN”. We zero-pad or trim
tweets so that tweet length will be 50 when passed
to our CNN model. Similarly, we only consider
users who occur (as author, source of retweet, or
in mention) in the labeled and unlabeled corpus at
least twice, resulting in 35,656 users in total.

We extract the author of the tweets from meta-
data, and user mentions and original posters of
retweets from the Twitter text, based on their Twit-
ter display name. We used Twitter display name
rather than user ID because we cannot collect user
ID for interaction features.

5.2 CNN Architecture

For this 3-way classification task, we train two
models; the first model predicts whether a tweet
has the Aggression label and the second predicts
for Loss. Each model maps a sequence of tokens
to a probability value for a class. Here we define
the architecture of our CNN model. Our input c is
a token index sequence of length 50. We map each
token index to a vector € R3% with a trainable
embedding matrix, followed by dropout 0.5. We
apply a 1D Convolutional layer with kernel sizes 1
and 2, filter size 200 each, to the embedded token
sequence, followed by ReL.U activation, max pool-
ing and dropout 0.5. We concatenate the output of
max pooling for kernel sizes 1 and 2, stack another
dense layer h with dimension 256, and connect
the output of A to the final single output unit with
sigmoid activation.

In the prediction phase, for each data point, we
classify it as Aggression if the the first model pro-
duces the probability score above threshold ¢ 4. If
it is not predicted as Aggression, then we classify it
as Loss if the second model produces a score above



a threshold ¢,. The remaining tweets are classified
as Other. t 4 and ¢, are tuned on the validation set.

We incorporate context information into the neu-
ral network in the following way. Each type of
context feature takes the form of a real vector: both
word embedding user history and word embedding
user interaction features are in R3%C, and SPLex
user history features are in R?. We concatenate
these feature vectors with the last layer i before
the final classification output.

5.3 SVM Baseline

We used as our baseline method a linear-kernel
SVM classifier as used by Blevins et al. 2016. We
obtained code from the authors and trained on our
larger dataset. In this method, after basic pre-
processing is performed to replace urls and user
mentions with special tokens, unigram, bigram,
part-of-speech tag, and emotion features are ex-
tracted. Feature selection is performed to prune
the feature space. The part-of-speech tagger used
in Blevins et al. 2016 was developed for use on
this domain; emotion features are computed using
scores for each tweet word taken from the Dictio-
nary of Affect in Language (DAL). We performed
gridsearch to re-tune the loss function, the regu-
larization penalty type, and the penalty parameter
C, but found that the original settings for these
parameters still performed best even on our new
development set. We also tuned the class weights
used: while the model performed best on the orig-
inal data with balanced class weights, we found
that less extreme balancing performed better here
(weights 2, 1, and 0.12 for Aggression, Loss, and
Other, respectively).

While we retrained the SVM on our new training
set, we did not modify the additional components
used for feature selection such as the phrase table or
the specialized part-of-speech tagger, as we had no
additional data available for this. This indicates the
difficulty of generalizing to new data with unseen
vocabulary, and is one of the disadvantages of using
manually-created specialized feature sets such as
these.

5.4 Domain Experiments

In order to test the efficacy of our domain-specific
word embeddings, we compared them with a num-
ber of other embedding types. Our baseline method
was Pennington et al. 2014’s GloVe embeddings
pretrained on a general Twitter dataset, available
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from their website®. We trained a parallel set of
word embeddings on the African American En-
glish (AAE) corpus of around 1.1 million tweets
provided by Blodgett et al. 2016, and another set on
a corpus of a location-specific set of tweets that we
scraped, drawn from users who posted from a spe-
cific area within the South Side of Chicago where
the gangs we study are based. We also compared
performance with a randomly initialized word em-
bedding matrix.

5.5 Context Experiments

We first explored the impact of the user history
parameters, tuning them separately for represen-
tations by our domain-specific word embeddings
and by SPLex. We kept these representations sepa-
rate because we expected them to capture different
types of context: word embeddings should capture
the semantic content of the user’s history, while
SPLex scores should capture something closer to
the user’s emotional state leading up to the tweet.

With each representation, we experimented with
summing versus averaging word embeddings to
yield a tweet level representation, and similarly
experimented with summing and averaging from
tweet embeddings to context level representations.
We varied the size of the context window, d, trying
2 days, 1 week, 1 month, 2 months, and 3 months.
We also varied the half-life ratio, r = .25, .5, .75, or
no weighting. Lastly, we tried including different
types of posts in the user history.

Once we tuned the user history parameters, we
experimented with adding our context features
(user history and user interactions) to the best tweet
level model we could achieve without context. For
our CNN, our best tweet level model used our
domain-specific word embeddings as pretrained
weights for the embedding layer (CNN-DS in Ta-
ble 3). To evaluate the impact of our resources
in different frameworks, we additionally experi-
mented with the contribution of context in an SVM.
The best tweet level SVM included the averaged
domain-specific word embeddings and summed
SPLex scores of the tokens in the tweet (SVM-DS).

6 Results and Discussion

We report results comparing different embeddings
and comparing parameters for context. We use the
best results from these experiments to produce our

Shttps://nlp.stanford.edu/projects/
glove/



Figure 1: Diagram of our steps to generate domain-specific and context features for our neural net system.
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final systems in the SVM and CNN frameworks.
The best resulting architecture for the CNN frame-

work is illustrated in Fig. 1.

6.1 Comparison of Embeddings

Experiments were performed using five-fold cross-
validation over the labeled data and were repeated
five times for each fold to account for variance
between runs. Reported F-scores, shown in Table
2, are averaged across runs and across folds.

Word embeddings trained on our unlabeled cor-
pus outperformed other embeddings by over 4
points. Related datasets such as the location-
specific or AAE corpus did not provide helpful
semantic information, as their embeddings did not
even beat random initialization. This was not an
effect of corpus size, since these corpora contained
800,000 and 1.1 million tweets, respectively, com-
pared to the 1 million in our unlabeled corpus.
Thus, we attribute the difference to the importance
of deriving embeddings directly from our commu-
nity of interest, demonstrating that the language
of our community is more specific than AAE in
general and that our snowballing method was able
to capture a better representation of user language
than a location driven method.

6.2 User History Parameters

Experiments were performed using five-fold cross-
validation and F-scores computed as in the word
embedding experiments. We found that user history

weighted average of embeddings / scores Prediction

Table 2: Results comparing different embeddings with
CNN. GN refers to Google News, LS to location spe-
cific embeddings, GT to Glove Twitter embeddings,
and DS to our domain specific embeddings. A, L and
O refer to Aggression, Loss, and Other respectively.

Embeddings Fl Macro
Type F1
A L o
GN 279 ] 66.6 | 86.9 | 60.5
AAE 2731 69.8 | 86.5 | 61.2
LS 313 | 683 | 879 | 625
Random Init. | 29.3 | 70.5 | 88.9 | 62.9
GT 29.0 | 71.1 | 89.0 | 63.0
DS 379 | 734 | 90.3 | 67.20

represented by domain-specific word embeddings
performed optimally when we averaged from word
to tweet level and from tweet to context level. The
best window size was d = 90 days, including only
SELF posts, and using a half-life ratio of » = 0.25.
For user history represented by SPLex, we found
the best method of combination to be summing, at
both the word and tweet level. We hypothesize this
is because summing captures not only the presence
but also the number or density of highly indicative
Aggression or Loss words posted by the user over
the context window. The best window size was
d = 2 days, including both SELF and RETWEET
posts, without half-life weighting.

Our approach was designed to implement and
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Table 3: Comparison of different models. The below pairs of algorithms achieve statistical significance p < 0.002
for each class (the higher performing algorithm comes first): i) CNN-Context vs. CNN-DS; ii) CNN-DS vs. SVM-
Retrained; iii) SVM-Context vs. SVM-DS. SVM-Context outperforms SVM-Retrained in the Aggression class by

a robust margin (5 points).

Model Aggression Loss Other Macro F1
P R F P R F P R F
SVM-Retrained(baseline) | 36.4 | 31.3 | 33.7 | 73.7 | 68.8 | 71.2 | 89.8 | 92.0 | 90.9 65.3
SVM-DS 3241389 | 354|669 | 729 | 69.8 | 90.8 | 87.7 | 89.2 64.8
SVM-Context 35.0 | 43.7 | 38.8 | 68.6 | 740 | 71.2 | 91.6 | 88.2 | 89.9 66.6
CNN-DS 357 | 41.1 | 38.2 | 789 | 70.3 | 743 | 90.7 | 91.4 | 91.0 67.9
CNN-Context 383 | 464 | 42.0 | 78.8 | 73.2 | 759 | 91.3 | 91.7 | 91.5 69.8

test previous insights about the domain, particu-
larly that context plays a role in the interpretation
of posts. The short time frame for SPLex user
history corresponds with the 2 day window found
in Patton et al. 2018b’s research and reflects the
fact that emotional states may fluctuate often and
within a certain number of days. In contrast, word
embeddings improved consistently as we extended
the context window from 2 days to 90 days. Since
word embedding user history is meant to capture
the user’s semantics, a larger window size means
the representation can be drawn from more tweets,
and thus reflects a more representative sample of
the user’s semantics around this time period.

6.3 Comparison of Best Systems

To develop a more stable measurement of com-
parison between different systems, we create four
independent sets of 5-fold cross validation splits
on our data set (altogether 20 folds); to account for
randomness in neural net training, we train each
neural net model 5 times and take the majority vote
of the predictions. For each class, we calculate
the statistical significance of F-score based on the
predictions on the concatenated test sets of all 20
folds using the Approximate Randomization Test
(Riezler and Maxwell 2005) with the Bonferroni
correction for multiple comparisons. Results are
shown in Table 3.

Adding context contributed to a significant im-
provement in both the CNN and SVM frameworks,
demonstrating the independent value of our con-
text features over domain-specific resources. For
contrast, we also compared our context features
with user profiles built from averaging the word
embeddings in all of the user’s tweets. Our pair-
wise and user history features outperformed user
profiles by .7 points, demonstrating that it is valu-
able to provide dynamic representations of users

that can adjust to their recent posts or their interac-
tions with other users, as opposed to stereotyping
their overall behavior.

Additionally, we compare the impact of our
domain-specific resources to those used by Blevins
etal. (2016). In particular, we expect that their emo-
tion scores will not generalize to the new vocabu-
lary in our large unlabeled corpus (see Section 4.1).
Our domain-specific resources alone without con-
text raise our SVM to comparable performance
with the Blevins et al. retrained baseline, and the
resources push our CNN without context over this
baseline. This demonstrates that our automatic
methods can do as well as if not better than phrase-
book methods, and they are significantly more effi-
cient to generate.

7 Error Analysis

In this section we provide an analysis of the trade-
offs of each classifier by analyzing some of the
examples in Table 1.

Context vs non-context CNN. Our best CNN
- a system which incorporated context - was able
to correctly predict tweets 3 and 4, whereas our
baseline using only our pretrained Word2Vec em-
beddings was not. Correctly classifying tweet 4
relies on the knowledge that the referenced user,
DMoney, is a deceased member of a rival gang of
the poster. In tweet 3, the poster is saying that he
has seen Gakirah’s death on the news; this is an
expression of loss.

Domain-specific vocabulary. Our CNN trained
on domain-specific word embeddings is able to
correctly classify tweet 5, while the one trained
on Twitter word embeddings did not pick up the
aggressive content. This user is talking about how
their friend is ready to kill someone. This tweet
contains the word thirsty but in this domain-specific
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context it means being ready and having an urge
(although it would not always refer to killing).

Hashtags and character sequences. Despite
their strengths, both our best CNN and our best
SVM classifiers were still unable to correctly clas-
sify some of the trickier cases. There were certain
types of tweets they were categorically unable to
recognize: tweet 1 features a hashtag that refers
to an incarcerated acquaintance of the poster, but
as both our CNN and SVM models operate at the
word level, this tag would have appeared simply as
a rare or unknown token to them.

Anger miscategorized as Aggression. At
times, the classifier categorized posts that express
anger as Aggression. For example, in tweet 4 the
author uses profanity to express grief related to the
loss of a friend. In addition, the devil face emoji,
which is sometimes used to express aggression, is
also used in the context of anger. While the best
CNN model managed to correctly predict this as
Loss, the SVM miscategorized it as Aggression.

8 [Ethics

Our ethics guidelines include just treatment of the
users who provide our data, removal of identifying
information for publication, and the inclusion of
Chicago-based community members as domain ex-
perts in the analysis and validation of our findings.

There are risks involved with detecting Aggres-
sion and Loss in social media data using automatic
detection systems. These risks include possible
misidentifications of tweets, increased police in-
volvement, and loss of privacy, which all have the
potential to harm marginalized communities and
people. Our mitigation strategies begin by part-
nering with violence prevention organizations and
incorporating domain experts (Frey et al., 2018) to
ensure the highest ethical standards for interpret-
ing social media posts and for the dissemination
and use of our research for violence prevention.
Through insights gained from these partnerships,
we developed our own risk mitigation strategies:
de-identifying each tweet and rendering it unsearch-
able through textual modification without altering
meaning; encrypting our social media corpus to
protect user identities; and relying on violence pre-
vention organizations’ expertise in deciding if and
when to involve law enforcement to prevent the
unethical use of our data (e.g., hyper-surveillance
of communities of color).
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9 Conclusion and Future Work

Our approach shows that integrating emotions and
semantic content of a user’s recent posts is an
important component for the task of predicting
Aggression and Loss in social media posts of
gang-involved youth. Furthermore, using domain-
specific embeddings and an Aggression-Loss lexi-
con induced from a corpus of language constructed
to represent our specific community of users is
also critical to success. Our experiments reveal
that our snowballing technique is more effective
than a location based approach and that fitting our
community is more complex than resorting to their
demographic, as captured in the AAE corpus of
Blodgett et al. (2016).

Our work has real life implications for the use of
machine learning to identify unique characteristics
in social media data that may indicate the process
by which gun violence may occur (Patton et al.,
2018a). Our partnership between computer scien-
tists, social work researchers and practitioners has
advanced plans to create applications to help out-
reach workers in Chicago identify factors related
to potential violence, potentially allowing them to
prevent and intervene in aggressive online activity.
The tool, which would be co-created with commu-
nity stakeholders, would enable quick scanning of
large quantities of social media posts that outreach
workers would be unable to perform manually.

We expect our methods to be generalizable be-
cause we compute embeddings and lexicons from
neighborhood-specific data and do not rely on large,
hand-crafted resources such as dictionaries. How-
ever, we hope to test generalizability in future work
by applying our methods to other gang-related cor-
pora, because there is variation in language, local
concepts, and behavior across gangs. In the future,
we are also interested in further experimenting with
the context features introduced in this work; for
instance, by extending our pairwise interaction fea-
tures to take into account direction between users.
Finally, we intend to explore other types of context,
such as reference to specific events that may trigger
the emotions of either Aggression or Loss.
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Abstract

Comprehending procedural text, e.g., a para-
graph describing photosynthesis, requires
modeling actions and the state changes they
produce, so that questions about entities at dif-
ferent timepoints can be answered. Although
several recent systems have shown impressive
progress in this task, their predictions can be
globally inconsistent or highly improbable. In
this paper, we show how the predicted effects
of actions in the context of a paragraph can
be improved in two ways: (1) by incorporat-
ing global, commonsense constraints (e.g., a
non-existent entity cannot be destroyed), and
(2) by biasing reading with preferences from
large-scale corpora (e.g., trees rarely move).
Unlike earlier methods, we treat the problem
as a neural structured prediction task, allow-
ing hard and soft constraints to steer the model
away from unlikely predictions. We show that
the new model significantly outperforms ear-
lier systems on a benchmark dataset for proce-
dural text comprehension (+8% relative gain),
and that it also avoids some of the nonsensical
predictions that earlier systems make.

1 Introduction

Procedural text is ubiquitous (e.g., scientific proto-
cols, news articles, how-to guides, recipes), but is
challenging to comprehend because of the dynamic
nature of the world being described. Comprehend-
ing such text requires a model of the actions de-
scribed in the text and the state changes they pro-
duce, so that questions about the states of entities
at different timepoints can be answered (Bosselut
et al., 2018).

Despite these challenges, substantial progress
has been made recently in this task. Recent work
—such as EntNet (Henaff et al., 2017), QRN (Seo
et al., 2017b), ProLocal/ProGlobal (Dalvi et al.,

*Niket Tandon and Bhavana Dalvi Mishra contributed
equally to this work.
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Procedural Text:

How hydroelectric electricity is generated:
1 Water flows downwards thanks to gravity.

2 The moving water spins the turbines in the
power plant.

3 The turbines turn the generators.

4 The generators spin, and produce electricity.

Prior Neural Model’s Predictions:
(1) water moves from the water to gravity

(2) the turbine moves
from the water to the power plant

(4) electricity is created at the generator

Figure 1: Poor predictions (in red) made by a prior neu-
ral model (ProGlobal) applied to an (abbreviated) para-
graph from the ProPara dataset. ProGlobal predicts en-
tity locations at each sentence, but the implied move-
ments violate commonsense constraints (e.g., an object
cannot move from itself (1)) and corpus-based prefer-
ences (e.g., it is rare to see turbines move (2)).

2018), and NPN (Bosselut et al., 2018) — has fo-
cused on learning to predict individual entity states
at various points in the text, thereby approximating
the underlying dynamics of the world. However,
while these models can learn to make local pre-
dictions with fair accuracy, their results are often
globally unlikely or inconsistent. For example, in
Figure 1, the neural ProGlobal model from Dalvi
et al. (2018) learns to predict the impossible ac-
tion of an object moving from itself (1), and the
unlikely action of a turbine changing location (2).
We observe similar mistakes in other neural mod-
els, indicating that these models have little notion
of global consistency. Unsurprisingly, mistakes
in local predictions compound as the process be-
comes longer, further reducing the plausibility of
the overall result.
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To address this challenge, we treat process com-
prehension as a structured prediction task and ap-
ply hard and soft constraints during reading. Dur-
ing training, our model, called PrRoSTruUCT, learns
to search for the most likely action sequence that
is consistent with global constraints (e.g., entities
cannot be destroyed after they have already been
destroyed) and priors from background knowledge
(e.g., turbines rarely change location). The model is
trained end-to-end, with gradients backpropagating
through the search path. We find that this approach
significantly outperforms existing approaches on
a benchmark dataset for process comprehension,
mainly by avoiding the nonsensical predictions that
earlier systems make.

Our contributions are twofold. First, we reformu-
late procedural text comprehension in a novel way:
as a (neural) structured prediction task. This lets
hard and soft constraints steer the model away from
unlikely and nonsensical predictions. Second, we
present a novel, end-to-end model that integrates
these constraints and achieves state-of-the-art per-
formance on an existing process comprehension
dataset (Dalvi et al., 2018).

2 Related Work

Our work builds off a recent body of work that fo-
cuses on using neural networks to explicitly track
the states of entities while reading long texts. These
works have focused on answering simple common-
sense questions (Henaff et al., 2017), tracking en-
tity states in scientific processes (Dalvi et al., 2018;
Clark et al., 2018), tracking ingredients in cooking
recipes (Bosselut et al., 2018), and tracking the
emotional reactions and motivations of characters
in simple stories (Rashkin et al., 2018). Our work
extends these methods and addresses their most
common issues by using background knowledge
about entities to prune the set of state changes they
can experience as the model reads new text.

Prior to these neural approaches, some earlier
systems for process comprehension did make use
of world knowledge, and motivated this work. Like
us, the system ProRead (Berant et al., 2014; Scaria
et al., 2013) also treated process comprehension as
structure prediction, using an Integer Linear Pro-
gramming (ILP) formalism to enforce global con-
straints (e.g., if the result of eventl is the agent of
event2, then event] must enable event2). Similarly,
Kiddon et al. (2015) used corpus-based priors to
guide extraction of an “action graph” from recipes.
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Our work here can viewed as incorporating these
approaches within the neural paradigm.

Neural methods for structure prediction have
been used extensively in other areas of NLP, and we
leverage these methods here. In particular we use
a neural encoder-decoder architecture with beam
search decoding, representative of several current
state-of-the-art systems (Bahdanau et al., 2014;
Wiseman and Rush, 2016; Vinyals et al., 2015). As
our model’s only supervision signal comes from
the final prediction (of state changes), our work is
similar to previous work in semantic parsing that
extracts structured outputs from text with no inter-
mediate supervision (Krishnamurthy et al., 2017).

State tracking also appears in other areas of Al,
such as dialog. A typical dialog state tracking task
(e.g., the DSTC competitions) involves gradually
uncovering the user’s state (e.g., their constraints,
preferences, and goals for booking a restaurant),
until an answer can be provided. Although this
context is somewhat different (the primary goal
being state discovery from weak dialog evidence),
state tracking techniques originally designed for
procedural text have been successfully applied in
this context also (Liu and Perez, 2017).

Finally, our model learns to search over the best
candidate structures using hard constraints and soft
KB priors. Previous work in Neural Machine Trans-
lation (NMT) has used sets of example-specific lex-
ical constraints in beam search decoding to only
produce translations that satisfy every constraint in
the set (Hokamp and Liu, 2017). In contrast, our
work uses a set of global example-free constraints
to prune the set of possible paths the search algo-
rithm can explore. Simultaneously, a recent body
of work has explored encoding soft constraints as
an additional loss term in the training objective for
dialogue (Wen et al., 2015), machine translation
(Tu et al., 2016), and recipe generation (Kiddon
et al., 2016). Our work instead uses soft constraints
to re-rank candidate structures and is not directly
encoded in the loss function.

3 Problem Definition

We first define the general task that we are ad-
dressing, before presenting our approach.

3.1 General Formulation

‘We define the task as follows. Given:

e A paragraph of procedural text S = an or-
dered set of sentences {si, ..., s7} describing



Participants:
turbine  electricity
power plant -

Paragraph (seq. of steps): water

state0
Water flows downwards Time
thanks to gravity

state1
The moving water spins the
turbines in the power plant

state2

power plant -

turbine power plant -
The turbines turn
generators

state3
The generators spin, and
produce electricity

turbine power plant -

state4 turbine power plant generator

Figure 2: How the (simplified) paragraph in Figure 1
is annotated in ProPara. Each filled row shows the lo-
cation of entities between each step (“?” denotes “un-
known”, “-”” denotes “does not exist”). For example, in
the last line (state4), the water is at the turbine.

a sequence of actions' about a given topic (a
word or phrase).

o A set of entities E = {¢;} representing the en-
tities mentioned in the procedure or process.
Each entity e; is denoted by the set of its men-
tions in the paragraph, e.g., {leaf, leaves}

o A set of properties P = {p;} of entities to be
tracked (e.g., location, existence)

predict:

o The state of each entity e; after each sentence
sk, where an entity’s state is the values of all
its properties {px}. For example, in Figure 2,
the state of the water after step 2 is {loca-
tion(water) = turbine; exists(water) = true}.

This task definition covers the tasks used in earlier
procedural text comprehension datasets. In bAbI
tasks 1-3, a single propert (location) was tracked
for a single entity throughout a paragraph (Weston
et al., 2015). In the state tracking task of Bosselut
et al. (2018), six properties (temperature, shape,
etc.) were tracked for each ingredient in the recipe.

3.2 Data

In our work, we use the ProPara dataset (Dalvi
et al., 2018) for both illustration and evalution.
ProPara contains 488 paragraphs (3100 sentences)
of a particular genre of procedural text, namely sci-
ence processes (e.g., how hydroelectricity is gen-
erated). The dataset tracks two entity properties,
existence and location, for all entities involved in
each process, resulting in 81,000 annotations in the
mad definition of action to mean any event that

changes the state of the world (including non-volitional events
such as roots absorbing water).
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dataset. Figure 2 gives a (simplified) example of
the data, visualized as an (entity x sentence) grid,
where each column tracks a different entity (time
progressing vertically downwards), and each row
denotes the entities’ state (existence and location)
after each sentence. To evaluate the predictions,
a set of templated questions whose answers can
be computed from the predictions is posed (e.g.,
“What was destroyed, when and where?”).

4 Model

We now describe our model, called PRoSTRUCT.

4.1 Overview

We approach the task by predicting the state
changes that occur at each step of the text, us-
ing a vocabulary (size K) of the possible state
change types that can occur given the domain and
properties being modeled. For example, for the
ProPara dataset, we model K = 4 types of state
change: move, create, destroy, and none.
move changes an entity’s location from one place to
another, create from non-existence to a location,
and destroy from a location to non-existence.
State changes can be parameterized by text spans
in the paragraph, e.g., move takes a before and after
location parameter. If a parameterized state change
is predicted, then the model also must predict its
parameter values from the paragraph.

Previous models for process comprehension
make a sequence of local predictions about the
entities’ states, one sentence at a time, maintaining
a (typically neural) state at each sentence. However,
none have the ability to reverse earlier predictions
should an inconsistency arise later in the sequence.
ProSTRUCT OVercomes this limitation by reformu-
lating the task as structured prediction. To do this,
it uses a neural encoder-decoder from the semantic
parsing literature (Krishnamurthy et al., 2017; Yin
and Neubig, 2017) combined with a search proce-
dure that integrates soft and hard constraints for
finding the best candidate structure.

For each sentence and entity, the encoder first
uses a bidirectional LSTM to encode the sentence
and indicator variables identifying which entity is
currently being considered (Figure 3). It then pro-
duces a (distributed) representation of the action
that the sentence describes as being applied to that
entity. During decoding, the model decodes each
action embedding into a distribution over possi-
ble state changes that might result, then performs



Encoder actionc,,(@e®)—————
t

hentity | Weighted Sum Layer ; Aq; * h; |

8 o Apgl My e Ay he Ay Che -

——+| Bilinear Atténtion: sentence, (entity # verb)| e
heu Thy T hs The =
hyerp [OOJ [OO] {OO (3222

| ! f 4

Bi-LSTM <«—— . Encoded
X2 s Action

Input: cee- (cee] cee] Sequence

for s4 e3 generator,-,- _produces,-,v electricity,e,-
’

Sentences: En.tities:
s1: water ...enters the dam. x el: wat(_er
. H e2: turbine

s4: the generator ... ;;roduces electricity. €3 electricity

Figure 3: The encoder, illustrated for the ProPara do-
main with the paragraph from Figure 1. During encod-
ing, PROSTRUCT creates an action embedding c;; repre-
senting the action at step ¢ on entity e, for all entities
at all steps. The overall action sequence (right-hand
box) is the collection of these embeddings, for each en-
tity (listed horizontally) and each step (listed vertically
downwards).

a search over the space of possible state change
sequences. Each node in the space is a partial se-
quence of state changes, and each edge is a predic-
tion of the next state changes to add to the sequence
(Figure 4).

During training, the model only follows the path
along the gold sequence, and optimizes a loss func-
tion that drives up the likelihood of predictions
along that path (thus driving down the probabilities
for alternative, incorrect paths). At test time, the
model does not have access to the gold path, and
instead performs a beam search of the space to find
the best candidate sequence.

Most importantly, by mapping the state change
prediction problem to structured prediction, we can
perform a search over the set of candidate paths
that allows us to introduce hard and soft constraints
that capture commonsense knowledge. Hard con-
straints are used to prune the search space (Equa-
tion 4 later), and soft constraints bias the search
away from unlikely state changes via an additional
term in the scoring function (Equations 5 and 6).

4.2 Encoder

The encoder operates over every (s;,e;) € S X E
pair to create an encoded representation c;; of the
action described by sentence s;, as applied to entity
ej. In other words, we can consider the overall
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action to be represented by |E| embeddings, one
for each of the entities in E, encoding the action’s
effects on each. This novel feature allows us to
model different effects on different entities by the
same action. For example, a conversion action
may simultaneously destroy one entity and create
another. Figure 3 shows the encoder operating on
s4: “The generator spins, and produces electricity”
and e3: electricity from Figure 1.

Without loss of generality, we define an arbitrary
sentence in S as s; = {wy, ..., wy}. Each word w; in
the input sentence is encoded as a vector x; = [v,, :
Ve : vy], which is the concatenation of a pre-trained
word embedding v,, for w;, an indicator variable
v, for whether w; is a reference to the specified
entity e;, and an indicator variable v, for whether
w; is a verb. We use GloVe vectors as pre-trained
embeddings (Pennington et al., 2014) and a POS
tagger to extract verbs (Spacy, 2018).

Then, a BILSTM is used to encode the word
representations extracted above, yielding a contex-
tualized vector Ah; for each embedded word x; that
is the concatenated output of the backward and for-
ward hidden states produced by the BiLSTM for
word w;. An attention over the contextualized em-
beddings A; is performed to predict a distribution
of weights over the sentence:

a;=h;j«*Bxh, +b

1
Ctj = Za,- * h,‘
i=1

where q; is the attention weight for each contex-
tualized embedding, ¢;; is the vector encoding the
action for the sentence-entity pair (s;,e;), B and b
are learned parameters, and 4., is the concatenation
of the contextual embeddings of the hidden states
where the entity &, and verb A, are mentioned:

ey

2

hey = [u({hi = xilvel = 11); u((hi = xi[vy] = 1}]

3)
where y is an average function, and x;[v.] and x;[v,]
correspond to the entity indicator and verb indicator
variables defined above for any word w;, respec-
tively. The output vector ¢;; encodes the action at
step s; on entity e;. This vector is computed for all
steps and entities, populating a grid of the actions
on each entity at each step (Figure 3).

4.3 Decoder

To decode the action vectors ¢;; into their resulting
state changes they imply, each is passed through a



feedforward layer to generate logit(n{ ), a set of lo-
gistic activations over the K possible state changes
n{ for entity e; in sentence s,. (For ProPara, there
are K = 4 possible state changes: move, create,
destroy, none). These logits denote how likely
each state change 7/ is for entity e ;j at sentence
s;. The decoder then explores the search space of
possible state change sequences for the whole para-
graph (Figure 4), using these likelihoods to score
each visited sequence (Equation 6).

Let 7, be the set of state changes for all entities
at time 1, i.e., 1, = {m)}j=1.g, and let II, be the
sequence of state changes from time 1 to ¢, i.e.,
Il; = [xy,...,m;]. Each node in the search space
is a I;, and each edge adds a 7,4 to it so that it
becomes I1;,;:

Tr+1
I, — T4 .
Given there are K possible values for 7/, the num-
ber of possible configurations for 7, at time ¢ (i.e.,
the branching factor during search) is exponential:
K'El where |E| is the number of entities in the para-
graph.

To explore this exponential number of paths, af-
ter every sentence s;, we prune branches I, — I1,4
where I1;,; is impossible according to background
knowledge (described in Section 5.1). We define
the boolean function over state change sequences:

allowable(IT) = 1 if hard constraints satisfied

“)
and prune paths I1,;; where allowable(I1,,) = 0.
For example for ProPara, a state transition such
as DESTROY — MOVE is not allowed because a
hard constraint prohibits non-existent entities from
being moved (Section 5.1).

While hard constraints remove impossible state
change predictions, there may also be other state
changes that are implausible with respect to back-
ground knowledge. For example, commonsense
dictates that it is unlikely (but not impossible) for
plants to be destroyed during photosynthesis. Ac-
cordingly, our inference procedure should discour-
age (but not prohibit) predicting plant destruction
when reading about photosynthesis. To discourage
unlikely state changes, we make use of soft con-
straints that estimate the likelihood of a particular
state change associated with an entity, denoted as:

P(/le;, topic) (5)
In Section 5.2, we describe how these likelihoods
can be estimated from large-scale corpora. We add
this bias as an additional term (the second term
below) when scoring the addition of m;,; to the

= 0 otherwise
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Figure 4: The decoder, illustrated for the ProPara do-
main. Each action embedding c;; is first passed through
a feedforward layer to generate a distribution over the
(here K = 4) possible state changes that could result,
for each entity (listed horizontally) at each step (listed
vertically downwards). The decoder then explores the
space of state-change sequences, using these distribu-
tions to guide the search. During end-to-end train-
ing, ProSTrUCT follows the correct (green) path, and
backpropagates to drive up probabilities along this path.
During testing, the system performs a beam search to
find the most globally plausible sequence.

sequence so far I1;:
|E|

¢ (1) = ) (Alogir(, )
j=1
+ (1= ) log P(r, lej. topic)) (6)
where A is a learned parameter controlling the de-
gree of bias.
During search, when making a transition along
a path from I1; to a valid I1;;;, I1;4 is scored by
accumulating normalized scores along the path:

’
BTlsr) = oI + — 2D (q)
ZH;HGH,H ¢ (Trt+l)

Continuing state transitions in this manner, when
we reach the finished state (i.e., last sentence), our
objective is to maximize the score of the state
changes produced when reading each sentence.
During training, we only materialize a valid node
when II; € II; where IT} is the set of nodes along
the gold path.

We use this constrained decoding to predict the
state change sequence. For state changes that take
additional parameters, e.g., in the ProPara model
a move is parameterized by the before and after




CS-3:

locations, we also predict those parameter values
during decoding. This is done using standard span
prediction layers (inspired by BiDAF, Seo et al.
(2017a)) on top of the encoded input.

The model is trained to minimize the joint loss
of predicting the correct state changes and correct
state change parameters for every sentence in the
paragraph:

X

|E|

logP(r)+y. Y log Ppl))

=1

L=—
t peparam(ﬂ{ )

| (8)
where param(rr)) are the parameters of state change
71'{ , and v, are the values of those parameters. For
example, move is parameterized by before/after lo-
cations, and the 2nd loss term refers to the predicted
values of those locations.

At test time, instead of following the gold state
change path, we use beam search. After reading
any sentence, we explore the top-k states sorted by
the score ¢’ (7r;) that satisfy hard constraints. This
way, we predict a sequence of state changes that
have maximum score while being sensible w.r.t.
hard constraints.

S Incorporating Commonsense
Knowledge

By formulating procedural text comprehension as
a structured prediction task, we can introduce com-
monsense knowledge as hard and soft constraints
into the model, allowing nonsensical and unlikely
predictions to be avoided, and allowing the system
to recover from early mistakes.

5.1 Hard Constraints

Hard constraints are introduced by defining the
(boolean) function over a candidate sequence of
state changes:

allowable(IT)
used in Equation 4.

While this function can be defined in any way,
for the ProPara application we use six constraints.
The first three below are based on basic “laws of
physics” or commonsense (CS) and are universally
applicable:

CS-1: An entity must exist before it can be moved
or destroyed

An entity cannot be created if it already exists
An entity cannot change until it is mentioned

in the paragraph

CS-2:
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The next three constraints are observed in the
training data:

D-1: Maximum number of toggles for an entity be-
tween Exists and not ExXist < frax roggles

D-2: Max fraction of entities that are changed per
sentence < f;ntitie‘viperisentence

D-3: Max fraction of sentences in which an entity
Changes S fventences_per_entity

The thresholds used in D-1, D-2 and D-3 are hyper-
parameters that can be tuned on the dev set.

5.2 Soft Constraints

Soft constraints are introduced by defining the prior
probabilities used in Equation 6:

P(?Tj|€j, topic)
that entity e; undergoes state change 7/ in a sen-
tence of text about topic. These probabilities are
used to re-rank the candidate event sequences dur-
ing decoding (see Equation 6).

While any method can be used to estimate these
probabilities, we describe our corpus-based ap-
proach here. Although it was designed for ProPara,
it generalizes easily to other domains, and is it-
self a contribution of this work. For a given state
change 7/, entity e;, and topic, we first gather a
corpus of Web sentences mentioning that topic (us-
ing Bing search APIs), then count the number of
times x that the entity is described as undergoing
that state change (e.g., that water is said to MOVE).
To determine this frequency, we first convert the
sentences into a set of SRL frames (verb + role-
argument pairs) using an off-the-shelf SRL labeler.
We then use an existing rulebase, derived from
VerbNet, that contains rules that map SRL frames
to state changes, e.g., e1/ARGO “absorbs”/VERB
e2/ARGl — e2 MOVES (Clark et al., 2018). Al-
though the rules and SRL labels are incomplete
and noisy, redundancy in the corpus provides some
robustness when estimating the frequency x. Fi-
nally, the observed frequency x is converted to a

likelihood using a logistic transformation:
1

1 + exp=(x=x0) ©
where, xp is a hyperparameter tuned on the dev set.

P(Jrjle.,-, topic) =

5.3 Commonsense Constraints for New
Domains

The commonsense constraints we have used for
ProPara are general, covering the large variety of
topics contain in ProPara (e.g., electricity, photo-
synthesis, earthquakes). However, if one wants to



apply ProStruct to other genres of procedural text
(e.g., fictional text, newswire articles), or broaden
the state change vocabulary, different common-
sense constraints may be needed. Note that our
model architecture itself is agnostic to the source
and quantity of hard and soft constraints. For
example, one might leverage commonsense rules
from existing ontologies such as SUMO (Niles and
Pease, 2001) or Cyc (Lenat et al., 1985) to identify
new hard constraints; and our corpus-based method
could be extended to cover new state change types
should the state change vocabulary be extended.

6 Evaluation

We evaluate our model using the ProPara dataset,
and compare against several strong baselines pub-
lished with the original dataset (Dalvi et al., 2018).

6.1 Evaluation setup

Given a paragraph and set of entities as input, the
task is to answer four templated questions, whose
answers are deterministically computed from the
state change sequence:

Q1. What are the inputs to the process?

Q2. What are the outputs of the process?

Q3. What conversions occur, when and where?
Q4. What movements occur, when and where?

Inputs are defined as entities that existed at the
start of the process, but not at the end. Outputs
are entities that did not exist at the start, but did at
the end. A conversion is when some entities are
destroyed and others created. Finally, a movement
is an event where an entity changes location.

For each process, as every question can have
multiple answers, we compute a separate F1 score
for each question by comparing the gold and pre-
dicted answers. For Q1 and Q2, this is straightfor-
ward as answers are atomic (i.e., individual names
of entities). For Q3, as each answer is a 4-tuple
(convert-from, convert-to, location, sentence-id),
some answers may only be partially correct. To
score partial correctness, we pair gold and pre-
dicted answers by requiring the sentence-id in each
to be the same, and then score each pair by the Ham-
ming distance of their tuples. For Q4, each answer
is also a 4-tuple (entity, from-location, to-location,
sentence-id), and the same procedure is applied.
The four F1 scores are then macro-averaged. The
total number of items to predict in the train/dev/test
partitions is 7043/913/1095.
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6.2 Baselines

We compare results using the following process
comprehension models:

Recurrent Entity Networks (EntNet) (Henaff
et al., 2017) are a state-of-the-art model for the
bADI tasks (Weston et al., 2015). The model uses a
dynamic memory to maintain a representation of
the world state as sentences are read, with a gated
update at each step. These states are decoded to
answer questions after each sentence is read.
Query Reduction Networks (QRN) (Seo et al.,
2017b) perform a gated propagation of their hidden
state across each time-step. Given a question, the
hidden state is used to modify the query to keep
pointing to the answer at each step.

ProLocal (Dalvi et al., 2018) predicts the state
changes described in individual sentences, and then
uses commonsense rules of inertia to propagate
state values forwards and backwards in time.
ProGlobal (Dalvi et al., 2018) predicts states of an
entity across all time steps. It considers the entire
paragraph while predicting states for an entity, and
learns to predict location spans at time-step ¢ + 1
based on location span predictions at ¢.

7 Results

7.1 Comparison with Baselines

We compare our model (which make use of world
knowledge) with the four baseline systems on the
ProPara dataset. All models were trained on the
training partition, and the best model picked based
on prediction accuracy on the dev partition. Table 1
shows the precision, recall, and F1 for all models
on the the test partition. PRoSTRuUCT significantly
outperforms the baselines, suggesting that world
knowledge helps ProSTruCT avoid spurious pre-
dictions. This hypothesis is supported by the fact
that the ProGlobal model has the highest recall and
worst precision, indicating that it is over-generating
state change predictions. Conversely, the ProLocal
model has the highest precision, but its recall is
much lower, likely because it makes predictions
for individual sentences, and thus has no access
to information in surrounding sentences that may
suggest a state change is occurring.

We also examined the role of the constraint rules
(both hard and soft) on efficiency. With all rules
disabled, the training does not complete even one
epoch in more than three hours. Because the num-
ber of valid states is exponential in the number of



Precision Recall F1
ProLocal 77.4 229 353
QRN 55.5 31.3 400
EntNet 50.2 335 402
ProGlobal 46.7 524 494
ProSTRUCT 74.2 42.1  53.7

Table 1: Results on the prediction task (test set).

Precision Recall F1
ProSTRUCT 70.4 47.8 56.9
- Soft constraints 61.9 474 537

- Hard constraints’ | 69.6 470  56.1

T Partial ablation, ablated at test only (training without these
is computationally infeasible).

Table 2: Ablating world knowledge on the dev set.

entities, the training is particularly slow on para-
graphs with many entities. In contrast, with all
rules enabled, training takes less than 10 minutes
per epoch. This illustrates that the constraints are
not only contributing to the model scores, but also
helping make the search efficient.

7.2 Ablations and Analysis

To explore the impact of world knowledge, we
also performed two ablations on the dev set: Re-
moving soft constraints (at both training and test
time), and a partial ablation of removing hard con-
straints at test time only - note that hard constraints
cannot be removed during training because model
training time becomes prohibitively large without
them, thus qualifying this second ablation. Table 4
shows that F1 drops when each type of knowledge
is removed, illustrating that they are helping. The
smaller drop for hard constraints suggests that they
have primarily been incorporated into the network
during training due to this ablation being partial.
Qualitatively, we compared dev set examples
where the predicted event sequence changed, com-
paring predictions made without world knowledge
to those made with world knowledge. For read-
ability, we only show the event type predictions
(M,C,D, and N (shown as "-")) and not their from-
location/to-location arguments. If a prediction
changes from X (without knowledge) to Y (with
knowledge), we write this “X — Y. For cases
where the prediction changed, we show incorrect
predictions in red, and correct predictions in green.
We first compare predictions made with and
without the BK (corpus-based background knowl-
edge, the soft constraints). Table 3 shows a para-
graph about the process of nuclear-powered elec-
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tricity generation, in the problematic prediction of
the generator moving () was predicted in the sec-
ond to last sentence. However, the background
knowledge contains no examples of generators be-
ing moved. As a result, it drives the probability
mass away from the move () prediction, resulting
in a no state change (N) prediction instead.

Table 4 shows a second example where, with-
out knowledge, no event was predicted for the
spark entity. However, BK contains many exam-
ples of sparks being created (reflecting text about
this topic), shifting the probability mass towards
this prediction, resulting in the correct C (create).

Finally, Table 5 shows an example of a hard con-
straint preventing a nonsensical prediction (namely,
electricity is created after it already exists).

7.3 Error Analysis

There are also many cases where incorrect predic-
tions are made. The main causes are summarized
below, and offer opportunities for future work.

Implicit reference is a challenge for PRoSTrUCT,
where an entity affected by an event is not men-
tioned until a later sentence in the paragraph. For
example, in the following ProPara paragraph snip-
pet about combustion engines:

"...(3) A spark ignites fuel...(4) The pres-
sure pushes the piston down...."

both spark and pressure are created in sentence
3, even though pressure is not mentioned until
the subsequent sentence. Recognizing this type of
implicit mention is very hard. It is possible that
BK could help in such situations, particularly if
ignite were often associated with creating pres-
sure in the context of a combustion engines, but we
did not see such examples in practice.

A second challenge is coreference, in particular
when different entities have similar names. For
example, again for combustion, a snippet looks:

...(2) the fuel is injected... (6) the spent

Without vs. with BK
Heat Turbine Generator Elec.
C B

Fuel
D

Fuel produces heat.
... Steam spins turbine.
Generator is turned.

M-
Makes electricity. -

C

Table 3: BK improves precision. In a nuclear powered
electricity generation scenario, BK drives the probabil-
ity mass away from the generator movement, as a gen-
erator does not generally change location.



Without vs. with BK
Fuel Air Spark
Fuels burns in the chamber. D - -
The burning fuel creates energy. - -
The upward motion cause air ... M
The piston compresses the air. - - -
A spark ignites the fuel and air ... - - N -

Table 4: BK improves coverage. BK has a strong signal
that a spark is usually created in combustion engines,
shifting the probability mass towards spark-creation.

Without and with constraints

Electricity ~ Signals
M B
C-

Electricity enters supply unit.
The supply gives electricity to transistors.

The energy is used to complete ...

Table 5: Hard constraints avoid nonsensical predictions.
In this example without CS-2, the electricity is pre-
dicted to be created after it already exists (impossible).
This mistake is avoided using the constraints.

fuel is ejected. (7) new fuel is injected....

Here fuel and spent fuel are the same entity,
while new fuel is a different entity. Correctly
tracking these references is challenging (in this
case, PrRoSTruUcT misidentifies (7) as describing an
event on the original fuel/spent fuel).

A third, related problem is pronoun resolution.
For example, in:

The sound continues to bounce off of
things and produce echoes until it is to-
tally absorbed or dissipated.
the word it confuses ProSTRuUCT, and it predicts
that the echo (rather than the sound) is destroyed.
We observe several such failure cases.

Finally, we observed BK retrieval failures
when there was appropriate background knowl-
edge that was expressed in a lexically different
way. Consider the example in Table 6 about oil for-
mation. Without BK, the model correctly predicts
that sediment is destroyed (D). However, BK has
few examples of sediment being destroyed, and
so biases the prediction away from this (correct)
choice to an incorrect choice. Further examination
of BK shows that it does in fact have knowledge
about this destruction, but that is expressed using
the word deposit instead (e.g., "deposits break
down"). A soft (neural) means of accessing BK
would help alleviate this problem.

8 Conclusions

Answering questions about procedural text remains
challenging, requiring models of actions and the
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Without BK vs. with BK
Algae Plankton Sediment
D D

Algae and plankton die.
The dead algae and plankton ...
The sediment breaks down.

- M

Table 6: BK lookup limitation: though BK knows that
deposits can be destroyed (broken down), it does not
equate this with (synonymous) sediments being de-
stroyed, hence biases model away from correct answer.

state changes they produce. Predictions made lo-
cally throughout the text may together be globally
inconsistent or improbable. We have shown how
the predicted effects of actions can be improved by
treating the task as a structured prediction problem,
allowing commonsense knowledge to be injected
to avoid an overall inconsistent or improbable set
of predictions. In particular, we have shown how
two kinds of knowledge can be exploited: hard
constraints to exclude impossible and nonsensical
state changes, and soft constraints to encourage
likely state changes. The resulting system signif-
icantly outperforms previous state-of-the-art sys-
tems on a challenging dataset, and our ablations
and analysis suggest that the knowledge is play-
ing an important role. Our code is available at
https://github.com/allenai/propara.
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Abstract

We present a large scale collection of diverse
natural language inference (NLI) datasets that
help provide insight into how well a sentence
representation captures distinct types of rea-
soning. The collection results from recasting
13 existing datasets from 7 semantic phenom-
ena into a common NLI structure, resulting in
over half a million labeled context-hypothesis
pairs in total. We refer to our collection as
the DNC: Diverse Natural Language Inference
Collection. The DNC is available online at
http://www.decomp.net, and will grow
over time as additional resources are recast and
added from novel sources.

1 Introduction

A plethora of new natural language inference
(NLI)! datasets has been created in recent
years (Bowman et al., 2015; Williams et al., 2017;
Lai et al., 2017; Khot et al., 2018). However, these
datasets do not provide clear insight into what type
of reasoning or inference a model may be perform-
ing. For example, these datasets cannot be used
to evaluate whether competitive NLI models can
determine if an event occurred, correctly differ-
entiate between figurative and literal language, or
accurately identify and categorize named entities.
Consequently, these datasets cannot answer how
well sentence representation learning models cap-
ture distinct semantic phenomena necessary for
general natural language understanding (NLU).
To answer these questions, we introduce the
Diverse NLI Collection (DNC), a large-scale NLI
dataset that tests a model’s ability to perform di-
verse types of reasoning. DNC is a collection of
NLI problems, each requiring a model to perform

!The task of determining if a hypothesis would likely be
inferred from a context, or premise; also known as Recogniz-
ing Textual Entailment (RTE) (Dagan et al., 2006, 2013).
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» Find him before he finds the dog food v
Event The finding did not happen
Factuality » I’ll need to ponder X
The pondering happened
» Ward joined Tom in their native Perth v
Relation Ward was born in Perth
Extraction » Stefan had visited his son in Bulgaria X
Stefan was born in Bulgaria
» Kim heard masks have no face value v
Puns Kim heard a pun
» Tod heard that thrift is better than annuity X
Tod heard a pun

Table 1: Example sentence pairs for different semantic phe-
nomena. » indicates the line is a context and the following
line is its corresponding hypothesis. v and X respectively in-
dicate that the context entails, or does not entail the hypothe-
sis. Appendix A includes more recast examples.

a unique type of reasoning. Each NLI dataset con-
tains labeled context-hypothesis pairs that we re-
cast from semantic annotations for specific struc-
tured prediction tasks. We extend various prior
works on challenge NLI datasets (Zhang et al.,
2017), and define recasting as leveraging existing
datasets to create NLI examples (Glickman, 2006;
White et al., 2017). We recast annotations from a
total of 13 datasets across 7 NLP tasks into labeled
NLI examples. The tasks include event factual-
ity, named entity recognition, gendered anaphora
resolution, sentiment analysis, relationship extrac-
tion, pun detection, and lexicosyntactic inference.
Currently, the DNC contains over half a million
labeled examples. Table 1 includes NLI pairs that
test specific types of reasoning.

Using a hypothesis-only NLI model, with ac-
cess to just hypothesis sentences, as a strong base-
line (Tsuchiya, 2018; Gururangan et al., 2018; Po-
liak et al., 2018b), our experiments demonstrate
how DNC can be used to probe a model’s ability
to capture different types of semantic reasoning
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necessary for general NLU. In short, this work
answers a recent plea to the community to test
“more kinds of inference” than in previous chal-
lenge sets (Chatzikyriakidis et al., 2017).

2 Motivation & Background

Compared to eliciting NLI datasets directly, i.e.
asking humans to author contexts and/or hypoth-
esis sentences, recasting can 1) help determine
whether an NLU model performs distinct types of
reasoning; 2) limit types of biases observed in pre-
vious NLI data; and 3) generate examples cheaply,
potentially at large scales.

NLU Insights Popular NLI datasets, e.g. Stan-
ford Natural Language Inference (SNLI) (Bow-
man et al., 2015) and its successor Multi-
NLI (Williams et al., 2017), were created by elic-
iting hypotheses from humans. Crowd-source
workers were tasked with writing one sentence
each that is entailed, neutral, and contradicted
by a caption extracted from the Flickr30k cor-
pus (Young et al., 2014). Although these datasets
are widely used to train and evaluate sentence
representations, a high accuracy is not indicative
of what types of reasoning NLI models perform.
Workers were free to create any type of hypothe-
sis for each context and label. Such datasets can-
not be used to determine how well an NLI model
captures many desired capabilities of language un-
derstanding systems, e.g. paraphrastic inference,
complex anaphora resolution (White et al., 2017),
or compositionality (Pavlick and Callison-Burch,
2016; Dasgupta et al., 2018). By converting prior
annotation of a specific phenomenon into NLI ex-
amples, recasting allows us to create a diverse NLI
benchmark that tests a model’s ability to perform
distinct types of reasoning.

Limit Biases Studies indicate that many NLI
datasets contain significant biases. Examples in
the early Pascal RTE datasets could be correctly
predicted based on syntax alone (Vanderwende
and Dolan, 2006; Vanderwende et al., 2006).
Statistical irregularities, and annotation artifacts,
within class labels allow a hypothesis-only model
to significantly outperform the majority baseline
on at least six recent NLI datasets (Poliak et al.,
2018b). Class label biases may be attributed to
the human-elicited protocol. Moreover, examples
in such NLI datasets may contain racial and gen-
dered stereotypes (Rudinger et al., 2017).
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We limit some biases by not relying on hu-
mans to generate hypotheses. Recast NLI datasets
may still contain some biases, e.g. non-uniform
distributions over NLI labels caused by the dis-
tribution of labels in the original dataset that we
recast.> Experimental results using Poliak et al.
(2018b)’s hypothesis-only model indicate to what
degree the recast datasets retain some biases that
may be present in the original semantic datasets.

NLI Examples at Large-scale Generating NLI
datasets from scratch is costly. Humans must be
paid to generate or label natural language text.
This linearly scales costs as the amount of gen-
erated NLI-pairs increases. Existing annotations
for a wide array of semantic NLP tasks are freely
available. By leveraging existing semantic annota-
tions already invested in by the community we can
generate and label NLI pairs at little cost and cre-
ate large NLI datasets to train data hungry models.

Why These Semantic Phenomena? A long
term goal is to develop NLU systems that can
achieve human levels of understanding and rea-
soning. Investigating how different architectures
and training corpora can help a system perform
human-level general NLU is an important step in
this direction. DNC contains recast NLI pairs that
are easily understandable by humans and can be
used to evaluate different sentence encoders and
NLU systems. These semantic phenomena cover
distinct types of reasoning that an NLU system
may often encounter in the wild. While higher per-
formance on these benchmarks might not be con-
clusive proof of a system achieving human-level
reasoning, a system that does poorly should not be
viewed as performing human-level NLU. We ar-
gue that these semantic phenomena play integral
roles in NLU. There exist more semantic phenom-
ena integral to NLU (Allen, 1995) and we plan to
include them in future versions of the DNC.

Previous Recast NLI Example sentences in
RTE1 (Dagan et al., 2006) were extracted from
MT, IE, and QA datasets, with the process re-
ferred to as ‘recasting’ in the thesis by Glickman
(2006). NLU problems were reframed under the
NLI framework and candidate sentence pairs were
extracted from existing NLP datasets and then la-
beled under NLI (Dagan et al., 2006). Years later,
this term was independently used by White et al.

’In a corpus with part-of-speech tags, the distribution of
labels for the word “the” will likely peak at the Det tag.



(2017), who proposed to “leverage existing large-
scale semantic annotation collections as a source
of targeted textual inference examples.” The term
‘recasting’ was limited to automatically convert-
ing existing semantic annotations into labeled NLI
examples without manual intervention. We adopt
the broader definition of ‘recasting’ since our NLI
examples were automatically or manually gener-
ated from prior NLU datasets.

Applied Framework versus Inference Probing
Traditionally, NLI has not been viewed as a down-
stream, applied NLP task.> Instead, the com-
munity has often used it as “a generic evaluation
framework” to compare models for distinct down-
stream tasks (Dagan et al., 2006) or to determine
whether a model performs distinct types of rea-
soning (Cooper et al., 1996). These two different
evaluation goals may affect which datasets are re-
cast. We target both goals as we recast applied
tasks and linguistically focused phenomena.

3 Recasting Semantic Phenomena

We describe efforts to recast 7 semantic phenom-
ena from a total of 13 datasets into labeled NLI
examples. Many of the recasting methods rely on
simple templates that do not include nuances and
variances typical of natural language. This allows
us to specifically test how sentence representations
capture distinct types of reasoning. When recast-
ing, we preserve each dataset’s train/dev/test split.
If a dataset does not contain such a split, we cre-
ate a random split with roughly a 80:10:10 ratio.
Table 2 reports statistics about each recast dataset.

Event Factuality (EF) Event factuality pre-
diction is the task of determining whether an
event described in text occurred. Determining
whether an event occurred enables accurate infer-
ences, e.g. monotonic inferences, based on the
event (Rudinger et al., 2018b).*  Incorporating
factuality has been shown to improve NLI (Sauri
and Pustejovsky, 2007).

We recast event factuality annotations from
UW (Lee et al., 2015), MEANTIME (Minard
etal., 2016), and Decomp (Rudinger et al., 2018b).
We use sentences from original datasets as con-
texts and templates (1a) and (1b) as hypotheses.’

3This changed as large NLI datasets have recently been
used to train, or pre-train, models to perform NLI, or other
tasks (Conneau et al., 2017; Pasunuru and Bansal, 2017).

* Appendix B.1 provides an example.

>We replace Event with the event described in the context.
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(1) a. The Event happened
b. The Event did not happen

If the predicate denoting the Event was annotated
as having happened in the factuality dataset, the
context paired with (1a) is labeled as ENTAILED
and the same context paired with (1b) is labeled as
NOT-ENTAILED. Otherwise, we swap the labels.

Named Entity Recognition (NER) Distinct
types of entities have different properties and re-
lational objects (Prince, 1978) that can help infer
facts from a given context. For example, if a sys-
tem can detect that an entity is a name of a nation,
then that entity likely has a leader, a language, and
a culture (Prince, 1978; Van Durme, 2010). When
classifying NLI pairs, a model can determine if an
object mentioned in the hypothesis can be a re-
lational object typically associated with the type
of entity described in the context. NER tags can
also be directly used to determine if a hypothesis is
likely to not be entailed by a context, such as when
entities in contexts and hypotheses do not share
NER tags (Castillo and Alemany, 2008; Sammons
et al., 2009; Pakray et al., 2010).

Given a sentence annotated with NER tags, we
recast the annotations by preserving the original
sentences as contexts and creating hypotheses us-
ing the template “NP is a Label.”® For ENTAILED
hypotheses we replace Label with the correct NER
label of the NP; for NOT-ENTAILED hypotheses,
we choose an incorrect label from the prior dis-
tribution of NER tags for the given phrase. This
prevents us from adding additional biases besides
any class-label statistical irregularities present in
the original data. We apply this procedure on the
Gronigen Meaning Bank (Bos et al., 2017) and the
ConLL-2003 Shared Task (Tjong Kim Sang and
De Meulder, 2003).

Gendered Anaphora Resolution (GAR) The
ability to perform pronoun resolution is essen-
tial to language understanding, in many cases
requiring common-sense reasoning about the
world (Levesque et al., 2012). White et al. (2017)
show that this task can be directly recast as an NLI
problem by transforming Winograd schemas into
NLI sentence pairs.

Using a similar formula Rudinger et al. (2018a)
introduce Winogender schemas, minimal sentence
pairs that differ only by pronoun gender. With this

SWe ensure grammatical hypotheses by appropriately
conjugating “is a” when needed.



Sem. Phenomena [ Dataset [ # pairs [ Automated
Decomp (Rudinger et al., 2018b) 42K (41,888) v
Event Factuality UW (Lee et al., 2015) 5K (5,094) v
MeanTime (Minard et al., 2016) TK (738) v
. . Groningen (Bos et al., 2017) 260K (261,406) v
Named Entity Recognition | iy 1 (Tjong Kim Sang and De Meulder, 2003) | 60K (59,970) v
Gendered Anaphora | Winogender (Rudinger et al., 2018a) | 4K (464) | X
VerbCorner (Hartshorne et al., 2013) 135K (138, 648) v
Lexicosyntactic Inference MegaVeridicality (White and Rawlins, 2018) 11K (11,814) v
VerbNet (Schuler, 2005) 2K (1, 759) X
Puns (Yang et al., 2015) 9K (9,492) v
SemEval 2017 Task 7 (Miller et al., 2017) 8K (8,054) v
Relationship Extraction ‘ FACCI1 (Gabrilovich et al., 2013) ‘ 25K (25,132) ‘ X
Sentiment Analysis | (Kotzias et al., 2015) | 6K (6,000) | v
Combined | Diverse NLI Collection (DNC) | 570K (570,459) |
— SNLI (Bowman et al., 2015) 570K
— Multi-NLI (Williams et al., 2017) 433K

Table 2: Statistics summarizing the recast datasets. The first column refers to the original annotation that was recast, the
‘Combined‘ row refers to the combination of our recast datasets. The second column indicates the datasets that were recast, and
the 3rd column reports how many labeled NLI pairs were extracted from the corresponding dataset. The last column indicates
whether the recasting method was fully-automatic without human involvement (v), manual (X), or used a semi-automatic
method that included human intervention (v/X). The Multi-NLI and SNLI numbers contextualize the scale of our dataset.

adapted pronoun resolution task, they demonstrate
the presence of systematic gender bias in corefer-
ence resolution systems. We recast Winogender
schemas as an NLI task, introducing a potential
method of detecting gender bias in NLI systems or
sentence embeddings. In recasting, the context is
the original, unmodified Winogender sentence; the
hypothesis is a short, manually constructed sen-
tence having a correct (ENTAILED) or incorrect
(NOT-ENTAILED) pronoun resolution.

Lexicosyntactic Inference (Lex) While many
inferences in natural language are triggered by lex-
ical items alone, there exist pervasive inferences
that arise from interactions between lexical items
and their syntactic contexts. This is particularly
apparent among propositional attitude verbs —e.g.
think, want, know — which display complex distri-
butional profiles (White and Rawlins, 2016). For
instance, the verb remember can take both finite
clausal complements and infinitival clausal com-
plements.

(2) a. Jo didn’t remember that she ate
b. Jo didn’t remember o eat

This small change in the syntactic structure gives
rise to large changes in the inferences that are li-
censed: (2a) presupposes that Jo ate while (2b)
entails that Jo didn’t eat. We recast data from
three datasets that are relevant to these sorts of lex-
icosyntactic interactions.
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Lex #1: MegaVeridicality (MV) White and
Rawlins (2018) build the MegaVeridicality dataset
by selecting verbs from the MegaAttitude dataset
(White and Rawlins, 2016) based on their gram-
matical acceptability in the [NP _ that S] and [NP
was _ed that S] frames.’ They then asked anno-
tators to answer questions of the form in (3) us-
ing three possible responses: yes, maybe or maybe
not, and no (Karttunen et al., 2014).

(3) a. Someone {knew, didn’t know} that a par-
ticular thing happened.
b. Did that thing happen?

We use the same procedure to annotate sentences
containing verbs that take various types of infini-
tival complement: [NP _ for NP to VP], [NP _ to
VP], [NP _ NP to VP], and [NP was _ed to VP].8

To recast these annotations, we assign the con-
text sentences like (3a) to the majority class — yes,
maybe or maybe not, no — across 10 different an-
notators, after applying an ordinal model-based
normalization to their responses. We then pair
each context sentence with three hypotheses.

(4) a. That thing happened
b. That thing may or may not have happened
c. That thing didn’t happen

NP is always instantiated by someone; and S is always
instantiated by a particular thing happened.

8NP is always instantiated by either someone, a particular
person, or a particular thing; and VP is always instantiated
by happen, do a particular thing, or have a particular thing.



If annotated yes, maybe or maybe not, or no, the
pair (3a)-(4a), (3a)-(4b), or (3a)-(4c) is respec-
tively assigned ENTAILED and the other pairings
are assigned NOT-ENTAILED; train/dev/test split
labels are randomly assigned to every pair that
context sentence appears in.

Lex #2: Recasting VerbNet (VN) We create ad-
ditional lexicosyntactic NLI examples from Verb-
Net (Schuler, 2005). VerbNet contains classes of
verbs that each can have multiple frames. Each
frame contains a mapping from syntactic argu-
ments to thematic roles, which are used as argu-
ments in Neo-Davidsonian first-order logical pred-
icates (5b) that describe the frame’s semantics.
Each frame additionally contains an example sen-
tence (5a) that we use as our NLI context and we
create templates (5¢) from the most frequent se-
mantic predicates to generate hypotheses (5d).

(5) a. Michael swatted the fly
b. cause(E, Agent)
c. Agent caused the E
d. Michael caused the swatting

We use the Berkeley Parser (Petrov et al., 2006)
to match tokens in an example sentence with the
thematic roles and then fill in the templates with
the matched tokens (5d). We also decompose
multi-argument predicates into unary predicates to
increase the number of hypotheses we generate.
On average, each context is paired with 4.5 hy-
potheses. We generate NOT-ENTAILED hypothe-
ses by filling in templates with incorrect thematic
roles. ° We partition the recast NLI examples into
train/development/test splits such that all example
sentences from a VerbNet class (which we use a
NLI hypothesis) appear in only one partition of
our dataset. In turn, the recast VerbNet dataset’s
partition is not exactly 80:10:10.

Lex #3: Recasting VerbCorner (VC) The third
dataset testing lexicosyntactic inference that we
recast is VerbCorner (VC) (Hartshorne et al.,
2013). VC decomposes VerbNet predicates into
simple semantic properties and “elicit[s] reliable
semantic judgments corresponding to VerbNet
predicates” via crowd-sourcing. The semantic
judgments focus on movement, physical contact,
application of force, change of physical or men-
tal state, and valence, all of which “may be central

°This is similar to Aharon et al. (2010)’s template match-
ing to generate entailment rules from FrameNet (Baker et al.,
1998).
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organizing principles for a human’s ... conceptu-
alization of the world.” (Hartshorne et al., 2013).

Each sentence in VC is judged based on the de-
composed semantic properties. We convert each
semantic property into declarative statements!® to
create hypotheses and pair them with the original
sentences which we preserve as contexts. The NLI
pair is ENTAILED or NOT-ENTAILED depending on
the given sentence’s semantic judgment.

Figurative Language (Puns) Figurative lan-
guage demonstrates natural language’s expressive-
ness and wide variations. Understanding and rec-
ognizing figurative language “entail[s] cognitive
capabilities to abstract and meta-represent mean-
ings beyond physical words” (Reyes et al., 2012).
Puns are prime examples of figurative language
that may perplex general NLU systems as they are
one of the more regular uses of linguistic ambi-
guity (Binsted, 1996) and rely on a wide-range of
phonetic, morphological, syntactic, and semantic
ambiguity (Pepicello and Green, 1984; Binsted,
1996; Bekinschtein et al., 2011).

We recast puns from Yang et al. (2015) and
Miller et al. (2017) using templates to generate
contexts (6a) and hypotheses (6b), (6¢). We re-
place Name with names sampled from a distribu-
tion based on US census data,!! and Pun with the
original sentence. If the original sentence was la-
beled as containing a pun, the (6a)-(6b) pair is
labeled as ENTAILED and (6a)-(6¢) is labeled as
NOT-ENTAILED, otherwise we swap the labels.

(6) a. Name heard that Pun
b. Name heard a pun
c. Name did not hear a pun

Relation Extraction (RE) The goal of the rela-
tion extraction (RE) task is to infer the real-world
relationships between pairs of entities from natu-
ral language text. The task is “grounded” in the
sense that the input is natural language text and
the outputis (entityl,relation,entity?2)
tuples defined in the schema of some knowledge
base. RE requires a system to understand the many
different surface forms which may entail the same
underlying relation, and to distinguish those from
surface forms which involve the same entities but
do not entail the relation of interest. For example,
(7a) is entailed by (7b) and (7¢) but not by (7d).

10We list the declarative statements in Appendix B.2.1.
Uhttp://www.ssa.gov/oact /babynames/
names.zip



(7) a. Name was born in Place
b. Name is from Place
c. Name, a Place native, . . .
d. Name visited Place

Natural language surface forms are often used in
RE in a weak-supervision setting (Mintz et al.,
2009; Hoffmann et al., 2011; Riedel et al., 2013).
That is, if entityl and entity2 are known
to be related by relation, it is assumed that
every sentence observed which mentions both
entityl and entity?2 is assumed to be a real-
ization of relation: i.e. (7d) would (falsely) be
taken as evidence of the birthPlace relation.

Here we first generate hypotheses and
then corresponding contexts. To generate
hypotheses, we begin with entity-relation
triples extracted from DBPedia infoboxes: e.g.
(Barack Obama, birthPlace, Hawaii).
These relation predicates were extracted directly
from Wikipedia infoboxes and are not cleaned.
As a result, many relations are redundant with
one another (birthPlace, hometown) and
some relations do not correspond to obvious
natural language glosses based on the name alone
(demographicslInfo). Thus, we construct
a template for each predicate p by manually in-
specting 1) a sample of entities which are related
by p 2) a sample of sentences in which those
entities co-occur and 3) the most frequent natural
language strings which join entities related by p
according to a OpenlE triple database (Schmitz
et al., 2012; Fader et al., 2011) extracted from
a large text corpus. We then manually write a
simple template (e.g. Mentionl was born in
Mention2) for p, ignoring any unclear relations.
In total, we end up with 574 unique relations,
expressed by 354 unique templates.

For each such hypothesis generated, we cre-
ate a number of contexts. = We begin with
the FACC1 corpus (Gabrilovich et al., 2013)
which contains natural language sentences from
ClueWeb in which entities have been auto-
matically linked to disambiguated Freebase en-
tities, when possible.  Then, given a tuple
(entityl,relation,entity?2), we find ev-
ery sentence which contains both entityl and
entity?2. Since many of these sentences are
false positives (7d), we have human annotators vet
each context/hypothesis pair, using the ordinal en-
tailment scale described in Zhang et al. (2017).
We include optional binary labels by converting
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pairs labeled as 1 — 4 and 5 to ENTAILED and
NOT-ENTAILED respectively.!> We apply pruning
methods (described in Appendix B.4) to combat
issues related to noisy, ungrammatical hypotheses
and disagreement between multiple annotators.

Subjectivity (Sentiment) Some of the previ-
ously discussed semantic phenomena deal with
objective information — did an event occur or what
type of entities does a specific name represent.
Subjective information is often expressed differ-
ently (Wiebe et al., 2005), making it important
to use other tests to probe whether an NLU sys-
tem understands language that expresses subjec-
tive information. We are interested in determining
whether general NLU models capture ‘subjective
clues’ that can help identify and understand emo-
tions, opinions, and sentiment within a subjective
text (Wilson et al., 2006).

We recast a sentiment analysis dataset since the
task is the “expression of subjectivity as either a
positive or negative opinion” (Taboada, 2016). We
extract sentences from product, movie, and restau-
rant reviews labeled as containing positive or neg-
ative sentiment (Kotzias et al., 2015). Contexts
(8a) and hypotheses (8b), (8c) are generated using
the following templates:

(8) a. When asked about Item, Name said Review
b. Name liked the Item
c. Name did not like the Item

LR INT3

Item is replaced with either “product”, “movie”,
or “restaurant”, and the Name is sampled as previ-
ously discussed. If the original sentence contained
positive (negative) sentiment, the (8a)-(8b) pair is
labeled as ENTAILED (NOT-ENTAILED) and (8a)-
(8c) is labeled as NOT-ENTAILED (ENTAILED).

3.1 Noise in Recast Data

Recasting can create noisy NLI examples that may
potentially enable a model to achieve a high ac-
curacy by learning dataset specific characteristics
that are unrelated to NLU. For example, Poliak
et al. (2018a,b) previously noted the association
between ungrammaticality and NOT-ENTAILED
examples based on how White et al. (2017) recast
the FrameNet+ dataset (Pavlick et al., 2015).

ZEollowing the label set in SNLI, Zhang et al. (2017) con-
verted pairs labeled with 1 as CONTRADICTION, 2 — 4 as
NEUTRAL and 5 to ENTAILMENT. Since here we are gen-
erally interested in binary classification, we merge the CON-
TRADICTION and NEUTRAL examples as NOT-ENTAILED.



W NER EF RE  Puns Sentiment GAR | VC MV VN
Model
Majority (MAJ) ‘ 50.00 50.00 59.53 50.00 50.00 50.00 ‘ 50.00 66.67 53.66
No Pre-training
InferSent 92.50 83.07 61.89 60.36 50.00 - 88.60 85.96 46.34
Hyp-only 9148 69.14 64.78 60.36 50.00 - 76.82 77.83 46.34
Pre-trained DNC
InferSent (update) | 92.47 83.86 7438 93.17 81.00 - 89.00 85.62 76.83
InferSent (fixed) 9220 81.07 74.11 87.76 77.33 50.65 | 88.59 83.84 67.68
Hyp-only (update) | 91.60 71.07 70.57 60.02 46.83 - 76.78 77.83 68.90
Hyp-only (fixed) 9137 69.74 6597 5644 48.17 50.00 | 76.78 77.83 59.15
Pre-trained Multi-NLI
InferSent (update) | 92.37 83.03 76.08 92.48 83.50 - 88.45 85.11 78.05
InferSent (fixed) 52.99 54.88 66.75 56.04 56.50 50.65 | 4533 5592 45.73
Hyp-only (update) | 91.62 70.64 69.91 60.36 49.33 - 76.82 77.83 68.29
Hyp-only (fixed) 52.55 66.33 5296 60.59 50.00 5043 | 41.31 46.28 48.78

Table 3: NLI accuracies on test data.

Columns correspond to each semantic phenomena and rows correspond to the model

used. Columns are ordered from larger to smaller in size, but the last three (VC, MV, VN) are separated since they fall under
lexicosyntactic inference. (update) refers to a model that was initialized with pre-trained parameters and then re-trained on the
corresponding recast data. (fixed) refers to a model that was trained and then evaluated on these data sets. Bold numbers in
each column indicate which settings were responsible for the highest accuracy on the specific recast dataset.

In the DNC, most of the noisy examples are in
the recast VerbNet and Relation Extraction por-
tions. In recast VerbNet, some examples are noisy
because of incorrect subject-verb agreement.'?
Since more noisy examples appeared in the Rela-
tion Extraction set, we relied on Amazon Mechan-
ical Turk workers to flag ungrammatical hypothe-
ses in the recast dataset, and we remove NLI pairs
with ungrammatical hypotheses.'#

4 Experiments

Our experiments demonstrate how these recast
datasets may be used to evaluate how well mod-
els capture different types of semantic reasoning
necessary for general language understanding. We
also include results from a hypothesis-only model
as a strong baseline. This may reveal whether the
recast datasets retain statistical irregularities from
the original, task-specific annotations.

4.1 Models

For demonstrating how well an NLI model
performs these fine-grained types of reasoning,
we use InferSent (Conneau et al., 2017).
InferSent independently encodes a context
and hypothesis with a bi-directional LSTM and
combines the sentence representations by con-
catenating the individual sentence representations,

B«Her teeth was cared for” or “Floss were used”.
'*See Appendix B.4 for details.
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their element-wise subtraction and product. The
combined representation is then fed into a MLP
with a single hidden layer. The hypothesis-only
model is a modified version of InferSent that
only accesses hypotheses (Poliak et al., 2018b).
We report experimental details in Appendix C.

4.2 Results

Table 3 reports the models’ accuracies across the
recast NLI datasets. Even though we catego-
rize VerbNet, MegaVeridicality, and VerbCorner
as lexicosyntatic inference, we train and evaluate
models separately on these three datasets because
we use different strategies to individually recast
them. When evaluating NLI models, our base-
line is the maximum between the accuracies of
the hypothesis-only model and the majority class
label (MAJ). In six of the eight recast datasets
that we use to train our models the hypothesis-
only model outperforms MAIJ. The two datasets
where the hypothesis-only model does not outper-
form MAJ are Sentiment and VN, each of which
contain less than 10K examples.!> We do not train
on GAR because of its small size.

Our results suggest that InferSent, when not
pre-trained on any other data, might capture spe-
cific semantic phenomena better than other seman-

15This is similar to Poliak et al. (2018b)’s results where a
hypothesis-only model did not outperform MAJ on datasets
with < 10K examples.



tic phenomena. InferSent seems to learn the
most about determining if an event occurred, since
the difference between its accuracy and that of the
hypothesis-only baseline (+13.93) is largest on the
recast EF dataset compared to the other recast an-
notations. The model seems to similarly learn to
perform (or detect) the type of lexicosyntactic in-
ference present in VC and MV. Interestingly, the
hypothesis-only model outperforms InferSent
on the recast RE.

Hypothesis Only Baseline The hypothesis-only
model can demonstrate how likely it is that an
NLI label applies to a hypothesis, regardless of
its context and indicates how well each recast
dataset tests a model’s ability to perform each spe-
cific type of reasoning when performing NLI. The
high hypothesis-only accuracy on the recast NER
dataset may demonstrate that the hypothesis-only
model is able to detect that the distribution of class
labels for a given word may be peaky. For ex-
ample, Hong Kong appears 130 times in the train-
ing set and is always labeled as a location. Based
on this, in future work we may consider different
methods to recast NER annotations into labeled
NLI examples, or limit the dataset’s training size.

Pre-training models on DNC We would like to
know whether initializing models with pre-trained
parameters improves scores. We notice that when
we pre-train our models on DNC, for the larger
datasets, a pre-trained model does not seem to
significantly outperform randomly initializing the
parameters. For the smaller datasets, specifically
Puns, Sentiment and VN, a pre-trained model sig-
nificantly outperforms random initialization.'®

We are also interested to know whether fine-
tuning these pre-trained models on each cate-
gory (update) improves a model’s ability to per-
form well on the category compared to keeping
the pre-trained models’ parameters static (fixed).
Across all of the recast datasets, updating the pre-
trained model’s parameters during training im-
proves InferSent’s accuracies more than keep-
ing the model’s parameters fixed. When updating
a model pre-trained on the entire DNC, we see the
largest improvements on VN (+9.15).

Models trained on Multi-NLI Williams et al.
(2017) argue that Multi-NLI “[makes] it possible
to evaluate systems on nearly the full complexity

1®By 32.81, 31.00, and 30.83 points respectively.
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of the language.” However, how well does Multi-
NLI test a model’s capability to understand the di-
verse semantic phenomena captured in DNC? We
posit that if a model, trained on and performing
well on Multi-NLI, does not perform well on our
recast datasets, then Multi-NLI might not evaluate
a model’s ability to understand the “full complex-
ity” of language as argued.!”

When trained on Multi-NLI, our InferSent
model achieves an accuracy of 70.22% on
(matched) Multi-NLL'® When we test the model
on the recast datasets (without updating the param-
eters), we see significant drops.'® On the datasets
testing a model’s lexicosyntactic inference capa-
bilities, the model performs below the majority
class baseline. On the NER, EF, and Puns datasets
its performs below the hypothesis-only baseline.
We also notice that on three of the datasets (EF,
Puns, and VN), the fixed hypothesis-only model
outperforms the fixed InferSent model.

These results might suggest that Multi-NLI
does not evaluate whether sentence representa-
tions capture these distinct semantic phenomena.
This is a bit surprising for some of the recast phe-
nomena. We would expect Multi-NLI’s fiction
section (especially its humor subset) in the training
set to contain some figurative language that might
be similar to puns, and the travel guides (and pos-
sibly telephone conversations) to contain text re-
lated to sentiment.

Pre-training on DNC or Multi-NLI? Initializ-
ing a model with parameters pre-trained on DNC
or Multi-NLI often outperforms random initial-
ization.” Is it better to pre-train on DNC or
Multi-NLI? On five of the recast datasets, using
a model pre-trained on DNC outperforms a model
pre-trained on Multi-NLI. The results are flipped
on the two datasets focused on downstream tasks
(Sentiment and RE) and MV. However, the differ-
ences between pre-training on the DNC or Multi-
NLI are small. From this, it is unclear whether
pre-training on DNC is better than Multi-NLIL.

Size of Pre-trained DNC Data We randomly
sample 10K and 20K examples from each

"We treat Multi-NLI’s NEUTRAL and CONTRADICTION
labels as equivalent to the DNC’s NOT-ENTAILED label.

18 Although this is about 10 points below SoTA, we believe
that the pre-trained model performs well enough to evaluate
whether Multi-NLI tests a model’s capability to understand
the diverse semantic phenomena in the DNC.

YInfersent (pre-trained, fixed) in Table 3.

2Pre-training does not improve accuracies on NER or MV.



datasets’ training set to investigate what happens if
we train our models on a subsample of each train-
ing set instead of the entire DNC. Although we no-
ticed a slight decrease across each recast test set,
the decrease was not significant. We leave this in-
vestigating for a future thorough study.

5 Related Work

Exploring what linguistic phenomena neural
models learn Many tests have been used to
probe how well neural models learn different lin-
guistic phenomena. Linzen et al. (2016) use “num-
ber agreement in English subject-verb dependen-
cies” to show that LSTMs learn about syntax-
sensitive dependencies. In addition to syntax (Shi
et al., 2016), researchers have used other label-
ing tasks to investigate whether neural machine
translation (NMT) models learn different linguis-
tic phenomena (Belinkov et al., 2017a,b; Dalvi
et al., 2017; Marvin and Koehn, 2018). Recently,
Poliak et al. (2018a) used recast NLI datasets to
investigate semantics captured by NMT encoders.

Targeted Tests for Natural Language Under-
standing We follow a long line of work focused
on building datasets to test how well NLU sys-
tems perform distinct types of semantic reason-
ing. FraCaS uses a limited number of sentence-
pairs to test whether systems understand seman-
tic phenomena, e.g. generalized quantifiers, tem-
poral references, and (nominal) anaphora (Cooper
et al., 1996). FraCas cannot be used to train neu-
ral models — it includes just roughly 300 high-
quality instances manually created by linguists.
MacCartney (2009) created the FraCasS textual in-
ference test suite by automatically “convert[ing]
each FraCaS question into a declarative hypoth-
esis.” Levesque et al. (2012)’s Winograd Schema
Challenge forces a model to choose between two
possible answers for a question based on a sen-
tence describing an event.

Recent benchmarks test whether NLI models
handle adjective-noun composition (Pavlick and
Callison-Burch, 2016), other types of composi-
tion (Dasgupta et al., 2018), paraphrastic infer-
ence, anaphora resolution, and semantic proto-
roles (White et al., 2017). Concurrently, Con-
neau et al. (2018)’s benchmark can be used to
probe whether sentence representations capture
many linguistic properties. It includes syntactic
and surface form tests but does not focus on as a
wide range of semantic phenomena as in the DNC.
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Glockner et al. (2018) introduce a modified ver-
sion of SNLI to test how well NLI models perform
when requiring lexical and world knowledge.
Wang et al. (2018)’s GLUE dataset is intended
to evaluate and potentially train a sentence rep-
resentation to perform well across different NLP
tasks. This continues an aspect of the initial RTE
collection, designed to be representative of down-
stream tasks like QA, MT, and IR (Dagan et al.,
2010). While GLUE is therefore concerned with
applied tasks, DNC, as well as Naik et al. (2018)’s
NLI stress tests, is concerned with probing the ca-
pabilities of NLU models to capture explicitly dis-
tinguished aspects of meaning. While one may
conjecture that the latter is needed to be “solved”
to eventually “solve” the former, it may be that
these goals only partially overlap. Some NLP
researchers might focus on probing for semantic
phenomena in sentence representations while oth-
ers may be more interested in developing single
sentence representations that can help models per-
form well on a wide array of downstream tasks.

6 Conclusion

We described how we recast a wide range of se-
mantic phenomena from many NLP datasets into
labeled NLI sentence pairs. These examples serve
as a diverse NLI framework that may help di-
agnose whether NLU models capture and per-
form distinct types of reasoning. Our experiments
demonstrate how to use this framework as an NLU
benchmark. The DNC is actively growing as we
continue recasting more datasets into labeled NLI
examples. We encourage dataset creators to re-
cast their datasets in NLI and invite them to add
their recast datasets into the DNC. The collection,
along with baselines and trained models are avail-
able online at http://www.decomp.net.
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A More Recast NLI Examples

Table 4 includes examples from all of the recast
NLI datasets. We include one ENTAILED and one
NOT-ENTAILED example from each dataset that
tests a distinct type of reasoning.

B Recasting Semantic Phenomena

Here we add secondary information about the
original datasets and our recasting efforts.

B.1 Event Factuality

We demonstrate how determining whether an
event occurred can enable accurate inferences
based on the event. Consider the following sen-
tences:

(9) a. She walked a beagle
b. She walked a dog
c. She walked a brown beagle

If the walking occurred, (9a) entails (9b) but not
(9¢). If we negate the action in sentences (9a),
(9b), and (9c) to respectively become:

(10) a. She did not walk a beagle
b. She did not walk a dog
c. She did not walk a brown beagle

The new hypothesis (10c) is now entailed by the
context (10a) while (10b) is not.

B.2 Lexicosyntactic Inference

B.2.1 VerbCorner

When recasting VerbCorner, we use the following
templates for hypotheses, assigning them as EN-
TAILED and NOT-ENTAILED based on the positive
or negative answers to the annotation task ques-
tions about the context sentence.

(11) a. Someone {moved/did not move} from
their location

Something touched another thing / Noth-
ing touched anything else

Someone or something {applied/did not
apply} force onto something

Someone or something {changed/did not
change} physically

Someone {changed/did not change} their
thoughts, feelings, or beliefs

Something {good/neutral/bad} happened

b.
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B.3 Figurative Language

Puns in Yang et al. (2015) were originally ex-
tracted from punsoftheday.com, and sen-
tences without puns came from newswire and
proverbs. The sentences are labeled as contain-
ing a pun or not. Puns in Miller et al. (2017) were
sampled from prior pun detection datasets (Miller
and Gurevych, 2015; Miller and Turkovié, 2016)
and includes new examples generated from scratch
for the shared task; the original labels denote
whether the sentences contain homographic, het-
erographic, or no pun at all. Here, we are only
interested in whether a sentence contains a pun
or not instead of discriminating between homo-
graphic and heterographic puns.

B.4 Relation Extraction

Since hypotheses were automatically generated
from Wikipedia infoboxes, many examples are
noisy and ungrammatical. We presented hypothe-
ses (independent of their corresponding contexts)
to Mechanical Turk workers and asked them to la-
bel each sentence as containing no grammatical
error, minor grammatical issues, or major gram-
matical issues. We removed the 2,056 NLI exam-
ples with hypothesis containing major grammati-
cal issues, resulting in 28,041 labeled pairs. In-
terestingly, almost 70% of those examples where
labeled between 1 — 4, which we view as NOT-
ENTAILED. We release the ungrammatical NLI
examples as supplementary data.

A second source of noise in the recast relation
extraction dataset can be caused by disagreement
amongst multiple annotators. Examples in our
training and development sets are annotated by a
single annotator while we use 3- to 5-way redun-
dancy to annotate the test examples. To guaran-
tee high-quality test examples, we only include
examples with 100% inner-annotator agreement.
Additionally, we remove the 16 examples labeled
with 4 from our NOT-ENTAILED examples in this
pruned test set since some of these examples are
arguably entailments. Consequently, the test set
contains 761 examples, out of the original 3,670
test examples. Nevertheless, we separately release
all 3,670 test examples and include the original
annotations as well, enabling others to consider
other methods to collapse the multi-way annota-
tions.



Semantic Phenomena v X
Event Factuality I would li.ke to.learn how I’ll not ?ay anything
The learning did not happen The saying happened

Named Entity Recognition | intensively

Ms. is a person ’s title

Ms. Rice said the United States must work

Afghan officials are welcoming the Nether-
lands’ decision

The Netherlands is an event

The student met with the architect to view

The appraiser told the buyer that he had paid

Gendered Anaphora her blueprints for inspiration too much for the painting
The architect has blueprints The appraiser had purchased a painting
Someone assumed that a particular thing | A particular person craved to do a particular

Mega Veridicality happened thing
That thing might or might not have happened | That person did that thing
VerbNet The Romans destroyed the city Andre presented the plaque
The Romans caused the destroying Andre was transferred
VerbCorner Molly wheeled Lisa to Rachel Kyle bewildered Mark

Someone moved from their location

Someone or something changed physically

Relation Extraction

Tibetans live in Lhasa

At least 100,000 Chinese live in Lhasa, out-
numbering Tibetans two to one

Tropical storm Humberto is expected to
reach the Texas coast tonight

Humberto hit Texas

Puns going downhill

Jorden heared a pun

Jorden heard that my skiing skills are really

Caiden heard that fretting cares make grey
hairs

Caiden heared a pun

Sentiment Analysis “Don’t waste your money”

Liam did not like the product

When asked about the product, Liam said,

When asked about the movie, Angel said, “A
bit predictable”

Angel liked the movie

Table 4: Example sentence pairs for different semantic phenomena. The v and X columns respectively indicate that the context
entails, or does not entail the hypothesis. Each cell’s first and second line respectively represent a context and hypothesis.

B.5 Sentiment

Kotzias et al. (2015) compiled examples from pre-
vious sources. The movie dataset came from Maas
et al. (2011), the Amazon product reviews were
released by McAuley and Leskovec (2013) add
the restaurant reviews were sourced from the Yelp
dataset challenge.’!

C Experimental Details

In all our experiments, we use pre-computed
GloVe embeddings (Pennington et al., 2014) and
use the OOV vector for words that do not have
a defined embedding. We follow Conneau et al.
(2017)’s procedure to train our models. During
training, our models are optimized with SGD. Our
initial learning rate is 0.1 with a decay rate of 0.99.
Our models train for at most 20 epochs and can
optionally terminate early when the learning rate
is less than 107>, If the accuracy deceases on the
development set in any epoch, the learning rate is

Hnttp://www.yelp.com/dataset_challenge
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divided by 5. As described in Poliak et al. (2018b),
our hypothesis-only model feeds the hypotheses’
encoded representation directly into the MLP.
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Abstract

To understand a sentence like ‘“whereas
only 10% of White Americans live at or
below the poverty line, 28% of African
Americans do” it is important not only to
identify individual facts, e.g., poverty rates
of distinct demographic groups, but also the
higher-order relations between them, e.g., the
disparity between them. In this paper, we
propose the task of Textual Analogy Parsing
(TAP) to model this higher-order meaning.
The output of TAP is a frame-style meaning
representation which explicitly specifies what
is shared (e.g., poverty rates) and what is
compared (e.g., White Americans vs. African
Americans, 10% vs. 28%) between its com-
ponent facts. Such a meaning representation
can enable new applications that rely on
discourse understanding such as automated
chart generation from quantitative text. We
present a new dataset for TAP, baselines, and a
model that successfully uses an ILP to enforce
the structural constraints of the problem.

1 Introduction

The task of information extraction by and large
seeks to populate a knowledge base with individ-
uated facts extracted from text (Sarawagi, 2008).
For example, given the sentence:

(E1) [According to the U.S. Census, whereas
only 10% of White Americans live at or
below the poverty line today]c;, [28%
of African Americans do.]c>'

one would extract two independent facts about
voter registration, about the two distinct demo-
graphic groups. On the other hand, the theory
of discourse maintains that part of the above sen-
tence’s meaning inheres in the fact that clauses C1

*Author contributed significantly.
'Data in E1 and the figure sentence from Morris (2014).
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Figure 1: In textual analogy parsing (TAP), one
maps analogous facts to semantic role represen-
tations and identifies analogical relations between
them. Automated chart generation from text is a
motivating application of TAP.
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and C2 are juxtaposed (Kehler, 2002). Thus the
author intends that we consider them in relation to
each other, inviting us to note, for example, a dis-
parity of wealth distribution between demographic
groups. To fail to capture this is to miss out on an
important aspect of text understanding.

We propose the task of Textual Analogy Parsing
(TAP) to explicitly capture such relational mean-
ing between analogous facts in text. Concretely,
TAP first maps a set of analogous facts to semantic
role (SRL) representations, and then identifies the
roles along which they are similar (the shared con-
tent) and along which they are distinct (the com-
pared content)—see Figure 1. The resulting rep-
resentation, the TAP frame, is a deeper represen-
tation than the one output by shallow discourse
parsers (Taboada and Mann, 2006; Prasad et al.,
2007, Pitler et al., 2009; Prasad et al., 2010; Sur-
deanu et al., 2015). Given (E1) above, a shallow
discourse parser would classify the relation of con-
trast between C1 and C2—indicating that some
salient differences exist in the meanings of the jux-
taposed phrases—but without identifying the na-
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mention

[White Americans] w1 [African Americans] w2

\

According to the (U4S. Census)glg , whereas
only [10%] vi of [White Americans] w1
(live at or below the poverty line)Ql [to-

[28%]va of [African Ameri-
(do)qe -

-
da‘y}'l'mlz y

cans|w (U.S. Census)siy

[10%] vy ~oreer- [28% ]y

(live at or below the poverty line) g1

analogy graph analogy frame

SOURCE  U.S. Census
QUANT live at or below the poverty line = do
TIME today
o - WHOLE ~ White Americans
N VALUE  10%
today )ty
( y) futz WHOLE  African Americans
VALUE  28%
— (do)o2

Figure 2: The mapping from utterance to TAP frame. Vertices in the graph are labeled with abbreviated
semantic roles. Single lines represent edges between a VALUE and other roles in its associated fact. Dou-
ble lines represent coreference and synonymy. Springs represent analogy. Note that vertices connected
by equivalence arcs, or any span which connects to both V1 and V2 via fact relations (i.e., scope), map
to the shared content of the TAP frame. Analogous spans map to the compared content.

ture of those differences.

We focus on applying TAP to quantitative facts,
because TAP frames can be used to create graphi-
cal plots from sentences with numbers, as in Fig-
ure 1. This new application could help to sim-
plify complex quantitative text on the web (Bar-
rio et al., 2016; Leonhardt et al., 2017). We thus
created an expert-annotated dataset of TAP frames
over quantitative facts in the Wall Street Journal
corpus (Marcus et al., 1999).

We model TAP by jointly predicting SRL rep-
resentations of facts in a sentence, and higher-
order semantic relations between them. Our main
findings are that a neural architecture outperforms
a log-linear baseline, well-chosen linguistic fea-
tures help performance, and so does the use of an
integer-linear programming (ILP) decoder that en-
forces the structural constraints of the task. Nev-
ertheless, both quantitative and qualitative evalua-
tion reveal room for improvement on TAP.

In sum, our main contributions are (1) a new
task, Textual Analogy Parsing (TAP), that com-
bines shallow semantic parsing with discourse
meaning, (2) a dataset of TAP frames from quan-
titative newswire, and (3) a preliminary study of a
new application, automated chart generation from
text. All data and code, including standardized
evaluation scripts, are made freely available.

2 A Semantic Representation of Analogy

Let us revisit the example sentence from the previ-
ous section (E1), where a pair of analogous quan-
titative facts about poverty rates of different demo-
graphic groups are presented in contrast. Individ-
ually, these can be represented using the semantic
role structures in Figure 3, but representing them
separately in this way fails to capture the fact that
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frame 1 frame 2

SOURCE  U.S. Census SOURCE ~ U.S. Census
QUANT  live at or below the poverty line QUANT do
TIME today TIME today
WHOLE ~ White Americans WHOLE  African Americans
VALUE  10% VALUE  28%
Figure 3: Two analogous quantitative facts

represented independently,
schema (Lamm et al., 2018).

using the QSRL

they are analogous, i.e., structurally and semanti-
cally similar but distinct.

Instead, we can explicitly show points of sim-
ilarity and difference between them in the two-
tiered frame structure in Figure 2, which we call
a TAP frame. The outer tier of the TAP frame con-
tains shared content, or information pertinent to
all of the facts in question, and the inner tier con-
tains compared content, the information that varies
across the set of facts.

Mapping from an utterance to a TAP frame re-
quires three types of relational reasoning. Firstly,
one must decompose the utterance into a set of
facts, where a fact is represented as a set of se-
mantic roles. Then, one must identify the shared
content across facts by aligning roles that are se-
mantically equivalent, in the sense that they are ei-
ther the same span, are coreferent, or are synony-
mous. For example, in Figure 2 the phrase ‘U.S.
Census’ occurs as the SOURCE of both facts be-
cause it scopes over the entire sentence in which
they appear. Additionally, one must identify the
compared content by aligning roles that are analo-
gous, in the sense that they are semantically sim-
ilar but nevertheless distinct. For example, the
phrases ‘White Americans’ and ‘African Ameri-
cans’ are analogous in our running sentence, play-
ing the same role in their respective facts, while
signifying distinct demographic groups.



(a)  [New England Electric]»; had [offered]q;

[$2 billion]v; to acquire (PS of New Hampshire)rui2s , well

below the [$2.29 billion]v, value [United Illuminating]a> places on its (bid)q2 and the [$2.25 billion]yvs

[Northeast| a3 says its (bid)qs is worth.

(b

(First Boston)sn estimated that (UAL) Tui2 Was (worth)le [$ 250 to $ 344 a share] vi based on [UAL’S

results for the 12 months ending last June 30]c1 , but only [$ 235 to $266]v> based on [a management estimate

of results for 1989] c2

Table 1: Representative sentences from the Quantitative TAP dataset. Co-indexing (e.g., A1/Q1) indi-
cates when spans are part of the same QSRL fact. Parentheses indicate shared content spans and brackets
indicate compared content spans. To parse (a), one must recognize that ‘to acquire PS of New Hamp-
shire’ is elided but nevertheless an implied TH(eme) in two of the clauses, and that ‘offered’ and ‘bid’
are contextually synonymous Q(uantities). Moreover, one must note that the A(gents) are analogous, and
hence part of the compared content. In (b), ‘First Boston’, ‘UAL’ and ‘worth’, contribute a S(ource),
TH(eme), and Q(uantity) to the shared content respectively. Here, C(ause) roles are compared content.

Train (n = 1000) Test (n = 100)

av. max tot. av. max tot.
Count 14 3 1383 14 3 133
Length 2.6 16 - 26 7 -

Table 2: Dataset statistics (average per sentence,
max per sentence, and total over the dataset) for
the number of analogy frames (Count) and the
number of values compared within each frame
(Length).

3 The Quantitative TAP Dataset

Motivated by the application of automated graph-
ical plot generation from text, we annotated a
dataset of quantitative TAP frames from the Penn
Treebank WSJ corpus (Marcus et al., 1999).

As our SRL representation of quantitative facts,
we employ the Quantitative Semantic Role Label-
ing (QSRL) framework we previously defined in
Lamm et al. (2018). Having identified a numerical
VALUE in text (e.g., 10%), QSRL asks, “what does
this number measure?” to determine its associ-
ated QUANTITY (e.g., a poverty rate). It might also
identify, for example, the WHOLE out of which this
percentage is measured (e.g., the set of African
Americans), and the TIME at which the quantity
took on the value (e.g., today), etc. We employ all
fifteen QSRL roles in our annotations.

Our annotations not only capture the relation
between a quantitative predicate and its argu-
ments, but also the higher-order analogy relations
between them. The distinction is reflected in the
sentences in Table 1 from the dataset: Colored
spans are co-indexed when they participate in the
same quantitative fact; spans with like roles sur-
rounded by parentheses are shared content, mean-
ing that they are either synonymous or co-referent;
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spans with like roles surrounded by brackets are
compared content, meaning that they are analo-
gous but semantically distinct.

To identify instances of quantitative analogy
in the WSJ corpus, we first prune out any sen-
tence having fewer than three numerical mentions,
where a numerical mention is defined as a con-
tiguous sequence of CD POS tags. Of those left,
we manually identify those containing one or more
quantitative analogies, i.e., ones in which numeri-
cal values are compared content. We estimate the
incidence of these to be around 20%. A linguist
then annotated 1,100 of these for analogy relation-
ships. See Table 2 for a summary.

Using an independent set of expert annotations
on 100 of these sentences, we measured a signifi-
cant per-token label agreement of 0.882 and edge
label agreement of 0.991 using Krippendorf’s cv.”

Table 1 highlights some of the challenging lin-
guistic phenomena in the data. With respect to
identifying the shared content of a TAP frame,
these can be coarsely divided into two sets. Firstly,
in scope, ellipsis, and gapping, a single syntac-
tic element serves as a role in multiple QSRL
frames. This is exemplified by the phrase ‘PS of
New Hampshire’ in Table 1(a): It is mentioned ex-
plicitly as a THEME of the first fact, and only im-
plied in the second two. Based on a random sam-
ple of 100 train sentences, we estimate that 86% of
frames in the data exhibit these phenomena. Sec-
ondly, in synonymy and coreference, multiple ele-
ments appear in a sentence but contribute the same
role to the shared content, e.g., ‘offered’ and ‘bid’
in Table 1(a). We estimate that 31% of frames in

High edge agreement should be expected because edges
are type-constrained and thus easy to identify. Additionally,
we computed agreement after matching overlapping spans.



the data exhibit these phenomena.

One must learn to identify analogy relationships
over a diverse set of compared content roles, with
distinct semantic properties: in Table 1(a), AGENT
is a compared content role, whereas in Table 1(b),
CAUSE is.

4 Modeling TAP in the Quantitative
Setting

We model TAP by generating a typed analogy
graph over spans of an input text that is isomor-
phic to the set of TAP frames in that text, e.g.,
Figure 2. Each vertex in the graph corresponds to
a role-labeled span, and edges represent semantic
relations between them.

In this graph, each fact is uniquely identified
by a VALUE vertex, which is connected via a
FACT edge to all of its associated roles. Any two
shared content vertices across facts are connected
by an EQUIVALENCE edge, indicating that they
are coreferent or synonymous. A single vertex
can also be shared across facts by linking via a
FACT edge to more than one VALUE vertex, sug-
gesting a scopal relationship. Finally, any two ver-
tices which are compared content in the graph are
linked via an ANALOGY edge.

More formally, given an utterance x with to-
kens x1,...,xy, let G be a graph with vertices
V and edges E. For a vertex v = (4,4,0) € V,

1 < i < 5 < n are the start and end token
def

indices of a span in x with role [ € Lg
{VALUE, ..., QUANT}, the set of QSRL roles. For
an edge e (v,0',1) € E, v,v/ € V and
def
l € Lr = {FACT, EQUIVALENCE, ANALOGY }.
For G so defined to encode a set of valid TAP

frames, it must satisfy certain constraints:

1. Well-formedness constraints. For any two
vertices v,v’ € V, their associated spans
must not overlap. Furthermore, every vertex
must participate in at least one FACT edge,
i.e., no disconnected vertices.

Typing constraints. FACT relations are al-
ways drawn from a VALUE vertex to a non-
VALUE vertex. ANALOGY and EQUIVA-
LENCE are only ever drawn between two ver-
tices of the same role.

. Unique facts. If a VALUE vertex v is con-
nected to two distinct vertices v’ and v”
of the same role via a FACT edge, then
EQUIVALENCE(v', v") exists.
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4. Transitivity constraints. ANALOGY
and EQUIVALENCE edges are transi-
tive:  if EQUIVALENCE(v,v’) € F
and EQUIVALENCE(v',v") € E then
EQUIVALENCE(v,v”) € E also. This also
holds for ANALOGY edges, but only when
v,v’ and v" are VALUE vertices.

. Analogy. There must be at least one pair
of analogous VALUE vertices, and for each
such pair, there must be a pair of analo-
gous facts connected to them: if v,v" are
two VALUE vertices with ANALOGY (v, ') €
E, then there must also exist w,w’ as two
non-VALUE vertices with FACT(v,w) € FE,
FACT(v',w’) € E, ANALOGY (w,w’) € E.

Note that while these constraints rely on the choice
of VALUE as the role that grounds quantitative
facts, they reflect the general idea that analogy is
a structured mapping between meaning represen-
tations.

5 A Neural and ILP Model for TAP

We now present a neural and ILP model that
predicts analogy graphs as defined in Section 4.
Given a sentence, the neural model predicts a dis-
tribution over role-labeled spans with edges denot-
ing semantic relations between them. Then, we
use an ILP to decode while enforcing the TAP con-
straints defined in Section 4. Figure 4 presents an
overview of the architecture.

Context-sensitive word embeddings. We first
encode the words in a sentence by embedding
each token using fixed word embeddings. We
also concatenate a few linguistic features to the
word embeddings, such as named entity tags and
dependency relations. These features are gen-
erated using CoreNLP (Manning et al.,, 2014)
and represented by randomly-initialized, learned
embeddings for symbols together with the fixed
word embedding of each token’s dependency head
and the dependency path length between adja-
cent tokens. The token embeddings are then
passed through several stacked convolutional lay-
ers (Kim, 2014). While the first convolutional
layer can only capture local information, subse-
quent layers allow for longer-distance reasoning.

Span prediction. Next, we feed the outputs of
a single fully-connected hidden layer to a condi-
tional random field (CRF) (Lafferty et al., 2001),
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Figure 4: An overview of the proposed neural
model: The sentence embedding represents fea-
tures across the entire sentence using multiple con-
volutional layers. We then use a conditional ran-
dom field (CRF) layer to predict labeled spans p,,
and to generate span and edge embeddings. We
use a feedforward (FF) layer on the edge embed-
dings to predict edge labels p,,,,,. Together, p,,, and
DPmn form a distribution over edges and labels that
we decode into TAP frames.

which defines a joint distribution over per-token
role labels. We thus obtain spans from this distri-
bution corresponding to vertices of the graph de-
scribed in Section 4 by merging contiguous role-
labels in the maximum likelihood label sequence
predicted by the CRF.

Edge prediction with PATHMAX features. For
edge prediction, we use the spans identified above
to construct span and edge embeddings: for every
span (4, j) that was predicted, we construct a span
vector sy, = Zi:l 2. We also construct a role-
label score vector for the span, p,, by summing the
role-label probability vectors of its constituent to-
kens. Then, for every vertex pair (m, n), we con-
struct an edge representation e,,,,. The basis of
this representation is simply the concatenation of
the span representations, the sum of the span rep-
resentations, their respective role-label score vec-
tors p,, and p,, and relative token distances.

To capture long-distance phenomena like scope,
we also incorporate features into e,,,, from the de-
pendency paths between the two spans by max-
pooling the (learned) dependency relation embed-
dings along the path between the tokens.> When
computing the representation between two spans,
we take the average of the path embedding be-
tween each pair of tokens within them. We call

3The dependency paths are directed but unlexicalized.
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this extension PATHMAX.

The resulting edge representation e, is passed
through a single fully-connected hidden layer and
an output layer to predict a distribution over edge
labels p,,,, for each pair of spans.

Training. The supervised data described in Sec-
tion 3 provides gold spans and edges between
them. Thus we define a loss function with two
terms: one for the log-likelihood of the span labels
output by the CRF model, and one for the cross-
entropy loss on the edge labels. We train the span
and edge components of the model jointly.

Decoding. We consider two methods for decod-
ing the span-level and edge-level label distribu-
tions p,, and p,, , into a labeled graph respecting
the constraints described in Section 4.

As a simple greedy method to enforce these
constraints, we begin by picking the most likely
role for each span and edge and then discard-
ing any edges and spans that violate the well-
formedness (1) and typing constraints (2). We then
enforce transitivity constraints (4) by incremen-
tally building a cluster of analogous and equivalent
spans. We then resolve the unique facts constraint
(3) by keeping only the span with highest FACT
edge score. Finally, for every cluster of analogous
VALUE spans, we check that the analogy constraint
(5) holds and if not, discard the cluster.

We also implement an optimal decoder that en-
codes the TAP constraints as an ILP (Roth and
Yih, 2004; Do et al., 2012). The ILP tries to find an
optimal decoding according to the model, subject
to hard constraints imposed on the solution space.
For example, we require that solutions satisfy the
‘connected spans’ constraint:

Vs3s' : e(s, s, FACT)

In plain English, this says that every span s in a so-
Iution must be connected via a FACT edge to some
other span s’. See the supplementary material for
the full list of constraints we employ. We solve
the ILPs with Gurobi (Gurobi Optimization, Inc.,
2018).

6 Experiments

We now describe the experimental setup of our
neural model (Section 5) on the dataset of TAP
frames we created (Section 3). Results and dis-
cussion are reported in Section 7.



Evaluation metrics. The primary metric we use
to measure the accuracy of a system on frame pre-
diction is the precision, recall and F between the
labeled vertex-edge-vertex triples predicted by the
model and those in the gold parse. If there are
multiple predicted spans that overlap with a sin-
gle gold span or vice versa, we find a matching of
predicted and gold spans that maximizes overlap.

In addition to the primary metric, we also report
precision, recall and F; when predicting labeled
(non-VALUE) spans and predicting labeled edges
before performing any decoding.* We also use the
matching process described above for both these
sets of metrics. Standardized evaluation code is
provided with the dataset.

Experimental setup. We compare the neural
models presented in Section 5 in addition to a log-
linear baseline. The log-linear baseline uses the
same fixed word embeddings as the neural model
in addition to the named entity and dependency
parse features described in Section 5. The key
difference is that instead of learning a sentence
embedding or hidden layers, the log-linear model
simply uses a CRF to predict span labels directly
from fixed input features, and then uses a single
sigmoid layer to predict edge labels from deter-
ministic edge embeddings, €.

For the neural models, we used three convolu-
tional layers for sentence embedding with a fil-
ter size of 3. Every layer other than the in-
put layer used a hidden dimension of 50 with
ReLU nonlinearities. =~ We introduced a single
dropout layer (p 0.5) between every two
layers in the network (including at the input).
We used 50-dimensional GloVe embeddings (Pen-
nington et al., 2014) learned from Wikipedia 2014
and Gigaword 5 as pre-trained word embeddings,
and initialized the embeddings for the features
randomly. We chose relatively low input- and
hidden-vector dimension because of the size of
our data. The network was trained for 15 epochs
using ADADELTA (Zeiler, 2012) with a learn-
ing rate of 1.0. All models were implemented in
PyTorch (Paszke et al., 2017).

7 Results and Discussion

Frame prediction results on the test set are sum-
marized in Table 3. Our three main findings are
that (i) the neural network model far outperforms

*We exclude VALUE spans from span scores because they
are easy to predict and thus inflate model performance.
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Frame prediction

Model Feats. Dec. P R Fi
Log-linear v gr. 463 21.8 29.7
Log-linear v opt. 37.1 275 31.6
Neural X gar. 50.7 38.4 437
Neural X opt. 52.8 48.6 50.6
Neural v gar. 549 574 56.1
Neural v opt. 564 68.8 62.0

Table 3: Performance of models on the test data.
Combining the neural model with linguistic fea-
tures and using an optimal decoder to enforce se-
mantic constraints led to the best performance.

Span prediction

Model P R Fi
Log-linear (all feats.) 42.8 82.3 56.3
Neural (no feats.) 41.7 79.1 54.6
Neural (all feats.) 415 792 544
w/o NER 41.6 79.1 545
w/o dep. 41.2 775 53.8
w/o CRF 36.1 73.1 483

Table 4: Performance of models on labeled (non-
VALUE) span prediction during cross-validation
prior to decoding. We found using a CRF to be the
most important aspect: simply using fixed word
vectors with a CRF (i.e., the log-linear model) was
sufficient to predict spans.

the log-linear model on our frame metric, (ii) in-
cluding linguistic features further increases perfor-
mance, and (iii) so does using an optimal decoder
over a greedy method.

Quantitative error analysis. To better under-
stand which aspects of our model contribute to the
task, we perform an ablation study on the span and
edge predictions of our model prior to decoding.
With respect to span prediction (Table 4), we
found that the fixed word vectors, along with a
CREF, were able to capture the information needed
to identify QSRL role-spans. Indeed, the log-
linear baseline, which directly uses these word
vectors as features for a CRF, did the best at span
prediction. We believe that the drop in perfor-
mance from introducing hidden layers with the
neural models is a result of the model updating its
span representations to do better edge prediction.’

5In a separate experiment, the neural model outperformed
the log-linear model when they were trained only to do span
prediction.



Edge prediction
Model P R Fy
Log-linear (all feats.) 33.6 157 189
Neural (no feats.) 737 658 68.7
Neural (all feats.) 744 75.6 74.7
w/o NER 74.8 722 73.1
w/o dep. 734 650 68.2
w/o PATHMAX. 72.8 64.0 67.2

Table 5: Performance of models on labeled edge
prediction during cross-validation prior to decod-
ing. We found that both dependency label (dep.)
and path features (PATHM AX) help significantly.

While the log-linear model did well at predict-
ing spans, it did a poor job predicting edges, in-
dicating that learning to extract higher-order fea-
tures from learned span embeddings is necessary
for identifying semantic relations between them
(Table 5). We also found that linguistic fea-
tures were important: in particular, we found that
syntactic features — the dependency path features
(PATHM AX) and dependency labels — played a big
role in edge prediction, followed by type informa-
tion from NER tags.

Qualitative error analysis. Our model is tasked
with jointly identifying QSRL parses of analogous
facts in a sentence, and ANALOGY and EQUIV-
ALENCE relations among them. As described
in Section 4, these pieces interact in mutually con-
straining ways, and thus it is possible for local er-
rors to have global effects on predicted frames.

In Figure 5, for example, the model correctly
identifies the gold TIME spans as part of a TAP
frame, but mistakenly predicts that they are linked
by EQUIVALENCE, and thus modify the same
VALUE span. In the gold parse, they are linked by
ANALOGY, and modify distinct VALUE spans. As
a result of this misclassification, the model leaves
out an entire QSRL fact from the resulting parse.

In many cases, the model successfully identi-
fies compared content roles between QSRL facts.
In Figure 6, we show an example where it does
not manage to do so. Here, unable to identify
the ANALOGY relation between the phrases ‘Those
with a bullish view’ and ‘the dollar bears’, the
model instead chooses two identical sequences
‘the dollar’ as the non-VALUE compared content.
Inspecting edge probability scores from the model
before decoding reveals that the neural model
thinks that the first instance of ‘the dollar’ in the
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gold

predicted QUANT  daily contracts traded
THEME daily contracts traded TIME this year
{TIME this year = a year earlier ] L’ALUH 9,118 ]
VALUE 4,645 TIME the year earlier
{m\m 1984] L’ALUE 4,645 }
VALUE 917

TIME 1984
VALUE 917

Figure 5: TAP frames for the sentence, ‘This year
...daily contracts traded totaled 9,118, up from
4,645 a year earlier and from 917 in 1984.” The
model not only misclassifies the QSRL role of
‘daily contracts traded’ , but also mistakenly iden-
tifies an EQUIVALENCE between ‘this year’ and
‘the year earlier’. As a result, the VALUE 9,118
is left without a compared content role, and is
dropped.

old

predicted &
QUANT  the dollar; = the U.S. currency

|:QUANT

the dollary
VALUE

1.9000 marks

1.9000 marks

SOURCE
VALUE

Those with a bullish view }

QUANT
VALUE

SOURCE

the dollary
1.7600 marks [

the dollary bears }

VALUE 1.7600 marks

Figure 6: TAP frames for the sentence ‘Those
with a bullish view see [the dollar], trading up
near 1.900 marks. .. while [the dollar]s bears see
the U.S. currency trading around 1.7600 marks’.
Among other errors, the model failed to identify
analogous SOURCE spans and instead predicts that
the two instances of the phrase ‘the dollar’ (in-
dicated with indexing) in the sentence contribute
non-VALUE compared content.

sentence is semantically analogous to the second;
it can be confused by surface similarity into clas-
sifying ANALOGY relations.

Application to plot generation. As we have
seen, textual analogy is frequently used to com-
pare quantities along some axis of differentiation.
For example, one might compare the stock prices
of different companies, or describe the change in
some quantity’s value over time. Such analogy
relationships can alternately be expressed in the
form of a plot.

Indeed, there is a natural correspondence be-
tween charts and TAP frames over quantitative
facts: VALUES of a quantitative TAP frame are
plotted against other compared content roles, and
elements of the shared content correspond with
scopal chart elements, such as titles. This mapping
is well-defined provided analogous values share
units. We present some initial results exploring
this direction.

In Figure 7, we deterministically plot TAP
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Figure 7: Charts generated from TAP frames. Charts (a) and (b) are generated from the sentence ‘Vicker’s
PLC ...raised its stake in the company Friday to 15.02% from about 14.6% Thursday and from 13.6%
the previous week.” Before imposing constraints, the neural model assigns multiple values to the TIME
arguments ‘Thursday’ and ‘Friday’, over-extending their scope. Imposing structural constraints ensures
the correct assignment of TIMES to VALUES. Charts (c) and (d) are generated from the sentence ‘In the
auto sector, Bayerische Motoren Werke plunged 14.5 marks to 529 marks, Daimler-Benz dropped 10.5
to 700, and Volkswagen slumped 9 to 435.5.” Here, the model fails to associate an absolute (blue) and
relative (red) VALUE pair with a THEME role. The imposition of global constraints corrects this, linking

them to the THEME ‘Diamler-Benz’.

frames generated by our system both before and
after the imposition of global analogy constraints,
for two sentences in the data. In the first sentence,
VALUE spans are plotted against the TIME spans
the model associates with their respective facts.
In the second sentence, two analogy frames are
plotted together, one reflecting the absolute val-
ues of the stock prices mentioned (blue) and the
other reflecting the changes in prices mentioned
(red). Units are extracted from VALUE spans using
simple pattern matching. Chart titles are only il-
lustrative and were generated by stitching together
shared content identified by our system.

Note that with the imposition of global con-
straints reflecting the structure of analogy, the sys-
tem yields well-formed charts. Without these con-
straints, generated charts either have multiple y-
axis values assigned to the same x-axis value, or
have floating y-axis values with no grounding on
the x-axis.

8 Related Work

Analogy. In the cognitive science literature,
analogy is a general form of relational reason-
ing unique to human cognition (Tversky and Gati,
1978; Holyoak and Thagard, 1996; Goldstone and
Son, 2005; Penn et al., 2008; Holyoak, 2012). Our
model of textual analogy is particularly influenced
by Structure Mapping Theory (Falkenhainer et al.,
1989; Gentner and Markman, 1997), an influen-
tial cognitive model of analogy as a structure-
preserving map between concepts.

Within the NLP community, there has been
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much work focused on inferring lexical analogies
between generic concepts, e.g., tennis:racket::
baseball:bat (Mikolov et al., 2013; Turney, 2013),
from global distributional statistics. Such analo-
gies are generic, type-level patterns whose struc-
ture exists in the nature of the language; here, we
are interested in specific analogies whose structure
is conveyed by a particular sentence.

Discourse and Information Extraction. TAP
is an information extraction task that synthesizes
ideas from semantic role labeling on the one hand
and discourse parsing on the other. The former
produces predicate-argument representations of
individual facts in a text (Baker et al., 1998; Gildea
and Jurafsky, 2002; Palmer et al., 2005); the lat-
ter identifies discourse relations between syntactic
clauses (Taboada and Mann, 2006; Prasad et al.,
2007; Pitler et al., 2009; Prasad et al., 2010; Sur-
deanu et al., 2015).

TAP first maps from syntax to a set of SRL-style
representations, and then identifies structurally-
constrained, higher-order relations among them. It
is in this sense reminiscent of, but distinct from,
work on causal processes by Berant et al. (2014).

Numbers in NLP. There has been some work
on understanding numbers in text. This includes
quantitative reasoning (Kushman et al., 2014; Roy
et al., 2015), numerical information extraction
(Madaan et al., 2016), and techniques for making
numbers more easily interpretable in text (Cha-
ganty and Liang, 2016; Kim et al., 2016).

If pursued further, the application of plotting



quantitative text that we discuss in this paper could
help to clarify quantitative text on the web (Larkin
and Simon, 1987; Barrio et al., 2016).

Neural modeling. Recent work has shown the
promise of sophisticated neural models on seman-
tic role labeling (He et al., 2017). Similar to other
such sequence prediction models, e.g., those for
named entity recognition (Lample et al., 2016)
or semantic role labeling (Zhou and Xu, 2015),
our span prediction utilizes a neural CRF. Our
model also has an edge-prediction component,
which benefits from a simplified version of the
PathLL.STM model of Roth and Lapata (2016). Our
edge-prediction model also uses an embedding
concatenation component, which was inspired by
recent work on neural coreference resolution (Lee
et al., 2017). He et al. (2017) also impose seman-
tic constraints during prediction, but use A* search
instead of an ILP.

9 Conclusion

In this paper we have presented a new task, textual
analogy parsing, or TAP. Given a sentence about
a set of analogous facts, TAP outputs a frame rep-
resentation that expresses the points of similarity
and difference in their meanings.

We note that in the particular case of quantita-
tive text, TAP frames correspond with charts. We
develop a new dataset of TAP frames from quan-
titative newswire, and compare a variety models
for TAP. Our best model employs a globally opti-
mal decoder to enforce the structural constraints of
analogy; its outputs can be mapped to well-formed
charts of quantitative information extracted from
text.

We view this work to be an exciting step in the
direction of deeper discourse modeling. Future
work might further extend the recovery of anal-
ogy as part of information extraction. This might
include TAP outside of the quantitative domain, or
TAP at the paragraph level.
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Abstract

Given a partial description like “she opened
the hood of the car,” humans can reason about
the situation and anticipate what might come
next (“then, she examined the engine”). In this
paper, we introduce the task of grounded com-
monsense inference, unifying natural language
inference and commonsense reasoning.

We present Swas, a new dataset with 113k
multiple choice questions about a rich spec-
trum of grounded situations. To address the
recurring challenges of the annotation arti-
facts and human biases found in many exist-
ing datasets, we propose Adversarial Filter-
ing (AF), a novel procedure that constructs a
de-biased dataset by iteratively training an en-
semble of stylistic classifiers, and using them
to filter the data. To account for the aggres-
sive adversarial filtering, we use state-of-the-
art language models to massively oversam-
ple a diverse set of potential counterfactuals.
Empirical results demonstrate that while hu-
mans can solve the resulting inference prob-
lems with high accuracy (88%), various com-
petitive models struggle on our task. We pro-
vide comprehensive analysis that indicates sig-
nificant opportunities for future research.

1 Introduction

When we read a story, we bring to it a large body
of implicit knowledge about the physical world.
For instance, given the context “on stage, a woman
takes a seat at the piano,” shown in Table 1, we
can easily infer what the situation might look like:
a woman is giving a piano performance, with a
crowd watching her. We can furthermore infer her
likely next action: she will most likely set her fin-
gers on the piano keys and start playing.

This type of natural language inference requires
commonsense reasoning, substantially broadening
the scope of prior work that focused primarily on
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On stage, a woman takes a seat at the piano. She
a) sits on a bench as her sister plays with the doll.
b) smiles with someone as the music plays.
¢) is in the crowd, watching the dancers.
d) nervously sets her fingers on the keys.

A girl is going across a set of monkey bars. She
a) jumps up across the monkey bars.
b) struggles onto the monkey bars to grab her head.
¢) gets to the end and stands on a wooden plank.
d) jumps up and does a back flip.

The woman is now blow drying the dog. The dog
a) is placed in the kennel next to a woman’s feet.
b) washes her face with the shampoo.
¢) walks into frame and walks towards the dog.
d) tried to cut her face, so she is trying to do something
very close to her face.

Table 1: Examples from Swae; the correct an-
swer is bolded. Adversarial Filtering ensures that
stylistic models find all options equally appealing.

linguistic entailment (Chierchia and McConnell-
Ginet, 2000). Whereas the dominant entailment
paradigm asks if two natural language sentences
(the ‘premise’ and the ‘hypothesis’) describe the
same set of possible worlds (Dagan et al., 2006;
Bowman et al., 2015), here we focus on whether a
(multiple-choice) ending describes a possible (fu-
ture) world that can be anticipated from the situa-
tion described in the premise, even when it is not
strictly entailed. Making such inference necessi-
tates a rich understanding about everyday physical
situations, including object affordances (Gibson,
1979) and frame semantics (Baker et al., 1998).

A first step toward grounded commonsense in-
ference with today’s deep learning machinery is to
create a large-scale dataset. However, recent work
has shown that human-written datasets are suscep-
tible to annotation artifacts: unintended stylistic
patterns that give out clues for the gold labels (Gu-
rurangan et al., 2018; Poliak et al., 2018). As a
result, models trained on such datasets with hu-
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man biases run the risk of over-estimating the ac-
tual performance on the underlying task, and are
vulnerable to adversarial or out-of-domain exam-
ples (Wang et al., 2018; Glockner et al., 2018).

In this paper, we introduce Adversarial Filtering
(AF), a new method to automatically detect and
reduce stylistic artifacts. We use this method to
construct Swaes: an adversarial dataset with 113k
multiple-choice questions. We start with pairs of
temporally adjacent video captions, each with a
context and a follow-up event that we know is
physically possible. We then use a state-of-the-
art language model fine-tuned on this data to mas-
sively oversample a diverse set of possible nega-
tive sentence endings (or counterfactuals). Next,
we filter these candidate endings aggressively and
adversarially using a committee of trained mod-
els to obtain a population of de-biased endings
with similar stylistic features to the real ones. Fi-
nally, these filtered counterfactuals are validated
by crowd workers to further ensure data quality.

Extensive empirical results demonstrate unique
contributions of our dataset, complementing exist-
ing datasets for natural langauge inference (NLI)
(Bowman et al.,, 2015; Williams et al., 2018)
and commonsense reasoning (Roemmele et al.,
2011; Mostafazadeh et al., 2016; Zhang et al.,
2017). First, our dataset poses a new challenge
of grounded commonsense inference that is easy
for humans (88%) while hard for current state-of-
the-art NLI models (<60%). Second, our pro-
posed adversarial filtering methodology allows for
cost-effective construction of a large-scale dataset
while substantially reducing known annotation ar-
tifacts. The generality of adversarial filtering al-
lows it to be applied to build future datasets, en-
suring that they serve as reliable benchmarks.

2 swas: Our new dataset

We introduce a new dataset for studying physically
grounded commonsense inference, called Swas.!
Our task is to predict which event is most likely to
occur next in a video. More formally, a model is
given a context ¢ = (s,mn): a complete sentence
s and a noun phrase n that begins a second sen-
tence, as well as a list of possible verb phrase sen-
tence endings V' = {wvy, ..., v4}. See Figure 1 for
an example triple (s, 7, v;). The model must then
select the most appropriate verb phrase v; € V.

"'Short for Situations With Adversarial Generations.

Using video captions from [ acvirvier IISIVBIGM  (the videos are never used)

The mixer creams the butter. Sugar is added to the mixing bowl.

context NP VP
& he mixer creams the butter. Sugar.— i
o/ is put on top of the |~

0.0 vegetables. .o

e is putting vegetable fruits.| Adversarially select = -

— is using a red sponge to ad generations .o
Oversample eggs and parsley. ) ]
endings from|. laced i t'h Annotators filter endings
context+Np 15 P~2ced 1n the oven. to ensure agreement

Figure 1: Overview of the data collection process.
For a pair of sequential video captions, the second
caption is split into noun and verb phrases. A lan-
guage model generates many negative endings, of
which a difficult subset are human-annotated.

Overview Our corpus consists of 113k multi-
ple choice questions (73k training, 20k valida-
tion, 20k test) and is derived from pairs of con-
secutive video captions from ActivityNet Cap-
tions (Krishna et al., 2017; Heilbron et al., 2015)
and the Large Scale Movie Description Chal-
lenge (LSMDC; Rohrbach et al., 2017). The two
datasets are slightly different in nature and allow
us to achieve broader coverage: ActivityNet con-
tains 20k YouTube clips containing one of 203 ac-
tivity types (such as doing gymnastics or playing
guitar); LSMDC consists of 128k movie captions
(audio descriptions and scripts). For each pair
of captions, we use a constituency parser (Stern
et al., 2017) to split the second sentence into noun
and verb phrases (Figure 1).> Each question has a
human-verified gold ending and 3 distractors.

3 A solution to annotation artifacts

In this section, we outline the construction of
swas. We seek dataset diversity while minimizing
annotation artifacts, conditional stylistic patterns
such as length and word-preference biases. For
many NLI datasets, these biases have been shown
to allow shallow models (e.g. bag-of-words) ob-
tain artificially high performance.

To avoid introducing easily “gamed” patterns,
we present Adversarial Filtering (AF), a generally-
applicable treatment involving the iterative refine-
ment of a set of assignments to increase the en-
tropy under a chosen model family. We then dis-
cuss how we generate counterfactual endings, and

2We filter out sentences with rare tokens (<3 occur-
rences), that are short (I < 5), or that lack a verb phrase.



Algorithm 1 Adversarial filtering (AF) of negative sam-
ples. During our experiments, we set N “**¥ = 2 for refining
apopulation of N~ = 1023 negative examples to £ = 9, and
used a 80%/20% train/test split.

while convergence not reached do
e Split the dataset D randomly up into train-
ing and testing portions D" and D*®.
e Optimize a model fy on D",
for index i in D' do
o Identify easy indices:
AV = € At fola?) > folwr))
e Replace N°*%Y easy indices j € A"
with adversarial indices k& ¢ A; satisfying
fo(zi ) > fo(; ;)
end for
end while

finally, the models used for filtering.

3.1 Formal definition

In this section, we formalize what it means for
a dataset to be adversarial. Intuitively, we say
that an adversarial dataset for a model f is one
on which f will not generalize, even if evaluated
on test data from the same distribution. More for-
mally, let our input space be X and the label space
be V. Our trainable classifier f, taking parameters
0 is defined as fy : X — Rl Let our dataset
of size N be defined as D = {(z;,¥;) }1<i<n, and
let the loss function over the dataset be L( fp, D).
We say that a dataset is adversarial with respect
to f if we expect high empirical error I over all
leave-one-out train/test splits (Vapnik, 2000):

N
10D, ) = 5 3 Lo A}, ()
=1

where 67 = argmin L(fy, D\ {(zs,4:)}), (2)
0
with regularization terms omitted for simplicity.

3.2 Adversarial filtering (AF) algorithm

In this section, we outline an approach for gen-
erating an adversarial dataset D, effectively max-
imizing empirical error I with respect to a fam-
ily of trainable classifiers f. Without loss of
generality, we consider the situation where we
have N contexts, each associated with a single
positive example (x;r, 1)eX x ), and a large
population of context-specific negative examples
(x;j, 0) € X x ), where 1<j<N~ for each i. For
instance, the negative examples could be incorrect
relations in knowledge-base completion (Socher
et al., 2013), or all words in a dictionary for a
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single-word cloze task (Zweig and Burges, 2011).

Our goal will be to filter the population of neg-
ative examples for each instance ¢ to a size of
k< N~. This will be captured by returning a set
of assignments A, where for each instance the as-

signment will be a k-subset A; = [1...N7]~.
The filtered dataset will then be:
DA = {(24,1),{(z;;,0)}jea hh<icn ~ (3)

Unfortunately, optimizing (DAY, f) is difficult
as A is global and non-differentiable. To address
this, we present Algorithm 1. On each iteration,
we split the data into dummy ‘train’ and ‘test’
splits. We train a model f on the training portion
and obtain parameters 6, then use the remaining
test portion to reassign the indices of A. For each
context, we replace some number of ‘easy’ nega-
tives in A that fy classifies correctly with ‘adver-
sarial’ negatives outside of 4 that fy misclassifies.

This process can be thought of as increasing
the overall entropy of the dataset: given a strong
model fy that is compatible with a random subset
of the data, we aim to ensure it cannot generalize
to the held-out set. We repeat this for several it-
erations to reduce the generalization ability of the
model family f over arbitrary train/test splits.

3.3 Generating candidate endings

To generate counterfactuals for Swas, we use an
LSTM (Hochreiter and Schmidhuber, 1997) lan-
guage model (LM), conditioned on contexts from
video captions. We first pretrain on BookCorpus
(Zhu et al., 2015), then finetune on the video cap-
tion datasets. The architecture uses standard best
practices and was validated on held-out perplex-
ity of the video caption datasets; details are in the
appendix. We use the LM to sample N~ =1023
unique endings for a partial caption.’

Importantly, we greedily sample the endings,
since beam search decoding biases the generated
endings to be of lower perplexity (and thus easily
distinguishable from found endings). We find this
process gives good counterfactuals: the generated
endings tend to use topical words, but often make
little sense physically, making them perfect for our
task. Further, the generated endings are marked
as “gibberish” by humans only 9.1% of the time
(Sec 3.5); in that case the ending is filtered out.

3To ensure that the LM generates unique endings, we split
the data into five validation folds and train five separate LMs,
one for each set of training folds. This means that each LM
never sees the found endings during training.
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Figure 2: Test accuracy by AF iteration, under the
negatives given by A. The accuracy drops from
around 60% to close to random chance. For effi-
ciency, the first 100 iterations only use the MLP.

3.4 Stylistic models for adversarial filtering

In creating swaes, we designed the model family
f to pick up on low-level stylistic features that we
posit should not be predictive of whether an event
happens next in a video. These stylistic features
are an obvious case of annotation artifacts (Cai
etal., 2017; Schwartz et al., 2017).* Our final clas-
sifier is an ensemble of four stylistic models:

1. A multilayer perceptron (MLP) given LM per-
plexity features and context/ending lengths.

2. A bag-of-words model that averages the word
embeddings of the second sentence as features.

3. A one-layer CNN, with filter sizes ranging from
2-5, over the second sentence.

4. A bidirectional LSTM over the 100 most com-
mon words in the second sentence; uncommon
words are replaced by their POS tags.

We ensemble the models by concatenating their fi-
nal representations and passing it through an MLP.
On every adversarial iteration, the ensemble is
trained jointly to minimize cross-entropy.

The accuracies of these models (at each itera-
tion, evaluated on a 20% split of the test dataset
before indices of A get remapped) are shown in
Figure 2. Performance decreases from 60% to
close to random chance; moreover, confusing the
perplexity-based MLP is not sufficient to lower
performance of the ensemble. Only once the other
stylistic models are added does the ensemble ac-
curacy drop substantially, suggesting that our ap-
proach is effective at reducing stylistic artifacts.

*A broad definition of annotation artifacts might include
aspects besides lexical/stylistic features: for instance, certain
events are less likely semantically regardless of the context
(e.g. riding a horse using a hose). For this work, we erred
more conservatively and only filtered based on style.

Imagine that you are watching a video clip. The clip has
a caption, but it is missing the final phrase. Please choose
the best 2 caption endings, and classify each as:

e likely, if it completes the caption in a reasonable way;
o unlikely, if it sounds ridiculous or impossible;

e gibberish if it has such serious errors that it doesn’t
feel like a valid English sentence.

Example: Someone is shown sitting on a fence and talking
to the camera while pointing out horses. Someone

e stands in front of a podium. (likely, second best)

e rides a horse using a hose. (unlikely)

e is shown riding a horse. (likely, best)

e  the horse in a plaza field. (gibberish)

Figure 3: Mechanical Turk instructions (abridged).

3.5 Human verification

The final data-collection step is to have humans
verify the data. Workers on Amazon Mechani-
cal Turk were given the caption context, as well
as six candidate endings: one found ending and
five adversarially-sampled endings. The task was
twofold: Turkers ranked the endings indepen-
dently as likely, unlikely, or gibberish, and se-
lected the best and second best endings (Fig 3).

We obtained the correct answers to each con-
text in two ways. If a Turker ranks the found end-
ing as either best or second best (73.7% of the
time), we add the found ending as a gold exam-
ple, with negatives from the generations not la-
belled best or gibberish. Further, if a Turker ranks
a generated ending as best, and the found ending
as second best, then we have reason to believe that
the generation is good. This lets us add an addi-
tional training example, consisting of the gener-
ated best ending as the gold, and remaining gen-
erations as negatives.” Examples with <3 non-
gibberish endings were filtered out.®

We found after 1000 examples that the annota-
tors tended to have high agreement, also generally
choosing found endings over generations (see Ta-
ble 2). Thus, we collected the remaining 112k ex-
amples with one annotator each, periodically veri-
fying that annotators preferred the found endings.

4 Experiments

In this section, we evaluate the performance of
various NLI models on Swas. Recall that models

>These two examples share contexts. To prevent biasing
the test and validation sets, we didn’t perform this procedure
on answers from the evaluation sets’ context.

%To be data-efficient, we reannotated filtered-out exam-
ples by replacing gibberish endings, as well as generations
that outranked the found ending, with candidates from .A.



Label distribution by | Inter-annotator
ending type agreement

Labels | Foundend Gen. end « ppa
Best 53.5% 9.3%

Second Best 20.2% 15.9% 0.43 72%
Neither 26.3% 74.8%
Likely 80.3% 33.3%

Unlikely 19.0% 57.5% 0.39 64%
Gibberish 0.7% 9.1%

Table 2: Annotators tend to label the found ending
as likely and within the top 2 (column 2), in other
cases the example is filtered out. Both label groups
have high inter-annotator agreement, in terms of
Krippendorff’s o and pairwise percent agreement.

for our dataset take the following form: given a
sentence and a noun phrase as context ¢ = (s, n),
as well as a list of possible verb phrase endings
V = {vy,...,v4}, amodel fp must select a verb
i that hopefully matches 7 444:

“4)

i = argmax fo(s, m, v;)
i

To study the amount of bias in our dataset, we
also consider models that take as input just the
ending verb phrase v;, or the entire second sen-
tence (n,v;). For our learned models, we train
f by minimizing multi-class cross-entropy. We
consider three different types of word representa-
tions: 300d GloVe vectors from Common Crawl
(Pennington et al., 2014), 300d Numberbatch vec-
tors retrofitted using ConceptNet relations (Speer
et al., 2017), and 1024d ELMo contextual repre-
sentations that show improvement on a variety of
NLP tasks, including standard NLI (Peters et al.,
2018). We follow the final dataset split (see Sec-
tion 2) using two training approaches: training on
the found data, and the found and highly-ranked
generated data. See the appendix for more details.

4.1 Unary models

The following models predict labels from a single
span of text as input; this could be the ending only,
the second sentence only, or the full passage.

a. fastText (Joulin et al., 2017): This library mod-
els a single span of text as a bag of n-grams, and
tries to predict the probability of an ending being
correct or incorrect independently.’

b. Pretrained sentence encoders We consider
two types of pretrained RNN sentence encoders,
SkipThoughts (Kiros et al., 2015) and InferSent

"The fastText model is trained using binary cross-entropy;
at test time we extract the prediction by selecting the ending
with the highest positive likelihood under the model.
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(Conneau et al., 2017). SkipThoughts was trained
by predicting adjacent sentences in book data,
whereas InferSent was trained on supervised NLI
data. For each second sentence (or just the end-
ing), we feed the encoding into an MLP.

c. LSTM sentence encoder Given an arbitrary
span of text, we run a two-layer BiLSTM over it.
The final hidden states are then max-pooled to ob-
tain a fixed-size representation, which is then used
to predict the potential for that ending.

4.2 Binary models

The following models predict labels from two
spans of text. We consider two possibilties for
these models: using just the second sentence,
where the two text spans are m,v;, or using the
context and the second sentence, in which case the
spans are s, (n, v;). The latter case includes many
models developed for the NLI task.

d. Dual Bag-of-Words For this baseline, we treat
each sentence as a bag-of-embeddings (c, v;). We
model the probability of picking an ending ¢ using
a bilinear model: softmax;(cWv/).8

e. Dual pretrained sentence encoders Here, we
obtain representations from SkipThoughts or In-
ferSent for each span, and compute their pairwise
compatibility using either 1) a bilinear model or 2)
an MLP from their concatenated representations.
f. SNLI inference Here, we consider two mod-
els that do well on SNLI (Bowman et al., 2015):
Decomposable Attention (Parikh et al., 2016) and
ESIM (Chen et al., 2017). We use pretrained ver-
sions of these models (with ELMo embeddings)
on SNLI to obtain 3-way entailment, neutral, and
contradiction probabilities for each example. We
then train a log-linear model using these 3-way
probabilities as features.

g. SNLI models (retrained) Here, we train ESIM
and Decomposable Attention on our dataset: we
simply change the output layer size to 1 (the po-
tential of an ending v;) with a softmax over 1.

4.3 Other models

We also considered the following models:

h. Length: Although length was used by the ad-
versarial classifier, we want to verify that human
validation didn’t reintroduce a length bias. For this
baseline, we always choose the shortest ending.

i. ConceptNet As our task requires world knowl-
edge, we tried a rule-based system on top of the

8We also tried using an MLP, but got worse results.



Ending only
found only found+gen foundonly found+gen found only found+gen

2nd sentence only Context+2nd sentence

Model | Val Test | Val Test | Val Test | Val Test | Val Test | Val Test
Random 25.0 25.0 | 25.0 25.0 | 25.0 25.0 | 25.0 25.0 | 25.0 25.0 | 25.0 25.0
misc Length 26.7 27.0 | 26.7 27.0
ConceptNet 26.0 26.0 | 26.0 26.0
@ fastText 27.5 269299 29.0 |29.2 27.8 |129.8 29.0 | 29.4 28.0 | 30.3 29.8
S Sentence SkipThoughts 324 321 (322 31.833.0 324|328 323
g encoders InferSent 30.6 30.2 | 32.0 31.9 | 33.2 32.0 | 34.0 32.6
?LSTM LSTM+GloVe 31.9 31.8 329 324|327 324|343 33.5|43.1 43.6 | 45.6 45.7
5 sequence LSTM+Numberbatch 324 32.6 (323 319 (319 31.9 |34.1 32.8 139.9 40.2 | 41.2 40.5
model LSTM+ELMo 43.6 429 | 43.3 423 | 474 46.7 | 46.3 46.0 | 51.4 50.6 | 51.3 50.4
DualBoW+GloVe 31.3 31.3 |31.9 31.2 |34.5 34.7 | 32.9 33.1
DualBoW py,,.1BoW-+Numberbatch 31.9 314 |31.6 313 |35.1 35.1 | 342 34.1
SkipThoughts-MLP 34.6 33.9 | 36.2 355|334 323|374 36.4
Dual SkipThoughts-Bilinear 36.0 357 | 347 345|365 35.6 | 353 349
o SeNeNCe  1hperSent-MLP 329 32.1 |32.8 32.7 [ 359 362 |39.5 39.4
< encoders  p, e Sent-Bilinear 32.0 31.3 | 31.6 31.3 | 40.5 40.3 | 39.0 38.4
g€ SNLI SNLI-ESIM 36.4 36.1 | 36.2 36.0
%‘inference SNLI-DeCOInpAttIl 35.8 35.8 | 35.8 35.7
R DecompAttn+GloVe 29.8 30.3 | 31.1 31.7 | 47.4 47.6 | 48.5 48.6
a SNLI DecompAttn+Numberbatch 32.4 31.7 | 32.5 319 |47.4 48.0 | 48.0 48.3
models DecompAttn+ELMo 434 434 | 40.6 403 | 477 473 | 46.0 454
(retrained) ESIM+GloVe 34.8 35.1 |36.3 36.7 | 51.9 52.7 | 52.5 52.5
ESIM+Numberbatch 33.1 32.6 | 33.0 324 |46.5 464 | 44.0 44.6
ESIM+ELMo 46.0 457 | 459 44.8 | 59.1 59.2 | 58.7 58.5
1 turker 82.8
3 turkers 85.1
Human 5 turkers 88.0
Expert 85.0

Table 3: Performance of all models in accuracy (%). All models substantially underperform humans,
although performance increases as more context is provided (left to right). We optionally train on found
endings only, or found and human-validated generated endings (found+gen).

ConceptNet knowledge base (Speer et al., 2017).
For an ending sentence, we use the spaCy depen-
dency parser to extract the head verb and its de-
pendent object. The ending score is given by the
number of ConceptNet causal relations’ between
synonyms of the verb and synonyms of the object.
j. Human performance To benchmark human
performance, five Mechanical Turk workers were
asked to answer 100 dataset questions, as did an
‘expert’ annotator (the first author of this paper).
Predictions were combined using a majority vote.

4.4 Results

We present our results in Table 3. The best model
that only uses the ending is the LSTM sequence
model with ELMo embeddings, which obtains
43.6%. This model, as with most models stud-
ied, greatly improves with more context: by 3.1%
when given the initial noun phrase, and by an ad-

We used the relations ‘Causes’, ‘CapableOf’, ‘Re-
ceivesAction’, ‘UsedFor’, and ‘HasSubevent’. Though their
coverage is low (30.4% of questions have an answer with >1
causal relation), the more frequent relations in ConceptNet,
such as ‘IsA’, at best only indirectly relate to our task.
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ditional 4% when also given the first sentence.
Further improvement is gained from models
that compute pairwise representations of the in-
puts. While the simplest such model, Dual-
BoW, obtains only 35.1% accuracy, combining In-
ferSent sentence representations gives 40.5% ac-
curacy (InferSent-Bilinear). The best results come
from pairwise NLI models: when fully trained on
swas, ESIM+ELMo obtains 59.2% accuracy.
When comparing machine results to human re-
sults, we see there exists a lot of headroom.
Though there likely is some noise in the task, our
results suggest that humans (even untrained) con-
verge to a consensus. Our in-house “expert” an-
notator is outperformed by an ensemble of 5 Turk
workers (with 88% accuracy); thus, the effective
upper bound on our dataset is likely even higher.

5 Analysis

5.1 swaes versus existing NLI datasets

The past few years have yielded great advances in
NLI and representation learning, due to the avail-
ability of large datasets like SNLI and MultiNLI
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Figure 4: Top: Distribution of the 40 top verbs in the union of SNLI and Swas. Our dataset shows a
greater variety of dynamic verbs, such as “move”, as well as temporal verbs such as “start” and “come.”
“Continue” is cut off for SNLI (it has frequency 6 - 10~5). Bottom: CDF for verbs in SNLI and Swae.

(Bowman et al., 2015; Williams et al., 2018). With Reason Explanation Freq.
the release of Swas, we hope to continue this Situational The good ending is better in context.  53.7%
trend, particularly as our dataset largely has the Plausibility The bad ending is implausible regard- 14.4%
same input/output format as other NLI datasets. less of context.

. Novelty The bad ending seems redundant; itis 1.8%
We observe three key differences between our entailed by the context.

dataset and others in this space: Weirdness The bad ending is semantically or 18.1%

. . . . grammatically malformed, e.g. ‘the
First, as noted in Section 1, Swae requires a man is getting out of the horse.

unique type of temporal reasoning. A state-of-the- Ambiguous Both endings seem equally likely. 12.0%
art NLI model such as ESIM, when bottlenecked
through the SNLI notion of entailment (SNLI-
ESIM), only obtains 36.1% accuracy.!® This im-
plies that these datasets necessitate different (and
complementary) forms of reasoning. that ESIM+ELMo answered incorrectly, for each

Second, our use of videos results in wide cover-  extracting both the gold ending and the model’s
age of dynamic and temporal situations Compared  preferred ending. We asked 5 Amazon Mechanical
with SNLI, with contexts from Flickr30K (Plum-  Turk workers to pick the better ending (of which
mer et al., 2017) image captions, Swas has more  they preferred the gold endings 94% of the time)
active verbs like ‘pull” and ‘hit, and fewer static  and to select one (or more) multiple choice reasons
verbs like ‘sit” and ‘wear’ (Figure 4).!! explaining why the chosen answer was better.

Third, our dataset suffers from few lexical bi- The options, and the frequencies, are outlined in
ases. Whereas fastText, a bag of n-gram model,  Table 4. The most common reason for the turkers
obtains 67.0% accuracy on SNLI versus a 34.3%  preferring the correct answer is situational (52.3%
baseline (Gururangan et al., 2018), fastText ob-  of the time), followed by weirdness (17.5%)
tains only 29.0% accuracy on Swae.'> and plausibility (14.4%). This suggests that
ESIM+ELMo already does a good job at filtering
out weird and implausible answers, with the main
We sought to quantify how human judgments dif-  bottleneck being grounded physical understand-
fer from the best studied model, ESIM+ELMo.  ing. The ambiguous percentage is also relatively
We randomly sampled 100 validation questions  low (12.0%), implying significant headroom.

Table 4: Justifications for ranking the gold answer
over a wrong answer chosen by ESIM+ELMo.

5.2 Error analysis

!0The weights of SNLI-ESIM pick up primarily on entail-
ment probability (0.59), as with neutral (0.46), while contra-

diction is negatively correlated (-.42). Last, we show several qualitative examples in Ta-

11 . .
Video data has other language differences; notably, char-
acter names in LSMDC were replaced by ‘someone’ ble 5. Though models can do decently well by

2The most predictive individual words on SWAG are in- identifying complex alignment patterns between
frequent in number: ‘dotted* with P(+|dotted) = 77% with  the two sentences (e.g. being “up a tree” im-

10.3 counts, and P(—|similar) = 81% with 16.3 counts. . ey .
(Counts from negative endings were discounted 3x, as there plies that “tree” is the end phrase), the incorrect

are 3 times as many negative endings as positive endings). model predictions suggest this strategy is insuffi-

5.3 Qualitative examples
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A waiter brings a fork. The waiter
a) starts to step away. (74.76 %)
b) adds spaghetti to the table. (21.57%)
¢) brings a bunch of pie to the food (2.67%)
d) drinks from the mug in the bowl. (0.98%)

He is up a tree. Someone
a) stands underneath the tree. (97.44%)
b) is at a pool table holding a cup. (1.14%)
¢) grabs a flower from a paper. (0.96%)
d) is eating some cereal. (0.45%)

An old man rides a small bumper car. Several people
a) get in the parking lot. (76.58%)
b) wait in the car. (15.28%)
c¢) get stuck with other bumper cars. (6.75%)
d) are running down the road. (1.39%)

He pours the raw egg batter into the pan. He
a) drops the tiny pan onto a plate. (93.48%)
b) lifts the pan and moves it around to shuffle the
eggs. (4.94%)
c) stirs the dough into a kite. (1.53%)
d) swirls the stir under the adhesive. (0.05%)

Table 5: Example questions answered by the best model, ESIM+EImo, sorted by model probability.
Correct model predictions are in blue, incorrect model predictions are red. The right answers are bolded.

cient. For instance, answering “An old man rides
a small bumper car” requires knowledge about
bumper cars and how they differ from regular cars:
bumper cars are tiny, don’t drive on roads, and
don’t work in parking lots, eliminating the alterna-
tives. However, this knowledge is difficult to ex-
tract from existing corpora: for instance, the Con-
ceptNet entry for Bumper Car has only a single
relation: bumper cars are a type of vehicle. Other
questions require intuitive physical reasoning: e.g,
for “he pours the raw egg batter into the pan,”
about what happens next in making an omelet.

5.4 Where to go next?

Our results suggest that Swae is a challenging
testbed for NLI models. However, the adversarial
models used to filter the dataset are purely stylis-
tic and focus on the second sentence; thus, subtle
artifacts still likely remain in our dataset. These
patterns are ostensibly picked up by the NLI mod-
els (particularly when using ELMo features), but
the large gap between machine and human perfor-
mance suggests that more is required to solve the
dataset. As models are developed for common-
sense inference, and more broadly as the field of
NLP advances, we note that AF can be used again
to create a more adversarial version of Swaé using
better language models and AF models.

6 Related Work

Entailment NLI There has been a long his-
tory of NLI benchmarks focusing on linguistic
entailment (Cooper et al., 1996; Dagan et al.,
2006; Marelli et al., 2014; Bowman et al., 2015;
Lai et al.,, 2017; Williams et al., 2018). Re-
cent NLI datasets in particular have supported
learning broadly-applicable sentence representa-
tions (Conneau et al., 2017); moreover, models
trained on these datasets were used as components
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for performing better video captioning (Pasunuru
and Bansal, 2017), summarization (Pasunuru and
Bansal, 2018), and generation (Holtzman et al.,
2018), confirming the importance of NLI research.
The NLI task requires a variety of commonsense
knowledge (LoBue and Yates, 2011), which our
work complements. However, previous datasets
for NLI have been challenged by unwanted an-
notation artifacts, (Gururangan et al., 2018; Po-
liak et al., 2018) or scale issues. Our work ad-
dresses these challenges by constructing a new
NLI benchmark focused on grounded common-
sense reasoning, and by introducing an adversar-
ial filtering mechanism that substantially reduces
known and easily detectable annotation artifacts.

Commonsense NLI Several datasets have been
introduced to study NLI beyond linguistic entail-
ment: for inferring likely causes and endings given
a sentence (COPA; Roemmele et al., 2011), for
choosing the most sensible ending to a short story
(RocStories; Mostafazadeh et al., 2016; Sharma
et al., 2018), and for predicting likelihood of a hy-
pothesis by regressing to an ordinal label (JOCI;
(Zhang et al., 2017)). These datasets are relatively
small: 1k examples for COPA and 10k cloze ex-
amples for RocStories.!3 JOCI increases the scale
by generating the hypotheses using a knowledge
graph or a neural model. In contrast to JOCI where
the task was formulated as a regression task on the
degree of plausibility of the hypothesis, we frame
commonsense inference as a multiple choice ques-
tion to reduce the potential ambiguity in the labels
and to allow for direct comparison between ma-
chines and humans. In addition, Swas’s use of ad-
versarial filtering increases diversity of situations
and counterfactual generation quality.

3For RocStories, this was by design to encourage learning
from the larger corpus of 98k sensible stories.



Last, another related task formulation is sen-
tence completion or cloze, where the task is to pre-
dict a single word that is removed from a given
context (Zweig and Burges, 2011; Paperno et al.,
2016)."* Our work in contrast requires longer tex-
tual descriptions to reason about.

Vision datasets Several resources have been in-
troduced to study temporal inference in vision.
The Visual Madlibs dataset has 20k image cap-
tions about hypothetical next/previous events (Yu
et al., 2015); similar to our work, the test portion
is multiple-choice, with counterfactual answers re-
trieved from similar images and verified by hu-
mans. The question of ‘what will happen next?’
has also been studied in photo albums (Huang
et al., 2016), videos of team sports, (Felsen et al.,
2017) and egocentric dog videos (Ehsani et al.,
2018). Last, annotation artifacts are also a re-
curring problem for vision datasets such as Vi-
sual Genome (Zellers et al., 2018) and Visual QA
(Jabri et al., 2016); recent work was done to cre-
ate a more challenging VQA dataset by annotating
complementary image pairs (Goyal et al., 2016).

Reducing gender/racial bias Prior work has
sought to reduce demographic biases in word em-
beddings (Zhang et al., 2018) as well as in image
recognition models (Zhao et al., 2017). Our work
has focused on producing a dataset with minimal
annotation artifacts, which in turn helps to avoid
some gender and racial biases that stem from elic-
itation (Rudinger et al., 2017). However, it is not
perfect in this regard, particularly due to biases
in movies (Schofield and Mehr, 2016; Sap et al.,
2017). Our methodology could potentially be ex-
tended to construct datasets free of (possibly inter-
sectional) gender or racial bias.

Physical knowledge Prior work has studied
learning grounded knowledge about objects and
verbs: from knowledge bases (Li et al., 2016), syn-
tax parses (Forbes and Choi, 2017), word embed-
dings (Lucy and Gauthier, 2017), and images and
dictionary definitions (Zellers and Choi, 2017).
An alternate thread of work has been to learn
scripts: high-level representations of event chains
(Schank and Abelson, 1975; Chambers and Juraf-
sky, 2009). swae evaluates both of these strands.

“Prior work on sentence completion filtered negatives
with heuristics based on LM perplexities. We initially tried
something similar, but found the result to still be gameable.
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7 Conclusion

We propose a new challenge of physically situated
commonsense inference that broadens the scope
of natural language inference (NLI) with com-
monsense reasoning. To support research toward
commonsense NLI, we create a large-scale dataset
swas with 113k multiple-choice questions. Our
dataset is constructed using Adversarial Filtering
(AF), a new paradigm for robust and cost-effective
dataset construction that allows datasets to be con-
structed at scale while automatically reducing an-
notation artifacts that can be easily detected by a
committee of strong baseline models. Our adver-
sarial filtering paradigm is general, allowing po-
tential applications to other datasets that require
human composition of question answer pairs.
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Abstract

Determining whether a given claim is sup-
ported by evidence is a fundamental NLP
problem that is best modeled as Textual En-
tailment. However, given a large collection of
text, finding evidence that could support or re-
fute a given claim is a challenge in itself, am-
plified by the fact that different evidence might
be needed to support or refute a claim. Nev-
ertheless, most prior work decouples evidence
identification from determining the truth value
of the claim given the evidence.

We propose to consider these two aspects
jointly.  We develop TWOWINGOS (two-
wing optimization strategy), a system that,
while identifying appropriate evidence for a
claim, also determines whether or not the
claim is supported by the evidence. Given
the claim, TWOWINGOS attempts to iden-
tify a subset of the evidence candidates; given
the predicted evidence, it then attempts to
determine the truth value of the correspond-
ing claim. We treat this challenge as cou-
pled optimization problems, training a joint
model for it. TWOWINGOS offers two ad-
vantages: (i) Unlike pipeline systems, it facil-
itates flexible-size evidence set, and (ii) Joint
training improves both the claim verification
and the evidence identification. Experiments
on a benchmark dataset show state-of-the-art
performance.!

1 Introduction

A claim, e.g., “Marilyn Monroe worked with
Warner Brothers”, is an assertive sentence that
may be true or false. While the task of claim
verification will not tell us the absolute truth of
this claim, it is expected to determine whether the
claim is supported by evidence in a given text col-
lection. Specifically, given a claim and a text cor-
pus, evidential claim verification, demonstrated in

'cogcomp.org/page/publication_view/847
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text corpus claim entailment decision

----------

Canadais the second -~~~
largest country

bjrbn areb

Figure 1: Illustration of evidential claim verification
task. For a claim, we determine its truth value by evi-
dence identified from a text corpus.

Figure 1, aims at identifying text snippets in the
corpus that act as evidence that supports or refutes
the claim.

This problem has broad applications. For exam-
ple, knowledge bases (KB), such as Freebase (Bol-
lacker et al., 2008), YAGO (Suchanek et al., 2007),
can be augmented with a new relational statement
such as “(Afghanistan, is_source_of, Kushan Dy-
nasty)”. This needs to be first verified by a claim
verification process and supported by evidence
(Roth et al., 2009; Chaganty et al., 2017). More
broadly, claim verification is a key component in
any technical solution addressing recent concerns
about the trustworthiness of online content (Vy-
diswaran et al., 2011; Pasternack and Roth, 2013;
Hovy et al., 2013). In both scenarios, we care
about whether or not a claim holds, and seek re-
liable evidence in support of this decision.

Evidential claim verification requires that we
address three challenges. First, to locate text snip-
pets in the given corpus that can potentially be
used to determine the truth value of the given
claim. This differs from the conventional textual
entailment (TE) problem (Dagan et al., 2013) as
here we first look for the premises given a hypoth-
esis. Clearly, the evidence one seeks depends on
the claim, as well as on the eventual entailment

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 105-114
Brussels, Belgium, October 31 - November 4, 2018. (©2018 Association for Computational Linguistics
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Figure 2: TWOWINGOS, a generic two-wing optimiza-
tion framework. A subset of the evidence candidates
Se={s1,...,8m—1,Sm} is chosen via a binary vector
(left), and an n-valued entailment decision y; € Y is
chosen (right), with respect to the claim x.

decision — the same claim would require different
supporting than refuting evidence. This motivates
us to develop an approach that can transfer knowl-
edge from claim verification to evidence identifi-
cation. Second, the evidence for a claim might re-
quire aggregating information from multiple sen-
tences and even multiple documents (rf. #3 in Ta-
ble 4). Therefore, a set, rather than a collection of
independent text snippets, should be chosen to act
as evidence. And, finally, in difference from TE,
given a set of evidence sentences as a premise, the
truth value of the claim should depend on all of the
evidence, rather than on a single sentence there.

The discussion above suggests that claim verifi-
cation and evidence identification are tightly cou-
pled. Claim should influence the identification of
appropriate evidence, and “trusted evidence boosts
the claim’s veracity” (Vydiswaran et al., 2011).
Consequently, we propose TWOWINGOS, a two-
wing optimization strategy?, to support this pro-
cess. As shown in Figure 2, we consider a set
of sentences S as the candidate evidence space, a
claim z, and a decision space Y for the claim veri-
fication. In the optimal condition, a one-hot vector
over Y indicates which decision to make towards
the claim, and a binary vector over S indicates a
subset of sentences S (in blue in Figure 2) to act
as evidence.

Prior work mostly approached this problem as
a pipeline procedure — first, given a claim z, de-
termine S, by some similarity matching; then,
conduct textual entailment over (S., x) pairs.
Our framework, TWOWINGOS, optimizes the two

By “two-wing optimization”, we mean that the same ob-
ject, i.e., the claim, is mapped into two target spaces in a joint
optimization scheme.
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subtasks jointly, so that both claim verification and
evidence identification can enhance each other.
TWOWINGOS is a generic framework making
use of a shared representation of the claim to co-
train evidence identification and claim verifica-
tion.

TWOWINGOS is tested on the FEVER bench-
mark (Thorne et al., 2018), showing ~30% F im-
provement for evidence identification, and ~23%
accuracy increase in claim verification. Our analy-
sis shows that (i) entity mentions in claims provide
a strong clue for retrieving relevant passages; (ii)
composition of evidence clues across sentences
helps claim verification; and that (iii) the joint
training scheme provides significant benefits of a
pipeline architecture.

2 Related Work

Most work focuses on the dataset construction
while lacking advanced models to handle the prob-
lem. Vlachos and Riedel (2014) propose and de-
fine the “fact checking” problem, without a con-
crete solution. Ferreira and Vlachos (2016) re-
lease the dataset “Emergent” for rumor debunking.
Each claim is accompanied by an article headline
as evidence. Then a three-way logistic regression
model is used over some rule-based features. No
need to search for evidence. Wang (2017) release a
larger dataset for fake news detection, and propose
a hybrid neural network to integrate the statement
and the speaker’s meta data to do classification.
However, the presentation of evidences is ignored.
Kobayashi et al. (2017) release a similar dataset to
(Thorne et al., 2018), but they do not consider the
evaluation of evidence reasoning.

Some work mainly pays attention to determin-
ing whether the claim is true or false, assuming ev-
idence facts are provided or neglecting presenting
evidence totally, e.g., (Angeli and Manning, 2014)
— given a database of true facts as premises, pre-
dicting whether an unseen fact is true and should
belong to the database by natural logic inference.
Open-domain question answering (QA) against a
text corpus (Yin et al., 2016; Chen et al., 2017;
Wang et al., 2018) can also be treated as claim ver-
ification problem, if we treat (question, correct an-
swer) as a claim. However, little work has studied
how well a QA system can identify all the answer
evidence.

Only a few works considered improving the evi-
dence presentation in claim verification problems.



Roth et al. (2009) introduce the task of Entailed
Relation Recognition — given a set of short para-
graphs and a relational fact in the triple form of
(argumenty, relation, arguments), finding the para-
graphs that can entail this fact. They first use Ex-
panded Lexical Retrieval to rank and keep the top-
k paragraphs as candidates, then build a TE clas-
sifier over each (candidate, statement) pair. The
work directly related to us is by Thorne et al.
(2018). Given claims and a set of Wikipages,
Thorne et al. (2018) use a retrieval model based on
TF-IDF to locate top-5 sentences in top-5 pages as
evidence, then utilize a neural entailment model to
classify (evidence, claim) pairs.

In contrast, our work tries to optimize the claim
verification as well as the evidence identification
in a joint training scheme, which is more than just
supporting or refuting the claims.

3 The TWOWINGOS Model

Figure 2 illustrates the two-wing optimization
problem addressed in this work: given a collec-
tion of evidence candidates S={s1, s2, -, Sj, * -
Sm},aclaim z and adecisionsetY ={y; - -, yn },
the model TWOWINGOS predicts a binary vector
p over .S and a one-hot vector o over Y against the
ground truth, a binary vector ¢ and a one-hot vec-
tor z, respectively. A binary vector over .S means
a subset of sentences (S,) act as evidence, and the
one-hot vector indicates a single decision (y;) to
be made towards the claim x given the evidence
Se. Next, we use two separate subsections to elab-
orate the process of evidence identification (i.e.,
optimize p to ¢) and the claim verification (i.e.,
optimize o to z).

3.1 Evidence identification

A simple approach to identifying evidence is to de-
tect the top-k sentences that are lexically similar to
the claim, as some pipeline systems (Roth et al.,
2009; Thorne et al., 2018) do. However, a claim-
unaware fixed k is less optimal, adding noise or
missing key supporting factors, consequently lim-
iting the performance.

In this work, we approach the evidence by mod-
eling sentences S={si, -+, S;, -+, S;m} with
the claim x as context in a supervised learning
scheme. For each s;, the problem turns out to be
learning a probability: how likely s; can entail the
claim conditioned on other candidates as context,
as shown by the blue items in Figure 2.
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To start, a piece of text ¢ (t € S U {x}) is repre-
sented as a sequence of [ hidden states, forming a
feature map T € R?*!, where d is the dimension-
ality of hidden states. We first stack a vanilla CNN
(convolution & max-pooling) (LeCun et al., 1998)
over T to get a representation for . As a result,
each evidence candidate s; has a representation s;,
and the claim x has a representation x. To get a
probability for each s;, we need first to build its
claim-aware representation r;.

Coarse-grained representation. We directly
concatenate the representation of s; and x, gen-
erated by the vanilla CNN, as:

(1

This coarse-grained approach makes use of merely
the sentence-level representations while neglect-
ing more fine-grained interactions between the
sentences and the claim.

r, = [Si7 X, 8 - XT]

Fine-grained representation. Instead of di-
rectly employing the sentence-level representa-
tions, here we explore claim-aware representations
for each word in sentence s;, then compose them
as the sentence representation r;, inspired by the
Attentive Convolution (Yin and Schiitze, 2017).

For each word sg in s;, we first calculate its
matching score towards each word z* in x, by dot
product over their hidden states. Then the repre-
sentation of the claim, as the context for the word
s, is formed as:

cg = Z softmax(sg C(xA)T) %7 ()

Now, word s{ has left context sg _1, right con-
text s{“ in s;, and the claim-aware context cg
from z. A convolution encoder generates its
claim-aware representation i:

lg — tanh(W - [s/ 7!

7

7 J+1
) 85585

,¢;] +b)
where parameters W € R?*44 b ¢ R,

To compose those claim-aware word represen-
tations as the representation for sentence s;, we
use a max-pooling over {i/ } along with j, gener-
ating i;.

We use term fin(S;, ) to denote this whole
process, so that:

3)

“4)

At this point, the fine-grained representation for
evidence candidate s; is:

i; = fint(8i, )

&)

r, = [Sia X,S8; - XT7 il]



Loss function. With a claim-aware representa-
tion r;, the sentence s; subsequently gets a prob-
ability, acting as the evidence, o; € (0,1) via a
non-linear sigmoid function:

(6)

o; = sigmoid(v - r})

where parameter vector v has the same dimension-
ality as r;.

In the end, all evidence candidates in S have
a ground-truth binary vector ¢ and the predicted
probability vector «; then loss I, (“ev”: evidence)
is implemented as a binary cross-entropy:

lev = ) —(ailog(ai)+ (1) log(1-as)) (7)
i=1

As the output of this evidence identification
module, we binarize the probability vector v by
p; = [o; > 0.5] (“[«]” is 1 if «x is true or O other-
wise). p; indicates s; is evidence or not. All {s;}
with p; = 1 act as evidence set S,.

3.2 Claim verification

As shown in Figure 2, to figure out an entailment
decision y; for the claim z, the evidence S, pos-
sibly consists of more than one sentence. Further-
more, those evidence sentences are not necessar-
ily in textual order nor from the same passage.
So, we need a mechanism that enables each evi-
dence or even each word inside to be aware of the
content from other evidence sentences. Similar to
the aforementioned approach to evidence identifi-
cation, we come up with three methods, with dif-
ferent representation granularity, to learn a repre-
sentation for (S, x), i.e., the input for claim veri-
fication, shown in Figure 3.

Coarse-grained representation. In this case,
we treat S, as a whole, constructing its represen-
tation e by summing up the representations of all
sentences in S, in a weighted way:

m

€= E QG - Pi 8

=1

®)

where «;, from Equation 6, is the probability of s;
being the evidence.

Then the (S, x) pair gets a coarse-grained con-
catenated representation: [e, x|. It does not model
the interactions within the evidence nor the in-
teractions between the evidence and the claim.
Based on our experience in evidence identification
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Figure 3: Three representation learning methods in
claim verification. Green arrows act as context in at-
tentive convolution.

module, the representation of a sentence is better
learned by composing context-aware word-level
representations. Next, we introduce how to learn
fine-grained representation for the (S, ) pair.

Single-channel fine-grained representation.
By “single-channel,” we mean each sentence s; is
aware of the claim x as its single context.

For a single pair (s;, ), we utilize the func-
tion fint() in Equation 4 to build the fine-grained
representations for both s; and x, obtaining i; =



fint (i, z) for s; and x; = fine (2, s;) for x.
For (S., =), we compose all the {i;} and all the

{x;} along with i, via a weighted max-pooling:

9
(10)

e = maxpool,(«a; - p; - 1;)

x = maxpool;(a; - p; - X;)

This weighted max-pooling ensures that the
sentences with higher probabilities of being evi-
dence have a higher chance to present their fea-
tures. As a result, (Se, x) gets a concatenated rep-
resentation: [e, x|

Two-channel fine-grained representation. By
“two-channel,” we mean that each evidence s; is
aware of two kinds of context, one from the claim
x, the other from the remaining evidences.

Our first step is to accumulate evidence clues
within S,. To start, we concatenate all sentences in
S, as a fake long sentence S consisting of hidden
states {§}. Similar to Equation 2, for each word
sg in sentence s;, we accumulate all of its related
clues (cg ) from S as follows:

cg = Z softmax(s{ (89T - 87 (11)

Then we update sg , the representation of word

5{ , by element-wise addition:
sl =sl ol (12)

This step enables the word sg to “see” all related
clues from S,. The reason we add sg and cg is mo-
tivated by a simple experience: Assume the claim
“Lily lives in the biggest city in Canada”, and one
sentence contains a clue “- - - Lily lives in Toronto

-7 and another sentence contains a clue
Toronto is Canada’s largest city---”. The most
simple yet effective approach to aggregating the
two clues is to sum up their representation vectors
(Blacoe and Lapata, 2012) (we do not concatenate
them, as those clues have no consistent textual or-
der across different sg ).

After updating the representation of each word
in s;, we perform the aforementioned “single-
channel fine-grained representation” between the
updated s; and the claim z, generating [e, x].
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Loss function. For the claim verification input
(Se, ), we forward its representation [e, x] to a
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\ #SUPPORTED #REFUTED  #NEI
train 80,035 29,775 35,639
dev 3,333 3,333 3,333
test 3,333 3,333 3,333

Table 1: Statistics of claims in FEVER dataset

logistic regression layer in order to infer a proba-
bility distribution o over the label space Y':
o = softmax(W - [e, x| + b) (13)
where W € R"%2d 1 ¢ R™
The loss ., (“cv”: claim verification) is imple-
mented as negative log-likelihood:
lev = —log(o - z") (14)
where z is the ground truth one-hot label vector
for the claim x on the space Y.

3.3 Joint optimization

Given the loss [, in evidence identification and
the loss I, in claim verification, the overall train-
ing loss is represented by:

[ = lev + lcv (15)

To ensure that we jointly train the two coupled
subtasks with intensive knowledge communica-
tion instead of simply putting two pipeline neural
networks together, our TWOWINGOS has follow-
ing configurations:

e Both subsystems share the same set of word
embeddings as parameters; the vanilla CNNs for
learning sentence and claim representations share
parameters as well.

e The output binary vector p by the evidence
identification module is forwarded to the module
of claim verification, as shown in Equations 8-10.

e Though the representation of a claim’s deci-
sion y; is not put explicitly into the module of ev-
idence identification, the claim’s representation x
will be fine-tuned by the y;, so that the evidence
candidates can get adjustment from the decision
Yi, since the claims are shared by two modules.

4 Experiments

4.1 Setup

Dataset. In this work, we use FEVER (Thorne
et al., 2018). The claims in FEVER were gen-
erated from the introductory parts of about 50K
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Wikipedia pages of a June 2017 dump. Anno-
tators construct claims about a single fact of the
title entity with arbitrarily complex expressions
and entity forms. To increase the claim com-
plexity so that claims would not be trivially ver-
ified, annotators adopt two routes: (i) Provid-
ing additional knowledge: Annotators can explore
a dictionary of terms that were (hyper-)linked,
along with their pages; (ii) Mutate claims in six
ways: negation, paraphrasing, substitution of a
relation/entity with a similar/dissimilar one, and
making the claims more general/specific. All re-
sulting claims have 9.4 tokens in average. Apart
from claims, FEVER also provides a Wikipedia
corpus in size of about 5.4 million.

Each claim is labeled as SUPPORTED, RE-
FUTED or NOTENOUGHINFO (NEI). In addition,
evidence sentences, from any wiki page, are re-
quired to be provided for SUPPORTED and RE-
FUTED. Table 1 lists the data statistics. Figure 4
shows the distributions of sentence sizes and page
sizes in FEVER’s evidence set. We can see that
roughly 28% of the evidence covers more than
one sentence, and approximately 16.3% of the ev-
idence covers more than one wiki page.

This task has three evaluations: (1)
NOSCOREEV - accuracy of claim verifica-
tion, neglecting the validity of evidence; (ii)
SCOREEV — accuracy of claim verification with
a requirement that the predicted evidence fully
covers the gold evidence for SUPPORTED and RE-
FUTED; (iii) £ — between the predicted evidence
sentences and the ones chosen by annotators. We
use the officially released evaluation scorer

3https://github.com/sheffieldnlp/fever-scorer
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Wiki page retrieval*. For each claim, we search
in the given dictionary of wiki pages in the form of
{title: sentence list}, and keep the top-5 ranked
pages for fair comparison with Thorne et al.
(2018). Algorithm 1 briefly shows the steps of
wiki page retrieval. To speed up, we first build
an inverted index from words to titles, then for
each claim, we only search in the titles that cover
at least one claim word.

Input: A claim, wiki={title: page_vocab}
Output: A ranked top-k wiki titles
Generate entity_mentions from the claim;
while each title do
if claim.vocabNtitle.vocab is empty then
| discard this title
else
title_score = the max recall value of title.vocab
in claim and in entity_mentions of the claim;
if ritle_score = 1.0 then
| title.score = title_score
else
page_score = recall of claim in
page_vocab;
title.score = title_score + page_score
end

end
end
Sort titles by title.score in descending order

Algorithm 1: Algorithm description of wiki
page retrieval for FEVER claims.

All sentences of the top-5 retrieved wiki pages
are kept as evidence candidates for claims in train,
dev and test. It is worth mentioning that this page
retrieval step is a reasonable preprocessing which
controls the complexity of evidence searching in
real-world, such as the big space — 5.4 million — in
this work.

Training setup. All words are initialized by
300D Word2Vec (Mikolov et al., 2013) embed-
dings, and are fine-tuned during training. The
whole system is trained by AdaGrad (Duchi et al.,
2011).  Other hyperparameter values include:
learning rate 0.02, hidden size 300, mini-batch
size 50, filter width 3.

Baselines. In this work, we first consider the two
systems reported by Thorne et al. (2018): (i) MLP:
A multi-layer perceptron with one hidden layer,
based on TF-IDF cosine similarity between the
claim and the evidence (all evidence sentences are
concatenated as a longer text piece) (Riedel et al.,
2017); (ii)) Decomp-Att (Parikh et al., 2016): A
decomposable attention model that develops atten-

4Our retrieval results are released as well.



k (Thorne et al., 2018) ours
rate  acc_ceiling | rate acc_ceiling

1 25.31 50.21 76.58 84.38
5 55.30 70.20 89.63 93.08
10 | 65.86 77.24 91.19 94.12
25 | 75.92 83.95 92.81 95.20
50 | 82.49 90.13 93.36 95.57
100 | 86.59 91.06 94.19 96.12

Table 2: Wikipage retrieval evaluation on dev. “rate”:
claim proportion, e.g., x%, if its gold passages are
fully retrieved (for “SUPPORT” and “REFUTE” only);
“acc_ceiling”: w, the upper bound of

#S+HHR+#HN '
accuracy for three classes if the coverage % satisfies.

tion mechanisms to decompose the problem into
subproblems to solve in parallel. Note that both
systems first employed an IR system to keep top-
5 relevant sentences from the retrieved top-5 wiki
pages as static evidence for claims.

We further consider the following variants of
our own system TWOWINGOS:

e Coarse-coarse: Both evidence identification
and claim verification adopt coarse-grained repre-
sentations.

To further study our system, we test this
“coarse-coarse” in three setups: (i) “pipeline” —
train the two modules independently. Forward the
predicted evidence to do entailment for claims; (ii)
“diff-CNN” — joint training with separate CNN pa-
rameters to learn sentence/claim representations;
(iii) “share-CNN” — joint training with shared
CNN parameters.

The following variants are in joint training.

o Fine&sentence-wise: Given the evidence
with multiple sentences, a natural baseline is to do
entailment reasoning for each (sentence, claim),
then compose. We do entailment reasoning be-
tween each predicted evidence sentence and the
claim, generating a probability distribution over
the label space Y. Then we sum up all the distribu-
tion vectors element-wise, as an ensemble system,
to predict the label;

e Four combinations of different grained rep-

resentation learning: “coarse&fine(single)”,
“coarse&fine(two)”, “fine&coarse” and
“fine&fine(two)”. “Single” and “two” refer

to the single/two-channel cases respectively.

4.2 Results

Performance of passage retrieval. Table 2
compares our wikipage retriever with the one in
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(Thorne et al., 2018), which used a document re-
triever’ from DrQA (Chen et al., 2017).

Our document retrieval module surpasses the
competitor by a big margin in terms of the cover-
age of gold passages: 89.63% vs. 55.30% (k = 5
in all experiments). Its powerfulness should be
attributed to: (i) Entity mention detection in the
claims. (ii) As wiki titles are entities, we have a
bi-channel way to match the claim with the wiki
page: one with the title, the other with the page
body, as shown in Algorithm 1.

Performance on FEVER Table 3 lists the
performances of baselines and the TWOWIN-
GOS variants on FEVER (dev&test). From the
dev block, we observe that:

e TWOWINGOS (from “share-CNN”) sur-
passes prior systems in big margins. Overall,
fine-grained schemes in each subtask contribute
more than the coarse-grained counterparts;

o In the three setups — “pipeline”, “diff-CNN”
and “share-CNN” — of coarse-coarse, “pipeline”
gets better scores than (Thorne et al., 2018) in
terms of evidence identification. ‘“‘Share-CNN”
has comparable F as “diff-CNN” while gaining
a lot on NOSCOREEV (72.32 vs. 39.22) and
SCOREEV (50.12 vs. 21.04). This clearly shows
that the claim verification gains much knowledge
transferred from the evidence identification mod-
ule. Both “diff-CNN” and “share-CNN” perform
better than “pipeline” (except for the slight inferi-
ority at SCOREEV: 21.04 vs. 22.26).

e Two-channel fine-grained representations
show more effective than the single-channel
counterpart in claim verification (NOSCOREEV:
78.77 vs. 75.65, SCOREEV: 53.64 vs. 52.65).
As we expected, evidence sentences should
collaborate in inferring the truth value of the
claims. Two-channel setup enables an evidence
candidate aware of other candidates as well as the
claim.

e In the last three rows of dev, there is no
clear difference among their evidence identifica-
tion scores. Recall that “sent-wise” is essentially
an ensemble system over each (sentence, claim)
entailment result. “Coarse-grained”, instead, first
sums up all sentence representation, then performs
(3 _(sentence), claim) reasoning. We can also
treat this “sum up” as an ensemble. Their com-
parison shows that these two kinds of tricks do not

5Tt compares passages and claims as TF-IDF weighted
bag-of-bigrams.



claim verification evidence identification
system NOSCOREEV SCOREEV | recall precision  F}
MLP 41.86 19.04 44.22 10.44 16.89
Decomp-Att 52.09 32.57 44.22 10.44 16.89
coarse&coarse
n pipeline 35.72 22.26 53.75 29.42 33.80
_ % diff-CNN 39.22 21.04 46.88 43.01 44.86
3 Z share-CNN 72.32 50.12 45.55 40.77 43.03
% " coarse&fine(single) | 75.65 52.65 | 4581 4253 4411
Z comse&finewo) | 7877 5364|4578 3923 4225
fine&sent-wise 71.02 53.43 52.70 48.31 50.40
fine&coarse 71.48 53.17 52.75 47.30 49.87
fine&fine(two) 78.90 56.16 53.81 47.73 50.59
= (Thorne et al., 2018) 50.91 31.87 45.89 10.79 17.47
£  TwoWINGOS 75.99 54.33 49.91 44.68 47.15

Table 3: Performance on dev and test of FEVER. TWOWINGOS outperforms prior systems if vanilla CNN
parameters are shared by evidence identification and claim verification subsystems. It gains more if fine-grained

representations are adopted in both subtasks.
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Figure 5: Performance vs. #sentence in evidence. Our
system has robust precisions. The overall performance
NOSCOREEYV is not influenced by the decreasing re-
call; this verifies the fact that the truth value of most
claims can be determined by a single identified evi-
dence sentence.

make much difference.

If we adopt “two-channel fine-grained repre-
sentation” in claim verification, big improvements
are observed in both NOSCOREEV (+7.42%) and
SCOREEV (+3%).

In the test block, our system (fine&fine(two))
beats the prior top system across all measurements
by big margins — Fi: 47.15 vs. 17.47; SCOREEV:
54.33 vs. 31.87; NOSCOREEV: 75.99 vs. 50.91.

In both dev and test blocks, we can observe that
our evidence identification module consistently
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obtains balanced recall and precision. In con-
trast, the pipeline system by Thorne et al. (2018)
has much higher recall than precision (45.89 vs.
10.79). It is worth mentioning that the SCOREEV
metric is highly influenced by the recall value,
since SCOREEV is computed on the claim in-
stances whose evidences are fully retrieved, re-
gardless of the precision. So, ideally, a system can
set all sentences as evidence, so that SCOREEV
can be promoted to be equal to NOSCOREEV. Our
system is more reliable in this perspective.

Performance vs. #sent. in evidence. Figure 5
shows the results of the five evaluation measures
against different sizes of gold evidence sentences
in test set. We observe that: (i) Our system has
robust precisions across #sentence; however, the
recall decreases. This is not that surprising, since
the more ground-truth sentences in evidence, the
harder it is to retrieve all of them; (ii) Due to the
decrease in recall, the SCOREEV also gets influ-
enced for bigger #sentence. Interestingly, high
precision and worse recall in evidence with more
sentences still make consistently strong overall
performance, i.e., NOSCOREEV. This should be
due to the fact that the majority (83.18% (Thorne
etal., 2018)) of claims can be correctly entailed by
a single ground truth sentence, even if any remain-
ing ground truth sentences are unavailable.

Error analysis. The case #1 in Table 4 shows
that our system identifies two pieces of evidence



G/P

claim

gold evidence

predicted evidence

0/1

Telemundo is an English-language
television network.

(Telemundo, 0)
(Telemundo, 1)
(Telemundo, 4)
(Telemundo, 5)
(Hispanic_and_Latino_Americans, 0)

(Telemundo, 0)
(Telemundo, 4)
(Fourth_television_network, 0)
(Fourth_television_network, 4)

Home for the Holidays stars a famous

(Anne_Bancroft, 0)
(Charles_Durning, 0)

172 American actor. (Holly _Hunter, 0) 0
(Home_for_the_Holidays_(1995_film), 5)
. (Weekly_Idol, 0)
3l on Both hosts of Weekly Idol were born in (Weekly_Idol. 1) (Weekly_Idol, 1)

1983.

(Defconn, 0)

Table 4: Error cases of TWOWINGOS in FEVER. “G/P”: gold/predicted label (“0”: refute; “1”: support; “2”: not
enough information). To save space, we use “(title, 1) to denote the i‘" sentence in the corresponding wiki page.

(i.e., (Telemundo, 0) and (Telemundo, 4)) cor-
rectly; however, it falsely predicts the claim la-
bel. (Telemundo, 0): Telemundo is an Amer-
ican Spanish-language terrestrial television - - -
We can easily find that the keyword “Spanish-
language” should refute the claim. However,
both “Spanish-language” in this evidence and the
“English-language” in the claim are unknown to-
kens with randomly initialized embeddings. This
hints that a more careful data preprocessing may
be helpful. In addition, to refute the claim, an-
other clue comes from the combination of (Tele-
mundo, 4) and (Hispanic_and_Latino_Americans,
0). (Telemundo, 4): “The channel --- aimed
at Hispanic and Latino American audiences”;
(Hispanic_and_Latino_Americans, 0): “Hispanic
Americans and Latino Americans - - - are descen-
dants of people from countries of Latin America
and Spain.”. Our system only retrieved (Telemu-
ndo, 4). And this clue is hard to grasp as it re-
quires some background knowledge — people from
Latin America and Spain usually are not treated as
English-speaking.

In the case #2, our system fails to iden-
tify any evidence. This is due to the failure
of our passage retrieval module: it detects
entity mentions “Home”, “Holidays” and
“American”, and the top-5 retrieved pas-
sages are “Home”, “Home_for_the Holidays”,
“American_Home”, “American” and
“Home _for_the_Holidays_(song)”, = which un-
fortunately cover none of the four ground truth
passages. Interestingly, (i) given the falsely re-
trieved passages, our system predicts “no sentence
is valid evidence” (denoted as () in Table 4); (ii)
given the empty evidence, our system predicts
“NoEnoughlInfo” for this claim. Both make sense.

In the case #3, a successful classification of the

claim requires information aggregation over the
three gold evidence sentences: (Weekly_Idol, 0):
“Weekly Idol is a South Korean variety show - - -,
(Weekly_Idol, 1): “The show is hosted by come-
dian Jeong Hyeong-don and rapper Defconn.”;
(Defconn, 0): “Defconn (born Yoo Dae-joon; Jan-
uary 6, 1977 ) is a - - -”. To successfully retrieve
the three sentences as a whole set of evidence is
challenging in evidence identification. Addition-
ally, this example relies on the recognition and
matching of digital numbers (1983 vs. 1977),
which is beyond the expressivity of word embed-
dings, and is expected to be handled by rules more
easily.

S Summary

In this work, we build TWOWINGOS, a two-wing
optimization framework to address the claim veri-
fication problem by presenting precise evidence.
Differing from a pipeline system, TWOWIN-
GOS ensures the evidence identification mod-
ule and the claim verification module are trained
jointly, in an end-to-end scheme. Experiments
show the superiority of TWOWINGOS in the
FEVER benchmark.
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Abstract

In this paper we address the problem of learn-
ing multimodal word representations by in-
tegrating textual, visual and auditory inputs.
Inspired by the re-constructive and associa-
tive nature of human memory, we propose
a novel associative multichannel autoencoder
(AMA). Our model first learns the associa-
tions between textual and perceptual modali-
ties, so as to predict the missing perceptual in-
formation of concepts. Then the textual and
predicted perceptual representations are fused
through reconstructing their original and asso-
ciated embeddings. Using a gating mechanism
our model assigns different weights to each
modality according to the different concepts.
Results on six benchmark concept similarity
tests show that the proposed method signifi-
cantly outperforms strong unimodal baselines
and state-of-the-art multimodal models.

1 Introduction

Representing the meaning of a word is a prereq-
uisite to solve many linguistic and non-linguistic
problems, such as retrieving words with the same
meaning, finding the most relevant images or
sounds of a word and so on. In recent years we
have seen a surge of interest in building computa-
tional models that represent word meanings from
patterns of word co-occurrence in corpora (Turney
and Pantel, 2010; Mikolov et al., 2013; Penning-
ton et al., 2014; Clark, 2015; Wang et al., 2018b).
However, word meaning is also tied to the phys-
ical world. Many behavioral studies suggest that
human semantic representation is grounded in the
external environment and sensorimotor experience
(Landau et al., 1998; Barsalou, 2008). This has
led to the development of multimodal representa-
tion models that utilize both textual and perceptual
information (e.g., images, sounds).

As evidenced by a range of evaluations (An-
drews et al., 2009; Bruni et al., 2014; Silberer
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et al., 2016), multimodal models can learn bet-
ter semantic word representations (a.k.a. embed-
dings) than text-based models. However, most ex-
isting models still have a number of drawbacks.
First, they ignore the associations between modal-
ities, and thus lack the ability of information trans-
ferring between modalities. Consequently they
cannot handle words without perceptual informa-
tion. Second, they integrate textual and perceptual
representations with simple concatenation, which
is insufficient to effectively fuse information from
various modalities. Third, they typically treat the
representations from different modalities equally.
This is inconsistent with many psychological find-
ings that information from different modalities
contributes differently to the meaning of words
(Paivio, 1990; Anderson et al., 2017).

In this work, we introduce the associative multi-
channel autoencoder (AMA), a novel multimodal
word representation model that addresses all the
above issues. Our model is built upon the stacked
autoencoder (Bengio et al., 2007) to learn seman-
tic representations by integrating textual and per-
ceptual inputs. Inspired by the re-constructive
and associative nature of human memory, we pro-
pose two associative memory modules as exten-
sions. One is to learn associations between modal-
ities (e.g., associations between textual and visual
features), so as to reconstruct corresponding per-
ceptual information of concepts. The other is to
learn associations between related concepts, by re-
constructing embeddings of both target words and
their associated words. Furthermore, we propose a
gating mechanism to learn the importance weights
of different modalities to each word.

To summarize, our main contributions in this
work are two-fold:

e We present a novel associative multichannel
autoencoder for multimodal word represen-
tation, which is capable of utilizing associa-
tions between different modalities and related
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concepts, and assigning different importance
weights to each modality according to differ-
ent words. Results on six standard bench-
marks demonstrate that our methods outper-
form strong unimodal baselines and state-of-
the-art multimodal models.

Our model successfully integrates cognitive
insights of the re-constructive and associative
nature of semantic memory in humans, sug-
gesting that rich information contained in hu-
man cognitive processing can be used to en-
hance NLP models. Furthermore, our results
shed light on the fundamental questions of
how to learn semantic representations, such
as the plausibility of reconstructing percep-
tual information, associating related concepts
and grounding word symbols to external en-
vironment.

2 Background and Related Work

2.1 Cognitive Grounding

A large body of research evidences that human se-
mantic memory is inherently re-constructive and
associative (Collins and Loftus, 1975; Anderson
and Bower, 2014). That is, memories are not exact
static copies of reality, but are rather reconstructed
from their stimuli and associated concepts each
time they are retrieved. For example, when we see
a dog, not only the concept itself, but also the cor-
responding perceptual information and associated
words will be jointly activated and reconstructed.
Moreover, various theories state that the different
sources of information contribute differently to the
semantic representation of a concept (Wang et al.,
2010; Ralph et al., 2017). For instance, Dual Cod-
ing Theory (Hiscock, 1974) posits that concrete
words are represented in the brain in terms of a
perceptual and linguistic code, whereas abstract
words are encoded only in the linguistic modality.

In these respects, our method employs a re-
trieval and representation process analogous to
that of humans, in which the retrieval of percep-
tual information and associated words is triggered
and mediated by a linguistic input. The learned
cross-modality mapping and reconstruction of as-
sociated words are inspired by the human mental
model of associations between different modali-
ties and related concepts. Moreover, word mean-
ing is tied to both linguistic and physical environ-
ment, and relies differently on each modality in-
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puts (Wang et al., 2018a). These are also captured
by our multimodal representation model.

2.2 Multimodal Models

The existing multimodal representation models
can be generally classified into two groups: 1)
Jointly training models build multimodal repre-
sentations with raw inputs of textual and percep-
tual resources. 2) Separate training models inde-
pendently learn textual and perceptual representa-
tions and integrate them afterwards.

2.2.1 Jointly training models

A class of models extends Latent Dirichlet Alloca-
tion (Blei et al., 2003) to jointly learn topic distri-
butions from words and perceptual units (Andrews
et al., 2009; Silberer and Lapata, 2012; Roller and
Schulte im Walde, 2013). Recently introduced
work is an extension of the Skip-gram model
(Mikolov et al., 2013). For instance, Hill and
Korhonen (2014) propose a corpus fusion method
that inserts the perceptual features of concepts in
the training corpus, which is then used to train the
Skip-gram model. Lazaridou et al. (2015) propose
MMSkip model, which injects visual information
in the process of learning textual representations
by adding a max-margin objective to minimize the
distance between textual and visual vectors. Kiela
and Clark (2015) adopt the MMSkip to learn mul-
timodal vectors with auditory perceptual inputs.

These methods can implicitly propagate percep-
tual information to word representations and at
the same time learn multimodal representations.
However, they utilize raw text corpus in which
words having perceptual information account for a
small portion. This weakens the effect of introduc-
ing perceptual information and consequently leads
to the slight improvement of textual vectors.

2.2.2 Separate training models

The simplest approach is concatenation which
fuses textual and visual vectors by concatenat-
ing them. It has been proven to be effective in
learning multimodal representations (Bruni et al.,
2014; Hill et al., 2014; Collell et al., 2017). Vari-
ations of this method employ transformation and
dimension reduction on the concatenation result,
including application of singular value decom-
position (SVD) (Bruni et al., 2014) or canoni-
cal correlation analysis (CCA) (Hill et al., 2014).
There is also work using deep learning methods to
project different modality inputs into a common



space, including restricted Boltzman machines
(Ngiam et al., 2011; Srivastava and Salakhutdinov,
2012), autoencoders (Silberer and Lapata, 2014;
Silberer et al., 2016), and recursive neural net-
works (Socher et al., 2013). However, the above
methods can only generate multimodal vectors of
those words that have perceptual information, thus
reducing multimodal vocabulary drastically.

An empirically superior model addresses this
problem by predicting missing perceptual infor-
mation firstly. This includes Hill et al. (2014) who
utilize the ridge regression method to learn a map-
ping matrix from textual modality to visual modal-
ity, and Collell et al. (2017) who employ a feed-
forward neural network to learn the mapping re-
lation between textual vectors and visual vectors.
Applying the mapping function on textual repre-
sentations, they obtain the predicted visual vectors
for all words in textual vocabulary. Then they cal-
culate multimodal representations by concatenat-
ing textual and predicted visual vectors. However,
the above methods learn separate mapping func-
tions and fusion models, which are somewhat in-
elegant. In this paper we employ a neural-network
mapping function to integrate these two processes
into a unified multimodal models.

According to this classification, our method
falls into the second group. However, exist-
ing models ignore either the associative relations
among modalities, associative relations among rel-
ative words, or the different contributions of each
modality. This paper aims to integrate more per-
ceptual information and the human-like associa-
tive memory into a unified multimodal model to
learn better word representations.

3 Associative Multichannel Autoencoder

We first provide a brief description of the basic
multichannel autoencoder for learning multimodal
word representations (Figure 1). Then we extend
the model with two associative memory modules
and a gating mechanism (Figure 2) in the next sec-
tions.

3.1 Basic Mutichannel Autoencoder

An autoencoder is an unsupervised neural net-
work which is trained to reconstruct a given in-
put from its latent representation (Bengio, 2009).
In this work, we propose a variant of autoen-
coder called multichannel autoencoder, which
maps multimodal inputs into a common space.
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Figure 1: Architecture of the multichannel autoen-

coder with inputs of textual, visual and auditory
sources.

Our model extends the unimodal and bimodal au-
toencoder (Ngiam et al., 2011; Silberer and Lap-
ata, 2014) to induce semantic representations in-
tegrating textual, visual and auditory information.
As shown in Figure 1, our model first transforms
input textual vector x;, visual vector x,, and audi-
tory vector z, to hidden representations:

ht = g(Wt.’Et + bt)
hv = g(vav + bv)
ha = gWaza + by).

(1

Then the hidden representations are concatenated
together and mapped to a common space:

hm = g(Wm[ht§ hv; ha] + bm) (2)

The model is trained to reconstruct the hidden
representations of the three modalities from the
multimodal representation A, :

[hts T ha) = g(Whhum, + biy), 3)

and finally to reconstruct the original embeddings
of textual, visual and auditory inputs:

Ty = g(Wt/ilt + bz)
Ty = g(W{;ilv + by) )
fq =gW!he + ba),

where ;, ,, &, are the reconstruction of
input vectors x;, xy, X4, and hy, hy, hg



are the reconstruction of hidden representa-
tions h¢, hy, he. The learning parameters
Wy, Wy, Wo, W[, W/} W W,,, W] } are weight
matrices, {b¢, by, bq, b;, by, by, b, by} are bias
vectors. Here [- ; -] denotes the vector concatena-
tion, and g denotes the non-linear function which
we use tanh(-).

Training a single-layer autoencoder corre-
sponds to optimizing the learning parameters to
minimize the overall loss between inputs and their
reconstructions. Following (Vincent et al., 2010),
we use squared loss:

min'y (I 2P
o s)

where i denotes the i*"* word, and the model pa-
rameters are 61 = {W;, W, Wy, W,,,, W[, W/,
W), W), b, by, ba, b, by, by, ba, by b

Autoencoders can be stacked to create deep net-
works. To enhance the quality of semantic repre-
sentations, we employ a stacked multichannel au-
toencoder, which is composed of multiple hidden
layers that are stacked together.

= &3+ [y, — &P + |2 —

3.2 Integrating Modality Associations

In reality, the words that have corresponding im-
ages or sounds are only a small subset of the tex-
tual vocabulary. To obtain the perceptual vec-
tors for each word, we need associations between
modalities (i.e., text-to-vision and text-to-audition
mapping functions), that transform the textual vec-
tors into visual and auditory ones. Previous meth-
ods learn separate mapping functions and fusion
models, which are somewhat inelegant. Here we
employ a neural-network mapping function to in-
corporate this modality association module into
multimodal models.

Take text-to-vision mapping as an example.
Suppose that 77 € R™*™ js the textual repre-
sentation containing m; words, V' € R *™v jg
the visual representation containing m, (<& my)
words, where n; and n,, are dimensions of the tex-
tual and visual representations respectively. The
textual and visual representations of the i*" con-
cept are denoted as 7; and V; respectively. Our
goal is to learn a mapping function f : g(W,T +
b,) from textual to visual space such that the pre-
diction f(7;) is similar to the actual visual vec-
tor V;. The set of visual representations along
with their corresponding textual representations

Association word

@ ®.. @@)(@@ @@)(@@ @@)@@r.@@)
@. @@) E. @@) (@ @@) (@. aw&)

(@- @]

Multimodal
representations

Figure 2: Architecture of the proposed associative
multichannel autoencoder.

are used to learn the mapping function. To train
the model, we employ a square loss:

min ) _[|f(T:
=1

where the training parameters are 6 = {W},, by }.
We adopt the same method to learn the text-to-
audition mapping function.

— Vi3, (6)

3.3 Integrating Word Associations

Word associations are a proxy for an aspect of
human semantic memory that is not sufficiently
captured by the usual training objectives of multi-
modal models. Therefore we assume that incorpo-
rating the objective of word associations helps to
learn better semantic representations. To achieve
this, we propose to reconstruct the vector of as-
sociated word from the corresponding multimodal
semantic representation. Specifically, in the de-
coding process we change the equation (3) to:

[t o, ay hase] = 8(Wiph + i), (1)
and equation (4) to:
= g(W/h + by)
= &(Whhy + by)
o = &(Wiha + ba)
Zase = 8Waschase + base)-

®)

To train the model, we add an additional ob-
jective function, which is the mean square error
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between the embeddings of the associated word y
and their re-constructive embeddings Z,s.:

n

mgin 3 My = ol ©)
where 4/* and 2* are the embeddings of a pair of
associated words. Here, y is the concatenation
of three unimodal vectors [y;; yy;ya]. The pa-
rameters of word as§ociati0n module are 63
{Wt7 an Waa Wm; Wmv Wasw btv bv; bay bmy bﬁu
basc}. This additional criterion drives the learn-
ing towards a semantic representation capable of
reconstructing its associated representation.

3.4 Integrating a Gating Mechanism

Considering that the meaning of each word has
different dependencies on textual and perceptual
information, we propose the sample-specific gate
to assign different weights to each modality ac-
cording to different words. The weight parame-
ters are calculated by the following feed-forward
neural networks:

gt = Wy + byy)
v = g(ngxv + bgv)
a g(Wgafna + bga)a

(10)

where ¢g;, g, and g, are value or vector gate of tex-
tual, visual and auditory representations respec-
tively. For the value gate, Wy, W, and W, are
vectors, and bg¢, by, and by, are value parameters.
For the vector gate, the parameters Wy, W, and
W, are matrices, by, by, and by, are vectors. The
value gate controls the importance weights of dif-
ferent input representations as a whole, whereas
the vector gate can adjust the importance weights
of each dimension of input representations.

Finally, we compute element-wise multiplica-
tion of the textual, visual and auditory represen-
tations with their corresponding gates:

Tgt = Tt O Gt
(11)

Tgv = Ty © Gy

LTga = Tq © Ga-

The x4, 4, and 74, can be seen as the weighted
textual, visual and auditory representations. The
parameters of our gating mechanism is trained to-
gether with that of the proposed model.
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3.5 Model Training

To train the AMA model, we use overall objec-
tive function of equation (5) + (6) + (9). In the
training phase, model inputs are textual vectors,
the corresponding visual vectors, auditory vectors,
and association words (Figure 2). In the testing
phase, we only need textual inputs to generate
multimodal word representations.

4 Experimental Setup

4.1 Datasets

Textual vectors. We use 300-dimensional GloVe
vectors! which are trained on the Common Crawl
corpus consisting of 840B tokens and a vocabulary
of 2.2M words®.

Visual vectors. Our source of visual vectors
are collected from ImageNet (Russakovsky et al.,
2015) which covers a total of 21,841 WordNet
synsets (Fellbaum, 1998) that have 14,197,122 im-
ages. For our experiments, we delete words with
fewer than 50 images or words not in the Glove
vectors, and sample at most 100 images for each
word. To generate a visual vector for each word,
we use the forward pass of a pre-trained VGG-
net model® and extract the hidden representation
of the last layer as the feature vector. Then we
use averaged feature vectors of the multiple im-
ages corresponding to the same word. Finally, we
get 8,048 visual vectors of 128 dimensions.

Auditory vectors. For auditory data, we gather
audio files from Freesound®, in which we select
words with more than 10 audio files and sample at
most 50 sounds for one word. To extract auditory
features, we use the VGG-net model which is pre-
trained on Audioset’. The final auditory vectors
are averaged feature vectors of multiple audios of
the same word, which contains 9,988 words of 128
dimensions®.

Word associations. We use the word associ-
ation data collected by (De Deyne et al., 2016),
in which each word pair is generated by at least

'http ://nlp.stanford.edu/projects/
glove

2We have tried skip-gram vectors and get the same con-
clusions.

*http://www.vlfeat.org/matconvnet/

“http://www.freesound.org/

Shttps://research.google.com/audioset

®We build auditory vectors with the released code
att https://github.com/tensorflow/models/
tree/master/research/audioset



one subject’. This dataset includes mostly words
with similar meaning (e.g., occasionally & some-
times, adored & loved, supervisor & boss) and re-
lated words (e.g., eruption & volcano, cortex &
brain, umbrella & rain). We calculate the associ-
ation score for each word pair (cue word + target
word) as: the number of person who generated the
word pair divided by the total number of people
who were presented with the cue word. For train-
ing, we select pairs of associated words above a
threshold of 0.15 and delete those that are not in
the Glove vocabulary, which results in 7,674 word
association data sets®. For the development set,
we randomly sample 5,000 word association col-
lections together with their association scores.

4.2 Model Settings

Our models are implemented with PyTorch
(Paszke et al., 2017), optimized with Adam
(Kingma and Ba, 2014). We set the initial learn-
ing rate to 0.05, and batch size to 64. We tune the
number of layers over 1, 2, 3, the size of multi-
modal vectors over 100, 200, 300, and the size of
each layer in textual channel over 300, 250, 200,
150, 100 and in visual/auditory channel over 128,
120, 90, 60. We train the model for 500 epochs
and select the best parameters on the development
set. All models are trained for 3 times and the av-
erage results are reported in Table 1.

To test the effect of each module, we sep-
arately train the following models: multichan-
nel autoencoder with modality association (AMA-
M), with modality and word associations (AMA-
MW), with modality and word associations plus
value/vector gate (AMA-MW-Gval/vec).

For AMA-M model, we initialize the text-to-
vision and text-to-audition mapping functions
with pre-trained mapping matrices, which are
parameters of one-layer feed-forward neural
networks. The network uses input of the textual
vectors, output of visual or auditory vectors,
and is trained with SGD for 100 epochs. We
initialize the network biases as zeros and network
weights with He-initialisation (He et al., 2015).
The best parameters of AMA-M model are 2
hidden layers, with textual channel size of 300,
250 and 150, visual/auditory channel size of 128,

"The dataset can be found at:
simondedeyne.me/data.

8We have done experiments with Synonyms (which are
extracted from WordNet and PPDB corpora), and the results

are not as good as using word associations.

https://

120

90, 60. For AMA-MW model, we use the best
AMA-M model parameters as initialization, and
train the model with word association data. The
optimal parameter of association channel size is
300, 350, 556 (or 428 for bimodal inputs). For
AMA-MW-Gval and AMA-MW-Gvec, we adopt
the same training strategy as AMA-MW model.
The code for training and evaluation can be found
at: https://github.com/wangshaonan/

Associative—-multichannel-autoencoder.

5 Experiments

5.1 Evaluation Tasks

We test the baseline and proposed models on six
standard evaluation benchmarks, covering two dif-
ferent tasks: (i) Semantic relatedness: Men-3000
(Bruni et al., 2014) and Wordrel-252 (Agirre et al.,
2009); (ii) Semantic similarity: Simlex-999 (Hill
et al.,, 2016), Semsim-7576 (Silberer and Lap-
ata, 2014), Wordsim-203 and Simverb-3500 (Gerz
et al., 2016). All test sets contain a list of word
pairs along with their subject ratings.

We employ Spearman’s correlation method to
evaluate the performance of our models. This
method calculates the correlation coefficients be-
tween model predictions and subject ratings, in
which the model prediction is the cosine similarity
between semantic representations of two words.

5.2 Baseline Multimodal Models

Most of existing multimodal models only utilize
textual and visual modalities. For fair compari-
son, we re-implement several representative sys-
tems with our own textual and visual vectors. The
Concatenation (CONC) model (Kiela and Bot-
tou, 2014) is simple concatenation of normalized
textual and visual vectors. The Mapping (Collell
et al., 2017) and Ridge (Hill et al., 2014) mod-
els first learn a mapping matrix from textual to vi-
sual modality using feed-forward neural network
and ridge regression respectively. After applying
the mapping function on the textual vectors, they
obtain the predicted visual vectors for all words
in textual vocabulary. Then they concatenate the
normalized textual and predicted visual vectors to
get multimodal word representations. The SVD
(Bruni et al., 2014) and CCA (Hill et al., 2014)
models first concatenate normalized textual and
visual vectors, and then conduct SVD or CCA
transformations on the concatenated vectors.

For multimodal models with textual, visual and



Table 1: Spearman’s correlations between model predictions and human ratings on six evaluation datasets.
Here T, V, A denote textual, visual and auditory. TV denotes bimodal inputs of textual and visual. TVA
denotes trimodal inputs of textual, visual and auditory. The bold scores are the best results per column
in bimodal models and trimodal models respectively. For each test, ALL corresponds to the whole
testing set, V/A to those word pairs for which we have textual&visual vectors in bimodal models or
textual&visual&auditory in trimodal models, and ZS (zero-shot) denotes word pairs for which we have
only textual vectors. The #inst. denotes the number of word pairs.

MEN SIMLEX SEMSIM SIMVERB WORDSIMM WORDREL
ALL V/A ZS |ALL V/A ZS |ALL V/A ZS |ALLL V/A ZS |ALL V/A ZS |ALL V/A ZS
Kiela & Bottou 2014 - 0.72 - - - - - - - - - - - - - -
Silberer & Lapata 2014 - - - - - 0.70 - - - - - - - - - - -
Lazaridou et al., 2015 | 0.75  0.76 - 0.40 053 - 072 0.72 - - - - - - - - - -
Collell et al., 2017 0.811 0.819 0.802|0.410 0.388 0.422| 0785 0.791 0.764 | 0.286 0.371 0.285(0.781 0.698 0.766 | 0.629 0.797 0.601
Glove-textual (V) 0.802 0.799 0.788 | 0.408 0.371 0.429|0.744 0.751 0.716 | 0.283 0.320 0.282 [ 0.798 0.688 0.779 | 0.682 0.759 0.661
Glove-textual (A) 0.802 0.801 0.830 | 0.408 0.399 0.456 | 0.744 0.715 0.762| 0.283 0.129 0.397 [ 0.798 0.805 0.785|0.682 0.708 0.652
CNN-visual - 0.566 - - 0.406 - - 0.502 - - 0.235 - - 0.526 - - 0.422 -
Predicted-visual 0.698 0.757 0.656 | 0.372 0.458 0.347 | 0.702 0.700 0.709 | 0.212 0.194 0.211[0.596 0.621 0.557 | 0.412 0.604 0.384
CNN-auditory - 0.266 - - 0.053 - - 0.159 - - 0 - - 0.231 - - 0.088 -
Predicted-auditory 0.558 0.555 0.597 [ 0.270 0.251 0.296 | 0.547 0.531 0.559| 0.157 0.074 0.227 | 0.515 0.496 0.544|0.388 0.400 0.372
CONC (TV) - 0.786 - - 0.442 - - 0.709 - - 0.437 - - 0.665 - - 0.666 -
Mapping (TV) 0.806 0.815 0.782]0.408 0.407 0.410|0.769 0.771 0.709 | 0.282 0.358 0.272 | 0.781 0.696 0.768 | 0.650 0.751 0.594
Ridge (TV) 0.806 0.816 0.786 | 0.418 0.405 0.429 | 0.764 0.766 0.756 | 0.287 0.329 0.285 | 0.786 0.689 0.771 | 0.660 0.765 0.640
SVD (TV) 0.806 0.816 0.786 | 0.418 0.405 0.429 | 0.764 0.766 0.756| 0.287 0.330 0.286 [ 0.786 0.689 0.771 | 0.660 0.764 0.640
CCA (TV) 0.816 0.833 0.798 [ 0.478 0.507 0.493 [ 0.656 0.666 0.619| 0.333 0.276 0.334| 0.757 0.754 0.704 | 0.626 0.733 0.599
AMA-M (TV) 0.836 0.822 0.834 | 0.445 0.460 0.471 | 0.781 0.784 0.769 | 0.324 0.403 0.323 [ 0.807 0.754 0.769 | 0.681 0.814 0.648
AMA-MW (TV) 0.838 0.824 0.822 ] 0.471 0.446 0.509 | 0.757 0.738 0.723 | 0.343 0.421 0.340 | 0.814 0.780 0.737 | 0.707 0.744 0.659
AMA-MW-Gval (TV) | 0.845 0.835 0.841 [ 0.476 0.472 0.506 | 0.776 0.778 0.767 | 0.352 0.396 0.352 | 0.808 0.758 0.763 | 0.726 0.796 0.705
AMA-MW-Gvec (TV) | 0.840 0.831 0.835|0.485 0.486 0.505 [ 0.766 0.769 0.778 [ 0.343  0.523 0.342 | 0.811 0.769 0.778 | 0.694 0.846 0.661
CONC (TVA) - 0.778 - - 0.451 - - 0.661 - - 0.503 - - 0.687 - - 0.593 -
Ridge (TVA) 0.805 0.812 0.791 | 0.417 0.428 0.420 | 0.764 0.725 0.781 | 0.286 0.557 0.285(0.785 0.733 0.762 | 0.659 0.716 0.646
AMA-M (TVA) 0.831 0.814 0.832]0.452 0.488 0.472|0.778 0.741 0.793 | 0.333 0.531 0.332 | 0.805 0.751 0.784|0.685 0.703 0.670
AMA-MW (TVA) 0.838 0.826 0.838 | 0.481 0.508 0.508 | 0.762 0.726 0.777 | 0.358 0.605 0.357 | 0.814 0.821 0.787 | 0.734 0.819 0.711
AMA-MW-Gval (TVA) | 0.849 0.832 0.851 | 0.488 0.500 0.509 | 0.772 0.729 0.790 | 0.347 0.598 0.347 [ 0.810 0.806 0.782|0.730 0.761 0.710
AMA-MW-Gvec (TVA) | 0.843 0.815 0.843 | 0.477 0.505 0.497 | 0.767 0.733 0.781 | 0.346 0.564 0.346 | 0.812 0.779 0.788 | 0.723 0.729 0.705
#inst.-visual 3000 1065 1935 | 999 261 738 | 7546 5757 1789 | 3500 41 3459 | 201 45 158 | 245 28 224
#inst.-auditory 3000 2732 268 | 999 741 258 | 7546 2816 4730 | 3500 1362 2138 | 201 129 72 245 153 92
#inst.-visual-auditory | 3000 964 2036 [ 999 238 761 | 7546 2322 5224 [ 3500 22 3478 | 201 30 171 | 245 25 220

auditory inputs, we implement CONC and Ridge
as baseline models. The trimodal CONC model
simply concatenates normalized textual, visual
and auditory vectors. The trimodal Ridge model
first learns text-to-vision and text-to-audition map-
ping matrices with ridge regression method. Then
it applies the mapping functions on the textual vec-
tors to get the predicted visual and auditory vec-
tors. Finally, the normalized textual, predicted-
visual and predicted-auditory vectors are concate-
nated to get the multimodal representations.

All above baseline models are implemented
with Sklearn®. Same as the proposed AMA model,

‘http://scikit-learn.org/
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the hyper-parameters of baseline models are tuned
on the development set using Spearman’s correla-
tion method. In Ridge model, the optimal regular-
ization parameter is 0.6. The Mapping model is
trained with SGD for maximum 100 epochs with
early stopping, and the optimal learning rate is
0.001. The output dimension of SVD and CCA
models are 300.

5.3 Results and Discussion

As shown in Table 1, we divide all models into
six groups: (1) existing multimodal models (with
textual and visual inputs) in which results are
reprinted from Collell et al. (2017). (2) Unimodal
models with textual, (predicted) visual or (pre-



dicted) auditory inputs. (3) Our re-implementation
of baseline bimodal models with textual and vi-
sual inputs (TV). (4) Our AMA models with tex-
tual and visual inputs. (5) Our implementation of
trimodal baseline models with textual, visual and
auditory inputs (TVA). (6) Our AMA model with
textual, visual and auditory inputs.

Overall performance Our AMA models (in
group 4 and 6) clearly outperform their baseline
unimodal and multimodal models (in group 2, 3
and 5). We use Wilcoxon signed-rank test to check
if significant difference exists between two mod-
els. Results show that our multimodal models per-
form significantly better (p < 0.05) than all base-
line models.

As shown clearly, our bimodal and trimodal

AMA models achieve better performance than
baselines in both V/A (visual or auditory, the test-
ing data that have associated visual or auditory
vectors) and ZS (zero-shot, the testing data that do
not have associated visual or auditory vectors) re-
gion. In other words, our models outperform base-
line models on words with or without perceptual
information. The good results in ZS region also
indicate that our models have good generalization
capacity.
Unimodal baselines As shown in group 2,
the Glove vectors are much better than CNN-
visual and CNN-auditory vectors, in which CNN-
auditory has the worst performance on capturing
concept similarities. Comparing with visual and
auditory vectors, the predicted visual and auditory
vectors achieve much better performance. This in-
dicates that the predicted vectors contain richer in-
formation than purely perceptual representations
and are more useful for building semantic repre-
sentations.

Multimodal baselines For bimodal models
(group 3), the CONC model that combines Glove
and visual vectors performs worse than Glove on
four out of six datasets, suggesting that simple
concatenation might be suboptimal. The Mapping
and Ridge models, which combine Glove and pre-
dicted visual vectors, improve over Glove on five
out of six datasets in ALL regions. This reinforces
the conclusion that the predicted visual vectors are
more useful in building multimodal models. The
SVD model gets similar results as Ridge model.
The CCA model maps different modality inputs
into a common space, achieving better results on
some datasets and worse results on the others.
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The improvement on three benchmark tests shows
the potential of mapping multimodal inputs into a
common space.

The above results can also be observed in the tri-

modal CONC and Ridge models (group 5). Over-
all, the trimodal models, which utilize additional
auditory inputs, get slightly worse performance
than bimodal models. This is partly caused by
the fusion method of concatenation. Note that our
proposed AMA models are more effective with tri-
modal inputs as shown in group 6.
Our multimodal models With either bimodal or
trimodal inputs, the proposed AMA-M model out-
performs all baseline models by a large margin.
Specifically our AMA-M model achieves an rela-
tive improvement of 4.1% on average (4.5% with
trimodal inputs) over the state-of-the-art Ridge
model. This illustrates that our AMA models can
productively combine textual and perceptual rep-
resentations. Moreover, our AMA-MW model,
which employs word associations, achieves an av-
erage improvement of 1.5% (2.7% with trimodal
inputs) over the AMA-M model. That is to say,
the representation ability of multimodal models
can be clearly improved by learning associative
relations between words. Furthermore, the AMA-
MW-Gval model improves the AMA-MW model
by 1.3% (0.3% with trimodal inputs) on average,
illustrating that the gating mechanism (especially
the value gate) helps to learn better semantic rep-
resentations.

In addition, we explore the effect of word asso-
ciation data size. We find that the decrease of as-
sociation data has no discernible effect on model
performance: when using 100%, 80%, 60%, 40%,
20% of the data, the average results are 0.6479,
0.6409, 0.6361, 0.6430, 0.6458 in bimodal model.
The same trend is observed in trimodal models.

6 Conclusions and Future Work

We have proposed a cognitively-inspired multi-
modal model — associative multichannel autoen-
coder — which utilizes the associations between
modalities and related words to learn multimodal
word representations. Performance improvement
on six benchmark tests shows that our models can
efficiently fuse different modality inputs and build
better semantic representations.

Ultimately, the present paper sheds light on the
fundamental questions of how to learn word mean-
ings, such as the plausibility of reconstructing per-



ceptual information, associating related concepts
and grounding word symbols to external environ-
ment. We believe that one of the promising fu-
ture directions is to learn from how humans learn
and store semantic word representations to build a
more effective computational model.
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Abstract

Current dialogue systems focus more on tex-
tual and speech context knowledge and are
usually based on two speakers. Some re-
cent work has investigated static image-based
dialogue. However, several real-world hu-
man interactions also involve dynamic visual
context (similar to videos) as well as dia-
logue exchanges among multiple speakers. To
move closer towards such multimodal con-
versational skills and visually-situated appli-
cations, we introduce a new video-context,
many-speaker dialogue dataset based on live-
broadcast soccer game videos and chats from
Twitch.tv. This challenging testbed allows us
to develop visually-grounded dialogue mod-
els that should generate relevant temporal and
spatial event language from the live video,
while also being relevant to the chat his-
tory. For strong baselines, we also present
several discriminative and generative mod-
els, e.g., based on tridirectional attention
flow (TriDAF). We evaluate these models
via retrieval ranking-recall, automatic phrase-
matching metrics, as well as human evalua-
tion studies. We also present dataset analyses,
model ablations, and visualizations to under-
stand the contribution of different modalities
and model components.

1 Introduction

Dialogue systems or conversational agents which
are able to hold natural, relevant, and coherent in-
teractions with humans have been a long-standing
goal of artificial intelligence and machine learn-
ing. There has been a lot of important previ-
ous work in this field for decades (Weizenbaum,
1966; Isbell et al., 2000; Rambow et al., 2001;
Rieser et al., 2005; Georgila et al., 2006; Rieser
and Lemon, 2008; Ritter et al., 2011), includ-

We release all data, code, and models at:

github.com/ramakanth-pasunuru/video—dialogue

https://
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S1: what an offside trap
OMEGALUL

S2: Lol that finish bro

S3: suprised you didn't
do the extra pass

S4: @S10 a drunk bet? %
S5: @S11 thanks mate

S6: could have passed
one more

S7: Pass that
S1: record now!
S8: Irecord

S9: done a nother pass there

Figure 1: Sample example from our many-speaker,
video-context dialogue dataset, based on live soccer
game chat. The task is to predict the response (bottom-
right) using the video context (left) and the chat context
(top-right).

ing recent work on introduction of large textual-
dialogue datasets (e.g., Lowe et al. (2015); Ser-
ban et al. (2016)) and end-to-end neural network
based models (Sordoni et al., 2015; Vinyals and
Le, 2015; Su et al., 2016; Luan et al., 2016; Li
et al., 2016; Serban et al., 2017a,b).

Current dialogue tasks are usually focused on
the textual or verbal context (conversation his-
tory). In terms of multimodal dialogue, speech-
based spoken dialogue systems have been widely
explored (Eckert et al., 1997; Singh et al., 2000;
Young, 2000; Janin et al., 2003; Celikyilmaz et al.,
2017; Wen et al., 2015; Su et al., 2016; Mrksié
et al., 2016), as well as work on gesture and hap-
tics based dialogue (Johnston et al., 2002; Cassell,
1999; Foster et al., 2008). In order to address the
additional advantage of using visually-grounded
context knowledge in dialogue, recent work intro-
duced the visual dialogue task (Das et al., 2017;
de Vries et al., 2017; Mostafazadeh et al., 2017).
However, the visual context in these tasks is lim-

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 125-136
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ited to one static image. Moreover, the interac-
tions are between two speakers with fixed roles
(one asks questions and the other answers).

Several situations of real-world dialogue among
humans involve more ‘dynamic’ visual context,
i.e., video-style information of the world moving
around us (both spatially and temporally). Fur-
ther, several human conversations involve more
than two speakers, with changing roles. In order
to develop such dynamically-visual multimodal
dialogue models, we introduce a new ‘many-
speaker, video-context chat’ testbed, along with
a new dataset and models for the same. Our
dataset is based on live-broadcast soccer (FIFA-
18) game videos from the ‘Twitch.tv’ live video
streaming platform, along with the spontaneous,
many-speaker live chats about the game. This
challenging testbed allows us to develop dialogue
models where the generated response is required
to be relevant to the temporal and spatial events
in the live video, as well as be relevant to the
chat history (with potential impact towards video-
grounded applications such as personal assistants,
intelligent tutors, and human-robot collaboration).

We also present several strong discriminative
and generative baselines that learn to retrieve and
generate bimodal-relevant responses. We first
present a triple-encoder discriminative model to
encode the video, chat history, and response, and
then classify the relevance label of the response.
We then improve over this model via tridirec-
tional attention flow (TriDAF). For the generative
models, we model bidirectional attention flow be-
tween the video and textual chat context encoders,
which then decodes the response. We evaluate
these models via retrieval ranking-recall, phrase-
matching metrics, as well as human evaluation
studies. We also present dataset analysis as well
as model ablations and attention visualizations to
understand the contribution of the video vs. chat
modalities and the model components.

2 Related Work

Early dialogue systems had components of nat-
ural language (NL) understanding unit, dia-
logue manager, and NL generation unit (Bates,
1995). Statistical learning methods were used
for automatic feature extraction (Dowding et al.,
1993; Mikolov et al., 2013), dialogue managers
incorporated reward-driven reinforcement learn-
ing (Young et al., 2013; Shah et al., 2016), and the
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generation units have been extended with seq2seq
neural network models (Vinyals and Le, 2015;
Serban et al., 2016; Luan et al., 2016).

In addition to the focus on textual dialogue con-
text, using multimodal context brings more poten-
tial for having real-world grounded conversations.
For example, spoken dialogue systems have been
widely explored (Singh et al., 2000; Gurevych and
Strube, 2004; Georgila et al., 2006; Eckert et al.,
1997; Young, 2000; Janin et al., 2003; De Mori,
2007; Wen et al., 2015; Su et al., 2016; Mrksié
et al., 2016; Hori et al., 2016; Celikyilmaz et al.,
2015, 2017), as well as gesture and haptics based
dialogue (Johnston et al., 2002; Cassell, 1999;
Foster et al., 2008). Additionally, dialogue sys-
tems for digital personal assistants are also well
explored (Myers et al., 2007; Sarikaya et al., 2016;
Damacharla et al., 2018). In the visual modal-
ity direction, some important recent attempts have
been made to use static image based context in di-
alogue systems (Das et al., 2017; de Vries et al.,
2017; Mostafazadeh et al., 2017), who proposed
the ‘visual dialog’ task, where the human can ask
questions on a static image, and an agent interacts
by answering these questions based on the previ-
ous chat context and the image’s visual features.
Also, Celikyilmaz et al. (2014) used visual display
information for on-screen item resolution in utter-
ances for improving personal digital assistants.

In contrast, we propose to employ dynamic
video-based information as visual context knowl-
edge in dialogue models, so as to move to-
wards video-grounded intelligent assistant appli-
cations. In the video+language direction, previ-
ous work has looked at video captioning (Venu-
gopalan et al., 2015) as well as Q&A and fill-in-
the-blank tasks on videos (Tapaswi et al., 2016;
Jang et al., 2017; Maharaj et al., 2017) and
interactive 3D environments (Das et al., 2018;
Yan et al., 2018; Gordon et al., 2017; Ander-
son et al., 2017). There has also been early
related work on generating sportscast commen-
taries from simulation (RoboCup) soccer videos
represented as non-visual state information (Chen
and Mooney, 2008). Also, Liu et al. (2016a)
presented some initial ideas on robots learning
grounded task representations by watching and in-
teracting with humans performing the task (i.e.,
by converting human demonstration videos to
Causal And-Or graphs). On the other hand,
we propose a new video-chat dataset where the
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Figure 2: Sample page of live broadcast of FIFA-18
game on twitch.tv with concurrent user chat.

dialogue models need to generate the next re-
sponse in the sequence of chats, conditioned both
on the raw video features as well as the pre-
vious textual chat history. Moreover, our new
dataset presents a many-speaker conversation set-
ting, similar to previous work on meeting un-
derstanding and Computer Supported Cooperative
Work (CSCW) (Janin et al., 2003; Waibel et al.,
2001; Schmidt and Bannon, 1992). In the live
video stream direction, Fu et al. (2017) and Ping
and Chen (2017) used real-time comments to pre-
dict the frame highlights in a video, and Barbieri
etal. (2017) presented emotes and troll prediction.

3 Twitch-FIFA Dataset

3.1 Dataset Collection and Processing

For our new video-context dialogue task, we used
the publicly accessible Twitch.tv live broadcast
platform, and collected videos of soccer (FIFA-
18) games along with the users’ live chat conver-
sations about the game. This dataset has videos in-
volving various realistic human actions and events
in a complex sports environment and hence serves
as a good testbed and first step towards multimodal
video-based dialogue data. An example is shown
in Fig. 1 (and an original screenshot example in
Fig. 2), where the users perform a complex ‘many-
speaker’, ‘multimodal’ dialogue. Overall, we col-
lected 49 FIFA-18 game videos along with their
users’ chat, and divided them into 33 videos for
training, 8 videos for validation, and 8 videos for
testing. Each such video is several hours long, pro-
viding a good amount of data (Table 2).

To extract triples (instances) of video context,
chat context, and response from this data, we di-
vide these videos based on the fixed time frames
instead of fixed number of utterances in order to
maintain conversation topic clusters (because of
the sparse nature of chat utterances count over
the time). First, we use 20-sec context windows
to extract the video clips and users utterances in
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34%
3%
63% (56 both-good, 7 both-bad)

filtered response wins
1st response wins
Non-distinguishable

Table 1: Human evaluation of our dataset, comparing
our filtered responses versus the first response in the
window (for relevance w.r.t. video and chat contexts).

this time frame, and use it as our video and chat
contexts, resp. Next, the chat utterances in the
immediately-following 10-sec window (response
window) that do not overlap with the next in-
stance’s context window are considered as poten-
tial re:sponses.1 Hence, there are only two in-
stances (triples) in a 60-sec long video, i.e., 20-sec
video+chat context window and 10-sec response
window, and there is no overlap between the in-
stances. Now, out of these potential responses, to
only allow the response that has at least some good
coherence and relevance with the chat context’s
topic, we choose the first (earliest) response that
has high similarity with some other utterance in
this response window (using 0.5 BLEU-4 thresh-
old, based on manual inspection).?
Human Quality Evaluation of Data Filtering
Process: To evaluate the quality of the responses
that result from our filtering process described
above, we performed an anonymous (randomly
shuffled w/o identity) human comparison between
the response selected by our filtering process vs.
the first response from the response window with-
out any filtering, based on relevance w.r.t. video
and chat context. Table 1 presents the results on
100 sample size, showing that humans in a blind-
test found 90% (34+56) of our filtered responses
as valid responses, verifying that our response se-
lection procedure is reasonable. Furthermore, out
of these 90% valid responses, we found that 55%
are chat-only relevant, 11% are video-only rele-
vant, and 24% are both video+chat relevant.

In order to make the above procedure safe and
to make the dataset more challenging, we also dis-
courage frequent responses (top-20 most-frequent

"'We use non-overlapping windows because: (1) the ut-
terances are non-uniformly distributed in time and hence if
we have a shifting window, sometimes a particular data in-
stance/chunk becomes very sparse and contains almost zero
utterances; (2) we do not want overlap between response of
one window with the context of the next window, so as to
avoid the encoder already having seen the response (as part
of context) that the decoder needs to generate for the other
window.

Based on intuition that if multiple speakers are saying the
same response in that 10-second window, then this response
should be more meaningful/relevant w.r.t. chat context.



Statistics Train Val Test
#Videos 33 8 8
Total Hours 58.4 11.9 154
Final Filtered #Instances 10,150 | 2,153 | 2,780
Avg. Chat Context Length 69.0 63.5 71.2
Avg. Response Length 6.5 6.5 6.1

Table 2: Twitch-FIFA dataset’s chat statistics (lengths
are defined in terms of number of words).

generic utterances) unless no other response satis-
fies the similarity condition, hence suppressing the
frequent responses.® If we couldn’t find any utter-
ance based on the multi-response matching pro-
cedure described above, then we just consider the
first utterance in the 10-second window as the re-
sponse.* We also make sure that the chat context
window has at least 4 utterances, otherwise we
exclude that context window and also the corre-
sponding response window from the dataset. After
all this processing, our final resulting dataset con-
tains 10, 510 samples in training, 2,153 samples
in validation, and 2, 780 samples in test.’

3.2 Dataset Analysis

Dataset Statistics Table 2 presents the full statis-
tics on train, validation, and test sets of our
Twitch-FIFA dataset, after the filtering process de-
scribed in Sec. 3.1. As shown, the average chat
context length in the dataset is around 68 words,
and the average response length is 6.3 words.
Chat Context Size Fig. 3 presents the study of
number of utterances in the chat context vs. the
number of such training samples. As we limit the
minimum number of utterances to 4, chat context
with less than 4 utterances is not present in the
dataset. From the Fig. 3, it is clear that as the num-
ber of utterances in the chat context increases, the
number of such training samples decrease.
Frequent Words Fig. 4 presents the top-20 fre-
quent words (excluding stop words) and their cor-
responding frequency in our Twitch-FIFA dataset.
Most of these frequent words are related to soccer
vocabulary. Also, some of these frequent words
are twitch emotes (e.g. ‘kappa’, ‘inceptionlove’).

>Note that this filtering suppresses the performance of
simple frequent-response baseline described in Sec. 4.1.

“Other preprocessing steps include: omit the utterances
in the response window which refer to a speaker name out
of the current chat context; remove non-representative utter-
ances, e.g., those with hyperlinks; replace (anonymize) all
the user identities mentioned in the utterances with a com-
mon tag (i.e., anonymizing due to similar intuitions from the
Q&A community (Hermann et al., 2015)).

Note that this is substantially larger than or comparable
to most current video captioning datasets. We plan to further
extend our dataset based on diverse games and video types.
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Figure 3: Distribution of #utterances in chat context
(w.r.t. the #training examples for each case).

2000)

Word Frequency

500

Il

I==e.

Figure 4: Frequent words in our Twitch-FIFA dataset.

4 Models

Let v = {v1,v2,..,u,} be the video context
frames, u = {u1,ug,..,u,} be the textual chat
(utterance) context tokens, and r = {r1,72,.., 7% }
be response tokens generated (or retrieved).

4.1 Baselines

Our simple non-trained baselines are Most-
Frequent-Response (re-rank the candidate re-
sponses based on their frequency in the training
set), Chat-Response-Cosine (re-rank the candidate
responses based on their similarity score w.r.t. the
chat context), and Nearest-Neighbor (find the K-
best similar chat contexts in the training set, take
their corresponding responses, and then re-rank
the candidate responses based on mean similar-
ity score w.r.t. this K-best response set). For
trained baselines, we use logistic regression and
Naive Bayes methods. We use the final state of a
Twitch-trained RNN Language Model to represent
the chat context and response. Please see supple-
mentary for full details.

4.2 Discriminative Models
4.2.1 Triple Encoder

For our simpler discriminative model, we use a
‘triple encoder’ to encode the video context, chat
context, and response (see Fig. 5), as an exten-
sion of the dual encoder model in Lowe et al.
(2015). The task here is to predict the given train-
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Figure 5: Overview of our ‘triple encoder’ discrimi-

native model, with bidirectional-LSTM-RNN encoders
for video, chat context, and response.

ing triple (v, u,r) as positive or negative. Let h",
h’;, and h; be the final state information of the
video, chat, and response LSTM-RNN (bidirec-
tional) encoders respectively; then the probability
of a positive training triple is defined as follows:

p(v,u,m;0) = o([hYy; BYTWh; +b) (1)

where W and b are trainable parameters. Here, W
can be viewed as a similarity matrix which will
bring the context [h}; h}] into the same space as
the response h';, and get a suitable similarity score.

For optimizing our discriminative model, we
use max-margin loss function similar to Mao et al.
(2016) and Yu et al. (2017). Given a positive
training triple (v, u, ), let the corresponding neg-
ative training triples be (v',u,r), (v,u,r), and
(v,u,r’), i.e., one modality is wrong at a time in
each of these three (see Sec. 5 for the negative ex-
ample selection). The max-margin loss is:

L(9) = Z[max(O, M +1logp(v',u,r) —log p(v, u,r))
+ max (0, M +log p(v,u’,r) — logp(v,u,r))
+ max (0, M + log p(v, u, ") — log p(v, u,7))]

)
where the summation is over all the training triples
in the dataset. M is a tunable margin hyperparam-
eter between positive and negative training triples.

4.2.2 Tridirectional Attention Flow (TriDAF)

Our tridirectional attention flow model learns
stronger joint spaces between the three modalities
in a mutual-information way. We use bidirectional
attention flow mechanisms (Seo et al., 2017) be-
tween the video and chat contexts, between the
video context and the response, as well as between
the chat context and the response, hence enabling
attention flow across all three modalities, as shown
in Fig. 6. We name this model Tridirectional At-
tention Flow or TriDAF. We will next discuss the
bidirectional attention flow mechanism between
video and chat contexts, but the same formula-
tion holds true for bidirectional attention between
video context and response, and between chat con-
text and response. Given the video context hidden
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Figure 6: Overview of our tridirectional attention flow
(TriDAF) model with all pairwise modality attention
modules, as well as self-attention on video context,
chat context, and response as inputs.

state h; and chat context hidden state A} at time
steps ¢ and j respectively, the bidirectional atten-
tion mechanism is based on the similarity score:

S = whi, WY R BY © hY)

where S (gu)

i is a scalar, wg,«) is a trainable
parametef, and © denote element-wise multi-
plication. The attention distribution from chat
context to video context is defined as o
softmax(S;:), hence the chat-to-video context
vector ¢ " = . ;h}. Similarly, the attention
distribution from video context to chat context is
defined as ;. = softmax(S.;), hence the video-
to-chat context vector ¢ =, 3; ;hi.

We then compute similar bidirectional attention
flow mechanisms between the video context and
response, and between the chat context and re-
sponse. Then, we concatenate each hidden state
and its corresponding context vector from other
two modalities, e.g., hY = [hY; ¢V<%; ¢V<7] for the
i timestep of the video context. Finally, we add
self-attention mechanism (Lin et al., 2017) across
the concatenated hidden states of each of the three
modules.® If izf is the final concatenated vector
of the video context at time step ¢, then the self-
attention weights o for this video context are the

softmax of e*:

3)

el = V! tanh(W2hY + bY) )
where V.U, W2, and b}, are trainable self-attention
parameters. The final representation vector of
the full video context after self-attention is ¢¥ =
> al iL;U Similarly, the final representation vec-
tors of the chat context and the response are ¢*
and ¢", respectively. Finally, the probability that

®In our preliminary experiments, we found that adding
self-attention is 0.92% better in recall@1 and faster than
passing the hidden states through another layer of RNN, as
done in Seo et al. (2017).



the given training triple (v, u, ) is positive is:

p(v,u,r;0) = o([e% ¢ ]"We +b)  (5)

Again, here also we use max-margin loss (Eqn. 2).

4.3 Generative Models
4.3.1 Seq2seq with Attention

Our simpler generative model is a sequence-to-
sequence model with bilinear attention mechanism
(similar to Luong et al. (2015)). We have two en-
coders, one for encoding the video context and
another for encoding the chat context, as shown
in Fig. 7. We combine the final state informa-
tion from both encoders and give it as initial state
to the response generation decoder. The two en-
coders and the decoder are all two-layer LSTM-
RNNs. Let i} and hj be the hidden states of
video and chat encoders at time step ¢ and j re-
spectively. At each time step ¢ of the decoder with
hidden state A}, the decoder attends to parts of
video and chat encoders and uses the combined
information to generate the next token. Let a; and
[: be the attention weight distributions for video
and chat encoders respectively with video context
vector ¢; = ) .oy ;hY and chat context vector
¢ = >_;Br;hj. The attention distribution for
video encoder is defined as (and the same holds
for chat encoder):

e = h;TW:hf; ay = softmax(e;)  (6)
where W is a trainable parameter. Next, we con-
catenate the attention-based context information
(¢} and c¢}') and decoder hidden state (h}), and do
a non-linear transformation to get the final hidden

state iL{ as follows:

¢ = tanh(Wele}; cf's h]) (7
where W, is again a trainable parameter. Fi-
nally, we project the final hidden state informa-
tion to vocabulary size and give it as input to a
softmax layer to get the vocabulary distribution
p(r¢|ri4—1,v,u; @). During training, we minimize
the cross-entropy loss defined as follows:

LXE(H) = - Z Z lng(T‘t|T'1:t,1, U, U; 0) (8)
t

where the final summation is over all the training
triples in the dataset.

Further, to train a stronger generative model
with negative training examples (which teaches
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chat-to-video video-to-chat
attention attention

4 _i;}

Figure 7: Overview of our generative model with bidi-
rectional attention flow between video context and chat
context during response generation.

the model to give higher generative decoder prob-
ability to the positive response as compared to all
the negative ones), we use a max-margin loss (sim-
ilar to Eqn. 2 in Sec. 4.2.1):

L () = [max(0, M + log p(r|v’, u) — log p(r|v, u))
+ max (0, M + log p(r|v,u’) — log p(r|v,u))
+ max(0, M + log p(r’'|v,u) — log p(r|v, u))]

©)

where the summation is over all the training triples
in the dataset. Overall, the final joint loss func-
tion is a weighted combination of cross-entropy
loss and max-margin loss: L(#) = Lxg(f) +
ALy (6), where A is a tunable hyperparameter.

4.3.2 Bidirectional Attention Flow (BiDAF)

The stronger version of our generative model
extends the two-encoder-attention-decoder model
above to add bidirectional attention flow (BiDAF)
mechanism (Seo et al., 2017) between video and
chat encoders, as shown in Fig. 7. Given the hid-
den states h; and h; of video and chat encoders at
time step ¢ and 7, the final hidden states after the
BiDAF are h¥ = [h?; c?*"%] and iL}‘ [hit; ¢
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(similar to as described in Sec. 4.2.2), respectively.

Now, the decoder attends over these final hidden
states, and the rest of the decoder process is simi-
lar to Sec 4.3.1 above, including the weighted joint
cross-entropy and max-margin loss.

S Experimental Setup

Evaluation We first evaluate both our discrimi-
native and generative models using retrieval-based
recall@k scores, which is a concrete metric for
such dialogue generation tasks (Lowe et al., 2015).
For our discriminative models, we simply rerank
the given responses (in a candidate list of size 10,
based on 9 negative examples; more details below)



Models [ r@] [ 1@2 [ r@5
BASELINES
Most-Frequent-Response 10.0 | 16.0 | 20.9
Naive Bayes 9.6 | 209 | 515
Logistic Regression 10.8 | 21.8 | 52.5
Nearest Neighbor 114 | 226 | 53.2
Chat-Response-Cosine 114 | 220 | 53.2
DISCRIMINATIVE MODEL
Dual Encoder (C) 17.1 | 30.3 | 61.9
Dual Encoder (V) 16.3 | 30.5 | 61.1
Triple Encoder (C+V) 18.1 | 33.6 | 68.5
TriDAF+Self Attn (C+V) 20.7 | 353 | 69.4
GENERATIVE MODEL
Seq2seq +Attn (C) 14.8 | 27.3 | 56.6
Seq2seq +Attn (V) 14.8 | 27.2 | 56.7
Seq2seq + Attn (C+V) 15.7 | 28.0 | 57.0
Seq2seq + Attn + BiDAF (C+V) | 16.5 | 28.5 | 57.7

Table 3: Performance of our baselines, discriminative
models, and generative models for recall @k metrics on
our Twitch-FIFA test set. C and V represent chat and
video context, respectively.

in the order of the probability score each response
gets from the model. If the positive response is
within the top-k list, then the recall@k score is 1,
otherwise 0, following previous Ubuntu-dialogue
work (Lowe et al., 2015). For the generative mod-
els, we follow a similar approach, but the rerank-
ing score for a candidate response is based on
the log probability score given by the generative
models’ decoder for that response, following the
setup of previous visual-dialog work (Das et al.,
2017). In our experiments, we use recall@1,
recall@2, and recall@5 scores. For complete-
ness, we also report the phrase-matching metric
scores: METEOR (Denkowski and Lavie, 2014)
and ROUGE (Lin, 2004) for our generative mod-
els. We also present human evaluation.

Training Details For negative samples, during
training, for every positive triple (video, chat,
response) in the training set, we sample 3 ran-
dom negative triples. For validation/test, we sam-
ple 9 random negative responses elsewhere from
the validation/test set. Also, the negative sam-
ples don’t come from the video corresponding to
the positive response. More details of negative
samples and other training details (e.g., dimen-
sion/vocab sizes, visual feature details, validation-
based hyperparamater tuning and model selec-
tion), are discussed in the supplementary.

6 Results and Analysis

6.1 Human Evaluation of Dataset

First, the overall human quality evaluation of our
dataset (shown in Table 1) demonstrates that it
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contains 90% responses relevant to video and/or
chat context. Next, we also do a blind hu-
man study on the recall-based setup (on a set
of 100 samples from the validation set), where
we anonymize the positive response by randomly
mixing it with 9 tricky negative responses in the
retrieval list, and ask the user to select the most
relevant response for the given video and/or chat
context. We found that human performance on
this task is around 55% recall@1, demonstrating
that this 10-way-discriminative recall-based task
setup is reasonably challenging for humans,’ but
also that there is a lot of scope for future model
improvements because the chance baseline is only
10% and the best-performing model so far (see
Sec. 6.3) achieves only 22% recall@1 (on dev set),
and hence there is a large 33% gap.

6.2 Baseline Results

Table 3 displays all our primary results. We
first discuss results of our simple non-trained and
trained baselines (see Sec. 4.1). The ‘Most-
Frequent-Response’ baseline, which just ranks the
10-sized response retrieval list based on their fre-
quency in the training data, gets only around
10% recall@1.® Our other non-trained baselines:
‘Chat-Response-Cosine’ and ‘Nearest Neighbor’,
which ranks the candidate responses based on
(Twitch-trained RNN encoder’s vector) cosine
similarity with chat-context and K-best training
contexts’ response vectors, respectively, achieves
slightly better scores. We also show that our sim-
ple trained baselines (logistic regression and near-
est neighbor) also achieve relatively low scores,
indicating that a simple, shallow model will not
work on this challenging dataset.

6.3 Discriminative Model Results

Next, we present the recall@k retrieval perfor-
mance of our various discriminative models in Ta-

"This relatively low human recall@1 performance is be-
cause this is a challenging, 10-way-discriminative evaluation,
i.e., the choice comes w.r.t. 9 tricky negative examples along
with just 1 positive example (hence chance-baseline is only
10%). Note that these negative examples are an artifact of
specifically recall-based evaluation only, and will not affect
the more important real-world task of response generation
(for which our dataset’s response quality is 90%, as shown
in Table 1). Moreover, our dataset filtering (see Sec. 3.1) also
‘suppresses’ simple baselines and makes the task even harder.

8Note that the performance of this baseline is worse than
the random choice baseline (recall@1:10%, recall@2:20%,
recall@5:50%) because our dataset filtering process already
suppresses frequent responses (see Sec. 3.1), in order to pro-
vide a challenging dataset for the community.



Models [ METEOR | ROUGEL

MULTIPLE REFERENCES

Seq2seq + Atten. (C) 2.59 8.44
Seq2seq + Atten. (V) 2.66 8.34
Seq2seq + Atten. (C+V) ® 3.03 8.84
® + BiDAF (C+V) 3.70 9.82

Table 4: Performance of our generative models on
phrase matching metrics.

Models Relevance
Seq2seq + Atten. (C+V) wins 41.0 %
BiDAF wins 34.0 %
Non-distinguishable 25.0 %

Table 5: Human evaluation comparing the baseline and
BiDAF generative models.

ble 3: dual encoder (chat context only), dual en-
coder (video context only), triple encoder, and
TriDAF model with self-attention. Our dual en-
coder models are significantly better than random
choice and all our simple baselines above, and
further show that they have complementary in-
formation because using both of them together
(in ‘Triple Encoder’) improves the overall perfor-
mance of the model. Finally, we show that our
novel TriDAF model with self-attention performs
significantly better than the triple encoder model.’

6.4 Generative Model Results

Next, we evaluate the performance of our gener-
ative models with both retrieval-based recall@k
scores and phrase matching-based metrics as dis-
cussed in Sec. 5 (as well as human evaluation).
We first discuss the retrieval-based recall @k re-
sults in Table 3. Starting with a simple sequence-
to-sequence attention model with video only, chat
only, and both video and chat encoders, the re-
call@k scores are better than all the simple base-
lines. Moreover, using both video+chat context is
again better than using only one context modal-
ity. Finally, we show that the addition of the bidi-
rectional attention flow mechanism improves the
performance in all recall@k scores.!® Note that
generative model scores are lower than the dis-
criminative models on retrieval recall@k metric,
which is expected (see discussion in previous vi-
sual dialogue work (Das et al., 2017)), because
discriminative models can tune to the biases in the
response candidate options, but generative mod-
els are more useful for real-world tasks such as

9Statistical significance of p < 0.01 for recall@1, based
on the bootstrap test (Noreen, 1989; Efron and Tibshirani,
1994) with 100K samples.

10Stat. signif. p < 0.05 for recall@1 w.r.t. Seq2seq+Atten
(video+chat); p < 0.01 w.r.t. chat- and video-only models.
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Models | recall@1 | recall@2 | recall@5
1 neg. 18.21 32.19 64.05
3 neg. 22.20 35.90 68.09

Table 6: Ablation (dev) of one vs. three negative exam-
ples for TriDAF self-attention discriminative model.

generation of novel responses word-by-word from
scratch in Siri/Alexa/Cortana style applications
(whereas discriminative models can only rank the
pre-given list of responses).

We also evaluate our generative models with
phrase-level matching metrics: METEOR and
ROUGE-L, as shown in Table 4. Again, our
BiDAF model is stat. significantly better than non-
BiDAF model on both METEOR (p < 0.01) and
ROUGE-L (p < 0.02) metrics. Since dialogue
systems can have several diverse, non-overlapping
valid responses, we consider a multi-reference
setup where all the utterances in the 10-sec re-
sponse window are treated as valid responses.'!

6.5 Human Evaluation of Models

Finally, we also perform human evaluation to
compare our top two generative models, i.e., the
video+chat seq2seq with attention and its exten-
sion with BiDAF (Sec. 4.3), based on a 100-sized
sample. We take the generated response from both
these models, and randomly shuffle these pairs to
anonymize model identity. We then ask two an-
notators (for 50 task instances each) to score the
responses of these two models based on relevance.
Note that the human evaluators were familiar with
Twitch FIFA-18 video games and also the Twitch’s
unique set of chat mannerisms and emotes. As
shown in Table 5, our BiDAF based generative
model performs better than the non-BiDAF one,
which is already quite a strong video+chat encoder
model with attention.

7 Ablations and Analysis

7.1 Negative Training Pairs

We also compare the effect of different negative
training triples that we discussed in Sec. 5. Ta-
ble 6 shows the comparison between one negative

"Liu et al. (2016b) discussed that BLEU and most phrase
matching metrics are not good for evaluating dialogue sys-
tems. Also, generative models have very low phrase-
matching metric scores because the generated response can
be valid but still very different from the ground truth ref-
erence (Lowe et al.,, 2015; Liu et al., 2016b; Li et al.,
2016). We present results for the relatively better metrics like
paraphrase-enabled METEOR for completeness, but still fo-
cus on retrieval recall@k and human evaluation.



1) good pass jebaited

6) do you have a main squad

bloodtrail bloodtrail bloodtrail bloodtrail bloodtrail ||
yoooo || kappapride || xxuxx skillzzzz , favourite player
you have used this year ? || pl3ad aaSlove || are you
playin with ksi ? ? kappa xxuxx || bought okocha cuz of
you ant . first game 2 goals 3 assists | game changer
thank you m8 || play || ! pause || resume || twerkchoke
twerkchoke twerkchoke || lul

2) shawn mendez kreygasm  7) otw nelson for 47k imma buy
kreygasm tight now on xbox

3) can say that i am american 8) do *

4)! camera 9) inceptionderp inceptionlove

5) can you notice me 10) bpl is over priced

chat s aids || where has all thr challenges gone aswell ? ||
did mat yet messi ? || hellllllIHIMIIilo || put messi
on getin behind if u can || chris is getting ronaldo and messi
|| no one wants jamies coctail sausage haha || free kick with
messi

Ground-truth: play it to messi he makes
good runs

Generated: get messi for the other team

Figure 8: Output retrieval (left) and generative (right) examples from TriDAF and BiDAF models, resp.

Chat Context: xxuxx haha 19 is not bad brotha . i didnt even qualify lol feelbad ||

Response: comebackigoal !

Figure 9: Attention visualization: generated word ‘goal’ in response is intuitively aligning to goal-related video
frames (top-3-weight frames highlighted) and context words (top-10-weight words highlighted).

training triple (with just a negative response) vs.
three negative training triples (one with negative
video context, one with negative chat context, and
another with negative response), showing that us-
ing the 3-negative examples setup is substantially
better.

7.2 Discriminative Loss Functions

Table 7 shows the performance comparison be-
tween the classification loss and max-margin loss
on our TriDAF with self-attention discriminative
model (Sec. 4.2.2). We observe that max-margin
loss performs better than the classification loss,
which is intuitive because max-margin loss tries to
differentiate between positive and negative train-
ing example triples.

Models recall@1 | recall@2 | recall@5
Classification loss 19.32 33.72 66.60
Max-margin loss 22.20 35.90 68.09

Table 7: Ablation of classification vs. max-margin loss
on our TriDAF discriminative model (on dev set).

7.3 Generative Loss Functions

For our best generative model (BiDAF), Table 8
shows that using a joint loss of cross-entropy
and max-margin is better than just using only
cross-entropy loss optimization (Sec. 4.3.1). Max-
margin loss provides knowledge about the nega-
tive samples for the generative model, hence im-
proves the retrieval-based recall @k scores.

7.4 Attention Visualization and Examples

Finally, we show some interesting output exam-
ples from both our discriminative and generative
models as shown in Fig. 8. Additionally, Fig. 9
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Models recall@1 | recall@2 | recall@5
Cross-entropy (XE) 13.12 23.45 54.78
XE+Max-margin 15.61 27.39 57.02

Table 8: Ablation of cross-entropy loss vs. cross-
entropy+maxmargin loss for our BiDAF-based gener-
ative model (on dev set).

visualizes that our models can learn some cor-
rect attention alignments from the generated out-
put response word to the appropriate (goal-related)
video frames as well as chat context words.

8 Conclusion

We presented a new game-chat based video-
context, many-speaker dialogue task and dataset.
We also presented several baselines and state-of-
the-art discriminative and generative models on
this task. We hope that this testbed will be a
good starting point to encourage future work on
the challenging video-context dialogue paradigm.
In future work, we plan to investigate the effects of
multiple users, i.e., the multi-party aspect of this
dataset. We also plan to explore advanced video
features such as activity recognition, person iden-
tification, etc.
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Abstract

The encode-decoder framework has shown re-
cent success in image captioning. Visual atten-
tion, which is good at detailedness, and seman-
tic attention, which is good at comprehensive-
ness, have been separately proposed to ground
the caption on the image. In this paper, we
propose the Stepwise /mage-Topic Merging
Network (simNet) that makes use of the two
kinds of attention at the same time. At each
time step when generating the caption, the de-
coder adaptively merges the attentive informa-
tion in the extracted topics and the image ac-
cording to the generated context, so that the vi-
sual information and the semantic information
can be effectively combined. The proposed ap-
proach is evaluated on two benchmark datasets
and reaches the state-of-the-art performances. '

1 Introduction

Image captioning attracts considerable attention in
both natural language processing and computer vi-
sion. The task aims to generate a description in
natural language grounded on the input image. It
is a very challenging yet interesting task. On the
one hand, it has to identify the objects in the im-
age, associate the objects, and express them in a
fluent sentence, each of which is a difficult sub-
task. On the other hand, it combines two impor-
tant fields in artificial intelligence, namely, natural
language processing and computer vision. More
importantly, it has a wide range of applications,
including text-based image retrieval, helping visu-
ally impaired people see (Wu et al., 2017), human-
robot interaction (Das et al., 2017), etc.

Models based on the encoder-decoder frame-
work have shown success in image captioning.
According to the pivot representation, they can be

*Equal Contributions
' The code is available at https://github.com/
lancopku/simNet

Soft-Attention: a open laptop
= computer sitting on top of a ta-
= ble

4| ATT-FCN: a dog sitting on a
desk with a laptop computer
and mouse

simNet: a open laptop com-
¥ puter and mouse sitting on a ta-
ble with a dog nearby

Figure 1: Examples of using different attention mecha-
nisms. Soft-Attention (Xu et al., 2015) is based on vi-
sual attention. The generated caption is detailed in that
it knows the visual attributes well (e.g. open). How-
ever, it omits many objects (e.g. mouse and dog). ATT-
FCN (You et al., 2016) is based on semantic attention.
The generated caption is more comprehensive in that
it includes more objects. However, it is bad at associ-
ating details with the objects (e.g. missing open and
mislocating dog). simNet is our proposal that effec-
tively merges the two kinds of attention and generates
a detailed and comprehensive caption.

roughly categorized into models based on visual
information (Vinyals et al., 2015; Chen and Zit-
nick, 2015; Mao et al., 2014; Karpathy and Li,
2015, 2017), and models based on conceptual in-
formation (Fang et al., 2015; You et al., 2016; Wu
et al., 2016). The later explicitly provides the vi-
sual words (e.g. dog, sit, red) to the decoder in-
stead of the image features, and is more effective
in image captioning according to the evaluation on
benchmark datasets. However, the models based
on conceptual information have a major drawback
that it is hard for the model to associate the details
with the specific objects in the image, because the
visual words are inherently unordered in seman-
tics. Figure 1 shows an example. For semantic
attention, although open is provided as a visual
word, due to the insufficient use of visual infor-
mation, the model gets confused about what ob-
jects open should be associated with and thus dis-
cards open in the caption. The model may even
associate the details incorrectly, which is the case
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Figure 2: Illustration of the main idea. The visual in-
formation captured by CNN and the conceptual infor-
mation in the extracted topics are first condensed by
attention mechanisms respectively. The merging gate
then adaptively adjusts the weight between the visual
information and the conceptual information for gener-
ating the caption.

for the position of the dog. In contrast, models
based on the visual information often are accurate
in details but have difficulty in describing the im-
age comprehensively and tend to only describe a
subregion.

In this work, we get the best of both worlds and
integrate visual attention and semantic attention
for generating captions that are both detailed and
comprehensive. We propose a Stepwise Image-
Topic Merging Network as the decoder to guide
the information flow between the image and the
extracted topics. At each time step, the decoder
first extracts focal information from the image.
Then, it decides which topics are most probable
for the time step. Finally, it attends differently to
the visual information and the conceptual informa-
tion to generate the output word. Hence, the model
can efficiently merge the two kinds of information,
leading to outstanding results in image captioning.

Overall, the main contributions of this work are:

e We propose a novel approach that can effec-
tively merge the information in the image and
the topics to generate cohesive captions that
are both detailed and comprehensive. We re-
fine and combine two previous competing at-
tention mechanisms, namely visual attention
and semantic attention, with an importance-
based merging gate that effectively combines
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and balances the two kinds of information.

The proposed approach outperforms the
state-of-the-art methods substantially on two
benchmark datasets, Flickr30k and COCO,
in terms of SPICE, which correlates the best
with human judgments. Systematic analysis
shows that the merging gate contributes the
most to the overall improvement.

2 Related Work

A large number of systems have been proposed
for image captioning. Neural models based on
the encoder-decoder framework have been attract-
ing increased attention in the last few years in
several multi-discipline tasks, such as neural im-
age/video captioning (NIC) and visual question
answering (VQA) (Vinyals et al., 2015; Karpa-
thy and Li, 2015; Venugopalan et al., 2015; Zhao
et al.,, 2016; Zhang et al., 2017). State-of-the-
art neural approaches (Anderson et al., 2018; Liu
et al., 2018; Lu et al., 2018) incorporate the atten-
tion mechanism in machine translation (Bahdanau
et al., 2014) to generate grounded image captions.
Based on what they attend to, the models can be
categorized into visual attention models and se-
mantic attention models.

Visual attention models pay attention to the im-
age features generated by CNNs. CNNs are typ-
ically pre-trained on the image recognition task
to extract general visual signals (Xu et al., 2015;
Chen et al., 2017; Lu et al., 2017). The visual at-
tention is expected to find the most relevant image
regions in generating the caption. Most recently,
image features based on predicted bounding boxes
are used (Anderson et al., 2018; Lu et al., 2018).
The advantages are that the attention no longer
needs to find the relevant generic regions by itself
but instead find relevant bounding boxes that are
object orientated and can serve as semantic guides.
However, the drawback is that predicting bound-
ing boxes is difficult, which requires large datasets
(Krishna et al., 2017) and complex models (Ren
et al., 2015, 2017a).

Semantic attention models pay attention to a
predicted set of semantic concepts (Fang et al.,
2015; You et al., 2016; Wu et al., 2016). The se-
mantic concepts are the most frequent words in
the captions, and the extractor can be trained us-
ing various methods but typically is only trained
on the given image captioning dataset. This kind
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of approach can be seen as the extension of the
earlier template-based slotting-filling approaches
(Farhadi et al., 2010; Kulkarni et al., 2013).

However, few work studies how to combine the
two kinds of attention models to take advantage of
both of them. On the one hand, due to the lim-
ited number of visual features, it is hard to provide
comprehensive information to the decoder. On the
other hand, the extracted semantic concepts are
unordered, making it hard for the decoder to por-
tray the details of the objects correctly.

This work focuses on combining the visual at-
tention and the semantic attention efficiently to ad-
dress their drawbacks and make use of their mer-
its. The visual attention is designed to focus on
the attributes and the relationships of the objects,
while the semantic attention only includes words
that are objects so that the extracted topics could
be more accurate. The combination is controlled
by the importance-based merging mechanism that
decides at each time step which kind of informa-
tion should be relied on. The goal is to generate
image captions that are both detailed and compre-
hensive.

3 Approach

Our proposed model consists of an image encoder,
a topic extractor, and a stepwise merging decoder.
Figure 3 shows a sketch. We first briefly introduce
the image encoder and the topic extractor. Then,
we introduce the proposed stepwise image-topic
merging decoder in detail.

3.1 Image Encoder

For an input image, the image encoder expresses
the image as a series of visual feature vectors
V ={vy,ve,...,v;},v; € RY. Each feature cor-
responds to a different perspective of the image.
The visual features serve as descriptive guides of
the objects in the image for the decoder. We use a

ResNet152 (He et al., 2016), which is commonly
used in image captioning, to generate the visual
features. The output of the last convolutional layer
is used as the visual information:

V = WYICNN(I) (1)
where I is the input image, and W/ shrinks the
last dimension of the output.”

3.2 Topic Extractor

Typically, identifying an object requires a com-
bination of visual features, and considering the
limited capacity of the visual features, it is hard
for the conventional decoder to describe the ob-
jects in the image comprehensively. An advance
in image captioning is to provide the decoder with
the semantic concepts in the image directly so
that the decoder is equipped with an overall per-
spective of the image. The semantic concepts
can be objects (e.g. person, car), attributes (e.g.
off, electric), and relationships (e.g. using, sit-
ting). We only use the words that are objects
in this work, the reason of which is explained
later. We call such words topics. The topic ex-
tractor concludes a list of candidate topic embed-
dings T = {w;,ws,...,wy},w; € R® from
the image, where e is the dimension of the topic
word embeddings. Following common practice
(Fang et al., 2015; You et al., 2016), we adopt the
weakly-supervised approach of Multiple Instance
Learning (Zhang et al., 2006) to build a topic ex-
tractor. Due to limited space, please refer to Fang
et al. (2015) for detailed explanation.

Different from existing work that uses all the
most frequent words in the captions as valid se-
mantic concepts or visual words, we only include
the object words (nouns) in the topic word list.
Existing work relies on attribute words and rela-

For conciseness, all the bias terms of linear transforma-
tions in this paper are omitted.
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tionship words to provide visual information to the
decoder. However, it not only complicates the ex-
tracting procedure but also contributes little to the
generation. For an image containing many objects,
the decoder is likely to combine the attributes with
the objects arbitrarily, as such words are specific
to certain objects but are provided to the decoder
unordered. In contrast, our model has visual infor-
mation as additional input and we expect that the
decoder should refer to the image for such kind of
information instead of the extracted concepts.

3.3 Stepwise Image-Topic Merging Decoder

The essential component of the decoder is the pro-
posed stepwise image-topic merging network. The
decoder is based on an LSTM (Hochreiter and
Schmidhuber, 1997). At each time step, it com-
bines the textual caption, the attentive visual in-
formation, and the attentive conceptual informa-
tion as the context for generating an output word.
The goal is achieved by three modules, the visual
attention, the topic attention, and the merging gate.

Visual Attention as Output The visual atten-
tion attends to attracting parts of the image based
on the state of the LSTM decoder. In existing work
(Xu et al., 2015), only the previous hidden state
h;_1 € R? of the LSTM is used in computation of
the visual attention:

Z; = tanh(WZVV o W%h, 1) (2)
softmax( Zzw™?) (3)

where W2V ¢ Rk¥9 W4h ¢ RFXd 2 ¢
R* are the learnable parameters. We denote the
matrix-vector addition as @, which is calculated
by adding the vector to each column of the matrix.
a; € R is the attentive weights of V' and the
attentive visual input z; € RY is calculated as

(827

“4)
The visual input z; and the embedding of the pre-
vious output word y;_; are the input of the LSTM.

yt_J hi) )

However, there is a noticeable drawback that the
previous output word %;—1, which is a much
stronger indicator than the previous hidden state
h;_1, is not used in the attention. As z; is used
as the input, we call it input attention. To over-
come that drawback, we add another attention that
incorporates the current hidden state h;, which is

Zt = Vat

hy = LSTM([ =t
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based on the last generated word ;_1:

Z, = tanh(W2YV o W%'h,)  (6)
oy = softmax(Ztﬁa’Z) @)
zi=Vayu €)

The procedure resembles the input attention, and
we call it output attention. It is worth mention-
ing that the output attention is essentially the same
with the spatial visual attention proposed by Lu
etal. (2017). However, they did not see it from the
input-output point of view nor combine it with the
input attention.

The attentive visual output is further trans-
formed to 7; tanh(W*?z;), W% € R*Y,
which is of the same dimension as the topic word
embedding to simplify the following procedure.

Topic Attention In an image caption, different
parts concern different topics. In the existing work
(You et al., 2016), the conceptual information is
attended based on the previous output word:

;= softmax(TTUyt_l) 9)
where U € R¢*¢ 3, € R™. The profound issue is
that this approach neglects the visual information.
It should be beneficial to provide the attentive vi-
sual information when selecting topics. The hid-
den state of the LSTM contains both the informa-
tion of previous words and the attentive input vi-
sual information. Therefore, the model attends to
the topics based on the hidden state of the LSTM:

Q: = tanh(WTT ¢ W"h,)  (10)
B; = softmax(Qw’?) (11)

where W@ ¢ Rmxe W@h ¢ Rmxd 4y8.Q ¢
R™ are the parameters to be learned. 3; € R™ is
the weight of the topics, from which the attentive
conceptual output q; € R® is calculated:

q =TB (12)
The topic attention g; and the hidden state h; are
combined as the contextual information s;:

s; = tanh(W*4q, + W5 h) (13)

where W54 € Rex¢, WP ¢ R¢*4 are learnable
parameters.

Merging Gate We have prepared both the visual
information 7; and the contextual information s;.
It is not reasonable to treat the two kinds of in-
formation equally when the decoder generates dif-
ferent types of words. For example, when generat-
ing descriptive words (e.g., behind, red), r+ should
matter more than s;. However, when generating



object words (e.g., people, table), sy is more im-
portant. We introduce a novel score-based merg-
ing mechanism to make the model adaptively learn
to adjust the balance:
Yt = O'(S(St) — S(’I"t)) (14)
ct = st + (1 —y)me (15)

where o is the sigmoid function, v¢ € [0, 1] in-
dicates how important the topic attention is com-
pared to the visual attention, and S is the scoring
function. The scoring function needs to evaluate
the importance of the topic attention. Noticing that
Eq. (10) and Eq. (11) have a similar purpose, we
define .S similarly:

S(s;) = tanh(W3'h, + W5%s,) - w®  (16)

S(ry) = tanh(W3hhy + W5r,) - aw®  (17)
where - denotes dot product of vectors, WSs ¢
R™*e WS € R™X¢ are the parameters to
be learned, and WS w?* share the weights of
W whQ from Eq. (10) and Eq. (11), respec-
tively.

Finally, the output word is generated by:
(18)

where each value of p; € RIP! is a probability in-
dicating how likely the corresponding word in vo-
cabulary D is the current output word. The whole
model is trained using maximum log likelihood
and the loss function is the cross entropy loss.

In all, our proposed approach encourages the
model to take advantage of all the available infor-
mation. The adaptive merging mechanism makes
the model weigh the information elaborately.

Yt ~ py = softmax(WP“¢,)

4 Experiment

We describe the datasets and the metrics used for
evaluation, followed by the training details and the
evaluation of the proposed approach.

4.1 Datasets and Metrics

There are several datasets containing images and
their captions. We report results on the popular
Microsoft COCO (Chen et al., 2015) dataset and
the Flickr30k (Young et al., 2014) dataset. They
contain 123,287 images and 31,000 images, re-
spectively, and each image is annotated with 5 sen-
tences. We report results using the widely-used
publicly-available splits in the work of Karpathy
and Li (2015). There are 5,000 images each in the
validation set and the test set for COCO, 1,000 im-
ages for Flickr30k.
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We report results using the COCO captioning
evaluation toolkit (Chen et al., 2015) that reports
the widely-used automatic evaluation metrics
SPICE, CIDEr, BLEU, METEOR, and ROUGE.
SPICE (Anderson et al., 2016), which is based
on scene graph matching, and CIDEr (Vedantam
et al., 2015), which is based on n-gram match-
ing, are specifically proposed for evaluating im-
age captioning systems. They both incorporate the
consensus of a set of references for an example.
BLEU (Papineni et al., 2002) and METOR (Baner-
jee and Lavie, 2005) are originally proposed for
machine translation evaluation. ROUGE (Lin and
Hovy, 2003; Lin, 2004) is designed for automatic
evaluation of extractive text summarization. In the
related studies, it is concluded that SPICE corre-
lates the best with human judgments with a re-
markable margin over the other metrics, and is
expert in judging detailedness, where the other
metrics show negative correlations, surprisingly;
CIDEr and METEOR follows with no particular
precedence, followed by ROUGE-L, and BLEU-
4, in that order (Anderson et al., 2016; Vedantam
et al., 2015).

4.2 Settings

Following common practice, the CNN used is the
ResNet152 model (He et al., 2016) pre-trained on
ImageNet.> There are 2048 7 x 7 feature maps,
and we project them into 512 feature maps, i.e. g
is 512. The word embedding size e is 256 and the
hidden size d of the LSTM is 512. We only keep
caption words that occur at least 5 times in the
training set, resulting in 10,132 words for COCO
and 7,544 for Flickr30k. We use the topic ex-
tractor pre-trained by Fang et al. (2015) for 1,000
concepts on COCO. We only use 568 manually-
annotated object words as topics. For an image,
only the top 5 topics are selected, which means
m is 5. The same topic extractor is used for
Flickr30k, as COCO provides adequate general-
ity. The caption words and the topic words share
the same embeddings. In training, we first train the
model without visual attention (freezing the CNN
parameters) for 20 epochs with the batch size of
80. The learning rate for the LSTM is 0.0004.
Then, we switch to jointly train the full model
with a learning rate of 0.00001, which exponen-
tially decays with the number of epochs so that it
is halved every 50 epochs. We also use momen-

*We use the pre-trained model from torchvision.



Flickr30k SPICE CIDEr METEOR ROUGE-L BLEU-4
HardAtt (Xu et al., 2015) - - 0.185 - 0.199
SCA-CNN (Chen et al., 2017) - - 0.195 - 0.223
ATT-FCN (You et al., 2016) - - 0.189 - 0.230
SCN-LSTM (Gan et al., 2017) - - 0.210 - 0.257
AdaAtt (Lu et al., 2017) 0.145 0.531 0.204 0.467 0.251
NBT (Lu et al., 2018) 0.156 0.575 0.217 - 0.271
SR-PL (Liu et al., 2018)*f 0.158 0.650 0.218 0.499 0.293
simNet 0.160 0.585 0.221 0.489 0.251

Table 1: Performance on the Flickr30k Karpathy test split. The symbol * denotes directly optimizing CIDEr. The
symbol T denotes using extra data for training, thus not directly comparable. Nonetheless, our model supersedes
all existing models in SPICE, which correlates the best with human judgments.

COCO SPICE CIDEr METEOR ROUGE-L BLEU-4
HardAtt (Xu et al., 2015) - - 0.230 - 0.250
ATT-FCN (You et al., 2016) - - 0.243 - 0.304
SCA-CNN (Chen et al., 2017) - 0.952 0.250 0.531 0.311
LSTM-A (Yao et al., 2017) 0.186 1.002 0.254 0.540 0.326
SCN-LSTM (Gan et al., 2017) - 1.012 0.257 - 0.330
Skeleton (Wang et al., 2017) - 1.069 0.268 0.552 0.336
AdaAtt (Lu et al., 2017) 0.195 1.085 0.266 0.549 0.332
NBT (Lu et al., 2018) 0.201 1.072 0.271 - 0.347
DRL (Ren et al., 2017b)* - 0.937 0.251 0.525 0.304
TD-M-ATT (Chen et al., 2018)* - 1.116 0.268 0.555 0.336
SCST (Rennie et al., 2017)" - 1.140 0.267 0.557 0.342
SR-PL (Liu et al., 2018)*f 0.210 1.171 0.274 0.570 0.358
Up-Down (Anderson et al., 201 8)*t 0214 1.201 0.277 0.569 0.363
simNet 0.220 1.135 0.283 0.564 0.332

Table 2: Performance on the COCO Karpathy test split. Symbols, * and T, are defined similarly. Our model
outperforms the current state-of-the-art Up-Down substantially in terms of SPICE.

tum of 0.8 and weight decay of 0.999. We use
Adam (Kingma and Ba, 2014) for parameter opti-
mization. For fair comparison, we adopt early stop
based on CIDEr within maximum 50 epochs.

4.3 Results

We compare our approach with various represen-
tative systems on Flickr30k and COCO, including
the recently proposed NBT that is the state-of-the-
art on the two datasets in comparable settings. Ta-
ble 1 shows the result on Flickr30k. As we can
see, our model outperforms the comparable sys-
tems in terms of all of the metrics except BLEU-4.
Moreover, our model overpasses the state-of-the-
art with a comfortable margin in terms of SPICE,
which is shown to correlate the best with human
judgments (Anderson et al., 2016).

Table 2 shows the results on COCO. Among the
directly comparable models, our model is arguably
the best and outperforms the existing models ex-
cept in terms of BLEU-4. Most encouragingly, our
model is also competitive with Up-Down (Ander-

son et al., 2018), which uses much larger dataset,
Visual Genome (Krishna et al., 2017), with dense
annotations to train the object detector, and di-
rectly optimizes CIDEr. Especially, our model
outperforms the state-of-the-art substantially in
SPICE and METEOR. Breakdown of SPICE F-
scores over various subcategories (see Table 3)
shows that our model is in dominant lead in almost
all subcategories. It proves the effectiveness of our
approach and indicates that our model is quite data
efficient.

For the methods that directly optimize CIDEtr,
it is intuitive that CIDEr can improve signifi-
cantly. The similar improvement of BLEU-4 is
evidence that optimizing CIDEr leads to more n-
gram matching. However, it comes to our notice
that the improvements of SPICE, METEOR, and
ROUGE-L are far less significant, which suggests
there may be a gaming situation where the n-gram
matching is wrongfully exploited by the model in
reinforcement learning. As shown by Liu et al.
(2017), it is most reasonable to jointly optimize
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SPICE

Methods

CIDEr METEOR ROUGE-L BLEU-4

All  Objects Attributes Relations Color Count Size

Baseline (Plain Encoder-Decoder Network) 0.150 0.295 0.048

0.039  0.022 0.004 0.023 0.762 0.220 0.495 0.251

Up-Down (Anderson et al., 2018)* 0.214  0.391 0.100 0.065 0.114 0.184 0.032 1.201 0.277 0.569 0.363
Baseline + Input Att. 0.164 0.316 0.060 0.044  0.030 0.038 0.024 0.840 0.233 0.512 0.273
Baseline + Output Att. 0.181 0.329 0.094 0.053  0.089 0.184 0.044 0.968 0.253 0.534 0.301
Baseline + Input Att. + Output Att. 0.187 0.338 0.101 0.055 0.115 0.161 0.048 1.038 0.259 0.542 0.311
Baseline + Topic Att. 0.184 0.348 0.074 0.051  0.047 0.064 0.037 0915 0.250 0.517 0.260
Baseline + Topic Att. + MGate 0.189  0.355 0.080 0.051  0.055 0.090 0.033 0.959 0.256 0.527 0.281
Baseline + Input Att. + Output Att. + Topic Att. 0.206 0.381 0.091 0.060  0.075 0.094 0.045 1.068 0.273 0.556 0.320
simNet (Full Model) 0.220 0.394 0.109 0.070  0.088 0.202 0.045 1.135 0.283 0.564 0.332

Table 3: Results of incremental analysis. For a better understanding of the differences, we further list the break-
down of SPICE F-scores. Objects indicates comprehensiveness, and the others indicate detailedness. Additionally,
we report the performance of the current state-of-the-art Up-Down for further comparison, which uses extra dense-
annotated data for pre-training and directly optimizes CIDEt.

Method Precision  Recall F1

Topics (m=5) 49.95 3891 4248
All words (m=5) 84.01 17.99 29.49
All words (m=10) 70.90 30.18 42.05
All words (m=20) 52.51 44.53 47.80

Table 4: Performance of visual word extraction.

Method S C M R B
Topics (m=5) 0.220 1.135 0.283 0.564 0.332

All words (m=5) 0.197 1.047 0.264 0.550 0.314
All words (m=10) 0.201 1.076 0.256 0.528 0.293
All words (m=20) 0.209 1.117 0.276 0.561 0.329

Table 5: Effect of using different visual words.

all the metrics at the same time.

We also evaluate the proposed model on the
COCO evaluation server, the results of which are
shown in Appendix A.1, due to limited space.

5 Analysis

In this section, we analyze the contribution of each
component in the proposed approach, and give ex-
amples to show the strength and the potential im-
provements of the model. The analysis is con-
ducted on the test set of COCO.

Topic Extraction The motivation of using ob-
jects as topics is that they are easier to identify
so that the generation suffers less from erroneous
predictions. This can be proved by the F-score of
the identified topics in the test set, which is shown
in Table 4. Using top-5 object words is at least
as good as using top-10 all words. However, us-
ing top-10 all words introduces more erroneous
visual words to the generation. As shown in Ta-

. noun = verb . adv. B other

- adj.

Percentage of Different Word Types

0.7-0.6 0.6-0.5 0.5-0.4
Range of Average Merging Gate Values

Figure 4: Average merging gate values according to
word types. As we can see, object words (noun) dom-
inate the high value range, while attribute and relation
words are assigned lower values, indicating the merg-
ing gate learns to efficiently combine the information.

ble 5, when extracting all words, providing more
words to the model indeed increases the caption-
ing performance. However, even when top-20 all
words are used, the performance is still far behind
using only top-5 object words and seems to reach
the performance ceiling. It proves that for seman-
tic attention, it is also important to limit the abso-
lute number of incorrect visual words instead of
merely the precision or the recall. It is also inter-
esting to check whether using other kind of words
can reach the same effect. Unfortunately, in our
experiments, only using verbs or adjectives as se-
mantic concepts works poorly.

To examine the contributions of the sub-
modules in our model, we conduct a series of ex-
periments. The results are summarized in Table 3.
To help with the understanding of the differences,
we also report the breakdown of SPICE F-scores.

Visual Attention Our input attention achieves
similar results to previous work (Xu et al., 2015),
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Figure 5: Examples of the generated captions.

The left plot compares simNet with visual attention and topic

attention. Visual attention is good at portraying the relations but is less specific in objects. Topic attention includes
more objects but lacks details, such as material, color, and number. The proposed model achieves a very good
balance. The right plot shows the error analysis of the proposed simNet.

if not better. Using only the output attention
is much more effective than using only the in-
put attention, with substantial improvements in all
metrics, showing the impact of information gap
caused by delayed input in attention. Combining
the input attention and the output attention can fur-
ther improve the results, especially in color and
size descriptions.

Topic Attention As expected, compared with
visual attention, the topic attention is better at
identifying objects but worse at identifying at-
tributes. We also apply the merging gate to the
topic attention, but it now merges q; and h; in-
stead of s¢ and r¢. With the merging gate, the
model can balance the information in caption text
and extracted topics, resulting in better overall
scores. While it overpasses the conventional vi-
sual attention, it lags behind the output attention.

Merging Gate Combing the visual attention and
the topic attention directly indeed results in a huge
boost in performance, which confirms our moti-
vation. However, directly combining them also
causes lower scores in attributes, color, count, and
size, showing that the advantages are not fully
made use of. The most dramatic improvements
come from applying the merging gate to the com-
bined attention, showing that the proposed balance
mechanism can adaptively combine the two kinds
of information and is essential to the overall per-
formance. The average merging gate value sum-
marized in Figure 4 suggests the same.
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We give some examples in the left plot of Fig-
ure 5 to illustrate the differences between the mod-
els more intuitively. From the examples, it is clear
that the proposed simNet generates the best cap-
tions in that more objects are described and many
informative and detailed attributes are included,
such as the quantity and the color.

Visualization Figure 6 shows the visualization
of the topic attention and the visual attention with
running examples. As we can see, the topic atten-
tion is active when generating a phrase containing
the related topic. For example, bathroom is always
most attended when generating a bathroom. The
merging gate learns to direct the information flow
efficiently. When generating words such as on and
a, it gives lower weight to the topic attention and
prefers the visual attention. As to the visual at-
tention, the output attention is much more focused
than the input attention. As we hypothesized, the
conventional input attention lacks the information
of the last generated word and does not know what
to look for exactly. For example, when generating
bathroom, the input attention does not know the
previous generated word is a, and it loses its fo-
cus, while the output attention is relatively more
concentrated. Moreover, the merging gate learns
to overcome the erroneous topics, as shown in the
second example. When generating chair, the topic
attention is focused on a wrong object bed, while
the visual attention attends correctly to the chair,
and especially the output attention attends to the
armrest. The merging gate effectively remedies
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Figure 6: Visualization. Please view in color. Here, we give two running examples. The upper part of each example
shows the attention weights of each of 5 extracted topics. Deeper color means larger in value. The middle part
shows the value of the merging gate that determines the importance of the topic attention. The lower part shows
the visualization of visual attention. The attended region is covered with color. The blue shade indicates the output
attention. The red shade indicates the input attention.

the misleading information from the topic atten- 6 Conclusions
tion and outputs a lower weight, resulting in the
model correctly generating the word chair. ‘We propose the stepwise image-topic merging net-
work to sequentially and adaptively merge the vi-
Error Analysis We conduct error analysis using sual and the conceptual information for improved
the proposed (full) model on the test set to pro-  image captioning. To our knowledge, we are the
vide insights on how the model may be improved. ~ first to combine the visual and the semantic atten-
We find 123 out of 1000 generated captions that  tion to achieve substantial improvements. We in-
are not satisfactory. There are mainly three types  troduce the stepwise merging mechanism to effi-
of errors, i.e. distance (32, 26%), movement (22, ciently guide the two kinds of information when
18%), and object (60, 49%), with 9 (7%) other er- generating the caption. The experimental results
rors. Distance error takes place when there is a ~ demonstrate the effectiveness of the proposed ap-
lot of objects and the model cannot grasp the fore- ~ Proach, which substantially outperforms the state-
ground and the background relationship. Move-  of-the-art image captioning methods in terms of
ment error means that the model fails to describe ~ SPICE on COCO and Flickr30k datasets. Quanti-
whether the objects are moving. Those two kinds tative and qualitative analysis show that the gener-
of errors are hard to eliminate, as they are funda- ated captions are both detailed and comprehensive
mental problems of computer vision waiting to be  in comparison with the existing methods.
resolved. Object error happens when there are in-
correct extracted topics, and the merging gate re-  Acknowledgments
gards the topic as grounded in the image. In the
given example, the incorrect topic is garden. The = This work was supported in part by National Natu-
tricky part is that the topic is seemingly correct  ral Science Foundation of China (No. 61673028).
according to the image features or otherwise the =~ We thank all the anonymous reviewers for their
proposed model will choose other topics. A more  constructive comments and suggestions. Xu Sun
powerful topic extractor may help with the prob-  is the corresponding author of this paper.
lem but it is unlikely to be completely avoided.

145



References

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. SPICE: semantic proposi-
tional image caption evaluation. In Computer Vision
- ECCV 2016 - 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part V, volume 9909 of Lecture Notes in
Computer Science, pages 382—-398. Springer.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and VQA. In 2018 IEEE Confer-
ence on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate.  CoRR,
abs/1409.0473.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
an automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization @ACL 2005, Ann Arbor,
Michigan, June 29, 2005, pages 65-72. Association
for Computational Linguistics.

Hui Chen, Guiguang Ding, Sicheng Zhao, and Jungong
Han. 2018. Temporal-difference learning with sam-
pling baseline for image captioning. In Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, Louisiana, USA, Febru-
ary 2-7, 2018. AAAI Press.

Long Chen, Hanwang Zhang, Jun Xiao, Ligiang Nie,
Jian Shao, Wei Liu, and Tat-Seng Chua. 2017. SCA-
CNN: spatial and channel-wise attention in convolu-
tional networks for image captioning. In 2017 IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 6298-6306. IEEE Computer Society.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollér, and
C. Lawrence Zitnick. 2015. Microsoft COCO cap-
tions: Data collection and evaluation server. CoRR,
abs/1504.00325.

Xinlei Chen and C. Lawrence Zitnick. 2015. Mind’s
eye: A recurrent visual representation for image cap-
tion generation. In 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 2422—
2431. IEEE Computer Society.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José M. F. Moura, Devi
Parikh, and Dhruv Batra. 2017. Visual dialog. In
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2017, Honolulu, HI, USA,

146

July 21-26, 2017, pages 1080-1089. IEEE Com-
puter Society.

Hao Fang, Saurabh Gupta, Forrest N. Iandola, Ru-
pesh Kumar Srivastava, Li Deng, Piotr Dollér, Jian-
feng Gao, Xiaodong He, Margaret Mitchell, John C.
Platt, C. Lawrence Zitnick, and Geoffrey Zweig.
2015. From captions to visual concepts and back.
In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pages 1473-1482. IEEE Computer
Society.

Ali Farhadi, Seyyed Mohammad Mohsen Hejrati,
Mohammad Amin Sadeghi, Peter Young, Cyrus
Rashtchian, Julia Hockenmaier, and David A.
Forsyth. 2010. Every picture tells a story: Gener-
ating sentences from images. In Computer Vision
- ECCV 2010, 11th European Conference on Com-
puter Vision, Heraklion, Crete, Greece, September
5-11, 2010, Proceedings, Part IV, volume 6314 of
Lecture Notes in Computer Science, pages 15-29.
Springer.

Zhe Gan, Chuang Gan, Xiaodong He, Yunchen Pu,
Kenneth Tran, Jianfeng Gao, Lawrence Carin, and
Li Deng. 2017. Semantic compositional networks
for visual captioning. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages
1141-1150. IEEE Computer Society.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770-778.
IEEE Computer Society.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Andrej Karpathy and Fei-Fei Li. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pages 3128-3137. IEEE Computer
Society.

Andrej Karpathy and Fei-Fei Li. 2017. Deep visual-
semantic alignments for generating image descrip-
tions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(4):664-676.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Fei-Fei Li. 2017. Vi-
sual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. Inter-
national Journal of Computer Vision, 123(1):32-73.



Girish Kulkarni, Visruth Premraj, Vicente Ordonez,
Sagnik Dhar, Siming Li, Yejin Choi, Alexander C.
Berg, and Tamara L. Berg. 2013. BabyTalk: Under-
standing and generating simple image descriptions.
IEEE Transactions on Pattern Analysis Machine In-
telligence, 35(12):2891-2903.

Chin-Yew Lin. 2004. ROUGE: a package for auto-
matic evaluation of summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04
Workshop, Barcelona, Spain, July, 2004, pages 74—
81. Association for Computational Linguistics.

Chin-Yew Lin and Eduard H. Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Human Language Technol-
ogy Conference of the North American Chapter of
the Association for Computational Linguistics, HLT-
NAACL 2003, Edmonton, Canada, May 27 - June 1,
2003. The Association for Computational Linguis-
tics.

Junyang Lin, Xu Sun, Xuancheng Ren, Shuming Ma,
Jinsong Su, and Qi Su. 2018. Deconvolution-based
global decoding for neural machine translation. In
Proceedings of the 27th International Conference
on Computational Linguistics, COLING 2018, Santa
Fe, New Mexico, USA, August 20-26, 2018, pages
3260-3271. Association for Computational Linguis-
tics.

Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama,
and Kevin Murphy. 2017. Improved image caption-
ing via policy gradient optimization of spider. In
IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 873-881. IEEE Computer Society.

Xihui Liu, Hongsheng Li, Jing Shao, Dapeng Chen,
and Xiaogang Wang. 2018. Show, tell and discrim-
inate: Image captioning by self-retrieval with par-
tially labeled data. CoRR, abs/1803.08314.

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard
Socher. 2017. Knowing when to look: Adaptive at-
tention via a visual sentinel for image captioning. In
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 3242-3250. IEEE Com-
puter Society.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi
Parikh. 2018. Neural baby talk. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018.

Shuming Ma, Xu Sun, Junyang Lin, and Xuancheng
Ren. 2018. A hierarchical end-to-end model for
jointly improving text summarization and sentiment
classification. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelli-
gence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden., pages 4251-4257. ijcai.org.

147

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and
Alan L. Yuille. 2014. Deep captioning with multi-
modal recurrent neural networks (m-RNN). CoRR,
abs/1412.6632.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, July 6-12, 2002, Philadel-
phia, PA, USA., pages 311-318. ACL.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and
Jian Sun. 2015. Faster R-CNN: towards real-time
object detection with region proposal networks. In
Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, pages 91-99.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian
Sun. 2017a. Faster R-CNN: towards real-time ob-
ject detection with region proposal networks. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 39(6):1137-1149.

Zhou Ren, Xiaoyu Wang, Ning Zhang, Xutao Lv, and
Li-Jia Li. 2017b. Deep reinforcement learning-
based image captioning with embedding reward. In
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 1151-1159. IEEE Com-
puter Society.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,
Jarret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 1179-1195. IEEE Computer So-
ciety.

Ramakrishna Vedantam, C. Lawrence Zitnick, and
Devi Parikh. 2015. CIDEr: consensus-based im-
age description evaluation. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pages
4566—4575. IEEE Computer Society.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey
Donahue, Raymond J. Mooney, Trevor Darrell, and
Kate Saenko. 2015. Sequence to sequence - video
to text. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, De-
cember 7-13, 2015, pages 4534-4542. IEEE Com-
puter Society.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pages
3156-3164. IEEE Computer Society.



Yufei Wang, Zhe Lin, Xiaohui Shen, Scott Cohen, and
Garrison W. Cottrell. 2017. Skeleton key: Image
captioning by skeleton-attribute decomposition. In
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 7378-7387. IEEE Com-
puter Society.

Qi Wu, Chunhua Shen, Lingqiao Liu, Anthony R. Dick,
and Anton van den Hengel. 2016. What value do ex-
plicit high level concepts have in vision to language
problems? In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 203-212.
IEEE Computer Society.

Shaomei Wu, Jeffrey Wieland, Omid Farivar, and
Julie Schiller. 2017. Automatic alt-text: Computer-
generated image descriptions for blind users on a so-
cial network service. In Proceedings of the 2017
ACM Conference on Computer Supported Coopera-
tive Work and Social Computing, CSCW 2017, Port-
land, OR, USA, February 25 - March 1, 2017, pages
1180-1192. ACM.

Jingjing Xu, Xu Sun, Qi Zeng, Xiaodong Zhang, Xu-
ancheng Ren, Houfeng Wang, and Wenjie Li. 2018a.
Unpaired sentiment-to-sentiment translation: A cy-
cled reinforcement learning approach. In Proceed-
ings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 1: Long
Papers, pages 979-988. Association for Computa-
tional Linguistics.

Jingjing Xu, Yi Zhang, Qi Zeng, Xuancheng Ren, Xi-
aoyan Cai, and Xu Sun. 2018b. A skeleton-based
model for promoting coherence among sentences in
narrative story generation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2018, Brussels, Bel-
gium, October 31-November 4, 2018. Association
for Computational Linguistics.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages
2048-2057, Lille, France. PMLR.

Ting Yao, Yingwei Pan, Yehao Li, Zhaofan Qiu, and
Tao Mei. 2017. Boosting image captioning with at-
tributes. In IEEE International Conference on Com-
puter Vision, ICCV 2017, Venice, Italy, October 22-
29, 2017, pages 4904-4912. IEEE Computer Soci-
ety.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang,
and Jiebo Luo. 2016. Image captioning with seman-
tic attention. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 4651—
4659. IEEE Computer Society.

148

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. Transac-

tions of the Association for Computational Linguis-
tics, 2:67-78.

Cha Zhang, John C. Platt, and Paul A. Viola. 2006.
Multiple instance boosting for object detection. In
Y. Weiss, B. Scholkopf, and J. C. Platt, editors,
Advances in Neural Information Processing Sys-
tems 18 [Neural Information Processing Systems,
NIPS 2005, December 5-8, 2005, Vancouver, British
Columbia, Canada], pages 1417-1424. MIT Press.

Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and
Tat-Seng Chua. 2017. Visual translation embedding
network for visual relation detection. In 2017 IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 3107-3115. IEEE Computer Society.

Zhou Zhao, Hanqing Lu, Deng Cai, Xiaofei He, and
Yueting Zhuang. 2016. Partial multi-modal sparse
coding via adaptive similarity structure regulariza-
tion. In Proceedings of the 2016 ACM Conference
on Multimedia Conference, MM 2016, Amsterdam,
The Netherlands, October 15-19, 2016, pages 152—
156. ACM.
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SCN-LSTM (Gan et al., 2017) 0.740 0917 0.575 0.839 0436 0.739 0.331 0.631 0.257 0348 0.543 0.696 1.003 1.013
AdaAtt (Lu et al., 2017)1 0.748 0920 0.584 0.845 0.444 0.744 0336 0.637 0.264 0359 0550 0.705 1.042 1.059
TD-M-ATT (Chen et al., 2018)* 0.757 0913 0591 0.836 0441 0.726 0324 0.609 0.259 0.342 0.547 0.689 1.059 1.090
SCST (Rennie et al., 2017)* 0.781 0937 0.619 0.860 0470 0.759 0.352 0.645 0.270 0355 0.563 0.707 1.147 1.167

Up-Down (Anderson et al., 2018)* T 0.802 0952 0.641 0.888 0.491 0.794 0.369 0.685 0.276 0.367 0.571 0.724 1179 1.205

simNet 0.766 0941 0.605 0.874 0462 0.778 0.350 0.671 0.267 0362 0.558 0.716 1.087 1.111

Table 6: Performance on the online COCO evaluation server. The SPICE metric is unavailable for our model,
thus not reported. ¢5 means evaluating against 5 references, and c40 means evaluating against 40 references.
The symbol * denotes directly optimizing CIDEr. The symbol T denotes model ensemble. The symbol * denotes
using extra data for training, thus not directly comparable. Our submission does not use the three aforementioned
techniques. Nonetheless, our model is second only to Up-Down and surpasses almost all the other models in
published work, especially when 40 references are considered.

A Supplementary Material
A.1 Results on COCO Evaluation Server

Table 6 shows the performance on the online
COCO evaluation server*. We put it in the ap-
pendix because the results are incomplete and the
SPICE metric is not available for our submission,
which correlates the best with human evaluation.
The SPICE metrics are only available at the leader-
board on the COCO dataset website’, which, un-
fortunately, has not been updated for more than a
year. Our submission does not directly optimize
CIDEr, use model ensemble, or use extra training
data. The three techniques typically result in or-
thogonal improvements (Lu et al., 2017; Rennie
et al., 2017; Anderson et al., 2018). Moreover,
the SPICE results are missing, in which the pro-
posed model has the most advantage. Nonethe-
less, our model is second only to Up-Down (An-
derson et al., 2018) and surpasses almost all the
other models in published work, especially when
40 references are considered.

*nttps://competitions.codalab.org/
competitions/3221

Shttp://cocodataset.org/
#captions-leaderboard
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Abstract

Computational modeling of human multi-
modal language is an emerging research
area in natural language processing spanning
the language, visual and acoustic modalities.
Comprehending multimodal language requires
modeling not only the interactions within each
modality (intra-modal interactions) but more
importantly the interactions between modal-
ities (cross-modal interactions). In this pa-
per, we propose the Recurrent Multistage Fu-
sion Network (RMFN) which decomposes the
fusion problem into multiple stages, each of
them focused on a subset of multimodal sig-
nals for specialized, effective fusion. Cross-
modal interactions are modeled using this mul-
tistage fusion approach which builds upon in-
termediate representations of previous stages.
Temporal and intra-modal interactions are
modeled by integrating our proposed fusion
approach with a system of recurrent neural net-
works. The RMFN displays state-of-the-art
performance in modeling human multimodal
language across three public datasets relat-
ing to multimodal sentiment analysis, emotion
recognition, and speaker traits recognition. We
provide visualizations to show that each stage
of fusion focuses on a different subset of mul-
timodal signals, learning increasingly discrim-
inative multimodal representations.

1 Introduction

Computational modeling of human multimodal
language is an upcoming research area in natu-
ral language processing. This research area fo-
cuses on modeling tasks such as multimodal sen-
timent analysis (Morency et al., 2011), emotion
recognition (Busso et al., 2008), and personality
traits recognition (Park et al., 2014). The multi-
modal temporal signals include the language (spo-
ken words), visual (facial expressions, gestures)
and acoustic modalities (prosody, vocal expres-
sions). At its core, these multimodal signals are
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Figure 1: An illustrative example for Recurrent Mul-
tistage Fusion. At each recursive stage, a subset of
multimodal signals is highlighted and then fused
with previous fusion representations. The first fu-
sion stage selects the neutral word and frowning
behaviors which create an intermediate represen-
tation reflecting negative emotion when fused to-
gether. The second stage selects the loud voice
behavior which is locally interpreted as empha-
sis before being fused with previous stages into a
strongly negative representation. Finally, the third
stage selects the shrugging and speech elongation
behaviors that reflect ambivalence and when fused
with previous stages is interpreted as a representa-
tion for the disappointed emotion.

highly structured with two prime forms of in-
teractions: intra-modal and cross-modal interac-
tions (Rajagopalan et al., 2016). Intra-modal inter-
actions refer to information within a specific modal-
ity, independent of other modalities. For example,
the arrangement of words in a sentence according

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 150-161
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to the generative grammar of a language (Chomsky,
1957) or the sequence of facial muscle activations
for the presentation of a frown. Cross-modal in-
teractions refer to interactions between modalities.
For example, the simultaneous co-occurrence of a
smile with a positive sentence or the delayed oc-
currence of a laughter after the end of a sentence.
Modeling these interactions lie at the heart of hu-
man multimodal language analysis and has recently
become a centric research direction in multimodal
natural language processing (Liu et al., 2018; Pham
et al., 2018; Chen et al., 2017), multimodal speech
recognition (Sun et al., 2016; Gupta et al., 2017;
Harwath and Glass, 2017; Kamper et al., 2017), as
well as multimodal machine learning (Tsai et al.,
2018; Srivastava and Salakhutdinov, 2012; Ngiam
et al., 2011).

Recent advances in cognitive neuroscience have
demonstrated the existence of multistage aggre-
gation across human cortical networks and func-
tions (Taylor et al., 2015), particularly during the in-
tegration of multisensory information (Parisi et al.,
2017). At later stages of cognitive processing,
higher level semantic meaning is extracted from
phrases, facial expressions, and tone of voice, even-
tually leading to the formation of higher level cross-
modal concepts (Parisi et al., 2017; Taylor et al.,
2015). Inspired by these discoveries, we hypoth-
esize that the computational modeling of cross-
modal interactions also requires a multistage fusion
process. In this process, cross-modal representa-
tions can build upon the representations learned
during earlier stages. This decreases the burden on
each stage of multimodal fusion and allows each
stage of fusion to be performed in a more special-
ized and effective manner.

In this paper, we propose the Recurrent Multi-
stage Fusion Network (RMFN) which automati-
cally decomposes the multimodal fusion problem
into multiple recursive stages. At each stage, a sub-
set of multimodal signals is highlighted and fused
with previous fusion representations (see Figure 1).
This divide-and-conquer approach decreases the
burden on each fusion stage, allowing each stage
to be performed in a more specialized and effective
way. This is in contrast with conventional fusion
approaches which usually model interactions over
multimodal signals altogether in one iteration (e.g.,
early fusion (Baltrusaitis et al., 2017)). In RMFN,
temporal and intra-modal interactions are modeled
by integrating our new multistage fusion process
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with a system of recurrent neural networks. Overall,
RMEN jointly models intra-modal and cross-modal
interactions for multimodal language analysis and
is differentiable end-to-end.

We evaluate RMFN on three different tasks re-
lated to human multimodal language: sentiment
analysis, emotion recognition, and speaker traits
recognition across three public multimodal datasets.
RMEN achieves state-of-the-art performance in all
three tasks. Through a comprehensive set of ab-
lation experiments and visualizations, we demon-
strate the advantages of explicitly defining multiple
recursive stages for multimodal fusion.

2 Related Work

Previous approaches in human multimodal lan-
guage modeling can be categorized as follows:
Non-temporal Models: These models simplify
the problem by using feature-summarizing tempo-
ral observations (Poria et al., 2017). Each modality
is represented by averaging temporal information
through time, as shown for language-based senti-
ment analysis (Iyyer et al., 2015; Chen et al., 2016)
and multimodal sentiment analysis (Abburi et al.,
2016; Nojavanasghari et al., 2016; Zadeh et al.,
2016; Morency et al., 2011). Conventional su-
pervised learning methods are utilized to discover
intra-modal and cross-modal interactions without
specific model design (Wang et al., 2016; Poria
et al., 2016). These approaches have trouble mod-
eling long sequences since the average statistics do
not properly capture the temporal intra-modal and
cross-modal dynamics (Xu et al., 2013).
Multimodal Temporal Graphical Models: The
application of graphical models in sequence mod-
eling has been an important research problem. Hid-
den Markov Models (HMMs) (Baum and Petrie,
1966), Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001), and Hidden Conditional Random
Fields (HCRFs) (Quattoni et al., 2007) were shown
to work well on modeling sequential data from the
language (Misawa et al., 2017; Ma and Hovy, 2016;
Huang et al., 2015) and acoustic (Yuan and Liber-
man, 2008) modalities. These temporal graphical
models have also been extended for modeling mul-
timodal data. Several methods have been proposed
including multi-view HCRFs where the potentials
of the HCRF are designed to model data from
multiple views (Song et al., 2012), multi-layered
CRFs with latent variables to learn hidden spatio-
temporal dynamics from multi-view data (Song



et al., 2012), and multi-view Hierarchical Sequence
Summarization models that recursively build up hi-
erarchical representations (Song et al., 2013).
Multimodal Temporal Neural Networks: More
recently, with the advent of deep learning, Re-
current Neural Networks (Elman, 1990; Jain and
Medsker, 1999) have been used extensively for lan-
guage and speech based sequence modeling (Zilly
et al., 2016; Soltau et al., 2016), sentiment analy-
sis (Socher et al., 2013; dos Santos and Gatti, 2014,
Glorot et al., 2011; Cambria, 2016), and emotion
recognition (Han et al., 2014; Bertero et al., 2016;
Lakomkin et al., 2018). Long-short Term Memory
(LSTM) networks (Hochreiter and Schmidhuber,
1997a) have also been extended for multimodal set-
tings (Rajagopalan et al., 2016) and by learning
binary gating mechanisms to remove noisy modali-
ties (Chen et al., 2017). Recently, more advanced
models were proposed to model both intra-modal
and cross-modal interactions. These use Bayesian
ranking algorithms (Herbrich et al., 2007) to model
both person-independent and person-dependent fea-
tures (Liang et al., 2018), generative-discriminative
objectives to learn either joint (Pham et al., 2018) or
factorized multimodal representations (Tsai et al.,
2018), external memory mechanisms to synchro-
nize multimodal data (Zadeh et al., 2018a), or low-
rank tensors to approximate expensive tensor prod-
ucts (Liu et al., 2018). All these methods assume
that cross-modal interactions should be discovered
all at once rather than across multiple stages, where
each stage solves a simpler fusion problem. Our
empirical evaluations show the advantages of the
multistage fusion approach.

3 Recurrent Multistage Fusion Network

In this section we describe the Recurrent Multi-
stage Fusion Network (RMFN) for multimodal lan-
guage analysis (Figure 2). Given a set of modalities
{l(anguage), v(isual),a(coustic)}, the signal
from each modality m € {l,v,a} is represented as
a temporal sequence X" = {x{",x5", x5", -, X' },
where x;"* is the input at time ¢. Each sequence X"
is modeled with an intra-modal recurrent neural
network (see subsection 3.3 for details). At time ¢,
each intra-modal recurrent network will output a
unimodal representation hi®. The Multistage Fu-
sion Process uses a recursive approach to fuse all
unimodal representations h;" into a cross-modal
representation z; which is then fed back into each
intra-modal recurrent network.

3.1 Multistage Fusion Process

The Multistage Fusion Process (MFP) is a modular
neural approach that performs multistage fusion to
model cross-modal interactions. Multistage fusion
is a divide-and-conquer approach which decreases
the burden on each stage of multimodal fusion,
allowing each stage to be performed in a more spe-
cialized and effective way. The MFP has three main
modules: HIGHLIGHT, FUSE and SUMMARIZE.

Two modules are repeated at each stage:
HIGHLIGHT and FUSE. The HIGHLIGHT mod-
ule identifies a subset of multimodal signals from
[h!, h?, h?] that will be used for that stage of fu-
sion. The FUSE module then performs two sub-
tasks simultaneously: a local fusion of the high-
lighted features and integration with representa-
tions from previous stages. Both HIGHLIGHT
and FUSE modules are realized using memory-
based neural networks which enable coherence
between stages and storage of previously mod-
eled cross-modal interactions. As a final step, the
SUMMARIZE module takes the multimodal repre-
sentation of the final stage and translates it into a
cross-modal representation z;.

Figure 1 shows an illustrative example for mul-
tistage fusion. The HIGHLIGHT module selects
“neutral words” and “frowning” expression for the
first stage. The local and integrated fusion at this
stage creates a representation reflecting negative
emotion. For stage 2, the HIGHLIGHT module
identifies the acoustic feature “loud voice”. The
local fusion at this stage interprets it as an expres-
sion of emphasis and is fused with the previous
fusion results to represent a strong negative emo-
tion. Finally, the highlighted features of “shrug”
and “speech elongation” are selected and are lo-
cally interpreted as “ambivalence”. The integration
with previous stages then gives a representation
closer to “disappointed”.

3.2 Module Descriptions

In this section, we present the details of the three
multistage fusion modules: HIGHLIGHT, FUSE
and SUMMARIZE. Multistage fusion begins with
the concatenation of intra-modal network outputs
h; = @,,c) hi". We use superscript (k] to denote
the indices of each stage £ = 1,---, K during K
total stages of multistage fusion. Let © denote the
neural network parameters across all modules.
HIGHLIGHT: At each stage k, a subset of the
multimodal signals represented in h; will be au-
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Figure 2: The Recurrent Multistage Fusion Network for multimodal language analysis. The Multistage
Fusion Process has three modules: HIGHLIGHT, FUSE and SUMMARIZE. Multistage fusion begins
with the concatenated intra-modal network outputs hl, h? h¢. At each stage, the HIGHLIGHT module
identifies a subset of multimodal signals and the FUSE module performs local fusion before integration
with previous fusion representations. The SUMMARI ZE module translates the representation at the final
stage into a cross-modal representation z; to be fed back into the intra-modal recurrent networks.

tomatically highlighted for fusion. Formally, this
module is defined by the process function fr;:

al' = fir(hy ; a1, 0)
where at stage k, agk] is a set of attention weights
which are inferred based on the previously as-
signed attention weights a?:k*l]. As a result,
the highlights at a specific stage k£ will be depen-
dent on previous highlights. To fully encapsu-
late these dependencies, the attention assignment
process is performed in a recurrent manner using
a LSTM which we call the HIGHLIGHT LSTM.
The initial HIGHLIGHT LSTM memory at stage

(1)

0, cf IGHLIGHT[O], is initialized using a network M
that maps h; into LSTM memory space:
0
?IGHLIGHT[ ] _ M(ht : @) 2)

This allows the memory mechanism of the
HIGHLIGHT LSTM to dynamically adjust to the

intra-modal representations h;. The output of the

HIGHLIGHT LSTM hi*¢aticHtlk]
(k]

tivated to produce attention weights a;
stage k of the multistage fusion process:

)

HIGHLIGHT[k]
t

is softmax ac-

at every

HIGHLIGHT[k]

exp (h,

(h
|hHIGHLIGHT[k]|

t
Xa

al¥

J

(3)

exp (h d)
and agk] is fed as input into the HIGHLIGHT
LSTM at stage k + 1. Therefore, the HIGHLIGHT
LSTM functions as a decoder LSTM (Sutskever
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etal., 2014; Cho et al., 2014) in order to capture the
dependencies on previous attention assignments.
Highlighting is performed by element-wise multi-
plying the attention weights agk] with the concate-
nated intra-modal representations hy:

[~]

flgk] =h; 0 a;

“
where ® denotes the Hadamard product and flgk]
are the attended multimodal signals that will be
used for the fusion at stage k.

FUSE: The highlighted multimodal signals are
simultaneously fused in a local fusion and then in-
tegrated with fusion representations from previous
stages. Formally, this module is defined by the
process function fr:

where sgk] denotes the integrated fusion represen-
tations at stage k. We employ a FUSE LSTM to
simultaneously perform the local fusion and the
integration with previous fusion representations.
The FUSE LSTM input gate enables a local fusion
while the FUSE LSTM forget and output gates en-
able integration with previous fusion results. The
initial FUSE LSTM memory at stage 0, ctF USE[O], is
initialized using random orthogonal matrices (Ar-
jovsky et al., 2015; Le et al., 2015).

SUMMARIZE: After completing K recur-
sive stages of HIGHLIGHT and FUSE, the
SUMMARIZE operation generates a cross-modal



representation using all final fusion representations

SE:K]. Formally, this operation is defined as:

Z; = S(SELK] ; ©) (6)

where z; is the final output of the multistage fusion
process and represents all cross-modal interactions
discovered at time ¢. The summarized cross-modal
representation is then fed into the intra-modal re-
current networks as described in the subsection 3.3.

3.3 System of Long Short-term Hybrid
Memories

To integrate the cross-modal representations z;
with the temporal intra-modal representations, we
employ a system of Long Short-term Hybrid Mem-
ories (LSTHMs) (Zadeh et al., 2018b). The
LSTHM extends the LSTM formulation to include
the cross-modal representation z; in a hybrid mem-
ory component:

i = (WX + UMW + Vi z +b) (7)
i =oc(W xi +UFP hi" + Vi z, +b})  (8)
oii1=0c(Wg x4+ Uy hi" + V" z: + by") 9)

=W x4 +UZ hi" + VL z, + by (10)
cii =" oc" +if" ®@ tanh(ef}1) (11)
hy}, = of}, ® tanh(ci}y) (12)

where o is the (hard-)sigmoid activation function,
tanh is the tangent hyperbolic activation function,
© denotes the Hadamard product. i,f and o are
the input, forget and output gates respectively. ¢;’};
is the proposed update to the hybrid memory c}"*
at time ¢ + 1 and h}" is the time distributed output
of each modality. The cross-modal representation
z; is modeled by the Multistage Fusion Process as
discussed in subsection 3.2. The hybrid memory
c;” contains both intra-modal interactions from in-
dividual modalities x;" as well as the cross-modal
interactions captured in z;.

3.4 Optimization

The multimodal prediction task is performed using
a final representation £ which integrate (1) the last
outputs from the LSTHMs and (2) the last cross-
modal representation z7. Formally, £ is defined as:

5:(@ h?)@ZT

meM

(13)

where @ denotes vector concatenation. £ can then
be used as a multimodal representation for super-
vised or unsupervised analysis of multimodal lan-
guage. It summarizes all modeled intra-modal

and cross-modal representations from the multi-
modal sequences. RMFN is differentiable end-to-
end which allows the network parameters © to be
learned using gradient descent approaches.

4 Experimental Setup

To evaluate the performance and generalization of
RMEFN, three domains of human multimodal lan-
guage were selected: multimodal sentiment analy-
sis, emotion recognition, and speaker traits recog-
nition.

4.1 Datasets

All datasets consist of monologue videos. The
speaker’s intentions are conveyed through three
modalities: language, visual and acoustic.
Multimodal Sentiment Analysis involves analyz-
ing speaker sentiment based on video content. Mul-
timodal sentiment analysis extends conventional
language-based sentiment analysis to a multimodal
setup where both verbal and non-verbal signals
contribute to the expression of sentiment. We use
CMU-MOSI (Zadeh et al., 2016) which consists
of 2199 opinion segments from online videos each
annotated with sentiment in the range [-3,3].
Multimodal Emotion Recognition involves iden-
tifying speaker emotions based on both verbal and
nonverbal behaviors. We perform experiments on
the IEMOCAP dataset (Busso et al., 2008) which
consists of 7318 segments of recorded dyadic dia-
logues annotated for the presence of human emo-
tions happiness, sadness, anger and neutral.
Multimodal Speaker Traits Recognition in-
volves recognizing speaker traits based on multi-
modal communicative behaviors. POM (Park et al.,
2014) contains 903 movie review videos each an-
notated for 12 speaker traits: confident (con), pas-
sionate (pas), voice pleasant (voi), credible (cre),
vivid (viv), expertise (exp), reserved (res), trusting
(tru), relaxed (rel), thorough (tho), nervous (ner),
persuasive (per) and humorous (hum).

4.2 Multimodal Features and Alignment

GloVe word embeddings (Pennington et al., 2014),
Facet (iMotions, 2017) and COVAREP (Degottex
et al., 2014) are extracted for the language, visual
and acoustic modalities respectively . Forced
alignment is performed using P2FA (Yuan and
Liberman, 2008) to obtain the exact utterance times

"Details on feature extraction are in supplementary.
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Dataset CMU-MOSI

I

Task : Sentiment

Metric | A21 F11 AT 1 MAE | Corr 1
SOTA3 | 76.5° 7457 33.2% 0.968 0.622°
SOTA2 : 77.1% 77.0% 34.1% 0.965* 0.625%
SOTAL | 774" 77.3* 347 0.955° 0.632*
RMFN | 784 78.0 383 0.922 0.681
Asora' 110 10.7 13.6 10.033  10.049

Table 1: Sentiment prediction results on CMU-
MOSI. Best results are highlighted in bold and
Agora shows improvement over previous state of
the art (SOTA). Symbols denote baseline model
which achieves the reported performance: MFN:
*, MARN: §, GME-LSTM(A): o, TFN: {, MV-
LSTM: #, EF-LSTM: . The RMFN outperforms
the current SOTA across all evaluation metrics. Im-
provements are highlighted in green.

Dataset ' IEMOCAP Emotions

Task ,  Happy Sad Angry Neutral

Metric | A21 FIt A21% FIt A21 FlI1 A21 FIt
SOTA3 186.1° 83.6° 83.2° 81.7° 85.0° 842 682° 66.77%
SOTA2 :86.5* 84.0* 834" 82.1* 85.1% 84.3% 68.8" 68.5"
SOTAl |86.7° 842" 835" 828" 852" 845" 69.6° 69.2
RMFN | 87.5 858 838 829 851 846 695 69.1
Asora' 108 116 103 101 - 101 - -

Table 2: Emotion recognition results on IEMOCAP.
Best results are highlighted in bold and Agora
shows improvement over previous SOTA. Symbols
denote baseline model which achieves the reported
performance: MFN: x, MARN: §, BC-LSTM: o,
TFN: +, MV-LSTM: #, EF-LSTM: b, SVM: x.
The RMFEN outperforms the current SOTA across
evaluation metrics except Agor 4 entries in gray.
Improvements are highlighted in green.

of each word. We obtain the aligned video and au-
dio features by computing the expectation of their
modality feature values over each word utterance
time interval (Tsai et al., 2018).

4.3 Baseline Models

We compare to the following models for mul-
timodal machine learning: MFN (Zadeh et al.,,
2018a) synchronizes multimodal sequences using a
multi-view gated memory. It is the current state of
the art on CMU-MOSI and POM. MARN (Zadeh
et al., 2018b) models intra-modal and cross-modal
interactions using multiple attention coefficients
and hybrid LSTM memory components. GME-
LSTM(A) (Chen et al., 2017) learns binary gating
mechanisms to remove noisy modalities that are
contradictory or redundant for prediction. TFN
(Zadeh et al., 2017) models unimodal, bimodal
and trimodal interactions using tensor products.

BC-LSTM (Poria et al., 2017) performs context-
dependent sentiment analysis and emotion recog-
nition, currently state of the art on IEMOCAP. EF-
LSTM concatenates the multimodal inputs and
uses that as input to a single LSTM (Hochreiter
and Schmidhuber, 1997b). We also implement
the Stacked, (EF-SLSTM) (Graves et al., 2013)
Bidirectional (EF-BLSTM) (Schuster and Paliwal,
1997) and Stacked Bidirectional (EF-SBLSTM)
LSTMs. For descriptions of the remaining base-
lines, we refer the reader to EF-HCRF (Quattoni
et al., 2007), EF/MV-LDHCRF (Morency et al.,
2007), MV-HCREF (Song et al., 2012), EF/MV-
HSSHCREF (Song et al., 2013), MV-LSTM (Ra-
jagopalan et al., 2016), DF (Nojavanasghari et al.,
2016), SAL-CNN (Wang et al., 2016), C-MKL
(Poria et al., 2015), THMM (Morency et al., 2011),
SVM (Cortes and Vapnik, 1995; Park et al., 2014)
and RF (Breiman, 2001).

4.4 Evaluation Metrics

For classification, we report accuracy Ac where ¢
denotes the number of classes and F1 score. For re-
gression, we report Mean Absolute Error MAE and
Pearson’s correlation . For MAE lower values in-
dicate stronger performance. For all remaining met-
rics, higher values indicate stronger performance.

5 Results and Discussion

5.1 Performance on Multimodal Language

Results on CMU-MOSI, IEMOCAP and POM are
presented in Tables 1, 2 and 3 respectively”. We
achieve state-of-the-art or competitive results for
all domains, highlighting RMFN’s capability in hu-
man multimodal language analysis. We observe
that RMFN does not improve results on IEMO-
CAP neutral emotion and the model outperforming
RMEFN is a memory-based fusion baseline (Zadeh
et al., 2018a). We believe that this is because neu-
tral expressions are quite idiosyncratic. Some peo-
ple may always look angry given their facial config-
uration (e.g., natural eyebrow raises of actor Jack
Nicholson). In these situations, it becomes useful
to compare the current image with a memorized
or aggregated representation of the speaker’s face.
Our proposed multistage fusion approach can eas-
ily be extended to memory-based fusion methods.

“Results for all individual baseline models are in supple-
mentary. State-of-the-art (SOTA)1/2/3 represent the three best
performing baseline models on each dataset.
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Dataset ' POM Speaker Personality Traits

Task : Con Pas Voi Cre Viv Exp Res Rel Tho Ner Per Hum
Metric | AT1 ATt NG ATt AT 1 NG A5 1 A5 1 A5 1 A5 1 ATt A6 1
SOTA3 | 26.6° 31.07 34.0° 29.6° 35.08 31.0° 34.0° 50.7% 458° 44 8 28.1% 40.4°
SOTA2 : 29.1% 34.0% 34.5% 31.5% 36.5° 31.5% 36.9° 5228 46.8° 47.3% 31.0% 44.8°
SOTAl | 345" 35.5* 37.4* 34.5* 36.9* 36.0* 38.4* 53.2* 47.3* 47.8* 34.0* 47.3*
RMFN | 374 38.4 374 374 389 38.9 39.4 53.7 48.3 48.3 35.0 46.8
Asoral 129 129 0.0 129 120 139 11.0 105 11.0 105 1 1.0 -

Table 3: Results for personality trait recognition on POM. Best results are highlighted in bold and Agora
shows improvement over previous SOTA. Symbols denote baseline model which achieves the reported
performance: MFN: x, MARN: §, BC-LSTM: o, TFN: {, MV-LSTM: #, EF-LSTM: b, RF: ©, SVM:
x. The MFP outperforms the current SOTA across all evaluation metrics except the Agora entries
highlighted in gray. Improvements are highlighted in green.

Dataset ; CMU-MOSI

Task | Sentiment

Metric | A271 F11¢ AT 1 MAE| Corr?t
RMFN-R1 I 755 75.5 35.1 0.997 0.653
RMFN-R2 I 76.4 76.4 34.5 0.967 0.642
RMFN-R3 : 78.4 78.0 38.3 0.922 0.681
RMFN-R4 | 76.0 76.0 36.0 0.999 0.640
RMFN-R5 | 755 75.5 30.9 1.009 0.617
RMFN-R6 I 704 70.5 30.8 1.109 0.560
RMFN I 784 78.0 38.3 0.922 0.681

Table 4: Effect of varying the number of stages on
CMU-MOSI sentiment analysis performance. Mul-
tistage fusion improves performance as compared
to single stage fusion.

Dataset ' CMU-MOSI

Task : Sentiment

Metric | A21 F1 1 A71 MAE| Corr?t
MARN 771 77.0 347 0968 0.625
RMEFN (no MFP) I 76.5 76.5 30.8  0.998 0.582
RMFN (no HIGHLIGHT)! 77.9 77.9 359 0952 0.666
RMFN I 784 780 383 0922 0.681

Table 5: Comparison studies of RMFN on CMU-
MOSI. Modeling cross-modal interactions using
multistage fusion and attention weights are crucial
in multimodal language analysis.

5.2 Analysis of Multistage Fusion

To achieve a deeper understanding of the multi-
stage fusion process, we study five research ques-
tions. (Q1): whether modeling cross-modal inter-
actions across multiple stages is beneficial. (Q2):
the effect of the number of stages K during multi-
stage fusion on performance. (Q3): the comparison
between multistage and independent modeling of
cross-modal interactions. (Q4): whether modeling
cross-modal interactions are helpful. (Q5): whether
attention weights from the HIGHLIGHT module
are required for modeling cross-modal interactions.
Q1: To study the effectiveness of the multistage fu-
sion process, we test the baseline RMFN-R1 which
performs fusion in only one stage instead of across
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multiple stages. This model makes the strong as-
sumption that all cross-modal interactions can be
modeled during only one stage. From Table 4,
RMFN-R1 underperforms as compared to RMFN
which performs multistage fusion.

Q2: We test baselines RMFN-R K which perform
K stages of fusion. From Table 4, we observe
that increasing the number of stages K increases
the model’s capability to model cross-modal in-
teractions up to a certain point (K = 3) in our
experiments. Further increases led to decreases
in performance and we hypothesize this is due to
overfitting on the dataset.

Q3: To compare multistage against independent
modeling of cross-modal interactions, we pay close
attention to the performance comparison with re-
spect to MARN which models multiple cross-
modal interactions all at once (see Table 5). RMFEN
shows improved performance, indicating that mul-
tistage fusion is both effective and efficient for hu-
man multimodal language modeling.

Q4: RMFN (no MFP) represents a system of
LSTHMs without the integration of z; from the
MFP to model cross-modal interactions. From Ta-
ble 5, RMFN (no MFP) is outperformed by RMFN,
confirming that modeling cross-modal interactions
is crucial in analyzing human multimodal language.
Q5: RMFN (no HIGHLIGHT) removes the
HIGHLIGHT module from MFP during multistage
fusion. From Table 5, RMFN (no HIGHLIGHT)
underperforms, indicating that highlighting multi-
modal representations using attention weights are
important for modeling cross-modal interactions.

5.3 Visualizations

Using an attention assignment mechanism during
the HIGHLIGHT process gives more interpretabil-
ity to the model since it allows us to visualize
the attended multimodal signals at each stage and
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Figure 3: Visualization of learned attention weights across stages 1,2 and 3 of the multistage fusion process
and across time of the multimodal sequence. We observe that the attention weights are diverse and evolve
across stages and time. In these three examples, the red boxes emphasize specific moments of interest. (a)
Synchronized interactions: the positive word “fun” and the acoustic behaviors of emphasis and elongation
(t = 5) are synchronized in both attention weights for language and acoustic features. (b) Asynchronous
trimodal interactions: the asynchronous presence of a smile (f = 2 : 5) and emphasis (¢ = 3) help to
disambiguate the language modality. (c) Bimodal interactions: the interactions between the language and
acoustic modalities are highlighted by alternating stages of fusion (¢t =4: 7).

time step (see Figure 3). Using RMFN trained
on the CMU-MOSI dataset, we plot the attention
weights across the multistage fusion process for
three videos in CMU-MOSI. Based on these vi-
sualizations we first draw the following general
observations on multistage fusion:

Across stages: Attention weights change their be-
haviors across the multiple stages of fusion. Some
features are highlighted by earlier stages while
other features are used in later stages. This supports
our hypothesis that RMFN learns to specialize in
different stages of the fusion process.

Across time: Attention weights vary over time and
adapt to the multimodal inputs. We observe that the
attention weights are similar if the input contains
no new information. As soon as new multimodal
information comes in, the highlighting mechanism
in RMFN adapts to these new inputs.

Priors: Based on the distribution of attention
weights, we observe that the language and acoustic
modalities seem the most commonly highlighted.
This represents a prior over the expression of senti-
ment in human multimodal language and is closely
related to the strong connections between language
and speech in human communication (Kuhl, 2000).
Inactivity: Some attention coefficients are not ac-
tive (always orange) throughout time. We hypoth-
esize that these corresponding dimensions carry
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only intra-modal dynamics and are not involved in
the formation of cross-modal interactions.

5.4 Qualitative Analysis

In addition to the general observations above, Fig-
ure 3 shows three examples where multistage
fusion learns cross-modal representations across
three different scenarios.

Synchronized Interactions: In Figure 3(a), the
language features are highlighted corresponding
to the utterance of the word “fun” that is highly
indicative of sentiment (¢ = 5). This sudden change
is also accompanied by a synchronized highlight-
ing of the acoustic features. We also notice that the
highlighting of the acoustic features lasts longer
across the 3 stages since it may take multiple stages
to interpret all the new acoustic behaviors (elon-
gated tone of voice and phonological emphasis).
Asynchronous Trimodal Interactions: In Fig-
ure 3(b), the language modality displays ambigu-
ous sentiment: “delivers a lot of intensity” can be
inferred as both positive or negative. We observe
that the circled attention units in the visual and
acoustic features correspond to the asynchronous
presence of a smile (¢ = 2 : 5) and phonological
emphasis (¢ = 3) respectively. These nonverbal be-
haviors resolve ambiguity in language and result in
an overall display of positive sentiment. We further



note the coupling of attention weights that highlight
the language, visual and acoustic features across
stages (¢ = 3 : ), further emphasizing the coordina-
tion of all three modalities during multistage fusion
despite their asynchronous occurrences.

Bimodal Interactions: In Figure 3(c), the lan-
guage modality is better interpreted in the context
of acoustic behaviors. The disappointed tone and
soft voice provide the nonverbal information useful
for sentiment inference. This example highlights
the bimodal interactions (¢ = 4 : 7) in alternating
stages: the acoustic features are highlighted more
in earlier stages while the language features are
highlighted increasingly in later stages.

6 Conclusion

This paper proposed the Recurrent Multistage Fu-
sion Network (RMFN) which decomposes the mul-
timodal fusion problem into multiple stages, each
focused on a subset of multimodal signals. Ex-
tensive experiments across three publicly-available
datasets reveal that RMFN is highly effective in
modeling human multimodal language. In addi-
tion to achieving state-of-the-art performance on all
datasets, our comparisons and visualizations reveal
that the multiple stages coordinate to capture both
synchronous and asynchronous multimodal inter-
actions. In future work, we are interested in merg-
ing our model with memory-based fusion methods
since they have complementary strengths as dis-
cussed in subsection 5.1.
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Abstract

We introduce an effective and efficient method
that grounds (i.e., localizes) natural sentences
in long, untrimmed video sequences. Specif-
ically, a novel Temporal GroundNet (TGN)'
is proposed to temporally capture the evolv-
ing fine-grained frame-by-word interactions
between video and sentence. TGN sequen-
tially scores a set of temporal candidates ended
at each frame based on the exploited frame-
by-word interactions, and finally grounds the
segment corresponding to the sentence. Un-
like traditional methods treating the overlap-
ping segments separately in a sliding window
fashion, TGN aggregates the historical infor-
mation and generates the final grounding re-
sult in one single pass. We extensively evalu-
ate our proposed TGN on three public datasets
with significant improvements over the state-
of-the-arts. We further show the consistent ef-
fectiveness and efficiency of TGN through an
ablation study and a runtime test.

1 Introduction

We examine the task of Natural Sentence Ground-
ing in Video (NSGV). Given an untrimmed video
and a natural sentence, the goal is to determine
the start and end timestamps of the segment in
the video which corresponds to the given sen-
tence, as shown in Figure 1 (a). Comparing with
the other video researches, such as bidirectional
video-sentence retrieval (Xu et al., 2015b), video
attractiveness prediction (Chen et al., 2018, 2016),
and video captioning (Pasunuru and Bansal, 2017;
Wang et al., 2018a,b), NSGV needs to model not
only the characteristics of sentence and video but
also the fine-grained interactions between the two
modalities, which is even more challenging.

* Work done while Jingyuan Chen and Xinpeng Chen
were Research Interns with Tencent Al Lab.

! The  project  homepage is https://
jingyuanchen.github.io/archive/tgn.html.

|{Sentence: H

8.1s LA woman reels a kite back in toward herself. ; 26.3s
[ »

Common space

Awoman
reels

a kite
back in
toward
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grounding
candidates

A woman reels kite

(©)

Figure 1: (a) The Natural Sentence Grounding in Video
(NSGV) task. (b) A common space based matching
method performs in a sliding window fashion. (c)
Our proposed Temporal GroundNet (TGN) localizes
the candidate video segments at multiple scales in a
single processing pass. The frames in the video and
the words in the sentence interact attentively to perform
fine-grained frame-by-word matchings for grounding
sentence in video.

Recently, several related works (Gao et al.,
2017; Hendricks et al., 2017) leverage one tempo-
ral sliding window approach over video sequences
to generate video segment candidates, which are
then independently combined (Gao et al., 2017) or
compared (Hendricks et al., 2017) with the given
sentence to make the grounding prediction. Al-
though the existing works have achieved promis-
ing performances, they are still suffering from in-
ferior effectiveness and efficiency. First, existing
methods project the video segment and sentence
into one common space, as shown in Figure 1 (b),
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where the two generated embedding vectors are
used to perform the matching between video seg-
ment and sentence. Such a matching is only per-
formed in the global segment and sentence level
and thus not expressive enough, which ignores
the fine-grained matching relations between video
frames and the words in sentences. Second, in or-
der to handle the diverse temporal scales and loca-
tions of the candidate segments, exhaustive match-
ing between the large amount of overlapping seg-
ments and the sentence is required. As such, the
sliding window methods are very computationally
expensive.

In order to tackle the above two limitations,
we introduce a novel Temporal GroundNet (TGN)
model, the first dynamic single-stream deep archi-
tecture for the NSGV task that takes full advantage
of fine-grained interactions between video frames
and words in a sentence, as shown in Figure 1 (c).
TGN sequentially processes video frames, where
at each time step we rely on a novel multimodal in-
teractor to exploit the evolving fine-grained frame-
by-word interactions. Then, TGN works on the
yielded interaction status to simultaneously score
a set of temporal candidates of multiple scales and
finally localize the video segment that corresponds
to the sentence. More importantly, our proposed
TGN is able to analyze an untrimmed video frame
by frame without resorting to handling overlap-
ping temporal video segments.

2 Related Work

2.1 Grounding Natural Language in Image

Grounding natural language in image is also
known as natural language object retrieval. The
task is to localize an image region described by
natural language, which involves comprehend-
ing and modeling different spatial contexts, such
as spatial configurations (Hu et al., 2016), at-
tributes (Yu et al., 2018), and relationships be-
tween objects (Hu et al., 2017). Specifically, the
task is usually formulated as a ranking problem
over a set of candidate regions in a given image,
where candidate spatial locations come from re-
gion proposal methods (Uijlings et al., 2013; Jie
et al., 2016b,a; Ren et al., 2017) such as Edge-
Box (Zitnick and Dollar, 2014). Earlier stud-
ies (Mao et al., 2016; Rohrbach et al., 2016) score
the generated candidate regions according to their
appearances and spatial features along with fea-
tures of the entire image. However, these meth-
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ods fail to incorporate the interactions between ob-
jects, because the scoring process of each region
proposal is isolated. More recent studies (Hu et al.,
2017; Nagaraja et al., 2016) improve the perfor-
mance with the aid of modeling relationships be-
tween objects.

2.2 Grounding Natural Language in Video

Analogous to spatial grounding in image, this
work studies a similar problem—temporal natural
language grounding in video. Earlier works (Yu
and Siskind, 2013; Lin et al., 2014) learn the se-
mantics of sentences, which are then matched to
visual concepts via exploiting object appearance,
motion and spatial relationships. However, they
are limited to a small set of objects. Recently,
larger datasets (Gao et al., 2017; Hendricks et al.,
2017) are constructed to support more flexible
groundings. The methods proposed in (Gao et al.,
2017; Hendricks et al., 2017) learn a common
embedding space shared by video segment fea-
tures and sentence representations, in which their
similarities are measured. Specifically, moment
context network (MCN) (Hendricks et al., 2017)
learns a shared embedding for video clip-level fea-
tures and language features. The video features
integrate local video features, global features, and
temporal endpoint features. Cross-modal tempo-
ral regression localizer (CTRL) (Gao et al., 2017)
contains four modules, specifically a visual en-
coder extracting clip-level features with context, a
sentence encoder yielding its embedding through
LSTM, a multimodal processing network generat-
ing the fused representations via element-wise op-
erations, and a temporal regression network pro-
ducing the alignment scores and location offsets.
One limitation of those common space matching
methods is that the video segment generation pro-
cess is computationally expensive, as they carry
out overlapping sliding window matching (Gao
etal., 2017) or exhaustive search (Hendricks et al.,
2017). Another weakness is that they exploit the
relationships between textual and visual modali-
ties by conducting a simple concatenation (Gao
et al., 2017) or measuring a squared distance
loss (Hendricks et al., 2017), which ignores the
evolving fine-grained video-sentence interactions.
In this paper, a novel model TGN is proposed to
deal with the aforementioned limitations for the
task of natural sentence grounding in video.



3 Approach

Given a long and untrimmed video sequence V'
and a natural sentence S, the NSGV task is to lo-
calize a video segment Vy = {f; i‘;tb from V', be-
ginning at ¢ and ending at ¢., which corresponds
to and expresses the same semantic meaning as the
given sentence S. In order to perform the ground-
ing, each video is represented as V' = {f;}L,,
where T is the total number of frames and f; de-
notes the feature representation of the ¢-th video
frame. Similarly, each sentence is represented as
S = {wn}ﬁ/:l, where w,, is the embedding vector
of the n-th word in the sentence and NV denotes the
total number of words.

We propose a novel model, namely Temporal
GroundNet (TGN), to tackle the NSGV problem.
As illustrated in Figure 2, TGN consists of three
modules. 1) Encoder: visual and textual encoders
are used to compose the video frame representa-
tions and word embeddings, respectively. 2) Inter-
actor: a multimodal interactor learns the frame-by-
word interactions between the video and sentence.
3) Grounder: a grounder generates the temporal
localization in one single pass. Please note that
these three modules are fully coupled together,
which can thus be trained in an end-to-end fash-
ion.

3.1 Encoder

With the obtained video frame features V'
{fi}L_, and word embeddings of the sentence
S {wp}_;, we employ two long short-
term memory networks (LSTMs) (Hochreiter and
Schmidhuber, 1997) to sequentially process the
two different modalities, i.e., video and sentence,
independently. Specifically, one LSTM sequen-
tially models the video V, yielding the hidden
states {h?}L ;, while the other LSTM processes
the sequential words in the sentence S, resulting in
its corresponding hidden states {h3}_,. Owing
to natural behaviors and characteristics of LSTMs,
both {hY}Z_; and {h$}~_, can encode and ag-
gregate the contextual evidences (Wang and Jiang,
2016b) from the sequential video frame represen-
tations and word embeddings of the sentence, re-
spectively, meanwhile casting aside the irrelevant
information.

3.2 Interactor

Based on the hidden states of the video and sen-
tence yielded from the leveraged encoders, we de-
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Figure 2: The architecture of our proposed TGN
model. TGN consists of three modules. The visual and
textural encoders aggregate the contextual evidences
from the sequential video frame representations and
word embeddings of the sentence, respectively. The
multimodal interactor learns the fine-grained frame-by-
word interactions between the video and sentence. The
grounder yields the temporal grounding of the sentence
in the video sequence via one single pass.

sign a multimodal interactor to perform the frame-
by-word interactions between the video and sen-
tence. First, the frame-specific sentence feature is
generated through summarizing the sentence hid-
den states by considering their relationships with
the specific video frame at each time step. Af-
terwards, an interaction LSTM, dubbed -LSTM,
is performed to aggregate frame-by-word interac-
tions.

3.2.1 Frame-Specific Sentence Feature

Directly operating on the clip-level and sentence-
level features generated by the encoders cannot
well exploit the frame-by-word relationships be-
tween video and sentence that evolve over time.
Inspired by (Wang and Jiang, 2016a; Feng et al.,
2018), we introduce one novel frame-specific sen-
tence feature, which adaptively summarizes the
hidden states of the sentence {h%}YN_, with re-
spect to the ¢-th video frame:

N

H; = ) afh;, (1)
n=1

where Hj denotes the summarized sentence rep-

resentation specified by the ¢-th video frame. At
each time step ¢, we utilize the hidden state hy to



selectively attend the words and summarize them
accordingly. The attention weight o} encodes the
degree to which the n-th word in the sentence is
aligned with the ¢-th video frame. As the pro-
cessing of video frames proceeds, the attention
weights dynamically change regarding to the cur-
rent video frame. As such, the generated frame-
specific sentence features {H{}Z ; consider the
frame-by-word relationships between all the video
frames and all the words in the sentence.

As the generation of frame-specific sentence
feature is deeply coupled with the following inter-
action LSTM, we will explain the calculation of
the attention weight o}’ later.

3.2.2 Interaction LSTM (:-LSTM)

In order to accurately ground the sentence in a
video, the multimodal interation behaviors be-
tween the video and sentence need to be com-
prehensively modeled. Previous approaches on
multimodal interactions were limited to concate-
nation (Zhu et al., 2016), element-wise product or
sum (Gao et al., 2017), and bilinear pooling (Fukui
et al., 2016). These methods are not expressive
enough since they ignore the evolving fine-grained
interactions across video and sentence, particu-
larly the frame-by-word interactions. In this paper,
we propose a novel multimodal interaction model,
which is realized by LSTM. We term it interaction
LSTM (i-LSTM), which sequentially processes
the video sequence frame by frame, holding deep
interactions with the words in the sentence.

In order to well capture the complicated tempo-
ral interactions between the video and sentence, at
each time step ¢, the input of the :-LSTM is formed
by concatenating the t¢-th video hidden state hY
and the ¢-th frame-specific sentence feature Hy as:
r; = hy || H. r; is then fed into the i-LSTM unit
to yield the ¢-th intermediate interaction status be-
tween the video and sentence:

2)

where hj is the yielded hidden state, encoding
the fine-grained interactions between the word and
video frame. hj will be further used to perform the
grounding process. Due to the inherent properties
and characteristics of LSTMs, important cues re-
garding to grounding up to the current stage will
be “remembered”’, while non-essential ones will
be “forgotten”.

Now we go back to the generation of attention
weight o} in Eq. (1), based on the obtained vi-

h! = i-LSTM(rs, bl _,),
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sual hidden states h; and textual hidden state h;,
as well as the yielded interaction status h;_; in
the previous step. The widely used soft-attention
mechanism (Xu et al., 2015a; Chen et al., 2017) is
used to generate the attention weights in a frame-
by-word manner. As aforementioned, the :-LSTM
models the evolving frame-by-word interactions
between the sentence and video. Therefore, the at-
tention weight between the n-th word hj, and the
t-th video frame hy is determined by not only the
content of the video and sentence but also their in-
teraction status. Thus, we design one network to
compute the relevance score of one video frame
with respect to each word:

B = wT tanh(W hs +WV"hy + W?h{_, +b)+c, (3)

where vector w, matrices W*, bias vector b, and
bias c are the network parameters to be learned.
hj_, is the hidden state of the ¢-LSTM at ¢ — 1
time step. The final word-level attention weights
are obtained by:

exp(Bf)
Z;Vﬂ exp(f)

The obtained attention weight o is thereafter to
generate the frame-specific sentence feature as in

Eq. (1).

3.3 Grounder

n _
t

“)

In this section, we introduce the grounder, which
works on the yielded interaction status h} from
1-LSTM, to localize the video segment that cor-
responds to the sentence. Our proposed grounder
works in one single pass without introducing over-
lapping sliding windows, which thus results in
a fast runtime. As shown in Figure 2, at each
time step ¢, the grounder efficiently scores a set of
K grounding candidates by considering multiple
time scales (Buch et al., 2017) that end at time step
t. Specifically, we use different K for different
datasets, which is determined by the distribution
of the lengths of all ground-truth groundings in a
certain dataset. To simplify the following discus-
sions, the lengths of K time scales are assumed to
be an arithmetic sequence with the common differ-
ence 0 and all the temporal candidates are sorted
by increasing lengths. In other words, the length
of the k-th candidate is kJ. Note that all grounding
candidates considered at time ¢ have a fixed ending
boundary.



Specifically, at each time step ¢, the grounder
will classify each temporal candidate in consid-
eration as a positive grounding or a negative one
with respect to the given sentence. Considering
multiple time scales, the grounder will generate
the confidence scores C; = (c},c?,...,cf) that
correspond to the set of K visual grounding can-
didates, all ending at time step ¢. The hidden
state hj generated by ¢-LSTM at time ¢, repre-
senting the interaction status between the sentence
and video sequence up to the current position,
is naturally suited to yield the confidence scores
for the different time scales ending at time step
t. In this paper, the confidence scores, indicating
the sentence grounding, are generated by a fully-
connected layer with sigmoid nonlinearity:

C; = o(W*h + b}), (5)

where WX and b7 are the corresponding parame-
ters, and o denotes the nonlinear sigmoid function.

3.4 Training

The training samples collected in X for NSGV are
video-sentence pairs. Specifically, each video V
is temporally associated with a set of sentence an-
notations: A = {(5;,t%,t¢)}M,, where M is the
number of annotated sentences of the video, and
S; is a sentence description of a video clip, with
tf and ¢{ indicating the beginning and ending time
in the video. Each training sample corresponds to
a ground-truth matrix y € RT*¥ with binary en-
tries. We use 4 to denote the (¢, k)-th entry of the
ground-truth matrix. ¥ is interpreted as whether
the k-th grounding candidate at time step ¢ corre-
sponds to the given natural sentence. Concretely,
the entry yf is set as 1, indicating that the corre-
sponding video segment (ends at time step ¢ with
length k¢) has a temporal Intersection-over-Union
(IoU) with (°,¢) larger than a threshold 6. Oth-
erwise yJ is set as 0.

For a training pair (V,S) € X, the objective
at time step ¢ is given by a weighted binary cross
entropy loss L(¢,V, S):

K

= wiyt logef +wi(1—yf)log(1l—¢f), (6)
k=1

where the weights wf and w} are calculated ac-
cording to the frequencies of positive and negative
samples in the training set with length kd. ¥ is
the ground-truth value and ¢} denotes the predic-
tion results by our proposed model.

166

Our TGN backpropagates at every time step ¢ to
learn all the parameters of the fully-coupled three
modules: encoder, interactor, and grounder. The
objective of all training video-sentence pairs X is
defined as:

T
> L v 9).

V,S)ex t=1

Ly = (N
(

3.5 Inference

During the inference stage, given a testing video
V and a sentence S, the textual and visual en-
coders first generate hidden states for each word
and video frame, respectively. Then, the interac-
tor sequentially goes through the video frame by
frame to yield the frame-by-word interaction sta-
tus. At each position ¢, a K-dimensional score
vector C; is generated by the grounder. There-
fore, after processing the last frame in the video,
a T x K score matrix is obtained for the whole
video, with the (¢, k)-th entry in the matrix indicat-
ing the probability that the video segment ended at
position ¢ with length k4§ in video V' corresponds
to sentence S. Eventually, the evaluation is re-
duced to a ranking problem over all the grounding
candidates based on the generated scores.

4 Experiments

In this section, we evaluate the effectiveness of
our proposed TGN on the NSGV task. We be-
gin by describing the datasets used for evaluation,
followed by the introduction of the experimental
settings including the baselines, configurations, as
well as the evaluation metrics. Afterwards, we
demonstrate the effectiveness of TGN by compar-
ing with the state-of-the-art approaches and effi-
ciency through a runtime test.

4.1 Datasets

We experiment on three publicly accessible
datasets: DiDeMo (Hendricks et al., 2017),
TACoS (Regneri et al., 2013), and ActivityNet
Captions (Fabian Caba Heilbron and Niebles,
2015). These datasets consist of videos as well as
their associated temporally annotated sentences.
DiDeMo’ consists of 10464 25-50 second long
videos. The same split provided by (Hendricks
et al., 2017) is used for a fair comparison, with
33008, 4180, and 4022 video-sentence pairs for
training, validation, and testing, respectively.

https://goo.gl/JIpbAhg.



TACoS? consists of 127 videos selected from the
MPII Cooking Composite Activities video cor-
pus (Rohrbach et al., 2012). The same split as
in (Gao et al., 2017) is used, consisting of 10146,
4589, and 4083 video-sentence pairs for training,
validation, and testing, respectively.

ActivityNet Captions* consists of 19, 209 videos
amounting to 849 hours. The public split is used
for our experiments, which has 37421, 17505, and
17031 video-sentence pairs for training, valida-
tion, and testing, respectively.

4.2 Experimental Settings
4.2.1 Baselines

We compare our proposed TGN against the fol-
lowing two state-of-the-art models, specifically,
the MCN (Hendricks et al., 2017), CTRL (Gao
et al., 2017), visual-semantic alignment with
LSTM (VSA-RNN) (Karpathy and Li, 2015), and
visual-semantic alignment with skip thought vec-
tor (VSA-STV) (Kiros et al.,, 2015). For fair
comparisons, we compare the results of MCN on
DiDeMo and the results of CTRL, VSA-RNN,
VSA-STV on TACoS reported in their papers.

4.2.2 Evaluation Metrics

A grounding of one natural sentence in a video is
considered as “correct” if its temporal IoU with
the ground-truth boundary is above a threshold
f. To be consistent with the baselines, we adopt
R@N, IoU=6, and mean IoU (mloU) as our eval-
uation metrics. R@N, ToU=0 represents the per-
centage of testing samples which have at least one
of the top-N results with IoU larger than 6. mloU
means the average IoU over all testing samples.

4.2.3 Configurations

Generally, the video frame features are usually ex-
tracted with a time resolution. For the videos in
DiDeMo and TACoS, we sample every 5 second as
done by (Hendricks et al., 2017). As the videos in
DiDeMo are 25-30 second long, the video feature
length is reduced to 6. For videos in ActivityNet
Captions, we sample every second. To extract vi-
sual features, we consider both appearance and
optical flow features. Specifically, we study four
widely-used visual features: VGG16 (Simonyan
and Zisserman, 2014), C3D (Tran et al., 2015),
Inception-V4 (Szegedy et al., 2017), and optical
flow (Wang et al., 2016). Please note that when

*https://goo.gl/ajmsva.
*nttps://goo.gl/N355bG.
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Table 1: Performance comparisons of different meth-
ods on DiDeMo. The best performance for each metric
entry is highlighted in boldface.

R@1 R@5
Method ToU=1 ToU=1 mloU
MFP 19.40 66.38 26.65
MCN-VGG16 13.10 44.82 25.13
MCN-Flow 18.35 56.25 31.46
MCN-Fusion 19.88 62.39 33.51
MCN-Fusion+TEF 28.10 78.21 41.08
TGN-VGG16 24.28 71.43 38.62
TGN-Flow 27.52 76.94 42.84
TGN-Fusion 28.23 79.26 42.97

comparing with specific baseline methods, we use
the same features as baseline methods, specifi-
cally, VGG16 and optical flow for MCN and C3D
for CTRL, VSA-RNN, and VSA-STV.

For sentences, we tokenize each sentence by
Stanford CoreNLP (Manning et al., 2014) and use
the 300-D word embeddings from GloVe (Pen-
nington et al., 2014) to initialize the models.
The words not found in GloVe are initialized as
zero vectors. The hidden state dimensions of all
LSTMs (including the video, sentence, and in-
teraction LSTMs) are set as 512. We use the
Adam (Kingma and Ba, 2014) optimizer with 3;
= 0.5 and B = 0.999. The initial learning rate is
set to 0.001. We train the network for 200 iter-
ations, and the learning rate is gradually decayed
over time. The mini-batch size is set to 64.

4.3 Experimental Results and Analysis
4.3.1 Comparisons with State-of-the-Arts

Experiments on DiDeMo. Table 1 illustrates
the performance comparisons on the DiDeMo
dataset. In addition to MCN, we also compare
with the baseline Moment Frequency Prior (MFP)
in (Hendricks et al., 2017), which selects segments
corresponding to the positions of videos in the
training dataset with most annotations. First, TGN
with different features can significantly outper-
forms the “prior baseline” MFP, which retrieves
segments corresponding to the most common start
and end points in the dataset. Second, it can be ob-
served that with the same visual features, specifi-
cally VGG16 and optical flow, TGN significantly
outperforms MCN. And the performance of TGN
with optical flow is better than that with VGG16.
One possible reason is that the videos in DiDeMo
are relatively short, which only contain a single
event. In such a case, the action information plays



Table 2: Performance comparisons of different meth-
ods on TACoS. The best performance for each metric
entry is highlighted in boldface.

Table 3: Performance comparisons of different visual
features on ActivityNet Captions. The best perfor-
mance for each metric entry is highlighted in boldface.

Method R@1 R@1 R@1 R@5 R@5 R@5 Feature R@1 R@1 R@1 R@5 R@5 R@5

IoU=0.5 1I0oU=0.3 IoU=0.1 IoU=0.5 IoU=0.3 IoU=0.1 IoU=0.5 10oU=0.3 IoU=0.1 IoU=0.5 IoU=0.3 IoU=0.1
VSA-RNN 4.78 6.91 8.84 9.10 13.90 19.05 C3D 27.93 43.81 69.59 44.20 54.56 78.66
VSA-STV 7.56 10.77 15.01 15.5 23.92 32.82 VGG16 23.90 42.24 65.76 40.17 51.82 76.21
CTRL-C3D 13.30 18.32 24.32 25.42 36.39 48.73 Inception-V4  28.47 45.51 70.06 43.33 57.32 79.10
TGN-C3D 18.90 21.77 41.87 31.02 39.06 53.40

a more critical role. This finding is also consis-
tent with (Hendricks et al., 2017). By fusing the
results obtained by VGG16 and optical flow to-
gether, the performance can be further boosted, as
demonstrated by TGN-Fusion and MCN-Fusion.
Third, MCN introduces the temporal endpoint fea-
ture (TEF) as prior knowledge, which indicates
when a segment occurs in a video. With TEF,
the performance of MCN can be significantly im-
proved. However, it is still inferior to our proposed
TGN.

MCN is designed as an enumeration-based ap-
proach. Each video in the DiDeMo dataset is split
into six five-second chunks which are considered
as the time unit for localization. Therefore, in total
there are only C% = 7 x 6/2 = 21 different ways
of localization for DiDeMo videos. Therefore, al-
though MCN can be effectively applied to videos
with several chunks due to the small search space,
it is not practical for untrimmed long videos. In
the Section 4.3.3, we will evaluate and compare
the efficiencies of MCN, CTRL, and our proposed
TGN.

Experiments on TACoS. Table 2 illustrates the
experimental results on TACoS. First, it can be
observed that CTRL performs much better than
VSA-RNN and VSA-STV. The reasons lie in
twofold (Gao et al., 2017). On one hand, CTRL
utilizes a multilayer alignment network to learn
better alignment. On the other hand, VSA-RNN
and VSA-STV do not encode temporal context in-
formation of video. Second, with the same visual
feature, specifically C3D, TGN-C3D significantly
outperforms CTRL-C3D. This is due to the fact
that TGN exploits not only the contextual infor-
mation but also the fine-grained interaction behav-
iors. More concretely, TGN considers the frame-
by-word correlations by introducing an attentive
combinations of the words in the sentence, where
each weight encodes the degree to which the word
is aligned with each specific frame. This mecha-
nism is beneficial to capturing the informative se-
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Table 4: Ablation studies on TACoS. The best perfor-
mance for each metric entry is highlighted in boldface.

Feat R@l R@l R@1 R@S R@5 R@S
CAU®  15U=05 10U=0.3 IoU=0.1 IoU=0.5 IoU=03 IoU=0.1
NA 553 7.67 24.23 1520 1894 4125
NM 1389 1860 4141 2660 3174 4770
TGN 1890 2177 4187  31.02  39.06  53.40

mantics in the sentences for alignment.

Experiments on ActivityNet Captions. Be-
sides the two benchmarks, we also evaluate our
model on the ActivityNet Captions dataset. Dif-
ferent CNNs are used to encode video visual in-
formation.  Specifically, we consider VGG16,
C3D, and Inception-V4. The results are included
in Table 3. First, our proposed TGN can per-
form effectively on long untrimmed videos. Sec-
ond, Inception-V4 performs generally better than
VGG16 and C3D, which is consistent with the
finding in (Canziani et al., 2016). Therefore, more
powerful visual representations of video features
will undoubtedly improve the the performance of
our proposed TGN on the NSGV task.

Some qualitative results of our proposed TGN
on ActiveityNet Captions dataset is illustrated in
Figure 3. It can be observed that with different
visual features, different grounding results are ob-
tained. For the first and second examples, TGN
with VGG16 and Inception-V4 generates more ac-
curate groundings than that with C3D, while TGN
with C3D yields more accurate grounding results
for the third example. More specifically, our pro-
posed TGN with VGG16 and Inception-V4 can
well identify the visual information related with
the sentence, i.e. “A man in a red shirt
claps his hands”.

4.3.2 Effect of Frame-by-Word Attention

We examine the effect of the frame-by-word atten-
tion in interactor. We ablate TGN into two other
methods. 1) NA: There is no attention layer in
this model. After obtaining the sequential hid-
den states of the sentence, mean pooling is used to
generate the representation for the whole sentence.
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Figure 3: The qualitative grounding results of our TGN model on the ActiveityNet Captions dataset with different

visual features.

Then the generated representation is concatenated
with video representation, based on which the
scores for multiple grounding candidates are pre-
dicted. 2) NM: The idea of generating frame-
specific sentence feature is still reserved in the NM
model. The difference between NM and TGN is
that there is no interaction LSTM in NM. Specif-
ically, when calculating the attention weight for
each word as in Eq. (3), the hidden state h}_; in-
dicating the interaction status is not incorporated.

The quantitative results are displayed in Table 4.
First, when the attention mechanism is applied
(NM), the performance is improved as compared
with utilizing mean pooling (NA) for sentence fea-
tures. The better performance demonstrates that
our assumption about the evolving frame-by-word
correlations between two modalities is reasonable.
This also indicates that it is necessary to discrim-
inate the contribution of each word in a sentence
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to perform the NSGV task. Second, utilizing the
interaction LSTM module (TGN) achieves better
performance than simply concatenating the video
representation and the attentive sentence represen-
tation (NM). This result indicates that the interac-
tion LSTM yields better interaction status between
these two modalities, which can thereby benefit
the final grounding.

We provide some qualitative examples in Fig-
ure 4 for a better understanding of the frame-by-
word attention. Meanwhile, the grounding results
yielded by TGN-Fusion (considering both VGG16
and optical flow) are also illustrated. This ex-
periment is designed to verify whether the frame-
by-word attention mechanism in interactor is use-
ful to highlight the representative concepts in the
sentence. The attention weights « for two test-
ing samples in DiDeMo are illustrated in Fig-
ure 4, where the darker the color is, the larger
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Figure 4: Visualization results on frame-by-word atten-
tion. The darker the color is, the larger its represented
attention value is.

Table 5: Efficiency comparison in terms of frame per
second.

CTRL MCN TGN
FPS 562 286 1,363

the attention weight is. It can be observed that
some words well match the frames. For exam-
ple, in Figure 4 (a), the concept “forest” ap-
pears across all the video frames presenting an
evenly distributed attention weights, while the
other concept “waterfall” only presents in the
first two frames. In addition to nouns, the ad-
jective “blue” in Figure 4 (b) also receives rela-
tively higher attention weights in relevant frames.
Lastly, for stop words like “a”, “the” and “in”,
their attention weights, which are very small, also
present an even distribution.
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4.3.3 Efficiency

We evaluate the efficiency of our proposed TGN,
by comparing its runtime with MCN and CTRL
on a Tesla M40 GPU. The efficiency is mea-
sured by frames per second (FPS) as shown in Ta-
ble 5. Please not that the feature extraction time
is excluded. It can be observed that our TGN
model achieves much faster processing speeds,
with 1,363 fps vs. 562 and 286 for CTRL and
MCN, respectively. The reason mainly attributes
to that the proposed TGN only process each video
in one single pass without processing overlapped
sliding windows.

5 Conclusion

In this paper, we focused on the task of natu-
ral sentence grounding in video that is believed
to offer a comprehensive understanding of bridg-
ing computer vision and natural language process-
ing. Towards this task, we proposed an end-to-end
Temporal GroundNet (TGN) by incorporating the
evolving fine-grained frame-by-word interactions
across video-sentence modalities to generate a vi-
sual grounding tailored to each given natural sen-
tence. Moreover, TGN performs efficiently, which
only needs to process the video sequence in one
single pass. Extensive experiments on three real-
world datasets clearly demonstrate the effective-
ness and efficiency of the proposed TGN.
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Abstract

We introduce PreCo, a large-scale English
dataset for coreference resolution. The dataset
is designed to embody the core challenges
in coreference, such as entity representation,
by alleviating the challenge of low over-
lap between training and test sets and en-
abling separated analysis of mention detec-
tion and mention clustering. To strengthen the
training-test overlap, we collect a large corpus
of 38K documents and 12.5M words which
are mostly from the vocabulary of English-
speaking preschoolers. Experiments show
that with higher training-test overlap, error
analysis on PreCo is more efficient than the
one on OntoNotes, a popular existing dataset.
Furthermore, we annotate singleton mentions
making it possible for the first time to quan-
tify the influence that a mention detector
makes on coreference resolution performance.
The dataset is freely available at https://
preschool-lab.github.io/PreCo/.

1 Introduction

Coreference resolution, identifying mentions that
refer to the same entities, is an important NLP
problem. Resolving coreference is critical for
many downstream applications, such as reading
comprehension, translation, and text summariza-
tion. Identifying a mention depends not only on
its lexicons but also its contexts, and requires rep-
resentations of all the entities before the mention.
This is still a challenging task for the approaches
based on the cutting-edge word2vec-like lexical
representation. For example, it is hard to identify
the mention “he” between two entities “Tom” and
“Jerry” because they have almost the same word
embeddings.

A number of datasets have been proposed to
study the coreference resolution problem, such
as MUC (Hirschman and Chinchor, 1997), ACE
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(Doddington et al., 2004), and OntoNotes (Prad-
han et al., 2012). The most popular one is
OntoNotes, and recent work on coreference res-
olution (Clark and Manning, 2016a,b; Lee et al.,
2017; Peters et al., 2018) evaluated their models
on it. Other datasets were rarely studied after
OntoNotes was published.

Previous work (Sadat Moosavi and Strube,
2017) suggests that the overlap between train-
ing and test sets makes significant impact on the
performance of current coreference resolvers. In
OntoNotes, which has relatively low training-test
overlap, this impact is mixed together with the
core challenges of coreference resolution. For ex-
ample, consider the failure of referencing “them”
to “the wounded” in “..., the wounded were carried
off so fast and it was difficult to count them”. It is
hard to tell whether the algorithm can succeed if
the currently low-frequency phrase “the wounded”
has not been seen enough times in the training set.
From a machine learning perspective, high over-
lap is needed to ensure that the training and test
datasets have similar statistics.

Another limitation of OntoNotes is that it only
has annotations for non-singleton mentions, while
singleton mentions are not annotated. Most of
the algorithms for coreference resolution have two
steps: mention detection and mention cluster-
ing (Wiseman et al., 2016; Clark and Manning,
2016a,b). The lack of singleton mention anno-
tations makes training and evaluation of mention
detectors more difficult.

To address both limitations of OntoNotes, we
build a new dataset, PreCo. To alleviate the nega-
tive impact of low training-test overlap, we restrict
the data domain and collect a sufficient amount of
data to achieve a relatively high training-test over-
lap. Restricting the data domain is a common way
to enable better studies of unsolved NLP tasks,
such as language modeling (Hill et al., 2015) and
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Figure 1: An Example from PreCo. In the example, mentions are indicated by boxes, and mention
clustering is indicated by the subscripted numbers. If two mentions have the same number, they refer to

the same entity.

visual question answering (Johnson et al., 2017).

We select our data from English reading com-
prehension tests for middle and high school Chi-
nese students, which has several advantages. On
one hand, the vocabulary size is appropriate. The
English vocabulary of a typical Chinese high
school student contains about 3000 commonly
used words. This is similar to the vocabulary
of a preschool English-speaking child (Wikipedia,
2018). Most words from the English tests are in
this limited vocabulary. On the other hand, it is
practical to collect enough data of this type from
the Internet. With 12.5M words, PreCo is about 10
times larger than OntoNotes. Large scale datasets,
e.g. ImageNet (Deng et al., 2009), SQuAD (Ra-
jpurkar et al., 2016), have played an important role
for driving computer vision and NLP forward.

We use the rate of out-of-vocabulary (OOV)
words between training and test sets to measure
their overlap. PreCo shows much higher training-
test overlap than OntoNotes by having an OOV
rate of 0.8%, which is about 1/3 of OntoNotes’s
2.1%. At the same time, PreCo presents a good
challenge for coreference resolution research since
its documents are in the open domain and have
various writing styles. We test a state-of-the-art
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system (Peters et al., 2018) on PreCo and get an
F1 score of 81.5. However, a modest human per-
formance (87.9, which will be described in 4.1 ) is
much higher, verifying there remain challenges.

To help training and evaluation of mention de-
tection, we annotate singleton mentions in PreCo.
Besides singleton mentions, we follow most other
annotation rules of OntoNotes to label the new
dataset. We show that in a state-of-the-art corefer-
ence resolution system (Peters et al., 2018), we can
improve the model performance from 77.3 to 81.6
F1 on a training set of 2.5K PreCo documents by
using an oracle mention detector, and the remain-
ing gap of 18.4 F1 to the perfect 100 F1 can only
be reduced by improving mention clustering. This
indicates that future work should concern more
about mention clustering than mention detection.

The advantages of our proposed dataset over ex-
isting ones in coreference resolution can be sum-
marized as follows:

e Its OOV rate is about 1/3 of OntoNotes.

e It has about 10 times larger corpus size than
OntoNotes.

e It has annotated singleton mentions.



2 Related Work

Existing Datasets. The first two resources for
coreference resolution study were MUC-6 and
MUC-7 (Hirschman and Chinchor, 1997). The
MUC datasets are too small for training and test-
ing, containing a total of 127 documents with 65K
words. The next standard dataset was ACE (Dod-
dington et al., 2004) which has a much larger cor-
pus of 1M words. But its annotations are restricted
to a small subset of entities and are less consistent.
OntoNotes (Pradhan et al., 2012) was presented
to overcome those limitations. Machine learning
based approaches, especially deep learning based,
benefitted from this well annotated and large-scale
(1.3M words) dataset. Continuous research on
OntoNotes over the past 6 years improved perfor-
mance by 10 F1 score (Durrett and Klein, 2013;
Peters et al., 2018). Datasets after OntoNotes,
such as WikiCoref (Ghaddar and Langlais, 2016),
are seldom studied. Therefore, we mainly com-
pare PreCo with OntoNotes in this paper. With a
much larger scale, PreCo builds on the advantages
of OntoNotes. Some of these existing datasets also
have corpus in other languages, but we just focus
on coreference resolution in English.

Out-of-domain Evaluation. (Sadat Moosavi
and Strube, 2017) show that if coreference re-
solvers mainly rely on lexical representation, as
it is the case in state-of-the-art ones, they are
weak at generalizing to unseen domains. Even
in the seen domains, the low degree of overlap
for non-pronominal mentions between the training
and test sets cause serious deterioration of coref-
erence resolution performance. As a conclusion,
(Sadat Moosavi and Strube, 2017) suggested that
out-of-domain evaluation is a must in the litera-
ture. But we think the problem can be relieved
by expanding the training data for the target do-
mains to increase overlap, so that the field can pay
more attention to the other challenges of corefer-
ence resolution.

Data Simplification. Many simplified datasets
were built to enable better study on unsolved tasks.
Such simplifications can guide researchers to the
core problems and make data collection easier. For
example, (Hill et al., 2015) introduced the Chil-
dren’s Book Test to distinguish the task of pre-
dicting syntactic function words from that of pre-
dicting low-frequency words for language model.
The dataset helped them to develop a generaliz-
able model with explicit memory representations.

The reading comprehension dataset SQuAD (Ra-
jpurkar et al., 2016) imposes the constraint that ev-
ery answer is always a segment of the input text.
This constraint benefits both labeling and evalu-
ation of the dataset, which has significant influ-
ences in terms of benchmarks. Similarly, the rein-
forcement learning literature develops algorithms
by studying games instead of the real world envi-
ronment (Mnih et al., 2013). We hope that, with
high training-test overlap, PreCo can serve as a
valuable resource for research on coreference res-
olution.

3 Dataset Creation

We discuss the data collection and annotation in
this section. The overview of the process is shown
in Figure 2.

3.1 Corpus Collection

We crawl English tests from several web sites. The
web pages often contain the full English tests in
a lot of formats. We build an annotation website
and hire annotators to manually extract the rele-
vant contents. We have a total of 80 part-time
Chinese annotators, most of whom are university
students. They are required to have a minimum
score in standard English tests. During annotation
training, the annotators read the annotation rules,
and take several practice tasks, in which they an-
notate sample articles, and their results are com-
pared with ground truth side by side for them to
study. Before formal annotation, the annotators
will need to pass an assessment.

Some data cleaning is done during annotation,
such as unifying paragraph separators, etc. The
questions with answers in these tests are also
extracted for future research. Finally, we use
NLTK’s sentence and word tokenizer (Bird et al.,
2009) to tokenize the crawled text.

In addition to having annotators manually clean
the data, we also use heuristic rules to further clean
the data. For example, in some cases the whites-
paces between two words are missing. We use a
spell checker to identify and correct most of these
cases. We also use heuristic rules to fix some
sentence partition boundaries, e.g., to make sure
opening quotes are placed at the beginning of a
sentence, instead of being wrongly placed at the
end of a previous sentence (closing quotes are han-
dled similarly).

In addition to the crawled data, we include the
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documents from the RACE dataset (Lai et al.,
2017). RACE is a reading comprehension dataset
from English tests for middle and high school
Chinese students, which has similar types of data
sources as PreCo. About 2/3 of PreCo documents
are from the RACE dataset.

Since documents are from several data sources,
we want to remove duplicated documents, and
documents that are not exactly the same but have
a high rate of repetitions. The similarity of two
documents D; and D is estimated using the bag-
of-words model. Assume S; and S; are bag-of-
words multisets to represent the two documents.
The similarity between D; and Ds is defined as
rrlax(wllg1 ‘Tz|, %) If the similarity between
two documents are larger than 0.9, we remove the
shorter one. This process is referred as dedupli-
cate in Figure 2.

3.2 Data Partition

The dataset has a total of 38K documents. We use
500 documents for the development set, 500 docu-
ments for the test set, and the rest 37K documents
for the training set. The development and test doc-
uments were randomly selected from RACE’s de-
velopment and test sets.

3.3 Coreference Annotation and Refinement

We manually annotate coreferences on these doc-
uments. The annotation rules are slightly differ-
ent from OntoNotes (Pradhan et al., 2012). We
modify some of the rules to make the definition of
coreference more consistent and easier to be un-
derstood by the annotators. The major differences
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are listed in Table 1. Figure 1 shows an example
document in PreCo with annotations.

ocument

ensemble

final annotation

Figure 3: Process of annotation refinement. A doc-
ument is firstly annotated by 3 annotators A, B,
and C, independently. Then another annotator D
merges annotations from A and B. Similarly, an-
notator E merges annotations from A and C, and
annotator F merges annotations from B and C. Fi-
nally, annotations from D, E and F are merged us-
ing an ensemble algorithm.

Good quality control of annotation is essential,
since the rules are complicated and coreference
resolution depends on meticulous reading of the
whole document over and over. We found that
annotators get low recall and insufficient preci-
sion mainly because of negligence, as opposed
to the lack of annotation rules or other ambigui-
ties. For example, two co-referred mentions could
be far apart and require careful searches, and an
annotator may miss it. Therefore we further re-
fine annotations as shown in Figure 3. Annotators
can think about the complicated inconsistent cases
when merging annotations, and the voting process
will fix some errors while preserving the mentions
and coreferences that are found only once by indi-
vidual annotators.

The quality of different annotation processes is
shown in Table 2. OntoNotes took 2 individual
annotations for each document and got an adjudi-
cated version based on them. Taking the adjudi-
cated version as ground truth, the average MUC
score (Vilain et al., 1995) ! of individual annota-

"'MUC score is one of the metrics to evaluate the quality
of coreference resolution.



Type Example OntoNotes PreCo
verbs Sales [grpw] 1 O% [The Verbs can be coreferred. Usually, verbs capnot be

growth] is exciting. coreferred. Certain gerunds can.
generic [Parents] are usually busy. Generic mentions can only be Generic mentions can be
mentions [Parents] should get involved. coreferred by pronouns. coreferred directly.
non-proper  [Wheat] is important. [Wheat] Non-proper modifiers cannot be Non-proper modifiers can be
modifiers fields are everywhere. coreferred. coreferred as generic mentions.
copular [John] is [a good teacher] The referent and the attribute The referent and the attribute can
structures & ’ cannot be coreferred. be coreferred.

[[John],. [a linguist I Sub-spans are not coreferred with Sub-spans are coreferred with the
appositives e & the whole-span. a and b are not whole-span. a and b are coreferred

know]p]e, ...

coreferent with c.

with c.

The [U.S.] policy ... [Secretary

misc. of State] [Colin Powell] ...

Nationality acronyms and job titles
in appositives cannot be coreferred.

Nationality acronyms and all job
titles can be coreferred.

Table 1: Major differences of annotation rules between PreCo and OntoNotes. The annotation rules of
OntoNotes are described in (OntoNotes Guidelines)

tions is 89.6, and the inter-annotator MUC score
is 83.0. The corresponding numbers for PreCo are
85.3 and 77.5. The actual gap of individual anno-
tation quality between OntoNotes and PreCo is not
as large as it looks like. Note that, OntoNotes’s
two individual coreference annotations of each
document are based on the same syntactic anno-
tations of the document, so they could be more
consistent than PreCo’s which are annotated on
raw text. Therefore, if we want to fairly compare
PreCo with OntoNotes, we should take into ac-
count OntoNotes’s inter-annotator consistency of
syntactic parsing annotations. As it has a rough
upper bound of 98.5 F1 score according to the re-
annotation of English Treebank on OntoNotes by
the principal annotator a year after the original an-
notation (Weischedel et al., 2011), we could infer
that the individual annotation quality of PreCo is
quite close to OntoNotes.

Labeling the whole dataset is costly because
each annotation from scratch or comparison takes
an average of about 10 minutes. Prompts from an
algorithm do not help since they do not speed up
the annotation much but instead introduce biases.
We observed some biases when using an algorithm
to help annotation. We have two models, M7 and
Ms, and we have a test set 1" which is annotated
manually, and a test set 7’ which uses prompts
from model M; to help annotation. While M;
and M5 have similar performance on T, M;’s per-
formance is much higher than M>’s on 77, which
shows the biases.

Because of limited annotation resources, we
have only finished the refinements on the devel-
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Process Avg. Prec Avg. Rec Avg. F1
Once 87.3 71.7 78.7
ABC-voting 93.5 76.1 83.9
AB-merge 87.5 88.3 87.9
DEF-voting 100.0 100.0 100.0

Table 2: Annotation quality. DEF-voting is taken
as the ground truth to evaluate other annotation
processes. The annotation “AB-merge” is merged
by annotator G, who is different from D, E and F.

opment and test sets with the process shown in
Figure 3. We refine the training set annotations
as follows: for each document, two annotators an-
notate it separately, and a third annotator com-
pares and merges the two annotations. We use a
training set of 2.5K documents to quantify the im-
pact of this annotation refinement to model per-
formance. Table 3 shows the model performances
of the training set that is annotated once, and the
training set of the merged annotation. The per-
formance difference is quite significant. Further-
more, the difference is consistent with Table 2:
the “AB-merge” model has a similar precision as
the “Once” model, but it has a much higher re-
call. It indicates that a further refinement of the
training set such as DEF-voting could be essen-
tial. A more interesting question is: how to make
the definition of coreference more consistent and
executable? We leave it as future work.



Annotation Avg. Prec Avg. Rec Avg. F1 Property OntoNotes PreCo
Once 79.3 69.1 73.9 Training documents 2.8K 37K
AB-merge 78.1 76.5 77.3 Training tokens 1.3M 12.2M
Dev-test documents 0.7K 1K
Table 3: The annotation quality’s impact on model Dev-test tokens 0.3M 0.3M
performance. Each row shows the development Tokens per document 467 330
set performance of the EE2E-Coref model (train- OOV rate 2.1% 0.8%
ing details in Section 4.1) trained by data of dif- . .
. . . Non-singleton mentions
ferent annotation quality. Each training set con-
tains 2.5K documents. In the training set “Once”, Mention length 229 2.02
each document is annotated by one annotator. In Mention density 0.12 0.16
the training set “AB-merge”, each document is an- Cluster size 4.40 4.49
notated by two annotators independently, and the Cluster density 0.027 0.035
annotations are compared and merged by a third Singleton mentions
annotator.
Mention length N/A 3.32
Mention density N/A 0.16
3.4 Dataset Properties Singleton mention rate N/A 50.8%

Table 4 shows some properties of OntoNotes and
PreCo. As intended, PreCo has a lower OOV rate
than OntoNotes. For a training set with vocabulary
V and a test set with n tokens [¢1, to, ..., t,], ignor-
ing the tokens with non-alphabetic characters, the
OOV rate is defined by:

>_io(ti)
n

The OOV rate can be extended to the rate of low-
frequency words which also indicates the training-
test overlap, by simply replacing V in the defini-
tion above with the non-low-frequency vocabulary
of the training set. We find that the OOV rate is
consistent to the rates of low-frequency words in
different levels. So we use the OOV rate for con-
venience.

In PreCo, about 50.8% of the mentions are sin-
gleton mentions. Figure 4 shows the distribu-
tion of cluster sizes within non-singleton clusters.
The distribution is similar between OntoNotes and
PreCo.

0
1

ift, eV
ift; ¢V

, where o(t;)

4 Analysis

To verify our assumption that PreCo embodies
the core challenges of coreference, we evaluate a
strong baseline coreference resolver on it. Specif-
ically, we (i) estimate the room for improvement
of the baseline system to show that the dataset is
challenging, (ii) study the impact of training-test
overlap to model performance and error analysis
to show the advantages of PreCo, and (iii) quan-
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Table 4: Properties of OntoNotes and PreCo. The
mention (cluster) density is defined by: number of
mentions (clusters) / number of tokens.

titatively evaluate the mention detector to under-
stand the bottlenecks of the coreference resolution
system.

4.1 Baseline Performance

We use the end-to-end neural coreference resolver,
E2E-Coref (Lee et al., 2017), enhanced by the
deep contextualized word representations (Peters
et al., 2018) as the baseline system, and we refer
to this system as EE2E-Coref. This is the state-of-
the-art model on OntoNotes, achieving a test aver-
age F1 score of 70.4, which is the main evaluation
metric for coreference resolution. The metric is
computed by averaging the F1 of MUC, B3, and
CEAFy4, which are three metrics of coreference
resolution that have different focuses.

Our implementation EE2E-Coref? gets 81.5
Avg. F1 score on PreCo. We follow the setting of
most hyperparameters on OntoNotes and do grid-
search for the decay parameter of the learning rate
and the size of the hidden layers on the develop-
ment set, since these two hyperparameters are rel-
atively sensitive to the scale of the training data.
The F1 score increment from OntoNotes to PreCo
is probably due to the higher overlap between the
training and test sets in PreCo.

1t gets an F1 score of 70.040.3 on OntoNotes, slightly
lower than the F1 score reported in the original paper.
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Figure 4: Distribution of cluster sizes within non-
singleton clusters. We ignore singleton clusters in
this figure so that it is easier to compare between
OntoNotes and PreCo.

[<His father> and he] get off the car.

[They] find the old man lying near the taxi.

The banana skin is near him.

The old man looks at [them] and says, “Teach [your]
child to throw the banana skin to the right place!”

He gave his last few coins to [a beggar], but then he saw
<another one>, and forgot that he did not have any
money.

He asked <the man> if <he> would like to have lunch
with him, and [the beggar] accepted, so they went into a
small restaurant and had a good meal.

[Holmes] and <Dr. Watson> went on a camping trip.
After a good meal and a bottle of wine, they lay down in
a tent for the night and went to sleep.

Some hours later, Holmes woke up and pushed [his
friend].

Table 5: Error cases of EE2E-Coref on PreCo.
Each bold mention is incorrectly referred to the
entity in []s. The mentions of its gold entity are in
<>8s.

We demonstrate three typical error cases made
by EE2E-Coref on PreCo in Table 5. Corefer-
ence resolution in these cases requires good under-
standing of multiple sentences, which is an open
problem in NLP. A capable entity representation
for “them”, “another one” or “Dr. Watson” may
help to resolve these error cases. We also compare
the performance of EE2E-Coref with human per-
formance to estimate the room for improvement
on PreCo. As described in Section 3.4, human an-
notators get low recall mostly due to negligence.
So we use the AB-merge annotation to estimate
human’s ability on coreference resolution. The
gap of performance between model and human is
6.4 F1 score, from 81.5 to 87.9. The actual gap
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is larger, since AB-merge still has some missed
coreference annotations due to negligence. This
shows that the dataset is challenging and encour-
ages future research. The error cases show the
challenges as well.

Note that PreCo is not a general purpose dataset.
Our motivation of designing PreCo is to make
it easier to improve coreference resolution algo-
rithms, e.g., to make error analysis easier. It is not
a goal of PreCo to generalize well on corpus from
other domains. Furthermore, we find that there are
a certain amount of annotation errors in the devel-
opment and test sets. We suggest that researchers
working on PreCo should be careful about these
errors, especially after a model gets F1 score be-
yond 90.0.

4.2 Impact of Training-test Overlap

Training-test overlap makes significant impact on
error analysis. Consider an error case of corefer-
ence resolution, if there are low-frequency words
in the related mentions, then it will be hard to tell
whether the algorithm can succeed if the words has
not been seen enough times in the training set. We
call an error case LFW if there are low-frequency
words? in its related mentions*. Therefore, the
lower LFW rate a training set contains, the more
precisely it may expose the drawbacks of the algo-
rithm.

To study the impact of training-test overlap, ac-
tually, the training-dev overlap, we pick different
subsets from the training data and evaluate the
models trained on them. At first, we control over-
lap by picking different sizes of the training data
randomly. Figure 5(a) shows that, as the training
data size grows, the OOV rate, which is the over-
lap indicator, decreases and the F1 score of EE2E-
Coref increases significantly. Figure 5(b) shows
that when training set size increases, the OOV rate
and the LFW rate drop together. Then, to remove
the impact of data size, we pick training sets which
have a fixed size but different overlaps with the
development set vocabulary. The OOV rates and
F1 scores of these subsets are shown in Figure
5(c). This experiment verifies the positive cor-

3In our experiments, a word is defined as low-frequency
if it appears in the training set less than 10 times.

“There are 3 kinds of error cases of coreference resolu-
tion: false-new, false-link and wrong-link. In our experi-
ments, the related mentions include: the current mention in
all 3 kinds of cases, the nearest gold antecedent in false-new
and wrong-link and the false referred antecedent in false-link
and wrong-link.
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Figure 5: Impact of training-dev overlap. (a) and (b) show the impact of training set sizes. (c) and
(d) show the impact of the training-dev OOV rate, when the training sets have the same size of 2.5K
documents. The 8 subsets, s1-s8, consist of documents ranked by their overlaps with the development

set vocabulary.

relation between training-dev overlap and coref-
erence resolution performance suggested by (Sa-
dat Moosavi and Strube, 2017). Figure 5(d) shows
that for training sets with the same size, the OOV
rate and the LFW rate also drop together.

We observe that the training set of 2.5K doc-
uments in Figure 5(a) has a higher model perfor-
mance than all the training sets in Figure 5(c). This
is not expected. One hypothesis is that the lower
performance in Figure 5(c) is due to the smaller
diversity of these training sets, which are selected
to have certain training-dev OOV rates.

The training-dev LFW rate of OntoNotes is
34.8%. As a comparison, the number for PreCo
is 12.3%. A subset of PreCo with a similar to-
ken number to OntoNotes has a LFW rate of
33.0%. This indicates that research of corefer-
ence algorithms on PreCo will be much more ef-
ficient than on OntoNotes. Even if we can ignore
the LFW error cases, there are others related to
low-frequency word senses, phrases and sentence
structures, which are hard to filter out. They will
also obscure the error analysis. It is reasonable to
believe that training-dev overlap impacts the rate
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of these error cases in a similar way to impact
LFW rate.

4.3 Mention Detection

Since most coreference systems consist of a men-
tion detection module and a mention clustering
module, an important question is: with a perfect
mention detection module, what is the model per-
formance on coreference resolution? The answer
would help us understand the bottlenecks of the
entire system, by quantifying the impact of the
mention detection module on the final F1 score.
(Lee et al., 2017) gave an answer by taking ground
truth non-singleton mentions as the input of the
coreference resolver for both training and evalu-
ation, assuming that the perfect mention detector
can also make perfect anaphoricity decisions, e.g.,
to decide whether a mention should be linked to
an antecedent. But this assumption can be vio-
lated since mention detectors usually take local in-
formation but anaphoricity decisions usually need
more context, nearly as much as entity identifica-
tion. The anaphoricity decisions should be made
in the mention clustering module.



Mention OntoNotes PreCo
detected 66.7 77.3
*all N/A 81.6
*non-singleton 85.2 89.2

Table 6: Coreference resolution performances on
development set under different mention detection
qualities. A prefixed * denotes ground truth. The
model trained on OntoNotes is E2E-Coref (Lee
et al., 2017) while the one trained on PreCo is
EE2E-Coref. The PreCo training set contains the
same 2.5K documents as in Table 3.

We argue that a better way to answer the ques-
tion is to take all ground truth mentions (including
singletons) for coreference. This operation is not
feasible in OntoNotes since it does not have an-
notations for singleton mentions. We do this on
PreCo and the results are shown in Table 6. There
is an obvious difference between the F1 scores
achieved with all gold mentions and non-singleton
gold mentions. Therefore, the room for improve-
ment by better mention detection is not as enor-
mous as suggested in (Lee et al., 2017). The ma-
jor challenge remained in coreference resolution is
mention clustering.

5 Conclusion

In this paper, we propose a large-scale coreference
resolution dataset to overcome the limitations of
existing ones. Our dataset, PreCo, features higher
training-test overlap, about 10 times larger scale
than previous datasets, and singleton mention an-
notations. By evaluating a state-of-the-art corefer-
ence resolver, we show that there is a wide gap be-
tween the model and human performance, which
demonstrated challenges of the dataset. We veri-
fied the expectation that PreCo’s higher training-
test overlap helps research on coreference resolu-
tion. For the first time, we quantified the impact
of mention detector to the entire system, thanks to
our singleton mention annotations. We make the
dataset public, and hope it will stimulate further
research on coreference resolution.
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Abstract

Named entity recognition (NER) is an impor-
tant task in natural language processing area,
which needs to determine entities boundaries
and classify them into pre-defined categories.
For Chinese NER task, there is only a very s-
mall amount of annotated data available. Chi-
nese NER task and Chinese word segmen-
tation (CWS) task have many similar word
boundaries. There are also specificities in each
task. However, existing methods for Chinese
NER either do not exploit word boundary in-
formation from CWS or cannot filter the spe-
cific information of CWS. In this paper, we
propose a novel adversarial transfer learning
framework to make full use of task-shared
boundaries information and prevent the task-
specific features of CWS. Besides, since ar-
bitrary character can provide important cues
when predicting entity type, we exploit self-
attention to explicitly capture long range de-
pendencies between two tokens. Experimental
results on two different widely used dataset-
s show that our proposed model significant-
ly and consistently outperforms other state-of-
the-art methods.

1 Introduction

The task of named entity recognition (NER) is to
recognize the named entities in given text. N-
ER is a preliminary and important task in natural
language processing (NLP) area and can be used
in many downstream NLP tasks, such as relation
extraction (Bunescu and Mooney, 2005), even-
t extraction (Chen et al., 2015) and question an-
swering (Yao and Van Durme, 2014). In recent
years, numerous methods have been carefully s-
tudied for NER task, including Hidden Markov
Models (HMMs) (Bikel et al., 1997), Support Vec-
tor Machines (SVMs) (Isozaki and Kazawa, 2002)
and Conditional Random Fields (CRFs) (Laffer-
ty et al., 2001). Currently, with the development
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Figure 1: An example of illustrating the similarities
and specificities between Chinese NER and CWS.

of deep learning, neural networks (Lample et al.,
2016; Peng and Dredze, 2016; Luo and Yang,
2016) have been introduced to NER task. All these
methods need to determine entities boundaries
and classify them into pre-defined categories.

Although great improvements have been
achieved by these methods on Chinese NER task,
some issues still have not been well addressed.
One significant drawback is that there is only a
very small amount of annotated data available.
Weibo NER dataset (Peng and Dredze, 2015; He
and Sun, 2017a) and Sighan2006 NER dataset
(Levow, 2006) are two widely used datasets
for Chinese NER task, containing 1.3k and 45k
training examples, respectively. On the two
datasets, the highest F1 scores are 48.41% and
89.21%, respectively. As a basic task in NLP area,
the performance is not satisfactory. Fortunately,
Chinese word segmentation (CWS) task is to
recognize word boundaries and the amount of
supervised training data for CWS is abundant
compared with NER. There are many similarities
between Chinese NER task and CWS task, which
we call task-shared information. As shown in
Figure 1, given a sentence “#y 7K #ii 25 FF- R HfiiA/L
3 (Hilton leaves Houston Airport)”, the two tasks
have the same boundaries for some words such
as “ /Kl (Hilton)” and “Z JF (leaves)”, while
Chinese NER has more coarse-grained boundaries

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 182—-192
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than CWS task for certain word such as “fK il
H13% (Houston Airport)” in the example of Figure
1, which we call task-specific information. In
order to incorporate word boundary information
from CWS task into NER task, Peng and Dredze
(2016) propose a joint model that performs
Chinese NER with CWS task. However, their
proposed model only focuses on task-shared
information between Chinese NER and CWS,
and ignores filtering the specificities of each
task, which will bring noise for both of the tasks.
For example, the CWS task splits “fk i 137
(Houston Airport)” into “/K 4 (Houston)” and
“Ml3% (Airport)”, while the NER task takes “/f
HitiAl3% (Houston Airport)” as a whole entity.
Thus, how to exploit task-shared information and
prevent the noise brought by CWS task to Chinese
NER task is a challenging problem.

Another issue is that most proposed models
cannot explicitly model long range dependencies
when predicting entity type. Though bidirection-
al long short term memory (BiLSTM) can learn
long-distance dependencies, it cannot conduct di-
rect connections between arbitrary two characters.
As shown in Figure 1, if the model only focuses
on the word “# /Rl (Hilton)”, it can be a person
or organization. However, when the model explic-
itly captures the dependencies between “Ay 7K i
(Hilton)” and “BF (leaves)”, it is easy to classify
“fiy /K1 (Hilton)” into “person” category. Con-
text information is very crucial for determining the
entity type. While in the sentence “FAG{E7E A /R
il (I will be staying at the Hilton)”, the entity type
of “#i /Kl (Hilton)” is “organization”. Thus, how
to better capture the global dependencies of the w-
hole sentence is another challenging problem.

To address the above problems, we propose an
adversarial transfer learning framework to inte-
grate the task-shared word boundary information
into Chinese NER task in this paper. The adver-
sarial transfer learning is incorporating adversari-
al training into transfer learning. To better capture
long range dependencies and synthesize the infor-
mation of the sentence, we extend self-attention
mechanism into the framework. Specifically, we
try to improve Chinese NER task performance by
incorporating shared boundary information from
CWS task. To prevent the specific information
of CWS task from lowering the performance of
the Chinese NER task, we introduce adversarial
training to ensure that the Chinese NER task on-
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ly exploits task-shared word boundary informa-
tion. Then, for tackling the long range dependen-
cy problems, we utilize self-attention to synthe-
size the hidden representation of BiLSTM. Final-
ly, we evaluate our model on two different widely
used Chinese NER datasets. Experimental results
show that our proposed model achieves better per-
formance than other state-of-the-art methods and
gains new benchmarks.

In summary, the contributions of this paper are
as follows:

e We propose an adversarial transfer learning
framework to incorporate task-shared word
boundary information from CWS task into
Chinese NER task. To our best knowledge,
it is the first work to apply adversarial trans-
fer learning method into NER task.

We introduce self-attention mechanism into
our model, which aims to capture the global
dependencies of the whole sentence and learn
inner structure features of sentence.

We conduct our experiment on two dif-
ferent widely used Chinese NER datasets,
and the experimental results demonstrate that
our proposed model significantly and consis-
tently outperforms previous state-of-the-art
methods. We release the source code publicly
for further research!.

2 Related Work

NER Many methods have been proposed for N-
ER task. Early studies on NER often exploit
SVMs (Isozaki and Kazawa, 2002), HMMs (Bikel
et al.,, 1997) and CRFs (Lafferty et al., 2001),
heavily relying on feature engineering. Zhou et al.
(2013) formulate Chinese NER as a joint identi-
fication and categorization task. In recent years,
neural network models have been introduced to N-
ER task (C