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Preface by the General Chair

Thank you so much for joining us in Copenhagen! Welcome to a cosmopolitan city of fantastic
restaurants, lovely seascapes, rich history, and lots and lots of cyclists!

We have an exciting program lined up for you, with three Invited talks, fifteen workshops, seven tutorials,
nine TACL presentations, 322 reviewed papers presented as both oral talks and posters, and twenty-one
demos. I am especially grateful to our Program Chairs, Rebecca Hwa and Sebastian Riedel, who did a
fantastic job managing a backbreaking 1,500 paper submissions (1466 reviewed papers). This involved
51 Area chairs and 980 reviewers. We tried some new things this year (never conducive to a smooth
process) including a more careful handling of the COIs that result from Area Chair submissions, and the
addition of a meta-review step to encourage more thoughtful reviewing. We are soliciting feedback on the
meta-review process, from both reviewers and authors. Despite the additional time involvement, many
of the Area Chairs embraced this new approach, and would like to repeat it. However, there are clearly
a few dissenters, since Rebecca and Sebastian ended up writing around 200 meta-reviews themselves at
the last minute! We are also trying to raise the visibility and status of the poster sessions by integrating
them as parallel sessions alongside oral talks, with poster session chairs. This is in response to the survey
results from EMNLP 2015 that indicated a decided preference for smaller, more frequent poster sessions
during the day rather than evening mega-sessions. Finally, Rebecca and Sebastian are bringing you three
outstanding invited speakers, Dan Jurafsky, Sharon Goldwater, and Nando de Freitas. No program chairs
ever worked harder to bring you a superb set of presentations in an attendee friendly setting.

I am also very grateful to Victoria Fossum and Karl Moritz Hermann, our Workshop Chairs, who
put together a terrific slate of fifteen workshops, and paid meticulous attention to ensuring that each
workshop could hold exactly the poster sessions, invited talks and special events that it required. Our
tutorial chairs, Alexandra Birch and Nathan Schneider, also outdid themselves, providing especially
tempting tutorial offerings. Matt Post deserves to be singled out, for being an Advisor to our
conscientious and successful Handbook Chair, Joachim Bingel, as well as becoming a welcome last
minute addition to our excellent team of Demo Chairs, Lucia Specia and Michael Paul. Thanks are due
to our Website Chair, Anders Johannsen, who responded promptly and deftly to all of our requests, and
to our Student Volunteer and Student Sponsorship Chairs, Zeljko Agic and Yonatan Bisk, who brought
you the helpful and energetic volunteers who keep things running smoothly.

Last but not least, many thanks to your hosts, our Local Arrangements Chairs, Dirk Hovy and Anders
S@gaard and their team. Their concern has been increasing the enjoyment of your experience, and to
that end they proposed a stunning venue, put together an amazing reception and Social Event, chose
your conference bags, issued all the invitation letters for visas, helped create all the signs, etc., etc., etc.
Dan Hardt, our Sponsorship chair, working with Anders and Dirk, raised an unusual amount of local
sponsorships, all to defray the cost of the Social Event.

As always, we are extremely indebted to our generous sponsors. Our platinum sponsors are Google,
Amazon, Baidu, Apple, Facebook, Bloomberg and Siteimprove. Gold sponsors include IBM Research,
Microsoft, eBay, SAP, Textkernel, Maluuba, Zalando, Recruit Institute of Technology and Deloitte.
Silver sponsors are Nuance, Oracle, Sogou, Huawei, Duolingo, CVTE, Unsilo and Wizkids. Snap Inc.,
Grammarly and Yandex are our Bronze sponsors.

Finally, many, many thanks to our Area Chairs, our reviewers, and our authors, whose outstanding
research is being showcased here for your delectation. Nyd det mens det varer!

Best Regards,
Martha Palmer
EMNLP 2017 General Chair
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Preface by the Program Committee Co-Chairs

Welcome to the 2017 Conference on Empirical Methods in Natural Language Processing! This is an
exciting year; we have received a new record-high in the number of submissions: 1,509 papers. After
discounting early withdraws, duplicates, and other invalid submissions, we sent out 1,418 submissions
(836 long papers, 582 short papers) to be reviewed by the program committee. Ultimately, 216 long
papers (25.8% acceptance rate) and 107 short papers (18.4% acceptance rate) have been accepted for
presentation, making a total of 323 papers and an overall acceptance rate of 22.8%.

This year’s technical program consists of three invited talks and 113 oral presentations and 219 poster
presentations for the 323 long and short accepted papers as well as nine papers accepted to the
Transactions of the Association for Computational Linguistics. To accommodate all the presentations
in a compressed timeframe, we opted to have plenary sessions for the invited talks and the winners of the
Best Paper Awards, while allotting three parallel oral sessions and thematically related poster sessions
for all other presentations. We chose to have concurrent poster and oral sessions for several reasons.
First, this is the preferred model of the majority (51.6%) of participants who filled out the EMNLP 2015
post-conference survey. Second, this allows us to spread out the poster presentations across three days
in smaller thematically related clusters. Finally, this maximises the number of acceptances for the high
quality submissions we received; by having more poster sessions, we are able to maintain the acceptance
rates at the previous year’s level despite an increase in submissions by 40%.

It would not have been possible to properly handle such a large number of submissions without the
generous voluntary help from all the members of the program committee, which consists of 980 reviewers
overseen by 51 area chairs. We continued last year’s experiment of defining twelve relatively broad topic
areas and assigning multiple area chairs to facilitate consistent ranking of larger sets of papers. Most
technical program decisions, from the selection of papers to the modes of presentation to the choice of
outstanding papers, are primarily made in a bottom-up fashion: reviewers assessed and scored papers,
made recommendations for oral vs poster decisions, and marked papers suitable for best paper awards;
area chairs ensured the quality of assessments, encouraged discussions and assembled opinions into their
own recommendations; finally, we construct the technical program, considering the recommendations
from the area chairs while taking into account venue constraints and balance across areas. A new
experimental feature of this year’s EMNLP reviewing process is the “meta review,” in which the area
chairs briefly summarize the major discussions between the reviewers to give authors a more transparent
view of the process.

Per EMNLP tradition, awards are given to outstanding papers in three categories: Best Long Paper, Best
Short Paper, and Best Resource Paper. The selection process is bottom-up: based on the reviewers and
area chairs’ recommendations, we nominated four papers for each category; we invited expert members
to form a Best Papers committee for each category; each committee reviews the candidates and select
the winners. The awarded papers will be presented at a special plenary session on the last day of the
conference.

We are extremely grateful that three amazing speakers have agreed to give invited talks at EMNLP. Nando
de Freitas (Google Deepmind) will discuss simulated physical environments, and whether language
would benefit from the development of such environments, and could contribute toward improving such
environments and agents within them. Sharon Goldwater (University of Edinburgh) will describe work
on developing unsupervised speech technology for those of the world’s 7,000 or so languages not spoken
in large rich countries. Dan Jurafsky (Stanford University) will talk about processing the language
of policing to automatically measure linguistic aspects of the interaction from discourse factors like
conversational structure to social factors like respect.

The conference would not have been possible without the support of various people inside and outside
of the commiittee. In particular, we would like to thank:

e Martha Palmer, whose encouragement and advice as the general chair has been invaluable every
step of the way;
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e Chris Callison-Burch, who has given us excellent advice and support in his capacity as the SIGDAT
Secretary;

e Priscilla Rasmussen, who always has the right answers;

e Xavier Carreras and Kevin Duh, who generously shared their experiences as the chairs of EMNLP
2016;

e Anders Johannsen, who is lightning fast with website updates;

e QOur 51 area chairs: David Bamman, Mohit Bansal, Roberto Basili, Chris Biemann, Jordan
Boyd-Graber, Marine Carpuat, Joyce Chai, David Chiang, Jinho Choi, Jennifer Chu-Carroll,
Trevor Cohn, Cristian Danescu-Niculescu-Mizil, Dipanjan Das, Hal Daume, Mona Diab, Mark
Dredze, Jacob Eisenstein, Sanja Fidler, Alona Fyshe, Dan Gildea, Ed Grefenstette, Hannaneh
Hajishirzi, Julia Hockenmaier, Kentaro Inui, Jing Jiang, Philipp Koehn, Mamoru Komachi, Anna
Korhonen, Tom Kwiatkowski, Gina Levow, Bing Liu, Nitin Madnani, Mausam, Rada Mihalcea,
Marie-Francine Moens, Saif M. Mohammad, Mari Ostendorf, Sameer Pradhan, Alexander Rush,
Anoop Sarkar, William Schuler, Hinrich Schiitze, Sameer Singh, Thamar Solorio, Vivek Srikumar,
Amanda Stent, Tomek Strzalkowski, Mihai Surdeanu, Andreas Vlachos, Scott Wen-tau Yih, Zhang
Yue;

e The best papers award committee members: Chris Brew, Mike Collins, Kevin Duh, Adam Lopez,
Ani Nenkova, Bonnie Webber, Luke Zettlemoyer;

e Preethi Raghavan and Siddharth Patwardhan, the publications co-chairs and Joachim Bingel, the
conference handbook chair;

e Dirk Hovy and Anders S@gaard, the local arrangements co-chairs;

e Rich Gerber and Paolo Gai at SoftConf.

Finally, we’d like to thank SIGDAT for the opportunity to serve as Program Co-Chairs of EMNLP 2017.
It is an honor and a rewarding learning experience. We hope you will be as inspired by the technical
program as we are.

EMNLP 2017 Program Co-Chairs
Rebecca Hwa, University of Pittsburg
Sebastian Riedel, University College London
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Sameer Singh, UC Irvine
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Hannaneh Hajishirzi, University of Washington
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William Schuler, The Ohio State University

Machine Learning
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Trevor Cohn, University of Melbourne
Hal Daumé, University of Maryland
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Invited Speaker: Dan Jurafsky, Stanford University
'""Does This Vehicle Belong to You”? Processing the Language of Policing
for Improving Police-Community Relations"

Abstract: Police body-cameras have the potential to play an important role in understanding and im-
proving police-community relations. In this talk I describe a series of studies conducted by our large
interdisciplinary team at Stanford that use speech and natural language processing on body-camera
recordings to model the interactions between police officers and community members in traffic stops.
We use text and speech features to automatically measure linguistic aspects of the interaction, from
discourse factors like conversational structure to social factors like respect. I describe the differences
we find in the language directed toward black versus white community members, and offer suggestions
for how these findings can be used to help improve the fraught relations between police officers and the
communities they serve.

Bio: Dan Jurafsky is Professor and Chair of Linguistics and Professor of Computer Science, at Stanford
University. His research has focused on the extraction of meaning, intention, and affect from text and
speech, on the processing of Chinese, and on applying natural language processing to the cognitive
and social sciences. Dan’s deep interest in NLP education led him to co-write with Jim Martin the
widely-used textbook "Speech and Language Processing” (whose 3rd edition is in (slow) progress) and
co-teach with Chris Manning the first massive open online class on natural language processing. Dan
was the recipient of the 2002 MacArthur Fellowship and is a 2015 James Beard Award Nominee for his
book, "The Language of Food: A Linguist Reads the Menu".

Invited Speaker: Sharon Goldwater, University of Edinburgh
Towards more universal language technology: unsupervised learning
from speech

Abstract: Speech and language processing has advanced enormously in the last decade, with successful
applications in machine translation, voice-activated search, and even language-enabled personal assis-
tants. Yet these systems typically still rely on learning from very large quantities of human-annotated
data. These resource-intensive methods mean that effective technology is available for only a tiny
fraction of the world’s 7000 or so languages, mainly those spoken in large rich countries.

This talk describes our recent work on developing unsupervised speech technology, where transcripts
and pronunciation dictionaries are not used. The work is inspired by considering both how young infants
may begin to acquire the sounds and words of their language, and how we might develop systems to help
linguists analyze and document endangered languages. I will first present work on learning from speech
audio alone, where the system must learn to segment the speech stream into word tokens and cluster
repeated instances of the same word together to learn a lexicon of vocabulary items. The approach
combines Bayesian and neural network methods to address learning at the word and sub-word levels.

Bio: Sharon Goldwater is a Reader at the University of Edinburgh’s School of Informatics, where she
is a member of the Institute for Language, Cognition and Computation. She received her PhD in 2007
from Brown University and spent two years as a postdoctoral researcher at Stanford University before
moving to Edinburgh. Her research interests include unsupervised learning for speech and language
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processing, computer modelling of language acquisition in children, and computational studies of lan-
guage use. Dr. Goldwater co-chaired the 2014 Conference of the European Chapter of the Association
for Computational Linguistics and is Chair-Elect of EACL. She has served on the editorial boards of the
Transactions of the Association for Computational Linguistics, the Computational Linguistics journal,
and OPEN MIND: Advances in Cognitive Science (a new open-access journal). In 2016, she received
the Roger Needham Award from the British Computer Society, awarded for "distinguished research
contribution in computer science by a UK-based researcher who has completed up to 10 years of post-
doctoral research."

Invited Speaker: Nando de Freitas, Google Deepmind

Physical simulation, learning and language

Abstract: Simulated physical environments, with common physical laws, objects and agents with
bodies, provide us with consistency to facilitate transfer and continual learning. In such environments,
research topics such as learning to experiment, learning to learn and emergent communication can be
easily explored. Given the relevance of these topics to language, it is natural to ask ourselves whether
research in language would benefit from the development of such environments, and whether language
can contribute toward improving such environments and agents within them. This talk will provide
an overview of some of these environments, discuss learning to learn and its potential relevance to
language, and present some deep reinforcement learning agents that capitalize on formal language
instructions to develop disentangled interpretable representations that allow them to generalize to a
wide variety of zero-shot semantic tasks. The talk will pose more questions than answers in the hope
of stimulating discussion.

Bio: I was born in Zimbabwe, with malaria. I was a refugee from the war in Mocambique and thanks
to my parents getting in debt to buy me a passport from a corrupt official, I grew up in Portugal without
water and electricity, before the EU got there, and without my parents who were busy making money
to pay their debt. At 8, I joined my parents in Venezuela and began school in the hood; see City of
God. I moved to South Africa after high-school and sold beer illegally in black-townships for a living
until 1991. Apartheid was the worst thing I ever experienced. I did my BSc in electrical engineering
and MSc in control at the University of the Witwatersrand, where I strived to be the best student to
prove to racists that anyone can do it. I did my PhD on Bayesian methods for neural networks at Trinity
College, Cambridge University. I did a postdoc in Artificial Intelligence at UC Berkeley. I became a
Full Professor at the University of British Columbia, before joining the University of Oxford in 2013.
I quit Oxford in 2017 to join DeepMind full-time, where I lead the Machine Learning team. I aim
to solve intelligence so that future generations have a better life. I have been a Senior Fellow of the
Canadian Institute for Advanced Research for a long time. Some of my recent awards, mostly thanks
to my collaborators, include: Best Paper Award at the International Conference on Machine Learning
(2016), Best Paper Award at the International Conference on Learning Representations (2016), Winner
of round 5 of the Yelp Dataset Challenge (2015), Distinguished Paper Award at the International Joint
Conference on Artificial Intelligence (2013), Charles A. McDowell Award for Excellence in Research
(2012), and Mathematics of Information Technology and Complex Systems Young Researcher Award
(2010).
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Katherine Keith, Abram Handler, Michael Pinkham, Cara Magliozzi, Joshua Mc-
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Asking too much? The rhetorical role of questions in political discourse
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Detecting Perspectives in Political Debates
David Vilares and Yulan He

"I have a feeling trump will win.................. ": Forecasting Winners and Losers from
User Predictions on Twitter
Sandesh Swamy, Alan Ritter and Marie-Catherine de Marneffe

Session 5C: Sentiment Analysis 2

A Question Answering Approach for Emotion Cause Extraction
Lin Gui, Jiannan Hu, Yulan He, Ruifeng Xu, Lu Qin and Jiachen Du

Story Comprehension for Predicting What Happens Next
Snigdha Chaturvedi, Haoruo Peng and Dan Roth

Using millions of emoji occurrences to learn any-domain representations for detect-
ing sentiment, emotion and sarcasm

Bjarke Felbo, Alan Mislove, Anders Sggaard, Iyad Rahwan and Sune Lehmann

Opinion Recommendation Using A Neural Model
Zhongqging Wang and Yue Zhang
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CRF Autoencoder for Unsupervised Dependency Parsing
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Incremental Graph-based Neural Dependency Parsing
Xiaoqing Zheng
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Stack-based Multi-layer Attention for Transition-based Dependency Parsing
Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou and Enhong Chen

Dependency Grammar Induction with Neural Lexicalization and Big Training Data
Wenjuan Han, Yong Jiang and Kewei Tu

Combining Generative and Discriminative Approaches to Unsupervised Depen-
dency Parsing via Dual Decomposition

Yong Jiang, Wenjuan Han and Kewei Tu

Effective Inference for Generative Neural Parsing
Mitchell Stern, Daniel Fried and Dan Klein

Semi-supervised Structured Prediction with Neural CRF Autoencoder
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Global Normalization of Convolutional Neural Networks for Joint Entity and Rela-
tion Classification
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End-to-End Neural Relation Extraction with Global Optimization
Meishan Zhang, Yue Zhang and Guohong Fu

KGEval: Accuracy Estimation of Automatically Constructed Knowledge Graphs
Prakhar Ojha and Partha Talukdar

Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short
Jay Pujara, Eriq Augustine and Lise Getoor

Dual Tensor Model for Detecting Asymmetric Lexico-Semantic Relations
Goran Glavas$ and Simone Paolo Ponzetto

Incorporating Relation Paths in Neural Relation Extraction
Wenyuan Zeng, Yankai Lin, Zhiyuan Liu and Maosong Sun

Adversarial Training for Relation Extraction
Yi Wu, David Bamman and Stuart Russell

Context-Aware Representations for Knowledge Base Relation Extraction
Daniil Sorokin and Iryna Gurevych
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Tianyu Liu, Kexiang Wang, Baobao Chang and Zhifang Sui
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Prafulla Kumar Choubey and Ruihong Huang

Deep Residual Learning for Weakly-Supervised Relation Extraction
YiYao Huang and William Yang Wang
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ing

Dynamic Entity Representations in Neural Language Models
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Reference-Aware Language Models
Zichao Yang, Phil Blunsom, Chris Dyer and Wang Ling

A Simple Language Model based on PMI Matrix Approximations
Oren Melamud, Ido Dagan and Jacob Goldberger
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Zhenisbek Assylbekov, Rustem Takhanov, Bagdat Myrzakhmetov and Jonathan N.
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Inducing Semantic Micro-Clusters from Deep Multi-View Representations of Novels
Lea Frermann and Gyorgy Szarvas
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Shen Li, Zhe Zhao, Tao Liu, Renfen Hu and Xiaoyong Du

Shortest-Path Graph Kernels for Document Similarity

Giannis Nikolentzos, Polykarpos Meladianos, Francois Rousseau, Yannis Stavrakas
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Session 6A: Machine Translation 2
Earth Mover’s Distance Minimization for Unsupervised Bilingual Lexicon Induc-
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Meng Zhang, Yang Liu, Huanbo Luan and Maosong Sun

Unfolding and Shrinking Neural Machine Translation Ensembles
Felix Stahlberg and Bill Byrne

Graph Convolutional Encoders for Syntax-aware Neural Machine Translation
Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani and Khalil Simaan

Trainable Greedy Decoding for Neural Machine Translation
Jiatao Gu, Kyunghyun Cho and Victor O.K. Li
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Joint Modeling of Topics, Citations, and Topical Authority in Academic Corpora
Jooyeon Kim, Dongwoo Kim and Alice Oh

Identifying Semantic Edit Intentions from Revisions in Wikipedia
Diyi Yang, Aaron Halfaker, Robert Kraut and Eduard Hovy
Session 6C: Machine Comprehension

Accurate Supervised and Semi-Supervised Machine Reading for Long Documents
Daniel Hewlett, Llion Jones, Alexandre Lacoste and izzeddin gur

Adversarial Examples for Evaluating Reading Comprehension Systems
Robin Jia and Percy Liang

Reasoning with Heterogeneous Knowledge for Commonsense Machine Comprehen-
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Hongyu Lin, Le Sun and Xianpei Han

Document-Level Multi-Aspect Sentiment Classification as Machine Comprehension
Yichun Yin, Yangqiu Song and Ming Zhang
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What is the Essence of a Claim? Cross-Domain Claim Identification
Johannes Daxenberger, Steffen Eger, Ivan Habernal, Christian Stab and Iryna
Gurevych

Identifying Where to Focus in Reading Comprehension for Neural Question Gener-
ation
Xinya Du and Claire Cardie

Break it Down for Me: A Study in Automated Lyric Annotation
Lucas Sterckx, Jason Naradowsky, Bill Byrne, Thomas Demeester and Chris De-
velder

Cascaded Attention based Unsupervised Information Distillation for Compressive
Summarization
Piji Li, Wai Lam, Lidong Bing, Weiwei Guo and Hang Li

Deep Recurrent Generative Decoder for Abstractive Text Summarization
Piji Li, Wai Lam, Lidong Bing and Zihao Wang

Extractive Summarization Using Multi-Task Learning with Document Classification
Masaru Isonuma, Toru Fujino, Junichiro Mori, Yutaka Matsuo and Ichiro Sakata

Towards Automatic Construction of News Overview Articles by News Synthesis
Jianmin Zhang and Xiaojun Wan

Joint Syntacto-Discourse Parsing and the Syntacto-Discourse Treebank
Kai Zhao and Liang Huang

Event Coreference Resolution by Iteratively Unfolding Inter-dependencies among
Events
Prafulla Kumar Choubey and Ruihong Huang

When to Finish? Optimal Beam Search for Neural Text Generation (modulo beam
size)

Liang Huang, Kai Zhao and Mingbo Ma

Steering Output Style and Topic in Neural Response Generation
Di Wang, Nebojsa Jojic, Chris Brockett and Eric Nyberg
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2

Preserving Distributional Information in Dialogue Act Classification
Quan Hung Tran, Ingrid Zukerman and Gholamreza Haffari

Adversarial Learning for Neural Dialogue Generation
Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter and Dan Jurafsky

Using Context Information for Dialog Act Classification in DNN Framework
Yang Liu, Kun Han, Zhao Tan and Yun Lei

Modeling Dialogue Acts with Content Word Filtering and Speaker Preferences
Yohan Jo, Michael Yoder, Hyeju Jang and Carolyn Rose

Towards Implicit Content-Introducing for Generative Short-Text Conversation Sys-
tems
Lili Yao, Yaoyuan Zhang, Yansong Feng, Dongyan Zhao and Rui Yan

Affordable On-line Dialogue Policy Learning
Cheng Chang, Runzhe Yang, Lu Chen, Xiang Zhou and Kai Yu

Generating High-Quality and Informative Conversation Responses with Sequence-
to-Sequence Models

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope and Ray
Kurzweil

Bootstrapping incremental dialogue systems from minimal data: the generalisation
power of dialogue grammars
Arash Eshghi, Igor Shalyminov and Oliver Lemon

Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Re-
inforcement Learning

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli Celikyilmaz, Sungjin Lee
and Kam-Fai Wong

Why We Need New Evaluation Metrics for NLG
Jekaterina Novikova, Ondfej Dusek, Amanda Cercas Curry and Verena Rieser

Challenges in Data-to-Document Generation
Sam Wiseman, Stuart Shieber and Alexander Rush
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All that is English may be Hindi: Enhancing language identification through auto-
matic ranking of the likeliness of word borrowing in social media

Jasabanta Patro, Bidisha Samanta, Saurabh Singh, Abhipsa Basu, Prithwish
Mukherjee, Monojit Choudhury and Animesh Mukherjee

Multi-View Unsupervised User Feature Embedding for Social Media-based Sub-
stance Use Prediction
Tao Ding, Warren K. Bickel and Shimei Pan

Demographic-aware word associations
Aparna Garimella, Carmen Banea and Rada Mihalcea

A Factored Neural Network Model for Characterizing Online Discussions in Vector
Space
Hao Cheng, Hao Fang and Mari Ostendorf

Dimensions of Interpersonal Relationships: Corpus and Experiments
Farzana Rashid and Eduardo Blanco

Argument Mining on Twitter: Arguments, Facts and Sources
Mihai Dusmanu, Elena Cabrio and Serena Villata

Distinguishing Japanese Non-standard Usages from Standard Ones
Tatsuya Aoki, Ryohei Sasano, Hiroya Takamura and Manabu Okumura

Connotation Frames of Power and Agency in Modern Filims
Maarten Sap, Marcella Cindy Prasettio, Ari Holtzman, Hannah Rashkin and Yejin
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Daniel Preotiuc-Pietro, Sharath Chandra Guntuku and Lyle Ungar

Topic Signatures in Political Campaign Speeches
Clément Gautrais, Peggy Cellier, René Quiniou and Alexandre Termier

Assessing Objective Recommendation Quality through Political Forecasting

H. Andrew Schwartz, Masoud Rouhizadeh, Michael Bishop, Philip Tetlock, Bar-
bara Mellers and Lyle Ungar
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"Does This Vehicle Belong to You”? Processing the Language of Policing for Im-
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Dan Jurafsky

Coffee Break

Session 7A: Machine Learning 3

Maximum Margin Reward Networks for Learning from Explicit and Implicit Super-
vision
Haoruo Peng, Ming-Wei Chang and Wen-tau Yih

The Impact of Modeling Overall Argumentation with Tree Kernels
Henning Wachsmuth, Giovanni Da San Martino, Dora Kiesel and Benno Stein

Learning Generic Sentence Representations Using Convolutional Neural Networks
Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xiaodong He and Lawrence
Carin

Repeat before Forgetting: Spaced Repetition for Efficient and Effective Training of

Neural Networks
Hadi Amiri, Timothy Miller and Guergana Savova
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Part-of-Speech Tagging for Twitter with Adversarial Neural Networks
Tao Gui, Qi Zhang, Haoran Huang, Minlong Peng and Xuanjing Huang

Investigating Different Syntactic Context Types and Context Representations for
Learning Word Embeddings

Bofang Li, Tao Liu, Zhe Zhao, Buzhou Tang, Aleksandr Drozd, Anna Rogers and
Xiaoyong Du

Does syntax help discourse segmentation? Not so much
Chloé Braud, Ophélie Lacroix and Anders Sggaard

Nonparametric Bayesian Semi-supervised Word Segmentation
Ryo Fujii, Ryo Domoto and Daichi Mochihashi
Session 7C: Dialogue

Deal or No Deal? End-to-End Learning of Negotiation Dialogues
Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh and Dhruv Batra

Agent-Aware Dropout DON for Safe and Efficient On-line Dialogue Policy Learning
Lu Chen, Xiang Zhou, Cheng Chang, Runzhe Yang and Kai Yu

Towards Debate Automation: a Recurrent Model for Predicting Debate Winners
Peter Potash and Anna Rumshisky

Conversation Modeling on Reddit Using a Graph-Structured LSTM
Victoria Zayats and Mari Ostendorf
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Joint Prediction of Word Alignment with Alignment Types
Anahita Mansouri Bigvand, Te Bu and Anoop Sarkar

Further Investigation into Reference Bias in Monolingual Evaluation of Machine
Translation
Qingsong Ma, Yvette Graham, Timothy Baldwin and Qun Liu

A Challenge Set Approach to Evaluating Machine Translation
Pierre Isabelle, Colin Cherry and George Foster

Knowledge Distillation for Bilingual Dictionary Induction
Ndapandula Nakashole and Raphael Flauger

Machine Translation, it’s a question of style, innit? The case of English tag ques-
tions
Rachel Bawden

Deciphering Related Languages
Nima Pourdamghani and Kevin Knight

Identifying Cognate Sets Across Dictionaries of Related Languages
Adam St Arnaud, David Beck and Grzegorz Kondrak

Learning Language Representations for Typology Prediction
Chaitanya Malaviya, Graham Neubig and Patrick Littell

Cheap Translation for Cross-Lingual Named Entity Recognition
Stephen Mayhew, Chen-Tse Tsai and Dan Roth

Cross-Lingual Induction and Transfer of Verb Classes Based on Word Vector Space
Specialisation

Ivan Vulié¢, Nikola Mrksi¢ and Anna Korhonen

Classification of telicity using cross-linguistic annotation projection
Annemarie Friedrich and Damyana Gateva
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Semantic Specialisation of Distributional Word Vector Spaces using Monolingual
and Cross-Lingual Constraints

Nikola Mrksi¢, Ivan Vuli¢, Diarmuid o} Séaghdha, Ira Leviant, Roi Reichart, Milica
Gasi¢, Anna Korhonen and Steve Young

Counterfactual Learning from Bandit Feedback under Deterministic Logging : A
Case Study in Statistical Machine Translation
Carolin Lawrence, Artem Sokolov and Stefan Riezler

Session 7E: Poster Session. Information Extraction 2

Learning Fine-grained Relations from Chinese User Generated Categories
Chengyu Wang, Yan Fan, Xiaofeng He and Aoying Zhou

Improving Slot Filling Performance with Attentive Neural Networks on Dependency
Structures
Lifu Huang, Avirup Sil, Heng Ji and Radu Florian

Identifying Products in Online Cybercrime Marketplaces: A Dataset for Fine-
grained Domain Adaptation

Greg Durrett, Jonathan K. Kummerfeld, Taylor Berg-Kirkpatrick, Rebecca Portnoff,
Sadia Afroz, Damon McCoy, Kirill Levchenko and Vern Paxson

Labeling Gaps Between Words: Recognizing Overlapping Mentions with Mention
Separators
Aldrian Obaja Muis and Wei Lu

Deep Joint Entity Disambiguation with Local Neural Attention
Octavian-Eugen Ganea and Thomas Hofmann

MinlE: Minimizing Facts in Open Information Extraction
Kiril Gashteovski, Rainer Gemulla and Luciano Del Corro

Scientific Information Extraction with Semi-supervised Neural Tagging
Yi Luan, Mari Ostendorf and Hannaneh Hajishirzi

NITE: A Neural Inductive Teaching Framework for Domain Specific NER
Siliang Tang, Ning Zhang, Jinjiang Zhang, Fei Wu and Yueting Zhuang

Speeding up Reinforcement Learning-based Information Extraction Training using

Asynchronous Methods
Aditya Sharma, Zarana Parekh and Partha Talukdar
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Leveraging Linguistic Structures for Named Entity Recognition with Bidirectional
Recursive Neural Networks
Peng-Hsuan Li, Ruo-Ping Dong, Yu-Siang Wang, Ju-Chieh Chou and Wei-Yun Ma

Fast and Accurate Entity Recognition with Iterated Dilated Convolutions
Emma Strubell, Patrick Verga, David Belanger and Andrew McCallum

Entity Linking via Joint Encoding of Types, Descriptions, and Context
Nitish Gupta, Sameer Singh and Dan Roth

An Insight Extraction System on BioMedical Literature with Deep Neural Networks
Hua He, Kris Ganjam, Navendu Jain, Jessica Lundin, Ryen White and Jimmy Lin
Session 7F: Poster Session. NLP Applications

Word Etymology as Native Language Interference
Vivi Nastase and Carlo Strapparava

A Simpler and More Generalizable Story Detector using Verb and Character Fea-
tures

Joshua Eisenberg and Mark Finlayson

Multi-modular domain-tailored OCR post-correction
Sarah Schulz and Jonas Kuhn

Learning to Predict Charges for Criminal Cases with Legal Basis
Bingfeng Luo, Yansong Feng, Jianbo Xu, Xiang Zhang and Dongyan Zhao

Quantifying the Effects of Text Duplication on Semantic Models
Alexandra Schofield, Laure Thompson and David Mimno

Identifying Semantically Deviating Outlier Documents
Honglei Zhuang, Chi Wang, Fangbo Tao, Lance Kaplan and Jiawei Han

Detecting and Explaining Causes From Text For a Time Series Event
Dongyeop Kang, Varun Gangal, Ang Lu, Zheng Chen and Eduard Hovy
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A Novel Cascade Model for Learning Latent Similarity from Heterogeneous Se-
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Zhuoxuan Jiang, Shanshan Feng, Gao Cong, Chunyan Miao and Xiaoming Li

Identifying the Provision of Choices in Privacy Policy Text
Kanthashree Mysore Sathyendra, Shomir Wilson, Florian Schaub, Sebastian Zim-
meck and Norman Sadeh

An Empirical Analysis of Edit Importance between Document Versions
Tanya Goyal, Sachin Kelkar, Manas Agarwal and Jeenu Grover

Transition-Based Disfluency Detection using LSTMs
Shaolei Wang, Wanxiang Che, Yue Zhang, Meishan Zhang and Ting Liu
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Allen Schmaltz, Yoon Kim, Alexander Rush and Stuart Shieber
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Session 8A: Machine Translation and Multilingual/Multimodal NLP (Short)

A Study of Style in Machine Translation: Controlling the Formality of Machine
Translation Output
Xing Niu, Marianna Martindale and Marine Carpuat

Sharp Models on Dull Hardware: Fast and Accurate Neural Machine Translation
Decoding on the CPU
Jacob Devlin

Exploiting Cross-Sentence Context for Neural Machine Translation
Longyue Wang, Zhaopeng Tu, Andy Way and Qun Liu

Cross-Lingual Transfer Learning for POS Tagging without Cross-Lingual Re-

sources
Joo-Kyung Kim, Young-Bum Kim, Ruhi Sarikaya and Eric Fosler-Lussier
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Image Pivoting for Learning Multilingual Multimodal Representations
Spandana Gella, Rico Sennrich, Frank Keller and Mirella Lapata

Neural Machine Translation with Source Dependency Representation
Kehai Chen, Rui Wang, Masao Utiyama, Lemao Liu, Akihiro Tamura, Eiichiro
Sumita and Tiejun Zhao

Visual Denotations for Recognizing Textual Entailment
Dan Han, Pascual Martinez-Gémez and Koji Mineshima
Session 8B: Machine Learning (Short)

Sequence Effects in Crowdsourced Annotations
Nitika Mathur, Timothy Baldwin and Trevor Cohn

No Need to Pay Attention: Simple Recurrent Neural Networks Work!
Ferhan Ture and Oliver Jojic

The strange geometry of skip-gram with negative sampling
David Mimno and Laure Thompson

Natural Language Processing with Small Feed-Forward Networks
Jan A. Botha, Emily Pitler, Ji Ma, Anton Bakalov, Alex Salcianu, David Weiss,
Ryan McDonald and Slav Petrov

Deep Multi-Task Learning for Aspect Term Extraction with Memory Interaction
Xin Li and Wai Lam

Analogs of Linguistic Structure in Deep Representations
Jacob Andreas and Dan Klein

A Simple Regularization-based Algorithm for Learning Cross-Domain Word Em-

beddings
Wei Yang, Wei Lu and Vincent Zheng
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Lei Shu, Hu Xu and Bing Liu
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Monolingual Phrase Alignment on Parse Forests

Yuki Arase'* and Junichi Tsujii*2
!Osaka University, Japan
*Artificial Intelligence Research Center (AIRC), AIST, Japan
2NaCTeM, School of Computer Science, University of Manchester, UK
arase(@ist.osaka-u.ac.jp, J-tsujiilaist.go.jp

Abstract

We propose an efficient method to con-
duct phrase alignment on parse forests
for paraphrase detection. Unlike previ-
ous studies, our method identifies syntac-
tic paraphrases under linguistically mo-
tivated grammar. In addition, it allows
phrases to non-compositionally align to
handle paraphrases with non-homographic
phrase correspondences. A dataset that
provides gold parse trees and their phrase
alignments is created. The experimental
results confirm that the proposed method
conducts highly accurate phrase alignment
compared to human performance.

1 Introduction

Paraphrase detection is crucial in various applica-
tions, which has been actively studied for years.
Due to difficulties caused by the non-homographic
nature of phrase correspondences, the units of cor-
respondence in previous studies are defined as se-
quences of words like in (Yao et al., 2013) and
not syntactic phrases. On the other hand, syn-
tactic structures are important in modeling sen-
tences, e.g., their sentiments and semantic simi-
larities (Socher et al., 2013; Tai et al., 2015).

In this paper, we present an algorithm to align
syntactic phrases in a paraphrased pair of sen-
tences. We show that (1) the problem of identify-
ing a legitimate set of syntactic paraphrases under
linguistically motivated grammar is formalized,
(2) dynamic programing a la CKY (Cocke, 1969;
Kasami, 1965; Younger, 1967) makes phrase
alignment computationally feasible, (3) alignment
quality of phrases can be improved using n-best
parse forests instead of 1-best trees, and (4) non-
compositional alignment allows non-homographic
correspondences of phrases. Motivated by recent

1

Source: Whenever I go to the ground floor for a smoke,
I always come face to face with them.
Target: Whenever I go down to smoke a cigarette,
I come face to face with one of them.
W VP <o

PP« PPl yp
/EP \
A\

X‘ﬁp “- s cp
Y % . "
~+-goto the ground floor:for-a smoke ﬁp
s VP /
NP
— ~

e ~go down to smoke a cigarette

Figure 1: Example of phrase alignments

findings that syntax is important for phrase embed-
ding (Socher et al., 2013) in which phrasal para-
phrases allow semantic similarity to be replicated
(Wieting et al., 2016, 2015), we focus on the syn-
tactic paraphrase alignment.

Fig. 1 shows a real example of phrase align-
ments produced by our method. Alignment pro-
ceeds in a bottom-up manner using the compo-
sitional nature of phrase alignments. First, word
alignments are given. Then, phrase alignments are
recursively identified by supporting relations be-
tween phrase pairs. Non-compositional alignment
is triggered when the compositionality is violated,
which is common in paraphrasing.

For systematic research on syntactic phrase
alignment in paraphrases, we constructed a gold
standard dataset of paraphrase sentences with
phrase alignment (20,678 phrases in 201 para-
phrasal sentences). This dataset will be made pub-
lic for future research on paraphrase alignment.
The experiment results show that our method
achieves 83.64% and 78.91% in recall and preci-
sion in terms of alignment pairs, which are 92%
and 89% of human performance, respectively.

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1-11
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2 Related Work

Due to the large amount of sentence-level para-
phrases collected (Dolan et al., 2004; Cohn et al.,
2008; Heilman and Smith, 2010; Yin and Schiitze,
2015; Biran et al., 2016), researchers can identify
phrasal correspondences for natural language in-
ferences (MacCartney et al., 2008; Thadani et al.,
2012; Yao et al., 2013). Current methods extend
word alignments to phrases in accordance with the
methods in statistical machine translation. How-
ever, phrases are defined as a simple sequence of
words, which do not conform to syntactic phrases.
PPDB (Ganitkevitch et al., 2013) provides syntac-
tic paraphrases similar to synchronous context free
grammar (SCFG). As discussed below, SCFG cap-
tures only a fraction of paraphrasing phenomenon.

In terms of our approach, parallel parsing is
a relevant area. Smith and Smith (2004) re-
lated monolingual parses in different languages
using word alignments, while Burkett and Klein
(2008) employed phrase alignments. Moreover,
Das and Smith (2009) proposed a model that gen-
erates a paraphrase of a given sentence using
quasi-synchronous dependency grammar (Smith
and Eisner, 2006). Since they used phrase align-
ments simply as features, there is no guarantee that
the output alignments are legitimate.

Synchronous rewriting in parallel parsing (Kae-
shammer, 2013; Maillette de Buy Wenniger and
Sima’an, 2013) derives parse trees that conform to
discontinuous word alignments. In contrast, our
method respects parse trees derived by linguis-
tically motivated grammar while handling non-
monotonic phrase alignment.

The synchronous assumption in parallel parsing
has been argued to be too rigid to handle parallel
sentence pairs or even paraphrasal sentence pairs.
Burkett et al. (2010) proposed weakly synchro-
nized parallel parsing to tackle this problem. Al-
though this model increases the flexibility, the ob-
tainable alignments are restricted to conform to in-
version transduction grammar (ITG) (Wu, 1997).
Similarly, Choe and McClosky (2015) used de-
pendency forests of paraphrasal sentence pairs and
allowed disagreements to some extent. However,
alignment quality was beyond their scope. Weese
et al. (2014) extracted SCFG from paraphrase cor-
pora. They showed that parsing was only success-
ful in 9.1% of paraphrases, confirming that a sig-
nificant amount of transformations in paraphrases
do not conform to compositionality or ITG.

Explanation

5, t Source and target sentences
T Phrase in the parse tree
TR, T) TR 18 a phrase of a root node; 7y is

a special phrase with the null span
that exists in every parse tree

Phrase aligned to 7y

Pair of entities; a pair itself can be
regarded as an entity

Set of entities

Derive the mother node of a phrase

Derive the left and right child nodes,
respectively

ds(-) Derive descendants of a node in-
cluding self; 7 € ds(7)
lca(-,-) | Derive the lowest common ancestor

(LCA) of two phrases

Table 1: Notation summary

3 Formulation of Phrase Alignment

In this study, we formalize the problem of legiti-
mate phrase alignment. For simplicity, we discuss
tree alignment instead of forests using Fig. 2 as a
running example.

3.1 Notation

Table 1 describes the notation used in this pa-
per. We call a paraphrased pair source sentence
s and the other as farget t. Superscripts of s and
t represent the source and the target, respectively.
Specifically, (7%, 7%) is a pair of source and target
phrases. We represent f1/f2/ -+ /fi(+) to abbre-
viate fi(--- fo(f1(:))---) as an intuitive illustra-
tion. It should be noted that the order of the func-
tion symbols is reversed, e.g., I /r(7) (= r(I(1)))
derives the right-child of the left-child node of T,
and [ /ds(7) derives the left descendants of 7.

3.2 Definition of a Legitimate Alignment

A possible parse tree alignment of s and ¢ is
represented as a set of aligned pairs of phrases
{(r5,7})}. 77 and 7/ are the source and the target
phrases that constitute the i-th alignment, respec-
tively. Either 7§ or 7} can be 7j when a phrase
does not correspond to another sentence, which
is called a null-alignment. Each phrase alignment

can have support relations as:

Definition 3.1. A pair h; = (77, 7}) is supported

17"
by alignments of their descendant phrases when



hy, = (z5,77)

i = (T, Th)

Figure 2: Alignment pair and its supports

((U/ds(7?),1/ds(r})), (r/ds(77),r/ds(1})))

or  ({1/ds(r?),r/ds(7})), (r/ds(77), 1/ds(T))))
exists. Pre-terminal phrases are supported by the
corresponding word alignments.

. . R

Support relations are denoted using = or =
that represent the order of support phrases. Specif-
ically, ((I(7?),U(m))), (r(77), (7)) = Ty is

straight while ((I(5),r(r9)), (r(72),1(r1))) &

(2 7 (2 7

hh; is inverted. In Fig. 2, ((75,,7L), (r5,7L)) =
lh;, where 7, = [/ds(77) and 7,5 = r/ds(7}).

The number of all possible alignments in s and
t, which is denoted as H, is exponential to the
length. However, only its fraction constitutes le-
gitimate parse tree alignments. For example, a
subset in which the same phrase in s is aligned
with multiple phrases in ¢, called competing align-
ments, is not legitimate as a parse tree alignment.
The relationships among phrases in parse trees im-
pose constraints on a subset to provide legitimacy.

Given word alignments W that provide the ba-
sis for the phrase alignment, its legitimate set
Wi C W should be 1-to-1 alignments. Start-
ing with W, a legitimate set of phrase alignments
Hj (C H) with an accompanying set of support re-
lations, A, (C A) is constructed. A legitimate set
of alignments (IHy, Ay) can be enlarged only by
adding h; to H; with either the support relation

= or 2 added to A 1. These assume competing
alignments among the child phrases, thus cannot
co-exist in the same legitimate set.

lh; can be supported by more than one pair of
descendant alignments in Ay, ie., {{(ly,, )} =
h; or {(ly,, )} £ T, exists. For H,, = {hm},
we define the relationship < for alignments, i.e.,
h,, < T, meaning that 7,7 € ds(7;) A, € ds(7}).
For example, in Fig. 2, h,,, < hh; and h,, < ;.

Theorem 3.1. There always exist the maximum
pair by, € H,,, where Vh,,, € H,,,, h,, < ;.

(Hrz, Ar) should satisfy the conditions in Def-
inition 3.2 to be legitimate as a whole. We denote
h; & lh; when a chain exists in Az, which con-
nects Ih; to Ih; regardless of straight or inverted di-
rections of intermediate supports, e.g., ((l;, ) =

R
hit1), ((hit1, ) = hito), ..., ((By-1,-) = ).
Note Ih; Ky lh; is always true.
Definition 3.2. (H;, A;) should satisfy:

1. Root-Pair Containment: (75,,75) € H,

2. Same-Tree: {5 | (tf,7}!) € HL} are subsets
of phrases in the same complete parse tree of
s (same fort).

3. Relevance: Vh; € Hy, h; v <Tf’g771ta> €AL

4. Consistency: In Hy, a phrase (# 1p) in the
source tree is aligned with at most one phrase
(# Tp) in the target tree, and vice versa.

5. Monotonous: For (18, 7}), (TJ‘?,T}) € Hy,

7 € ds(77) ifrle dS(T;).

6. Maximum Set: Hp is the maximum legiti-
mate set, in the sense that V{75, 7t) € (H\
Hy), {(r%,71)} UH, cannot be a legitimate
set with any A.

The Same-Tree condition is required to con-
duct an alignment on forests that consist of mul-
tiple trees in a packed representation. The Consis-
tency condition excludes competing alignments.
The Monotonous condition is a consequence of
compositionality. The Maximum Set means if
h,,,h, € Hjy are in positions of a parse tree
that can support hh;, h; and the support relation
should be added to (Hy, Ay). Such a strict local-
ity of compositionality is often violated in prac-
tice as discussed in Sec. 2. To tackle this issue, we
add another operation to align phrases in a non-
compositional way in Sec. 4.3.

3.3 Lowest Common Ancestor

The same aligned pair can have more than one sup-
port of descendant alignments because there are
numerous descendant node combinations. How-
ever, the Monotonous and the Maximum Set con-
ditions allow Ay, to be further restricted so that
each of aligned pairs in IHy, has only one support.

Let us assume that alignment hh; is supported
by more than one pair of descendant alignments



Figure 3: Inside probability depends on support
alignments and paths to reach an LCA.

in Ap,ie, Ap 2 ({(hy,h,)} = h;)!. We de-
note H,, = {h,,} and H,, = {h,}. For each
h,, € H,, and h,, € H,,, we remove all support
relations from Aj, except for the maximum pairs
or the pre-terminal alignments. The resultant set
A satisfies:

Theorem 3.2. For all (<]hm,]h ) = hy) € A,

= lca(T] and 7} = lca(t},, 7t) are true.

T)’L7 TL) mr'n

In Fig. 2, 77 is the lowest common ancestor
(LCA) of 7, and 75, and 7/ is the LCA of 7}, and
7t. Theorem 3.2 constitutes the basis for the dy-
namic programming (DP) in our phrase alignment
algorithm (Sec. 4.2).

4 Modeling of Phrase Alignment

We formally model the phrase alignment process
as illustrated in Fig. 3, where h; is aligned from
descendant alignments, i.e., I, and h,,.

4.1 Probabilistic Model

Similar to the probabilistic context free grammar
(PCFQG), the inside probability «; of hh; is deter-
mined by the inside probabilities, o, and «,, of
the support pairs, together with the probability of
the rule, i.e., the way by which h,, and h,, are
combined to support h; as shown in Fig. 3. It is
characterized by four paths, 7, ; (the path from
Ty, 10 7)), 7'(':171' (1, to 77), 7T£n7i (Tfn to Tf), and ﬂfm-
(7} to 7).

Each path consists of a set of null-aligned

phrases ¢ € (¢,7y) and their mothers, e.g.,
the path 7, ; in Fig. 3 is a set of (¢7,m(¢1)),
(¢3,m(95)), and (g5, m(¢5)). We assume that

each occurrence of a null-alignment is indepen-

R T
'= and = are not distinguished here.

ay, (hs, T )Q

-E H-EE

ay, (hg, h7)

Eﬂ-

Figure 4: Alignment pairs and packed supports

dent. Thus, its probability 5, ; is computed as:

mi = gzens Pr(0%,7p)-

fm., m.i» and L . are computed in the same man-
S — S
ner. We abbrev1ate Yoni = ﬂmﬂ ni» likewise
AL o= Bt .BL .. Finally, o; can be represented
as a simple relation:

o = OtmOlnP (Tz » Ti )7mn27mnz (1)

P.(-,-) is the alignment probability parameterized
in Sec. 5. Since we assume that the structures of
parse trees of s and ¢ are determined by a parser,
the values of ~;, . ; and 'anm are fixed. There-
fore, by traversing the parse tree in a bottom-
up manner, we can identify an LCA (i.e., ;) for
phrases 7,,, and 7,, while simultaneously comput-
ing Ym,n,i-

4.2 Alignment Algorithm

Algorithm 4.1 depicts our algorithm. Given word
alignments W = {(w$,w!)}, it constructs legit-
imate sets of aligned pairs in a bottom-up man-
ner. Like the CKY algorithm, Algorithm 4.1 uses
DP to efficiently compute all possible legitimate
sets and their probabilities in parallel. In addi-
tion, null-alignments are allowed when aligning an
LCA supported by aligned descendant nodes.

A[] is indexed by phrases in the parse tree of s
and maintains a list of all possible aligned pairs.
Furthermore, to deal with non-monotonic align-
ment (Sec. 4.3), it keeps all competing hypotheses
of support relations using packed representations.
Specifically, h; is accompanied by its packed sup-
port list as illustrated in Fig. 4; hy = (75, 7)
is aligned with supports of {(«;, (I, h,))} like
(a1, (hs, hy)). Depending on the support align-
ments, lh; has different inside probabilities, i.e.,
a1, ag, and az. Since the succeeding process of
alignment only deals with the LCA’s of 7§ and 7}
that are independent of the support alignment, all



Algorithm 4.1 Phrase Alignment

Algorithm 4.2 Non-Compositional Alignment

1: LCAs and v in parse trees of s and ¢ are com-
puted and stored in Lca®[-][-] and Lea'[-][].
set A[7°] «— () for all 7*
for all (w®, w') € W do
Find 7 and 7* covering w® and w’
Compute o; of (7%, 7%) using Eq. (1)
PACK((T%, 7%, (a, 0), A)
for all 73,, 7, do > Trace the source tree from
the bottom to top
for all (77 ,7mm
ALIGN(T;,

A U

) € Lea®[75,
Ti )’Y?izni’A)
10: function ALIGN( a1,y A)
11:  forall b, = (73, m) € AlrS] do

|[75] do

n

o *®

122 forallh, = (75, 7%) € A[r:] do
32 ()« Leal[rh][r!]

14: Compute «; using Eq. (1)

15: PACK((7$, 7}), (i, (T, Thy,)), A)

16: function PACK((7%, 7%), («

17:  if (75, 7%) € A[r*] then

18: Al + A[T°] U (e, (s, hhy)) > Merge
supports and their inside probability

19: else

20 A[r®] + (75,74, {«

(g, ), A)

, (i, Thn)))

support relations are packed as a support list* by
the PACK function.

4.3 Non-Compositional Alignment

A monotonic alignment requires 75, € h,, and
7t € hy, to have an LCA, which adheres to the
compositionality in language. However, previous
studies declared that the compositionality is vio-
lated in a monolingual phrase alignment (Burkett
et al., 2010; Weese et al., 2014). Heilman and
Smith (2010) discuss complex phrase reordering
is prevalent in paraphrases and entailed text.

A non-monotonic alignment occurs when cor-
responding phrases have largely different orders,
i.e., one of them (e.g., T;;L) is an ancestor of another
(e.g., Tt) or the same phrase. Such a case could
be exceptionally compatible, when 7!, has null-
alignments and all the aligned phrases of 7! fit in
these null-alignments. A new alignment (77, 7/ (=
7t)) would be non-monotonically formed. Fig. 5
shows a real example of non-compositional align-
ment produced by our method. The target phrase
7t (“through the spirit of teamwork”) is null-

This is true except for a non-compositional alignment
where the packed representation must be unpacked.

1: function TRACE(T,, Tn) > Ty, € ds(Tim)
22 V10
for all [7,,,]° do
if 7,, € ds(¢) for 3 € ®l™]'" then
Vo VU (Ul g, (@ g)u
GAP(Ty, ¢) >

AN

6:  elseif 7, € ds(¢) for 3 € Wl then
7: V < VU TRACE(7,, ¥)

8: else

9: for all [7,,)/ do

10 V <+ VUDOWN([1)7, [tm]9)

11: returnV;

alignment when aligning 7%, and 7!, but then the
alignment to 7,7 (“Relying on team spirit”) is al-
lowed by non-compositional alignment of 7.
Unlike monotonous alignment, we have to ver-
ify whether the internal structures of 7°, and 7} are
compatible. Since the internal structures of 7}, and
7! depend on their supporting alignments, their
packed representations in A have to be unpacked,
and each pair of supporting alignments for h,,, and
Th,, must be checked to confirm compatibility. Fur-
thermore, since the aligned phrases inside 7, and
! have their own null-alignments, we need to un-
pack deeper supporting alignments as well.
Algorithm 4.2 checks if target phrases 7,, and
Tn, € ds(7,,) are compatible. We use the following
notations: [7,,,]" and [7,,) represent the phrases of
Tm and 7, with the i-th and j-th sets of supporting
alignments, respectively. For 7¢ in Fig. 4, there are
[74]! supported by (hs, hs) and [£]? supported by
(hg, 7). [m, ] consists of sets of aligned target
phrases Wil

= {(;SET’”] } ([} is similar).

For each [r,,,]%, if 7, fits in its null-alignment
like in Fig. 5, the alignment information is updated
at line 5, where GAP function takes two phrases
and returns a set of null-alignments on a path be-
tween them. If 7,, is a descendant of a support of
Tm, the compatibility is recursively checked (line
7). Otherwise, the compatibility of the supports of
Tn, and 7, are recursively checked in DOWN func-
tion in a similar manner (line 10).

When TRACE function returns a set of
{(TF ®F)}, all ¢ € U* are aligned with phrases
in the source and their inside probabilities are
stored in A. Thus we can compute the inside prob-
ability for each (U* &), which is stored in A to-

{1/)[Tm } and null-alignments

[Tm] ‘



Source: Relying on team spirit, expedition members defeated difficulties.
Target: Members of the scientific team overcame difficulties through the spirit of teamwork.
N
T; S

S=--» VP e PP TS

Relying on --- spirit , -

members defeated difficulties Members ---

overcame difficulties through --- teamwork

Figure 5: Example of a non-compositional alignment

gether with a new alignment pair (75, 7}) where

= lca(Ts and 77 = 7.

m7 n)

4.4 Forest Alignment

Although we have discussed using trees for clarity,
the alignment is conducted on forests. The align-
ment process is basically the same. The only dif-
ference is that the same pair has multiple LCAs.
Hence, we need to verify if the sub-trees can be
on the same tree when identifying their LCAs
since multiple nodes may cover the same span
with different derivations. This is critical for non-
compositional alignment because whether the in-
ternal structures are on the same tree must be con-
firmed while unpacking them.

Our alignment process corresponds to re-
ranking of forests and may derive a different tree
from the 1-best, which may resolve ambiguity in
parsing. We use a parser trained beforehand be-
cause joint parsing and alignment is computation-
ally too expensive.

5 Parameterization

Next, we parameterize the alignment probability.

5.1 Feature-enhanced EM Algorithm

We apply the feature-enhanced EM (Berg-
Kirkpatrick et al., 2010) due to its ability to use
dependent features without an irrational indepen-
dence assumption. This is preferable because the
attributes of phrases largely depend on each other.

Our method is computationally heavy since it
handles forests and involves unpacking in the non-
compositional alignment process. Thus, we use
Viterbi training (Brown et al., 1993) together with
a beam search of size y, € N on the feature-
enhanced EM. Also, mini-batch training (Liang

and Klein, 2009) is applied. Such an approxima-
tion for efficiency is common in parallel parsing
(Burkett and Klein, 2008; Burkett et al., 2010).

In addition, an alignment supported by distant
descendants tends to fail to reach a root-pair align-
ment. Thus, we restrict the generation gap be-
tween a support alignment and its LCA to be less
than or equal to ;14 € N.

5.2 Features

In feature-enhanced EM, the alignment probabil-
ity in Eq. (1) is parameterized using features:

exp(w - F(af, al))

P.(1f, 1} =

i Ti Z(r] ) e exp(w - IF(a$,at))’
where a = (ag,--- ,ay) consists of n attributes
of 7. F(+,-) and w are vectors of feature functions

and their weights, respectively.

In a parse tree, the head of a phrase determines
its property. Hence, a lemmatized lexical head
alex € a combined with its syntactic category
acat € a is encoded as a feature® as shown be-
low. We use semantic (instead of syntactic) heads
to encode semantic relationships in paraphrases.

1: ]l(alex = Cat = '7afex = '7a€at = )
2: ]l(Surface&rn(aleX = al,. =)

3:  1(WordnetSim(ai = -, al, ="))

4:  1(EmbeddingSim(ai,, = -, aj, = *))
5: ]l(IsPrepos,lt101r1Palr(aleX =-al, =")
6: ]1<agat cat )

7: ]l(IsSameCategory( asy = aly =)

The first feature is an indicator invoked only at
specific values. On the other hand, the rest of the

3We also tried features based on the configurations of the
source and target sub-trees similar to (Das and Smith, 2009)
as well as features based on the spans of null-alignments.
However, none of them contributed to alignment quality.



features are invoked across multiple values, allow-
ing general patterns to be learned. The second fea-
ture is invoked if two heads are identical or a head
is a substring of another. The third feature is in-
voked if two heads are synonyms or derivations
that are extracted from the WordNet*. The fourth
feature is invoked if the cosine similarity between
word embeddings of two heads is larger than a
threshold. The fifth feature is invoked when the
heads are both prepositions to capture their differ-
ent natures from the content words. The last two
features are for categories; the sixth one is invoked
at each category pair, while the seventh feature is
invoked if the input categories are the same.

To avoid generating a huge number of features,
we reduce the number of syntactic categories; for
contents (N, V, ADJ, and ADV), prepositions, co-
ordinations, null (i.e., for 7p), and others.

5.3 Penalty Function

Since our method allows null-alignments, it has a
degenerate maximum likelihood solution (Liang
and Klein, 2009) that makes every phrase null-
alignment. Similarly, a degenerate solution overly
conducts non-compositional alignment.

To avoid these issues, a penalty is incorporated:

exp{=(I7}lo +I7/ls + s + 1)}
(non-compositional alignment)

P18, 7)) =
’ exp{~(|7lo + Irlo + 1)}
(otherwise)
where | - |4 computes the span of internal null-

alignments, and p,, > 1.0 and p. € R4 con-
trol the strength of the penalties of the null-
alignment and the non-compositional alignment,
respectively. The penalty function is multiplied by
Eq. (1) as a soft-constraint for re-ranking align-
ment pairs in Algorithm 4.1.

5.4 Combination with Parse Probability

Following the spirit of parallel parsing that si-
multaneously parses and aligns sentences, we lin-
early interpolate the alignment probability with
the parsing probability once the parameters are
tuned by EM. When aligning a node pair (7, 7}),
the overall probability is computed as:

(1 — pp)ey; + ppo(rs)o(rh),

where o(-) gives the marginal probability in pars-
ing and 11, € [0, 1] balances these probabilities.

*nttp://wordnet .princeton.edu

6 Evaluation

As discussed in Sec. 2, previous studies have not
conducted syntactic phrase alignment on parse
trees. A direct metric does not exist to compare
paraphrases that cover different spans, i.e., our
syntactic paraphrases and paraphrases of n-grams.
Thus, we compared the alignment quality to that
of humans as a realistic way to evaluate the per-
formance of our method.

We also evaluated the parsing quality. Similar to
the alignment quality, differences in phrase struc-
tures disturb the comparisons (Sagae et al., 2008).
Our method applies an HPSG parser Enju (Miyao
and Tsujii, 2008) to derive parse forests due to its
state-of-the-art performance and ability to provide
rich properties of phrases. Hence, we compared
our parsing quality to the 1-best parses of Enju.

6.1 Language Resources

We used reference translations to evaluate ma-
chine translations® as sentential paraphrases
(Weese et al., 2014). The reference translations of
10 to 30 words were extracted and paired, giving
41K pairs as a training corpus.

We use different kinds of dictionaries to obtain
word alignments W as well as to compute fea-
ture functions. First, we extract synonyms and
words with derivational relationship using Word-
Net. Then we handcraft derivation rules (e.g.,
create, creation, creator) and extract potentially
derivational words from the training corpus. Fi-
nally, we use prepositions defined in (Srikumar
and Roth, 2013) as a preposition dictionary to
compute the feature function.

In addition, we extend W using word embed-
dings; we use the MVLSA word embeddings
(Rastogi et al., 2015) given the superior perfor-
mance in word similarity tasks. Specifically,
we compute the cosine similarity of embeddings;
words with a higher similarity value than a thresh-
old are determined as similar words. The threshold
is empirically set as the 100th highest similarity
value between words in the training corpus.

6.2 Gold-Standard Data

Since no annotated corpus provides phrase align-
ments on parse trees, we created one through two-
phase manual annotation. First, a linguistic expert
with rich experience on annotating HPSG trees

SNIST OpenMT corpora: LDC2010T14, LDC2010T17,
LDC2010T21, LDC2010T23, LDC2013T03



annotated gold-trees to paraphrasal sentence pairs
sampled from the training corpus. To diversify
the data, only one reference pair per sentence of
a source language was annotated. Consequently,
201 paraphrased pairs with gold-trees (containing
20, 678 phrases) were obtained.

Next, three professional English translators
identified paraphrased pairs including null-
alignments given sets of phrases extracted from
the gold-trees. These annotators independently
annotated the same set, yielding 14,356 phrase
alignments where at least one annotator regarded
as a paraphrase. All the annotators agreed that
77% of the phrases were paraphrases.

We used 50 sentence pairs for development and
another 151 for testing. These pairs were excluded
from the training corpus.

6.3 Evaluation Metric

Alignment Quality Alignment quality was
evaluated by measuring the extent that the au-
tomatic alignment results agree with those of
humans. Specifically, we evaluated how gold-
alignments can be replicated by automatic align-
ment (called recall) and how automatic alignments
overlap with alignments that at least an annotator
aligned (called precision) as:

{h/he H, ANhe GNG'}|

Recall =
eca CNa ,
hheHoAhe GUG
Precision = ‘{ ’ € Ha = }’7
[Hal

where Ha is a set of alignments, while G and G’
are the ones that two of annotators produce, re-
spectively. The function of | - | counts the elements
in a set. There are three combinations for G and
G’ because we had three annotators. The final pre-
cision and recall values are their averages.

Parsing Quality The parsing quality was evalu-
ated using the CONLL-X (Buchholz and Marsi,
2006) standard. Dependencies were extracted
from the output HPSG trees, and evaluated using
the official script®. Due to this conversion, the
accuracy on the relation labels is less important.
Thus, we reported only the unlabeled attachment
score (UAS)’. The development and test sets pro-
vide 2,371 and 6, 957 dependencies, respectively.

*http://ilk.uvt.nl/conll/software.html
7 Although omitted, the labeled attachment score showed
the same tendency as UAS.

Roles of hyper-parameters

trn | Control penalty for null-alignment

te | Control penalty for non-compositional
alignment

1p | Balance alignment and parsing prob.

Uy | Beam size at alignment

g | Generation gap to reach an LCA

Table 2: Summary of the hyper-parameters

’ Method H Recall\ Prec. \ UAS H % ‘
’ Human H 90.65 ‘ 88.21 \ - H - ‘

Proposed || 83.64 | 78.91 | 93.49 | 98
Monotonic || 82.86* | 77.97* | 93.49 98
w/o EM 81.33* | 75.09* | 92.91* | 86
1-best tree || 80.11* | 73.26™ | 93.56 | 100

Table 3: Evaluation results on the test set, where *
represents p-value < 0.05 against our method.

Since all metrics were computed in a set, the
approximate randomization (Noreen, 1989; Rie-
zler and Maxwell, 2005) (B = 10K) was used
for significance testing. It has been shown to
be more conservative than using bootstrap resam-
pling (Riezler and Maxwell, 2005).

6.4 Results and Discussion

Overall Results Table 2 summarizes the hyper-
parameters, which were tuned to maximize UAS
in the development set using the Bayesian opti-
mization. For efficiency, we used 2K samples
from the training corpus and set the mini-batch
size in feature-enhanced EM to 200 similar to
“rapid training” in (Burkett and Klein, 2008). We
also set pp = 50 during EM training to manage
the training time.

Table 3 shows the performance on the test set
for variations of our method and that of the human
annotators. The last column shows the percentage
of pairs where a root pair is reached to be aligned,
called reachability. Our method is denoted as Pro-
posed, while its variations include a method with
only monotonic alignment (monotonic), without
EM (w/o EM), and a method aligning only 1-best
trees (1-best tree).

The performance of the human annotators was
assessed by considering one annotator as the test
and the other two as the gold-standard, and then
taking the averages, which is the same setting as
our method. We regard this as the pseudo inter-



annotator agreement, since the conventional inter-
annotator agreement is not directly applicable due
to variations in aligned phrases.

Our method significantly outperforms the oth-
ers as it achieved the highest recall and precision
for alignment quality. Our recall and precision
reach 92% and 89% of those of humans, respec-
tively. Non-compositional alignment is shown to
contribute to alignment quality, while the feature-
enhanced EM is effective for both the alignment
and parsing quality. Comparing our method and
the one aligning only 1-best trees demonstrates
that the alignment of parse forests largely con-
tributes to the alignment quality. Although we
confirmed that aligning larger forests slightly im-
proved recall and precision, the improvements
were statistically insignificant. The parsing qual-
ity was not much affected by phrase alignment,
which is further investigated in the following.

Finally, our method achieved 98% reachabil-
ity, where 2% of unreachable cases were due to
the beam search. While understanding that the
reachability depends on experimental data, ours
is notably higher than that of SCFG, reported as
9.1% in (Weese et al., 2014). These results show
the ability of our method to accurately align para-
phrases with divergent phrase correspondences.

Effect of Mini-Batch Size We investigated the
effect of the mini-batch size in EM training using
the entire training corpus (41K pairs). When in-
creasing the mini-batch size from 200 to 2K, re-
call, precision, and UAS values are fairly stable.
In addition, they are insensitive against the amount
of training corpus, showing the comparable values
against the model trained on 2K samples. These
results demonstrate that our method can be trained
with a moderate amount of data.

Observations Previous studies show that paral-
lel parsing improves parsing quality, while such
an effect is insignificant here. We examine causes
through manual observations.

The evaluation script indicated that our method
corrected 34 errors while introducing 41 new er-
rors®. We further analyzed these 75 cases; 12 cases
are ambiguous as both the gold-standard and the
output are correct. In addition, 8 cases are due to
erroneous original sentences that should be disre-
garded, e.g., “ For two weeks ago,...” and “Accord-

8 Alignments were obtained by the model trained using the
entire corpus with the 1 K mini-batch size.

ing to the source, will also meet...”. Consequently,
our method corrected 32 errors while introducing
23 errors in reality for 446 errors in 1-best trees,
which achieves a 2.5% error reduction.

These are promising results for our method to
improve parsing quality, especially on the PP-
attachment (159 errors in 1-best), which contained
14 of the 32 corrected errors. Fig. 1 shows a real
example; the phrase of “for a smoke” in the source
was mistakenly attached to “ground floor” in the
1-best tree. This error was corrected as depicted.

Duan et al. (2016) showed that paraphrases ar-
tificially generated using n-best parses improved
the parsing quality. One reason for limited im-
provement in our experiments may be because
structural changes in our natural paraphrases are
more dynamic than the level useful to resolve am-
biguities. We will further investigate this in future.

7 Conclusion

We propose an efficient method for phrase align-
ment on parse forests of paraphrased sentences.
To increase the amount of collected paraphrases,
we plan to extend our method to align compara-
ble paraphrases that are partially paraphrasal sen-
tences. In addition, we will apply our method to
parallel parsing and other grammar, e.g., projec-
tive dependency trees. Furthermore, we will apply
such syntactic paraphrases to phrase embedding.
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Fast(er) Exact Decoding and Global Training for Transition-Based
Dependency Parsing via a Minimal Feature Set
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Abstract

We first present a minimal feature set for
transition-based dependency parsing, con-
tinuing a recent trend started by Kiper-
wasser and Goldberg (2016a) and Cross
and Huang (2016a) of using bi-directional
LSTM features. We plug our minimal
feature set into the dynamic-programming
framework of Huang and Sagae (2010)
and Kuhlmann et al. (2011) to produce the
first implementation of worst-case O(n?)
exact decoders for arc-hybrid and arc-
eager transition systems. With our mini-
mal features, we also present O(n?) global
training methods. Finally, using ensem-
bles including our new parsers, we achieve
the best unlabeled attachment score re-
ported (to our knowledge) on the Chinese
Treebank and the ‘“‘second-best-in-class”
result on the English Penn Treebank.

1 Introduction

It used to be the case that the most accurate de-
pendency parsers made global decisions and em-
ployed exact decoding. But transition-based de-
pendency parsers (TBDPs) have recently achieved
state-of-the-art performance, despite the fact that
for efficiency reasons, they are usually trained to
make local, rather than global, decisions and the
decoding process is done approximately, rather
than exactly (Weiss et al., 2015; Dyer et al., 2015;
Andor et al., 2016). The key efficiency issue for
decoding is as follows. In order to make accurate
(local) attachment decisions, historically, TBDPs
have required a large set of features in order to ac-
cess rich information about particular positions in
the stack and buffer of the current parser configu-
ration. But consulting many positions means that
although polynomial-time exact-decoding algo-
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rithms do exist, having been introduced by Huang
and Sagae (2010) and Kuhlmann et al. (2011), un-
fortunately, they are prohibitively costly in prac-
tice, since the number of positions considered can
factor into the exponent of the running time. For
instance, Huang and Sagae employ a fairly re-
duced set of nine positions, but the worst-case run-
ning time for the exact-decoding version of their
algorithm is O(n®) (originally reported as O(n"))
for a length-n sentence. As an extreme case, Dyer
et al. (2015) use an LSTM to summarize arbitrary
information on the stack, which completely rules
out dynamic programming.

Recently, Kiperwasser and Goldberg (2016a)
and Cross and Huang (2016a) applied bi-
directional long short-term memory networks
(Graves and Schmidhuber, 2005, bi-LSTMs) to
derive feature representations for parsing, because
these networks capture wide-window contextual
information well. Collectively, these two sets of
authors demonstrated that with bi-LSTMs, four
positional features suffice for the arc-hybrid pars-
ing system (K&G), and three suffice for arc-
standard (C&H).!

Inspired by their work, we arrive at a minimal
feature set for arc-hybrid and arc-eager: it con-
tains only two positional bi-LSTM vectors, suf-
fers almost no loss in performance in comparison
to larger sets, and out-performs a single position.
(Details regarding the situation with arc-standard
can be found in §2.)

Our minimal feature set plugs into Huang and
Sagae’s and Kuhlmann et al.’s dynamic program-

'We note that K&G were not focused on minimizing posi-
tions, although they explicitly noted the implications of doing
so: “While not explored in this work, [fewer positions] re-
sults in very compact state signatures, [which is] very appeal-
ing for use in transition-based parsers that employ dynamic-
programming search” (pg. 319). C&H also noted in their
follow-up (Cross and Huang, 2016b) the possibility of future
work using dynamic programming thanks to simple features.

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 12-23
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics



ming framework to produce the first implementa-
tion of O(n?) exact decoders for arc-hybrid and
arc-eager parsers. We also enable and implement
O(n?) global training methods. Empirically, en-
sembles containing our minimal-feature, globally-
trained and exactly-decoded models produce the
best unlabeled attachment score (UAS) reported
(to our knowledge) on the Chinese Treebank and
the “second-best-in-class” result on the English
Penn Treebank.”

Additionally, we provide a slight update to
the theoretical connections previously drawn by
Go6mez-Rodriguez, Carroll, and Weir (2008, 2011)
between TBDPs and the graph-based dependency
parsing algorithms of Eisner (1996) and Eisner
and Satta (1999), including results regarding the
arc-eager parsing system.

2 A Minimal Feature Set

TBDPs incrementally process a sentence by mak-
ing transitions through search states representing
parser configurations. Three of the main transition
systems in use today (formal introduction in §3.1)
all maintain the following two data structures in
their configurations: (1) a stack of partially parsed
subtrees and (2) a buffer (mostly) of unprocessed
sentence tokens.

To featurize configurations for use in a scoring
function, it is common to have features that extract
information about the first several elements on the
stack and the buffer, such as their word forms and
part-of-speech (POS) tags. We refer to these as po-
sitional features, as each feature relates to a partic-
ular position in the stack or buffer. Typically, mil-
lions of sparse indicator features (often developed
via manual engineering) are used.

In contrast, Chen and Manning (2014) intro-
duce a feature set consisting of dense word-, POS-,
and dependency-label embeddings. While dense,
these features are for the same 18 positions that
have been typically used in prior work. Re-
cently, Kiperwasser and Goldberg (2016a) and
Cross and Huang (2016a) adopt bi-directional
LSTMs, which have nice expressiveness and
context-sensitivity properties, to reduce the num-
ber of positions considered down to four and three,

2Our ideas were subsequently adapted to the labeled set-
ting by Shi, Wu, Chen, and Cheng (2017) in their submis-
sion to the CoNLL 2017 shared task on Universal Dependen-
cies parsing. Their team achieved the second-highest labeled
attachment score in general and had the top average perfor-
mance on the surprise languages.
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Features Arc-standard Arc-hybrid Arc-eager

{s 2,”51, so, Do} 93.95:012 94.084013 93.9210.04

{ 5 1, 8 0, bo} 94. 13+0 06 94. 08+0 05 93~91i0A07

{ S 0, bo} 54 47i0 36 94 03i0 12 93~92i0-07

{ bo} 47.114+0.44 52.3940.23 79.15+0.06

Min positions Arc-standard Arc-hybrid Arc-eager
K&G 2016a - 4 -
C&H 2016a 3 - -
our work 3 2 2

Table 1: Top: English PTB dev-set UAS% for

progressively smaller sets of positional features,
for greedy parsers with different transition sys-
tems. The “double-arrow” notation indicates vec-
tors produced by a bi-directional LSTM. Internal
lines highlight large performance drop-offs when
a feature is deleted. Bottom: sizes of the minimal
feature sets in Kiperwasser and Goldberg (2016a),
Cross and Huang (2016a), and our work.

for different transition systems, respectively.

This naturally begs the question, what is the
lower limit on the number of positional features
necessary for a parser to perform well? Kiper-
wasser and Goldberg (2016a) reason that for the
arc-hybrid system, the first and second items on
the stack and the first buffer item — denoted by sg,
s1, and by, respectively — are required; they addi-
tionally include the third stack item, ss, because
it may not be adjacent to the others in the origi-
nal sentence. For arc-standard, Cross and Huang
(2016a) argue for the necessity of sg, s1, and bg.

We address the lower-limit question empiri-
cally, and find that, surprisingly, two positions
suffice for the greedy arc-eager and arc-hybrid
parsers. We also provide empirical support for
Cross and Huang’s argument for the necessity of
three features for arc-standard. In the rest of this
section, we explain our experiments, run only on
an English development set, that support this con-
clusion; the results are depicted in Table 1. We
later explore the implementation implications in
§3-4 and then fest-set parsing-accuracy in §6.

We employ the same model architecture as
Kiperwasser and Goldberg (2016a). Specifically,
we first use a bi-LSTM to encode an n-token sen-
tence, treated as a sequence of per-token concate-
nations of word- and POS- -tag. embeddlngs 1nto a

sequence of vectors [wl, .. wn] where each w;



is the output of the bi-LSTM at time step . (The
double-arrow notation for these vectors empha-
sizes the bi-directionality of their origin). Then,
for a given parser configuration, stack positions
are represented by gj, defined as Ei(sj) where
i(sj) gives the position in the sentence of the to-
ken that is the head of the tree in s;. Similarly,

buffer positions are represented by %}-, defined as

e

w;(p,) for the token at buffer position j. Finally,
as in Chen and Manning (2014), we use a multi-
layer perceptron to score possible transitions from
the given configuration, where the input is the con-
catenation of some selection of the gjs and gks.
We use greedy decoders, and train the models with
dynamic oracles (Goldberg and Nivre, 2013).

Table 1 reports the parsing accuracy that re-
sults for feature sets of size four, three, two, and
one for three commonly-used transition systems.
The data is the development section of the English
Penn Treebank (PTB), and experimental settings
are as described in our other experimental section,
§6. We see that we can go down to three or, in the
arc-hybrid and arc-eager transition systems, even
two positions with very little loss in performance,
but not further. We therefore call {50, bo} our
minimal feature set with respect to arc-hybrid and
arc-eager, and empirically confirm that Cross and
Huang’s {go, gl, 30} is minimal for arc-standard;
see Table 1 for a summary.’

3 Dynamic Programming for TBDPs

As stated in the introduction, our minimal fea-
ture set from §2 plugs into Huang and Sagae and
Kuhlmann et al.’s dynamic programming (DP)
framework. To help explain the connection, this
section provides an overview of the DP frame-
work. We draw heavily from the presentation of
Kuhlmann et al. (2011).

3.1 Three Transition Systems

Transition-based parsing (Nivre, 2008; Kiibler
et al., 2009) is an incremental parsing framework
based on transitions between parser configura-

3We tentatively conjecture that the following might ex-
plain the observed phenomena, but stress that we don’t cur-
rently see a concrete way to test the following hypothesis.

—e

With {Asko, b o}, in the arc-standard case, situations can arise
where there are multiple possible transitions with missing in-
formation. In contrast, in the arc-hybrid case, there is only
one possible transition with missing information (namely,

re, introduced in §3.1); perhaps ﬂsl is therefore not so cru-
cial for arc-hybrid in practice?
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tions. For a sentence to be parsed, the system
starts from a corresponding initial configuration,
and attempts to sequentially apply transitions un-
til a configuration corresponding to a full parse is
produced. Formally, a transition system is defined
as S = (C,T,c*,C;), where C'is a nonempty set
of configurations, eacht € T': C' — (' is a transi-
tion function between configurations, c¢® is an ini-
tialization function that maps an input sentence to
an initial configuration, and C; < C' is a set of
terminal configurations.

All systems we consider share a common tri-
partite representation for configurations: when we
write ¢ = (0,3, A) for some ¢ € C, we are re-
ferring to a stack o of partially parsed subtrees; a
buffer 5 of unprocessed tokens and, optionally, at
its beginning, a subtree with only left descendants;
and a set A of elements (h, m), each of which is
an attachment (dependency arc) with head h and
modifier m.* We write m™h to indicate that m
left-modifies h, and Am to indicate that m right-
modifies h. For a sentence w = whq, ..., w,, the
initial configuration is (o9, 5o, Ao), where oy and
Ay are empty and By = [ROOT|wy, ..., wy,]; ROOT
is a special node denoting the root of the parse
tree® (vertical bars are a notational convenience
for indicating different parts of the buffer or stack;
our convention is to depict the buffer first element
leftmost, and to depict the stack first element right-
most). All terminal configurations have an empty
buffer and a stack containing only ROOT.

Arc-Standard The arc-standard system (Nivre,
2004) is motivated by bottom-up parsing: each de-
pendent has to be complete before being attached.
The three transitions, shift (sh, move a token from
the buffer to the stack), right-reduce (re ., reduce
and attach a right modifier), and left-reduce (re—,
reduce and attach a left modifier), are defined as:

sh[(o,bo|B, A)] = (olbo, B, A)
re~[(o|s1|so, 8, A)] = (o]s1,8, A U {(s1,50)})
re—[(o]s1]s0, B, A)] = (o]s0, 8, A U {(s0,51)})

Arc-Hybrid The arc-hybrid system (Yamada
and Matsumoto, 2003; Gémez-Rodriguez et al.,
2008; Kuhlmann et al., 2011) has the same defi-
nitions of sh and re . as arc-standard, but forces

“For simplicity, we only present unlabeled parsing here.
See Shi et al. (2017) for labeled-parsing results.

3Other presentations place ROOT at the end of the buffer
or omit it entirely (Ballesteros and Nivre, 2013).



the collection of left modifiers before right modi-
fiers via its bg-modifier re. transition. This con-
trasts with arc-standard, where the attachment of
left and right modifiers can be interleaved on the
stack.

sh[(o, bo|B, A)] = (albo, B, A)
re~[(c]s1]s0, B, A)] = (os1, 8, A U {(s1,5%0)})
rek\[(0'|80,b0|5,14)] = (Gv 50\5714 v {(50,80)})

Arc-Eager In contrast to the former two sys-
tems, the arc-eager system (Nivre, 2003) makes
attachments as early as possible — even if a modi-
fier has not yet received all of its own modifiers.
This behavior is accomplished by decomposing
the right-reduce transition into two independent
transitions, one making the attachment (ra) and
one reducing the right-attached child (re).

sh[(a,b0|8, A)] = (albo, B, A)
re—[(o]s0, bo| B, A)] = (0, bo|B, A U {(bo, 50)})
(precondition: s not attached to any word)
ra[(a]s0, bol3, A)] = (lsolbo. B, A U {(s0.bo)})

re[(o]so, 8, A)] = (0,5, A)

(precondition: sy has been attached to its head)

3.2 Deduction and Dynamic Programming

Kuhlmann et al. (2011) reformulate the three tran-
sition systems just discussed as deduction systems
(Pereira and Warren, 1983; Shieber et al., 1995),
wherein transitions serve as inference rules; these
are given as the lefthand sides of the first three sub-
figures in Figure 1. For a given w = wy, ..., Wy,
assertions take the form [i, 7, k] (or, when applica-
ble, a two-index shorthand to be discussed soon),
meaning that there exists a sequence of transi-
tions that, starting from a configuration wherein
head(sg) = wj, results in an ending configura-
tion wherein head(sg) = w; and head(by) = wy.
If we define wg as ROOT and w1 as an end-
of-sentence marker, then the goal theorem can be
stated as [0,0,n + 1].

For arc-standard, we depict an assertion |4, h, k|
as a subtree whose root (head) is the token at h.
Assertions of the form [7, 4, k] play an important
role for arc-hybrid and arc-eager, and we employ
the special shorthand [7, k| for them in Figure 1.
In that figure, we also graphically depict such sit-
uations as two consecutive half-trees with roots w;
and wy, where all tokens between ¢ and k are al-
ready attached. The superscript b in an arc-eager
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assertion [4°, j] is an indicator variable for whether
w; has been attached to its head (b = 1) or not
(b = 0) after the transition sequence is applied.

Kuhlmann et al. (2011) show that all three de-
duction systems can be directly “tabularized” and
dynamic programming (DP) can be applied, such
that, ignoring for the moment the issue of incor-
porating complex features (we return to this later),
time and space needs are low-order polynomial.
Specifically, as the two-index shorthand [é, j] sug-
gests, arc-eager and arc-hybrid systems can be im-
plemented to take O(n?) space and O(n?) time;
the arc-standard system requires O(n3) space and
O(n*) time (if one applies the so-called hook trick
(Eisner and Satta, 1999)).

Since an O(n*) running time is not sufficiently
practical even in the simple-feature case, in the re-
mainder of this paper we consider only the arc-
hybrid and arc-eager systems, not arc-standard.

4 Practical Optimal Algorithms Enabled
By Our Minimal Feature Set

Until now, no one had suggested a set of positional
features that was both information-rich enough for
accurate parsing and small enough to obtain the
O(n?) running-time promised above. Fortunately,
our bi-LSTM-based { s, b} feature set qualifies,
and enables the fast optimal procedures described
in this section.

4.1 Exact Decoding

Given an input sentence, a TBDP must choose
among a potentially exponential number of cor-
responding transition sequences. We assume ac-
cess to functions f; that score individual configu-
rations, where these functions are indexed by the
transition functions ¢ € T'. For a fixed transition
sequence t = t1,%9,..., we use ¢; to denote the
configuration that results after applying ¢;.
Typically, for efficiency reasons, greedy left-to-
right decoding is employed: the next transition ¢
out of ¢;_1 is argmax; fi(c;—1), so that past and
future decisions are not taken into account. The
score F'(t) for the transition sequence is induced
by summing the relevant f,(c;—1) values.
However, our use of minimal feature sets en-
ables direct computation of an argmax over the en-
tire space of transition sequences, arg maxg F'(t),
via dynamic programming, because our positions
don’t rely on any information “outside” the deduc-
tion rule indices, thus eliminating the need for ad-
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edge-factored graph-based parsing algorithm (Eisner and Satta, 1999) discussed in §5.
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ditional state-keeping.

We show how to integrate the scoring functions
for the arc-eager system; the arc-hybrid system is
handled similarly. The score-annotated rules are
as follows:

[i°,4]: v
[5%,7+1]:0

[0, ] : o1 [i% 4] : vg
[k‘b,j] :’01+U2+A

(sh) (re—)

where A = foh (wi, w;) + fre (w;, wj) — abus-
ing notation by referring to configurations by their
features. The left-reduce rule says that we can first
take the sequence of transitions asserted by [k?, i],
which has a score of v1, and then a shift transition
moving w; from by to sg. This means that the ini-
tial condition for [i°, j] is met, so we can take the
sequence of transitions asserted by [i°, j] — say it
has score v9 — and finally a left-reduce transition
to finish composing the larger transition sequence.
Notice that the scores for sh and ra are 0, as the
scoring of these transitions is accounted for by re-
duce rules elsewhere in the sequence.

4.2 Global Training

We employ large-margin training that considers
each transition sequence globally. Formally, for a
training sentence w = wy, ..., w, with gold tran-
sition sequence t&°'9, our loss function is

max

: (F(t) + COSt(thld,t) _ F(thId)>

where cost(t8°19,t) is a custom margin for tak-
ing t instead of t&°9 — specifically, the number
of mis-attached nodes. Computing this max can
again be done efficiently with a slight modifica-
tion to the scoring of reduce transitions:

[K°,i] : v [0, 4] : vo
[k‘b,j] cvp +vg + A

(re~)

where A’ = A + 1 (head(w;) # wj). This loss-
augmented inference or cost-augmented decoding
(Taskar et al., 2005; Smith, 2011) technique has
previously been applied to graph-based parsing by
Kiperwasser and Goldberg (2016a).

Efficiency Note The computation decomposes
into two parts: scoring all feature combinations,
and using DP to find a proof for the goal theorem
in the deduction system. Time-complexity analy-
sis is usually given in terms of the latter, but the
former might have a large constant factor, such
as 10* or worse for neural-network-based scoring
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functions. As a result, in practice, with a small
n, scoring with the feature set {ZO,”IJO} (O(n?))
can be as time-consuming as the decoding steps
(O(n?)) for the arc-hybrid and arc-eager systems.

5 Theoretical Connections

Our minimal feature set brings implementation of
practical optimal algorithms to TBDPs, whereas
previously only graph-based dependency parsers
(GBDPs) — aradically different, non-incremental
paradigm — enjoyed the ability to deploy them.
Interestingly, for both the transition- and graph-
based paradigms, the optimal algorithms build de-
pendency trees bottom-up from local structures. It
is thus natural to wonder if there are deeper, more
formal connections between the two.

In previous work, Kuhlmann et al. (2011) re-
lated the arc-standard system to the classic CKY
algorithm (Cocke, 1969; Kasami, 1965; Younger,
1967) in a manner clearly suggested by Figure 1a;
CKY can be viewed as a very simple graph-based
approach. Goémez-Rodriguez et al. (2008, 2011)
formally prove that sequences of steps in the edge-
factored GBDP (Eisner, 1996) can be used to em-
ulate any individual step in the arc-hybrid system
(Yamada and Matsumoto, 2003) and the Eisner
and Satta (1999, Figure 1d) version. However,
they did not draw an explicitly direct connection
between Eisner and Satta (1999) and TBDPs.

Here, we provide an update to these previous
findings, stated in terms of the expressiveness of
scoring functions, considered as parameterization.

For the edge-factored GBDP, we write the score
for an edge as fc(/, m), where h is the head and
m the modifier. A tree’s score is the sum of its
edge scores. We say that a parameterized depen-
dency parsing model A contains model B if for ev-
ery instance of parameterization in model B, there
exists an instance of model A such that the two
models assign the same score to every parse tree.
We claim:

Lemma 1. The arc-eager model presented in §4.1
contains the edge-factored model.

Proof Sketch. Consider a given edge-factored
GBDP parameterized by fs. For any parse tree,
every edge ¢ j involves two deduction rules, and
their contribution to the score of the final proof is
fshWi,w;) + fre (wi, w;). We set fop(wg,w;) =
0 and fre. (ws,w;) = fg(w;,w;). Similarly,
for edges k¢ in the other direction, we set



Model Trainin Features PTB CTB
£ UAS (%) UEM (%) ‘ UAS (%) UEM (%)
Arc-standard Local {?2748&17?0,?;0} ‘ 93.9540.12 92.2940.66 ‘ 88.01409.26 36.87+053
Local {gg,asl,asko,abko} 93.8910.10 90.8240.75 87.8740.17 35474048
Arc-hybrid Local {50, bo} 93.80+0.12 49.66+043 | 87.784+0.09 35.09+0.40
Global {4‘;07?;0} 94.43i0.08 53-03i0.71 88.38i0.11 36'59i0.27
Local {?2, s1, S0, _'bho} 93.8040.12 49.6640.43 874910920 33.1540.72
Arc-eager Local {50, bo} 93.77+0.08 49.711024 | 87.333011 34171041
Global {50, bo} 94.53.10.05 53.77+046 | 88.624009 37.751087
Edge-factored  Global (b, m} | 94.5010.13 53.861075 | 88251012 36.4210.5

Table 2: Test set performance for different training regimes and feature sets. The models use the same
decoders for testing and training. For each setting, the average and standard deviation across 5 runs with
different random initializations are reported. Boldface: best (averaged) result per dataset/measure.

fra(wigwi) = fo(wg,wi) and fre(w;, w;) = 0.
The parameterization we arrive at emulates ex-
actly the scoring model of f. 0

We further claim that the arc-eager model is
more expressive than not only the edge-factored
GBDP, but also the arc-hybrid model in our paper.

Lemma 2. The arc-eager model contains the arc-
hybrid model.

Proof Sketch. We leverage the fact that the arc-
eager model divides the sh transition in the arc-
hybrid model into two separate transitions, sh and
ra. When we constrain the parameters fg, = fra in
the arc-eager model, the model hypothesis space
becomes exactly the same as arc-hybrid’s. O

The extra expressiveness of the arc-eager model
comes from the scoring functions fg, and fre
that capture structural contexts other than head-
modifier relations. Unlike traditional higher-order
graph-based parsing that directly models relations
such as siblinghood (McDonald and Pereira, 2006)
or grandparenthood (Carreras, 2007), however, the
arguments in those two functions do not have any
fixed type of structural interactions.

6 Experiments

Data and Evaluation We experimented with
English and Chinese. For English, we used the
Stanford Dependencies (de Marneffe and Man-
ning, 2008) conversion (via the Stanford parser
3.3.0) of the Penn Treebank (Marcus et al., 1993,
PTB). As is standard, we used §2-21 of the Wall
Street Journal for training, §22 for development,
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and §23 for testing; POS tags were predicted using
10-way jackknifing with the Stanford max entropy
tagger (Toutanova et al., 2003). For Chinese, we
used the Penn Chinese Treebank 5.1 (Xue et al.,
2002, CTB), with the same splits and head-finding
rules for conversion to dependencies as Zhang
and Clark (2008). We adopted the CTB’s gold-
standard tokenization and POS tags. We report
unlabeled attachment score (UAS) and sentence-
level unlabeled exact match (UEM). Following
prior work, all punctuation is excluded from eval-
uation. For each model, we initialized the network
parameters with 5 different random seeds and re-
port performance average and standard deviation.

Implementation Details Our model structures
reproduce those of Kiperwasser and Goldberg
(2016a). We use 2-layer bi-directional LSTMs
with 256 hidden cell units. Inputs are concatena-
tions of 28-dimensional randomly-initialized part-
of-speech embeddings and 100-dimensional word
vectors initialized from GloVe vectors (Penning-
ton et al., 2014) (English) and pre-trained skip-
gram-model vectors (Mikolov et al., 2013) (Chi-
nese). The concatenation of the bi-LSTM feature
vectors is passed through a multi-layer perceptron
(MLP) with 1 hidden layer which has 256 hid-
den units and activation function tanh. We set the
dropout rate for the bi-LSTM (Gal and Ghahra-
mani, 2016) and MLP (Srivastava et al., 2014) for
each model according to development-set perfor-
mance.’ All parameters except the word embed-

®For bi-LSTM input and recurrent connections, we con-
sider dropout rates in {0., 0.2}, and for MLP, {0.,0.4}.
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94.26 and 94.61 on PTB with beam search, but did not report CTB results, and are therefore omitted.

dings are initialized uniformly (Glorot and Ben-
gio, 2010). Approximately 1,000 tokens form a
mini-batch for sub-gradient computation. We train
each model for 20 epochs and perform model se-
lection based on development UAS. The proposed
structured loss function is optimized via Adam
(Kingma and Ba, 2015). The neural network com-
putation is based on the python interface to DyNet
(Neubig et al., 2017), and the exact decoding al-
gorithms are implemented in Cython.”

Main Results We implement exact decoders for
the arc-hybrid and arc-eager systems, and present
the test performance of different model configu-
rations in Table 2, comparing global models with
local models. All models use the same decoder
for testing as during the training process. Though
no global decoder for the arc-standard system has
been explored in this paper, its local models are
listed for comparison. We also include an edge-
factored graph-based model, which is convention-
ally trained globally. The edge-factored model
scores bi-LSTM features for each head-modifier
pair; a maximum spanning tree algorithm is used
to find the tree with the highest sum of edge
scores. For this model, we use Dozat and Man-

"See nttps://github.com/tzshi/dp-parser-emnlpl?.
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ning’s (2017) biaffine scoring model, although in
our case the model size is smaller.®

Analogously to the dev-set results given in §2,
on the test data, the minimal feature sets perform
as well as larger ones in locally-trained models.
And there exists a clear trend of global models out-
performing local models for the two different tran-
sition systems on both datasets. This illustrates the
effectiveness of exact decoding and global train-
ing. Of the three types of global models, the arc-
eager arguably has the edge, an empirical finding
resonating with our theoretical comparison of their
model expressiveness.

Comparison with State-of-the-Art Models
Figure 2 compares our algorithms’ results with
those of the state-of-the-art.” Our models are
competitive and an ensemble of 15 globally-
trained models (5 models each for arc-eager DP,
arc-hybrid DP and edge-factored) achieves 95.33
and 90.22 on PTB and CTB, respectively, reach-

8The same architecture and model size as other transition-
based global models is used for fair comparison.

"We exclude Choe and Charniak (2016), Kuncoro et al.
(2017) and Liu and Zhang (2017), which convert constituent-
based parses to dependency parses. They produce higher PTB
UAS, but access more training information and do not di-
rectly apply to datasets without constituency annotation.



ing the highest reported UAS on the CTB dataset,
and the second highest reported on the PTB
dataset among dependency-based approaches.

7 Related Work Not Yet Mentioned

Approximate Optimal Decoding/Training Be-
sides dynamic programming (Huang and Sagae,
2010; Kuhlmann et al., 2011), various other ap-
proaches have been proposed for approaching
global training and exact decoding. Best-first
and A* search (Klein and Manning, 2003; Sagae
and Lavie, 2006; Sagae and Tsujii, 2007; Zhao
et al., 2013; Thang et al., 2015; Lee et al., 2016)
give optimality certificates when solutions are
found, but have the same worst-case time com-
plexity as the original search framework. Other
common approaches to search a larger space at
training or test time include beam search (Zhang
and Clark, 2011), dynamic oracles (Goldberg and
Nivre, 2012, 2013; Cross and Huang, 2016b) and
error states (Vaswani and Sagae, 2016). Beam
search records the k best-scoring transition pre-
fixes to delay local hard decisions, while the lat-
ter two leverage configurations deviating from the
gold transition path during training to better simu-
late the test-time environment.

Neural Parsing Neural-network-based models
are widely used in state-of-the-art dependency
parsers (Henderson, 2003, 2004; Chen and Man-
ning, 2014; Weiss et al., 2015; Andor et al., 2016;
Dozat and Manning, 2017) because of their ex-
pressive representation power. Recently, Stern
et al. (2017) have proposed minimal span-based
features for constituency parsing.

Recurrent and recursive neural networks can be
used to build representations that encode complete
configuration information or the entire parse tree
(Le and Zuidema, 2014; Dyer et al., 2015; Kiper-
wasser and Goldberg, 2016b), but these models
cannot be readily combined with DP approaches,
because their state spaces cannot be merged into
smaller sets and thus remain exponentially large.

8 Concluding Remarks
In this paper, we have shown the following.

e The bi-LSTM-powered feature set { s, bo}
is minimal yet highly effective for arc-hybrid
and arc-eager transition-based parsing.

e Since DP algorithms for exact decoding
(Huang and Sagae, 2010; Kuhlmann et al.,
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2011) have a run-time dependence on the
number of positional features, using our mere
two effective positional features results in a
running time of O(n3), feasible for practice.

Combining exact decoding with global train-
ing — which is also enabled by our minimal
feature set — with an ensemble of parsers
achieves 90.22 UAS on the Chinese Treebank
and 95.33 UAS on the Penn Treebank: these
are, to our knowledge, the best and second-
best results to date on these data sets among
“purely” dependency-based approaches.

There are many directions for further explo-
ration. Two possibilities are to create even better
training methods, and to find some way to extend
our run-time improvements to other transition sys-
tems. It would also be interesting to further in-
vestigate relationships between graph-based and
dependency-based parsing. In §5 we have men-
tioned important earlier work in this regard, and
provided an update to those formal findings.

In our work, we have brought exact decoding,
which was formerly the province solely of graph-
based parsing, to the transition-based paradigm.
We hope that the future will bring more inspira-
tion from an integration of the two perspectives.
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Abstract

We propose a new Maximum Subgraph
algorithm for first-order parsing to 1-
endpoint-crossing, pagenumber-2 graphs.
Our algorithm has two characteristics: (1)
it separates the construction for noncross-
ing edges and crossing edges; (2) in a
single construction step, whether to cre-
ate a new arc is deterministic. These two
characteristics make our algorithm rela-
tively easy to be extended to incorpo-
riate crossing-sensitive second-order fea-
tures. We then introduce a new algorithm
for quasi-second-order parsing. Experi-
ments demonstrate that second-order fea-
tures are helpful for Maximum Subgraph
parsing.

1 Introduction

Previous work showed that treating semantic de-
pendency parsing as the search for Maximum Sub-
graphs is not only elegant in theory but also ef-
fective in practice (Kuhlmann and Jonsson, 2015;
Cao et al., 2017). In particular, our previous work
showed that 1-endpoint-crossing, pagenumber-2
(1Ec/P2) graphs are an appropriate graph class for
modelling semantic dependency structures (Cao
et al., 2017). On the one hand, it is highly expres-
sive to cover a majority of semantic analysis. On
the other hand, the corresponding Maximum Sub-
graph problem with an arc-factored disambigua-
tion model can be solved in low-degree polyno-
mial time.

Defining disambiguation models on wider con-
texts than individual bi-lexical dependencies im-
proves various syntactic parsers in different ar-
chitectures. This paper studies exact algorithms
for second-order parsing for 1EC/P2 graphs. The
existing algorithm, viz. our previous algorithm
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(GCHSW, hereafter), has two properties that make
it hard to incorporate higher-order features in a
principled way. First, GCHSW does not explicitly
consider the construction of noncrossing arcs. We
will show that incorporiating higher-order factors
containing crossing arcs without increasing time
and space complexity is extremely hard. An effec-
tive strategy is to only include higher-order factors
containing only noncrossing arcs (Pitler, 2014).
But this crossing-sensitive strategy is incompat-
ible with GCHSW. Second, all existing higher-
order parsing algorithms for projective trees, in-
cluding (McDonald and Pereira, 2006; Carreras,
2007; Koo and Collins, 2010), require that which
arcs are created in a construction step be deter-
ministic. This design is also incompatible with
GCHSW. In summary, it is not convenient to ex-
tend GCHSW to incorporate higher-order features
while keeping the same time complexity.

In this paper, we introduce an alternative Max-
imum Subgraph algorithm for first-order parsing
to 1EC/P2 graphs. while keeping the same time
and space complexity to GCHSW, our new algo-
rithm has two characteristics that make it rela-
tively easy to be extended to incorporate crossing-
sensitive, second-order features: (1) it separates
the construction for noncrossing edges and pos-
sible crossing edges; (2) whether an edge is cre-
ated is deterministic in each construction rule. We
then introduce a new algorithm to perform second-
order parsing. When all second-order scores are
greater than or equal to 0, it exactly solves the cor-
responding optimization problem.

We implement a practical parser with a sta-
tistical disambiguation model and evaluate it on
four data sets: those used in SemEval 2014
Task 8 (Oepen et al., 2014), and the dependency
graphs extracted from CCGbank (Hockenmaier
and Steedman, 2007). On all data sets, we find
that our second-order parsing models are more ac-
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curate than the first-order baseline. If we do not
use features derived from syntactic trees, we get
an absolute unlabeled F-score improvement of 1.3
on average. When syntactic analysis is used, we
get an improvement of 0.4 on average.

2 Preliminaries

2.1

Semantic dependency parsing can be formulated
as the search for Maximum Subgraph for graph
class G: Given a graph G = (V, A), find a subset
A’ C A with maximum total score such that the
induced subgraph G’ = (V, A’) belongs to G. For-
mally, we have the following optimization prob-
lem:

Maximum Subgraph Parsing

ar max

8 oreda) pé* (5 2)

G(s, G) denotes the set of all graphs that belong to
G and are compatible with s and GG. G is usually
a complete digraph. spa(s, p) evaluates the event
that part p (from a candidate graph G*) is good.
We define the order of p according to the num-
ber of arcs it contains, in analogy with tree parsing
in terminology. Previous work only discussed the
first-order case:

>

deARC(G*)

arg max

G*€G(G) Sare()
If G is the set of noncrossing or 1EC/P2 graphs,
the above optimization problem can be solved in
cubic-time (Kuhlmann and Jonsson, 2015) and
quintic-time (Cao et al., 2017) respectively. Fur-
thermore, ignoring one linguistically-rare struc-
ture in 1EC/P2 graphs descreases the complexity
to O(n*). This paper is concerned with second-
order parsing, with a special focus on the follow-
ing factorizations:

TN AN

And the objective function turns to be:

Z Sarc(d) + Z SSib(S)

deARc(G*) seSIB(G*)

Sun et al. (2017) introduced a dynamic program-
ming algorithm for second-order planar parsing.
Their empirical evaluation showed that second-
order features are effective to improve parsing ac-
curacy. It is still unknown how to incorporate such
features for 1EC/P2 parsing.
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Figure 1: e(q)’s crossing edges e, gy and ey ()

share an endpoint b.

Page 1

Figure 2: A pagenumber-2 graph. The upper and
the lower figures represent two half-planes respec-
tively.

2.2 1-Endpoint-Crossing, Pagenumber-2
Graphs

The formal description of the 1-endpoint-crossing
property is adopted from (Pitler et al., 2013).

Definition 1. Edges e; and es cross if e; and es
have distinct endpoints and exactly one of the end-
points of e lies between the endpoints of es.

Definition 2. A dependency graph is 1-Endpoint-
Crossing if for any edge e, all edges that cross e
share an endpoint p named pencil point.

Given a sentence s = wowj - - - wy—1 of length
n, the vertices, i.e. words, are indexed with inte-
gers, an arc from w; to w; as a(; j), and the com-
mon endpoint, namely pencil point, of all edges
crossed with ag; j) or a(; ;) as pt(i, j). We denote
an edge as e(; j), if we do not consider its direction.
Figure 1 is an example.

Definition 3. A pagenumber-k graph means it
consists at most k half-planes, and arcs on each
half-plane are noncrossing.

These half-planes may be thought of as the
pages of a book, with the vertex line correspond-
ing to the books spine, and the embedding of a
graph into such a structure is known as a book em-
bedding. Figure 2 is an example.

(Pitler et al., 2013) proved that 1-endpoint-
crossing trees are a subclass of graphs whose pa-
genumber is at most 2. In Cao et al. (2017),
we studied graphs that are constrained to be both
1-endpoint-crossing and pagenumber-2. In this
paper, we ignored a complex and linguistic-rare

Figure 3: C structure has two crossing chains.



Figure 4: A prototype backbone of 1EC/P2 graphs.
To decompose this structure, GCHSW focuses on
e(,j) and e( ), because these two edges can be
optionally created without violation of both 1EC
and P2 restrictions. Our algorithm focuses on the
existence of e(; 1), and makes it the only edge that
is constructed by applying a corresponding rule.

structure and studied a subset of 1EC/P2 graphs.
The complex structure is named as C structures in
our previous paper, and Figure 3 is the prototype
of C structures. In this paper, we present new algo-
rithms for finding optimal 1EC/P2, C-free graphs.

2.3 The GCHSWAIgorithm

Cao et al. (2017) designed a polynomial time
Maximum Subgraph algorithm, viz. GCHSW, for
1EC/P2 graphs by exploring the following prop-
erty: Every subgraph of a 1EC/P2 graph is also a
1EC/P2 graph. GCHSW defines a number of proto-
type backbones for decomposing a 1EC/P2 graph
in a principled way. In each decomposition step,
GCHSW focuses on the edges that can be created
without violating either the 1EC nor P2 restriction.
Sometimes, multiple edges can be created simulta-
neously in one single step. Figure 4 is an example.

There is an important difference between
GCHSW and FEisner-style Maximum Spanning
Tree algorithms (MST; Eisner, 1996; McDonald
and Pereira, 2006; Koo and Collins, 2010). In
each construction step, GCHSW allows multiple
arcs to be constructed, but whether or not such
arcs are added to the target graph depends on their
arc-weights. If all arcs are assigned scores that
are greater than 0, the output of our algorithm in-
cludes the most complicated 1EC/P2 graphs. For
the higher-order MST algorithms, in a single con-
struction step, it is clear whether adding a new arc,
and which one. There is no local search. This de-
terministic strategy is also followed by Kuhlmann
and Jonsson’s Maximum Subgraph algorithm for
noncrossing graphs. Higher-order MST models
associate higher-order score functions with the
construction of individual dependencies. There-
fore the deterministic strategy is a prerequisite to
incorporate higher-order features. The design of
GCHSW is incompatible with this strategy.
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Figure 5: A typical structure of crossing arcs.

2.4 Challenge of Second-Order Decoding

It is very difficult to enumerate all high-order fea-
tures for crossing arcs. Figure 5 illustrates the
idea. There is a pair of corssing arcs, Viz. e )
and e(; ;). The key strategy to develop a dynamic
programming algorithm to generate such crossing
structure is to treat parts of this structures as inter-
vals/spans together with an external vertex (Pitler
etal., 2013; Cao et al., 2017). Without loss of gen-
erality, we assume [z, j| makes up such an interval
and z is the corresponding external vertex. When
we consider e(; ;, its neighboring edges can be
€(ir;) and eq, 5, and therefore we need to con-
sider searching the best positions of both r; and [;.
Because we have already taken into account three
vertices, viz. x, ¢ and 7, the two new positions
increase the time complexity to be at least quintic.

Now consider e(, ). When we decompose the
whole graph into inverval [i, j] plus x and remain-
ing part, we will factor out e(, 1 in a successive
decomposition for resolving [i, j] plus . We can-
not capture the second features associated to e, )
and e(, ,.,), because they are in different intervals,
and when these intervals are combined, we have
already hidden the position information of k. Ex-
plicitly encoding k increases the time complexity
to be at least quintic too.

Pitler (2014) showed that it is still possible to
build accurate tree parsers by considering only
higher-order features of noncrossing arcs. This is
in part because only a tiny fraction of neighbor-
ing arcs involve crossing arcs. However, this strat-
egy is not easy to by applied to GCHSW, because
GCHSW does not explicitly analyze sub-graphs of
noncrossing arcs.

3 A New Maximum Subgraph Algorithm

Based on the discussion of Section 2.3 and 2.4,
we can see that it is not easy to extend the existing
algorithm, viz. GCHSW, to handle second-order
features. In this paper, we propose an alternative
first-order dynamic programming algorithm. Be-
cause ignoring one linguistically-rare structure as-
sociated with the C problem in GCHSW descreases
the complexity, we exclude this structure in our al-
gorithm. Formally, we introduce a new algorithm
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Figure 7: A dynamic program to find optimal 1EC/P2, C-free graphs with arc-factored weights.

to solve the following optimization problem: [, 7], pt(x,p) = i or j. LRI, j, x| implies

the existence of €(i,5)> but does not contain

arg max > sue(d) ¢(j). When LR[i,j ] is combined with

dEARC(G*) other DP sub-structures, e(; ;) is immediately

where G means 1EC/P2, C-free graphs. Our algo- created. LR][i, j, ] disallows neither e g ;)
rithm has the same time and space complexity to 0T €(z,j)-

the degenerated version of GCHSW. We represent N

. . _ N|i, j, x| represents an interval from 7 to j
our algorithm using undirected graphs.

inclusively and an external vertex x. Vp €
3.1 Sub-problems (2, ], pt(z,p) & [i,j]. NI[i,j,x] could con-
tain e(; jy but disallows e(, ;). We distinguish
two sub-types. Npli, j, z] may or may not
contain e(, ;). Ncl[i,j, z] implies the exis-
tence of but does not contain e(, ;). When
Nli,j,z] is combined with others, e, ;y is
immediately created.

Following GCHSW, we consider five sub-problems
when we construct a maximum dependency graph
on a given interval [i,k]. Though the sub-
problems introduced by GCHSW and us handle
similar structures, their definitions are quite differ-
ent. The sub-problems are explained as follows:

L L[i,j,x] represents an interval from i to j
inclusively as well as an external vertex x.
Vp € [i, j], pt(x,p) = i. Lli, j, x] could con-
tain e(; ;) but disallows e, ;). We distinguish
sub-two types for L. Lo[i, j, ] may or may
not contain e(, ;). L¢li, j, z] implies the ex-

Int Int[i, j] represents an interval from i to j in-
clusively. And there is no edge e(; ;) such
that ¢’ € [i,j] and j' ¢ [i, j]. We distinguish
two sub-types for Int. Intp[i, j| may or may
not contain e(; ;y, while Intc[i, j] contains

€(i.7)-

(@9) istence of but does not contain e(, ;). When

LR LR][i,j,z] represents an interval from i to j it is combined with others, e, ;) is immedi-
inclusively and an external vertex x. Vp € ately created.
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R RJi, j, x] represents an interval from ¢ to j
inclusively as well as an external vertex z.
Vp € [i,j],pt(x,p) = j. RJi,j,x] disal-
lows e, ;) and e, ;. We distinguish two
sub-types for R. Rp[i, j, ] may or may not
contain e(; ;. Rcl[i,j, ] implies the exis-
tence of but does not contain e(; ;. When it
is combined with others, e(; ;) is immediately
created.

z?])

3.2 Decomposing Sub-problems

Figure 7 gives a sketch of our dynamic program-
ming algorithm. We give a detailed illustration for
Int, a rough idea for L and LR, and omit other
sub-problems. More details about the whole algo-
rithm can be found in the supplementary note.

3.2.1 Decomposing an Int Sub-problem

Consider Intoli,j| and Intc[i, j] sub-problem.
Because the decomposition for Intc[i, j] is very
similar to Intoli,j] and needs to be modified
by our second-order parsing algorithm, we only
show the decomposition of Intcl[i, j]. Assume
that k(k € (i,7)) is the farthest vertex that is ad-
jacent to i, and x = pt(i, k). If there is no such
k (i.e. there no arc from ¢ to some other node in
this interval), then we denote k as (). So it is to z.
We illustrate different cases as following and give
a graphical representation in Figure 8.

Casea: k = (). We can directly consider interval
[i + 1,7]. Because there is no edge from i to any
node in [i + 1, 7], [¢ + 1, j] is an Intg.

Caseb: x = (). 2 = () means that €(i,k) does not
cross other arcs. So [i, k] and [k, j] are Int.

Case c: x € (k,j]. e is taken as a possible
crossing edge. k and x divide the interval [z, j] into
three parts: [i, k], [k, ], [z, j|. Because x may be
Jj, interval [z, j| may only contain j and become
an empty interval. We define 2’ as the pencil point
of all edges from (i, k) to x, and distinguish two
sub-problems as follows.

c.1 Assume that there exists an edge from k to
some node r in (z, j], so 2’ can only be k and
pencil point of edges from k to (z,j] is x.
Thus interval [i, k, ] is an R. Due to the exis-
tence of e; 1y, its sub-type is Rc. The e(; 1) is
created in this construction and thus not con-
tained by Rc[i, k,x]. An edge from within
[k, x] to outside violates the 1EC restriction,
so [k, x] is an Int. Since x is endpoint of edge

from k to [z, ], interval [k, j] is an Lo with
external vertex k.

c.2 We assume no edge from & to any node in
[z, 7], ' thus can be i or k. As a result, [x, j]
is an Int and [i, k, z] is an LR.

Cased: z € (i, k).

d.1 Assume that there exist edges from 7 to
(x, k), so the pencil point of edges from x to
(k, j] is i. Therefore [k, j] is an N. Because x
is pencil point of edges from i to (x, k], [z, k]
is an L. Furthmore, it is an L¢ because we
generate e(; 1 in this step. It is obvious that
i, x] is an Int.

d.2 Assume that there exists edges from £ to
(7,x), and the pencil point of edges from
x to (k,j] is thus k. Similar to the above
analysis, we reach Ro[i, z, k| + Into|x, k] +
Lolk, j, @] + ey + €

For Intoli, j], because there may be e(; ;), we
add one more rule: Intpli,j| = Intc[i, j]. And
we do not need to create e(; ;) in all cases.

3.2.2 Decomposing an L. Sub-problem

Without loss of generality, we show the decompo-
sition of Lo |[i, 7, x] as follows. For L¢|i, j, x|, we
ignore Case b but follow the others.

Case a. If there is no more edge from z to (4, j],
then it will degenerate to Intoli, j].

Case b. If there exists e(, ;), then it will degen-
erate to L¢[i, j, ] + €(y 5)-

Case c¢. Assume that there are edges from z to
(4,7) and e(, 1 is the farthest one. It divides [i, j]
into [¢, k] and [k, j].

c.1 If there is an edge from z to (i, k), [i, k] and
[k, j] are L¢o[i, k, z] and Nolk, j, i].

c.2 If there is no edge from x to (¢, k), [i, k] and
[k, j] are Intoli, k] and Lolk, j, i].

Figure 8 is a graphical representation.

3.2.3 Decomposing an LR Sub-problem

LRJi, j, x] means i or j is the pencil point of edges
from x to (i,7). We show the decomposition of
LRJi, j, x] as follows:
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Figure 9: Decomposition for Lo|[i, j, z].
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Figure 11: a3 = j. Both e, 3,) and e(; 3.,) exist.

Case a. If there is a vertex k within (7, j), which
divides [, ] into [é, k] and [k, j]. And it guaran-
tees no edge from [i, k) to (k,j]. i is the pencil
point of edges from z to (¢, k] because no edge
from j to (i, k) can cross these edges. Similarly j
has to be the pencil point of edges from x to (k, 7).
Obviously, [i, k] is an Lo and [k, j] is an Rp with
external x. Thus the problem is decomposed as
Loli, k,x] + Rolk, j, z|.

Case b. If there is no such vertex k, there must
be edges from [i, k') to (K, j] for every k' in (3, j)
without considering e; ;). For i 4+ 1, we assume
€(i,a;) 18 the farthest edge that goes from i. For
ai, we assume e, 3,y is the farthest edge from
b, where by is in (,a1) and be is in (a1, j). For
bg, We assume €(q, q,) is the farthest edge from
a; where ag is in (bg,j) and a; is the pencil
point. We then get the series {a1, a2, as...a, } and
{b1, ba...by, } which guarantees b; < a; , a; < b1
and max(an, by,) = j.

If b, = j, we will get a graph like Figure 10. If
€(z,by) €Xists, this LR subproblem degenerates to
an L subproblem. If e, 4, exists, this subprob-
lem degenerates to an R subproblem.

If a;, = 7, we will get a graph like Figure 11.
If there exists only e, 4, O €(4,,), We can solve
it like b,, = j. If both exist, this is a typical C-
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structure like Figure 3 and we cannot get it through
other decompostion.

The above discussion gives the rough idea of the
correctness of the following conclusion.

Theorem 1. Our new algorithm is sound and
complete with respect to 1EC/P2, C-free graphs.

3.3 Spurious Ambiguity

An LR, L, R or N sub-problem allows to build
crossing arcs, but does not necessarily create
crossing arcs. For example, L¢[i,j, 2] allows
e ) to cross with e, (y € (4,5)). Be-
cause every subgraph of a 1EC/P2 graph is also
a 1EC/P2 graph, we allow an L¢[i, j, z] to be di-
rectly degenerated to Ip[i, j]. In this way, we can
make sure that all subgraphs can be constructed
by our algorithm. Figure 12 shows the rough idea.
To generate the same graph, we have different
derivations. The spurious ambiguity in our algo-
rithm does not affect the correctness of first-order
parsing, because scores are assigned to individ-
ual dependencies, rather than derivation processes.
There is no need to distinguish one special deriva-
tion here.

4 Quasi-Second-Order Extension

We propose a second-order extension of our new
algorithm. We focus on factorizations introduced
in Section 2.1. Especially, the two arcs in a fac-
tor should not cross other arcs. Formally, we in-
troduce a new algorithm to solve the optimization
problem with the following objective:

Z Sarc(d) + Z max(ssib(s),0)
deARc(G*) seSIB(G*)

In the first-order algorithm, all noncrossing edges
can be constructed as the frontier edge of an Intc.



° °
b d
Figure 12: Illustration of spurious ambiguity. The
two solid curves represent two arcs in the target
graph, but not the dashed one. Excluding crossing
edges leads to the first derivation: Intc|a,e] =
€(ae) T Intcla,c] + Intolc,e] + e@qe). As-
suming that a pair of crossing arcs may exist
yields another derivation: Intcla,e] = e(qe) +
LR[a,c,d] + Intolk,d] + Lold,e,c] + e(q,);
Then LR[a,c,d] = Lola,b,d] + Rolb,c,d] =
Intola,b] + Intolb, c].

So we can develop an exact decoding algorithm by
modifying the composition for Intc while keeping
intact the decomposition for LR, N, L, R.

4.1 New Decomposition for Inic

In order to capture the second-order features from
noncrossing neighbors, we need to find the right-
most node adjacent to ¢, denoted as r;, and the
leftmost node adjacent to j, denoted as /;,while
i <1 <1lj < j. Todo this, we split Intc[i, j]
into at most three parts to capture the sibling fac-
tors. Denote the score of adjacent edges e(; ;)
and e(; ;,) as s2(i,71,72). When j is the inner
most node adjacent to ¢, we denote the score as
s2(i, 0, 7). We give a sketch of the decomposition
in Figure 14 and a graphical representation in Fig-
ure 13. The following is a rough illustration.

Case a: r; = (). We further distinguish three
sub-problems:

al If l; = (@ too, both sides are the inner most
second-order factor.

a.2 There is a crossing arc from j. This case is
handled in the same way as the first-order al-
gorithm.

a3 l; # (. We introduce a new decomposition
rule.

Case b: There is a crossing arc from <.
b.1 I; = (. Similar case to (a.2).

b.2 There is a crossing arc from j. Similar case
to (a.2).

b.3 There is a noncrossing arc from j. We intro-
duce a new rule to calculate STB(j,;,1).
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Case c: There is a noncrossing arc from <.
c.1 I; = (. Similar to (a.3).

c.2 There is a crossing arc from j. Similar to
(b.3).

¢.3 There is a noncrossing arc from j too. We
introduce a new rule to calculate S1B (i, 7;, j)
and SI1B(j, 15, 1).

4.2 Complexity

The complexity of both first- and second-order al-
gorithms can be analyzed in the same way. The
sub-problem Int is of size O(n?), with a calculat-
ing time of order O(n?) at most. For sub-problems
L, R, LR, and N, each has O(n?) elements, with
a unit calculating time O(n). Therefore both algo-
rithms run in time of O(n*) with a space require-
ment of O(n?3).

4.3 Discussion

A second-order model takes as
the objective  function > gy Ssin(s)-
Our model instead tries to optimize
2 sesip(G) Max(ssiv(s), 0). This model is
somehow inadequate given that the second-order
score function cannot penalize a bad factor. When
a negative score is assigned to a second-order

factor, it will be taken as 0 by our algorithm.

traditional

This inadequacy is due to the spurious am-
biguity problem that is illustrated in Section
3.3. Take the two derivations in Figure 12
for example. The derivation that starts from
Intcla, e] = Intcla,c]+ Into[c, e] incorporates
the second-order score sgp(a,c,e). This is dif-
ferent when we consider the derivation that starts
from Intcla,e] = LRla,c,d] + Intolk,d] +
Lold,e,c]. Because we assume temporarily
that e(,) crosses others, we do not consider
ssib(a, ¢,e). We can see from this example that
second-order scores not only depend on the de-
rived graphs but also sensitive to the derivation
processes.

If a second-order score is greater than 0, our al-
gorithm selects the derivation that takes it into ac-
count since it increases the total score. If a second-
order score is negative, our algorithm avoids in-
cluding it by selecting other paths. In other words,
our algorithm treats this score as 0.
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Figure 13: Decomposition for Intc|i, j] in the second-order parsing algorithm.

Intc(iy7) < Sarc(?,j) + max

Into(i+ 1,7 — 1) +sa(i,0,7) + sa(5,0,)
Into(i+1,7) + s (i, 0, )
Into(i+ 1,1;) + Intc(l, §) + ssv (i, 0, )+

Ssib (4, 155 %)
Into(i,j — 1) + ssin(4, 0, 4)
Into(i,1;) + Intc(l;, 5) + sain(J, 15, 1)
Intc(i,ri) + Into[n-,j — 1] + san (4, i, 5)+

ssib (4, 0, )

7;) + Into(rs, j] + ssin(i, 74, 5)
Ti) + [nto[n, lj] + Intc(lj,j)-i-

Ssib (4, T, ) + Ssiv (7, Ly, 8)
Rc(i,k,x) + Into(k,x) + Lo(z, j, k) + e,r)
LR(i, k,x) + Into(k,x) + Into(x, j, k) + e,k
Intoli, z] + Loz, k.4 + Nolk, j, x| + e,
RO [7’7 x, k] + I?’Lto [:177 k] + Lo[k7j7 I} + e(i,k)

Intc(i,
]ntc(i,

Figure 14: Decomposition for Intc[i, j, z].

5 Practical Parsing

5.1 Derivation-Sensitive Training

We extend our quartic-time parsing algorithm into
a practical parser. In the context of data-driven
parsing, this requires an extra disambiguation
model. As with many other parsers, we employ
a global linear model. Following Zhang et al.
(2016)’s experience, we define rich features ex-
tracted from word, POS-tags and pseudo trees. To
estimate parameters, we utilize the averaged per-
ceptron algorithm (Collins, 2002).

Our training proceudre is sensitive to derivation
rather then derived graphs. For each sentence, we
first apply our algorithm to find the optimal pre-
diction derivation. The we collect all first- and
second-order factors from this derivation to update
parameters. To train a first-order model, because
our algorithm includes all factors, viz. depen-
cies, there is no difference between our derivation-
based method and a traditional derived structure-
based method. For the second-order model, our
method increases the second-order scores some-
how.
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5.2 Data and Preprocessing

We evaluate first- and second-order models
on four representative data sets: CCGBank
(Hockenmaier and Steedman, 2007), DeepBank
(Flickinger et al., 2012), Enju HPSGBank (Miyao
et al., 2005) and Prague Dependency TreeBank
(Hajic et al., 2012). We use “standard” training,
validation, and test splits to facilitate comparisons.

e Following previous experimental setup for
English CCG parsing, we use section 02-21 as
training data, section 00 as the development
data, and section 23 for testing.

e The DeepBank, Enju HPSGBank and Prague
Dependency TreeBank are from SemEval
2014 Task 8 (Oepen et al., 2014), and the data
splitting policy follows the shared task.

Experiments for CCG-grounded analysis were per-
formed using automatically assigned POS-tags
that are generated by a symbol-refined HMM tag-
ger (Huang et al., 2010). Experiments for the other
three data sets used POS-tags provided by the
shared task. We also use features extracted from
pseudo trees. We utilize the Mate parser (Bohnet,
2010) to generate pseudo trees. All experimental
results consider directed dependencies in a stan-
dard way. We report Unlabeled Precision (UP),
Recall (UR) and F-score (UF), which are calcu-
lated using the official evaluation tool provided by
SDP2014 shared task.

5.3 Accuracy

Table 1 lists the accuracy of our system. The out-
put of our parser was evaluated against each de-
pendency in the corpus. We can see that the first-
order parser obtains a considerably good accuracy,
with rich syntactic features. Furthermore, we can
see that the introduction of higher-order features
improves parsing substantially for all data sets, as
expected. When syntactic trees are utilized, the



DeepBank EnjuBank CCGBank PCEDT
Tree UpP UR UF UP UR UF UP UR UF UP UR UF
No lor | 89.43 83.03 86.11 | 90.10 87.10 88.58 | 91.63 88.07 89.82 | 88.13 81.53 84.70
2or | 89.23 8598 87.57 | 90.88 89.90 90.39 | 91.96 89.54 90.74 | 88.56 84.57 86.52
Syn | lor | 91.24 87.14 89.14 | 92.72 90.96 91.83 | 94.28 91.79 93.02 | 91.53 86.95 89.18
2or | 90.93 88.79 89.85|92.73 92.11 9242 |93.99 9227 93.13 |91.02 88.20 89.59
Table 1: Parsing accuracy evaluated on the development sets.
DeepBank EnjuBank CCGBank PCEDT
Tree UpP UR UF UP UR UF UpP UR UF UP UR UF
No lor | 88.87 82.50 85.57 | 90.12 86.76 88.41 | 91.95 88.29 90.08 | 86.87 80.45 83.54
2or | 88.77 85.61 87.16 | 91.06 89.50 90.27 | 92.25 89.80 91.01 | 87.07 83.45 85.22
Syn | lor | 90.68 86.57 88.58 | 92.82 90.62 91.71 | 94.32 91.88 93.09 | 90.11 85.83 87.97
2or | 90.13 88.21 89.16 | 92.84 91.50 92.17 | 94.09 92.27 93.17 | 89.73 87.13 88.41
SIW (2or) | 89.99 87.77 88.87 | 92.87 92.04 92.46 | 93.45 92.51 9298 | 89.58 87.73 88.65

Table 2: Parsing accuracy evaluated on the test sets. “SJW” denotes the book embedding parser intro-

duced in (Sun et al., 2017).

improvement is smaller but still significant on the
three SemEval data sets.

Table 2 lists the parsing results on the test data
together with the result obtained by Sun et al.
(SJW; 2017)’s system. The building architectures
of both systems are comparable.

1. Both systems have explicit control of the out-
put structures. While Sun et al.’s system con-
strain the output graph to be P2 only, our sys-
tem adds an additional 1EC restriction.

2. Their system’s second-order features also in-
cludes both-side neighboring features.

3. Their system uses beam search and dual
decomposition and therefore approximate,
while ours perform exact decoding.

We can see that while our purely Maximum Sub-
graph parser obtains better results on DeepBank
and CCGBank; while the book embedding parser
is better on the other two data sets.

5.4 Analysis

Our algorithm is sensitive to the derivation pro-
cess and may exclude a couple of negative second-
order scores by selecting misleading derivations.
Neverthess, our algorithm works in an exact way
to include all positive second-order scores. Table
3 shows the coverage of all second-order factors.
On average, 99.67% second-order factors are cal-
culated by our algorithm. This relatively satisfac-
tory coverage suggests that our algorithm is very
effective to include second-order features. Only a
very small portion is dropped.

DeepBank | EnjuBank | CCGBank | PCEDT
No 99.08 99.52 99.67 98.32
Syn 99.77 99.69 99.88 99.33

Table 3: Coverage of second-order factors on the
developmenet data.

6 Conclusion

This paper proposed two exact, graph-based al-
gorithms for 1EC/P2 parsing with first-order and
quasi-second-order scores. The resulting parser
has the same asymptotic run time as Cao et al.
(2017)’s algorithm. An exploration of other factor-
izations that facilitate semantic dependency pars-
ing may be an interesting avenue for future work.
Recent work has investigated faster decoding for
higher-order graph-based projective parsing e.g.
vine pruning (Rush and Petrov, 2012) and cube
pruning (Zhang and McDonald, 2012). It would
be interesting to extend these lines of work to de-
crease the complexity of our quartic algorithm.
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Abstract

Organized relational knowledge in the
form of “knowledge graphs” is important
for many applications. However, the abil-
ity to populate knowledge bases with facts
automatically extracted from documents
has improved frustratingly slowly. This
paper simultaneously addresses two issues
that have held back prior work. We first
propose an effective new model, which
combines an LSTM sequence model with
a form of entity position-aware attention
that is better suited to relation extraction.
Then we build TACRED, a large (119,474
examples) supervised relation extraction
dataset, obtained via crowdsourcing and
targeted towards TAC KBP relations. The
combination of better supervised data and
a more appropriate high-capacity model
enables much better relation extraction
performance. When the model trained on
this new dataset replaces the previous rela-
tion extraction component of the best TAC
KBP 2015 slot filling system, its F; score
increases markedly from 22.2% to 26.7%.

1 Introduction

A basic but highly important challenge in natu-
ral language understanding is being able to pop-
ulate a knowledge base with relational facts con-
tained in a piece of text. For the text shown in Fig-
ure 1, the system should extract triples, or equiv-
alently, knowledge graph edges, such as (Penner,
per:spouse, Lisa Dillman). Combining such ex-
tractions, a system can produce a knowledge graph
of relational facts between persons, organizations,
and locations in the text. This task involves en-
tity recognition, mention coreference and/or entity
linking, and relation extraction; we focus on the
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Penner is survived by his brother, John, a
copy editor at the Times, and his former wife,
Times sportswriter Lisa Dillman.

Subject Relation Object

Mike Penner | per:spouse Lisa Dillman

Mike Penner | per:siblings John Penner

Lisa Dillman | per:title Sportswriter

Lisa Dillman | per:employee_of | Los Angeles Times
John Penner | per:title Copy Editor

John Penner | per:employee_of | Los Angeles Times

Figure 1: An example of relation extraction from
the TAC KBP corpus.

most challenging “slot filling” task of filling in the
relations between entities in the text.

Organized relational knowledge in the form
of “knowledge graphs” has become an important
knowledge resource. These graphs are now exten-
sively used by search engine companies, both to
provide information to end-users and internally to
the system, as a way to understand relationships.
However, up until now, automatic knowledge ex-
traction has proven sufficiently difficult that most
of the facts in these knowledge graphs have been
built up by hand. It is therefore a key challenge
to show that NLP technology can effectively con-
tribute to this important problem.

Existing work on relation extraction (e.g., Ze-
lenko et al., 2003; Mintz et al., 2009; Adel et al.,
2016) has been unable to achieve sufficient re-
call or precision for the results to be usable ver-
sus hand-constructed knowledge bases. Super-
vised training data has been scarce and, while
techniques like distant supervision appear to be a
promising way to extend knowledge bases at low
cost, in practice the training data has often been
too noisy for reliable training of relation extrac-
tion systems (Angeli et al., 2015). As a result
most systems fail to make correct extractions even
in apparently straightforward cases like Figure 1,
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Example

Entity Types & Label

Carey will succeed Cathleen P. Black, who held the position for 15 years and will take on a new

role as chairwoman of Hearst Magazines, the company said.

Irene Morgan Kirkaldy, who was born and reared in Baltimore, lived on Long Island and ran a
child-care center in Queens with her second husband, Stanley Kirkaldy.

Pandit worked at the brokerage Morgan Stanley for about 11 years until 2005, when he and some
Morgan Stanley colleagues quit and later founded the hedge fund Old Lane Partners.

Baldwin declined further comment, and said JetBlue chief executive Dave Barger was unavailable.

Types: PERSON/TITLE
Relation: per:title

Types: PERSON/CITY
Relation: per:city_of-birth

Types: ORGANIZATION/PERSON
Relation: org:founded_by

Types: PERSON/TITLE
Relation: no_relation

Table 1: Sampled examples from the TACRED dataset. Subject entities are highlighted in blue and

object entities are highlighted in red.

where the best system at the NIST TAC Knowl-
edge Base Population (TAC KBP) 2015 evaluation
failed to recognize the relation between Penner
and Dillman." Consequently most automatic sys-
tems continue to make heavy use of hand-written
rules or patterns because it has been hard for ma-
chine learning systems to achieve adequate pre-
cision or to generalize as well across text types.
We believe machine learning approaches have suf-
fered from two key problems: (1) the models used
have been insufficiently tailored to relation extrac-
tion, and (2) there has been insufficient annotated
data available to satisfy the training of data-hungry
models, such as deep learning models.

This work addresses both of these problems.
We propose a new, effective neural network se-
quence model for relation classification. Its ar-
chitecture is better customized for the slot fill-
ing task: the word representations are augmented
by extra distributed representations of word posi-
tion relative to the subject and object of the puta-
tive relation. This means that the neural attention
model can effectively exploit the combination of
semantic similarity-based attention and position-
based attention. Secondly, we markedly improve
the availability of supervised training data by us-
ing Mechanical Turk crowd annotation to pro-
duce a large supervised training dataset (Table 1),
suitable for the common relations between peo-
ple, organizations and locations which are used in
the TAC KBP evaluations. We name this dataset
the TAC Relation Extraction Dataset (TACRED),
and will make it available through the Linguistic
Data Consortium (LDC) in order to respect copy-
rights on the underlying text.

Combining these two gives a system with
markedly better slot filling performance. This is

"Note: former spouses count as spouses in the ontology.
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shown not only for a relation classification task on
the crowd-annotated data but also for the incorpo-
ration of the resulting classifiers into a complete
cold start knowledge base population system. On
TACRED, our system achieves a relation classi-
fication F; score that is 7.9% higher than that of
a strong feature-based classifier, and 3.5% higher
than that of the best previous neural architecture
that we re-implemented. When this model is used
in concert with a pattern-based system on the TAC
KBP 2015 Cold Start Slot Filling evaluation data,
the system achieves an F; score of 26.7%, which
exceeds the previous state-of-the-art by 4.5% ab-
solute. While this performance certainly does not
solve the knowledge base population problem —
achieving sufficient recall remains a formidable
challenge — this is nevertheless notable progress.

2 A Position-aware Neural Sequence
Model Suitable for Relation Extraction

Existing work on neural relation extraction (e.g.,
Zeng et al., 2014; Nguyen and Grishman, 2015;
Zhou et al., 2016) has focused on convolutional
neural networks (CNNs), recurrent neural net-
works (RNNs), or their combination. While these
models generally work well on the datasets they
are tested on, as we will show, they often fail to
generalize to the longer sentences that are com-
mon in real-world text (such as in TAC KBP).

We believe that existing model architectures
suffer from two problems: (1) Although modern
sequence models such as Long Short-Term Mem-
ory (LSTM) networks have gating mechanisms to
control the relative influence of each individual
word to the final sentence representation (Hochre-
iter and Schmidhuber, 1997), these controls are
not explicitly conditioned on the entire sentence
being classified; (2) Most existing work either
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Figure 2: Our proposed position-aware neural se-
quence model. The model is shown with an exam-
ple sentence Mike and Lisa got married.

does not explicitly model the positions of entities
(i.e., subject and object) in the sequence, or mod-
els the positions only within a local region.

Here, we propose a new neural sequence model
with a position-aware attention mechanism over
an LSTM network to tackle these challenges. This
model can (1) evaluate the relative contribution of
each word after seeing the entire sequence, and (2)
base this evaluation not only on the semantic in-
formation of the sequence, but also on the global
positions of the entities within the sequence.

We formalize the relation extraction task as fol-
lows: Let X [z1,...,2,] denote a sentence,
where z; is the i-th token. A subject entity s
and an object entity o are identified in the sen-
tence, corresponding to two non-overlapping con-
secutive spans: Xs = [Ts,,Ts,41,-..,Ts,| and
Xo = [Toy, Toy+1,---,Toy]. Given the sentence
X and the positions of s and o, the goal is to pre-
dict arelation € R (‘R is the set of relations) that
holds between s and o or no relation otherwise.

Inspired by the position encoding vectors used
in Collobert et al. (2011) and Zeng et al. (2014),
we define a position sequence relative to the sub-
ject entity [p3, ..., p3 ], where

i—sl, 1 < S1
p; =140, 51 <1< 59 (1)
1 — 82, 1> So
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Here s1, so are the starting and ending indices of
the subject entity respectively, and p; € Z can be
viewed as the relative distance of token x; to the
subject entity. Similarly, we obtain a position se-
quence [pg, ..., p%] relative to the object entities.

Let x = [xq, ..., X,,| be word embeddings of the
sentence, obtained using an embedding matrix E.
Similarly, we obtain position embedding vectors
p® = [p},..,p;] and p° = [p9, ..., py] using a
shared position embedding matrix P respectively.
Next, as shown in Figure 2, we obtain hidden state
representations of the sentence by feeding x into
an LSTM:

{hy,....,h,} = LSTM({x1, ..., x,})

(2)
We define a summary vector q = h,, (i.e., the out-
put state of the LSTM). This summary vector en-
codes information about the entire sentence. Then
for each hidden state h;, we calculate an attention
weight a; as:

u; = v tanh(Wph; + W,q+
W,p; + W,p})

= exp(u;)
C iy exp(uy)

Here W;,, W, € Rexd W, W, € Rdaxdp
and v € R% are learnable parameters of the net-
work, where d is the dimension of hidden states,
d, is the dimension of position embeddings, and
d,, is the size of attention layer. Additional param-
eters of the network include embedding matrices
E € RIV*d and P € REL=Dxd where V is the
vocabulary and L is the maximum sentence length.

We regard attention weight a; as the relative
contribution of the specific word to the sentence
representation. The final sentence representation
z is computed as:

n
z = E . a;h;
=1

z is later fed into a fully-connected layer followed
by a softmax layer for relation classification.

Note that our model significantly differs from
the attention mechanism in Bahdanau et al. (2015)
and Zhou et al. (2016) in our use of the summary
vector and position embeddings, and the way our
attention weights are computed. An intuitive way
to understand the model is to view the attention
calculation as a selection process, where the goal
is to select relevant contexts over irrelevant ones.

3)
“4)

)



Dataset # Rel. # Ex. % Neg.
SemEval-2010 Task 8 19 10,717 17.4%
ACE 2003-2004 24 16,771 N/A

TACRED 42 119,474 78.7%

Table 2: A comparison of existing datasets and our
proposed TACRED dataset. % Neg. denotes the
percentage of negative examples (no relation).

Here the summary vector (q) helps the model to
base this selection on the semantic information
of the entire sentence (rather than on each word
only), while the position vectors (p; and p{) pro-
vides important spatial information between each
word and the entities.

3 The TAC Relation Extraction Dataset

Previous research has shown that slot filling sys-
tems can greatly benefit from supervised data.
For example, Angeli et al. (2014b) showed that
even a small amount of supervised data can boost
the end-to-end F; score by 3.9% on the TAC
KBP tasks. However, existing relation extrac-
tion datasets such as the SemEval-2010 Task 8
dataset (Hendrickx et al., 2009) and the Automatic
Content Extraction (ACE) (Strassel et al., 2008)
dataset are less useful for this purpose. This is
mainly because: (1) these datasets are relatively
small for effectively training high-capacity mod-
els (see Table 2), and (2) they capture very differ-
ent types of relations. For example, the SemEval
dataset focuses on semantic relations (e.g., Cause-
Effect, Component-Whole) between two nominals.

One can further argue that it is easy to obtain a
large amount of training data using distant super-
vision (Mintz et al., 2009). In practice, however,
due to the large amount of noise in the induced
data, training relation extractors that perform well
becomes very difficult. For example, Riedel et al.
(2010) show that up to 31% of the distantly super-
vised labels are wrong when creating training data
from aligning Freebase to newswire text.

To tackle these challenges, we collect a large
supervised dataset TACRED, targeted towards the
TAC KBP relations.

Data collection. We create TACRED based on
query entities and annotated system responses in
the yearly TAC KBP evaluations. In each year of
the TAC KBP evaluation (2009-2015), 100 enti-
ties (people or organizations) are given as queries,
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Data Split ~ # Ex. Years
Train 75,050 2009-2012
Dev 25,764 2013
Test 18,660 2014

Table 3: Statistics on TACRED: number of exam-
ples and the source of each portion.

for which participating systems should find asso-
ciated relations and object entities. We make use
of Mechanical Turk to annotate each sentence in
the source corpus that contains one of these query
entities. For each sentence, we ask crowd workers
to annotate both the subject and object entity spans
and the relation types.

Dataset stratification. In total we collect
119,474 examples. We stratify TACRED across
years in which the TAC KBP challenge was run,
and use examples corresponding to query entities
from 2009 to 2012 as training split, 2013 as
development split, and 2014 as test split. We
reserve the TAC KBP 2015 evaluation data for
running slot filling evaluations, as presented in
Section 4. Detailed statistics are given in Table 3.

Discussion. Table 1 presents sampled examples
from TACRED. Compared to existing datasets,
TACRED has four advantages. First, it contains
an order of magnitude more relation instances (Ta-
ble 2), enabling the training of expressive mod-
els. Second, we reuse the entity and relation types
of the TAC KBP tasks. We believe these relation
types are of more interest to downstream appli-
cations. Third, we fully annotate all negative in-
stances that appear in our data collection process,
to ensure that models trained on TACRED are not
biased towards predicting false positives on real-
world text. Lastly, the average sentence length in
TACRED is 36.2, compared to 19.1 in the Sem-
Eval dataset, reflecting the complexity of contexts
in which relations occur in real-world text.

Due to space constraints, we describe the data
collection and validation process, system inter-
faces, and more statistics and examples of TAC-
RED in the supplementary material. We will
make TACRED publicly available through the
LDC.

4 Experiments

In this section we evaluate the effectiveness of our
proposed model and TACRED on improving slot



filling systems. Specifically, we run two sets of ex-
periments: (1) we evaluate model performance on
the relation extraction task using TACRED, and
(2) we evaluate model performance on the TAC
KBP 2015 cold start slot filling task, by training
the models on TACRED.

4.1 Baseline Models

We compare our model against the following base-
line models for relation extraction and slot filling:

TAC KBP 2015 winning system. To judge our
proposed model against a strong baseline, we
compare against Stanford’s top performing system
on the TAC KBP 2015 cold start slot filling task
(Angeli et al., 2015). At the core of this system
are two relation extractors: a pattern-based extrac-
tor and a logistic regression (LR) classifier. The
pattern-based system uses a total of 4,528 surface
patterns and 169 dependency patterns. The logis-
tic regression model was trained on approximately
2 million bootstrapped examples (using a small
annotated dataset and high-precision pattern sys-
tem output) that are carefully tuned for TAC KBP
slot filling evaluation. It uses a comprehensive fea-
ture set similar to the MIML-RE system for re-
lation extraction (Surdeanu et al., 2012), includ-
ing lemmatized n-grams, sequence NER tags and
POS tags, positions of entities, and various fea-
tures over dependency paths, etc.

Convolutional neural networks. We follow the
1-dimensional CNN architecture by Nguyen and
Grishman (2015) for relation extraction. This
model learns a representation of the input sen-
tence, by first running a series of convolutional op-
erations on the sentence with various filters, and
then feeding the output into a max-pooling layer
to reduce the dimension. The resulting represen-
tation is then fed into a fully-connected layer fol-
lowed by a softmax layer for relation classifica-
tion. As an extension, positional embeddings are
also introduced into this model to better capture
the relative position of each word to the subject
and object entities and were shown to achieve im-
proved results. We use “CNN-PE” to represent the
CNN model with positional embeddings.

Dependency-based recurrent neural networks.
In dependency-based neural models, shortest de-
pendency paths between entities are often used as
input to the neural networks. The intuition is to
eliminate tokens that are potentially less relevant
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to the classification of the relation. For the ex-
ample in Figure 1, the shortest dependency path
between the two entities is:

[Penner] < survived — brother

— wife — [Lisa Dillman]

We follow the SDP-LSTM model proposed by Xu
et al. (2015b). In this model, each shortest depen-
dency path is divided into two separate sub-paths
from the subject entity and the object entity to the
lowest common ancestor node. Each sub-path is
fed into an LSTM network, and the resulting hid-
den units at each word position are passed into a
max-over-time pooling layer to form the output of
this sub-path. Outputs from the two sub-paths are
then concatenated to form the final representation.

In addition to the above models, we also com-
pare our proposed model against an LSTM se-
quence model without attention mechanism.

4.2 Implementation Details

We map words that occur less than 2 times in the
training set to a special <UNK> token. We use
the pre-trained GloVe vectors (Pennington et al.,
2014) to initialize word embeddings. For all the
LSTM layers, we find that 2-layer stacked LSTMs
generally work better than one-layer LSTMs. We
minimize cross-entropy loss over all 42 relations
using AdaGrad (Duchi et al., 2011). We apply
Dropout with p = 0.5 to CNNs and LSTMs. Dur-
ing training we also find a word dropout strategy
to be very effective: we randomly set a token to be
<UNK> with a probability p. We set p to be 0.06
for the SDP-LSTM model and 0.04 for all other
models.

Entity masking. We replace each subject entity
in the original sentence with a special <NER>-
SUBJ token where <NER> is the corresponding
NER signature of the subject as provided in TAC-
RED. We do the same processing for object en-
tities. This processing step helps (1) provide a
model with entity type information, and (2) pre-
vent a model from overfitting its predictions to
specific entities.

Multi-channel augmentation. Instead of using
only word vectors as input to the network, we
augment the input with part-of-speech (POS) and
named entity recognition (NER) embeddings. We
run Stanford CoreNLP (Manning et al., 2014) to
obtain the POS and NER annotations.



Model P R F,
Traditional Patterns 85.3 234 36.8
LR 72.0 47.8 57.5
LR + Patterns 71.4 50.1 58.9
Neural CNN 72.1 50.3 59.2
CNN-PE 68.2 554 61.1
SDP-LSTM  62.0 54.8 58.2
LSTM 614 61.7 61.5
Our model 67.7 63.2 654
Ensemble 69.4 64.8 67.0

Table 4: Model performance on the test set of
TACRED, micro-averaged over instances. LR =
Logistic Regression.

We describe our model hyperparameters and
training in detail in the supplementary material.

4.3 Evaluation on TACRED

We first evaluate all models on TACRED. We
train each model for 5 separate runs with inde-
pendent random initializations. For each run we
perform early stopping using the dev set. We then
select the run (among 5) that achieves the median
F; score on the dev set, and report its test set per-
formance.

Table 4 summarizes our results. We observe that
all neural models achieve higher F; scores than
the logistic regression and patterns systems, which
demonstrates the effectiveness of neural models
for relation extraction. Although positional em-
beddings help increase the F; by around 2% over
the plain CNN model, a simple (2-layer) LSTM
model performs surprisingly better than CNN and
dependency-based models. Lastly, our proposed
position-aware mechanism is very effective and
achieves an F; score of 65.4%, with an absolute in-
crease of 3.9% over the best baseline neural model
(LSTM) and 7.9% over the baseline logistic re-
gression system. We also run an ensemble of our
position-aware attention model which takes major-
ity votes from 5 runs with random initializations
and it further pushes the F; score up by 1.6%.

We find that different neural architectures show
a different balance between precision and recall.
CNN-based models tend to have higher precision;
RNN-based models have better recall. This can
be explained by noting that the filters in CNNs are
essentially a form of “fuzzy n-gram patterns”.
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query entity: Mike Penner

hop-0 slot:  per:spouse ------ + Lisa Dillman

hop-1 slot:  per:title + Sportswriter

(query) (fillers)

Figure 3: An example query and corresponding
fillers in the TAC KBP cold start slot filling task.

4.4 Evaluation on TAC KBP Slot Filling

Second, we evaluate the slot filling performance
of all models using the TAC KBP 2015 cold start
slot filling task (Ellis et al., 2015). In this task,
about 50k newswire and Web forum documents
are selected as the evaluation corpus. A slot filling
system is asked to answer a series of queries with
two-hop slots (Figure 3): The first slot asks about
fillers of a relation with the query entity as the sub-
ject (Mike Penner), and we term this a hop-0 slot;
the second slot asks about fillers with the system’s
hop-0 output as the subject, and we term this a
hop-1 slot. System predictions are then evaluated
against gold annotations, and micro-averaged pre-
cision, recall and F; scores are calculated at the
hop-0 and hop-1 levels. Lastly hop-all scores are
calculated by combining hop-0 and hop-1 scores.?

Evaluating relation extraction systems on slot
filling is particularly challenging in that: (1) End-
to-end cold start slot filling scores conflate the per-
formance of all modules in the system (i.e., en-
tity recognizer, entity linker and relation extrac-
tor). (2) Errors in hop-0 predictions can easily
propagate to hop-1 predictions. To fairly evalu-
ate each relation extraction model on this task, we
use Stanford’s 2015 slot filling system as our basic
pipeline.? It is a very strong baseline specifically
tuned for TAC KBP evaluation and ranked top in
the 2015 evaluation. We then plug in the corre-
sponding relation extractor trained on TACRED,
keeping all other modules unchanged.

Table 5 presents our results. We find that:
(1) by only training our logistic regression model
on TACRED (in contrast to on the 2 million boot-
strapped examples used in the 2015 Stanford sys-
tem) and combining it with patterns, we obtain a
higher hop-0 F; score than the 2015 Stanford sys-

%In the TAC KBP cold start slot filling evaluation, a hop-1
slot is transferred to a pseudo-slot which is treated equally as
a hop-0 slot. Hop-all precision, recall and F1 are then calcu-
lated by combining these pseudo-slot predictions and hop-0
predictions.

3This system uses the fine-grained NER system in Stan-
ford CoreNLP (Manning et al., 2014) for entity detection and
the Illinois Wikifier (Ratinov et al., 2011) for entity linking.



Hop-0 Hop-1 Hop-all

Model P R Fy P R Fy P R Fy

Patterns 63.8 17.7 277 493 86 147 589 133 21.8
LR 36.6 219 274 151 10.1 122 256 163 19.9
+ Patterns (2015 winning system) 37.5 24.5 29.7 16.5 128 144 266 19.0 222
LR trained on TACRED 327 206 253 79 95 86 168 153 16.0
+ Patterns 36.5 26.5 30.7 11.0 153 12.8 20.1 21.2 20.6
Our model 39.0 289 332 17.7 139 156 282 215 244
+ Patterns 40.2 315 353 194 165 17.8 29.7 242 26.7

Table 5: Model performance on TAC KBP 2015 slot filling evaluation, micro-averaged over queries.
Hop-0 scores are calculated on the simple single-hop slot filling results; hop-1 scores are calculated
on slot filling results chained on systems’ hop-0 predictions; hop-all scores are calculated based on the

combination of the two. LR = logistic regression.

Model Dev F4

Final Model 66.22
— Position-aware attention 65.12
— Attention 64.71
— Pre-trained embeddings 65.34
— Word dropout 65.69
— All above 63.60

Table 6: An ablation test of our position-aware
attention model, evaluated on TACRED dev set.
Scores are median of 5 models.

tem, and a similar hop-all Fy; (2) our proposed
position-aware attention model substantially out-
performs the 2015 Stanford system on all hop-0,
hop-1 and hop-all F; scores. Combining it with
the patterns, we achieve a hop-all F; of 26.7%, an
absolute improvement of 4.5% over the previous
state-of-the-art result.

4.5 Analysis

Model ablation. Table 6 presents the results
of an ablation test of our position-aware atten-
tion model on the development set of TACRED.
The entire attention mechanism contributes about
1.5% F1, where the position-aware term in Eq. (3)
alone contributes about 1% F; score.

Impact of negative examples. Figure 4 shows
how the slot filling evaluation scores change as we
change the amount of negative (i.e., no_relation)
training data provided to our proposed model. We
find that: (1) At hop-0 level, precision increases as
we provide more negative examples, while recall
stays almost unchanged. F; score keeps increas-
ing. (2) At hop-all level, F; score increases by
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Figure 4: Change of slot filling hop-0 and hop-
all scores as number of negative training examples
changes. 100% is with all the negative examples
included in the training set; the left side scores
have positives and negatives roughly balanced.

about 10% as we change the amount of negative
examples from 20% to 100%.

Performance by sentence length. Figure 5
shows performance on varying sentence lengths.
We find that: (1) Performance of all models de-
grades substantially as the sentences get longer.
(2) Compared to the baseline Logistic Regression
model, all neural models handle long sentences
better. (3) Compared to CNN-PE model, RNN-
based models are more robust on long sentences,
and notably SDP-LSTM model is least sensitive to
sentence length. (4) Our proposed model achieves
equal or better results on sentences of all lengths,
except for sentences with more than 60 tokens
where SDP-LSTM model achieves the best result.



95

T I

90 LR |

85 —o— CNN-PE |

30| = SDP-LSTM ||
& 75 LSTM |
E 70 —e— Our model
5 65
o 60

55

50 |-

45 |-

40

10 20 30 40 50 60 >60

Sentence Length

Figure 5: TACRED development set I scores for
sentences of varying lengths.

Improvement by slot types. We calculate the
F; score for each slot type and compare the
improvement from using our proposed model
across slot types. When compared with the
CNN-PE model, our position-aware attention
model achieves improved F; scores on 30
out of the 41 slot types, with the top 5 slot
types being org:members, per:country_of-death,
org:shareholders, per:children and per:religion.
When compared with SDP-LSTM model, our
model achieves improved F; scores on 26
out of the 41 slot types, with the top 5 slot
types being org:political/religious_affiliation,
per:country_of_death, org:alternate_names,
per:religion and per:alternate_names. We ob-
serve that slot types with relatively sparse training
examples tend to be improved by using the
position-aware attention model.

Attention visualization. Lastly, Figure 6 shows
the visualization of attention weights assigned by
our model on sampled sentences from the devel-
opment set. We find that the model learns to pay
more attention to words that are informative for
the relation (e.g., “graduated from”, “niece” and
“chairman”), though it still makes mistakes (e.g.,
“refused to name the three”). We also observe that
the model tends to put a lot of weight onto object
entities, as the object NER signatures are very in-
formative to the classification of relations.

5 Related Work

Relation extraction. There are broadly three
main lines of work on relation extraction: first,
fully-supervised approaches (Zelenko et al., 2003;
Bunescu and Mooney, 2005), where a statisti-
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cal classifier is trained on an annotated dataset;
second, distant supervision (Mintz et al., 2009;
Surdeanu et al., 2012), where a training set is
formed by projecting the relations in an existing
knowledge base onto textual instances that contain
the entities that the relation connects; and third,
Open IE (Fader et al., 2011; Mausam et al., 2012),
which views its goal as producing subject-relation-
object triples and expressing the relation in text.

Slot filling and knowledge base population.
The most widely-known effort to evaluate slot fill-
ing and KBP systems is the yearly TAC KBP slot
filling tasks, starting from 2009 (McNamee and
Dang, 2009). Participants in slot filling tasks usu-
ally make use of hybrid systems that combine pat-
terns, Open IE, distant supervision and supervised
systems for relation extraction (Kisiel et al., 2015;
Finin et al., 2015; Zhang et al., 2016).

Datasets for relation extraction. Popular
general-domain datasets include the ACE dataset
(Strassel et al., 2008) and the SemEval-2010 task
8 dataset (Hendrickx et al., 2009). In addition,
the BioNLP Shared Tasks (Kim et al., 2009) are
yearly efforts on creating datasets and evaluations
for biomedical information extraction systems.

Deep learning models for relation extraction.
Many deep learning models have been proposed
for relation extraction, with a focus on end-to-end
training using CNNs (Zeng et al., 2014; Nguyen
and Grishman, 2015) and RNNs (Zhang et al.,
2015). Other popular approaches include using
CNN or RNN over dependency paths between en-
tities (Xu et al., 2015a,b), augmenting RNNs with
different components (Xu et al., 2016; Zhou et al.,
2016), and combining RNNs and CNNs (Vu et al.,
2016; Wang et al., 2016). Adel et al. (2016) com-
pares the performance of CNN models against tra-
ditional approaches on slot filling using a portion
of the TAC KBP evaluation data.

6 Conclusion

We introduce a state-of-the-art position-aware
neural sequence model for relation extraction, as
well as TACRED, a large-scale, crowd-sourced
dataset that is orders of magnitude larger than pre-
vious relation extraction datasets. Our proposed
model outperforms a strong feature-based classi-
fier and all baseline neural models. In combination
with the new dataset, it improves the state-of-the-



Sampled Sentences

Predicted Labels

PER-SUBJ graduated from North Korea ’s elite Kim Il Sung University and

ORG-OBJ ORG-OBJ .

per:schools_attended

The heart
PER-SUBJ ’s niece , PER-OBJ PER-OBJ .

cause was a attack following a

case

of pneumonia , said  per:other_family

Independent ORG-SUBJ ORG-SUBJ ORG-SUBJ
PER-OBJ refused to name the three ,

( ECC)
saying they would be identified when

chairman PER-OBJ  org:top_members/employees

the final list of candidates for the august 20 polls is published on Friday .

Figure 6: Sampled sentences from the TACRED development set, with words highlighted according to

the attention weights produced by our best model.

art hop-all F; on the TAC KBP 2015 slot filling
task by 4.5% absolute.
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Abstract

Relation extraction is a fundamental task
in information extraction. Most existing
methods have heavy reliance on annota-
tions labeled by human experts, which are
costly and time-consuming. To overcome
this drawback, we propose a novel frame-
work, REHESSION, to conduct relation
extractor learning using annotations from
heterogeneous information source, e.g.,
knowledge base and domain heuristics.
These annotations, referred as heteroge-
neous supervision, often conflict with each
other, which brings a new challenge to the
original relation extraction task: how to
infer the true label from noisy labels for
a given instance. Identifying context in-
formation as the backbone of both rela-
tion extraction and true label discovery,
we adopt embedding techniques to learn
the distributed representations of context,
which bridges all components with mutual
enhancement in an iterative fashion. Ex-
tensive experimental results demonstrate
the superiority of REHESSION over the
state-of-the-art.

1 Introduction

One of the most important tasks towards text un-
derstanding is to detect and categorize semantic
relations between two entities in a given context.
For example, in Fig. 1, with regard to the sentence
of ¢, relation between Jesse James and Missouri
should be categorized as died_in. With accurate
identification, relation extraction systems can pro-
vide essential support for many applications. One

*Equal contribution.
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example is question answering, regarding a spe-
cific question, relation among entities can provide
valuable information, which helps to seek better
answers (Bao et al., 2014). Similarly, for medical
science literature, relations like protein-protein in-
teractions (Fundel et al., 2007) and gene disease
associations (Chun et al., 2006) can be extracted
and used in knowledge base population. Addition-
ally, relation extractors can be used in ontology
construction (Schutz and Buitelaar, 2005).

Typically, existing methods follow the super-
vised learning paradigm, and require extensive an-
notations from domain experts, which are costly
and time-consuming. To alleviate such drawback,
attempts have been made to build relation extrac-
tors with a small set of seed instances or human-
crafted patterns (Nakashole et al., 2011; Carlson
etal., 2010), based on which more patterns and in-
stances will be iteratively generated by bootstrap
learning. However, these methods often suffer
from semantic drift (Mintz et al., 2009). Besides,
knowledge bases like Freebase have been lever-
aged to automatically generate training data and
provide distant supervision (Mintz et al., 2009).
Nevertheless, for many domain-specific applica-
tions, distant supervision is either non-existent
or insufficient (usually less than 25% of relation
mentions are covered (Ren et al., 2015; Ling and
Weld, 2012)).

Only recently have preliminary studies been de-
veloped to unite different supervisions, includ-
ing knowledge bases and domain specific patterns,
which are referred as heterogeneous supervision.
As shown in Fig. 1, these supervisions often con-
flict with each other (Ratner et al., 2016). To
address these conflicts, data programming (Rat-
ner et al., 2016) employs a generative model,
which encodes supervisions as labeling functions,
and adopts the source consistency assumption: a
source is likely to provide true information with

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 46—-56
Copenhagen, Denmark, September 7-11, 2017. (©2017 Association for Computational Linguistics
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Figure 1: REHESSION Framework except Extraction and Representation of Text Features

the same probability for all instances. This as-
sumption is widely used in true label discovery lit-
erature (Li et al., 2016) to model reliabilities of
information sources like crowdsourcing and infer
the true label from noisy labels. Accordingly, most
true label discovery methods would trust a human
annotator on all instances to the same level.

However, labeling functions, unlike human an-
notators, do not make casual mistakes but follow
certain “error routine”. Thus, the reliability of a
labeling function is not consistent among differ-
ent pieces of instances. In particular, a labeling
function could be more reliable for a certain sub-
set (Varma et al., 2016) (also known as its profi-
cient subset) comparing to the rest. We identify
these proficient subsets based on context informa-
tion, only trust labeling functions on these subsets
and avoid assuming global source consistency.

Meanwhile, embedding methods have demon-
strated great potential in capturing semantic mean-
ings, which also reduce the dimension of over-
whelming text features. Here, we present REHES-
SION, a novel framework capturing context’s se-
mantic meaning through representation learning,
and conduct both relation extraction and true label
discovery in a context-aware manner. Specifically,
as depicted in Fig. 1, we embed relation mentions
in a low-dimension vector space, where similar re-
lation mentions tend to have similar relation types
and annotations. ‘True’ labels are further inferred
based on reliabilities of labeling functions, which
are calculated with their proficient subsets’ repre-
sentations. Then, these inferred true labels would
serve as supervision for all components, including
context representation, true label discovery and re-
lation extraction. Besides, the context representa-
tion bridges relation extraction with true label dis-

Mapping from Text
Embedding to Relation
[y Mention Embedding:
HEAD_EM1_Hussein{" == "t

TKN_EM1_Hussein“{" o [tanh(W - > vi)
born S - et
HEAD_EM2_Amman ]
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{ \\ c R
%Text Feature Extraction = . A«O’

Robcn Newton "Bob" Ford was an American outlaw best known
U for killing his gang leader Jesse James (€1) in Missouri €

CQIGofrald (€1) died in 989, said to be killed in Dal Riata‘(€2). }
3| Hussein (€¢1) was born in Amman (€2) on 14 November 1935.]

Figure 2: Relation Mention Representation

covery, and allows them to enhance each other.

To the best of our knowledge, the framework
proposed here is the first method that utilizes rep-
resentation learning to provide heterogeneous su-
pervision for relation extraction. The high-quality
context representations serve as the backbone of
true label discovery and relation extraction. Exten-
sive experiments on benchmark datasets demon-
strate significant improvements over the state-of-
the-art.

The remaining of this paper is organized as fol-
lows. Section 2 gives the definition of relation ex-
traction with heterogeneous supervision. We then
present the REHESSION model and the learning
algorithm in Section 3, and report our experimen-
tal evaluation in Section 4. Finally, we briefly sur-
vey related work in Section 5 and conclude this
study in Section 6.

2 Preliminaries

In this section, we would formally define relation
extraction and heterogeneous supervision, includ-
ing the format of labeling functions.
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2.1 Relation Extraction

Here we conduct relation extraction in sentence-
level (Bao et al., 2014). For a sentence d, an entity
mention is a token span in d which represents an
entity, and a relation mention is a triple (e1, ea, d)
which consists of an ordered entity pair (e1, e2)
and d. And the relation extraction task is to cate-
gorize relation mentions into a given set of relation
types R, or Not-Target-Type (None) which means
the type of the relation mention does not belong to
R.

2.2 Heterogeneous Supervision

Similar to (Ratner et al., 2016), we employ label-
ing functions as basic units to encode supervision
information and generate annotations. Since dif-
ferent supervision information may have different
proficient subsets, we require each labeling func-
tion to encode only one elementary supervision in-
formation. Specifically, in the relation extraction
scenario, we require each labeling function to only
annotate one relation type based on one elemen-
tary piece of information, e.g., four examples are
listed in Fig. 1.

Notice that knowledge-based labeling functions
are also considered to be noisy because rela-
tion extraction is conducted in sentence-level,
e.g. although president_of (Obama, USA)
exists in KB, it should not be assigned with
“Obama was born in Honolulu, Hawaii, USA”,
since president_of is irrelevant to the context.

2.3 Problem Definition

For a POS-tagged corpus D with detected enti-
ties, we refer its relation mentions as C = {¢; =
(€i1,€i2,d),¥d € D}. Our goal is to anno-
tate entity mentions with relation types of inter-
est (R = {ri,...,rx}) or None. We require
users to provide heterogeneous supervision in the
form of labeling function A {0 A}
and mark the annotations generated by A as O =
{0¢,i| \i generate annotation o.; forc € C}. We
record relation mentions annotated by A as C;, and
refer relation mentions without annotation as C,,.
Then, our task is to train a relation extractor based
on C; and categorize relation mentions in C,,.

3 The REHESSION Framework

Here, we present REHESSION, a novel framework
to infer true labels from automatically generated
noisy labels, and categorize unlabeled instances
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f. | C’stext features set, where ¢ € C
v; | text feature embedding for f; € F
z. | relation mention embedding for ¢ € C
1; | embedding for \;’s proficient subset, A\; € A
oc,; | annotation for ¢, generated by labeling function A,
oy | underlying true label for ¢
pe,i | identify whether o, ; is correct
S; | the proficient subset of labeling function \;
Se,i | identify whether c belongs to A;’s proficient subset
t; | relation type embedding for r; € R

Table 1: Notation Table.

into a set of relation types. Intuitively, errors of
annotations () come from mismatch of contexts,
e.g., in Fig. 1, \; annotates ¢y and co with ’true’
labels but for mismatched contexts ‘killing’ and
’killed’. Accordingly, we should only trust label-
ing functions on matched context, e.g., trust A\; on
c3 due to its context ‘was born in’, but not on ¢
and cp. On the other hand, relation extraction can
be viewed as matching appropriate relation type to
a certain context. These two matching processes
are closely related and can enhance each other,
while context representation plays an important
role in both of them.

Framework Overview. We propose a general
framework to learn the relation extractor from
automatically generated noisy labels. As plot-
ted in Fig. 1, distributed representation of con-
text bridges relation extraction with true label dis-
covery, and allows them to enhance each other.
Specifically, it follows the steps below:

1. After being extracted from context, text fea-
tures are embedded in a low dimension space by
representation learning (see Fig. 2);

2. Text feature embeddings are utilized to calcu-
late relation mention embeddings (see Fig. 2);

3. With relation mention embeddings, true labels
are inferred by calculating labeling functions’ re-
liabilities in a context-aware manner (see Fig. 1);

4. Inferred true labels would ‘supervise’ all com-
ponents to learn model parameters (see Fig. 1).

We now proceed by introducing these components
of the model in further details.

3.1 Modeling Relation Mention

As shown in Table 2, we extract abundant lexi-
cal features (Ren et al., 2016; Mintz et al., 2009)
to characterize relation mentions. However, this
abundance also results in the gigantic dimension
of original text features (~ 107 in our case). In



Feature Description Example

Entity mention (EM) head Syntactic head token of each entity mention “HEAD_EM1 _Hussein”, ...
Entity Mention Token Tokens in each entity mention “TKN_EM 1 _Hussein”,
Tokens between two EMs Tokens between two EMs “was”, “born”, “in”
Part-of-speech (POS) tag POS tags of tokens between two EMs “VBD”, “VBN”, “IN”
Collocations Bigrams in left/right 3-word window of each EM  “Hussein was”, “in Amman”
Entity mention order Whether EM 1 is before EM 2 “EMI1_BEFORE_EM2”
Entity mention distance Number of tokens between the two EMs “EM_DISTANCE_3”

Body entity mentions numbers  Number of EMs between the two EMs “EM_NUMBER_0”

Entity mention context
Brown cluster (learned on D)

Unigrams before and after each EM
Brown cluster ID for each token

“EM_AFTER_was”,
“BROWN_010011001", ...

Table 2: Text features F used in this paper. (“Hussein”, “Amman”,*Hussein was born in Amman”) is used as an example.

order to achieve better generalization ability, we
represent relation mentions with low dimensional
(~ 10?) vectors. In Fig. 2, for example, relation
mention c3 is first represented as bag-of-features.
After learning text feature embeddings, we use the
average of feature embedding vectors to derive the
embedding vector for c3.

Text Feature Representation. Similar to other prin-
ciples of embedding learning, we assume text fea-
tures occurring in the same contexts tend to have
similar meanings (also known as distributional hy-
pothesis(Harris, 1954)). Furthermore, we let each
text feature’s embedding vector to predict other
text features occurred in the same relation men-
tions or context. Thus, text features with simi-
lar meaning should have similar embedding vec-
tors. Formally, we mark text features as F =
{f1,-++, fiz}, record the feature set for Ve € C
as ., and represent the embedding vector for f; as
v; € R™, and we aim to maximize the following
log likelihood: 37 ., X pgyex, log p(filfs), where
p(filfj) = exp(Viv})/ 3 ;, c 7 exp(vi V).

However, the optimization of this likelihood is
impractical because the calculation of Vp(f;|f;)
requires summation over all text features, whose
size exceeds 107 in our case. In order to perform
efficient optimization, we adopt the negative sam-
pling technique (Mikolov et al., 2013) to avoid this
summation. Accordingly, we replace the log like-
lihood with Eq. 1 as below:

Je = E (log o (v} v;)
ceCy
fifj€fe

%
ZE /NPloga (—vIvi)))
k=1

)]
where P is noise distribution used in (Mikolov
et al., 2013), o is the sigmoid function and V' is
number of negative samples.

Relation Mention Representation. With text feature
embeddings learned by Eq. 1, a naive method to
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Pc,i

A

Figure 3: Graphical model of o. ;s correctness

represent relation mentions is to concatenate or av-
erage its text feature embeddings. However, text
features embedding may be in a different semantic
space with relation types. Thus, we directly learn
a mapping g from text feature representations to
relation mention representations (Van Gysel et al.,
2016a,b) instead of simple heuristic rules like con-
catenate or average (see Fig. 2):

2o = g(£.) = tanh(WV - ﬁ 3 v @

where z. is the representation of ¢ € C;, W is
an, X n, matrix, n, is the dimension of relation
mention embeddings and tanh is the element-wise
hyperbolic tangent function.

In other words, we represent bag of text features
with their average embedding, then apply linear
map and hyperbolic tangent to transform the em-
bedding from text feature semantic space to re-
lation mention semantic space. The non-linear
tanh function allows non-linear class boundaries
in other components, and also regularize rela-
tion mention representation to range [—1, 1] which
avoids numerical instability issues.

3.2 True Label Discovery

Because heterogeneous supervision generates la-
bels in a discriminative way, we suppose its er-
rors follow certain underlying principles, i.e., if a



Datasets | NYT | Wiki-KBP
% of None in Training | 0.6717 0.5552
% of None in Test | 0.8972 0.8532

Table 3: Proportion of None in Training/Test Set

labeling function annotates a instance correctly /
wrongly, it would annotate other similar instances
correctly / wrongly. For example, A; in Fig. 1
generates wrong annotations for two similar in-
stances ¢, ¢co and would make the same errors on
other similar instances. Since context represen-
tation captures the semantic meaning of relation
mention and would be used to identify relation
types, we also use it to identify the mismatch of
context and labeling functions. Thus, we suppose
for each labeling function A;, there exists an pro-
ficient subset S; on R™#, containing instances that
A; can precisely annotate. In Fig. 1, for instance,
cs is in the proficient subset of A1, while ¢; and c2
are not. Moreover, the generation of annotations
are not really random, and we propose a proba-
bilistic model to describe the level of mismatch
from labeling functions to real relation types in-
stead of annotations’ generation.

As shown in Fig. 3, we assume the indicator of
whether c belongs to S;, s¢; = d(c € S;), would
first be generated based on context representation

P(Sci = 1ze, ;) = plc € S) = o(zl L)  (3)

Then the correctness of annotation o¢;, pe; =
d(0c; = 0f), would be generated. Furthermore,
we assume p(pc,; = 1[sc; = 1) = ¢1 and p(pe; =
1|sci = 0) = ¢g to be constant for all relation
mentions and labeling functions.

Because s.; would not be used in other compo-
nents of our framework, we integrate out s.; and
write the log likelihood as

Tr = (1 _ ¢1)5<0c,i¢02)

> log(o(al 16

0.,; €0

+ (1= o(zF1)) g 7 =70 (1 — )P Cei?oD)y (@)

Note that o}, is a hidden variable but not a model
parameter, and Jr is the likelihood of p.; =
d(0c; = o}). Thus, we would first infer o
argmax,. Jr, then train the true label discovery
model by maximizing Jr.
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3.3 Modeling Relation Type

We now discuss the model for identifying relation
types based on context representation. For each
relation mention c, its representation z. implies its
relation type, and the distribution of relation type
can be described by the soft-max function:

exp(zl't;)

7j ERU{None} eXp(thj)

p(rilze) = 5 5)
where t; € R"# is the representation for relation
type r;. Moreover, with the inferred true label o},
the relation extraction model can be trained as a
multi-class classifier. Specifically, we use Eq. 5 to
approach the distribution

p(riloc) = {

Moreover, we use KL-divergence to measure
the dissimilarity between two distributions, and
formulate model learning as maximizing Jg:

1
0

*
Ti = O¢

o ©)

Tr ==Y KL(p(.|zc)|lp(-|0?)) ©)

ceCy

where KL(p(.|z.)||p(.|of)) is the KL-divergence
from p(ri|o;) to p(ri|z.), p(rilz.) and p(ri|o:) has
the form of Eq. 5 and Eq. 6.
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Based on Eq. 1, Eq. 4 and Eq. 7, we form the joint
optimization problem for model parameters as

Model Learning

J ==-IJr—MJIe — XJr

min
W,v,v* 1,t,o*

s.t. Ve € Cy, o, = argmax Jr, z. = g(f:) ¥

OC

Collectively optimizing Eq. 8 allows heteroge-
neous supervision guiding all three components,
while these components would refine the context
representation, and enhance each other.

In order to solve the joint optimization problem
in Eq. 8 efficiently, we adopt the stochastic gradi-
ent descent algorithm to update {W, v, v*, L, t} it-
eratively, and o.* is estimated by maximizing Jr
after calculating z.. Additionally, we apply the
widely used dropout techniques (Srivastava et al.,
2014) to prevent overfitting and improve general-
ization performance.

The learning process of REHESSION is summa-
rized as below. In each iteration, we would sample
a relation mention ¢ from C;, then sample ¢’s text



features and conduct the text features’ represen-
tation learning. After calculating the representa-
tion of ¢, we would infer its true label o based on
our true label discovery model, and finally update
model parameters based on o}.

3.5 Relation Type Inference

We now discuss the strategy of performing type
inference for C,,. As shown in Table 3, the pro-
portion of None in C,, is usually much larger than
in C;. Additionally, not like other relation types in
R, None does not have a coherent semantic mean-
ing. Similar to (Ren et al., 2016), we introduce
a heuristic rule: identifying a relation mention as
None when (1) our relation extractor predict it as
None, or (2) the entropy of p(.|z.) over R exceeds
a pre-defined threshold 7. The entropy is calcu-
lated as H(p(.|z.)) = =3, cr P(rilzc)log(p(rilzc)).
And the second situation means based on relation
extractor this relation mention is not likely belong-
ing to any relation types in R.

4 Experiments

In this section, we empirically validate our method
by comparing to the state-of-the-art relation ex-
traction methods on news and Wikipedia articles.

4.1 Datasets and settings

In the experiments, we conduct investigations on
two benchmark datasets from different domains:'
NYT (Riedel et al., 2010) is a news corpus sampled
from ~ 294k 1989-2007 New York Times news ar-
ticles. It consists of 1.18M sentences, while 395 of
them are annotated by authors of (Hoffmann et al.,
2011) and used as test data;

Wiki-KBP utilizes 1.5M sentences sampled from
780k Wikipedia articles (Ling and Weld, 2012) as
training corpus, while test set consists of the 2k
sentences manually annotated in 2013 KBP slot
filling assessment results (Ellis et al., 2012).

For both datasets, the training and test sets par-
titions are maintained in our experiments. Further-
more, we create validation sets by randomly sam-
pling 10% mentions from each test set and used
the remaining part as evaluation sets.

Feature Generation. As summarized in Table 2,
we use a 6-word window to extract context fea-
tures for each entity mention, apply the Stanford

! Codes and datasets used in this paper can be downloaded
at: https://github.com/LiyuanLucasLiu/
ReHession.
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Kind Wiki-KBP NYT
#lypes | #LF || #Types | #LF
Pattern 13 147 16 115
KB 7 7 25 26

Table 4: Number of labeling functions and the relation
types they can annotated w.r.t. two kinds of information

CoreNLP tool (Manning et al., 2014) to generate
entity mentions and get POS tags for both datasets.
Brown clusters(Brown et al., 1992) are derived for
each corpus using public implementation®. All
these features are shared with all compared meth-
ods in our experiments.

Labeling Functions. In our experiments, label-
ing functions are employed to encode two kinds of
supervision information. One is knowledge base,
the other is handcrafted domain-specific patterns.
For domain-specific patterns, we manually design
a number of labeling functions?; for knowledge
base, annotations are generated following the pro-
cedure in (Ren et al., 2016; Riedel et al., 2010).

Regarding two kinds of supervision informa-
tion, the statistics of the labeling functions are
summarized in Table 4. We can observe that
heuristic patterns can identify more relation types
for KBP datasets, while for NYT datasets, knowl-
edge base can provide supervision for more rela-
tion types. This observation aligns with our intu-
ition that single kind of information might be in-
sufficient while different kinds of information can
complement each other.

We further summarize the statistics of annota-
tions in Table 6. It can be observed that a large
portion of instances is only annotated as None,
while lots of conflicts exist among other instances.
This phenomenon justifies the motivation to em-
ploy true label discovery model to resolve the con-
flicts among supervision. Also, we can observe
most conflicts involve None type, accordingly,
our proposed method should have more advan-
tages over traditional true label discovery methods
on the relation extraction task comparing to the re-
lation classification task that excludes None type.

4.2 Compared Methods

We compare REHESSION with below methods:
FIGER (Ling and Weld, 2012) adopts multi-label

https://github.com/percyliang/
brown-cluster

3pattern-based labeling functions can be accessed
at: https://github.com/LiyuanLucasLiu/
ReHession



Relation Extraction Relation Classification

Method NYT Wiki-KBP NYT Wiki-KBP

Prec Rec F1 Prec Rec F1 Accuracy | Accuracy
NL+FIGER 0.2364 | 0.2914 | 0.2606 | 0.2048 | 0.4489 | 0.2810 0.6598 0.6226
NL+BFK 0.1520 | 0.0508 | 0.0749 | 0.1504 | 0.3543 | 0.2101 0.6905 0.5000
NL+DSL 0.4150 | 0.5414 | 0.4690 | 0.3301 | 0.5446 | 0.4067 0.7954 0.6355
NL+MultiR 0.5196 | 0.2755 | 0.3594 | 0.3012 | 0.5296 | 0.3804 0.7059 0.6484
NL+FCM 0.4170 | 0.2890 | 0.3414 | 0.2523 | 0.5258 | 0.3410 0.7033 0.5419
NL+CoType-RM || 0.3967 | 0.4049 | 0.3977 | 0.3701 | 0.4767 | 0.4122 0.6485 0.6935
TD+FIGER 0.3664 | 0.3350 | 0.3495 | 0.2650 | 0.5666 | 0.3582 0.7059 0.6355
TD+BFK 0.1011 | 0.0504 | 0.0670 | 0.1432 | 0.1935 | 0.1646 0.6292 0.5032
TD+DSL 0.3704 | 0.5025 | 0.4257 | 0.2950 | 0.5757 | 0.3849 0.7570 0.6452
TD+MultiR 0.5232 | 0.2736 | 0.3586 | 0.3045 | 0.5277 | 0.3810 0.6061 0.6613
TD+FCM 0.3394 | 0.3325 | 0.3360 | 0.1964 | 0.5645 | 0.2914 0.6803 0.5645
TD+CoType-RM || 0.4516 | 0.3499 | 0.3923 | 0.3107 | 0.5368 | 0.3879 0.6409 0.6890
REHESSION 0.4122 | 0.5726 | 0.4792 | 0.3677 | 0.4933 | 0.4208 0.8381 0.7277

Table 5: Performance comparison of relation extraction and relation classification

Dataset Wiki-KBP NYT

Total Number of RM 225977 530767
RM annotated as None 100521 356497
RM with conflicts 32008 58198
Conflicts involving None 30559 38756

Table 6: Number of relation mentions (RM), relation men-
tions annotated as None, relation mentions with conflicting
annotations and conflicts involving None

learning with Perceptron algorithm.
BFK (Bunescu and Mooney, 2005) applies bag-of-
feature kernel to train a support vector machine;
DSL (Mintz et al., 2009) trains a multi-class logis-
tic classifier* on the training data;
MultiR (Hoffmann et al., 2011) models training la-
bel noise by multi-instance multi-label learning;
FCM (Gormley et al., 2015) performs composi-
tional embedding by neural language model.
CoType-RM (Ren et al., 2016) adopts partial-label
loss to handle label noise and train the extractor.
Moreover, two different strategies are adopted
to feed heterogeneous supervision to these meth-
ods. The first is to keep all noisy labels, marked as
‘NL’. Alternatively, a true label discovery method,
Investment (Pasternack and Roth, 2010), is ap-
plied to resolve conflicts, which is based on the
source consistency assumption and iteratively up-
dates inferred true labels and label functions’ reli-
abilities. Then, the second strategy is to only feed
the inferred true labels, referred as “TD’.

*We use liblinear package from https//github.
com/cjlinl/liblinear

52

Universal Schemas (Riedel et al., 2013) is pro-
posed to unify different information by calculat-
ing a low-rank approximation of the annotations
O. It can serve as an alternative of the Investment
method, i.e., selecting the relation type with high-
est score in the low-rank approximation as the true
type. But it doesnt explicitly model noise and not
fit our scenario very well. Due to the constraint
of space, we only compared our method to Invest-
ment in most experiments, and Universal Schemas
is listed as a baseline in Sec. 4.4. Indeed, it per-
forms similarly to the Investment method.

Evaluation Metrics. For relation classification
task, which excludes None type from training /
testing, we use the classification accuracy (Acc)
for evaluation, and for relation extraction task, pre-
cision (Prec), recall (Rec) and F1 score (Bunescu
and Mooney, 2005; Bach and Badaskar, 2007) are
employed. Notice that both relation extraction and
relation classification are conducted and evaluated
in sentence-level (Bao et al., 2014).

Parameter Settings. Based on the semantic mean-
ing of proficient subset, we set ¢ to 1/|RU{None}|,
i.e., the probability of generating right label with
random guess. Then we set ¢1 to 1 — ¢a, A1
A2 = 1, and the learning rate o = 0.025. As for
other parameters, they are tuned on the validation
sets for each dataset. Similarly, all parameters of
compared methods are tuned on validation set, and
the parameters achieving highest F1 score are cho-
sen for relation extraction.



Relation Mention REHESSION Unli:::::]]gnf & Dataset & Method [ Prec [ Rec [ F1 [ Acc
Ann Demeulemeester (born born-in None Ori | 03677 | 0.4933 | 0.4208 | 0.7277
1959 , Waregem , Belgium ) is .. Wwiki-KBP | TD | 0.3032 | 0.5279 | 0.3850 | 0.7271
Raila Odinga was born at ..., in born-in None US | 0.3380 | 0.4779 | 0.3960 | 0.7268
Maseno, Kisumu District, ... Ori | 0.4122 | 0.5726 | 0.4792 | 0.8381
Ann Demeulemeester ( elected None None NYT TD 0.3758 0.4887 0.4239 0.7387
1959 , Waregem , Belgium ) is ... US | 0.3573 | 0.5145 | 0.4223 | 0.7362
Raila Odinga was examined at None None
..., in Maseno, Kisumu District, ...

Table 8:  Comparison among REHESSION (Ori),

Table 7: Example output of true label discovery. The first
two relation mentions come from Wiki-KBP, and their anno-
tations are {born-in, None}. The last two are created by
replacing key words of the first two. Key words are marked
as bold and entity mentions are marked as Italics.

4.3 Performance Comparison

Given the experimental setup described above, the
averaged evaluation scores in 10 runs of rela-
tion classification and relation extraction on two
datasets are summarized in Table 5.

From the comparison, it shows that NL strategy
yields better performance than TD strategy, since
the true labels inferred by Investment are actually
wrong for many instances. On the other hand,
as discussed in Sec. 4.4, our method introduces
context-awareness to true label discovery, while
the inferred true label guides the relation extractor
achieving the best performance. This observation
justifies the motivation of avoiding the source con-
sistency assumption and the effectiveness of pro-
posed true label discovery model.

One could also observe the difference between
REHESSION and the compared methods is more
significant on the NYT dataset than on the Wiki-
KBP dataset. This observation accords with the
fact that the NYT dataset contains more conflicts
than KBP dataset (see Table 6), and the intuition
is that our method would have more advantages on
more conflicting labels.

Among four tasks, the relation classification
of Wiki-KBP dataset has highest label quality,
i.e. conflicting label ratio, but with least num-
ber of training instances. And CoType-RM and
DSL reach relatively better performance among all
compared methods. CoType-RM performs much
better than DSL on Wiki-KBP relation classifica-
tion task, while DSL gets better or similar perfor-
mance with CoType-RM on other tasks. This may
be because the representation learning method
is able to generalize better, thus performs better
when the training set size is small. However, it is
rather vulnerable to the noisy labels compared to
DSL. Our method employs embedding techniques,
and also integrates context-aware true label dis-
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REHESSION-US (US) and REHESSION-TD (TD) on rela-
tion extraction and relation classification

covery to de-noise labels, making the embedding
method rather robust, thus achieves the best per-
formance on all tasks.

4.4 Case Study

Context Awareness of True Label Discovery.

Although Universal Schemas does not adopted
the source consistency assumption, but it’s con-
ducted in document-level, and is context-agnostic
in our sentence-level setting. Similarly, most true
label discovery methods adopt the source consis-
tency assumption, which means if they trust a la-
beling function, they would trust it on all anno-
tations. And our method infers true labels in a
context-aware manner, which means we only trust
labeling functions on matched contexts.

For example, Investment and Universal
Schemas refer None as true type for all four
instances in Table 7. And our method infers
born-in as the true label for the first two
relation mentions; after replacing the matched
contexts (born) with other words (elected and ex-
amined), our method no longer trusts born—-in
since the modified contexts are no longer matched,
then infers None as the true label. In other words,
our proposed method infer the true label in a
context aware manner.

Effectiveness of True Label Discovery. We ex-
plore the effectiveness of the proposed context-
aware true label discovery component by compar-
ing REHESSION to its variants REHESSION-TD
and REHESSION-US, which uses Investment or
Universal Schemas to resolve conflicts. The av-
eraged evaluation scores are summarized in Ta-
ble 8. We can observe that REHESSION signifi-
cantly outperforms its variants. Since the only dif-
ference between REHESSION and its variants is
the model employed to resolve conflicts, this gap
verifies the effectiveness of the proposed context-
aware true label discovery method.



5 Related Work

5.1 Relation Extraction

Relation extraction aims to detect and categorize
semantic relations between a pair of entities. To
alleviate the dependency of annotations given by
human experts, weak supervision (Bunescu and
Mooney, 2007; Etzioni et al., 2004) and distant su-
pervision (Ren et al., 2016) have been employed
to automatically generate annotations based on
knowledge base (or seed patterns/instances). Uni-
versal Schemas (Riedel et al., 2013; Verga et al.,
2015; Toutanova et al., 2015) has been proposed
to unify patterns and knowledge base, but it’s de-
signed for document-level relation extraction, i.e.,
not to categorize relation types based on a specific
context, but based on the whole corpus. Thus, it
allows one relation mention to have multiple true
relation types; and does not fit our scenario very
well, which is sentence-level relation extraction
and assumes one instance has only one relation
type. Here we propose a more general framework
to consolidate heterogeneous information and fur-
ther refine the true label from noisy labels, which
gives the relation extractor potential to detect more
types of relations in a more precise way.

Word embedding has demonstrated great poten-
tial in capturing semantic meaning (Mikolov et al.,
2013), and achieved great success in a wide range
of NLP tasks like relation extraction (Zeng et al.,
2014; Takase and Inui, 2016; Nguyen and Grish-
man, 2015). In our model, we employed the em-
bedding techniques to represent context informa-
tion, and reduce the dimension of text features,
which allows our model to generalize better.

5.2 Truth Label Discovery

True label discovery methods have been developed
to resolve conflicts among multi-source informa-
tion under the assumption of source consistency
(Li et al., 2016; Zhi et al., 2015). Specifically, in
the spammer-hammer model (Karger et al., 2011),
each source could either be a spammer, which an-
notates instances randomly; or a hammer, which
annotates instances precisely. In this paper, we as-
sume each labeling function would be a hammer
on its proficient subset, and would be a spammer
otherwise, while the proficient subsets are identi-
fied in the embedding space.

Besides data programming, socratic learning
(Varmaet al., 2016) has been developed to conduct
binary classification under heterogeneous supervi-
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sion. Its true label discovery module supervises
the discriminative module in label level, while
the discriminative module influences the true la-
bel discovery module by selecting a feature subset.
Although delicately designed, it fails to make full
use of the connection between these modules, i.e.,
not refine the context representation for classifier.
Thus, its discriminative module might suffer from
the overwhelming size of text features.

6 Conclusion and Future Work

In this paper, we propose REHESSION, an embed-
ding framework to extract relation under heteroge-
neous supervision. When dealing with heteroge-
neous supervisions, one unique challenge is how
to resolve conflicts generated by different labeling
functions. Accordingly, we go beyond the “source
consistency assumption” in prior works and lever-
age context-aware embeddings to induce profi-
cient subsets. The resulting framework bridges
true label discovery and relation extraction with
context representation, and allows them to mu-
tually enhance each other. Experimental evalu-
ation justifies the necessity of involving context-
awareness, the quality of inferred true label, and
the effectiveness of the proposed framework on
two real-world datasets.

There exist several directions for future work.
One is to apply transfer learning techniques
to handle label distributions’ difference between
training set and test set. Another is to incorporate
OpenlE methods to automatically find domain-
specific patterns and generate pattern-based label-
ing functions.
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Abstract

There has been a recent line of work au-
tomatically learning scripts from unstruc-
tured texts, by modeling narrative even-
t chains. While the dominant approach
group events using event pair relations, L-
STMs have been used to encode full chain-
s of narrative events. The latter has the
advantage of learning long-range tempo-
ral orders', yet the former is more adap-
tive to partial orders. We propose a neu-
ral model that leverages the advantages
of both methods, by using LSTM hid-
den states as features for event pair mod-
elling. A dynamic memory network is u-
tilized to automatically induce weights on
existing events for inferring a subsequen-
t event. Standard evaluation shows that
our method significantly outperforms both
methods above, giving the best results re-
ported so far.

1 Introduction

Frequently recurring sequences of events in pro-
totypical scenarios, such as visiting a restauran-
t and driving to work, are a useful source of world
knowledge. Two examples are shown in Figure 1,
which are different variations of the “restaurant
visiting” scenario, where events are partially or-
dered and can be flexible. Such knowledge is
useful for natural language understanding because
texts typically do not include event details when
mentioning a scenario. For example, the reader is
expected to infer that the narrator could have been

*This work has been done when the first author worked
at SUTD.

'The term “temporal order” is used throughout this work
to indicate the narrative order in texts, following Chambers

and Jurafsky (2008). Strictly speaking, the event order we
extract is the narrative order.
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Figure 1: Event sequences for restaurant visiting.

’ X walk to restaurant ‘

’ X leave restaurant ‘
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driving or cycling given the text “I got flat tire”.
Another typical use of event chain knowledge is
to help infer what is likely to happen next given a
previous event sequence in a scenario. We inves-
tigate the modeling of stereotypical event chains,
which is remotely similar to language modeling,
but with events being more sparse and flexibly or-
dered than words.

Our work follows a recent line of NLP re-
search on script learning. Stereotypical knowl-
edge about partially-ordered events, together with
their participant roles such as “customer”, “wait-
er”, and “table”, is conventionally referred to as
scripts (Schank et al., 1977). NLP algorithms
have been investigated for automatically inducing
scripts from unstructured texts (Mooney and De-
Jong, 1985; Chambers and Jurafsky, 2008). In par-
ticular, Chambers and Jurafsky (2008) made a first
attempt to learn scripts from test inducing event
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chains by grouping events based on their narrative
coherence, calculated based on Pairwise Mutual
Information (PMI). Jans et al. (2012) showed that
the method can be improved by calculating even-
t relations using skip bi-gram probabilities, which
explicitly model the temporal order of pairs even-
t. Jans et al. (2012)’s model is adopted by a line
of subsequent methods on inducing event chains
from text (Orr et al., 2014; Pichotta and Mooney,
2014; Rudinger et al., 2015).

While the above methods are statistical, neural
network models have recently been used for event
sequence modeling. Granroth-Wilding and Clark
(2016) used a Siamese Network instead of PMI
to calculate the coherence between two events.
Rudinger et al. (2015) extended the idea of Jan-
s et al. (2012) by using a log-bilinear neural lan-
guage model (Mnih and Hinton, 2007) to calcu-
late event probabilities. By learning embeddings
for reducing sparsity, the above models give much
better results compared to the models of Chambers
and Jurafsky (2008) and Jans et al. (2012). Simi-
lar in spirit, Modi (2016) predicted the probability
of an event belonging to a certain event chain by
modeling known events in the chain as a bag of
vectors, showing that it outperforms discrete sta-
tistical methods. These neural methods are con-
sistent with the earlier statistical models in lever-
aging event-pair relations.

Pichotta and Mooney (2016) experimented with
LSTM for script learning, using an existing se-
quence of events to predict the probability of a
next event, which outperformed strong discrete
baselines. One advantage of LSTMs is that they
can encode unbounded time sequences without
losing long-term historical information. LSTMs
capture significantly more order information com-
pared to the methods of Granroth-Wilding and
Clark (2016), Rudinger et al. (2015), and Mod-
1 (2016), which model the temporal order of only
pairs of events. On the other hand, a strong-order
LSTM model can also suffer the disadvantage of
over-fitting, given the flexible order of event chain-
s in a script, as demonstrated by the cases of Fig-
ure 1. In this aspect, event-pair models are more
adaptive for flexible orders. However, no direc-
t comparisons have been reported between LSTM
and various existing neural network methods that
model event-pairs.

We make such comparisons using the same
benchmark, finding that the method of Pichotta
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and Mooney (2016) does not necessarily outper-
form event-pair models, such as Granroth-Wilding
and Clark (2016). LSTM temporal ordering and
event pair modeling have their respective strength.
To leverage the advantages of both methods, we
propose to integrate chain temporal order infor-
mation into event relation measuring. In partic-
ular, we calculate event pair relations by repre-
senting events in a chain using LSTM hidden s-
tates, which encode temporal information. The L-
STM over-fitting issue is mitigated by using the
temporal-order in a chain as a feature for event
pair modeling, rather than the direct model out-
put. In addition, observing that the importance
of existing events can vary for inferring a subse-
quent event, we use a dynamic memory network
model to automatically induce event weights for
each event for inferring the next event. In con-
trast, previous methods give equal weights to ex-
isting events (Chambers and Jurafsky, 2008; Mo-
di, 2016; Granroth-Wilding and Clark, 2016).
Results on a multi-choice narrative cloze bench-
mark show that our model significantly outper-
forms both Granroth-Wilding and Clark (2016)
and Pichotta and Mooney (2016), improving the
state-of-the-art accuracy from 49.57% to 55.12%.
Our contributions can be summarized as follows:

e We make a systematic comparison of LSTM
and pair-based event sequence learning meth-
ods using the same benchmarks.

e We propose a novel dynamic memory net-
work model, which combines the advantages
of both LSTM temporal order learning and
traditional event pair coherence learning.

We obtain the best results in the standard
multi-choice narrative cloze test.

Our code is released at https://github.
com/wangzqg870305/event_chain.

2 Related Work

Scripts have been a traditional subject in Al re-
search (Schank et al., 1977), where event se-
quences are manually encoded in knowledge
bases, and used for end tasks such as inference.
They are also connected with research in linguis-
tics and psychology, and sometimes referred to
as frames (Minsky, 1975; Fillmore, 1982) and
schemata (Rumelhart, 1975). The same concept



is also studied as templates in information extrac-
tion (Sundheim, 1991). Chambers and Jurafsky
(2008) pioneered the recent line of work on script
induction (Jans et al., 2012; Pichotta and Mooney,
2016; Granroth-Wilding and Clark, 2016), where
the focus is on modeling narrative event chains, a
crucial subtask for script modeling from raw text.
Below we summarize such investigations.

With respect to event representation, Cham-
bers and Jurafsky (2008) casted narrative events
as triples of the form (event, dependency), where
the event is typically represented by a verb and the
dependency represents typed dependency relations
between the event and a protagonist, such as “sub-
ject” and “object”. Chambers and Jurafsky (2008)
organized narrative chains around a central actor,
or protagonist, mining events that share a common
protagonist from texts by using a syntactic parser
and a coreference resolver. Balasubramanian et al.
(2013) observed that the protagonist representa-
tion of event chains can suffer from weaknesses
such as lack of coherence, and proposed to repre-
sent events as (argi, relation, args), where arg;
and args represent the subject and object, respec-
tively. Such representation is inspired by open in-
formation extraction (Mausam et al., 2012), and
offers richer features for event pair modeling. Pi-
chotta and Mooney (2014) adpoted a similar idea,
using v(es, €,, €p) to represent an event, where v
is a verb lemma, e is the subject, e, is the ob-
ject, and e,, is an entity with prepositional relation
to v. Their representation is used by subsequent
work such as Modi (2016) and Granroth-Wilding
and Clark (2016). We follow Pichotta and Mooney
(2016) in our event representation form.

With respect to modeling, existing methods can
be classified into two main categories, namely
weak-order models, which calculate relations be-
tween pairs of events, and strong-order models,
which consider the temporal order of events in
a full sequence. Event-pair models have so far
been the dominant method in the literature. Earlier
work used discrete event representations and esti-
mated event relations by statistical counting. As
mentioned earlier, Chambers and Jurafsky (2008)
used PMI to calculate event relations, and Jan-
s et al. (2012) used skip bigram probabilites to
the same end, which is order-sensitive. Most sub-
sequent methods followed Jans et al. (2012) in
using skip n-grams (Pichotta and Mooney, 2014;
Rudinger et al., 2015).
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Events being multi-argument structures,
counting-based methods can suffer from sparsity
issues. Recent work employed embeddings to
address this disadvantage. Rudinger et al. (2015)
learned event embeddings as a by-product of
training a log-bilinear language model for events;
Granroth-Wilding and Clark (2016) leveraged
the skip-gram model of Mikolov et al. (2013) for
training the embeddings of event and arguments
by ordering them into a pseudo sentence. Modi
(2016) utilized word embeddings of verbs and
arguments directly, using a hidden layer to au-
tomatically consolidate word embedding into a
single structured event embeddings. We follow
Modi (2016) and use a hidden layer to learn event
argument compositions given word embeddings,
training the composition function as a part of the
event chain learning process.

Mitigating the sparsity issue of event represen-
tations, neural methods can capture temporal or-
ders between events beyond skip n-grams. Our
model integrates the advantages of strong-order
learning and event-pair learning by using LSTM
hidden states as feature representation of existing
events in the calculation of event pair relationship-
s. In addition, we use a memory network model to
weigh existing events, which gives better results
compared to the equal weighting method of exist-
ing models.

With respect to evaluation, Chambers and Ju-
rafsky (2008) proposed the Narrative Cloze Test,
which asks for a missing event in a given even-
t chain with a gap. The task has been adopted
by various subsequent work for comparing result-
s with Chambers and Jurafsky (2008) (Jans et al.,
2012; Pichotta and Mooney, 2014; Rudinger et al.,
2015). One issue of the narrative cloze test is that
there can sometimes be multiple plausible answer-
s, but only one gold-standard answer, which can
make it overly expensive to manually evaluate sys-
tem outputs. To address this issue, Modi (2016)
proposed the Adversarial Narrative Cloze (ANC)
task, which is to discriminate between pairs of real
and corrupted event chains. Granroth-Wilding and
Clark (2016) proposed the Multi-Choice Narrative
Cloze (MCNC) task, which is to choose the most
likely next event from a set of candidates given a
chain of events. We choose MCNC for comparing
different models.

Other related work includes learning tempo-
ral relations of events (Modi and Titov, 2014; Uz-
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Zaman et al., 2013; Abend et al., 2015), evaluat-
ed using different metrics. There has also been
work using graph models to induce frames, which
emphasize more on learning event structures and
less on temporal orders (Chambers, 2013; Cheung
et al., 2013). The above methods focus on one
of the two subtasks we consider here. Frermann
etal. (2014) used a Bayesian model to jointly clus-
ter web collections of explicit event sequence and
learn input event-pair temporal orders. However,
their work is under a different input setting (Reg-
neri et al., 2010), not learning event chains from
texts. Mostafazadeh et al. (2016) proposed the s-
tory close task (SCT), which is to predict the end-
ing given a unfinished story. Our narrative chain
prediction task can be regarded as a sub task in the
story close task, which can contribute as a major
approach. On the other hand, information beyond
event chains can be useful for the story close task.

3 Problem Definition

As shown in Figure 2, given a chain of narrative
events ei, es, ..., 5,1, our work is to predict the
likelihood of a next event candidate e,,. Formally,
an event e is a structure v(ag, a1, az), where v is a
verb describing the event, ag and a; are its subject
and direct object, respectively, and as is a prepo-
sitional object. For example, given the sentence
“John brought Marry to the restaurant”, an even-
t bring{ John, Marry, to the restaurant} can be
extracted.

We follow the standard script induction set-
ting (Chambers and Jurafsky, 2008; Granroth-
Wilding and Clark, 2016), extracting events from
a text corpus using a syntactic parser and a named
entity resolver. A neural network is used to mod-
el chains of extracted events for script learning.
In particular, we model the probability of a sub-
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sequent event given a chain of events. For eval-
uation, we solve the multi-choice narrative cloze
task: given a chain of events and a set of candidate
next events, the most likely candidate is chosen as
the output.

4 Model

The overall structure of our model is shown in Fig-
ure 3, which has three main components. First,
given an event v(ag, a1, az), a representation lay-
er is used to compose the embeddings of v, ag, a1,
and a9 into a single event vector e. Second, a L-
STM is used to map a sequence of existing events
e1, €9, ..., en—1 into a sequence of hidden vectors
hi, ha, ..., hn—1, which encode the temporal or-
der. Given a next event candidate e, the recurrent
network takes one further step from h,,_; to de-
rive its hidden vector h., which encodes e.. Third,
h¢ is paired with hy, hg, ..., hy—1 individually,
and passed to a dynamic memory network to learn
the relatedness score s. s is used to denote the
connectedness between the candidate subsequent
event and the context event chain.

4.1 Event Representation

We learn vector representations of standard events
by composing pre-trained word embeddings of
its verb and arguments. The skipgram mod-
el (Mikolov et al., 2013) is used to train word vec-
tors. For arguments that consist of more than one
word, we use the averaged word for the represen-
tation. OOV words are represented simply using
zero vectors. For events with less than 3 argu-
ments, such as “John fell”, where v = fall, ag =
John, a; = NULL, and a; = NULL, the NULL
arguments are represented using all-zero vectors.

Denoting the embeddings of v, ag, a1, and as
as e(v), e(ap), e(a1), and e(az), respectively, the
embedding of e is calculated using a tanh compo-
sition layer

e(e) =tanh(WY - e(v) + W2 - e(ag)+

1
VVe1 ~e(ay) + Wf -e(az) + be) M

Here W2, W2, W}, W2, and b are model
parameters, which are randomly initialized and
tuned during the training of the main network.

4.2 Modeling Temporal Orders

Given the embeddings of the existing chain of
events eq, €, ..., €,_1, we use a standard LST-
M (Hochreiter and Schmidhuber, 1997) without
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Figure 4: Temporal order modeling.

coupled input and forget gates or peephole con-
nections to model the temporal order. We ob-
tain a sequence of hidden state vectors hi, ho,
..y hp—1 by recurrently feeding e(e;), e(ez), ...,
e(en—1) as inputs to the LSTM, where h;
LSTM(e(e;), hi—1). The initial state hs and al-
I stand LSTM parameters are randomly initialized
and tuned during training.

Now for each candidate next event e., we ob-
tain its vector representation e(e.) in the same way
as for e; to e,—1. e(e.) is then appended to the
existing event chain to obtain a temporal-order-
sensitive feature vector h., by advancing the re-
current encoding process for one step from h,,_1:
he = LSTM(e(ec), hp—1). With multiple next
event candidates el, €2, ..., e™ (m € [1,00]), m
feature vectors are obtained, as shown in Figure 4,
each being used as a basis for estimating the prob-
ability of the corresponding event candidate.

4.3 Modeling Pairwise Event Relations

After obtaining the hidden states for events, we
model event pair relations using these hidden s-
tate vectors. A straightforward approach to model
the relation between two events is using a Siamese
network (Granroth-Wilding and Clark, 2016). The
order-sensitive LSTM features for existing events
hi, hs, ..., h,—1 and the candidate event h. are

61

used as event representations. Given a pair of
events h; (i € [1..n — 1]) and h,, the relatedness
score is calculated by
s; = sigmoid(Ws;h; + Weche + bs),  (2)
where Wy;, W, and bs are model parameters.
Given the relation score s; between h. and each
existing event h;, the likelihood of e, given ey, ea,
..., en—1 can be calculated as the average of s;:

Z?:_ll Si

5= n—1

3)

Weighting existing events. The drawback of
above approach is that it considers the contribu-
tion of each event on the chain is same. How-
ever, given a chain of existing events, some are
more informative for inferring a subsequent event
than others. For example, given the events “wait
in queue”, “getting seated” and “order food”, “or-
der food” is more relevant for inferring “eat food”
compared with the other two given events. Given
information over the full event chain, this link can
be more evident since the scenario is likely restau-
rant visiting.

We use an attentional neural network to calcu-
late the relative importance of each existing event
according to the subsequent event candidate, using
h;i (i € [1..n—1]) and h,. for event representations:

w; = tanh(We;h; + Wehe + by,) 4)

exp(u;)

NS exp(uy)

where «; € [0, 1] is the weight of h;, and >, ol =
1. We;, We, and b,, are model parameters.

After obtaining the weight «; of each existing
event h;, the relatedness of e, with the existing
events can be calculated as:

n—1
S = E (07371
=1

Multi-layer attention using Deep memory
network. Memory network (Weston et al., 2014;
Mikolov et al., 2014) has been used for explor-
ing deep semantic information for semantic tasks.
Such as question answering (Sukhbaatar et al.,
2015; Kumar et al., 2016) and reading comprehen-
sion (Hermann et al., 2015; Weston et al., 2015).
Our task is analogous to such semantic tasks in

&)

(6)
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Figure 5: Memory network at hop ¢. h; is the hid-
den variable of the existing event chain, v’ is the
semantic representation between context events
and candidate event. a' is the weight of contex-
t events, and g is the gated recurrent network on
Eq.10.

the sense that deep semantic information can be
necessary for making the most rational inference.
Hence, we are motivated to use a deep memory
network model to refine event weight and event
relation calculation by recurrently modeling more
abstract representations of the scenario. Different
from the previous researches, we use the memo-
ry network to model the event chain, refining the
attention mechanism used to explore the pair-wise
relation between events.

The memory model consists of multiple dynam-
ic computational layers (hops). For the first layer
(hop 1), the weights « for existing events ey, es,
..., én—1 can be calculated using the same attention
mechanism as Eq.4 and Eq.5. Given the weights
«, we build a consolidated representation of con-
text event chain ey, es, ..., e,_1 as a weighted sum

of hl, hz, . hnfll

n—1
he = ZO@' . hi
i—1

The event candidate h. and the new represen-
tation of the existing chain h, can be further in-
tegrated to deduce a deeper representation of the
full event chain hypothesis to the next layer (hop
2), denoted as v. v contains deeper semantic infor-
mation compared with h., which encode the tem-
poral order of the event chain [hq, ha, ..., hp—1, A
without differentiating the weights of each event.
As a result, in the next hop, better event weights
can potentially be deduced by using v instead of
h. in the calculation of attention:

(7)

Ug — tanh(Weihi =+ vat + bu) (8)
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of = _P(ug)
DY j exp(ué)
In the same way, we stack multiple hops and
repeat the steps multiple times, so that more ab-
stract evidences can be extracted according to the
chain of existing events. The above process can
be performed recurrently, by taking h. as an ini-
tial scenario representation vy, and then repeated-
ly calculating hl given hy, ha, ..., hp—1 and ',
and using h! and v; to find a deeper scenario rep-
resentation v'*!. Following Chung et al. (2014)
and Tran et al. (2016), a gated recurrent network
is used to this end:

z = o(W,h! + U0

r = o(W,ht + U0
h = tanh(Wh! + U(r ® ot))
vl =(1-2)0v+20h

€))

(10)

At any step, if the value of |v! ™! —v!|is less than
the threshold u, we consider that the progress has
reached convergence. Figure 5 shows an overview
of the memory network at hop .

4.4 Training

Given a set of event chains, each with a gold-
standard subsequent event and a number of non-
subsequent events, our training objective is to
minimize the cross-entropy loss between the gold
subsequent event and the set of non-subsequent
events. The loss function of event chain predic-
tion is that:
N
S s w0 + 5161

=1

L(©) 1)

where s; is the relation score, y; is the label of the
candidate (y; = 1 for positive sample, and y; = 0
for negative sample), © is the set of model param-
eters and A is a parameter for L2 regularization.
We apply online training, where model parameter-
s are optimized by using AdaGrad (Duchi et al.,
2011). We train word embedding using the Skip-
gram algorithm (Mikolov et al., 2013)?.

5 Experiments

5.1 Datasets

Following Granroth-Wilding and Clark (2016), we
extract events from the NYT portion of the Gi-
gaword corpus (Graff et al., 2003). The C&C

Zhttps://code.google.com/p/word2vec/



tools (Curran et al., 2007) are used for POS tag-
ging and dependency parsing, and OpenNLP? for
phrase structure parsing and coreference resolu-
tion. The training set consists of 1,500,000 even-
t chains. We follow Granroth-Wilding and Clark
(2016) and use 10,000 event chains as the test set,
and 1,000 event chains for development. There
are 5 choices of output event for event input chain,
which are given by Granroth-Wilding and Clark
(2016). This dataset is referred to as G&C16.

We also adapt the Chambers and Jurafsky
(2008)’s dataset to the multiple choice setting, and
use this dataset as the second benchmark. The
dataset contains 69 documents, with 346 multiple
choice event chain samples. We randomly sample
4 negative subsequent events for each event chain
to make multiple-choice candidates. This dataset
is referred to as C&J08. For both datasets, accu-
racy (Acc.) of the chosen subsequent event is used
to measure the performance of our model.

5.2 Hyper-parameters

There are several important hyper-parameters in
our models, and we tune their values using the
development dataset. We set the regularization
weight A\ = 1078 and the initial learning rate to
0.01. The size of word vectors is set to 300, and
the size of hidden vectors in LSTM to 128. In
order to avoid over-fitting, dropout (Hinton et al.,
2012) is used for word embedding with a ratio of
0.2. The neighbor similarity threshold 7 is set to
0.25. The threshold y of the memory network sets
to 0.1.

5.3 Development Experiments

We conduct a set of development experiments on
the G&C16 development set to study the influence
of event argument representations and network
configurations of the proposed MemNet model.

5.3.1 Influence of Event Structure

Existing literature discussed various structures to
denote events, such as v(ag, a1) and v(ag, a1, az).
We investigate the influence of integrating argu-
ment values of the subject ag, object a; and prepo-
sition ao, by doing ablation experiments on the
development data. The results are shown in Ta-
ble 1, where the system using all arguments gives a
54.36% accuracy. By removing a9, which exists in
17.6% of the events in our developmental data, the

*https://opennlp.apache.org/
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Method | Acc. (%)

MemNet 54.36
-verb 42.63
-(ag,a1) 52.32
-(ap) 53.43
-(a1) 53.57
-(as) 54.02

Table 1: Influence of event arguments.

accuracy drops to 54.02%. In contrast, by remov-
ing ag and a1, which exist in 87.6% and 64.6%
of the events in the development data, respective-
ly, the accuracies drop to 53.43% and 53.57%, re-
spectively, which demonstrates the relative impor-
tance of ag (i.e., the subject) and a; (i.e., the ob-
ject) for event modelling. While most previous
work (Chambers and Jurafsky, 2008; Balasubra-
manian et al., 2013; Pichotta and Mooney, 2014)
modelled only ag and a;, recent work (Pichotta
and Mooney, 2016; Granroth-Wilding and Clark,
2016) modelled a also.

By removing both a; and as, the accuracy drops
further to 53.32%. Interestingly, by removing the
verb while keeping only the arguments, the accu-
racy drops to 42.63%. While this demonstrates the
central value of the verb in denoting a event, it al-
so suggests that the arguments themselves play a
useful role in inferring the stereotypical scenario.

5.3.2 Influence of Network Configurations

We study the influence of various network config-
urations by performing ablation experiments, as
shown in Table 2. MemNet is the full model of
this paper; -LSTM denotes ablation of the LSTM
layer, using e(e1), e(e2), ..., e(e,—1) instead of hq,
ha, ..., hp—1 to represent events; -Hop denotes ab-
lation of the dynamic network model, using on-
ly attention mechanism to calculate the weights of
each existing event; -Attention denotes ablation of
the attention mechanism, using the same weight
on each existing event when inferring e.. The
model “-Attention, -LSTM” is hence similar to the
method of Granroth-Wilding and Clark (2016), al-
though we used a different way of deriving even-
t embeddings. The model “LSTM-only” shows a
based by using LSTM hidden vector h,_; to di-
rectly predict the next event, which is similar to
the method of Pichotta and Mooney (2016).
Influence of Temporal Order. By compar-
ing “MemNet” and “-LSTM”, and comparing “-



Method | Acc. (%)
MemNet 54.36
-Hop 52.03
-Attention 50.76
-LSTM 51.72
-Hop,-LSTM 50.65
-Attention,-LSTM 48.26
LSTM-Only 46.72

Table 2: Analysis of network structure.

Attention” with “-Attention, -LSTM”, one can
find that temporal order information over the w-
hole event chain does have significant influence
on the results (p — value < 0.01 using t-test).
On the other hand, using LSTM to directly pre-
dict the subsequent event (“LSTM-only’) does not
give better accuracies compared to model even-
t pairs (“-Attention, -LSTM”). This confirms our
intuition that strong-oder modelling and event-pair
modelling each have their own strength.

Influence of Attention.  Comparison be-
tween “-Attention” and “-Hop”, and between ‘-
Attention, -LSTM” and “-Hop, -LSTM” shows
that giving different weights to different events
does lead to improving results. Our analysis in
Section 4.3 gives more intuitions to this obser-
vation. Finally, comparison between “-Hop” and
“MemNet” and between “-Hop, -LSTM” and “-
LSTM” shows that a multi-hop deep memory net-
work can indeed enhance the model with single
level attention by offering more effective semantic
representation of the scenarios.

5.4 Final Results

Table 3 shows the final results on the C&C 16 and
C&JO08 datasets, respectively. We compare the re-
sults of our final model with the following base-
lines:

e PMI is the co-occurrence based model of
Chambers and Jurafsky (2008), who calcu-
late event pair relations based on Pointwise
Mutual Information (PMI), scoring each can-
didate event e, by the sum of PMI scores be-
tween the given events eq, €1, ..., €,—1 and
the candidate.

Bigram is the counting based model of Jans
et al. (2012), calculating event pair relation-
s based on skip bigram probabilities, trained
using maximum likelihood estimation.
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Method | G&C16 | C&J08
PMI 30.52 30.92
Bigram 29.67 25.43
Event-Comp | 49.57 43.28
RNN 45.74 43.17
MemNet 55.12 46.67

Table 3: Final results.

e Event-Comp is the neural event relation
model proposed by Granroth-Wilding and
Clark (2016). They learn event representa-
tions by calculating pair-wise event scores
using a Siamese network.

RNN is the method of Pichotta and Mooney
(2016), who model event chains by directly
using h. in Section 4.2 to predict the output,
rather than taking them as features for event
pair relation modeling.

MemNet is the proposed deep memory net-
work model.

Our reimplementation of PMI and Bigrams fol-
lows (Granroth-Wilding and Clark, 2016). It
can be seen from the table that the statistical
counting-based models PMI and Bigram signif-
icantly underperform the neural network models
Event-Comp, RNN and MemNet, which is largely
due to their sparsity and lack of semantic repre-
sentation power. Under our event representation,
Bigram does not outperform PMI significantly ei-
ther, although considering the order of event pairs.
This is likely due to sparsity of events when all
arguments are considered.

Direct comparison between Event-Comp and
RNN shows that the event-pair model gives com-
parable results to the strong-order LSTM model.
Although Granroth-Wilding and Clark (2016) and
Pichotta and Mooney (2016) both compared with
statistical baselines, they did not make direct com-
parisons between their methods, which represen-
t two different approaches to the task. Our re-
sults show that they each have their unique ad-
vantages, which confirm our intuition in the in-
troduction. By considering both pairwise rela-
tions and chain temporal orders, our method sig-
nificantly outperform both Event-Comp and RNN
(p — value < 0.01 using t-test), giving the best
reported results on both datasets.



6 Conclusion

We proposed a dynamic memory network to inte-
grate chain order information into event relation
measuring, calculating event pair relations by rep-
resenting events in a chain using LSTM hidden s-
tates, which encode temporal orders, and using a
dynamic memory model to automatically induce
event weights for each event. Standard evaluation
showed that our method significantly outperforms
state-of-the-art event pair models and event chain
models, giving the best results reported so far.

Acknowledgments

The corresponding author is Yue Zhang. We are
grateful for the help of Fei Dong for his initial dis-
cussion. We thank our anonymous reviewers for
their constructive comments, which helped to im-
prove the paper. This work is supported by the
Temasek Lab grant IGDST1403012 at Singapore
University of Technology and Design.

References

Omri Abend, Shay B. Cohen, and Mark Steedman.
2015. Lexical event ordering with an edge-factored
model. In NAACL HLT 2015, The 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Denver, Colorado, USA, May
31 - June 5, 2015, pages 1161-1171.

Niranjan Balasubramanian, Stephen Soderland,
Mausam, and Oren Etzioni. 2013.  Generating
coherent event schemas at scale. In Proceedings
of the 2013 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2013,
18-21 October 2013, Grand Hyatt Seattle, Seattle,
Washington, USA, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1721-1731.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2013,
18-21 October 2013, Grand Hyatt Seattle, Seattle,
Washington, USA, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1797-1807.

Nathanael Chambers and Daniel Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In ACL
2008, Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics, June 15-
20, 2008, Columbus, Ohio, USA, pages 789-797.

Jackie Chi Kit Cheung, Hoifung Poon, and Lucy Van-
derwende. 2013. Probabilistic frame induction.
In Human Language Technologies: Conference of
the North American Chapter of the Association of

65

Computational Linguistics, Proceedings, June 9-14,
2013, Westin Peachtree Plaza Hotel, Atlanta, Geor-
gia, USA, pages 837-846.

Junyoung Chung, Caglar Giilcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555.

James R. Curran, Stephen Clark, and Johan Bos. 2007.
Linguistically motivated large-scale NLP with c&c
and boxer. In ACL 2007, Proceedings of the 45th
Annual Meeting of the Association for Computation-
al Linguistics, June 23-30, 2007, Prague, Czech Re-
public.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12:2121-2159.

Charles Fillmore. 1982. Frame semantics. Linguistics
in the morning calm, pages 111-137.

Lea Frermann, Ivan Titov, and Manfred Pinkal. 2014.
A hierarchical bayesian model for unsupervised in-
duction of script knowledge. In Proceedings of
the 14th Conference of the European Chapter of
the Association for Computational Linguistics, EA-
CL 2014, April 26-30, 2014, Gothenburg, Sweden,
pages 49-57.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Mae-
da. 2003. English gigaword. Linguistic Data Con-
sortium, Philadelphia.

Mark Granroth-Wilding and Stephen Clark. 2016.
What happens next? event prediction using a com-
positional neural network model. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelli-
gence, February 12-17, 2016, Phoenix, Arizona, US-
A., pages 2727-2733.

Karl Moritz Hermann, Tomds Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in
Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada, pages 1693-1701.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2012. Improving neural networks by

preventing co-adaptation of feature detectors.
CoRR, abs/1207.0580.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Bram Jans, Steven Bethard, Ivan Vulic, and Marie-
Francine Moens. 2012. Skip n-grams and rank-
ing functions for predicting script events. In EACL
2012, 13th Conference of the European Chapter of



the Association for Computational Linguistics, Avi-
gnon, France, April 23-27, 2012, pages 336-344.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyy-
er, James Bradbury, Ishaan Gulrajani, Victor Zhong,
Romain Paulus, and Richard Socher. 2016. Ask me
anything: Dynamic memory networks for natural
language processing. In Proceedings of the 33nd In-
ternational Conference on Machine Learning, ICM-
L 2016, New York City, NY, USA, June 19-24, 2016,
pages 1378-1387.

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, EMNLP-CoNLL 2012,
July 12-14, 2012, Jeju Island, Korea, pages 523—
534.

Tomas Mikolov, Armand Joulin, Sumit Chopra,
Michaél Mathieu, and Marc’ Aurelio Ranzato. 2014.
Learning longer memory in recurrent neural net-
works. CoRR, abs/1412.7753.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., pages 3111-
3119.

Marvin Minsky. 1975. A framework for representing
knowledge.

Andriy Mnih and Geoffrey E. Hinton. 2007. Three new
graphical models for statistical language modelling.
In Machine Learning, Proceedings of the Twenty-
Fourth International Conference (ICML 2007), Cor-
vallis, Oregon, USA, June 20-24, 2007, pages 641—
648.

Ashutosh Modi. 2016. Event embeddings for semantic
script modeling. In Proceedings of the 20th SIGNL-
L Conference on Computational Natural Language
Learning, CoNLL 2016, Berlin, Germany, August
11-12, 2016, pages 75-83.

Ashutosh Modi and Ivan Titov. 2014. Inducing neu-
ral models of script knowledge. In Proceedings of
the Eighteenth Conference on Computational Nat-
ural Language Learning, CoNLL 2014, Baltimore,
Maryland, USA, June 26-27, 2014, pages 49-57.

Raymond Mooney and Gerald DeJong. 1985. Learning
schemata for natural language processing. Urbana,
51:61801.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James F. Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding

66

of commonsense stories. In NAACL HLT 2016, The
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, San Diego California,
USA, June 12-17, 2016, pages 839-849.

John Walker Orr, Prasad Tadepalli, Janardhan Rao
Doppa, Xiaoli Fern, and Thomas G. Dietterich.
2014. Learning scripts as hidden markov models. In
Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27 -31, 2014, Québec
City, Québec, Canada., pages 1565-1571.

Karl Pichotta and Raymond J. Mooney. 2014. Statis-
tical script learning with multi-argument events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, EACL 2014, April 26-30, 2014, Gothen-
burg, Sweden, pages 220-229.

Karl Pichotta and Raymond J. Mooney. 2016. Learning
statistical scripts with LSTM recurrent neural net-
works. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA., pages 2800-2806.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In ACL 2010, Proceedings of the 48th
Annual Meeting of the Association for Computation-
al Linguistics, July 11-16, 2010, Uppsala, Sweden,
pages 979-988.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction
as language modeling. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 1681-1686.

David E Rumelhart. 1975. Notes on a schema for sto-
ries. Representation and understanding: Studies in
cognitive science, 211(236):45.

Roger Schank, Roger Schank, and Robert P Abelson.
1977. Scripts, plans, goals and understanding; an
inquiry into human knowledge structures. Technical
report.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 2440—
2448.

Beth Sundheim. 1991. Third message understanding
evaluation and conference (muc-3): Phase 1 status
report. In HLT.

Ke M. Tran, Arianna Bisazza, and Christof Monz.
2016. Recurrent memory networks for language



modeling. In NAACL HLT 2016, The 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, San Diego California, USA,
June 12-17, 2016, pages 321-331.

Naushad UzZaman, Hector Llorens, Leon Derczynski,
James F. Allen, Marc Verhagen, and James Puste-
jovsky. 2013. Semeval-2013 task 1: Tempeval-
3: Evaluating time expressions, events, and tem-
poral relations. In Proceedings of the 7th In-
ternational Workshop on Semantic Evaluation,
SemEval @ NAACL-HLT 2013, Atlanta, Georgia,
USA, June 14-15, 2013, pages 1-9.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks. CoR-
R, abs/1502.05698.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2014. Memory networks. CoRR, abs/1410.3916.



Entity Linking for Queries by Searching Wikipedia Sentences

Chuangi Tan' * Furu Wei! Pengjie Rent Weifeng Lv Ming Zhou'
TState Key Laboratory of Software Development Environment, Beihang University, China

fMicrosoft Research

Ttanchuanqi@nlsde.buaa.edu.cn
Hfuwei, mingzhou}@microsoft.com

Abstract

We present a simple yet effective approach
for linking entities in queries. The key idea
is to search sentences similar to a query
from Wikipedia articles and directly use
the human-annotated entities in the simi-
lar sentences as candidate entities for the
query. Then, we employ a rich set of
features, such as link-probability, context-
matching, word embeddings, and related-
ness among candidate entities as well as
their related entities, to rank the candi-
dates under a regression based framework.
The advantages of our approach lie in two
aspects, which contribute to the ranking
process and final linking result. First, it
can greatly reduce the number of candi-
date entities by filtering out irrelevant en-
tities with the words in the query. Second,
we can obtain the query sensitive prior
probability in addition to the static link-
probability derived from all Wikipedia ar-
ticles. We conduct experiments on two
benchmark datasets on entity linking for
queries, namely the ERD14 dataset and
the GERDAQ dataset. Experimental re-
sults show that our method outperforms
state-of-the-art systems and yields 75.0%
in F1 on the ERD14 dataset and 56.9% on
the GERDAQ dataset.

1 Introduction

Query understanding has been an important re-
search area in information retrieval and natural
language processing (Croft et al., 2010). A key
part of this problem is entity linking, which aims
to annotate the entities in the query and link
them to a knowledge base such as Freebase and
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Wikipedia. This problem has been extensively
studied over the recent years (Ling et al., 2015;
Usbeck et al., 2015; Cornolti et al., 2016).

The mainstream methods of entity linking for
queries can be summed up in three steps: mention
detection, candidate generation, and entity disam-
biguation. The first step is to recognize candidate
mentions in the query. The most common method
to detect mentions is to search a dictionary col-
lected by the entity alias in a knowledge base and
the human-maintained information in Wikipedia
(such as anchors, titles and redirects) (Laclavik
et al., 2014). The second step is to generate
candidates by mapping mentions to entities. It
usually uses all possible senses of detected men-
tions as candidates. Hereafter, we refer to these
two steps of generating candidate entities as entity
search. Finally, they disambiguate and prune can-
didate entities, which is usually implemented with
a ranking framework.

There are two main issues in entity search. First,
a mention may be linked to many entities. The
methods using entity search usually leverage little
context information in the query. Therefore it may
generate many completely irrelevant entities for
the query, which brings challenges to the ranking
phase. For example, the mention “Austin” usually
represents the capital of Texas in the United States.
However, it can also be linked to “Austin, Western
Australia”, “Austin, Quebec”, “Austin (name)”,
“Austin College”, “Austin (song)” and 31 other
entities in the Wikipedia page of “Austin (disam-
biguation)”. For the query “blake shelton austin
lyrics”, Blake Shelton is a singer and made his
debut with the song “Austin”. The entity search
method detects the mention “austin” using the dic-
tionary. However, while “Austin (song)” is most
related to the context “blake shelton” and “lyrics”,
the mention “austin” may be linked to all the above
entities as candidates. Therefore candidate gener-
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ation with entity search generates too many can-
didates especially for a common anchor text with
a large number of corresponding entities. Second,
it is hard to recognize entities with common sur-
face names. The common methods usually define
a feature called “link-probability” as the probabil-
ity that a mention is annotated in all documents.
There is an issue with this probability being static
whatever the query is. We show an example with
the query “her film”. “Her (film)” is a film while
its surface name is usually used as a possessive
pronoun. Since the static link-probability of “her”
from all Wikipedia articles is very low, “her” is
usually not treated as a mention linked to the en-
tity “Her (film)”.

In this paper, we propose a novel approach to
generating candidates by searching sentences from
Wikipedia articles and directly using the human-
annotated entities as the candidates. Our approach
can greatly reduce the number of candidate enti-
ties and obtain the query sensitive prior probabil-
ity. We take the query “blake shelton austin lyrics”
as an example. Below we show a sentence in the
Wikipedia page of “Austin (song)”.

[[Austin (song)|Austin]] is the title of a debut
song written by David Kent and Kirsti Manna,
and performed by American country music
artist [[Blake Shelton]].

Table 1: A sentence in the page “Austin (song)”.

In the above sentence, the mentions “Austin”
and “Blake Shelton” in square brackets are an-
notated to the entity “Austin (song)” and “Blake
Shelton”, respectively. We generate candidates by
searching sentences and thus obtain “Blake Shel-
ton” as well as “Austin (song)” from this example.
We reduce the number of candidates because many
irrelevant entities linked by ‘“‘austin” do not oc-
cur in returned sentences. In addition, as previous
methods generate candidates by searching entities
without the query information, “austin” can be
linked to “Austin, Texas” with much higher static
link-probability than all other senses of “austin”.
However, the number of returned sentences that
contain “Austin, Texas” is close to the number of
sentences that contain “Austin (song)” in our sys-
tem. We show another example with the query
“her film” in Table 2. In this sentence, “Her”, “ro-
mantic”, “science fiction”, “comedy-drama” and
“Spike Jonze” are annotated to corresponding en-
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tities. As “Her” is annotated to “Her (film)” by
humans in this example, we have strong evidence
to annotate it even if it is usually used as a posses-
sive pronoun with very low static link-probability.

[[Her (film)/Her]] is a 2013 American [[ro-
mantic]] [[science fiction]] [[comedy-drama]]
film written, directed, and produced by
[[Spike Jonze]].

Table 2: A sentence in the page “Her (film)”.

We obtain the anchors as well as corresponding
entities and map them to the query after search-
ing similar sentences. Then we build a regres-
sion based framework to rank the candidates. We
use a rich set of features, such as link-probability,
context-matching, word embeddings, and related-
ness among candidate entities as well as their re-
lated entities. We evaluate our method on the
ERD14 and GERDAQ datasets. Experimental re-
sults show that our method outperforms state-of-
the-art systems and yields 75.0% and 56.9% in
terms of F1 metric on the ERD14 dataset and the
GERDAQ dataset respectively.

2 Related Work

Recognizing entity mentions in text and linking
them to the corresponding entries helps to under-
stand documents and queries. Most work uses the
knowledge base including Freebase (Chiu et al.,
2014), YAGO (Yosef et al.,, 2011) and Dbpe-
dia (Olieman et al., 2014). Wikify (Mihalcea and
Csomai, 2007) is the very early work on linking
anchor texts to Wikipedia pages. It extracts all n-
grams that match Wikipedia concepts such as an-
chors and titles as candidates. They implement
a voting scheme based on the knowledge-based
and data-driven method to disambiguate candi-
dates. Cucerzan (2007) uses four recourses to
generate candidates, namely entity pages, redirect-
ing pages, disambiguation pages, and list pages.
Then they disambiguate candidates by calculat-
ing the similarity between the contextual informa-
tion and the document as well as category tags on
Wikipedia pages. Milne and Witten (2008) gen-
erate candidates by gathering all n-grams in the
document, and retaining those whose probability
exceeds a low threshold. Then they define com-
monness and relatedness on the hyper-link struc-
ture of Wikipedia to disambiguate candidates.
The work on linking entities in queries has been



extensively studied in recent years. TagME (Fer-
ragina and Scaiella, 2010) is a very early work
on entity linking in queries. It generates candi-
dates by searching Wikipedia page titles, anchors
and redirects. Then disambiguation exploits the
structure of the Wikipedia graph, according to a
voting scheme based on a relatedness measure
inspired by Milne and Witten (2008). The im-
proved version of TagME, named WAT (Piccinno
and Ferragina, 2014), uses Jaccard-similarity be-
tween two pages’ in-links as a measure of relat-
edness and uses PageRank to rank the candidate
entities. Moreover, Meij (2012) proposes a two
step approach for linking tweets to Wikipedia arti-
cles. They first extract candidate concepts for each
n-gram, and then use a supervised learning algo-
rithm to classify relevant concepts.

Unlike the work which revolves around rank-
ing entities for query spans, the Entity Recognition
and Disambiguation (ERD) Challenge (Carmel
et al., 2014) views entity linking in queries as the
problem of finding multiple query interpretations.
The SMAPH system (Cornolti et al., 2014) which
wins the short-text track works in three phases:
fetching, candidate-entity generation and pruning.
First, they fetch the snippets returned by a com-
mercial search engine. Next, snippets are parsed to
identify candidate entities by looking at the bold-
faced parts of the search snippets. Finally, they im-
plement a binary classifier using a set of features
such as the coherence and robustness of the anno-
tation process and the ranking as well as compo-
sition of snippets. They further extend SMAPH-1
to SMAPH-2 (Cornolti et al., 2016). They use the
annotator WAT to annotate the snippets of search
results to generate candidates and joint the addi-
tionally link-back step as well as the pruning step
in the ranking phase, which gets the state-of-the-
art results on the ERD14 dataset and their released
dataset GERDAQ. There is another work closed to
SMAPH that uses information of query logs and
anchor texts (Blanco et al., 2015), which gives a
ranked list of entities and is evaluated by means of
typical ranking metrics.

Our work is different from using search en-
gines to generate candidates. We firstly propose
to search Wikipedia sentences and take advan-
tage of human annotations to generate candidates.
The previous work, such as SMAPH, employs
search engine for candidate generation, which puts
queries in a larger context in which it is easier to
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make sense of them. However, it uses WAT, an
entity search based tool, to pre-annotate the snip-
pets for candidate generation, which falls back the
issues of entity search.

3 Our Approach

As shown in Figure 1, we introduce our approach
with the query “blake shelton austin lyrics”. Our
approach consists of three main phases: sentence
search, candidate generation, and candidate rank-
ing. First, we search the query in all Wikipedia ar-
ticles to obtain the similar sentences. Second, we
extract human-annotated entities from these sen-
tences. We keep the entities whose correspond-
ing anchor texts occur in the query as candidates,
and treat others as related entities. Specifically, we
obtain three candidates in this example, namely
“Blake Shelton”, “Austin, Texas”, and “Austin
(song)”. Finally, we use a regression based model
to rank the candidate entities. We get the final an-
notations of “Blake Shelton” and “Austin (song)”
whose scores are higher than the threshold se-
lected on the development set. In the following
sections, we describe these three phases in detail.

3.1 Sentence Search

Sentences in Wikipedia articles usually contain
anchors linking to entities. We are therefore mo-
tivated to generate the candidate entities based on
the sentence search instead of the common method
using entity search. There are some issues in the
original annotations because of the annotation reg-
ulation. First, entities in their own pages are usu-
ally not annotated. Thus we annotate these enti-
ties with matching between the text and the page
title. Second, entities are usually annotated only
in their first appearance. We annotate these en-
tities if they are annotated in previous sentences
in the page. Moreover, pronouns are widely used
in Wikipedia sentences and are usually not anno-
tated. We use the Stanford CoreNLP toolkit (Man-
ning et al., 2014) to do the coreference resolution.
In addition, we use the content in the disambigua-
tion page and the infobox. Although these two
kinds of information may have incomplete gram-
matical structure, it contains enough context infor-
mation for the sentence search in our task.

We use the Wikipedia snapshot of May 1, 2016,
which contains 4.45 million pages and 120 mil-
lion sentences. We extract sentences that contain
at least one anchor in the Wikipedia articles, and



Sentence Search

Candidate
Generation

—

o |
y

!

!

—

Candidate
Ranking

!

}—>‘ Output ‘
v

"[[Austin (song)|Austin]]" is the title of a debut song written by Candidate Entities:
David Kent and Kirsti Manna, and performed by American Blake Shelton: Blake Shelton: 1.04 Blake Shelton
country music artist [[Blake Shelton]]. -- Page:Austin (song) Sentence: 487 Score: 6.37 Austin, Texas: 0.47 )
gi't‘ﬁfl;f:tc‘;” In 2001, [[Blake Shelton]] made his debut with the single Astn, Tes Austin (song): 0.57 Austin (song)
"[[Austin (song)|Austin]]". -- Page:Blake Shelton Austin (éong): -
Braddock is credited as producer for several of Shelton's number- Sentence: 5 Score: 6.37
one country [[music|country]] hits, including [[Bobby
Braddock]]'s debut single “[[Austin (song)|Austin]]" which spent Related Entities:
five weeks at the top of the charts. -- Page:Bobby Braddock Bobby Braddock
Both [[Shakira]] and [[Blake Shelton]] turned their chairs but she Shakira
opted for [[Blake Shelton]]. -- Page:Paula Deanda Gilbert Shelton
It was used in the 1960s by poster artists such as underground Blake Shelton (album)
comic artist [[Gilbert Shelton]], who designed posters for a venue | | ------
in [[Austin, Texas|Austin]], Texas called The Vulcan Gas T
Company. -- Page: Split-fount Inking
It was released in October 2001 as the second single from Back-Mapping Context-Independent Features
Spell Check Shelton's first album, "[[Blake Shelton (album)|Blake Shelton]]". Long-string Matching Context-Matching Features
—Page: All Over Me (Blake Sheltonsong) | | e Relatedness Features

Figure 1: Example of the linking process of the query “blake shelton austin lyrics”

extract human-annotated anchors as well as cor-
responding entities in the sentences. The original
annotation contains 82.6 million anchors. We ob-
tain 110 million annotated anchors in 48.4 million
sentences after the incrementally annotation. All
of above annotations are indexed by Lucene! by
building documents consisting of two fields: the
first one contains the sentence and the second one
contains all anchors with their corresponding en-
tities. For each query, we search it with Lucene
using its default ranker” based on the vector space
model and tf-idf to obtain the top K sentences (K
is selected on the development set). We extract all
entities as the related entities and use these sen-
tences as their support sentences.

3.2 Candidate Generation

We back-map anchors and corresponding entities
extracted in sentences to generate candidates. We
use (a,e) to denote the pair of the anchor text
and corresponding entity and use w(a, €) to denote
the number of sentences containing the pair (a, €).
Then, we prune the candidate pairs according to
following rules.

First, we only keep the pair whose correspond-
ing anchor text a occurs in the query as a candi-
date, which has been used in previous work (Fer-
ragina and Scaiella, 2010). Second, we follow the
long-string match strategy. If we have two pairs
(a1,e1) and (ag,e2) while aq is a substring of

'http://lucene.apache.org

Details can be found in ht tps: //lucene . apache.
org/core/2_9_4/api/core/org/apache/
lucene/search/Similarity.html
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ag, we drop (a1, ep) if w(ai,e;) < w(ag,e2).
This is because ag is typically less ambiguous
than a;. For example, for the query “mesa com-
munity college football”, we can obtain the an-
chor “mesa”, “college”, “community college”, and
“mesa community college”. We only keep “mesa
community college” because it is longest and oc-
curs most times in returned sentences. Howeyver,
if w(ai,e1) > w(ag, e2), we keep both candidate
pairs because a; is more common in the query.

In addition, we keep the entity whose surface
form is the same with the anchor text and prune
others. If we have two pairs (a,e;) and (a,e2)
with the same anchor, and only e occurs in the
query, we drop the pair (a,ep) if w(a,e1) <
w(a, ez). For example, for the query “business
day south africa”, the anchor “south africa” can be
linked to “south africa”, “union of south africa”,
and “south africa cricket team”. We only keep the
entity “south africa”.

3.3 Candidate Ranking

‘We build a regression based framework to rank the
candidate entities. In the training phase, we treat
the candidates that are equal to the ground truth
as the positive samples and the others as nega-
tive samples. The regression object of the positive
sample is set to the score 1.0. The negative sample
is set to the maximum score of overlapping ratio
of tokens between its text and each gold answer.
The regression object of the negative sample is not
simply set to O in order to give a small score if the
candidate is very closed to the ground truth. We
find it benefits the final results. We use LIBLIN-



EAR (Fan et al., 2008) with L2-regularized L2-
loss support vector regression to train the regres-
sion model. The object function is to minimize

wTw/Q—I-C’ZmaX((), ly; —w? ;| —eps)? (1)

where z; is the feature set, y; is the object score
and w is the parameter to be learned. We follow
the default setting that C' is set to 1 and eps is set
to 0.1.

In the test phase, each candidate gets a score
of wlz; and then we only output the candidate
whose score is higher than the threshold selected
on the development set.

We employ four different feature sets to capture
the quality of a candidate from different aspects.
All features are shown in Table 3.

Context-Independent Features This feature set
measures each annotation pair (a, ) without con-
text information. Feature 1-4 catch the syntactic
properties of the candidate. Feature 5 is the num-
ber of returned sentences that contain (a, e). Fea-
ture 6 is the maximum search score (returned by
Lucene) in its support sentences. Moreover, in-
spired by TagME (Ferragina and Scaiella, 2010),
we denote freq(a) as the number of times the text
a occurs in Wikipedia. We use link(a) to denote
the number of times the text a occurs as an anchor.
We use Ip(a) = link(a)/freq(a) to denote the
static link-probability that an occurrence of a has
been set as an anchor. We use freq(a, e) to denote
the number of times that the anchor text a links to
the entity e, and use pr(ela) = freq(a, e)/link(a)
to denote the static prior-probability that the an-
chor text a links to e. Features 7 and 8 are these
two probabilities.

Context-Matching Features We treat the other
words except for the anchor text as the context.
This feature set measures the context matching to
the query. Feature 9 is the context matching score
calculated by tokens. We denote c as the set of
context words. For each ¢; in ¢, the em_sc(c;)
is the ratio of times that ¢; occurs in the support
sentences, and cm_sc(c) = + 3 em_sc(c;). Fea-
tures 10 and 11 are the ratio of context words oc-
curring in the first sentence in the entity page and
the description of entity’s disambiguation page (if
existed), respectively. Moreover, we train a 300-
dimensional word embeddings on all Wikipedia
articles by word2vec (Mikolov et al., 2013) and
use the average embedding of each word as the
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ID| Name Description

1 | wn_query | 1if eis in the query, 0 otherwise

2 | ispt 1 if e contains parenthesis, 0 otherwise

3 | is.em 1 if e contains comma, O otherwise

4 | len len(e) by tokens

5 | w(a,e) number of support sentences

6 | sc(a,e) maximum search score of support sen-
tences

7 | lp(a) static link-probability that a is an an-
chor

8 | pr(a,e) static prior-probability that a links to e

9 | em_sc context matching score to the support
sentences

10| em_fs context matching score to the first sen-
tence of e’s page

11| em-dd context matching score to the descrip-
tion in e’s disambiguation page

12| embed_sc | maximum embedding similarity of the
query and each support sentence

13| embed-fs | embedding similarity of the query and
the first sentence of e’s page

14| embed_dd | embedding similarity of the query and
the description in e’s disambiguation
page

15| rel_cd_sc | number of candidates that occur in the
support sentences

16| rel_cd_sp | number of candidates that occur in the
same Wikipedia page

17| rel_re_sc | number of related entities that occur in
the support sentences

18| rel_re_sp | number of related entities that occur in
the same Wikipedia page

Table 3: Feature Set for Candidate Ranking

sentence representation. Feature 12 is the max-
imum cosine score between the query and each
support sentence. Features 13 and 14 are calcu-
lated with the first sentence in the entity’s page and
the description in the disambiguation page.

Relatedness Features of Candidate Entities
This set of features measures how much an en-
tity is supported by other candidates. Feature 15 is
the number of other candidate entities occurring in
the support sentences. Feature 16 is the number of
candidate entities occurring in the same Wikipedia
page with the current entity.

Relatedness Features to Related Entities This
set of features measures the relatedness between
candidates and related entities outside of queries.
Related entities can provide useful signals for dis-
ambiguating the candidates. Features 17 and 18
are analogous features with features 15 and 16,
which are calculated by the related entities.

4 Experiment

We conduct experiments on the ERD14 and GER-
DAQ datasets. We compare with several base-
line annotators and experimental results show that



our method outperforms the baseline on these two
datasets. We also report the parameter selection on
each dataset and analyze the quality of the candi-
dates using different methods.

4.1 Dataset

ERD14° is a benchmark dataset in the ERD Chal-
lenge (Carmel et al., 2014), which contains both
long-text track and short-text track. In this pa-
per we only focus on the short-text track. It con-
tains 500 queries as the development set and 500
queries as the test set. Due to the lack of train-
ing set, we use the development set to do the
model training and tuning. This dataset can be
evaluated by both Freebase and Wikipedia as the
ERD Challenge Organizers provide the Freebase
Wikipedia Mapping with one-to-one correspon-
dence of entities between two knowledge bases.
We use Wikipedia to evaluate our results.

GERDAQ" is a benchmark dataset to annotate
entities to Wikipedia built by Cornolti et al.
(2016). It contains 500 queries for training, 250
for development, and 250 for test. The query in
this dataset is sampled from the KDD-Cup 2005
and then annotated manually. Both name enti-
ties and common concepts are annotated in this
dataset.

4.2 Evaluation Metric

We use average F1 designed by ERD Chal-
lenge (Carmel et al., 2014) as the evaluation met-
rics. Specifically, given a query q, with labeled
entities A = {El, . ,En}. We define the F-
measure of a set of hypothesized interpretations

A={E,...,E,} as follows:
ANnA AnA
Precision = | ‘,Recall = Q 2)
Al Al
2 x Precision x Recall
Fy = (3)

Precision + Recall
The average F1 of the evaluation set is the average
of the F1 for each query:
N
AverageF| = N Zl Fi(q:) “4)
i
Following the evaluation guideline in ERD14 and
GERDAQ, we define recall to be 1.0 if the gold
binding of a query is empty and define precision to
be 1.0 if the hypothesized interpretation is empty.
Shttp://web-ngram.research.microsoft.

com/erd2014/Datasets.aspx
*nttp://acube.di.unipi.it/datasets
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4.3 Baseline Methods

We compare with several baselines and use the re-
sults reported by the ERD organizer and Cornolti
et al. (2016).

AIDA (Hoffart et al., 2011) searches the mention
using Stanford NER Tagger based on YAGO2. We
select AIDA as a representative system aiming to
entity linking for documents following the work in
Cornolti et al. (2016).

WAT (Piccinno and Ferragina, 2014) is the im-
proved version of TagME (Ferragina and Scaiella,
2010).

Magnetic IISAS (Laclavik et al., 2014) retrieves
the index extracted from Wikipedia, Freebase and
Dbpedia. Then it exploits Wikipedia link graph to
assess the similarity of candidate entities for dis-
ambiguation and filtering.

Seznam (Eckhardt et al., 2014) uses Wikipedia
and DBpedia to generate candidates. The dis-
ambiguation step is based on PageRank over the
graph.

NTUNLP (Chiu et al., 2014) searches the query
to match Freebase surface forms. The disambigua-
tion step is built on top of TagME and Wikipedia.
SMAPH-1 (Cornolti et al., 2014) is the winner in
the short-text track in the ERD14 Challenge.
SMAPH-2 (Cornolti et al., 2016) is the improved
version of SMAPH-1. It generates candidates
from the snippets of search results returned by the
Bing search engine.

4.4 Result

We report results on the ERD datset and GER-
DAQ dataset in Table 4 and Table 5, respectively.
On the ERD14 dataset, WAT is superior to AIDA
but it is still up to 10% than SMAPH-1 that wins
the ERD Challenge. SMAPH-2 improves 2% than
SMAPH-1. Our system significantly outperforms
the state-of-the-art annotator SMAPH-2 by 4.2%.
On the GERDAQ dataset, our system is 2.5% su-
perior to the state-of-the-art annotator SMAPH-2.
The F1 score in this dataset is much lower than
the ERD dataset because common concepts such
as “Week” and “Game” that are not annotated in
the ERD dataset are annotated in the GERDAQ
dataset.

Spell checking has been widely used in the
baseline annotators as it is not uncommon in
queries (Laclavik et al., 2014). The SMAPH sys-
tem that generates candidates by search results im-
plicitly leverages the spell-checking embedded in



System Flaug
AIDA 22.1
WAT 58.6
Magnetic [ISAS 65.6
Seznam 66.9
NTUNLP 68.0
SMAPH-1 68.8
SMAPH-2 70.8
Our work 75.0%
w/o Spell Check 74.0
w/o Additional Annotation 74.4
w/o Context Feature 72.6
w/o Relatedness Feature 74.5

Table 4: Results on the ERD dataset. Results
of the baseline systems are taken from Table 8
in Cornolti et al. (2016) and reported by the ERD
organizer (Carmel et al., 2014). We only report the
F1 score as precision and recall are not reported
in previous work. *Significant improvement over
state-of-the-art baselines (t-test, p < 0.05).

System Povg | Ravg | Flavg
AIDA 94.0 | 122 | 12.6
TagME 60.4 | 51.2 | 447
WAT 496 | 57.0 | 46.0
SMAPH-1 774 | 543 | 52.1
SMAPH-2 72.1 | 553 | 544
Our work 715 | 585 | 56.9
w/o Spell Check 754 | 48.6 | 493
w/o Additional Annotation | 70.3 | 58.2 | 55.8
w/o Context Feature 69.2 | 564 | 555
w/o Relatedness Feature 733 | 574 | 56.7

Table 5: Results on the GERDAQ dataset. Results
of the baseline systems are taken from Table 10
in Cornolti et al. (2016).

search engines. In our experiments, spell check-
ing improves 1.0% on the ERD dataset and 7.6%
on the GERDAQ dataset. Furthermore, only 6.9%
of queries in the ERDI14 dataset have spelling
mistakes, whereas the number in the GERDAQ
dataset is 23.0%. Thus spell-checking is more im-
portant in the GERDAQ dataset.

The result decreases 0.6% on the ERD dataset
and 1.1% on the GERDAQ dataset without the ad-
ditional annotation. Furthermore, while the F1
score decreases 2.4% on the ERD dataset and
1.4% on the GERDAQ dataset without the con-
text features, the score only decreases 0.5% on the
ERD dataset and 0.2% on the GERDAQ dataset
without the relatedness features. Unlike the work
on entity linking for documents (Eckhardt et al.,
2014; Witten and Milne, 2008) that features de-
rived from entity relations get promising results,
the context features play a more important role
than the relatedness features on entity linking for
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Figure 2: F1 scores with different search numbers
and thresholds on the ERD development set
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Figure 3: F1 scores with different search numbers
and thresholds on the GERDAQ development set

queries as search queries are short and contain
fewer entities than documents.

4.5 Parameter Selection

There are two parameters in our framework,
namely the number of search sentences and the
threshold for final output. We select these two pa-
rameters on the development set. We show the F1
score with different numbers of search sentences
and thresholds in Figure 2 and Figure 3. On the
ERD development set, better results occur in the
search number between 600 and 800 as well as the
threshold 0.55 and 0.6. On the GERDAQ devel-
opment set, better results occur in the search num-
ber between 700 and 1000 as well as the thresh-
old between 0.45 and 0.5. In our experiment, we
set the number of sentences to 700 and the thresh-
old to 0.56 on the ERD dataset as well as 800 and
0.48 on the GERDAQ dataset according to the F1
scores on the development set.

4.6 Model Analysis

The main difference between our method and most
previous work is that we generate candidates by
searching Wikipedia sentences instead of search-
ing entities. For generating candidates with en-
tity search, we build a dictionary containing all an-
chors, titles, and redirects in Wikipedia. Then we
query the dictionary to get the mention and obtain
corresponding entities as candidates. We use the



Number of | Number of
Method anchors candidates Flavg
Entity Search 66.46
ES + RF 1.96 6841 69.00
Sentence Search 73.81
SS + RF 112 1491 7501

Table 6: Comparison with different candidate gen-
eration methods on the ERD dataset. +RF: in-
tegrating ranking features extracted by Sentence
Search.

Method Cavg Pavg R(wg
Entity Search 78.87 | 77.56 | 66.04
Sentence Search | 74.42 | 89.61 | 69.08

Table 7: Results for the 398 queries which have at
least one labeled entity on the ERD dataset using
different candidate generation methods. Cl,q is
the average recall of candidates per query. Fpyq
and R4 are calculated on the final results.

same pruning rules and ranking framework in our
experiments, but exclude the features from sup-
port sentences because the entity search method
does not contain the information. The F1 score is
shown in Table 6. We achieve similar results in our
implementation of the method using entity search
on the ERD dataset as Magnetic IISAS (Laclavik
etal., 2014) which uses a similar method and ranks
4th with the F1 of 65.57 in the ERD14 Challenge.

We compare the two candidate generation meth-
ods in several aspects. First, we show the overall
results in Table 6. The average number of candi-
dates from our method is much smaller. It is noted
that the anchors from sentence search can also be
found in entity search. However, we only extract
the entities in the returned sentences while the
methods by entity search use all entities linked by
the anchors. In addition, features such as the num-
ber of sentences containing the entity from sen-
tence search which provide query sensitive prior
probability contribute to the ranking process. It
improves the F1 score from 73.81 to 75.01 for sen-
tence search and from 66.46 to 69.00 for entity
search. More important, the result of “ES+RF”
is still significantly worse than the result of both
small candidate set and Wikipedia related features
that prunes irrelevant candidates at the beginning,
which proves that the high-quality candidate set
is very important since the larger candidate set
brings in lots of noise in training a ranking model.
Moreover, there are 102 queries (20.4%) without
labeled entities in the ERD dataset. We only give
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Figure 4: F1 scores with number of candidates us-
ing different methods on the ERD dataset. The

number of queries is shown in the parentheses.

7 incorrect annotations in these queries while the
number is 13 from entity search. Furthermore, as
shown in Table 7, the coverage of our method is
lower in queries with at least one entity, but we
obtain better results on precision, recall and F1 in
the final stage.

Figure 4 illustrates the F1 score grouped by the
number of candidates using entity search. In al-
most all columns the F1 score of our method is
better than the baseline. In left columns (the num-
ber of candidates is less than 10), both methods
generate few candidates. The F1 score of our
method is higher, which proves that we train a bet-
ter ranking model because of our small but qual-
ity candidate set. Moreover, the right columns
(the number of candidates is more than 10) show
that the F1 score using entity search gradually de-
creases with the incremental candidates. However,
our method based on sentence search takes advan-
tage of context information to keep a small set
of candidates, which keeps a consistent result and
outperforms the baseline.

5 Conclusion

In this paper we address the problem of entity
linking for open-domain queries. We introduce a
novel approach to generating candidate entities by
searching sentences in the Wikipedia to the query,
then we extract the human-annotated entities as
the candidates. We implement a regression model
to rank these candidates for the final output. Two
experiments on the ERD dataset and the GER-
DAQ dataset show that our approach outperforms
the baseline systems. In this work we directly use
the default ranker in Lucene for similar sentences,
which can be improved in future work.
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Abstract

Annotating large numbers of sentences
with senses is the heaviest requirement
of current Word Sense Disambiguation.
We present Train-O-Matic, a language-
independent method for generating mil-
lions of sense-annotated training instances
for virtually all meanings of words in
a language’s vocabulary. The approach
is fully automatic: no human interven-
tion is required and the only type of hu-
man knowledge used is a WordNet-like
resource. Train-O-Matic achieves consis-
tently state-of-the-art performance across
gold standard datasets and languages,
while at the same time removing the bur-
den of manual annotation. All the training
data is available for research purposes at
http://trainomatic.org.

1 Introduction

Word Sense Disambiguation (WSD) is a key task
in computational lexical semantics, inasmuch as
it addresses the lexical ambiguity of text by mak-
ing explicit the meaning of words occurring in a
given context (Navigli, 2009). Anyone who has
struggled with frustratingly unintelligible transla-
tions from an automatic system, or with the mean-
ing bias of search engines, can understand the im-
portance for an intelligent system to go beyond the
surface appearance of text.

There are two mainstream lines of research in
WSD: supervised and knowledge-based WSD. Su-
pervised WSD frames the problem as a classi-
cal machine learning task in which, first a train-
ing phase occurs aimed at learning a classification
model from sentences annotated with word senses
and, second the model is applied to previously-
unseen sentences focused on a target word. A key

78

difference from many other problems, however, is
that the classes to choose from (i.e., the senses of a
target word) vary for each word, therefore requir-
ing a separate training process to be performed on
a word by word basis. As a result, hundreds of
training instances are needed for each ambiguous
word in the vocabulary. This would necessitate
a million-item training set to be manually created
for each language of interest, an endeavour that is
currently beyond reach even in resource-rich lan-
guages like English.

The second paradigm, i.e., knowledge-based
WSD, takes a radically different approach: the
idea is to exploit a general-purpose knowledge
resource like WordNet (Fellbaum, 1998) to de-
velop an algorithm which can take advantage of
the structural and lexical-semantic information in
the resource to choose among the possible senses
of a target word occurring in context. For ex-
ample, a PageRank-based algorithm can be devel-
oped to determine the probability of a given sense
being reached starting from the senses of its con-
text words. Recent approaches of this kind have
been shown to obtain competitive results (Agirre
et al., 2014; Moro et al., 2014). However, due to
its inherent nature, knowledge-based WSD tends
to adopt bag-of-word approaches which do not ex-
ploit the local lexical context of a target word,
including function and collocation words, which
limits this approach in some cases.

In this paper we get the best of both worlds and
present Train-O-Matic, a novel method for gen-
erating huge high-quality training sets for all the
words in a language’s vocabulary. The approach is
language-independent, thanks to its use of a mul-
tilingual knowledge resource, BabelNet (Navigli
and Ponzetto, 2012), and it can be applied to any
kind of corpus. The training sets produced with
Train-O-Matic are shown to provide competitive
performance with those of manually and semi-
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automatically tagged corpora. Moreover, state-of-
the-art performance is also reported for low re-
sourced languages (i.e., Italian and Spanish) and
domains, where manual training data is not avail-
able.

2 Building a Training Set from Scratch

In this Section we present Train-O-Matic, a
language-independent approach to the automatic
construction of a sense-tagged training set. Train-
O-Matic takes as input a corpus C (e.g.,
Wikipedia) and a semantic network G = (V, E).
We assume a WordNet-like structure of G, i.e., V'
is the set of concepts (i.e., synsets) such that, for
each word w in the vocabulary, Senses(w) is the
set of vertices in V' that are expressed by w, e.g.,
the WordNet synsets that include w as one of their
senses.
Train-O-Matic consists of three steps:

e Lexical profiling: for each vertex in the se-
mantic network, we compute its Personalized
PageRank vector, which provides its lexical-
semantic profile (Section 2.1).

Sentence scoring: For each sentence con-
taining a word w, we compute a probability
distribution over all the senses of w based on
its context (Section 2.2).

Sentence ranking and selection: for each
sense s of a word w in the vocabulary, we
select those sentences that are most likely to
use w in the sense of s (Section 2.3).

2.1 Lexical profiling

In terms of semantic networks the probability of
reaching a node v’ starting from v can be inter-
preted as a measure of relatedness between the
synsets v and v’. Thus we define the lexical profile
of a vertex v in a graph G = (V, E)) as the prob-
ability distribution over all the vertices v’ in the
graph. Such distribution is computed by applying
the Personalized PagaRank algorithm, a variant of
the traditional PageRank (Brin and Page, 1998).
While the latter is equivalent to performing ran-
dom walks with uniform restart probability on ev-
ery vertex at each step, PPR, on the other hand,
makes the restart probability non-uniform, thereby
concentrating more probability mass in the sur-
roundings of those vertices having higher restart
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probability. Formally, (P)PR is computed as fol-
lows:

o) = (1 — )o@ + aMo® (1)
where M is the row-normalized adjacency ma-
trix of the semantic network, the restart probabil-
ity distribution is encoded by vector v, and a
is the well-known damping factor usually set to
0.85 (Brin and Page, 1998). If we set v to a
unit probability vector (0,...,0,1,0,...,0), i.e.,
restart is always on a given vertex, PPR outputs the
probability of reaching every vertex starting from
the restart vertex after a certain number of steps.
This approach has been used in the literature to
create semantic signatures (i.e., profiles) of indi-
vidual concepts, i.e., vertices of the semantic net-
work (Pilehvar et al., 2013), and then to determine
the semantic similarity of concepts. As also done
by Pilehvar and Collier (2016), we instead use the
PPR vector as an estimate of the conditional prob-
ability of a word w’ given the target sense! s € V
of word w:

/
mMaXs/cSenses(w’) vs(s')

Pw']s, w) = y

2

where Z = ) » P(w”|s,w) is a normalization
constant, v, is the vector resulting from an ade-
quate number of random walks used to calculate
PPR, and vs(s’) is the vector component corre-
sponding to sense s’. To fix the number of iter-
ations needed to have a sufficiently accurate vec-
tor, we follow Lofgren et al. (2014) and set the
error § = 0.00001 and the number of iterations to
=100, 000.

As a result of this lexical profiling step we have
a probability distribution over vocabulary words
for each given word sense of interest.

2.2 Sentence scoring

The objective of the second step is to score the im-
portance of word senses for each of the corpus sen-
tences which contain the word of interest. Given
a sentence o = wi, wa, . . . , Wy, for a given target
word w in the sentence (w € o), and for each of its
senses s € Senses(w), we compute the probabil-
ity P(s|o,w). Thanks to Bayes’ theorem we can
determine the probability of sense s of w given the

"Note that we use senses and concepts (synsets) inter-
changeably, because — given a word — a word sense unam-
biguously determines a concept (i.e., the synset it is contained
in) and vice versa.



sentence as follows:

P P
Pl = PPl o
_ P(ws,...,wy|s,w)P(s|lw)
N P(wy, ..., wy|w)
x P(wi,...,wy|s,w)P(s|w) 4)
~ P(wi|s,w) ... P(wy|s, w)P(s|w)

&)

where Formula 4 is proportional to the original
probability (due to removing the constant in the
denominator) and is approximated with Formula
5 due to the assumption of independence of the
words in the sentence. P(w;|s, w) is calculated as
in Formula 2 and P(s|w) is set to 1/|Senses(w)|
(recall that s is a sense of w). For example, given
the sentence 0 = “A match is a tool for starting
a fire”, the target word w = match and its set of
senses Smatch = {S7lnatch’ S?’natch}’ where S%natch
is the sense of lighter and sgnat ., 18 the sense of
game match, we want to calculate the probability
of each sin ateh € Smatch of being the correct sense

of match in the sentence o. Following Formula 5
we have:

P(sl ionlo, match) ~

P (0018 11
'P(Start|5%mtch’
. P(firel|s}, ., match)
- P(s}

match ’matc}l)
=21-107%.2-10%-107%2.5.10"!
=21-107"

match)

match)

P(sfmmh\a, match) ~
P(tOOHernatchv

- P(start|s>

match>
2
- P (ﬁre ‘ Smatch>

match)
match)
match)
’ P(Srznatch’mawh)
=107°-2.9-107*-107%.5.107*
=1.45-107"°
As can be seen, the first sense of match has a much
higher probability due to its stronger relatedness to
the other words in the context (i.e. start, fire and
tool). Note also that all the probabilities for the

second sense are at least one magnitude less than
the probability of the first sense.
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2.3 Sense-based sentence ranking and
selection

Finally, for a given word w and a given sense
s1 € Senses(w), we score each sentence o in
which w appears and s; is its most likely sense
according to a formula that takes into account the
difference between the first (i.e., s1) and the sec-
ond most likely sense of w in o

Asl (U) = P(81|Ua w) - P(82|07w) (6)
where 51 = argmaX,egenses(w) P(slo, w), and
S2 = aIgINaXscSenses(w)\{s1} P(slo,w). We

then sort all sentences based on Ay, (+) and return
a ranked list of sentences where word w is most
likely to be sense-annotated with s;. Although we
recognize that other scoring strategies could have
been used, this was experimentally the most effec-
tive one when compared to alternative strategies,
i.e., the sense probability, the number of words re-
lated to the target word w, the sentence length or a
combination thereof.

3 Creating a Denser and Multilingual
Semantic Network

In the previous Section we assumed that WordNet
was our semantic network, with synsets as vertices
and edges represented by its semantic relations.
However, while its lexical coverage is high, with
a rich set of fine-grained synsets, at the relation
level WordNet provides mainly paradigmatic in-
formation, i.e., relations like hypernymy (is-a) and
meronymy (part-of). It lacks, on the other hand,
syntagmatic relations, such as those that connect
verb synsets to their arguments (e.g., the appro-
priate senses of eat, and food,,), or pairs of noun
synsets (e.g., the appropriate senses of bus,, and
driver,).

Intuitively, Train-O-Matic would suffer from
such a lack of syntagmatic relations, as the rel-
evance of a sense for a given word in a sen-
tence depends directly on the possibility of vis-
iting senses of the other words in the same sen-
tence (cf. Formula 5) via random walks as calcu-
lated with Formula 1. Such reachability depends
on the connections available between synsets. Be-
cause syntagmatic relations are sparse in Word-
Net, if it was used on its own, we would end
up with a poor ranking of sentences for any
given word sense. Moreover, even though the
methodology presented in Section 2 is language-
independent, Train-O-Matic would lack informa-



mouse (animal) mouse (device)
WordNet ‘ WordNetgy || WordNet ‘ WordNetgn
mouse,, mouse,, mouse; mouse;}
tail little} wheell computer},
hairless} rodent), electronic_device), | pad:}
rodent), cheesel ball3 cursory,
trunk? cat! hand_operated} operating_system?
elongate? rat} mouse_button} trackball®
house _mouse’ | elephant} cursor), wheell
minuteness) | pet} operate joystick}
nude_mouse), | experiment. || object} Windows )

Table 1: Top-ranking synsets of the PPR vectors computed on WordNet (first and third columns) and
WordNetg v (second and fourth columns) for mouse as animal (left) and as device (right).

tion (e.g. senses for a word in an arbitrary vocab-
ulary) for languages other than English.

To cope with these issues, we exploit Babel-
Net,” a huge multilingual semantic network ob-
tained from the automatic integration of WordNet,
Wikipedia, Wiktionary and other resources (Nav-
igli and Ponzetto, 2012), and create the Babel-
Net subgraph induced by the WordNet vertices.
The result is a graph whose vertices are BabelNet
synsets that contain at least one WordNet synset
and whose edge set includes all those relations in
BabelNet coming either from WordNet itself or
from links in other resources mapped to Word-
Net (such as hyperlinks in a Wikipedia article con-
necting it to other articles). The greatest contribu-
tion of syntagmatic relations comes, indeed, from
Wikipedia, as its articles are linked to related ar-
ticles (e.g., the English Wikipedia Bus article? is
linked to Passenger, Tourism, Bus lane, Timetable,
School, and many more).

Because not all Wikipedia (and other re-
sources’) pages are connected with the same
degree of relatedness (e.g., countries are often
linked, but they are not necessarily closely related
to the source article in which the link occurs),
we apply the following weighting strategy to each
edge (s,s') € E of our WordNet-induced sub-
graph of BabelNet G = (V, E):

(s,s') € E(WordNet)

otherwise

w(s, s')

1
WO(s,s)
(7)

where F/(WordNet) is the edge set of the origi-
nal WordNet graph and WO(s, s’) is the weighted

http://babelnet.org
3Retrieved on February 3rd, 2017.
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overlap measure which calculates the similarity
between two synsets:

Sl )
S (20)-

where 7} and r? are the rankings of the i-th synsets
in the set .S of the components in common between
the vectors associated with s and s’, respectively.
Because at this stage we still have to calculate
our synset vector representation, we use the pre-
computed NASARI vectors (Camacho-Collados
et al., 2015) to calculate WO. This choice is due
to WO’s higher performance over cosine similar-
ity for vectors with explicit dimensions (Pilehvar
etal., 2013).

As a result, each row of the original adjacency
matrix M of G will be replaced with the weights
calculated in Formula 7 and then normalized in
order to be ready for PPR calculation (see For-
mula 1). An idea of why a denser semantic net-
work has more useful connections and thus leads
to better results is provided by the example in
Table 14, where we show the highest-probability
synsets in the PPR vectors calculated with For-
mula 1 for two different senses of mouse (its
animal and device senses) when WordNet (left)
and our WordNet-induced subgraph of BabelNet
(WordNetpy, right) are used as the underlying
semantic network for PPR computation. Note
that WordNet’s top synsets are related to the tar-
get synset via paradigmatic (i.e., hypernymy and
meronymy) relations, while WordNetp includes
many syntagmatically-related synsets (e.g., exper-

WO(s,s') =

“We use the notation w’; introduced in (Navigli, 2009) to

denote the k-th sense of word w with part-of-speech tag p.



iment for the animal, and operating system and
Windows for the device sense, among others).

4 Experimental Setup

Corpora for sense annotation We used two dif-
ferent corpora to extract sentences: Wikipedia and
the United Nations Parallel Corpus (Ziemski et al.,
2016). The first is the largest and most up-to-date
encyclopedic resource, containing definitional in-
formation, the second, on the other hand, is a
public collection of parliamentary documents of
the United Nations. The application of Train-
O-Matic to the two corpora produced two sense-
annotated datasets, which we named T-O-Myy;.;
and T-O-My n, respectively.

Semantic Network We created sense-annotated
corpora with Train-O-Matic both when using PPR
vectors computed from vanilla WordNet and when
using WordNetg, our denser network obtained
from the WordNet-induced subgraph of BabelNet
(see Section 3).

Gold standard datasets We performed our
evaluations using the framework made available
by Raganato et al. (2017a) on five different all-
words datasets, namely: the Senseval-2 (Ed-
monds and Cotton, 2001), Senseval-3 (Snyder
and Palmer, 2004), SemEval-2007 (Pradhan et al.,
2007), SemEval-2013 (Navigli et al., 2013) and
SemEval-2015 (Moro and Navigli, 2015) WSD
datasets. We focused on nouns only, given the
fact that Wikipedia provides connections between
nominal synsets only, and therefore contributes
mainly to syntagmatic relations between nouns.

Comparison sense-annotated corpora To
show the impact of our T-O-M corpora in WSD,
we compared its performance on the above gold
standard datasets, against training with:

e SemCor (Miller et al., 1993), a corpus con-
taining about 226,000 words annotated man-
ually with WordNet senses.

One Million Sense-Tagged Instances
(Taghipour and Ng, 2015, OMSTI), a
sense-annotated dataset obtained via a
semi-automatic approach based on the
disambiguation of a parallel corpus, i.e., the
United Nations Parallel Corpus, performed
by exploiting manually translated word
senses. Because OMSTI integrates SemCor
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to increase coverage, to keep a level playing
field we excluded the latter from the corpus.

We note that T-O-M, instead, is fully automatic
and does not require any WSD-specific human in-
tervention nor any aligned corpus.

Reference system In all our experiments, we
used It Makes Sense (Zhong and Ng, 2010, IMS),
a state-of-the-art WSD system based on linear
Support Vector Machines, as our reference system
for comparing its performance when trained on T-
O-M, against the same WSD system trained on
other sense-annotated corpora (i.e., SemCor and
OMSTI). Following the WSD literature, unless
stated otherwise, we report performance in terms
of F1, i.e., the harmonic mean of precision and re-
call.

We note that it is not the purpose of this paper to
show that T-O-M, when integrated into IMS, beats
all other configurations or alternative systems, but
rather to fully automatize the WSD pipeline with
performances which are competitive with the state
of the art.

Baseline As a traditional baseline in WSD, we
used the Most Frequent Sense (MFS) baseline
given by the first sense in WordNet. The MFS is a
very competitive baseline, due to the sense skew-
ness phenomenon in language (Navigli, 2009).

Number of training sentences per sense Given
a target word w, we sorted its senses Senses(w)
following the WordNet ordering and selected the
top k; training sentences for the ¢-th sense accord-
ing to Formula 6, where:

1
ki= -+ K ®)
1

with K = 500 and z = 2 which were tuned on a
separate small in-house development dataset’.

5 Results

5.1 Impact of syntagmatic relations

The first result we report regards the impact of
vanilla WordNet vs. our WordNet-induced sub-
graph of BabelNet (WordNetpy) when calculat-
ing PPR vectors. As can be seen from Table 2 —
which shows the performance of the T-O-Myy;;
corpora generated with the two semantic networks
— using WordNet for PPR computation decreases

350 word-sense pairs annotated manually.



Dataset T-O-Myyiri BN | T-O-Myy i WN |
Senseval-2 70.5 70.0
Senseval-3 67.4 63.1
SemEval-07 59.8 57.9
SemEval-13 65.5 63.7
SemEval-15 68.6 69.5

| ALL | 67.3 | 65.7 |

Table 2: F1 of IMS trained on T-O-M when PPR is
obtained from the WordNet graph (WN) and from
the WordNet-induced subgraph of BabelNet (BN).

the overall performance of IMS from 0.5 to around
4 points across the five datasets, with an overall
loss of 1.6 F1 points. Similar performance losses
were observed when using T-O-Myn (see Table
3). This corroborates our hunch discussed in Sec-
tion 3 that a resource like BabelNet can contribute
important syntagmatic relations that are beneficial
for identifying (and ranking high) sentences which
are semantically relevant for the target word sense.
In the following experiments, we report only re-
sults using WordNetpy .

5.2 Comparison against sense-annotated
corpora

We now move to comparing the performance of
T-O-M, which is fully automatic, against cor-
pora which are annotated manually (SemCor) and
semi-automatically (OMSTI). In Table 3 we show
the F1-score of IMS on each gold standard dataset
in the evaluation framework and on all datasets
merged together (last row), when it is trained with
the various corpora described above.

As can be seen, T-O-Myy;; and T-O-My; 5 ob-
tain higher performance than OMSTI (up to 5.5
points above) on 3 out of 5 datasets, and, over-
all, T-O-Myy;1; scores 1 point above OMSTI. The
MES is in the same ballpark as T-O-Myy;x;, per-
forming better on some datasets and worse on oth-
ers. We note that IMS trained on T-O-Myy;z;
succeeds in surpassing or obtaining the same re-
sults as IMS trained on SemCor on SemEval-
15 and SemEval-13. We view this as a signifi-
cant achievement given the total absence of man-
ual effort involved in T-O-M. Because overall
T-O-Myy;; outperforms T-O-Myy, in what fol-
lows we report all the results with T-O-Myy;1;, €x-
cept for the domain-oriented evaluation (see Sec-
tion 5.4).
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5.3 Performance without backoff strategy

IMS uses the MFS as a backoff strategy when no
sense can be output for a target word in context
(Zhong and Ng, 2010). Consequently, the perfor-
mance of the MFS is mixed up with that of the
SVM classifier. As shown in Table 4, OMSTI is
able to provide annotated sentences for roughly
half of the tokens in the datasets. Train-O-Matic,
on the other hand, is able to cover almost all words
in each dataset with at least one training sentence.
This means that in around 50% of cases OMSTI
gives an answer based on the IMS backoff strat-
egy.

To determine the real impact of the different
training data, we therefore decided to perform an
additional analysis of the IMS performance when
the MFS backoff strategy is disabled. Because
we suspected the system would not always return
a sense for each target word, in this experiment
we measured precision, recall and their harmonic
mean, i.e., F1. The results in Table 5 confirm our
hunch, showing that OMSTI’s recall drops heav-
ily, thereby affecting F1 considerably. T-O-M per-
formances, instead, remain high in terms of pre-
cision, recall and F1. This confirms that OMSTI
relies heavily on data (those obtained for the MFS
and from SemCor) that are produced manually,
rather than semi-automatically.

5.4 Domain-oriented WSD

To further inspect the ability of T-O-M to enable
disambiguation in different domains, we decided
to evaluate on specific documents from the vari-
ous gold standard datasets which could be clearly
assigned a domain label. Specifically, we tested on
13 SemEval-13 documents from various domains®
and 2 SemEval-15 documents (namely, maths &
computers, and biomedicine) and carried out two
separate tests and evaluations of T-O-M on each
domain: once using the MFS backoff strategy, and
once not using it. In Tables 6 and 7 we report the
results of both T-O-Myy;; and T-O-M n to deter-
mine the impact of the corpus type.

As can be seen in the tables, T-O-Myy;; Sys-
tematically attains higher scores than OMSTI (ex-
cept for the biology domain), and, in most cases,
attains higher scores than MFS when the backoff
is used, with a drastic, systematic increase over
OMSTI with both Train-O-Matic configurations

®Namely biology, climate, finance, health care, politics,
social issues and sport.



Dataset Train-O-Maticyy;x; | Train-O-Maticyy | OMSTI | SemCor ‘ MFS ‘
Senseval-2 70.5 69.0 74.1 76.8 | 72.1
Senseval-3 67.4 68.3 67.2 73.8 | 72.0
SemEval-07 59.8 57.9 62.3 673 | 654
SemEval-13 65.5 62.5 62.8 65.5 | 63.0
SemEval-15 68.6 63.5 63.1 66.1 | 66.3
ALL 67.3 65.3 66.4 70.4 | 676 |

Table 3:

F1 of IMS trained on Train-O-Matic, OMSTI and SemCor, and MFS for the Senseval-2,

Senseval-3, SemEval-07, SemEval-13 and SemEval-15 datasets.

Dataset OMSTI | Train-O-Matic \ Total ‘
Senseval-2 469 1005 | 1066
Senseval-3 494 860 900
Semeval-07 89 159 159
Semeval-13 757 1428 | 1644
Semeval-15 249 494 531
ALL 2058 3946 | 4300 |

Table 4: Number of nominal tokens for which at
least one training example is provided by OMSTI
or Train-O-Matic for each dataset.

Dataset OMSTI Train-O-Matic
P[ R[ FI| P[] RJ FI
Senseval-2 | 64.8 [ 285 [39.6 [ 69.5[ 655 | 67.4
Senseval-3 | 55.7 | 31.0 | 39.8 | 66.1 | 63.1 | 64.6
SemEval-07 | 64.1 | 35.9 | 46.0 | 59.8 | 59.8 | 59.8
SemEval-13 | 50.7 | 23.4 | 32.0 | 61.3 | 533 | 57.0
SemEval-15 | 57.0 | 26.7 | 36.4 | 67.0 | 62.3 | 64.6
[ ALL [56.5[27.0 [ 36.5]65.1]59.7 ] 62.3 |

Table 5: Precision, Recall and F1 of IMS trained
on OMSTI and Train-O-Matic corpus without
MES backoff strategy for Senseval-2, Senseval-3,
SemEval-07, SemEval-13 and SemEval-15.

in recall and F1 when the backoff strategy is dis-
abled. This demonstrates the usefulness of the cor-
pora annotated by Train-O-Matic not only on open
text, but also on specific domains. We note that
T-O-My v obtains the best results in the politics
domain, which is the closest domain to the UN
corpus from which its training sentences are ob-
tained.

6 Scaling up to Multiple Languages

Experimental Setup In this section we investi-
gate the ability of Train-O-Matic to scale to low-
resourced languages, such as Italian and Spanish,
for which training data for WSD is not available.
Thanks to BabelNet, in fact, Train-O-Matic can
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be used to generate sense-annotated data for any
language supported by the knowledge base. Thus,
in order to build new training datasets for the two
languages, we ran Train-O-Matic on their corre-
sponding versions of Wikipedia, then we tuned the
two parameters K and z on an in-house develop-
ment dataset’. In contrast to the English setting, in
order to calculate Formula 8 we sorted the senses
of each word by vertex degree. Finally we used
the output data to train IMS.

Results To perform our evaluation we chose
the most recent multilingual task (SemEval 2015
task 13) which includes gold data for Italian and
Spanish. As can be seen from Table 8 Train-
O-Matic enabled IMS to perform better than the
best participating system (Manion and Sainudiin,
2014, SUDOKU) in all three settings (All do-
mains, Maths & Computer and Biomedicine). Its
performance was in fact, 1 to 3 points higher, with
a 6-point peak on Maths & Computer in Span-
ish and on Biomedicine in Italian. This demon-
strates the ability of Train-O-Matic to enable su-
pervised WSD systems to surpass state-of-the-
art knowledge-based WSD approaches in low-
resourced languages without relying on manually
curated data for training.

7 Related Work

There are two mainstream approaches to
Word Sense Disambiguation: supervised and
knowledge-based approaches. Both suffer in
different ways from the so-called knowledge
acquisition bottleneck, that is, the difficulty in
obtaining an adequate amount of lexical-semantic
data: for training in the case of supervised sys-
tems, and for enriching semantic networks in
the case of knowledge-based ones (Pilehvar and

"We set K = 100 and z = 2.3 for Spanish and K = 100
and z = 2.5 for Italian.



. T-O-Muwirs T-O-Mun~ OMSTI SemCor || MFS ]
Domain Backoff P [ R [ Fi P [ R [ F P [ R [ F FI F Size
Biolo MFS 63.0 | 63.0 | 63.0 65.9 | 659 | 65.9 65.9 | 659 | 65.9 66.3 64.4 135

gy - 59.0 | 53.3 | 56.0 62.3 | 56.3 | 59.2 48.1 18.5 | 26.7 - :

Climate MFS 68.1 | 68.1 | 68.1 634 | 634 | 634 68.0 | 68.0 | 68.0 70.1 675 194
- 63.4 | 50.0 | 55.9 57.5 | 454 | 50.7 58.0 | 242 | 34.2 - ’
Finan MFS 68.0 | 68.0 | 68.0 56.6 | 56.6 | 56.6 644 | 644 | 644 63.7 562 219
ance - 62.1 | 51.6 | 56.4 || 48.4 | 402 | 439 || 57.4 | 28.3 | 37.9 - :
MFS 65.2 | 652 | 65.2 60.1 | 60.1 | 60.1 529 | 529 | 52.9 62.7
Health Care - 613 | 551 | 58.0 || 556 | 500 | 52.6 || 34.6 | 18.4 | 24.0 A 365 | 138
Politics MFS 65.2 | 652 | 65.2 66.3 | 66.3 | 66.3 634 | 634 | 634 69.5 677 279

) - 62.5 | 548 | 58.4 63.9 | 559 | 59.6 54.1 | 21.5 | 30.8 - ’

Social Tssues MFS 68.5 | 68.5 | 68.5 63.6 | 63.6 | 63.6 65.6 | 65.6 | 65.6 66.8 676 349
u - 63.1 | 53.0 | 57.6 572 | 479 | 52.1 547 | 25.2 | 34.5 - ’

Sport MFS 60.3 | 60.3 | 60.3 60.9 | 609 | 60.9 58.8 | 58.8 | 58.8 60.4 576 330
po - 583 | 54.6 | 56.4 58.1 | 53.3 | 55.5 45.0 | 23.0 | 304 - ’

Table 6: Performance comparison over SemEval-2013 domain-specific datasets.

T-O-Mw ki T-O-My n OMSTI SemCor MES Size
Domain Backoff [ P [ R [ FI || P [ R | FI [| P | R [ FI || FI F1

Biomedicine | MES 763 | 763 | 763 || 66.0 | 66.0 | 66.0 || 64.9 | 64.9 | 64.9 70.3 211 1 100
- 76.1 | 722 | 741 || 64.4 | 59.8 | 62.0 || 60.5 | 26.8 | 37.2 - :

Maths & MEFS 50.0 | 50.0 | 50.0 48.0 | 48.0 | 48.0 36.0 | 36.0 | 36.0 40.6 40.9 97
Computer - 50.0 | 47.0 | 48.5 478 | 44.0 | 45.8 21.2 | 11.0 | 145 - ’

Table 7: Performance comparison over the Biomedical and Maths & Computer domains in SemEval-15.

Language | Dataset Best System Train-O-Matic
Fl P | R | FI

ALL 56.6 65.1 | 55.6 | 59.9

Italian Computers & Math 46.6 52.7 | 43.3 | 47.6
Biomedicine 65.9 76.6 | 67.6 | 71.8
ALL 56.3 61.3 | 54.8 | 57.9

Spanish Computers & Math 42.4 533 | 444 | 48.5
Biomedicine 65.5 71.8 | 65.5 | 68.5

Table 8: Performance comparison between T-O-M and SemEval-2015’s best SUDOKU Run.

Navigli, 2014; Navigli, 2009).

State-of-the-art supervised systems include
Support Vector Machines such as IMS (Zhong and
Ng, 2010) and, more recently, LSTM neural net-
works with attention and multitask learning (Ra-
ganato et al., 2017b) as well as LSTMs paired
with nearest neighbours classification (Melamud
et al., 2016; Yuan et al., 2016). The latter also in-
tegrates a label propagation algorithm in order to
enrich the sense annotated dataset. The main dif-
ference from our approach is its need for a man-
ually annotated dataset to start the label propaga-
tion algorithm, whereas Train-O-Matic is fully au-
tomatic. An evaluation against this system would
have been interesting, but neither the proprietary
training data nor the code are available at the time
of writing.

In order to generalize effectively, these super-
vised systems require large numbers of training in-

stances annotated with senses for each target word
occurrence. Overall, this amounts to millions of
training instances for each language of interest,
a number that is not within reach for any lan-
guage. In fact, no supervised system has been sub-
mitted in major multilingual WSD competitions
for languages other than English (Navigli et al.,
2013; Moro and Navigli, 2015). To overcome this
problem, new methodologies have recently been
developed which aim to create sense-tagged cor-
pora automatically. Raganato et al. (2016) devel-
oped 7 heuristics to grow the number of hyperlinks
in Wikipedia pages. Otegi et al. (2016) applied
a different disambiguation pipeline for each lan-
guage to parallel text in Europarl (Koehn, 2005)
and QTLeap (Agirre et al., 2015) in order to enrich
them with semantic annotations. Taghipour and
Ng (2015), the work closest to ours, exploits the
alignment from English to Chinese sentences of
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the United Nation Parallel Corpus (Ziemski et al.,
2016) to reduce the ambiguity of English words
and sense-tag English sentences. The assump-
tion is that the second language is less ambiguous
than the first one and that hand-made translations
of senses are available for each WordNet synset.
This approach is, therefore, semi-automatic and
relies on certain assumptions, in contrast to Train-
O-Matic which is, instead, fully automatic and
can be applied to any kind of corpus (and lan-
guage) depending on the specific need. Earlier
attempts at the automatic extraction of training
samples were made by Agirre and De Lacalle
(2004) and Fernandez et al. (2004). Both exploited
the monosemous relatives method (Leacock et al.,
1998) in order to retrieve sentences from the Web
which contained a given monosemous noun or a
relative monosemous word (e.g., a synonym, a hy-
pernym, etc.). As can be seen in (Ferndndez et al.,
2004) this approach can lead to the retrieval of
very accurate examples, but its main drawback lies
in the number of senses covered. In fact, for all
those synsets that do not have any monosemous
relative, the system is unable to retrieve examples,
thus heavily affecting the performance in terms of
recall and F1.

Knowledge-based WSD, instead, bypasses the
heavy requirement of sense-annotated corpora by
applying algorithms that exploit a general-purpose
semantic network, such as WordNet, which en-
codes the relational information that interconnects
synsets via different kinds of relation. Approaches
include variants of Personalized PageRank (Agirre
et al., 2014) and densest subgraph approxima-
tion algorithms (Moro et al., 2014) which, thanks
to the availability of multilingual resources such
as BabelNet, can easily be extended to perform
WSD in arbitrary languages. Other approaches
to knowledge-based WSD exploit the definitional
knowledge contained in a dictionary. The Lesk al-
gorithm (Lesk, 1986) and its variants (Banerjee
and Pedersen, 2002; Kilgarriff and Rosenzweig,
2000; Vasilescu et al., 2004) aim to determine the
correct sense of a word by comparing each word-
sense definition with the context in which the tar-
get word appears. The limit of knowledge-based
WSD, however, lies in the absence of mechanisms
that can take into account the very local context of
a target word occurrence, including non-content
words such as prepositions and articles. Further-
more, recent studies seem to suggest that such
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approaches are barely able to surpass supervised
WSD systems when they enrich their networks
starting from a comparable amount of annotated
data (Pilehvar and Navigli, 2014). With T-O-M,
rather than further enriching an existing semantic
network, we exploit the information available in
the network to annotate raw sentences with sense
information and train a state-of-the-art supervised
WSD system without task-specific human annota-
tions.

8 Conclusion

In this paper we presented Train-O-Matic, a novel
approach to the automatic construction of large
training sets for supervised WSD in an arbitrary
language. Train-O-Matic removes the burden of
manual intervention by leveraging the structural
semantic information available in the WordNet
graph enriched with additional relational infor-
mation from BabelNet, and achieves performance
competitive to that of semi-automatic approaches
and, in some cases, of manually-curated train-
ing data. T-O-M was shown to provide training
data for virtually all the target ambiguous nouns,
in marked contrast to alternatives like OMSTI,
which covers in many cases around half of the to-
kens, resorting to the MFS otherwise. Moreover
Train-O-Matic has proven to scale well to low-
resourced languages, for which no manually an-
notated dataset exists, surpassing the current state
of the art of knowledge-based systems.

We believe that the ability of T-O-M to over-
come the current paucity of annotated data for
WSD, coupled with video games with a pur-
pose for validation purposes (Jurgens and Nav-
igli, 2014; Vannella et al., 2014), paves the way
for high-quality multilingual supervised WSD. All
the training corpora, including approximately one
million sentences which cover English, Italian and
Spanish, are made available to the community at
http://trainomatic.orgq.

As future work we plan to extend our approach
to verbs, adjectives and adverbs. Following Ben-
nett et al. (2016) we will also experiment on more
realistic estimates of P(s|w) in Formula 5 as well
as other assumptions made in our work.
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Abstract

Universal Dependencies (UD) offer a uni-
form cross-lingual syntactic representation,
with the aim of advancing multilingual ap-
plications. Recent work shows that se-
mantic parsing can be accomplished by
transforming syntactic dependencies to log-
ical forms. However, this work is lim-
ited to English, and cannot process de-
pendency graphs, which allow handling
complex phenomena such as control. In
this work, we introduce UDEPLAMBDA,
a semantic interface for UD, which maps
natural language to logical forms in an
almost language-independent fashion and
can process dependency graphs. We per-
form experiments on question answering
against Freebase and provide German and
Spanish translations of the WebQuestions
and GraphQuestions datasets to facilitate
multilingual evaluation. Results show that
UDEPLAMBDA outperforms strong base-
lines across languages and datasets. For
English, it achieves a 4.9 F} point improve-
ment over the state-of-the-art on Graph-
Questions.

1 Introduction

The Universal Dependencies (UD) initiative seeks
to develop cross-linguistically consistent annota-
tion guidelines as well as a large number of uni-
formly annotated treebanks for many languages
(Nivre et al., 2016). Such resources could advance
multilingual applications of parsing, improve com-
parability of evaluation results, enable cross-lingual
learning, and more generally support natural lan-
guage understanding.

*Work done at the University of Edinburgh

&9

Seeking to exploit the benefits of UD for natu-
ral language understanding, we introduce UDEP-
LAMBDA, a semantic interface for UD that maps
natural language to logical forms, representing un-
derlying predicate-argument structures, in an al-
most language-independent manner. Our frame-
work is based on DEPLAMBDA (Reddy et al.,
2016) a recently developed method that converts
English Stanford Dependencies (SD) to logical
forms. The conversion process is illustrated in
Figure 1 and discussed in more detail in Section 2.
Whereas DEPLAMBDA works only for English, U-
DEPLAMBDA applies to any language for which
UD annotations are available.! Moreover, DEP-
LAMBDA can only process tree-structured inputs
whereas UDEPLAMBDA can also process depen-
dency graphs, which allow to handle complex con-
structions such as control. The different treatments
of various linguistic constructions in UD compared
to SD also require different handling in UDEP-
LAMBDA (Section 3.3).

Our experiments focus on Freebase semantic
parsing as a testbed for evaluating the framework’s
multilingual appeal. We convert natural language
to logical forms which in turn are converted to ma-
chine interpretable formal meaning representations
for retrieving answers to questions from Freebase.
To facilitate multilingual evaluation, we provide
translations of the English WebQuestions (Berant
et al., 2013) and GraphQuestions (Su et al., 2016)
datasets to German and Spanish. We demonstrate
that UDEPLAMBDA can be used to derive logical
forms for these languages using a minimal amount
of language-specific knowledge. Aside from devel-
oping the first multilingual semantic parsing tool
for Freebase, we also experimentally show that U-
DEPLAMBDA outperforms strong baselines across

!'As of v1.3, UD annotations are available for 47 languages
at http://universaldependencies.org.
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languages and datasets. For English, it achieves the
strongest result to date on GraphQuestions, with
competitive results on WebQuestions. Our imple-
mentation and translated datasets are publicly avail-
able at https://github.com/sivareddyg/udeplambda.

2 DEPLAMBDA

Before describing UDEPLAMBDA, we provide an
overview of DEPLAMBDA (Reddy et al., 2016)
on which our approach is based. DEPLAMBDA
converts a dependency tree to its logical form in
three steps: binarization, substitution, and com-
position, each of which is briefly outlined below.
Algorithm 1 describes the steps of DEPLAMBDA
in lines 4-6, whereas lines 2 and 3 are specific to
UDEPLAMBDA.

Binarization A dependency tree is first mapped
to a Lisp-style s-expression indicating the order
of semantic composition. Figure 1(b) shows the
s-expression for the sentence Disney won an Os-
car for the movie Frozen, derived from the depen-
dency tree in Figure 1(a). Here, the sub-expression
(dobj won (det Oscar an)) indicates that the logi-
cal form of the phrase won an Oscar is derived by
composing the logical form of the label dob7j with
the logical form of the word won and the logical
form of the phrase an Oscar, derived analogously.
The s-expression can also be interpreted as a bi-
narized tree with the dependency label as the root
node, and the left and right expressions as subtrees.

A composition hierarchy is employed to impose
a strict traversal ordering on the modifiers to each
head in the dependency tree. As an example, won
has three modifiers in Figure 1(a), which according
to the composition hierarchy are composed in the
order dobj > nmod > nsubj. In constructions like
coordination, this ordering is crucial to arrive at
the correct semantics. Lines 7-17 in Algorithm 1
describe the binarization step.

Substitution Each symbol in the s-expressions
is substituted for a lambda expression encoding
its semantics. Words and dependency labels are
assigned different types of expressions. In general,
words have expressions of the following kind:

ENTITY = Ax.word(x,); e.g. Oscar = Ax. Oscar(xg)
EVENT = Ax.word(x,); e.g. won = Ax. won(x,)
FUNCTIONAL = Ax. TRUE; €.g. an = Ax. TRUE

Here, the subscripts -, and -, denote the types
of individuals (Ind) and events (Event), respec-
tively, whereas x denotes a paired variable (x,,x,)
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for the movie
PROPN VERB DET PROPN ADP DET NOUN

Frozen
PROPN

Disney won an Oscar

(a) The dependency tree for Disney won an Oscar for the

movie Frozen in the Universal Dependencies formalism.
. J

~

p
(nsubj (nmod (dobj won (det Oscar an))
(case (det (comp. Frozen movie) the) for)) Disney)

(b) The binarized s-expression for the dependency tree.
. J

~N

p
Ax. 3yzw. won(x,) A Disney(y,) A Oscar(z,)
AFrozen(w,) A movie(w,)
A argy (x€7yu) A argy (xe7za) A and'for(xea Wa)

(c) The composed lambda-calculus expression.

- J

Figure 1: The mapping of a dependency tree to its
logical form with the intermediate s-expression.

of type Ind x Event. Roughly speaking, proper
nouns and adjectives invoke ENTITY expressions,
verbs and adverbs invoke EVENT expressions, and
common nouns invoke both ENTITY and EVENT ex-
pressions (see Section 3.3), while remaining words
invoke FUNCTIONAL expressions. DEPLAMBDA
enforces the constraint that every s-expression is of
the type 1 = Ind x Event — Bool, which simpli-
fies the type system considerably.

Expressions for dependency labels glue the
semantics of heads and modifiers to articulate
predicate-argument structure. These expressions in
general take one of the following forms:

COPY = Afgx.y. f(x) Ag(y) Arel(x,y)
e.g. nsubj, dobj, nmod, advmod

INVERT = Afgx. Iy f(x) Ag(y) Arel (v,x)
e.g. amod, acl
MERGE = Afgx. f(x) A g(x)

e.g. compound, appos, amod, acl
HEAD = Afgx. f(x)
e.g. case, punct, aux, mark.

As an example of COPY, consider the lambda
expression for dobj in (dobj won (det Oscar an)):
Afgx.3y. f(x) A g(y) Aargz(x.,y,). This expres-
sion takes two functions f and g as input, where
f represents the logical form of won and g repre-
sents the logical form of an Oscar. The predicate-
argument structure argy(x,,y,) indicates that the
argy of the event x,, i.e. won, is the individual y,,
i.e. the entity Oscar. Since argy(x,,y,) mimics the
dependency structure dobj(won, Oscar), we refer
to the expression kind evoked by dobj as COPY.



Expressions that invert the dependency direc-
tion are referred to as INVERT (e.g. amod in run-
ning horse); expressions that merge two subexpres-
sions without introducing any relation predicates
are referred to as MERGE (e.g. compound in movie
Frozen); and expressions that simply return the par-
ent expression semantics are referred to as HEAD
(e.g. case in for Frozen). While this generalization
applies to most dependency labels, several labels
take a different logical form not listed here, some
of which are discussed in Section 3.3. Sometimes
the mapping of dependency label to lambda expres-
sion may depend on surrounding part-of-speech
tags or dependency labels. For example, amod acts
as INVERT when the modifier is a verb (e.g. in run-
ning horse), and as MERGE when the modifier is
an adjective (e.g. in beautiful horse).? Lines 26-32
in Algorithm 1 describe the substitution procedure.

Composition The final logical form is computed
by beta-reduction, treating expressions of the form
(f x y) as the function f applied to the arguments
x and y. For example, (dobj won (det Oscar an))
results in Ax. 3z. won(x, ) A Oscar(z,) A arga(xe,z4)
when the expression for dobj is applied to those
for won and (det Oscar an). Figure 1(c) shows the
logical form for the s-expression in Figure 1(b).
The binarized s-expression is recursively converted
to a logical form as described in lines 18-25 in
Algorithm 1.

3 UDEPLAMBDA

We now introduce UDEPLAMBDA, a semantic in-
terface for Universal Dependencies.> Whereas
DEPLAMBDA only applies to English Stanford De-
pendencies, UDEPLAMBDA takes advantage of the
cross-lingual nature of UD to facilitate an (almost)
language independent semantic interface. This is
accomplished by restricting the binarization, sub-
stitution, and composition steps described above
to rely solely on information encoded in the UD
representation. As shown in Algorithm 1, lines
4-6 are common to both DEPLAMBDA and UDEP-
LAMBDA, whereas lines 2 and 3 applies only to
UDEPLAMBDA. Importantly, UDEPLAMBDA is
designed to not rely on lexical forms in a language

ZWe use Tregex (Levy and Andrew, 2006) for substitu-
tion mappings and Cornell SPF (Artzi, 2013) as the lambda-
calculus implementation. For example, in running horse, the
tregex /label:amod/=target < /postag:verb/ matches amod to
its INVERT expression Afgx. Jy. f(x) A g(y) Aamod' (ye,x4).

3In what follows, all references to UD are to UD v1.3.
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Algorithm 1: UDEPLAMBDA Steps

1 Function UDepLambda (depTree) :
2 depGraph = Enhancenent (depTree)
#See Figure 2(a) for a depGraph.
bindedTree = SplitLongDistance (depGraph)
#See Figure 2(b) for a bindedTree.
binarizedTree = Binarization (bindedTree)

#See Figure 1(b) for a binarizedTree.
logicalForm = Composition (binarizedTree)
return [ogical Form

Function Binarization (tree):
parent = GetRootNode (tree);
{(labell,childl),(label2,child2) ...}
= GetChildNodes (parent)
sortedChildren = SortUsingLabelHierarchy
({(labell,childl),(label2,child2)...})
binarziedTree.root = parent
for label, child € sortedChildren:
temp.root = label
temp.left = binarziedTree
temp.right = Binarization(child)
binarziedTree = temp
return binarizedTree

10

11
12
13
14
15
16
17

18 Function Composition (binarizedTree):

19 mainLF = Substitution (binarizedTree.root)

20 if binarziedTree has left and right children:

21 leftLF = Composition (binarziedTree.left)
22 rightLF = Composition(binarziedTree.right)
23 mainLF = BetaReduce (mainLF,leftLF)

24 mainLF = BetaReduce (mainLF,rightLF)

25 return mainLF

26 Function Substitution (node):

27 logicalForms =[]

28 for tregexRule, template € substitutionRules:
29 if tregexRule.match(node):

30 | f = GenLambdaExp (node, template)
31 logicalForms.add(lf)

32 return [ogical Forms

to assign lambda expressions, but only on informa-
tion contained in dependency labels and postags.

However, some linguistic phenomena are lan-
guage specific (e.g. pronoun-dropping) or lexical-
ized (e.g. every and the in English have different
semantics, despite being both determiners) and are
not encoded in the UD schema. Furthermore, some
cross-linguistic phenomena, such as long-distance
dependencies, are not part of the core UD represen-
tation. To circumvent this limitation, a simple en-
hancement step enriches the original UD represen-
tation before binarization takes place (Section 3.1).
This step adds to the dependency tree missing syn-
tactic information and long-distance dependencies,
thereby creating a graph. Whereas DEPLAMBDA
is not able to handle graph-structured input, UDEP-



LAMBDA is designed to work with dependency
graphs as well (Section 3.2). Finally, several con-
structions differ in structure between UD and SD,
which requires different handling in the semantic
interface (Section 3.3).

3.1 Enhancement

Both Schuster and Manning (2016) and Nivre et al.
(2016) note the necessity of an enhanced UD rep-
resentation to enable semantic applications. How-
ever, such enhancements are currently only avail-
able for a subset of languages in UD. Instead, we
rely on a small number of enhancements for our
main application—semantic parsing for question-
answering—with the hope that this step can be re-
placed by an enhanced UD representation in the fu-
ture. Specifically, we define three kinds of enhance-
ments: (1) long-distance dependencies; (2) types
of coordination; and (3) refined question word tags.
These correspond to line 2 in Algorithm 1.

First, we identify long-distance dependencies in
relative clauses and control constructions. We fol-
low Schuster and Manning (2016) and find these
using the labels acl (relative) and xcomp (control).
Figure 2(a) shows the long-distance dependency in
the sentence Anna wants to marry Kristoff. Here,
marry is provided with its missing nsubj (dashed
arc). Second, UD conflates all coordinating con-
structions to a single dependency label, coni. To
obtain the correct coordination scope, we refine
conj to conj:verb, conj:vp, conj:sentence,
conj:np, and conj:adj, similar to Reddy et al.
(2016). Finally, unlike the PTB tags (Marcus et al.,
1993) used by SD, the UD part-of-speech tags do
not distinguish question words. Since these are cru-
cial to question-answering, we use a small lexicon
to refine the tags for determiners (DET), adverbs
(ADV) and pronouns (PRON) to DET:WH, ADV:WH
and PRON:WH, respectively. Specifically, we use
a list of 12 (English), 14 (Spanish) and 35 (Ger-
man) words, respectively. This is the only part
of UDEPLAMBDA that relies on language-specific
information. We hope that, as the coverage of mor-
phological features in UD improves, this refine-
ment can be replaced by relying on morphological
features, such as the interrogative feature (INT).

3.2 Graph Structures and BIND

To handle graph structures that may result from the
enhancement step, such as those in Figure 2(a), we
propose a variable-binding mechanism that differs
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Anna  wants

marry  Kristoff
!

to

,,,,,,,,,,,,

(a) With long-distance dependency.

Anna  wants to marry Kristoff
By, bj /
AN nsubj_/
<) O<------

(b) With variable binding.

Figure 2: The original and enhanced dependency
trees for Anna wants to marry Kristoff.

from that of DEPLAMBDA. This is indicated in
line 3 of Algorithm 1. First, each long-distance
dependency is split into independent arcs as shown
in Figure 2(b). Here, Q is a placeholder for the sub-
ject of marry, which in turn corresponds to Anna as
indicated by the binding of € via the pseudo-label
BIND. We treat BIND like an ordinary dependency
label with semantics MERGE and process the result-
ing tree as usual, via the s-expression:

(nsubj (xcomp wants (nsubj (mark
(dobj marry Kristoff) to) Q) (BIND Anna Q)),

with the lambda-expression substitutions:

wants, marry € EVENT; to € FUNCTIONAL;
Anna, Kristoff € ENTITY;
mark € HEAD; BIND € MERGE;

xcomp = Afgx.3y. f(x) Ag(y) Axcomp(xe,Ye) -

These substitutions are based solely on unlexi-
calized context. For example, the part-of-speech
tag PROPN of Anna invokes an ENTITY expression.

The placeholder Q has semantics Ax.EQ(x, ®),
where EQ(u, ®) is true iff u and ® are equal (have
the same denotation), which unifies the subject vari-
able of wants with the subject variable of marry.

After substitution and composition, we get:

Az. Ixywv. wants(z.) A Anna(x,) Aarg(ze,xq) AEQ(x, ®)

A marry(ye) A xcomp(ze,Ye) A argi (ye,va) AEQ(v, ®)

A Kiristoff(wg) A argy (ye, wa) ,

This expression may be simplified further by
replacing all occurrences of v with x and removing
the unification predicates EQ, which results in:

Az. Ixyw. wants(z.) A Anna(x,) Aargy (ze,Xq)

A marry(y,) Axcomp(ze, ye) Aargi (Ye,Xa)
A Kristoff(w,) Aargs (ye, wa) -



This expression encodes the fact that Anna is the
arg) of the marry event, as desired. DEPLAMBDA,
in contrast, cannot handle graph-structured input,
since it lacks a principled way of generating s-
expressions from graphs. Even given the above
s-expression, BIND in DEPLAMBDA is defined in
a way such that the composition fails to unify v
and x, which is crucial for the correct semantics.
Moreover, the definition of BIND in DEPLAMBDA
does not have a formal interpretation within the
lambda calculus, unlike ours.

3.3 Linguistic Constructions

Below, we highlight the most pertinent differences
between UDEPLAMBDA and DEPLAMBDA, stem-
ming from the different treatment of various lin-
guistic constructions in UD versus SD.

Prepositional Phrases UD uses a content-head
analysis, in contrast to SD, which treats function
words as heads of prepositional phrases, Accord-
ingly, the s-expression for the phrase president
in 2009 is (nmod president (case 2009 in)) in U-
DEPLAMBDA and (prep president (pobj in 2009))
in DEPLAMBDA. To achieve the desired semantics,
Ax. Jy. president(x, ) A president_event(x,) A

arg) (xe,xq) A2009(y,) A prep.in(xe,yq)
DEPLAMBDA relies on an intermediate logical
form that requires some post-processing, whereas
UDEPLAMBDA obtains the desired logical form
directly through the following entries:
in € FUNCTIONAL; 2009 € ENTITY; case € HEAD;
president = Ax. president(x,) A president_event(x,)

Aarg (Xe,Xa) ;

nmod = Afgx. y. f(x) A g(y) Anmod.in(xe,y,) .

Other nmod constructions, such as possessives
(nmod:poss), temporal modifiers (nmod:tmod)
and adverbial modifiers (nmod:npmod), are han-
dled similarly. Note how the common noun presi-
dent, evokes both entity and event predicates above.

Passives DEPLAMBDA gives special treatment
to passive verbs, identified by the fine-grained part-
of-speech tags in the PTB tag together with de-
pendency context. For example, An Oscar was
won is analyzed as Ax. won.pass(x,) A Oscar(y,) A
arg; (x.,yq), where won.pass represents a passive
event. However, UD does not distinguish be-
tween active and passive forms.* While the labels

4UD encodes voice as a morphological feature, but most
syntactic analyzers do not produce this information yet.
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nsubjpass or auxpass indicate passive construc-
tions, such clues are sometimes missing, such as in
reduced relatives. We therefore opt to not have sep-
arate entries for passives, but aim to produce identi-
cal logical forms for active and passive forms when
possible (for example, by treating nsubjpass as
direct object). With the following entries,

won € EVENT; an, was € FUNCTIONAL; auxpass € HEAD;
nsubjpass = Afgx. Jy. f(x) Ag(y) Narga(xe,vq) »

the lambda expression for An Oscar was won be-
comes Ax. won(x,) A Oscar(y,) A args(x.,ya), iden-
tical to that of its active form. However, not having
a special entry for passive verbs may have unde-
sirable side-effects. For example, in the reduced-
relative construction Pixar claimed the Oscar won
for Frozen, the phrase the Oscar won ... will
receive the semantics Ax.Oscar(y,) A won(x,) A
argj (x,,y,), which differs from that of an Oscar
was won. We leave it to the target application to
disambiguate the interpretation in such cases.

Long-Distance Dependencies As discussed in
Section 3.2, we handle long-distance dependen-
cies evoked by clausal modifiers (acl) and con-
trol verbs (xcomp) with the BIND mechanism,
whereas DEPLAMBDA cannot handle control con-
structions. For xcomp, as seen earlier, we use the
mapping Afgx. Jy. f(x) Ag(y) Axcomp(x,,y,.). For
acl we use Afgx.3y. f(x) Ag(y), to conjoin the
main clause and the modifier clause. However, not
all acl clauses evoke long-distance dependencies,
e.g. in the news that Disney won an Oscar, the
clause that Disney won an Oscar is a subordinating
conjunction of news. In such cases, we instead
assign acl the INVERT semantics.

Questions Question words are marked with the
enhanced part-of-speech tags DET:WH, ADV:WH
and PRON:WH, which are all assigned the seman-
tics Ax. ${word}(x,) A TARGET(x,). The predicate
TARGET indicates that x, represents the variable of
interest, that is the answer to the question.

3.4 Limitations

In order to achieve language independence, UDEP-
LAMBDA has to sacrifice semantic specificity, since
in many cases the semantics is carried by lexical
information. Consider the sentences John broke
the window and The window broke. Although it is
the window that broke in both cases, our inferred
logical forms do not canonicalize the relation be-
tween broke and window. To achieve this, we
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Figure 3: The ungrounded graphs for What language do the people in Ghana speak?, Welche Sprache
wird in Ghana gesprochen? and Cudl es la lengua de Ghana?, and the corresponding grounded graph.

would have to make the substitution of nsubj de-
pend on lexical context, such that when window
occurs as nsub’j with broke, the predicate arg, is
invoked rather than arg;. UDEPLAMBDA does
not address this problem, and leave it to the tar-
get application to infer context-sensitive semantics
of arg; and arg,. To measure the impact of this
limitation, we present UDEPLAMBDASRL in Sec-
tion 4.4 which addresses this problem by relying on
semantic roles from semantic role labeling (Palmer
et al., 2010).

Other constructions that require lexical informa-
tion are quantifiers like every, some and most, nega-
tion markers like no and not, and intentional verbs
like believe and said. UD does not have special
labels to indicate these. We discuss how to handle
quantifiers in this framework in the supplementary
material.

Although in the current setup UDEPLAMBDA
rules are hand-coded, the number of rules are only
proportional to the number of UD labels, mak-
ing rule-writing manageable.> Moreover, we view
UDEPLAMBDA as a first step towards learning
rules for converting UD to richer semantic repre-
sentations such as PropBank, AMR, or the Paral-
lel Meaning Bank (Palmer et al., 2005; Banarescu
et al., 2013; Abzianidze et al., 2017)..

4 Cross-lingual Semantic Parsing

To study the multilingual nature of UDEPLAMBDA,
we conduct an empirical evaluation on question
answering against Freebase in three different lan-
guages: English, Spanish, and German. Before
discussing the details of this experiment, we briefly
outline the semantic parsing framework employed.

SUD v1.3 has 40 dependency labels, and the number of
substitution rules in UDEPLAMBDA are 61, with some labels
having multiple rules, and some representing lexical seman-
tics.
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4.1 Semantic Parsing as Graph Matching

UDEPLAMBDA generates ungrounded logical
forms that are independent of any knowledge base,
such as Freebase. We use GRAPHPARSER (Reddy
et al., 2016) to map these logical forms to their
grounded Freebase graphs, via corresponding un-
grounded graphs. Figures 3(a) to 3(c) show the
ungrounded graphs corresponding to logical forms
from UDEPLAMBDA, each grounded to the same
Freebase graph in Figure 3(d). Here, rectangles de-
note entities, circles denote events, rounded rectan-
gles denote entity types, and edges between events
and entities denote predicates or Freebase relations.
Finally, the TARGET node represents the set of val-
ues of x that are consistent with the Freebase graph,
that is the answer to the question.

GRAPHPARSER treats semantic parsing as a
graph-matching problem with the goal of finding
the Freebase graphs that are structurally isomorphic
to an ungrounded graph and rank them according
to a model. To account for structural mismatches,
GRAPHPARSER uses two graph transformations:
CONTRACT and EXPAND. In Figure 3(a) there are
two edges between x and Ghana. CONTRACT col-
lapses one of these edges to create a graph isomor-
phic to Freebase. EXPAND, in contrast, adds edges
to connect the graph in the case of disconnected
components. The search space is explored by beam
search and model parameters are estimated with
the averaged structured perceptron (Collins, 2002)
from training data consisting of question-answer
pairs, using answer Fj-score as the objective.

4.2 Datasets

We evaluate our approach on two public bench-
marks of question answering against Freebase:
WebQuestions (Berant et al., 2013), a widely used
benchmark consisting of English questions and
their answers, and GraphQuestions (Su et al., 2016),
a recently released dataset of English questions
with both their answers and grounded logical forms.



While WebQuestions is dominated by simple entity-
attribute questions, GraphQuestions contains a
large number of compositional questions involving
aggregation (e.g. How many children of Eddard
Stark were born in Wintertell?) and comparison
(e.g. In which month does the average rainfall of
New York City exceed 86 mm?). The number of
training, development and test questions is 2644,
1134, and 2032, respectively, for WebQuestions
and 1794, 764, and 2608 for GraphQuestions.

To support multilingual evaluation, we created
translations of WebQuestions and GraphQuestions
to German and Spanish. For WebQuestions two
professional annotators were hired per language,
while for GraphQuestions we used a trusted pool of
20 annotators per language (with a single annotator
per question). Examples of the original questions
and their translations are provided in Table 1.

4.3 Implementation Details

Here we provide details on the syntactic analyzers
employed, our entity resolution algorithm, and the
features used by the grounding model.

Dependency Parsing The English, Spanish, and
German Universal Dependencies (UD) treebanks
(v1.3; Nivre et al 2016) were used to train part of
speech taggers and dependency parsers. We used a
bidirectional LSTM tagger (Plank et al., 2016) and
a bidirectional LSTM shift-reduce parser (Kiper-
wasser and Goldberg, 2016). Both the tagger and
parser require word embeddings. For English, we
used GloVe embeddings (Pennington et al., 2014)
trained on Wikipedia and the Gigaword corpus.
For German and Spanish, we used SENNA em-
beddings (Collobert et al., 2011; Al-Rfou et al.,
2013) trained on Wikipedia corpora (589M words
German; 397M words Spanish).® Measured on the
UD test sets, the tagger accuracies are 94.5 (En-
glish), 92.2 (German), and 95.7 (Spanish), with
corresponding labeled attachment parser scores of
81.8,74.7, and 82.2.

Entity Resolution We follow Reddy et al. (2016)
and resolve entities in three steps: (1) potential en-
tity spans are identified using seven handcrafted
part-of-speech patterns; (2) each span is associated
with potential Freebase entities according to the
Freebase/KG API; and (3) the 10-best entity link-
ing lattices, scored by a structured perceptron, are

Ohttps://sites.google.com/site/rmyeid/projects/polyglot.
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WebQuestions

en
de
es

What language do the people in Ghana speak?
Welche Sprache wird in Ghana gesprochen?
(Cudl es la lengua de Ghana?

en
de
es

Who was Vincent van Gogh inspired by?
Von wem wurde Vincent van Gogh inspiriert?
(Qué inspiré a Van Gogh?

GraphQuestions

en
de
es

NASA has how many launch sites?
Wie viele Abschussbasen besitzt NASA?
(Cudntos sitios de despegue tiene NASA?

en
de
es

Which loudspeakers are heavier than 82.0 kg?
Welche Lautsprecher sind schwerer als 82.0 kg?
(Qué altavoces pesan mas de 82.0 kg?

Table 1: Example questions and their translations.

k WebQuestions GraphQuestions
en de es en de es

1 89.6 82.8 86.7 472 399 395

10 957 912 940 569 484 51.6

Table 2: Structured perceptron k-best entity linking
accuracies on the development sets.

input to GRAPHPARSER, leaving the final disam-
biguation to the semantic parsing problem. Table 2
shows the 1-best and 10-best entity disambiguation
Fi-scores for each language and dataset.

Features We use features similar to Reddy et al.
(2016): basic features of words and Freebase re-
lations, and graph features crossing ungrounded
events with grounded relations, ungrounded types
with grounded relations, and ungrounded answer
type crossed with a binary feature indicating if the
answer is a number. In addition, we add features
encoding the semantic similarity of ungrounded
events and Freebase relations. Specifically, we used
the cosine similarity of the translation-invariant em-
beddings of Huang et al. (2015).”

4.4 Comparison Systems

We compared UDEPLAMBDA to four versions of
GRAPHPARSER that operate on different represen-
tations, in addition to prior work.

SINGLEEVENT This model resembles the
learning-to-rank model of Bast and Haussmann
(2015). An ungrounded graph is generated by con-
necting all entities in the question with the TARGET
node, representing a single event. Note that this

"http://128.2.220.95/multilingual/data/.



WebQuestions GraphQuestions
Method en de es en de es
SINGLEEVENT 48.5 45.6 46.3 159 88 114
DEPTREE 48.8 459 46.4 160 83 113
CCGGRAPH 49.5 - - 159 - -
UDEPLAMBDA 49.5 46.1 47.5 17.7 9.5 128
UDEPLAMBDASRL  49.8 46.2 47.0 17.7 9.1 127

Table 3: Fj-scores on the test data.

baseline cannot handle compositional questions, or
those with aggregation or comparison.

DEPTREE An ungrounded graph is obtained di-
rectly from the original dependency tree. An event
is created for each parent and its dependents in the
tree. Each dependent is linked to this event with an
edge labeled with its dependency relation, while the
parent is linked to the event with an edge labeled
argp. If a word is a question word, an additional
TARGET predicate is attached to its entity node.

CCGGRAPH This is the CCG-based semantic
representation of Reddy et al. (2014). Note that
this baseline exists only for English.

UDEPLAMBDASRL This is similar to UDEP-
LAMBDA except that instead of assuming nsubj,
dobj and nsubjpass correspond to arg, arg; and
argp, we employ semantic role labeling to identify
the correct interpretation. We used the systems of
Roth and Woodsend (2014) for English and Ger-
man and Bjrkelund et al. (2009) for Spanish trained
on the CoNLL-2009 dataset (Haji et al., 2009).8

4.5 Results

Table 3 shows the performance of GRAPHPARSER
with these different representations. Here and in
what follows, we use average Fi-score of predicted
answers (Berant et al., 2013) as the evaluation met-
ric. We first observe that UDEPLAMBDA consis-
tently outperforms the SINGLEEVENT and DEP-
TREE representations in all languages.

For English, performance is on par with CCG-
GRAPH, which suggests that UDEPLAMBDA does
not sacrifice too much specificity for universal-
ity. With both datasets, results are lower for Ger-
man compared to Spanish. This agrees with the
lower performance of the syntactic parser on the
German portion of the UD treebank. While U-
DEPLAMBDASRL performs better than UDEP-

8The parser accuracies (%) are 87.33, 81.38 and 79.91for
English, German and Spanish respectively.

Method GraphQ. WebQ.

10.8 35.7

SEMPRE (Berant et al., 2013)

JACANA (Yao and Van Durme, 2014) 5.1 33.0
PARASEMPRE (Berant and Liang, 2014) 12.8 39.9
QA (Yao, 2015) - 443
AQQU (Bast and Haussmann, 2015) - 494
AGENDAIL (Berant and Liang, 2015) — 497
DEPLAMBDA (Reddy et al., 2016) - 503
STAGG (Yih et al., 2015) - 484 (52.5)
BILSTM (Tiire and Jojic, 2016) - 249(52.2)
MCNN (Xu et al., 2016) - 47.0(53.3)
AGENDAIL-RANK (Yavuz et al., 2016) - 51.6(52.6)
UDEPLAMBDA 17.7 49.5

Table 4: F;-scores on the English GraphQuestions
and WebQuestions test sets (results with additional
task-specific resources in parentheses).

LAMBDA on WebQuestions for English, we do not
see large performance gaps in other settings, sug-
gesting that GRAPHPARSER is either able to learn
context-sensitive semantics of ungrounded predi-
cates or that the datasets do not contain ambiguous
nsubj, dobj and nsubjpass mappings. Finally,
while these results confirm that GraphQuestions is
much harder compared to WebQuestions, we note
that both datasets predominantly contain single-hop
questions, as indicated by the competitive perfor-
mance of SINGLEEVENT on both datasets.

Table 4 compares UDEPLAMBDA with previ-
ously published models which exist only for En-
glish and have been mainly evaluated on Web-
Questions. These are either symbolic like ours (first
block) or employ neural networks (second block).
Results for models using additional task-specific
training resources, such as ClueWeb09, Wikipedia,
or SimpleQuestions (Bordes et al., 2015) are shown
in parentheses. On GraphQuestions, we achieve
a new state-of-the-art result with a gain of 4.8 Fj-
points over the previously reported best result. On
WebQuestions we are 2.1 points below the best
model using comparable resources, and 3.8 points
below the state of the art. Most related to our
work is the English-specific system of Reddy et al.
(2016). We attribute the 0.8 point difference in Fj-
score to their use of the more fine-grained PTB tag
set and Stanford Dependencies.

5 Related Work

Our work continues the long tradition of building
logical forms from syntactic representations initi-
ated by Montague (1973). The literature is rife with



attempts to develop semantic interfaces for HPSG
(Copestake et al., 2005), LFG (Kaplan and Bresnan,
1982; Dalrymple et al., 1995; Crouch and King,
2006), TAG (Kallmeyer and Joshi, 2003; Gardent
and Kallmeyer, 2003; Nesson and Shieber, 2006),
and CCG (Baldridge and Kruijff, 2002; Bos et al.,
2004; Artzi et al., 2015). Unlike existing semantic
interfaces, UDEPLAMBDA uses dependency syn-
tax, a widely available syntactic resource.

A common trend in previous work on seman-
tic interfaces is the reliance on rich typed feature
structures or semantic types coupled with strong
type constraints, which can be very informative
but unavoidably language specific. Instead, UDEP-
LAMBDA relies on generic unlexicalized informa-
tion present in dependency treebanks and uses a
simple type system (one type for dependency labels,
and one for words) along with a combinatory mech-
anism, which avoids type collisions. Earlier at-
tempts at extracting semantic representations from
dependencies have mainly focused on language-
specific dependency representations (Spreyer and
Frank, 2005; Simov and Osenova, 2011; Hahn and
Meurers, 2011; Reddy et al., 2016; Falke et al.,
2016; Beltagy, 2016), and multi-layered depen-
dency annotations (Jakob et al., 2010; Bédaride
and Gardent, 2011). In contrast, UDEPLAMBDA
derives semantic representations for multiple lan-
guages in a common schema directly from Univer-
sal Dependencies. This work parallels a growing
interest in creating other forms of multilingual se-
mantic representations (Akbik et al., 2015; Vander-
wende et al., 2015; White et al., 2016; Evang and
Bos, 2016).

We evaluate UDEPLAMBDA on semantic pars-
ing for question answering against a knowledge
base. Here, the literature offers two main modeling
paradigms: (1) learning of task-specific grammars
that directly parse language to a grounded repre-
sentation (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Berant et al., 2013; Flanigan
et al., 2014; Pasupat and Liang, 2015; Groschwitz
etal., 2015); and (2) converting language to a lin-
guistically motivated task-independent representa-
tion that is then mapped to a grounded representa-
tion (Kwiatkowski et al., 2013; Reddy et al., 2014;
Krishnamurthy and Mitchell, 2015; Gardner and
Krishnamurthy, 2017). Our work belongs to the
latter paradigm, as we map natural language to
Freebase indirectly via logical forms. Capitalizing
on natural-language syntax affords interpretability,
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scalability, and reduced duplication of effort across
applications (Bender et al., 2015). Our work also re-
lates to literature on parsing multiple languages to a
common executable representation (Cimiano et al.,
2013; Haas and Riezler, 2016). However, existing
approaches still map to the target meaning represen-
tations (more or less) directly (Kwiatkowksi et al.,
2010; Jones et al., 2012; Jie and Lu, 2014).

6 Conclusions

We introduced UDEPLAMBDA, a semantic inter-
face for Universal Dependencies, and showed that
the resulting semantic representation can be used
for question-answering against a knowledge base
in multiple languages. We provided translations of
benchmark datasets in German and Spanish, in the
hope to stimulate further multilingual research on
semantic parsing and question answering in gen-
eral. We have only scratched the surface when it
comes to applying UDEPLAMBDA to natural lan-
guage understanding tasks. In the future, we would
like to explore how this framework can benefit ap-
plications such as summarization (Liu et al., 2015)
and machine reading (Sachan and Xing, 2016).
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Abstract

Word embeddings improve generalization
over lexical features by placing each word
in a lower-dimensional space, using dis-
tributional information obtained from un-
labeled data. However, the effective-
ness of word embeddings for downstream
NLP tasks is limited by out-of-vocabulary
(OOV) words, for which embeddings do
not exist. In this paper, we present MIM-
ICK, an approach to generating OOV word
embeddings compositionally, by learning
a function from spellings to distributional
embeddings. Unlike prior work, MIMICK
does not require re-training on the original
word embedding corpus; instead, learn-
ing is performed at the type level. In-
trinsic and extrinsic evaluations demon-
strate the power of this simple approach.
On 23 languages, MIMICK improves per-
formance over a word-based baseline for
tagging part-of-speech and morphosyntac-
tic attributes. It is competitive with (and
complementary to) a supervised character-
based model in low-resource settings.

1 Introduction

One of the key advantages of word embeddings
for natural language processing is that they en-
able generalization to words that are unseen in
labeled training data, by embedding lexical fea-
tures from large unlabeled datasets into a rela-
tively low-dimensional Euclidean space. These
low-dimensional embeddings are typically trained
to capture distributional similarity, so that infor-
mation can be shared among words that tend to
appear in similar contexts.
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However, it is not possible to enumerate the en-
tire vocabulary of any language, and even large un-
labeled datasets will miss terms that appear in later
applications. The issue of how to handle these
out-of-vocabulary (OOV) words poses challenges
for embedding-based methods. These challenges
are particularly acute when working with low-
resource languages, where even unlabeled data
may be difficult to obtain at scale. A typical so-
lution is to abandon hope, by assigning a single
OOV embedding to all terms that do not appear in
the unlabeled data.

We approach this challenge from a quasi-
generative perspective. Knowing nothing of a
word except for its embedding and its written
form, we attempt to learn the former from the lat-
ter. We train a recurrent neural network (RNN)
on the character level with the embedding as the
target, and use it later to predict vectors for OOV
words in any downstream task. We call this model
the MIMICK-RNN, for its ability to read a word’s
spelling and mimick its distributional embedding.

Through nearest-neighbor analysis, we show
that vectors learned via this method capture both
word-shape features and lexical features. As a
result, we obtain reasonable near-neighbors for
OOV abbreviations, names, novel compounds,
and orthographic errors. Quantitative evalua-
tion on the Stanford RareWord dataset (Luong
et al., 2013) provides more evidence that these
character-based embeddings capture word similar-
ity for rare and unseen words.

As an extrinsic evaluation, we conduct ex-
periments on joint prediction of part-of-speech
tags and morphosyntactic attributes for a diverse
set of 23 languages, as provided in the Univer-
sal Dependencies dataset (De Marneffe et al.,
2014). Our model shows significant improvement
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across the board against a single UNK-embedding
backoff method, and obtains competitive results
against a supervised character-embedding model,
which is trained end-to-end on the target task.
In low-resource settings, our approach is par-
ticularly effective, and is complementary to su-
pervised character embeddings trained from la-
beled data. The MIMICK-RNN therefore pro-
vides a useful new tool for tagging tasks in set-
tings where there is limited labeled data. Models
and code are available at www.github.com/
yuvalpinter/mimick.

2 Related Work

Compositional models for embedding rare and
unseen words. Several studies make use of
morphological or orthographic information when
training word embeddings, enabling the predic-
tion of embeddings for unseen words based on
their internal structure. Botha and Blunsom (2014)
compute word embeddings by summing over em-
beddings of the morphemes; Luong et al. (2013)
construct a recursive neural network over each
word’s morphological parse; Bhatia et al. (2016)
use morpheme embeddings as a prior distribu-
tion over probabilistic word embeddings. While
morphology-based approaches make use of mean-
ingful linguistic substructures, they struggle with
names and foreign language words, which include
out-of-vocabulary morphemes. Character-based
approaches avoid these problems: for example,
Kim et al. (2016) train a recurrent neural network
over words, whose embeddings are constructed
by convolution over character embeddings; Wiet-
ing et al. (2016) learn embeddings of character n-
grams, and then sum them into word embeddings.
In all of these cases, the model for composing em-
beddings of subword units into word embeddings
is learned by optimizing an objective over a large
unlabeled corpus. In contrast, our approach is a
post-processing step that can be applied to any set
of word embeddings, regardless of how they were
trained. This is similar to the “retrofitting” ap-
proach of Faruqui et al. (2015), but rather than
smoothing embeddings over a graph, we learn a
function to build embeddings compositionally.

Supervised subword models. Another class of
methods learn task-specific character-based word
embeddings within end-to-end supervised sys-
tems. For example, Santos and Zadrozny (2014)
build word embeddings by convolution over char-
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acters, and then perform part-of-speech (POS)
tagging using a local classifier; the tagging ob-
jective drives the entire learning process. Ling
et al. (2015) propose a multi-level long short-
term memory (LSTM; Hochreiter and Schmidhu-
ber, 1997), in which word embeddings are built
compositionally from an LSTM over characters,
and then tagging is performed by an LSTM over
words. Plank et al. (2016) show that concatenat-
ing a character-level or bit-level LSTM network
to a word representation helps immensely in POS
tagging. Because these methods learn from la-
beled data, they can cover only as much of the lex-
icon as appears in their labeled training sets. As
we show, they struggle in several settings: low-
resource languages, where labeled training data
is scarce; morphologically rich languages, where
the number of morphemes is large, or where the
mapping from form to meaning is complex; and
in Chinese, where the number of characters is or-
ders of magnitude larger than in non-logographic
scripts. Furthermore, supervised subword models
can be combined with MIMICK, offering additive
improvements.

Morphosyntactic attribute tagging. We evalu-
ate our method on the task of tagging word to-
kens for their morphosyntactic attributes, such as
gender, number, case, and tense. The task of
morpho-syntactic tagging dates back at least to the
mid 1990s (Oflazer and Kuruéz, 1994; Haji¢ and
Hladk4, 1998), and interest has been rejuvenated
by the availability of large-scale multilingual mor-
phosyntactic annotations through the Universal
Dependencies (UD) corpus (De Marneffe et al.,
2014). For example, Faruqui et al. (2016) propose
a graph-based technique for propagating type-
level morphological information across a lexicon,
improving token-level morphosyntactic tagging in
11 languages, using an SVM tagger. In contrast,
we apply a neural sequence labeling approach, in-
spired by the POS tagger of Plank et al. (2016).

3 MIMICK Word Embeddings

We approach the problem of out-of-vocabulary
(OOV) embeddings as a generation problem: re-
gardless of how the original embeddings were cre-
ated, we assume there is a generative wordform-
based protocol for creating these embeddings. By
training a model over the existing vocabulary, we
can later use that model for predicting the embed-
ding of an unseen word.



Formally: given a language £, a vocabulary
Y C L of size V, and a pre-trained embeddings
table W € RY*? where each word {wy}}_, is
assigned a vector ey, of dimension d, our model
is trained to find the function f : £ — R¢ such
that the projected function f|, approximates the
assignments f(wy) =~ ej. Given such a model, a
new word wi« € £\ V can now be assigned an
embedding eg+ = f(wg+).

Our predictive function of choice is a Word
Type Character Bi-LSTM. Given a word with
character sequence w = {¢;}, a forward-LSTM
and a backward-LSTM are run over the corre-
sponding character embeddings sequence {egc) .
Let hﬂ} represent the final hidden vector for the
forward-LSTM, and let hg represent the final hid-
den vector for the backward-LSTM. The word em-
bedding is computed by a multilayer perceptron:

f(w) =Or - g(Ty - [A}; RY] +b) + br, (1)

where Ty, by, and O, by are parameters of affine
transformations, and ¢ is a nonlinear elementwise
function. The model is presented in Figure 1.

The training objective is similar to that of Yin
and Schiitze (2016). We match the predicted em-
beddings f(wy) to the pre-trained word embed-
dings e, , by minimizing the squared Euclidean
distance,

L= f(wi) — ewlls- )

By backpropagating from this loss, it is possible
to obtain local gradients with respect to the pa-
rameters of the LSTMs, the character embeddings,
and the output model. The ultimate output of the
training phase is the character embeddings ma-
trix C and the parameters of the neural network:
M ={C,F,B, Ty, b,,Or,br}, where F, B are
the forward and backward LSTM component pa-
rameters, respectively.

3.1 MIMICK Polyglot Embeddings

The pretrained embeddings we use in our ex-
periments are obtained from Polyglot (Al-Rfou
et al., 2013), a multilingual word embedding ef-
fort. Available for dozens of languages, each
dataset contains 64-dimension embeddings for the
100,000 most frequent words in a language’s train-
ing corpus (of variable size), as well as an UNK
embedding to be used for OOV words. Even with
this vocabulary size, querying words from respec-
tive UD corpora (train + dev + test) yields high
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Figure 1: MIMICK model architecture.

OOV rates: in at least half of the 23 languages in
our experiments (see Section 5), 29.1% or more of
the word types do not appear in the Polyglot vo-
cabulary. The token-level median rate is 9.2%.!

Applying our MIMICK algorithm to Polyglot
embeddings, we obtain a prediction model for
each of the 23 languages. Based on preliminary
testing on randomly selected held-out develop-
ment sets of 1% from each Polyglot vocabulary
(with error calculated as in Equation 2), we set
the following hyper-parameters for the remainder
of the experiments: character embedding dimen-
sion = 20; one LSTM layer with 50 hidden units;
60 training epochs with no dropout; nonlinearity
function ¢ = tanh.> We initialize character em-
beddings randomly, and use DyNet to implement
the model (Neubig et al., 2017).

Nearest-neighbor examination. As a prelimi-
nary sanity check for the validity of our pro-
tocol, we examined nearest-neighbor samples in
languages for which speakers were available:
English, Hebrew, Tamil, and Spanish. Ta-
ble 1 presents selected English OOV words with

'Some OOV counts, and resulting model performance,
may be adversely affected by tokenization differences be-
tween Polyglot and UD. Notably, some languages such as
Spanish, Hebrew and Italian exhibit relational synthesis
wherein words of separate grammatical phrases are joined
into one form (e.g. Spanish del = de + el, ‘from the-masc.-
sg.’). For these languages, the UD annotations adhere to
the sub-token level, while Polyglot does not perform sub-
tokenization. As this is a real-world difficulty facing users
of out-of-the-box embeddings, we do not patch it over in our
implementations or evaluation.

2QOther settings, described below, were tuned on the su-
pervised downstream tasks.



OOV word Nearest neighbors OO0V word Nearest neighbors

MCT AWS OTA APT PDM SMP compartmentalize  formalize rationalize discern prioritize validate
McNeally Howlett Gaughan McCallum Blaney  pesky euphoric disagreeable horrid ghastly horrifying
Vercellotti Martinelli Marini Sabatini Antonelli ~ lawnmower tradesman bookmaker postman hairdresser
Secretive Routine Niche Turnaround Themed  developiong compromising inflating shrinking straining
corssing slicing swaying pounding grasping hurtling splashing pounding swaying slicing rubbing
flatfish slimy jerky watery glassy wrinkle expectedly legitimately profoundly strangely energetically

Table 1: Nearest-neighbor examples for the English MIMICK model.

their nearest in-vocabulary Polyglot words com-
puted by cosine similarity. = These examples
demonstrate several properties: (a) word shape
is learned well (acronyms, capitalizations, suf-
fixes); (b) the model shows robustness to typos
(e.g., developiong, corssing); (c) part-of-speech is
learned across multiple suffixes (pesky — euphoric,
ghastly); (d) word compounding is detected (e.g.,
lawnmower — bookmaker, postman); (e) semantics
are not learned well (as is to be expected from the
lack of context in training), but there are surprises
(e.g., flatfish — slimy, watery). Table 2 presents
examples from Hebrew that show learned proper-
ties can be extended to nominal morphosyntactic
attributes (gender, number — first two examples)
and even relational syntactic subword forms such
as genetive markers (third example). Names are
learned (fourth example) despite the lack of cas-
ing in the script. Spanish examples exhibit word-
shape and part-of-speech learning patterns with
some loose semantics: for example, the plural ad-
jective form prenatales is similar to other family-
related plural adjectives such as patrimoniales and
generacionales. Tamil displays some semantic
similarities as well: e.g. enjineer (‘engineer’) pre-
dicts similarity to other professional terms such
as kalviyiyal (‘education’), thozhilnutpa (‘techni-
cal’), and iraanuva (‘military’).

Stanford RareWords. The Stanford RareWord
evaluation corpus (Luong et al., 2013) focuses on
predicting word similarity between pairs involving
low-frequency English words, predominantly ones
with common morphological affixes. As these
words are unlikely to be above the cutoff threshold
for standard word embedding models, they em-
phasize the performance on OOV words.

For evaluation of our MIMICK model on
the RareWord corpus, we trained the Varia-
tional Embeddings algorithm (VarEmbed; Bha-
tia et al., 2016) on a 20-million-token, 100,000-
type Wikipedia corpus, obtaining 128-dimension
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word embeddings for all words in the test cor-
pus. VarEmbed estimates a prior distribution over
word embeddings, conditional on the morpholog-
ical composition. For in-vocabulary words, a pos-
terior is estimated from unlabeled data; for out-
of-vocabulary words, the expected embedding can
be obtained from the prior alone. In addition, we
compare to FastText (Bojanowski et al., 2016), a
high-vocabulary, high-dimensionality embedding
benchmark.

The results, shown in Table 3, demonstrate that
the MIMICK RNN recovers about half of the loss
in performance incurred by the original Polyglot
training model due to out-of-vocabulary words in
the “All pairs” condition. MIMICK also outper-
forms VarEmbed. FastText can be considered an
upper bound: with a vocabulary that is 25 times
larger than the other models, it was missing words
from only 44 pairs on this data.

4 Joint Tagging of Parts-of-Speech and
Morphosyntactic Attributes

The Universal Dependencies (UD)
scheme (De Marneffe et al.,, 2014) features a
minimal set of 17 POS tags (Petrov et al., 2012)
and supports tagging further language-specific
features using attribute-specific inventories. For
example, a verb in Turkish could be assigned a
value for the evidentiality attribute, one which is
absent from Danish. These additional morphosyn-
tactic attributes are marked in the UD dataset as
optional per-token attribute-value pairs.

Our approach for tagging morphosyntactic at-
tributes is similar to the part-of-speech tagging
model of Ling et al. (2015), who attach a projec-
tion layer to the output of a sentence-level bidi-
rectional LSTM. We extend this approach to mor-
phosyntactic tagging by duplicating this projection
layer for each attribute type. The input to our mul-
tilayer perceptron (MLP) projection network is the
hidden state produced for each token in the sen-
tence by an underlying LSTM, and the output is



OOV word Nearest neighbors

TTGFM ‘(s/y) will come true’,
GIAVMTRIIM ‘geometric(m-pl)’2
BQFTNYV ‘our request’
RIC’RDSVN ‘Richardson’

TPTVR “(s/y) will solve’, TBTL ‘(s/y) will cancel’, TSIR ‘(s/y) will remove’
ANTVMIIM ‘anatomic(m-pl)’, GAVMTRIIM ‘geometric(m-pl)’1

IVFBIHM ‘their(m) residents’, XTAIHM ‘their(m) sins’, IRVFTV ‘his inheritance’
AVISTRK ‘Eustrach’, QMINQA ‘Kaminka’, GVLDNBRG ‘Goldenberg’

Table 2: Nearest-neighbor examples for Hebrew (Transcriptions per Sima’an et al. (2001)). ‘s/y’ stands
for ‘she/you-m.sg.’; subscripts denote alternative spellings, standard form being ‘X’;.

Emb. Vocab  Polyglot All
dim size in-vocab pairs
N =862 N =2034
VarEmbed 128 100K 41.9 25.5
Polyglot 64 100K 40.8 8.7
MIMICK 64 0 17.9 17.5
Polyglot 64 100K 408 27.0
+MIMICK
Fasttext 300 2.51M 473

Table 3: Similarity results on the RareWord set,
measured as Spearman’s p x 100. VarEmbed was
trained on a 20-million token dataset, Polyglot on
a 1.7B-token dataset.

attribute-specific probability distributions over the
possible values for each attribute on each token
in the sequence. Formally, for a given attribute
a with possible values v € V,, the tagging prob-
ability for the ¢’th word in a sentence is given by:

Pr(ay, = v) = (Softmax(¢(h;))),, (3)

with

¢(hi)

= Ofy - tanh(W7}, - h; + b%) + by, (4)

where h; is the 7’th hidden state in the underlying
LSTM, and ¢(h;) is a two-layer feedforward neu-
ral network, with weights W¢ and Of;,. We apply
a softmax transformation to the output; the value
at position v is then equal to the probability of at-
tribute v applying to token w;. The input to the
underlying LSTM is a sequence of word embed-
dings, which are initialized to the Polyglot vectors
when possible, and to MIMICK vectors when nec-
essary. Alternative initializations are considered in
the evaluation, as described in Section 5.2.

Each tagged attribute sequence (including POS
tags) produces a loss equal to the sum of nega-
tive log probabilities of the true tags. One way
to combine these losses is to simply compute the
sum loss. However, many languages have large
differences in sparsity across morpho-syntactic at-
tributes, as apparent from Table 4 (rightmost col-
umn). We therefore also compute a weighted sum
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loss, in which each attribute is weighted by the
proportion of training corpus tokens on which it is
assigned a non-NONE value. Preliminary experi-
ments on development set data were inconclusive
across languages and training set sizes, and so we
kept the simpler sum loss objective for the remain-
der of our study. In all cases, part-of-speech tag-
ging was less accurate when learned jointly with
morphosyntactic attributes. This may be because
the attribute loss acts as POS-unrelated “noise” af-
fecting the common LSTM layer and the word em-
beddings.

5 Experimental Settings

The morphological complexity and composition-
ality of words varies greatly across languages.
While a morphologically-rich agglutinative lan-
guage such as Hungarian contains words that carry
many attributes as fully separable morphemes, a
sentence in an analytic language such as Viet-
namese may have not a single polymorphemic or
inflected word in it. To see whether this property
is influential on our MIMICK model and its perfor-
mance in the downstream tagging task, we select
languages that comprise a sample of multiple mor-
phological patterns. Language family and script
type are other potentially influential factors in an
orthography-based approach such as ours, and so
we vary along these parameters as well. We also
considered language selection recommendations
from de Lhoneux and Nivre (2016) and Schluter
and Agi¢ (2017).

As stated above, our approach is built on the
Polyglot word embeddings. The intersection of
the Polyglot embeddings and the UD dataset (ver-
sion 1.4) yields 44 languages. Of these, many are
under-annotated for morphosyntactic attributes;
we select twenty-three sufficiently-tagged lan-
guages, with the exception of Indonesian.® Table 4
presents the selected languages and their typolog-
ical properties. As an additional proxy for mor-

3Vietnamese has no attributes by design; it is a pure ana-
lytic language.



Language Branch Script Morpho. Tokens Language Branch  Script Morpho. Tokens

type w/ attr. type w/ attr.

vi Vietnamese Vietic alphabetic* Analytic 00.0% fa Persian Iranian  consonantal Agglutin. 65.4%

hu Hungarian Finno- alphabetic  Agglutin. 83.6% hi Hindi Indo- alphasyllab. Fusional 92.4%
Ugric Aryan

id Indonesian Malayic alphabetic =~ Agglutin. — Iv Latvian  Baltic alphabetic  Fusional 69.2%

zh Chinese Sinitic  ideographic Isolating 06.2% el Greek Hellenic alphabetic  Fusional 64.8%

tr  Turkish Turkic  alphabetic ~ Agglutin. 68.4% bg Bulgarian Slavic alphabetic  Fusional 68.6%

kk Kazakh Turkic  alphabetic ~ Agglutin. 20.9% ru Russian  Slavic alphabetic ~ Fusional 69.2%

ar Arabic Semitic consonantal Fusional 60.6% cs Czech Slavic alphabetic  Fusional 83.2%

he Hebrew Semitic consonantal Fusional 62.9% es Spanish Romance alphabetic Fusional 67.1%

eu Basque Vasconic alphabetic ~ Agglutin. 59.2% it Italian Romance alphabetic  Fusional 67.3%

ta Tamil Tamil syllabic Agglutin. 78.8% ro Romanian Romance alphabetic  Fusional 87.1%

da Danish  Germanic alphabetic Fusional 72.2%

en English Germanic alphabetic  Analytic 72.8%

sv. Swedish Germanic alphabetic  Analytic 73.4%

Table 4: Languages used in tagging evaluation. Languages on the right are Indo-European. *In Viet-
namese script, whitespace separates syllables rather than words.

phological expressiveness, the rightmost column
shows the proportion of UD tokens which are an-
notated with any morphosyntactic attribute.

5.1 Metrics

As noted above, we use the UD datasets for testing
our MIMICK algorithm on 23 languages* with the
supplied train/dev/test division. We measure part-
of-speech tagging by overall token-level accuracy.

For morphosyntactic attributes, there does not
seem to be an agreed-upon metric for reporting
performance. Dzeroski et al. (2000) report per-
tag accuracies on a morphosyntactically tagged
corpus of Slovene. Faruqui et al. (2016) report
macro-averages of F1 scores of 11 languages from
UD 1.1 for the various attributes (e.g., part-of-
speech, case, gender, tense); recall and precision
were calculated for the full set of each attribute’s
values, pooled together.’ Agié et al. (2013) report
separately on parts-of-speech and morphosyntac-
tic attribute accuracies in Serbian and Croatian,
as well as precision, recall, and F1 scores per
tag. Georgiev et al. (2012) report token-level ac-
curacy for exact all-attribute tags (e.g. ‘Ncmsh’
for “Noun short masculine singular definite”) in
Bulgarian, reaching a tagset of size 680. Miiller
et al. (2013) do the same for six other languages.
We report micro F1: each token’s value for each
attribute is compared separately with the gold la-
beling, where a correct prediction is a matching
non-NONE attribute/value assignment. Recall and

“When several datasets are available for a language, we
use the unmarked corpus.

SDetails were clarified in personal communication with
the authors.

precision are calculated over the entire set, with F1
defined as their harmonic mean.

5.2 Models

We implement and test the following models:

No-Char. Word embeddings are initialized from
Polyglot models, with unseen words assigned the
Polyglot-supplied UNK vector. Following tuning
experiments on all languages with cased script, we
found it beneficial to first back off to the lower-
cased form for an OOV word if its embedding ex-
ists, and only otherwise assign UNK.

MIMICK. Word embeddings are initialized from
Polyglot, with OOV embeddings inferred from a
MIMICK model (Section 3) trained on the Poly-
glot embeddings. Unlike the No-Char case, back-
ing off to lowercased embeddings before using the
MIMICK output did not yield conclusive benefits
and thus we report results for the more straightfor-
ward no-backoff implementation.

CHAR—TAG. Word embeddings are initialized
from Polyglot as in the No-Char model (with low-
ercase backoff), and appended with the output of
a character-level LSTM updated during training
(Plank et al., 2016). This additional module causes
a threefold increase in training time.

Both. Word embeddings are initialized as in
MIMICK, and appended with the CHAR—TAG
LSTM.

Other models. Several non-Polyglot embed-
ding models were examined, all performed sub-
stantially worse than Polyglot. Two of these
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are notable: a random-initialization baseline,
and a model initialized from FastText em-
beddings (tested on English).  FastText sup-
plies 300-dimension embeddings for 2.51 million
lowercase-only forms, and no UNK vector. Both
of these embedding models were attempted with
and without CHAR—TAG concatenation. Another
model, initialized from only MIMICK output em-
beddings, performed well only on the language
with smallest Polyglot training corpus (Latvian).
A Polyglot model where OOVs were initialized
using an averaged embedding of all Polyglot vec-
tors, rather than the supplied UNK vector, per-
formed worse than our No-Char baseline on a
great majority of the languages.

Last, we do not employ type-based tagset re-
strictions. All tag inventories are computed from
the training sets and each tag selection is per-
formed over the full set.

5.3 Hyperparameters

Based on development set experiments, we set
the following hyperparameters for all models on
all languages: two LSTM layers of hidden size
128, MLP hidden layers of size equal to the num-
ber of each attribute’s possible values; momen-
tum stochastic gradient descent with 0.01 learning
rate; 40 training epochs (80 for 5K settings) with a
dropout rate of 0.5. The CHAR—TAG models use
20-dimension character embeddings and a single
hidden layer of size 128.

6 Results

We report performance in both low-resource and
full-resource settings. Low-resource training sets
were obtained by randomly sampling training sen-
tences, without replacement, until a predefined to-
ken limit was reached. We report the results on the
full sets and on N = 5000 tokens in Table 5 (part-
of-speech tagging accuracy) and Table 6 (mor-
phosyntactic attribute tagging micro-F1). Results
for additional training set sizes are shown in Fig-
ure 2; space constraints prevent us from showing
figures for all languages.

MIMICK as OOV initialization. In nearly all
experimental settings on both tasks, across lan-
guages and training corpus sizes, the MIMICK
embeddings significantly improve over the Poly-
glot UNK embedding for OOV tokens on both

SVocabulary type-level coverage for the English UD cor-
pus: 55.6% case-sensitive, 87.9% case-insensitive.
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POS and morphosyntactic tagging. For POS, the
largest margins are in the Slavic languages (Rus-
sian, Czech, Bulgarian), where word order is rel-
atively free and thus rich word representations are
imperative. Chinese also exhibits impressive im-
provement across all settings, perhaps due to the
large character inventory (> 12,000), for which a
model such as MIMICK can learn well-informed
embeddings using the large Polyglot vocabulary
dataset, overcoming both word- and character-
level sparsity in the UD corpus.” In morphosyn-
tactic tagging, gains are apparent for Slavic lan-
guages and Chinese, but also for agglutinative lan-
guages — especially Tamil and Turkish — where
the stable morpheme representation makes it easy
for subword modeling to provide a type-level sig-
nal.® To examine the effects on Slavic and agglu-
tinative languages in a more fine-grained view, we
present results of multiple training-set size exper-
iments for each model, averaged over five repeti-
tions (with different corpus samples), in Figure 2.

MIMICK VvS. CHAR—TAG. In several lan-
guages, the MIMICK algorithm fares better than
the CHAR—TAG model on part-of-speech tagging
in low-resource settings. Table 7 presents the POS
tagging improvements that MIMICK achieves over
the pre-trained Polyglot models, with and without
CHAR—TAG concatenation, with 10,000 tokens
of training data. We obtain statistically signifi-
cant improvements in most languages, even when
CHAR—TAG is included. These improvements are
particularly substantial for test-set tokens outside
the UD training set, as shown in the right two
columns. While test set OOVs are a strength of
the CHAR—TAG model (Plank et al., 2016), in
many languages there are still considerable im-
provements to be obtained from the application
of MIMICK initialization. This suggests that with
limited training data, the end-to-end CHAR—TAG
model is unable to learn a sufficiently accurate rep-
resentational mapping from orthography.

7 Conclusion

We present a straightforward algorithm to infer
OOV word embedding vectors from pre-trained,

"Character coverage in Chinese Polyglot is surprisingly
good: only eight characters from the UD dataset are unseen
in Polyglot, across more than 10,000 unseen word types.

8Persian is officially classified as agglutinative but it is
mostly so with respect to derivations. Its word-level inflec-
tions are rare and usually fusional.



Nirain = 5000 Full data

No-Char MIMICK CHAR Both Niain No-Char  MIMICK  CHAR Both PSG
—TAG —TAG 2016*
kk — — — — 4949 81.94 83.95 83.64 84.88
ta 82.30 81.55 84.97 85.22 6,329 80.44 82.96 84.11 84.46

Iv. 80.44 84.32 8449 8591 13,781 85.77 87.95 89.55 89.99
vi  85.67 84.22 84.85 85.43 31,800 89.94 90.34 90.50  90.19
hu  82.88 88.93 85.83 88.34 33,017 91.52 93.88 94.07  93.74
tr  83.69 85.60 84.23 86.25 41,748  90.19 91.82 93.11 92.68
el 93.10 93.63 94.05 94.64 47449 97.27 98.08 98.09  98.22
bg 9097 93.16 93.03 93.52 50,000 96.63 97.29 97.95 97.78 98.23
sv. 90.87 92.30 9227  93.02 66,645 95.26 96.27 96.69  96.87 96.60
eu 82.67 84.44 86.01 86.93 72,974  91.67 93.16 9446 9429 9538
ru  87.40 89.72 88.65 90.91 79,772 92.59 95.21 9598  95.84
da  89.46 90.13 89.96  90.55 88,980 94.14 95.04 96.13 96.02 96.16
id  89.07 89.34 89.81 90.21 97,531 92.92 93.24 93.41 93.70 93.32
zh  80.84 85.69 81.84 8553 98,608  90.91 93.31 93.36  93.72
fa  93.50 93.58 93.53 93.71 121,064  96.77 97.03 9720 97.16 97.60
he 90.73 91.69 91.93 91.70 135,496  95.65 96.15 96.59  96.37 96.62
ro 87.73 89.18 88.96  89.38 163,262 95.68 96.72 97.07  97.09
en 87.48 88.45 88.89 88.89 204,587  93.39 94.04 9490 9470 95.17
ar  89.01 90.58 90.49  90.62 225,853  95.51 95.72 96.37  96.24 98.87
hi  87.89 87.77 87.92 88.09 281,057 96.31 96.45 96.64  96.61 96.97
it 91.35 92.50 92.45 93.01 289,440 97.22 97.47 9776 97.69 97.90
es 90.54 91.41 91.71 91.78 382,436 94.68 94.84 95.08  95.05 95.67
cs 8797 90.81 90.17  91.29 1,173,282 96.34 97.62 98.18 9793 98.02

Table 5: POS tagging accuracy (UD 1.4 Test). Bold (/falic) indicates significant improvement (degrada-
tion) by McNemar’s test, p < .01, comparing MIMICK to “No-Char”, and “Both” to CHAR—TAG.

* For reference, we copy the reported results of Plank et al. (2016)’s analog to CHAR—TAG. Note that
these were obtained on UD 1.2, and without jointly tagging morphosyntactic attributes.

Nirain = 5000 Full data
No-Char MIMICK CHAR Both No-Char MIMICK CHAR Both
—TAG —TAG

kk — — — — 21.48 20.07 2847  20.98
ta  80.68 81.96 84.26  85.63 79.90 81.93 84.55 85.01
v 56.98 59.86 64.81 65.82 66.16 66.61 76.11 75.44
hu 73.13 76.30 73.62  76.85 80.04 80.64 86.43 84.12
tr  69.58 75.21 75.81 78.93 78.31 83.32 91.51 90.86
el 86.87 86.07 86.40  87.50 94.64 94.96 96.55 96.76
bg 78.26 81.77 82.74 8493 9198 93.48 96.12  95.96
sv  82.09 84.12 8526  88.16 9245 94.20 96.37 96.57
eu 65.29 66.00 70.67 70.27 8275 84.74 90.58 91.39
ru 7731 81.84 79.83 83.53 88.80 91.24 93.54  93.56
da 80.26 82.74 83.59  82.65 92.06 94.14 96.05 95.96
zh  63.29 71.44 63.50  74.66 84.95 85.70 84.86 85.87
fa  84.73 86.07 8594  81.75 9530 95.55 96.90  96.80
he 75.35 68.57 81.06 7524 90.25 90.99 93.35 93.63
ro 84.20 85.64 85.61 87.31 9497 96.10 97.18 97.14
en 86.71 87.99 88.50  89.61 9530 95.59 96.40  96.30
ar  84.14 84.17 81.41 81.11 9443 94.85 9550  95.37
hi  83.45 86.89 85.64 8527 96.15 96.21 96.59  96.67
it 89.96 92.07 91.27  92.62 97.32 97.80 98.18 98.31
es 88.11 89.81 88.58  89.63 94.84 95.44 96.21 96.84
cs  68.66 72.65 71.02  73.61 91.75 93.71 9529 9531

Table 6: Micro-F1 for morphosyntactic attributes (UD 1.4 Test). Bold ({talic) type indicates significant
improvement (degradation) by a bootstrapped Z-test, p < .01, comparing models as in Table 5. Note
that the Kazakh (kk) test set has only 78 morphologically tagged tokens.
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Figure 2: Results on agglutinative languages (top) and on Slavic languages (bottom). X-axis is number
of training tokens, starting at 500. Error bars are the standard deviations over five random training data

subsamples.
Test set Missing Full ooV
embeddings  vocabulary (UD)

CHAR—TAG w/o  with w/o  with
Persian 22% 0.03 041 0.83 0.81
Hindi 38% 059 021 361 036
English 45% 083 025 326 049
Spanish 52% 033 -026 1.03 -0.66
Italian 6.6% 084 028 1.83 0.21
Danish 78% 065 099 241 172
Hebrew 92% 125 040 3.03 0.06
Swedish 92% 150 055 475 1.79
Bulgarian 94% 096 0.12 183 -0.11
Czech 10.6% 224 132 584 220
Latvian 11.1% 2.87 1.03 729 271
Hungarian 11.6% 2.62 2.01 576 4.85
Turkish 145% 173 1.69 358 271
Tamil* 162% 252 035 209 135
Russian 16.5% 217 1.82 455 3.52
Greek 17.5% 1.07 034 330 1.17
Indonesian  19.1% 046 025 1.19 0.75
Kazakh* 21.0% 201 124 534 420
Vietnamese 21.9% 0.53 118 1.07 5.73
Romanian 271% 149 047 422 124
Arabic 27.1% 123 032 215 022
Basque 353% 239 1.06 542 1.68
Chinese 69.9% 419 2.57 952 524

Table 7: Absolute gain in POS tagging accuracy
from using MIMICK for 10,000-token datasets (all
tokens for Tamil and Kazakh). Bold denotes sta-
tistical significance (McNemar’s test,p < 0.01).
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limited-vocabulary models, without need to ac-
cess the originating corpus. This method is par-
ticularly useful for low-resource languages and
tasks with little labeled data available, and in
fact is task-agnostic. Our method improves per-
formance over word-based models on annotated
sequence-tagging tasks for a large variety of lan-
guages across dimensions of family, orthography,
and morphology. In addition, we present a Bi-
LSTM approach for tagging morphosyntactic at-
tributes at the token level. In this paper, the MIM-
ICK model was trained using characters as input,
but future work may consider the use of other
subword units, such as morphemes, phonemes, or
even bitmap representations of ideographic char-
acters (Costa-jussa et al., 2017).
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Abstract

We present SuperPivot, an analysis
method for low-resource languages that
occur in a superparallel corpus, i.e., in a
corpus that contains an order of magni-
tude more languages than parallel corpora
currently in use. We show that SuperPivot
performs well for the crosslingual analysis
of the linguistic phenomenon of tense.
We produce analysis results for more than
1000 languages, conducting — to the best
of our knowledge — the largest crosslin-
gual computational study performed to
date. We extend existing methodology for
leveraging parallel corpora for typological
analysis by overcoming a limiting as-
sumption of earlier work: We only require
that a linguistic feature is overtly marked
in a few of thousands of languages as
opposed to requiring that it be marked in
all languages under investigation.

1 Introduction

Significant linguistic resources such as machine-
readable lexicons and part-of-speech (POS) tag-
gers are available for at most a few hundred lan-
guages. This means that the majority of the
languages of the world are low-resource. Low-
resource languages like Fulani are spoken by tens
of millions of people and are politically and eco-
nomically important; e.g., to manage a sudden
refugee crisis, NLP tools would be of great ben-
efit. Even “small” languages are important for
the preservation of the common heritage of hu-
mankind that includes natural remedies and lin-
guistic and cultural diversity that can potentially
enrich everybody. Thus, developing analysis
methods for low-resource languages is one of the
most important challenges of NLP today.
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We address this challenge by proposing a new
method for analyzing what we call superparallel
corpora, corpora that are by an order of magnitude
more parallel than corpora that have been available
in NLP to date. The corpus we work with in this
paper is the Parallel Bible Corpus (PBC) that con-
sists of translations of the New Testament in 1169
languages. Given that no NLP analysis tools are
available for most of these 1169 languages, how
can we extract the rich information that is poten-
tially hidden in such superparallel corpora?

The method we propose is based on two hy-
potheses. H1 Existence of overt encoding. For
any important linguistic distinction f that is fre-
quently encoded across languages in the world,
there are a few languages that encode f overtly
on the surface. H2 Overt-to-overt and overt-to-
non-overt projection. For a language [ that en-
codes f, a projection of f from the “overt lan-
guages” to [ in the superparallel corpus will iden-
tify the encoding that [ uses for f, both in cases
in which the encoding that [ uses is overt and in
cases in which the encoding that [ uses is non-
overt. Based on these two hypotheses, our method
proceeds in 5 steps.

1. Selection of a linguistic feature. We select a
linguistic feature f of interest. Running example:
We select past tense as feature f.

2. Heuristic search for head pivot. Through
a heuristic search, we find a language [" that con-
tains a head pivot p" that is highly correlated with
the linguistic feature of interest.

Running example: “ti” in Seychelles Creole
(CRS). CRS “ti” meets our requirements for a
head pivot well as will be verified empirically in
§3. First, “ti” is a surface marker: it is easily
identifable through whitespace tokenization and it
is not ambiguous, e.g., it does not have a second
meaning apart from being a grammatical marker.
Second, “ti” is a good marker for past tense in
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terms of both “precision” and “recall”. CRS has
mandatory past tense marking (as opposed to lan-
guages in which tense marking is facultative) and
“t1” is highly correlated with the general notion of
past tense.

This does not mean that every clause that a lin-
guist would regard as past tense is marked with
“ti” in CRS. For example, some tense-aspect con-
figurations that are similar to English present per-
fect are marked with “in” in CRS, not with “ti”
(e.g., ENG “has commanded” is translated as “in
ordonn’).

Our goal is not to find a head language and a
head pivot that is a perfect marker of f. Such a
head pivot probably does not exist; or, more pre-
cisely, linguistic features are not completely rigor-
ously defined. In a sense, one of the contributions
of this work is that we provide more rigorous defi-
nitions of past tense across languages; e.g., “ti” in
CRS is one such rigorous definition of past tense
and it automatically extends (through projection)
to 1000 languages in the superparallel corpus.

3. Projection of head pivot to larger pivot
set. Based on an alignment of the head language
to the other languages in the superparallel corpus,
we project the head pivot to all other languages
and search for highly correlated surface markers,
i.e., we search for additional pivots in other lan-
guages. This projection to more pivots achieves
three goals. First, it makes the method more ro-
bust. Relying on a single pivot would result in
many errors due to the inherent noisiness of lin-
guistic data and because several components we
use (e.g., alignment of the languages in the su-
perparallel corpus) are imperfect. Second, as we
discussed above, the head pivot does not neces-
sarily have high “recall”’; our example was that
CRS “ti” is not applied to certain clauses that
would be translated using present perfect in En-
glish. Thus, moving to a larger pivot set increases
recall. Third, as we will see below, the pivot set
can be leveraged to create a fine-grained map of
the linguistic feature. Consider clauses referring
to eventualities in the past that English speakers
would render in past progressive, present perfect
and simple past tense. Our hope is that the pivot
set will cover these distinctions, i.e., one of the
pivots marks past progressive, but not present pre-
fect and simple past, another pivot marks present
perfect, but not the other two and so on. An exam-
ple of this type of map, including distinctions like
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progressive and perfective aspect, is given in §4.

Running example: We compute the correla-
tion of “ti” with words in other languages and se-
lect the 100 most highly correlated words as piv-
ots. Examples of pivots we find this way are Tor-
res Strait Creole “bin” (from English “been”) and
Tzotzil “laj”. “laj” is a perfective marker, e.g.,
“Laj meltzaj -uk” ‘LAJ be-made subj’ means “It’s
done being built” (Aissen, 1987).

4. Projection of pivot set to all languages.
Now that we have a large pivot set, we project the
pivots to all other languages to search for linguis-
tic devices that express the linguistic feature f. Up
to this point, we have made the assumption that it
is easy to segment text in all languages into pieces
of a size that is not too small (individual charac-
ters of the Latin alphabet would be too small) and
not too large (entire sentences as tokens would be
too large). Segmentation on standard delimiters
is a good approximation for the majority of lan-
guages — but not for all: it undersegments some
(e.g., the polysynthetic language Inuit) and over-
segments others (e.g., languages that use punctua-
tion marks as regular characters).

For this reason, we do not employ tokenization
in this step. Rather we search for character n-
grams (2 < n < 6) to find linguistic devices that
express f. This implementation of the search pro-
cedure is a limitation — there are many linguistic
devices that cannot be found using it, e.g., tem-
plates in templatic morphology. We leave address-
ing this for future work (§7).

Running example: We find “-ed” for English
and “-te” for German as surface features that are
highly correlated with the 100 past tense pivots.

5. Linguistic analysis. The result of the previ-
ous steps is a superparallel corpus that is richly an-
notated with information about linguistic feature
f. This structure can be exploited for the analysis
of a single language I° that may be the focus of
a linguistic investigation. Starting with the char-
acter n-grams that were found in the step “projec-
tion of pivot set to all languages”, we can explore
their use and function, e.g, for the mined n-gram
“-ed” in English (assuming English is the language
I* and it is unfamiliar to us). Many of the other
1000 languages provide annotations of linguistic
feature f for [’: both the languages that are part of
the pivot set (e.g., Tzotzil “laj”’) and the mined n-
grams in other languages that we may have some
knowledge about (e.g., “-te” in German).



We can also use the structure we have gener-
ated for typological analysis across languages fol-
lowing the work of Michael Cysouw ((Cysouw,
2014), §5). Our method is an advancement com-
putationally over Cysouw’s work because our
method scales to thousands of languages as we
demonstrate below.

Running example: We sketch the type of analy-
sis that our new method makes possible in §4.

The above steps “1. heuristic search for head
pivot” and “2. projection of head pivot to larger
pivot set” are based on H1: we assume the exis-
tence of overt coding in a subset of languages.

The above steps “2. projection of head pivot to
larger pivot set” and “3. projection of pivot set
to all languages” are based on H2: we assume
that overt-to-overt and overt-to-non-overt pro-
jection is possible.

In the rest of the paper, we will refer to the
method that consists of steps 1 to 5 as SuperPivot:
“linguistic analysis of SUPERparallel corpora us-
ing surface PIVOTs”.

We make three contributions. (i) Our basic hy-
potheses are H1 and H2. (H1) For an important
linguistic feature, there exist a few languages that
mark it overtly and easily recognizably. (H2) It
is possible to project overt markers to overt and
non-overt markers in other languages. Based on
these two hypotheses we design SuperPivot, a new
method for analyzing highly parallel corpora, and
show that it performs well for the crosslingual
analysis of the linguistic phenomenon of tense.
(i1) Given a superparallel corpus, SuperPivot can
be used for the analysis of any low-resource lan-
guage represented in that corpus. In the supple-
mentary material, we present results of our analy-
sis for three tenses (past, present, future) for 1163!
languages. An evaluation of accuracy is presented
in Table 3.2. (iii) We extend Michael Cysouw’s
method of typological analysis using parallel cor-
pora by overcoming several limiting factors. The
most important is that Cysouw’s method is only
applicable if markers of the relevant linguistic fea-
ture are recognizable on the surface in all lan-
guages. In contrast, we only assume that markers
of the relevant linguistic feature are recognizable
on the surface in a small number of languages.

"We exclude six of the 1169 languages because they do
not share enough verses with the rest.
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2 SuperPivot: Description of method

1. Selection of a linguistic feature. The linguistic
feature of interest f is selected by the person who
performs a SuperPivot analysis, i.e., by a linguist,
NLP researcher or data scientist. Henceforth, we
will refer to this person as the linguist.

In this paper, f € F' = {past, present, future}.

2. Heuristic search for head pivot. There are
several ways for finding the head language and the
head pivot. Perhaps the linguist knows a language
that has a good head pivot. Or she is a trained ty-
pologist and can find the head pivot by consulting
the typological literature.

In this paper, we use our knowledge of English
and an alignment from English to all other lan-
guages to find head pivots. (See below for details
on alignment.) We define a “query” in English
and search for words that are highly correlated to
the query in other languages. For future tense, the
query is simply the word “will”, so we search for
words in other languages that are highly correlated
with “will”. For present tense, the query is the
union of “is”, “are” and “am”. So we search for
words in other languages that are highly correlated
with the “merger” of these three words. For past
tense, we POS tag the English part of PBC and
merge all words tagged as past tense into one past
tense word.” We then search for words in other
languages that are highly correlated with this arti-
ficial past tense word.

As an additional constraint, we do not select the
most highly correlated word as the head pivot, but
the most highly correlated word in a Creole lan-
guage. Our rationale is that Creole languages are
more regular than other languages because they
are young and have not accumulated ‘“historical
baggage” that may make computational analysis
more difficult.

Table 1 lists the three head pivots for F'.

3. Projection of head pivot to larger pivot set.
We first use fast_align (Dyer et al., 2013) to align
the head language to all other languages in the cor-
pus. This alignment is on the word level.

We compute a score for each word in each lan-
guage based on the number of times it is aligned
to the head pivot, the number of times it is aligned
to another word and the total frequencies of head
pivot and word. We use x? (Casella and Berger,
2008) as the score throughout this paper. Finally,

2Past tense is defined as tags BED, BED*, BEDZ,
BEDZ*, DOD*, VBD, DOD. We use NLTK (Bird, 2006).



we select the k£ words as pivots that have the high-
est association score with the head pivot.

We impose the constraint that we only select
one pivot per language. So as we go down the
list, we skip pivots from languages for which we
already have found a pivot. We set £ = 100 in this
paper. Table 1 gives the top 10 pivots.

4. Projection of pivot set to all languages.
As discussed above, the process so far has been
based on tokenization. To be able to find markers
that cannot be easily detected on the surface (like
“-ed” in English), we identify non-tokenization-
based character n-gram features in step 4.

The immediate challenge is that without tokens,
we have no alignment between the languages any-
more. We could simply assume that the occur-
rence of a pivot has scope over the entire verse.
But this is clearly inadequate, e.g., for the sen-
tence “I arrived yesterday, I'm staying today, and
I will leave tomorrow”, it is incorrect to say that
it is marked as past tense (or future tense) in its
entirety. Fortunately, the verses in the New Testa-
ment mostly have a simple structure that limits the
variation in where a particular piece of content oc-
curs in the verse. We therefore make the assump-
tion that a particular relative position in language
l1 (e.g., the character at relative position 0.62) is
aligned with the same relative position in /2 (i.e.,
the character at relative position 0.62). This is
likely to work for a simple example like “T arrived
yesterday, I'm staying today, and I will leave to-
morrow” across languages.

In our analysis of errors, we found many cases
where this assumption breaks down. A well-
known problematic phenomenon for our method
is the difference between, say, VSO and SOV lan-
guages: the first class puts the verb at the begin-
ning, the second at the end. However, keep in
mind that we accumulate evidence over £k = 100
pivots and then compute aggregate statistics over
the entire corpus. As our evaluation below shows,
the “linear alignment” assumption does not seem
to do much harm given the general robustness of
our method.

One design element that increases robustness is
that we find the two positions in each verse that are
most highly (resp. least highly) correlated with the
linguistic feature f. Specifically, we compute the
relative position x of each pivot that occurs in the
verse and apply a Gaussian filter (c = 6 where the
unit of length is the character), i.e., we set p(z) ~
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0.066 (0.066 is the density of a Gaussian with o =
6 at x = 0) and center a bell curve around z. The
total score for a position x is then the sum of the
filter values at z summed over all occurring pivots.
Finally, we select the positions Z,;, and x,, with
lowest and highest values for each verse.

x? is then computed based on the number of
times a character n-gram occurs in a window of
size w around . (positive count) and in a win-
dow of size w around x,;, (negative count). Verses
in which no pivot occurs are used for the negative
count in their entirety. The top-ranked character n-
grams are then output for analysis by the linguist.
We set w = 20.

5. Linguistic analysis. We now have created a
structure that contains rich information about the
linguistic feature: for each verse we have relative
positions of pivots that can be projected across lan-
guages. We also have maximum positions within
a verse that allow us to pinpoint the most likely
place in the vicinity of which linguistic feature f
is marked in all languages. This structure can be
used for the analysis of individual low-resource
languages as well as for typological analysis. We
will give an example of such an analysis in §4.

3 Data, experiments and results

3.1 Data

We use a New Testament subset of the Parallel
Bible Corpus (PBS) (Mayer and Cysouw, 2014)
that consists of 1556 translations of the Bible in
1169 unique languages. We consider two lan-
guages to be different if they have different ISO
639-3 codes.

The translations are aligned on the verse level.
However, many translations do not have complete
coverage, so that most verses are not present in at
least one translation. One reason for this is that
sometimes several consecutive verses are merged,
so that one verse contains material that is in real-
ity not part of it and the merged verses may then
be missing from the translation. Thus, there is a
trade-off between number of parallel translations
and number of verses they have in common. Al-
though some preprocessing was done by the au-
thors of the resource, many translations are not
preprocessed. For example, Japanese is not tok-
enized. We also observed some incorrectness and
sparseness in the metadata. One example is that
one Fijian translation (see §4) is tagged fij_hindi,
but it is Fijian, not Fiji Hindi.



We use the 7958 verses with the best coverage
across languages.

3.2 Experiments

1. Selection of a linguistic feature. We conduct
three experiments for the linguistic features past
tense, present tense and future tense.

2. Heuristic search for head pivot. We use the
queries described in §2 for finding the following
three head pivots. (i) Past tense head pivot: “ti”
in Seychellois Creole (CRS) (McWhorter, 2005).
(ii) Present tense head pivot: “ta” in Papiamentu
(PAP) (Andersen, 1990). (iii) Future tense head
pivot: “bai” in Tok Pisin (TPI) (Traugott, 1978;
Sankoff, 1990).

3. Projection of head pivot to larger pivot set.
Using the method described in §2, we project each
head pivot to a set of £ = 100 pivots. Table 1 gives
the top 10 pivots for each tense.

4. Projection of pivot set to all languages. Us-
ing the method described in §2, we compute highly
correlated character n-gram features, 2 < n < 6,
for all 1163 languages.

See §4 for the last step of SuperPivot: 5. Lin-
guistic analysis.

3.3 Evaluation

We rank n-gram features and retain the top 10, for
each linguistic feature, for each language and for
each n-gram size. We process 1556 translations.
Thus, in total, we extract 1556 x 5 x 10 n-grams.

Table 3.2 shows Mean Reciprocal Rank (MRR)
for 10 languages. The rank for a particular rank-
ing of n-grams is the first n-gram that is highly
correlated with the relevant tense; e.g., character
subsequences of the name “Paulus” are evaluated
as incorrect, the subsequence “-ed” in English as
correct for past. MRR is averaged over all n-gram
sizes, 2 < n < 6. Chinese has consistent tense
marking only for future, so results are poor. Rus-
sian and Polish perform poorly because their cen-
tral grammatical category is aspect, not tense. The
poor performance on Arabic is due to the limits
of character n-gram features for a “templatic” lan-
guage.

During this evaluation, we noticed a surprising
amount of variation within translations of one lan-
guage; e.g., top-ranked n-grams for some German
translations include names like “Paulus”. We sus-
pect that for literal translations, linear alignment
(§2) yields good n-grams. But many translations

are free, e.g., they change the sequence of clauses.
This deteriorates mined n-grams. See §7.

A reviewer points out that simple baselines may
be available if all we want to do is compute fea-
tures highly associated with past tense as evaluated
in Table 3.2. As one such baseline, they suggested
to first perform a word alignment with the head
pivot and then search for highly associated fea-
tures in the words that were aligned with the head
pivot. We implemented this baseline and mea-
sured its performance. Indeed, the results were
roughly comparable to the more complex method
that we evaluate in Table 3.2.

However, our evaluation was not designed to be
a direct evaluation of our method, but only meant
as a relatively easy way of getting a quantitative
sense of the accuracy of our results. The core
result of our method is a corpus in which each
language annotates each other language. This is
only meaningful on the token or context level, not
on the word level. For example, recognizing “-
ed” as a possible past tense marker in English
and applying it uniformly throughout the corpus
would result in the incorrect annotation of the ad-
jective “red” as a past tense form. In our pro-
posed method, this will not happen since the anno-
tation proceeds from reliable pivots to less reliable
features, not the other way round. Nevertheless,
we agree with the reviewer that we do not make
enough use of “type-level” features in our method
(type-level features of non-pivot languages) and
this is something we plan to address in the future.

4 A map of past tense

To illustrate the potential of our method we select
five out of the 100 past tense pivots that give rise
to large clusters of distinct combinations. Specifi-
cally, starting with CRS, we find other pivots that
“split” the set of verses that contain the CRS past
tense pivot “ti” into two parts that have about the
same size. This gives us two sets. We now look
for a pivot that splits one of these two sets about
evenly and so on. After iterating four times, we
arrive at five pivots: CRS “ti”, Fijian (F1J) “qai”,
Hawaiian Creole (HWC) “wen”, Torres Strait Cre-
ole (TCS) “bin” and Tzotzil (TZO) “laj”.

Figure 1 shows a t-SNE (Maaten and Hinton,
2008) visualization of the large clusters of com-
binations that are found for these five languages,
including one cluster of verses that do not contain
any of the five pivots.
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Figure 1: A map of past tense based on the largest clusters of verses with particular combinations of
the past tense pivots from Seychellois Creole (CRS), Fijian (F1J), Hawaiian Creole (HWC), Torres Strait
Creole (TCS) and Tzotzil (TZO). For each of the five languages, we present a subfigure that highlights
the subset of verse clusters that are marked by the pivot of that language. The sixth subfigure highlights
verses not marked by any of the five pivots.

118



past present future
code language pivot | code language pivot | code language pivot
HPs CRS Seychelles C. ti PAP Papiamentu ta TPI Tok Pisin  bai
GUX Gourmanchéma den | NOB Norwegian Bokmal er LID Nyindrou  kameh
MAW Mampruli daa | HIF Fiji Hindi hei GUL Sea Island C. gwine
GFK Patpatar ga AFR Afrikaans 8 TGP Tangoa pa
YAL Yalunka yi DAN Danish er BUK Bugawac oc
TOH Gitonga di SWE Swedish ar BIS Bislama bambae
DGI Northern Dagara t¢ EPO Esperanto estas | PIS Pijin bae
BUM Bulu (Cameroon) nga | ELL Greek eivar | APE Bukiyip eke
TCS Torres Strait C.  bin | HIN Hindi haat | HWC Hawaiian C. goin
NDZ Ndogo gil NAQ Khoekhoe ra NHR Nharo gha
Table 1: Top ten past, present, and future tense pivots extracted from 1163 languages. HPs = head pivots.
C. =Creole
language || past present future | all CRS “ti”. CRS has a set of markers that can be
Arabic 1.00 0.39 0.77 | 0.72 systematically combined, in particular, a progres-
Chinese 0.00 0.00 0.87 0.29 sive marker “pe” that can be combined with the
English 1.00 1.00  1.00 1.00 past tense marker “ti”. As a result, past progres-
French 1.00 1.00 1.00 1.00 sive sentences in CRS are generally marked with
German 1.00 1.00 1.00 1.00 “ti”. Example: “43004031 Meanwhile, the disci-
Ttalian 1.00 1.00 1.00 1.00 ples were urging Jesus, ‘Rabbi, eat something.”
Persian 0.77 1.00 1.00 | 0.92 “crs_bible 43004031 Pandan sa letan, bann disip ti
Polish 1.00 1.00  0.58 | 0.86 pe sipliy Zezi, ‘Met! Manz en pe.”
Russian 0.90 0.50  0.62 0.67 The other four languages do not consistently use
Spanish 1.00 1.00  1.00 1.00 the pivot for marking the past progressive; e.g.,
all 0.88 0.79  0.88 0.85 HWC uses “was begging” in 43004031 (instead of

Table 2: MRR results for step 4. See text for de-
tails.

This figure is a map of past tense for all 1163
languages, not just for CRS, FIJ, HWC, TCS and
TZO: once the interpretation of a particular clus-
ter has been established based on CRS, FIJ, HWC,
TCS and TZO, we can investigate this cluster in
the 1164 other languages by looking at the verses
that are members of this cluster. This methodol-
ogy supports the empirical investigation of ques-
tions like “how is progressive past tense expressed
in language X’? We just need to look up the clus-
ter(s) that correspond to progressive past tense,
look up the verses that are members and retrieve
the text of these verses in language X.

To give the reader a flavor of the distinctions
that are reflected in these clusters, we now list phe-
nomena that are characteristic of verses that con-
tain only one of the five pivots; these phenomena
identify properties of one language that the other
four do not have.
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“wen”) and TCS uses “kip tok strongwan” ‘keep
talking strongly’ in 43004031 (instead of “bin”).

F1J “qai”. This pivot means “and then”. It
is highly correlated with past tense in the New
Testament because most sequential descriptions
of events are descriptions of past events. But
there are also some non-past sequences. Example:
“eng_newliving 44009016 And I will show him
how much he must suffer for my name’s sake.”
“fij_hindi 44009016 Au na qai vakatakila vua na
levu ni ka e na sota kaya e na vukuqu.” This
verse is future tense, but it continues a temporal se-
quence (it starts in the preceding verse) and there-
fore F1J uses “qai”. The pivots of the other four
languages are not general markers of temporal se-
quentiality, so they are not used for the future.

HWC “wen”. HWC is less explicit than the
other four languages in some respects and more
explicit in others. It is less explicit in that not
all sentences in a sequence of past tense sentences
need to be marked explicitly with “wen”, resulting
in some sentences that are indistinguishable from
present tense. On the other hand, we found many



cases of noun phrases in the other four languages
that refer implicitly to the past, but are trans-
lated as a verb with explicit past tense marking in
HWC. Examples: “hwc_2000 40026046 Da guy
who wen set me up ...”7 ‘the guy who WEN set
me up’, “eng_newliving 40026046 ... my betrayer
... “hwce_2000 43008005 ...Moses wen tell us
in da Rules ...” ‘Moses WEN tell us in the rules’,
“eng_newliving 43008005 The law of Moses says
... “hwe_2000 47006012 We wen give you guys
our love ...”, “eng_newliving 47006012 There is
no lack of love on our part ...”. In these cases, the
other four languages (and English too) use a noun
phrase with no tense marking that is translated as
a tense-marked clause in HWC.

While preparing this analysis, we realized that
HWC “wen” unfortunately does not meet one of
the criteria we set out for pivots: it is not unam-
biguous. In addition to being a past tense marker
(derived from standard English “went”), it can also
be a conjunction, derived from “when”. This am-
biguity is the cause for some noise in the clusters
marked for presence of HWC “wen” in the figure.

TCS “bin”. Conditionals is one pattern we
found in verses that are marked with TCS “bin”,
but are not marked for past tense in the other four
languages. Example: “tcs_bible 46015046 Wanem
i bin kam pas i da nomal bodi ane den da spir-
itbodi 1 bin kam apta.” ‘what came first is the
normal body and then the spirit body came af-
ter’, “eng_newliving 46015046 What comes first
is the natural body, then the spiritual body comes
later.” Apparently, “bin” also has a modal aspect
in TCS: generic statements that do not refer to
specific events are rendered using “bin” in TCS
whereas the other four languages (and also En-
glish) use the default unmarked tense, i.e., present
tense.

TZO “laj”. This pivot indicates perfective as-
pect. The other four past tense pivots are not per-
fective markers, so that there are verses that are
marked with “laj”, but not marked with the past
tense pivots of the other four languages. Exam-
ple: “tzo_huixtan 40010042 ... ja’ch-ac’bat ben-
dicién yu’un hech laj spas ...” (literally “a bless-
ing ... LAJ make”), “eng_newliving 40010042
...you will surely be rewarded.” Perfective aspect
and past are correlated in the real world since most
events that are viewed as simple wholes are in the
past. But future events can also be viewed this way
as the example shows.
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Similar maps for present and future tenses are
presented in the supplementary material.

5 Related work

Our work is inspired by (Cysouw, 2014; Cysouw
and Wiilchli, 2007); see also (Dahl, 2007; Wilchli,
2010). Cysouw creates maps like Figure 1 by
manually identifying occurrences of the proper
noun “Bible” in a parallel corpus of Jehovah’s
Witnesses’ texts. Areas of the map correspond
to semantic roles, e.g., the Bible as actor (it tells
you to do something) or as object (it was printed).
This is a definition of semantic roles that is com-
plementary to and different from prior typologi-
cal research because it is empirically grounded in
real language use across a large number of lan-
guages. It allows typologists to investigate tradi-
tional questions from a new perspective.

The field of typology is important for both the-
oretical (Greenberg, 1960; Whaley, 1996; Croft,
2002) and computational (Heiden et al., 2000;
Santaholma, 2007; Bender, 2009, 2011) linguis-
tics. Typology is concerned with all areas of lin-
guistics: morphology (Song, 2014), syntax (Com-
rie, 1989; Croft, 2001; Croft and Poole, 2008;
Song, 2014), semantic roles (Hartmann et al.,
2014; Cysouw, 2014), semantics (Koptjevskaja-
Tamm et al.,, 2007; Dahl, 2014; Wilchli and
Cysouw, 2012; Sharma, 2009), etc. Typologi-
cal information is important for many NLP tasks
including discourse analysis (Myhill and My-
hill, 1992), information retrieval (Pirkola, 2001),
POS tagging (Bohnet and Nivre, 2012), pars-
ing (Bohnet and Nivre, 2012; McDonald et al.,
2013), machine translation (Haji¢ et al., 2000;
Kunchukuttan and Bhattacharyya, 2016) and mor-
phology (Bohnet et al., 2013).

Tense is a central phenomenon in linguistics
and the languages of the world differ greatly in
whether and how they express tense (Traugott,
1978; Bybee and Dahl, 1989; Dahl, 2000, 1985;
Santos, 2004; Dahl, 2007; Santos, 2004; Dahl,
2014).

Low resource. Even resources with the widest
coverage like World Atlas of Linguistic Structures
(WALS) (Dryer et al., 2005) have little informa-
tion for hundreds of languages. Many researchers
have taken advantage of parallel information for
extracting linguistic knowledge in low-resource
settings (Resnik et al., 1997; Resnik, 2004; Mihal-
cea and Simard, 2005; Mayer and Cysouw, 2014;



Christodouloupoulos and Steedman, 2015; Lison
and Tiedemann, 2016).

Parallel projection. Parallel projection across
languages has been used for a variety of NLP
tasks. Machine translation aside, which is the
most natural task on parallel corpora (Brown
et al., 1993), parallel projection has been used for
sense disambiguation (Ide, 2000), parsing (Hwa
et al., 2005), paraphrasing (Bannard and Callison-
Burch, 2005), part-of-speech tagging (Mukerjee
et al., 2006), coreference resolution (de Souza and
Orésan, 2011), event marking (Nordrum, 2015),
morphological segmentation (Chung et al., 2016),
bilingual analysis of linguistic marking (McEnery
and Xiao, 1999; Xiao and McEnery, 2002), as well
as language classification (Asgari and Mofrad,
2016; Ostling and Tiedemann, 2017).

6 Discussion

Our motivation is not to develop a method that can
then be applied to many other corpora. Rather,
our motivation is that many of the more than 1000
languages in the Parallel Bible Corpus are low-
resource and that providing a method for creat-
ing the first richly annotated corpus (through the
projection of annotation we propose) for many of
these languages is a significant contribution.

The original motivation for our approach is
provided by the work of the typologist Michael
Cysouw. He created the same type of annotation
as we, but he produced it manually whereas we use
automatic methods. But the structure of the anno-
tation and its use in linguistic analysis is the same
as what we provide.

The basic idea of the utility of the final out-
come of SuperPivot is that the 1163 languages all
richly annotate each other. As long as there are a
few among the 1163 languages that have a clear
marker for linguistic feature f, then this marker
can be projected to all other languages to richly
annotate them. For any linguistic feature, there is
a good chance that a few languages clearly mark
it. Of course, this small subset of languages will
be different for every linguistic feature.

Thus, even for extremely resource-poor lan-
guages for which at present no annotated resources
exist, SuperPivot will make available richly an-
notated corpora that should advance linguistic re-
search on these languages.
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7 Conclusion

We presented SuperPivot, an analysis method for
low-resource languages that occur in a superpar-
allel corpus, i.e., in a corpus that contains an or-
der of magnitude more languages than parallel
corpora currently in use. We showed that Su-
perPivot performs well for the crosslingual anal-
ysis of the linguistic phenomenon of tense. We
produced analysis results for more than 1000 lan-
guages, conducting — to the best of our knowledge
— the largest crosslingual computational study per-
formed to date. We extended existing methodol-
ogy for leveraging parallel corpora for typological
analysis by overcoming a limiting assumption of
earlier work. We only require that a linguistic fea-
ture is overtly marked in a few of thousands of lan-
guages as opposed to requiring that it be marked in
all languages under investigation.

8 Future directions

There are at least two future directions that seem
promising to us.

o Creating a common map of tense along the
lines of Figure 1, but unifying the three tenses

Addressing shortcomings of the way we
compute alignments: (i) generalizing char-
acter n-grams to more general features, so
that templates in templatic morphology, redu-
plication and other more complex manifesta-
tions of linguistic features can be captured;
(i1) use n-gram features of different lengths
to account for differences among languages,
e.g., shorter ones for Chinese, longer ones for
English; (iii) segmenting verses into clauses
and performing alignment not on the verse
level (which caused many errors in our exper-
iments), but on the clause level instead; (iv)
using global information more effectively,
e.g., by extracting alignment features from
automatically induced bi- or multilingual lex-
icons.
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Abstract

This paper presents a novel neural ma-
chine translation model which jointly
learns translation and source-side latent
graph representations of sentences. Un-
like existing pipelined approaches using
syntactic parsers, our end-to-end model
learns a latent graph parser as part of
the encoder of an attention-based neu-
ral machine translation model, and thus
the parser is optimized according to the
translation objective. In experiments, we
first show that our model compares favor-
ably with state-of-the-art sequential and
pipelined syntax-based NMT models. We
also show that the performance of our
model can be further improved by pre-
training it with a small amount of tree-
bank annotations. Our final ensemble
model significantly outperforms the previ-
ous best models on the standard English-
to-Japanese translation dataset.

1 Introduction

Neural Machine Translation (NMT) is an active
area of research due to its outstanding empiri-
cal results (Bahdanau et al., 2015; Luong et al.,
2015; Sutskever et al., 2014). Most of the exist-
ing NMT models treat each sentence as a sequence
of tokens, but recent studies suggest that syntac-
tic information can help improve translation accu-
racy (Eriguchi et al., 2016b, 2017; Sennrich and
Haddow, 2016; Stahlberg et al., 2016). The exist-
ing syntax-based NMT models employ a syntactic
parser trained by supervised learning in advance,
and hence the parser is not adapted to the transla-
tion tasks. An alternative approach for leveraging
syntactic structure in a language processing task
is to jointly learn syntactic trees of the sentences
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Figure 1: An example of the learned latent graphs.
Edges with a small weight are omitted.

along with the target task (Socher et al., 2011; Yo-
gatama et al., 2017).

Motivated by the promising results of recent
joint learning approaches, we present a novel
NMT model that can learn a task-specific latent
graph structure for each source-side sentence. The
graph structure is similar to the dependency struc-
ture of the sentence, but it can have cycles and is
learned specifically for the translation task. Un-
like the aforementioned approach of learning sin-
gle syntactic trees, our latent graphs are composed
of “soft” connections, i.e., the edges have real-
valued weights (Figure 1). Our model consists of
two parts: one is a task-independent parsing com-
ponent, which we call a latent graph parser, and
the other is an attention-based NMT model. The
latent parser can be independently pre-trained with
human-annotated treebanks and is then adapted to
the translation task.

In experiments, we demonstrate that our model
can be effectively pre-trained by the treebank
annotations, outperforming a state-of-the-art se-
quential counterpart and a pipelined syntax-based
model. Our final ensemble model outperforms the
previous best results by a large margin on the WAT
English-to-Japanese dataset.

2 Latent Graph Parser

We model the latent graph parser based on de-
pendency parsing. In dependency parsing, a sen-
tence is represented as a tree structure where each
node corresponds to a word in the sentence and

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 125-135
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a unique root node (ROOT) is added. Given a
sentence of length IV, the parent node H,, €
{wy,...,wy,ROOT} (Hy, # w;) of each word
w; (1 <14 < N)is called its head. The sentence is
thus represented as a set of tuples (w;, Hy,, lw, )s
where /,,,, is a dependency label.

In this paper, we remove the constraint of us-
ing the tree structure and represent a sentence as
a set of tuples (wj, p(Hy,|w;), p(ly,|w;)), where
p(Hy,|w;) is the probability distribution of w;’s
parent nodes, and p(,,, |w;) is the probability dis-
tribution of the dependency labels. For example,
p(Hw, = wj|w;) is the probability that w; is the
parent node of w;. Here, we assume that a spe-
cial token (EOS) is appended to the end of the
sentence, and we treat the (EOS) token as ROOT.
This approach is similar to that of graph-based de-
pendency parsing (McDonald et al., 2005) in that a
sentence is represented with a set of weighted arcs
between the words. To obtain the latent graph rep-
resentation of the sentence, we use a dependency
parsing model based on multi-task learning pro-
posed by Hashimoto et al. (2017).

2.1 Word Representation

The -th input word w; is represented with the con-
catenation of its d;-dimensional word embedding
vap(w;) € R% and its character n-gram embed-
ding c(w;) € RU: z(w;) = [vap(w;);e(w;)).
c(w;) is computed as the average of the embed-
dings of the character n-grams in w;.

2.2 POS Tagging Layer

Our latent graph parser builds upon multi-
layer bi-directional Recurrent Neural Networks
(RNNs) with Long Short-Term Memory (LSTM)
units (Graves and Schmidhuber, 2005). In the first
layer, POS tagging is handled by computing a hid-
den state hz(»l) = [ﬁgl); %51)] € R for w,
where 5" = LSTM(7 V), 2(w;)) € R% and
B = LSTM(R Y, o(w;)) € R% are hidden
states of the forward and backward LSTMs, re-
spectively. hz(l) is then fed into a softmax classifier
to predict a probability distribution pz(»l) e ROV
for word-level tags, where C'(!) is the number of
POS classes. The model parameters of this layer
can be learned not only by human-annotated data,
but also by backpropagation from higher layers,

which are described in the next section.
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2.3 Dependency Parsing Layer

Dependency parsing is performed in the second
layer. A hidden state g

()

€ R?" s computed

by 7% = LSTM(A 2y, [o(wi):y(w): 7))
and () = LSTM(h D), fo(w)s y(wn); b 1Y),

WpM) ¢ Rz is the POS in-

formation output from the first layer, and Wz(l) €

where y(w;) =

R%xCY ig 4 weight matrix.
Then, (soft) edges of our latent graph represen-
tation are obtained by computing the probabilities

exp (m(i, j))
> ki €xp (m(i, k)’

where m(i, k) = h,(f)TdehZ@) (1<k<N-+
1,k # i) is a scoring function with a weight
matrix Wy, € R2d1x2d1 - While the models of
Hashimoto et al. (2017), Zhang et al. (2017), and
Dozat and Manning (2017) learn the model pa-
rameters of their parsing models only by human-
annotated data, we allow the model parameters to
be learned by the translation task.

Next, [hEZ);z(Hwi)] is fed into a softmax
classifier to predict the probability distribu-
tion p(Ly,|w;), where z(H,,) € R?% is the
weighted average of the hidden states of the
parent nodes: 3. p(Hu, wj\wi)hg.z).
This results in the latent graph representation
(wi, p(Hy, |w;), p(Ly, |w;)) of the input sentence.

p(Huw, = wjlw;) = (1)

3 NMT with Latent Graph Parser

The latent graph representation described in Sec-
tion 2 can be used for any sentence-level tasks,
and here we apply it to an Attention-based NMT
(ANMT) model (Luong et al., 2015). We modify
the encoder and the decoder in the ANMT model
to learn the latent graph representation.

3.1 Encoder with Dependency Composition

The ANMT model first encodes the information
about the input sentence and then generates a sen-
tence in another language. The encoder represents
the word w; with a word embedding vep.(w;) €
R9. It should be noted that vep.(w;) is differ-
ent from vg, (w;) because each component is sep-
arately modeled. The encoder then takes the word
embedding ven.(w;) and the hidden state hl@) as
the input to a uni-directional LSMT:

(enc)
i—1

hgenc) = LSTM(h [Uenc(wi)a h§2)])’ (2)



where hl(mc) € R% is the hidden state correspond-

ing to w;. That is, the encoder of our model is
a three-layer LSTM network, where the first two
layers are bi-directional.

In the sequential LSTMs, relationships between
words in distant positions are not explicitly con-
sidered. In our model, we explicitly incorporate
such relationships into the encoder by defining a
dependency composition function:

dep(w;) = tanh(Wdep[hf”C;E(Hwi);p(ﬂwi|wi)]),
3)

7 _ . (enc) .
where h(Hy,) = 325 p(Huw, = wjlw;)h; " is
the weighted average of the hidden states of the

parent nodes.

Note on character n-gram embeddings In
NMT models, sub-word units are widely used to
address rare or unknown word problems (Sennrich
et al., 2016). In our model, the character n-gram
embeddings are fed through the latent graph pars-
ing component. To the best of our knowledge,
the character n-gram embeddings have never been
used in NMT models. Wieting et al. (2016), Bo-
janowski et al. (2017), and Hashimoto et al. (2017)
have reported that the character n-gram embed-
dings are useful in improving several NLP tasks
by better handling unknown words.

3.2 Decoder with Attention Mechanism

The decoder of our model is a single-layer LSTM
network, and the initial state is set with h%rfl) and
its corresponding memory cell. Given the ¢-th hid-
den state hgdec) € R%, the decoder predicts the
t-th word in the target language using an attention
mechanism. The attention mechanism in Luong
et al. (2015) computes the weighted average of the

hidden states h(enc)

i of the encoder:

) - exp (hgdec) 'hEenc)) 4
S(/Lat) - Z;V:tl exp (hgdec)_h;enc))7 ( )
a= SHsEORT, )

where s(i,t) is a scoring function which speci-
fies how much each source-side hidden state con-
tributes to the word prediction.

In addition, like the attention mechanism over
constituency tree nodes (Eriguchi et al., 2016b),
our model uses attention to the dependency com-
position vectors:

exp (h,(tdec) -dep(w;))
SN exp (hy ™ -dep(wy)”

Mily 8/ (i, t)dep(wy),

s'(i,t) =

(6)
(7

r_
ag
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To predict the target word, a hidden state h
R% is then computed as follows:

7Edec) c

}}§d“) = tanh(W[hgdec)§ ag; aé]), ®)

where W € R%*34: s 2 weight matrix. A"
is fed into a softmax classifier to predict a target
word distribution. fzgdec) is also used in the tran-
sition of the decoder LSTMs along with a word

embedding vge.(w;) € R% of the target word wy:

(dec)

{9 — LSTM(RY) | [gec(wy); A% O]),  (9)

t+1 (h
where the use of ﬁ%d“) is called input feeding pro-
posed by Luong et al. (2015).

The overall model parameters, including those
of the latent graph parser, are jointly learned by
minimizing the negative log-likelihood of the pre-
diction probabilities of the target words in the
training data. To speed up the training, we use
BlackOut sampling (Ji et al., 2016). By this joint
learning using Equation (3) and (7), the latent
graph representations are automatically learned
according to the target task.

Implementation Tips Inspired by Zoph et al.
(2016), we further speed up BlackOut sampling
by sharing noise samples across words in the
same sentences. This technique has proven to
be effective in RNN language modeling, and we
have found that it is also effective in the NMT
model. We have also found it effective to share
the model parameters of the target word embed-
dings and the softmax weight matrix for word pre-
diction (Inan et al., 2016; Press and Wolf, 2017).
Also, we have found that a parameter averaging
technique (Hashimoto et al., 2013) is helpful in
improving translation accuracy.

Translation At test time, we use a novel beam
search algorithm which combines statistics of sen-
tence lengths (Eriguchi et al., 2016b) and length
normalization (Cho et al., 2014). During the
beam search step, we use the following scor-
ing function for a generated word sequence y =
(Y1,92,---,yL,) given a source word sequence
r = (x1,22,...,2L,):

Ly

> logp(yilz, yri-1) +logp(Ly|Ls) | |

1
Ly i=1

(10)



where p(L,|L,) is the probability that sentences
of length L, are generated given source-side sen-
tences of length L,. The statistics are taken by
using the training data in advance. In our exper-
iments, we have empirically found that this beam
search algorithm helps the NMT models to avoid
generating translation sentences that are too short.

4 Experimental Settings
4.1 Data

We used an English-to-Japanese translation task
of the Asian Scientific Paper Excerpt Corpus (AS-
PEC) (Nakazawa et al., 2016b) used in the Work-
shop on Asian Translation (WAT), since it has
been shown that syntactic information is useful
in English-to-Japanese translation (Eriguchi et al.,
2016b; Neubig et al., 2015). We followed the
data preprocessing instruction for the English-to-
Japanese task in Eriguchi et al. (2016b). The En-
glish sentences were tokenized by the tokenizer in
the Enju parser (Miyao and Tsujii, 2008), and the
Japanese sentences were segmented by the KyTea
tool'. Among the first 1,500,000 translation pairs
in the training data, we selected 1,346,946 pairs
where the maximum sentence length is 50. In
what follows, we call this dataset the large training
dataset. We further selected the first 20,000 and
100,000 pairs to construct the small and medium
training datasets, respectively. The development
data include 1,790 pairs, and the test data 1,812
pairs.

For the small and medium datasets, we built
the vocabulary with words whose minimum fre-
quency is two, and for the large dataset, we used
words whose minimum frequency is three for En-
glish and five for Japanese. As a result, the vo-
cabulary of the target language was 8,593 for the
small dataset, 23,532 for the medium dataset, and
65,680 for the large dataset. A special token
(UNK) was used to replace words which were not
included in the vocabularies. The character n-
grams (n = 2,3,4) were also constructed from
each training dataset with the same frequency set-
tings.

4.2 Parameter Optimization and Translation

We turned hyper-parameters of the model using
development data. We set (dj,d2) = (100,50)
for the latent graph parser. The word and charac-
ter n-gram embeddings of the latent graph parser

"http://www.phontron.com/kytea/.
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were initialized with the pre-trained embeddings
in Hashimoto et al. (2017).2 The weight matrices

in the latent graph parser were initialized with uni-

/6 V6 ]
Vrow+col’ ' \/row+col!’
where row and col are the number of rows and

columns of the matrices, respectively. All the bias
vectors and the weight matrices in the softmax lay-
ers were initialized with zeros, and the bias vectors
of the forget gates in the LSTMs were initialized
by ones (Jozefowicz et al., 2015).

We set d3 = 128 for the small training dataset,
ds = 256 for the medium training dataset, and
ds = 512 for the large training dataset. The
word embeddings and the weight matrices of the
NMT model were initialized with uniform ran-
dom values in [—0.1, +0.1]. The training was per-
formed by mini-batch stochastic gradient descent
with momentum. For the BlackOut objective (Ji
et al., 2016), the number of the negative samples
was set to 2,000 for the small and medium training
datasets, and 2,500 for the large training dataset.
The mini-batch size was set to 128, and the mo-
mentum rate was set to 0.75 for the small and
medium training datasets and 0.70 for the large
training dataset. A gradient clipping technique
was used with a clipping value of 1.0. The ini-
tial learning rate was set to 1.0, and the learn-
ing rate was halved when translation accuracy de-
creased. We used the BLEU scores obtained by
greedy translation as the translation accuracy and
checked it at every half epoch of the model train-
ing. We saved the model parameters at every half
epoch and used the saved model parameters for
the parameter averaging technique. For regulariza-
tion, we used L2-norm regularization with a coef-
ficient of 10~% and applied dropout (Hinton et al.,
2012) to Equation (8) with a dropout rate of 0.2.

The beam size for the beam search algorithm
was 12 for the small and medium training datasets,
and 50 for the large training dataset. We used
BLEU (Papineni et al.,, 2002), RIBES (Isozaki
et al., 2010), and perplexity scores as our evalu-
ation metrics. Note that lower perplexity scores
indicate better accuracy.

form random values in |

4.3 Pre-Training of Latent Graph Parser

The latent graph parser in our model can be op-
tionally pre-trained by using human annotations
for dependency parsing. In this paper we used

>The pre-trained embeddings can be found at https:
//github.com/hassyGo/charNgram2vec.



the widely-used Wall Street Journal (WSJ) train-
ing data to jointly train the POS tagging and de-
pendency parsing components. We used the stan-
dard training split (Section 0-18) for POS tagging.
We followed Chen and Manning (2014) to gener-
ate the training data (Section 2-21) for dependency
parsing. From each training dataset, we selected
the first K sentences to pre-train our model. The
training dataset for POS tagging includes 38,219
sentences, and that for dependency parsing in-
cludes 39,832 sentences.

The parser including the POS tagger was first
trained for 10 epochs in advance according to
the multi-task learning procedure of Hashimoto
et al. (2017), and then the overall NMT model was
trained. When pre-training the POS tagging and
dependency parsing components, we did not ap-
ply dropout to the model and did not fine-tune the
word and character n-gram embeddings to avoid
strong overfitting.

4.4 Model Configurations

LGP-NMT is our proposed model that learns
the Latent Graph Parsing for NMT.

LGP-NMT+ is constructed by pre-training the
latent parser in LGP-NMT as described in Sec-
tion 4.3.

SEQ is constructed by removing the depen-
dency composition in Equation (3), forming a se-
quential NMT model with the multi-layer encoder.

DEP is constructed by using pre-trained depen-
dency relations rather than learning them. That is,
p(Hy, = wj|w;) is fixed to 1.0 such that wj is the
head of w;. The dependency labels are also given
by the parser which was trained by using all the
training samples for parsing and tagging.

UNI s constructed by fixing p(H,, = wj|w;) to
% for all the words in the same sentence. That is,
the uniform probability distributions are used for
equally connecting all the words.

5 Results on Small and Medium Datasets

We first show our translation results using the
small and medium training datasets. We report av-
eraged scores with standard deviations across five
different runs of the model training.

5.1 Small Training Dataset

Table 1 shows the results of using the small train-
ing dataset. LGP-NMT performs worse than SEQ
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BLEU RIBES Perplexity

LGP-NMT 1431£1.49 6596£1.86 41.13£2.66

LGP-NMT+ | 16.81£0.31 69.03+0.28 38.33£1.18
"SEQ | 153741.18 T67.011.55° 38.1242.52

UNI 15.13+1.67 66.95£1.94 39.254+2.98

DEP 13.34£0.67 64.95+£0.75 43.89+£1.52

Table 1: Evaluation on the development data using
the small training dataset (20,000 pairs).

K BLEU RIBES Perplexity

0| 1431£1.49 65.96+1.86 41.13£2.66
5,000 | 16.994+1.00 69.03+0.93 37.144+1.96
10,000 | 16.81+0.31 69.03+0.28 38.33%+1.18
All | 16.09+0.56 68.194+0.59 39.2441.88

Table 2: Effects of the size K of the training
datasets for POS tagging and dependency parsing.

and UNI, which shows that the small training
dataset is not enough to learn useful latent graph
structures from scratch. However, LGP-NMT+
(K =10,000) outperforms SEQ and UNI, and the
standard deviations are the smallest. Therefore,
the results suggest that pre-training the parsing and
tagging components can improve the translation
accuracy of our proposed model. We can also see
that DEP performs the worst. This is not surpris-
ing because previous studies, e.g., Li et al. (2015),
have reported that using syntactic structures do not
always outperform competitive sequential models
in several NLP tasks.

Now that we have observed the effectiveness of
pre-training our model, one question arises natu-
rally:

how many training samples for parsing and
tagging are necessary for improving the
translation accuracy?

Table 2 shows the results of using different num-
bers of training samples for parsing and tagging.
The results of K= 0 and K= 10,000 correspond
to those of LGP-NMT and LGP-NMT+ in Ta-
ble 1, respectively. We can see that using the
small amount of the training samples performs
better than using all the training samples.> One
possible reason is that the domains of the trans-
lation dataset and the parsing (tagging) dataset
are considerably different. The parsing and tag-
ging datasets come from WSJ, whereas the trans-
lation dataset comes from abstract text of scien-
tific papers in a wide range of domains, such as

3We did not observe such significant difference when us-

ing the larger datasets, and we used all the training samples
in the remaining part of this paper.



BLEU RIBES Perplexity B./R. Single +Averaging +UnkRep
LGP-NMT 28.70£0.27 77.51£0.13  12.10+£0.16 LGP-NMT 38.05/81.98  38.44/82.23  38.77/82.29
LGP-NMT+ | 29.06£0.25 77.57+0.24 12.09+0.27 LGP-NMT+ | 38.75/82.13  39.01/82.40 39.37/82.48
"SEQ T | 28.60+0.24 ~77.39+£0.15° 12.15£0.12° ~SEQ = | 38.24/81.84 38.26/82.14 38.61/82.18
UNI 28.25+0.35 77.13£0.20  12.3740.08
DEP 26.83+0.38  76.05+£0.22  13.334+0.23

Table 3: Evaluation on the development data using
the medium training dataset (100,000 pairs).

biomedicine and computer science. These results
suggest that our model can be improved by a small
amount of parsing and tagging datasets in differ-
ent domains. Considering the recent universal de-
pendency project* which covers more than 50 lan-
guages, our model has the potential of being ap-
plied to a variety of language pairs.

5.2 Medium Training Dataset

Table 3 shows the results of using the medium
training dataset. In contrast with using the small
training dataset, LGP-NMT is slightly better than
SEQ. LGP-NMT significantly outperforms UNI,
which shows that our adaptive learning is more
effective than using the uniform graph weights.
By pre-training our model, LGP-NMT+ signifi-
cantly outperforms SEQ in terms of the BLEU
score. Again, DEP performs the worst among all
the models.

By using our beam search strategy, the Brevity
Penalty (BP) values of our translation results are
equal to or close to 1.0, which is important when
evaluating the translation results using the BLEU
scores. A BP value ranges from 0.0 to 1.0, and
larger values mean that the translated sentences
have relevant lengths compared with the reference
translations. As a result, our BLEU evaluation re-
sults are affected only by the word n-gram preci-
sion scores. BLEU scores are sensitive to the BP
values, and thus our beam search strategy leads to
more solid evaluation for NMT models.

6 Results on Large Dataset

Table 4 shows the BLEU and RIBES scores on the
development data achieved with the large train-
ing dataset. Here we focus on our models and
SEQ because UNI and DEP consistently perform
worse than the other models as shown in Table 1
and 3. The averaging technique and attention-
based unknown word replacement (Jean et al.,
2015; Hashimoto et al., 2016) improve the scores.

*nttp://universaldependencies.org/.
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Table 4: BLEU (B.) and RIBES (R.) scores on the
development data using the large training dataset.

BLEU RIBES
LGP-NMT 39.19 82.66
LGP-NMT+ 39.42 82.83
"SEQ T T T T T T T T T T 3896 8218
" Ensemble of the above three models | 41.18  ~ 83.40 ~
Cromieres et al. (2016) 38.20 82.39
Neubig et al. (2015) 38.17 81.38
Eriguchi et al. (2016a) 36.95 82.45
Neubig and Duh (2014) 36.58 79.65
Zhu (2015) 36.21 80.91
Lee et al. (2015) 35.75 81.15

Table 5: BLEU and RIBES scores on the test data.

Again, we see that the translation scores of our
model can be further improved by pre-training the
model.

Table 5 shows our results on the test data, and
the previous best results summarized in Nakazawa
et al. (2016a) and the WAT website® are also
shown. Our proposed models, LGP-NMT and
LGP-NMT+, outperform not only SEQ but also
all of the previous best results. Notice also that
our implementation of the sequential model (SEQ)
provides a very strong baseline, the performance
of which is already comparable to the previous
state of the art, even without using ensemble tech-
niques. The confidence interval (p < 0.05) of the
RIBES score of LGP-NMT+ estimated by boot-
strap resampling (Noreen, 1989) is (82.27, 83.37),
and thus the RIBES score of LGP-NMT+ is sig-
nificantly better than that of SEQ, which shows
that our latent parser can be effectively pre-trained
with the human-annotated treebank.

The sequential NMT model in Cromieres et al.
(2016) and the tree-to-sequence NMT model in
Eriguchi et al. (2016b) rely on ensemble tech-
niques while our results mentioned above are ob-
tained using single models. Moreover, our model
is more compact® than the previous best NMT
model in Cromieres et al. (2016). By applying the
ensemble technique to LGP-NMT, LGP-NMT+,

Shttp://lotus.kuee.kyoto-u.ac. jp/WAT/
evaluation/list.php?t=1&o0=1.

®Qur training time is within five days ona c4 . 8xlarge
machine of Amazon Web Service by our CPU-based C++
code, while it is reported that the training time is more than
two weeks in Cromieres et al. (2016) by their GPU code.



Translation Example (1)

As aresult , it was found that a path which crosses a sphere obliquely [existed].

Reference: Z D#ER. BRNERZ RO ICHE YD TR OEET H- N Dotz

LGP-NMT: £ D#ER &0 YR BAIEET Fen S ol
LGP-NMT+: Z DR, &R (B 2R BMNEE T FoEh D Mol
(As aresult , it was found that a path which obliquely crosses a sphere [existed].)

Google trans: ZD#EE , BEEU DRI FFEET B HIBALT-,
SEQ: Z AR, HREMM S SRR JEET Fn Db ot
(As a result , it was found that a path which crosses a sphere obliquely .)

Translation Example (2)

The androgen controls negatively .
Reference: [ImRNA|[Z 7 RO4 vz kY EIZHEEN S,

LGP-NMT+ 7o RB4 (& FEICHFEL TS,
(The androgen negatively controls )

Google trans: 7> RO4 (£ & O[ImRNA] #5l#3 5,

LGP-NMT: 72RO U IZED EHET 5.
(The androgen controls negative )

SEQ: 7URO4 U IEE D [ImRNA 2 & Z#l#d 5.
(The androgen negatively controls negative [ImRNA).)

Figure 2: English-to-Japanese translation exam-
ples for focusing on the usage of adverbs.

and SEQ, the BLEU and RIBES scores are further
improved, and both of the scores are significantly
better than the previous best scores.

6.1 Analysis on Translation Examples

Figure 2 shows two translation examples’ to see
how the proposed model works and what is miss-
ing in the state-of-the-art sequential NMT model,
SEQ. Besides the reference translation, the outputs
of our models with and without pre-training, SEQ,
and Google Translation® are shown.

Selectional Preference In the translation ex-
ample (1) in Figure 2, we see that the ad-
verb “obliquely” is interpreted differently across
the systems. As in the reference translation,
“obliquely” is a modifier of the verb “crosses”.
Our models correctly capture the relationship be-
tween the two words, whereas Google Translation
and SEQ treat “obliquely” as a modifier of the
verb “existed”. This error is not a surprise since
the verb “existed” is located closer to “obliquely”
than the verb “crosses”. A possible reason for
the correct interpretation by our models is that
they can better capture long-distance dependen-
cies and are less susceptible to surface word dis-
tances. This is an indication of our models’ abil-
ity of capturing domain-specific selectional prefer-
ence that cannot be captured by purely sequential

"These English sentences were created by manual simpli-
fication of sentences in the development data.

8The translations were obtained at https:
//translate.google.comin Feb. and Mar. 2017.
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models. It should be noted that simply using stan-
dard treebank-based parsers does not necessarily
address this error, because our pre-trained depen-
dency parser interprets that “obliquely” is a modi-
fier of the verb “existed”.

Adverb or Adjective The translation example
(2) in Figure 2 shows another example where
the adverb “negatively” is interpreted as an ad-
verb or an adjective. As in the reference transla-
tion, “negatively” is a modifier of the verb “con-
trols”. Only LGP-NMT+ correctly captures the
adverb-verb relationship, whereas “negatively” is
interpreted as the adjective “negative” to modify
the noun “ImRNA” in the translation results from
Google Translation and LGP-NMT. SEQ inter-
prets “negatively” as both an adverb and an adjec-
tive, which leads to the repeated translations. This
error suggests that the state-of-the-art NMT mod-
els are strongly affected by the word order. By
contrast, the pre-training strategy effectively em-
beds the information about the POS tags and the
dependency relations into our model.

6.2 Analysis on Learned Latent Graphs

Without Pre-Training We inspected the latent
graphs learned by LGP-NMT. Figure 1 shows an
example of the learned latent graph obtained for a
sentence taken from the development data of the
translation task. It has long-range dependencies
and cycles as well as ordinary left-to-right depen-
dencies. We have observed that the punctuation
mark “” is often pointed to by other words with
large weights. This is primarily because the hid-
den state corresponding to the mark in each sen-
tence has rich information about the sentence.

To measure the correlation between the la-
tent graphs and human-defined dependencies, we
parsed the sentences on the development data of
the WSJ corpus and converted the graphs into
dependency trees by Eisner’s algorithm (FEisner,
1996). For evaluation, we followed Chen and
Manning (2014) and measured Unlabeled Attach-
ment Score (UAS). The UAS is 24.52%, which
shows that the implicitly-learned latent graphs are
partially consistent with the human-defined syn-
tactic structures. Similar trends have been re-
ported by Yogatama et al. (2017) in the case of
binary constituency parsing. We checked the most
dominant gold dependency labels which were as-
signed for the dependencies detected by LGP-
NMT. The labels whose ratio is more than 3% are



(a) 0.86 0,97/ 0.99 10 ROOITO

oy, e ]
All the calculated electronic band strucjures are metallic .
85 AN/

086 1.0 1.0

<Lt
0.99

(b) 023

0.26 0.60 0.95 0.82

¥ N\¥. \v N\ 7~ N

All the calculated electronic band struggures are metallic .

| 0.88 N N
2

Figure 3: An example of the pre-trained depen-
dency structures (a) and its corresponding latent
graph adapted by our model (b).

0.29 037 071

nn, amod, prep, pobj, dobj, nsubj, num,
det, advmod, and poss. We see that depen-
dencies between words in distant positions, such
as subject-verb-object relations, can be captured.

With Pre-Training We also inspected the pre-
trained latent graphs. Figure 3-(a) shows the de-
pendency structure output by the pre-trained latent
parser for the same sentence in Figure 1. This is an
ordinary dependency tree, and the head selection
is almost deterministic; that is, for each word, the
largest weight of the head selection is close to 1.0.
By contrast, the weight values are more evenly
distributed in the case of LGP-NMT as shown in
Figure 1. After the overall NMT model training,
the latent parser is adapted to the translation task,
and Figure 3-(b) shows the adapted latent graph.
Again, we can see that the adapted weight values
are also distributed and different from the origi-
nal pre-trained weight values, which suggests that
human-defined syntax is not always optimal for
the target task.

The UAS of the pre-trained dependency trees is
92.52%°, and that of the adapted latent graphs is
18.94%. Surprisingly, the resulting UAS (18.94%)
is lower than the UAS of our model without pre-
training (24.52%). However, in terms of the trans-
lation accuracy, our model with pre-training is bet-
ter than that without pre-training. These results
suggest that human-annotated treebanks can pro-
vide useful prior knowledge to guide the overall
model training by pre-training, but the resulting
sentence structures adapted to the target task do
not need to highly correlate with the treebanks.

°The UAS is significantly lower than the reported score
in Hashimoto et al. (2017). The reason is described in Sec-
tion 4.3.
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7 Related Work

While initial studies on NMT treat each sentence
as a sequence of words (Bahdanau et al., 2015;
Luong et al., 2015; Sutskever et al., 2014), re-
searchers have recently started investigating into
the use of syntactic structures in NMT mod-
els (Bastings et al., 2017; Chen et al., 2017;
Eriguchi et al., 2016a,b, 2017; Li et al., 2017;
Sennrich and Haddow, 2016; Stahlberg et al.,
2016; Yang et al., 2017). In particular, Eriguchi
et al. (2016b) introduced a tree-to-sequence NMT
model by building a tree-structured encoder on top
of a standard sequential encoder, which motivated
the use of the dependency composition vectors in
our proposed model. Prior to the advent of NMT,
the syntactic structures had been successfully used
in statistical machine translation systems (Neubig
and Duh, 2014; Yamada and Knight, 2001). These
syntax-based approaches are pipelined; a syntactic
parser is first trained by supervised learning using
a treebank such as the WSJ dataset, and then the
parser is used to automatically extract syntactic in-
formation for machine translation. They rely on
the output from the parser, and therefore parsing
errors are propagated through the whole systems.
By contrast, our model allows the parser to be
adapted to the translation task, thereby providing a
first step towards addressing ambiguous syntactic
and semantic problems, such as domain-specific
selectional preference and PP attachments, in a
task-oriented fashion.

Our model learns latent graph structures in a
source-side language. Eriguchi et al. (2017) have
proposed a model which learns to parse and trans-
late by using automatically-parsed data. Thus, it is
also an interesting direction to learn latent struc-
tures in a target-side language.

As for the learning of latent syntactic structure,
there are several studies on learning task-oriented
syntactic structures. Yogatama et al. (2017) used a
reinforcement learning method on shift-reduce ac-
tion sequences to learn task-oriented binary con-
stituency trees. They have shown that the learned
trees do not necessarily highly correlate with the
human-annotated treebanks, which is consistent
with our experimental results. Socher et al. (2011)
used a recursive autoencoder model to greed-
ily construct a binary constituency tree for each
sentence. The autoencoder objective works as
a regularization term for sentiment classification
tasks. Prior to these deep learning approaches,



Wu (1997) presented a method for bilingual pars-
ing. One of the characteristics of our model is
directly using the soft connections of the graph
edges with the real-valued weights, whereas all of
the above-mentioned methods use one best struc-
ture for each sentence. Our model is based on
dependency structures, and it is a promising fu-
ture direction to jointly learn dependency and con-
stituency structures in a task-oriented fashion.
Finally, more related to our model, Kim et al.
(2017) applied their structured attention networks
to a Natural Language Inference (NLI) task for
learning dependency-like structures. They showed
that pre-training their model by a parsing dataset
did not improve accuracy on the NLI task. By
contrast, our experiments show that such a parsing
dataset can be effectively used to improve trans-
lation accuracy by varying the size of the dataset
and by avoiding strong overfitting. Moreover, our
translation examples show the concrete benefit of
learning task-oriented latent graph structures.

8 Conclusion and Future Work

We have presented an end-to-end NMT model by
jointly learning translation and source-side latent
graph representations. By pre-training our model
using treebank annotations, our model signifi-
cantly outperforms both a pipelined syntax-based
model and a state-of-the-art sequential model. On
English-to-Japanese translation, our model outper-
forms the previous best models by a large margin.
In future work, we investigate the effectiveness of
our approach in different types of target tasks.
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Abstract

In the encoder-decoder architecture for
neural machine translation (NMT), the
hidden states of the recurrent structures in
the encoder and decoder carry the crucial
information about the sentence.These vec-
tors are generated by parameters which are
updated by back-propagation of translation
errors through time. We argue that prop-
agating errors through the end-to-end re-
current structures are not a direct way of
control the hidden vectors. In this paper,
we propose to use word predictions as a
mechanism for direct supervision. More
specifically, we require these vectors to
be able to predict the vocabulary in tar-
get sentence. Our simple mechanism en-
sures better representations in the encoder
and decoder without using any extra data
or annotation. It is also helpful in reduc-
ing the target side vocabulary and improv-
ing the decoding efficiency. Experiments
on Chinese-English and German-English
machine translation tasks show BLEU im-
provements by 4.53 and 1.3, respectively.

1 Introduction

The encoder-decoder based neural machine trans-
lation (NMT) models (Sutskever et al., 2014;
Cho et al., 2014) have been developing rapidly.
Sutskever et al. (2014) propose to encode the
source sentence as a fixed-length vector repre-
sentation, based on which the decoder gener-
ates the target sequence, where both the en-
coder and decoder are recurrent neural net-
works (RNN) (Sutskever et al., 2014) or their vari-
ants (Cho et al., 2014; Chung et al., 2014; Bah-
danau et al., 2014). In this framework, the fixed-
length vector plays the crucial role of transition-
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ing the information of the sentence from the source
side to the target side.

Later, attention mechanisms are proposed to en-
hance the source side representations (Bahdanau
et al., 2014; Luong et al., 2015b). The source side
context is computed at each time-step of decod-
ing, based on the attention weights between the
source side representations and the current hidden
state of the decoder. However, the hidden states
in the recurrent decoder still originate from the
single fixed-length representation (Luong et al.,
2015b), or the average of the bi-directional repre-
sentations (Bahdanau et al., 2014). Here we refer
to the representation as initial state.

Interestingly, Britz et al. (2017) find that the
value of initial state does not affect the translation
performance, and prefer to set the initial state to
be a zero vector. On the contrary, we argue that
initial state still plays an important role of transla-
tion, which is currently neglected. We notice that
beside the end-to-end error back propagation for
the initial and transition parameters, there is no di-
rect control of the initial state in the current NMT
architectures. Due to the large number of param-
eters, it may be difficult for the NMT system to
learn the proper sentence representation as the ini-
tial state. Thus, the model is very likely to get stuck
in local minimums, making the translation process
arbitrary and unstable.

In this paper, we propose to augment the current
NMT architecture with a word prediction mecha-
nism. More specifically, we require the initial state
of the decoder to be able to predict all the words
in the target sentence. In this way, there is a spe-
cific objective for learning the initial state. Thus
the learnt source side representation will be bet-
ter constrained. We further extend this idea by ap-
plying the word predictions mechanism to all the
hidden states of the decoder. So the transition be-
tween different decoder states could be controlled
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as well.

Our mechanism is simple and requires no ad-
ditional data or annotation. The proposed word
predictions mechanism could be used as a training
method and brings no extra computing cost during
decoding.

Experiments on the Chinese-English and
German-English translation tasks show that both
the constraining of the initial state and the decoder
hidden states bring significant improvement over
the baseline systems. Furthermore, using the word
prediction mechanism on the initial state as a word
predictor to reduce the target side vocabulary
could greatly improve the decoding efficiency,
without a significant loss on the translation
quality.

2 Related Work

Many previous works have noticed the problem
of training an NMT system with lots of parame-
ters. Some of them prefer to use the dropout tech-
nique (Srivastava et al., 2014; Luong et al., 2015b;
Meng et al., 2016). Another possible choice is
to ensemble several models with random starting
points (Sutskever et al., 2014; Jean et al., 2015; Lu-
ong and Manning, 2016). Both techniques could
bring more stable and better results. But they
are general training techniques of neural networks,
which are not specifically targeting the model-
ing of the translation process like ours. We will
make empirical comparison with them in the ex-
periments.

The way we add the word prediction is similar
to the research of multi-task learning. Dong et al.
(2015) propose to share an encoder between dif-
ferent translation tasks. Luong et al. (2015a) pro-
pose to jointly learn the translation task for dif-
ferent languages, the parsing task and the image
captioning task, with a shared encoder or decoder.
Zhang and Zong (2016) propose to use multitask
learning for incorporating source side monolingual
data. Different from these attempts, our method
focuses solely on the current translation task, and
does not require any extra data or annotation.

In the other sequence to sequence tasks, Suzuki
and Nagata (2017) propose the idea for predicting
words by using encoder information. However,
the purpose and the way of our mechanism are dif-
ferent from them.

The word prediction technique has been applied
in the research of both statistical machine transla-

137

tion (SMT) (Bangalore et al., 2007; Mauser et al.,
2009; Jeong et al., 2010; Tran et al., 2014) and
NMT (Mi et al., 2016; L’Hostis et al., 2016). In
these research, word prediction mechanisms are
employed to decide the selection of words or con-
strain the target vocabulary, while in this paper,
we use word prediction as a control mechanism for
neural model training.

3 Notations and Backgrounds

We present a popular NMT framework with the
encoder-decoder architecture (Cho et al., 2014;
Bahdanau et al.,, 2014) and the attention net-
works (Luong et al., 2015b), based on which we
propose our word prediction mechanism.

Denote a source-target sentence pair as {x,y}
from the training set, where x is the source word
sequence (71,Z2, - ,7|y) and y is the target
word sequence (y1, Y2, , Yly|)» |X| and |y| are the
length of x and y, respectively.

In the encoding stage, a bi-directional recur-
rent neural network is used (Bahdanau et al.,
2014) to encode x into a sequence of vectors

(hy,hg, -+ hy). For each x;, the representation
h; is: .

h; = [hy; by] ()
where [-;-] denotes the concatenation of column

vectors; h; and <h_Z denote the hidden vectors for
the word x; in the forward and backward RNNs,
respectively.

The gated recurrent unit (GRU) is used as the re-
current unit in each RNN, which is shown to have
promising results in speech recognition and ma-
chine translation (Cho et al., 2014). Formally, the
hidden state h; at time step ¢ of the forward RNN
encoder is defined by the GRU function g (-, -),
as follows:

%

;= go(Ni1,emb,,) )
= ( —7i)®ﬁi_1+7i®ﬁ’>i

7 = o(W.[emb,,; W, 1)) (3)

W, = tanh(Wlemb, : (F: 0 1)) (4)

?i = U(Wr[embxi; ﬁi_ﬂ) ®)

where ® denotes element-wise product between
vectors and emb,,; is the word embedding of the
x;. tanh(-) and o (-) are the tanh and sigmoid trans-
formation functions that can be applied element-
wise on vectors, respectively. For simplicity, we
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Figure 1: The NMT model with word prediction for the initial state.

omit the bias term in each network layer. The
backward RNN encoder is defined likewise.

In the decoding stage, the decoder starts with the
initial state sg, which is the average of source rep-
resentations (Bahdanau et al., 2014).

x|

0 = a(ws’i' Y b)) (©)
=1

At each time step j, the decoder maximizes the
conditional probability of generating the jth target
word, which is defined as:

P(yjly<j,x) = fd(td([embyjqésj;cj])) @)
fa(u) = softmax(W su) (8)
tq(v) = tanh(W;v) 9)

where s; is the decoder’s hidden state, which is
computed by another GRU (as in Equation 2):

$j = ga(sj—1, [emby._;¢;)]) (10)

and the context vector ¢; is from the attention
mechanism (Luong et al., 2015b):

x|

¢; =) ajh; (11)
i=1
@i — _oexple) (12)
4 x|
j—1€xXp(ejk)
€ji = tanh(Wattd [Sj_l; th (13)

4 NMT with Word Predictions
4.1 Word Prediction for the Initial State

The decoder starts the generation of target sentence
from the initial state sg (Equation 6) generated by
the encoder. Currently, the update for the encoder
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only happens when a translation error occurs in the
decoder. The error is propagated through multiple
time steps in the recurrent structure until it reaches
the encoder. As there are hundreds of millions of
parameters in the NMT system, it is hard for the
model to learn the exact representation of source
sentences. As a result, the values of initial state
may not be exact during the translation process,
leading to poor translation performances.

We propose word prediction as a mechanism to
control the values of initial state. The intuition
is that since the initial state is responsible for the
translation of whole target sentence, it should at
least contain information of each word in the tar-
get sentence. Thus, we optimize the initial state by
making prediction for all target words. For sim-
plicity, we assume each target word is independent
of each other.

Here the word prediction mechanism is a sim-
pler sub-task of translation, where the order of
words is not considered. The prediction task could
be trained jointly with the translation task in a
multi-task learning way (Luong et al., 2015a; Dong
et al., 2015; Zhang and Zong, 2016), where both
tasks share the same encoder. In other words, word
prediction for the initial state could be interpreted
as an improvement for the encoder. We denote this
mechanism as WPE .

As shown in Figure 1, a prediction network is
added to the initial state. We define the conditional
probability of WPg as follows:

Iyl

Pypy (y[x) = H Pyp, (yj|x) (14)
j=1

Py (y5]x) = fp(tp([so; cp])) (15)

where f,(-) and ¢,(-) are the softmax layer and
non-linear layer as defined in Equation 8-9, with
different parameters; ¢, is defined similar as the



Figure 2: The NMT model with word predictions for the decoder’s hidden states.

attention network, so the source side information
could be enhanced.

x|

¢, =Y ah; (16)
i=1
a; = lfl"p& (17)
Zk:1 exp(ex)
e; = tanh(Wayq, [So, hy]). (18)
4.2 Word Predictions for Decoder’s Hidden

States

Similar intuition is also applied for the decoder.
Because the hidden states of the decoder are re-
sponsible for the translation of target words, they
should be able to predict the target words as well.
The only difference is that we remove the already
generated words from the prediction task. So each
hidden state in the decoder is required to predict
the target words which remain untranslated.

For the first state s; of the decoder, the predic-
tion task is similar with the task for the initial state.
Since then, the prediction is no longer a separate
training task, but integrated into each time step of
the training process. We denote this mechanism as
WPp.

As shown in Figure 2, for each time step j in the
decoder, the hidden state s; is used for the predic-
tion of (y;,¥j+1," "+ ,¥|y)- The conditional prob-
ability of WPp, is defined as:

Pwpy, (Y5, Yjr1, - > Yyl |Y<j» X) (19)
[yl
= 1 Pweo (wkly<;»x)
b=
Pwpy, (Yk|y<j, x) =fa(p(ta([emby, ,;s;;¢;])))
(20)

where f4(-) and t4(-) are the softmax layer and
non-linear layer as defined in Equation 8-9; p(-)
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is another non-linear transformation layer, which
prepares the current state for the prediction:

p(u) = tanh(Wpu). (1)

4.3 Training

NMT models optimize the networks by maximiz-
ing the likelihood of the target translation y given
source sentence X, denoted by L.

Iyl

> log P(y;ly<;, x)
j=1

Ly = —
M

(22)
where P(y;|y<j,x) is defined in Equation 7.

To optimize the word prediction mechanism, we
propose to add extra likelihood functions Lywp, and
Lyp,, into the training procedure.

For the WPg, we directly optimize the likeli-
hood of translation and word prediction:

Ly = Lt + Lwpy

LWPE = 10g PWPE

(23)
24

where Pyp,, is defined in Equation 14.
For the WPp, we optimize the likelihood as:

Lo = Lt + Lwp,

[yl
1
LWPD = Zl m log PWPD (26)
J:

(25)

where Pywp, is defined in Equation 19; the coeffi-
cient of the logarithm is used to calculate the aver-
age probability of each prediction.

The two mechanisms could also work together,
so that both the encoder and the decoder could be
improved:

L3 = Lt + Lwp, + Lwp,,- (27)



4.4 Making Use of the Word Predictor

The previously proposed word prediction mecha-
nism could be used only as a extra training objec-
tive, which will not be computed during the trans-
lation. Thus the computational complexity of our
models for translation stays exactly the same.

On the other hand, using a smaller and specific
vocabulary for each sentence or batch will improve
translation efficiency. If the vocabulary is accurate
enough, there is also a chance to improve the trans-
lation quality (Jean et al., 2015; Mi et al., 2016;
L’Hostis et al., 2016). Our word prediction mech-
anism WP provides a natural solution for generat-
ing a possible set of target words at sentence level.
The prediction could be made from the initial state
o, without using extra resources such as word dic-
tionaries, extracted phrases or frequent word lists,
as in Mi et al. (2016).

5 Experiments

5.1 Data

We perform experiments on the Chinese-English
(CH-EN) and German-English (DE-EN) machine
translation tasks. For the CH-EN, the training data
consists of about 8 million sentence pairs '. We use
NIST MTO02 as our validation set, and the NIST
MTO03, MT04 and MTO05 as our test sets. These
sets have 878, 919, 1597 and 1082 source sen-
tences, respectively, with 4 references for each
sentence. For the DE-EN, the experiments trained
on the standard benchmark WMT14, and it has
about 4.5 million sentence pairs. We use new-
stest 2013 (NST13) as validation set, and newstest
2014(NST14) as test set. These sets have 3000 and
2737 source sentences, respectively, with 1 refer-
ence for each sentence. Sentences were encoded
using byte-pair encoding (BPE) (Britzetal.,2017).

5.2 Systems and Techniques

We implement a baseline system with the bi-
directional encoder (Bahdanau et al., 2014) and the
attention mechanism (Luong et al., 2015b) as de-
scribed in Section 3, denoted as baseNMT. Then
our proposed word prediction mechanism on ini-
tial state and hidden states of decoder are imple-
mented on the baseNMT system, denoted as WPg
and WPp, respectively. We denote the system

'includes LDC2002E18, LDC2003E07, LDC2003E14,
LDC2004E12, LDC2004T08, LDC2005T06, LDC2005T10,
LDC2006E26 and LDC2007T09
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use both techniques as WPgp. We implement sys-
tems with variable-sized vocabulary following (Mi
et al., 2016). For comparison, we also implement
systems with dropout (with dropout rate 0.5 on the
output layer) and ensemble (ensemble of 4 systems
at the output layer) techniques.

5.3 Implementation Details

Both our CH-EN and DE-EN experiments are im-
plemented on the open source toolkit dl4mt 2, with
most default parameter settings kept the same. We
train the NMT systems with the sentences of length
up to 50 words. The source and target vocabular-
ies are limited to the most frequent 30K words for
both Chinese and English, respectively, with the
out-of-vocabulary words mapped to a special to-
ken UNK.

The dimension of word embedding is set to 512
and the size of the hidden layer is 1024. The recur-
rent weight matrices are initialized as random or-
thogonal matrices, and all the bias vectors as zero.
Other parameters are initialized by sampling from
the Gaussian distribution A (0, 0.01).

We use the mini-batch stochastic gradient de-
scent (SGD) approach to update the parameters,
with a batch size of 32. The learning rate is con-
trolled by AdaDelta (Zeiler, 2012).

For efficient training of our system, we adopt
a simple pre-train strategy. Firstly, the baseNMT
system is trained. The training results are used as
the initial parameters for pre-training our proposed
models with word predictions.

For decoding during test time, we simply decode
until the end-of-sentence symbol eos occurs, using
a beam search with a beam width of 5.

5.4 Translation Experiments

To see the effect of word predictions in transla-
tion, we evaluate these systems in case-insensitive
IBM-BLEU (Papineni et al., 2002) on both CH-EN
and DE-EN tasks.

The detailed results are show in the Table 1
and Table 2. Compared to the baseNMT sys-
tem, all of our models achieve significant improve-
ments. On the CH-EN experiments, simply adding
word predictions to the initial state (WPg) already
brings considerable improvements. The average
improvement on test set is 2.53 BLEU, showing
that constraining the initial state does lead to a
higher translation quality. Adding word predic-

Zhttps://github.com/nyu-dl/dl4mt-tutorial



Models | MT02(dev) | MT03 MT04 MTOS5 | Test Ave. | IMP
baseNMT 34.04 3492 36.08 33.88 34.96 —
WPg 39.36 37.17  39.11 36.20 37.49 +2.53
WPp 40.28 3845 4099 37.90 39.11 +4.15
WPgp 40.25 39.50 4091 38.05 39.49 +4.53

Table 1: Case-insensitive 4-gram BLEU scores of baseNMT, WPy, WPp, WPgp systems on the CH-EN
experiments. (The “IMP” column presents the improvement of test average compared to the baseNMT. )

Models NST13(dev) | NST14 | IMP
baseNMT 23.56 20.68 —

WPg 24.44 21.09 | +0.41
WPp 25.31 21.54 | +0.86
WPgp 2597 21.98 +1.3

Table 2: Case-insensitive 4-gram BLEU scores of
baseNMT, WPg, WPp, WPgp systems on the DE-
EN experiments.

Models Test IMP
baseNMT 34.86 —

WPgp 39.49 | +4.53
baseNMT-dropout 37.02 | +2.06
WPgp-dropout 39.25 | +4.29
baseNMT-ensemble(4) | 37.71 | +2.75
WPgp-ensemble(4) 40.75 | +5.79

Table 3: Average case-insensitive 4-gram BLEU
scores on the CH-EN experiments for baseNMT
and WPgp systems, with the dropout and ensemble
techniques.

tions to the hidden states in the decoder (WPp)
leads to further improvements against baseNMT
(4.15 BLEU), because WPp adds constraints to
the state transitions through different time steps
in the decoder. Using both techniques improves
the baseline by 4.53 BLEU. On the DE-EN ex-
periments, the improvement of WPg model is 0.41
BLEU and WPp model is 0.86 BLEU on test set.
When use both techniques, the WPgp improves on
the test set is 1.3 BLEU.

We compare our models with systems using
dropout and ensemble techniques. The results
show in Table 3 and 4. On the CH-EN experi-
ments, the dropout method successfully improves
the baseNMT system by 2.06 BLEU. However,
it does not work on our WPgp system. The en-
semble technique improves the baseNMT system
by 2.75 BLEU. It still improves WPgp by 1.26

Models Test | IMP
baseNMT 20.68 —

WPEp 21.98 +1.3
baseNMT-dropout 21.62 | +0.94
WPgp-dropout 21.71 | +1.03
baseNMT-ensemble(4) | 21.58 | +0.9
WPgp-ensemble(4) 2247 | +1.79

Table 4: Case-insensitive 4-gram BLEU scores on
the DE-EN experiments for baseNMT and WPgp
systems, with the dropout and ensemble tech-
niques.

BLEU, but the improvement is smaller than on the
baseNMT. On the DE-EN experiments, the phe-
nomenon of experiments is similar to CH-EN ex-
periments. The baseNMT system improves 0.94
through dropout method and 0.9 BLEU through
ensemble method. The dropout technique also
does not work on WPgp and the ensemble tech-
nique improves 1.79 BLEU. These comparisons
suggests that our system already learns better and
stable values for the parameters, enjoying some
of the benefits of general training techniques like
dropout and ensemble. Compared to dropout and
ensemble, our method WPgp achieves the highest
improvement against the baseline system on both
CH-EN and DE-EN experiments. Along with en-
semble method, the improvement could be up to
5.79 BLEU and 1.79 BLEU respectively.

5.5 Word Prediction Experiments

Since we include an explicit word prediction
mechanism during the training of NMT systems,
we also evaluate the prediction performance on the
CH-EN experiments to see how the training is im-
proved.

For each sentence in the test set, we use the ini-
tial state of the given model to make prediction
about the possible words. We denote the set of top
n words as T}, the set of words in all the references
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top-n baseNMT WP
Prec. | Recall | Prec. | Recall
top-10 | 45% | 17% | 73% | 30%
top-20 | 33% | 21% | 63% | 43%
top-50 | 21% | 30% | 41% | 55%
top-100 | 14% | 39% | 28% | 68%
top-1k | 2% 67% 4% 89%
top-Sk | 0.7% | 84% | 0.9% | 95%
top-10k | 0.4% | 90% | 0.5% | 97%

Table 5: Comparison between baseNMT and WPg
in precision and recall for the different prediction
size on the CH-EN experiments.

as R. We define the precision, recall of the word
prediction as follows:

T.NR

precision = ’T\’ * 100% (28)
T.NR

recall = ’\R]’ * 100% (29)

We compare the prediction performance of
baseNMT and WPg. WPgp has similar prediction
results with WPE, so we omit its results. As shown
in Table 5, baseNMT system has a relatively lower
prediction precision, for example, 45% in top 10
prediction. With an explicit training, the WPg
could achieve a much higher precision in all con-
ditions. Specifically, the precision reaches 73% in
top 10. This indicates that the initial state in WPg
contains more specific information about the pre-
diction of the target words, which may be a step
towards better semantic representation, and leads
to better translation quality.

Because the total words in the references are
limited (around 50), the precision goes down, as
expected, when a larger prediction set is consid-
ered. On the other hand, the recall of WPk is also
much higher than baseNMT. When given 1k pre-
dictions, WPg could successfully predict 89% of
the words in the reference. The recall goes up to
95% with 5k predictions, which is only 1/6 of the
current vocabulary.

To analyze the process of word prediction, we
draw the attention heatmap (Equation 16) between
the initial state sg and the bi-directional represen-
tation of each source side word h; for an example
sentence. As shown in Figure 3, both examples
show that the initial states have a very strong atten-
tion with all the content words in the source sen-
tence. The blank cells are mostly functions words

SO

SO

F{#{H (embassy) EH (gene)

#0s) Fl& % (scientists)

<H](closure) s)

) & (had) EiF(goal)

¥ (anger) Bis)

JEfRZE (philippine) s
Fff (government) 24t (provide) 0.09

2 Hfr(diagnostic)

E( TE(tools) | 0.08
1% (saud) Lh(ro) _
- . |~ EH (identify) o R
AIT1E (so-called) T g
(s E‘.‘T"\‘\ U (cause 1]1{131%"::\‘ 0.06
B (threar) 4 (lawed) 0.05
2(is) H(genes) E_ A1
1T (overly) ) Fl doos
Zt y) ) ) , ]
= "‘”"‘-"'\““r'ffw".‘l\ Zultimately) Y
#(s) mE 44003
— Rt (provide) IS
- -Tr'-""l: B(can) | | {0.02
FH(closure) BALIF (stop) F
i‘:’?fé"junb.un‘ ; ﬁtqm}u 0.01
_*1’:»? h.mnf HF (genes) 4
FE(philippinc) 7% (produce)

Elcom}‘:f)\ [E % (malfunctioning)
) 805 #0s)
% (image) FF % (treatments)
<eos> (cn:‘»

Figure 3: Two examples of the attention heatmap
between the initial state sy and the bi-directional
representation of each source side word h; from
the CH-EN test sets. (The English translation of
each source word is annotated in the parentheses
after it. )

or high frequent tokens such as “[] (’s)”, “/& (is)”,
“Ifil (and)”, “’& (it)”, comma and period. This in-
dicates that the initial state successfully encodes
information about most of the content words in the
source sentence, which contributes for a high pre-
diction performance and leads to better translation.

5.6 Improving Decoding Efficiency

To make use of the word prediction, we conduct
experiments using the predicted vocabulary, with
different vocabulary size (1k to 10k) on the CH-
EN experiments, denoted as WPg-V and WPgp-V.
The comparison is made in both translation quality
and decoding time. As all our models with fixed
vocabulary size have exactly the same number of
parameters for decoding (extra mechanism is used
only for training), we only plot the decoding time
of the WPgp for comparison. Figure 4 and 5 show
the results.

When we start the experiments with top 1k vo-
cabulary (1/30 of the baseline settings), the trans-
lation quality of both WPg-V and WPgp-V are al-
ready higher than the baseNMT; while their decod-
ing time is less than 1/3 of an NMT system with
30k vocabulary. When the size of vocabulary in-
creases, the translation quality improves as well.
With a 6k predicted vocabulary (1/5 of the baseline
settings), the decoding time is about 60% of a full-

142



baseNMT
WPg
WPy
WPgp
WPg-V
WPgp-V
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Vocabulary Size

Figure 4: BLEU scores with different vocabu-

lary sizes for each sentence on the CH-EN ex-

periments. (The performance of baseNMT, WP,

WPp, WPgp are plotted as horizontal lines for

comparison.)
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Vocabulary Size

Figure 5: Decoding time with different vocabulary

sizes for each sentence on the CH-EN experiments.

(The horizontal line shows the decoding time for

the systems with fixed vocabulary. )

vocabulary system; the performances of both sys-
tems with variable size vocabulary are compara-
ble their corresponding fixed-vocabulary systems,
which is higher than the baseNMT by 2.53 and
4.53 BLEU, respectively.

Although the comparison may not be fair
enough due to the language pair and training
conditions, the above relative improvements (e.g.
WPEp-V vs.  baseNMT) is much higher than
previous research of manipulating the vocabular-
ies (Jean et al., 2015; Mi et al., 2016; L’Hostis
et al., 2016). This is because our mechanism is not
only about reducing the vocabulary itself for each
sentence or batch, it also brings improvement to
the overall translation model. Please note that un-
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like these research, we keep the target vocabulary
to be 30k in all our experiments, because we are not
focusing on increasing the vocabulary size in this
paper. It will be interesting to combine our mecha-
nism with larger vocabulary to further enhance the
translation performance. Again, our mechanism
requires no extra annotation, dictionary, alignment
or separate discriminative predictor, etc.

5.7 Translation Analysis

We also analyze real-case translations to see the
difference between different systems (Table 6).

It is easy to see that the baseNMT system misses
the translations of several important words, such
as “advertising”, “1.5”, which are marked with un-
derline in the reference. It also wrongly translates
the company name “time warner inc.” as the re-
dundant information “internet company”;
ica online” as “us line”.

The results of dropout or ensemble show im-
provement compared to the baseNMT. But they
still make mistakes about the translation of “on-
line” and the company name “time warner inc.”.

With WPgp, most of these errors no longer exist,
because we force the encoder and decoder to carry
the exact information during translation.

amer-

6 Conclusions

The encoder-decoder architecture provides a gen-
eral paradigm for learning machine translation
from the source language to the target language.
However, due to the large amount of parameters
and relatively small training data set, the end-to-
end learning of an NMT model may not be able to
learn the best solution. We argue that at least part
of the problem is caused by the long error back-
propagation pipeline of the recurrent structures in
multiple time steps, which provides no direct con-
trol of the information carried by the hidden states
in both the encoder and decoder.

Instead of looking for other annotated data, we
notice that the words in the target language sen-
tence could be viewed as a natural annotation. We
propose to use the word prediction mechanism
to enhance the initial state generated by the en-
coder and extend the mechanism to control the
hidden states of decoder as well. Experiments
show promising results on the Chinese-English
and German-English translation tasks. As a by-
product, the word predictor could be used to im-
prove the efficiency of decoding, which may be



source I ARAR A 22 ] P 2 2 ] SE I e L, el UM o o AR S A R H
o o —AER B TuE b B Tz 2 Tt
america online , the internet arm of time warner conglomerate , said it expects
reference advertising and commerce revenue to decline from us $ 2.7 billion in 2001 to us $ 1.5
in 2002 .
in the us line , the internet company s internet company said on the internet that it
baseNMT | expected that the business sales in 2002 would fall from $ UNK billion to $ UNK billion
in 2001 .
baseNMT | " the united states line , UNK s internet company said on the internet that it expects
to reduce the annual advertising and commercial sales from $ UNK billion in 2001 to
+dropout o
$ 1.5 billion .
baseNMT in the us line , the internet company s internet company said that it expected that the
+ensemble advertising and commercial sales volume for 2002 would be reduced from us $ UNK
billion to us $ 1.5 billion in 2001 .
the internet company of time warner inc. , the us online , said that it expects that the
WPgp advertising and commerecial sales in 2002 will decrease from $ UNK billion in 2001
to us $ 1.5 billion .

Table 6: Comparisons of different systems in translating the same example sentence, which from CH-
EN test sets. (“source” indicates the source sentence; “reference” indicates the human translation; the
translation results are indicated by their system names, including our best “WPgp” systems. The underline
words in the reference are missed in the baseNMT output; the bold font indicates improvements over the
baseNMT system; and the italic font indicates remaining translation errors.)

crucial for large scale applications.

Our attempts demonstrate that the learning of
the large scale neural network systems is still not
good enough. In the future, it might be helpful to
analyze the benefits of jointly learning other re-
lated tasks together with machine translation, to
provide further control of the learning process. It
is interesting to demonstrate the effectiveness of
the proposed mechanism on other sequence to se-
quence learning tasks as well.
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