ACL-IJCNLP 2021

The Joint Conference of the 59th Annual Meeting of the
Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language
Processing

Proceedings of the System Demonstrations

August Ist - August 6th, 2021
Bangkok, Thailand (online)

©2021 The Association for Computational Linguistics
and The Asian Federation of Natural Language Processing

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-954085-56-5

ii

Introduction

Welcome to the proceedings of the system demonstration track of the Joint Conference of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (ACL-IJICNLP) on August Ist - August 6th, 2021.
ACL-1JCNLP 2021 will be an online conference.

The ACL-IJCNLP 2021 system demonstration track invites submissions ranging from early research
prototypes to mature production-ready systems. We received 133 submissions, of which 43 were
selected for inclusion in the program (acceptance rate of 32.3%) after reviewed by at least three
members of the program committee. We would like to thank the members of the program committee for
their timely help in reviewing the submissions.

Lastly, we thank the many authors that submitted their work to the demonstrations track. This year,
the ACL conference is completely virtual. The demonstration paper will be presented through one
pre-recorded talk and one live online QA session.

Best,
Heng Ji, Jong C. Park and Rui Xia
ACL-IJCNLP 2021 Demonstration Chairs

iii

Organizing Committee:

Heng Ji, University of Illinois at Urbana and Champaign
Jong C. Park, Korea Advanced Institute of Science and Technology
Rui Xia, Nanjing University of Science and Technology

Program Committee:

Abdalghani Abujabal, Amazon Alexa Al

Rodrigo Agerri, University of the Basque Country UPV/EHU
Zeljko Agié, Unity Technologies

Roee Aharoni, Google

Khalid Al Khatib, Leipzig University

Malihe Alikhani, University of Pittsburgh

Miguel A. Alonso, Universidade da Corufia

Malik Altakrori, McGill University / MILA

Rafael Anchiéta, Federal Institute of Piaui

Diego Antognini, Swiss Federal Institute of Technology in Lausanne
Rahul Aralikatte, University of Copenhagen

Hiba Arnaout, Max Planck Institute for Informatics

Akari Asai, University of Washington

Awais Athar, European Bioinformatics Institute

Eleftherios Avramidis, German Research Center for Artificial Intelligence
Ioana Baldini, IBM Research

Siqi Bao, Baidu

Valerio Basile, University of Turin

Mohaddeseh Bastan, Stony Brook University

Timo Baumann, Universitdt Hamburg

Gébor Berend, University Of Szeged

Archna Bhatia, The Florida Institute for Human and Machine Cognition
Sumit Bhatia, IBM Research

Parminder Bhatia, Amazon

Wei Bi, Tencent Al Lab

Eduardo Blanco, University of North Texas

Rexhina Blloshmi, Sapienza University of Rome

Ansel Blume, University of Illinois at Urbana-Champaign
Bernd Bohnet, Google

Rishi Bommasani, Stanford University

Georgeta Bordea, Université de Bordeaux

Florian Boudin, Université de Nantes

Chris Brockett, Microsoft Research

Jill Burstein, Duolingo

Hongjie Cai, Nanjing University of Science and Technology
Andrew Caines, University of Cambridge

Daniel Campos, Microsoft

Ed Cannon, Expedia Group

Qingqing Cao, Stony Brook University

Yixin Cao, Nanyang Technological University

Jiarun Cao, University of Manchester

Thiago Castro Ferreira, Federal University of Minas Gerais
Guan-Lin Chao, Carnegie Mellon University

Kushal Chawla, University of Southern California

Hongshen Chen, JD.com

Shaowei Chen, Nankai University

Shizhe Chen, National de Recherche en Informatique et en Automatique
Chung-Chi Chen, National Taiwan University

Guanyi Chen, Utrecht University

Long Chen, Columbia University

Jiaoyan Chen, University of Oxford

Lu Chen, Shanghai Jiao Tong University

Jun Chen, Baidu

Yagmur Gizem Cinar, Amazon

Philip Cohen, Openstream Inc.

Shaobo Cui, Alibaba Group

Xinyu Dai, Nanjing University

Xiang Dai, University of Copenhagen

Alok Debnath, Factmata

Louise Deléger, Université Paris-Saclay

Shumin Deng, Zhejiang University

Yuntian Deng, Harvard University

Zixiang Ding, Nanjing University of Science and Technology
Carl Edwards, University of Illinois at Urbana-Champaign
Paulo Fernandes, Roberts Wesleyan College

Yi Fung, University of Illinois at Urbana Champaign

Fitsum Gaim, Korea Advanced Institute of Science and Technology
Sudeep Gandhe, Google Inc

Xiang Gao, Microsoft Research

Andrew Gargett, The Open University

Mozhdeh Gheini, University of Southern California

Asmelash Teka Hadgu, Lesan Al

Chi Han, ByteDance Al Lab

Maram Hasanain, Qatar University

Yun He, Texas A&M University

Matthew Henderson, PolyAl

Benjamin Hoover, IBM Research

Xiaodan Hu, University of Illinois at Urbana-Champaign
Hen-Hsen Huang, National Chengchi University

Julie Hunter, LINAGORA

Euijun Hwang, Korea Advanced Institute of Science and Technology
Ali Hiirriyetoglu, Kog¢ University

Jeff Jacobs, Columbia University

Soyeong Jeong, Korea Advanced Institute of Science and Technology
Feng Ji, Tencent Inc

Zhuoxuan Jiang, Tencent Inc

Ridong Jiang, Institute for Infocomm Research

Joo-Kyung Kim, Amazon Alexa Al

Jung-Ho Kim, Korea Advanced Institute of Science and Technology
Varun Kumar, Amazon Alexa Al

Harshit Kumar, IBM Research

Tuan Lai, University of Illinois at Urbana-Champaign

Huije Lee, Korea Advanced Institute of Science and Technology
Jinchao Li, Microsoft Research

vi

Sha Li, University of Illinois at Urbana-Champaign

Yanran Li, The Hong Kong Polytechnic University

Xintong Li, The Ohio State University

Manling Li, University of Illinois at Urbana-Champaign

Lizi Liao, National University of Singapore

Constantine Lignos, Brandeis University

Qian Liu, Beihang University

Yang Liu, Amazon

José Lopes, Heriot Watt University

Andrea Madotto, The Hong Kong University Of Science and Technology
Alex Marin, Microsoft Corporation

Junta Mizuno, The National Institute of Information and Communications Technology
Xiaoman Pan, Tencent Al Lab

Feifei Pan, Rensselaer Polytechnic Institute

Alexandros Papangelis, Amazon Alexa Al

ChaeHun Park, Korea Advanced Institute of Science and Technology
Oleksandr Polozov, Microsoft Research

Stephen Pulman, Apple Inc.

Eugénio Ribeiro, The Instituto de Engenharia de Sistemas e Computadores: Investigacido e Desenvolvi-
mento

Hassan Sawaf, Aixplain Inc.

Ethan Selfridge, LivePerson

Xiangqing Shen, Nanjing University of Science and Technology
Jiaming Shen, University of Illinois at Urbana-Champaign

Jisu Shin, Korea Advanced Institute of Science and Technology

Lei Shu, Amazon AWS Al

Hoyun Song, Korea Advanced Institute of Science and Technology
Kaitao Song, Nanjing University of Science and Technology
Alexander Spangher, University of Southern California

Shang-Yu Su, National Taiwan University

Chenkai Sun, University of Illinois at Urbana-Champaign

Jian Sun, Alibaba Group

Hisami Suzuki, Microsoft Corporation

Ivan Vulié, University of Cambridge

Zhenhailong Wang, University of Illinois at Urbana-Champaign
Jingjing Wang, Soochow University

Zhongqing Wang, Soochow University

Qingyun Wang, University of Illinois at Urbana-Champaign

Wen Wang, Alibaba Group

Spencer Whitehead, University of Illinois at Urbana-Champaign
Chien-Sheng Wu, Salesforce

Xianchao Wu, NVIDIA

Zhen Xu, Tencent PCG

Xiaohui Yan, Huawei

Min Yang, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
Yujiu Yang, Tsinghua University

Wonsuk Yang, Korea Advanced Institute of Science and Technology
Koichiro Yoshino, Nara Institute of Science and Technology

Dian Yu, University of California, Davis

Jianfei Yu, Nanjing University of Science and Technology

Pengfei Yu, University of Illinois at Urbana-Champaign

vii

Qi Zeng, University of Illinois at Urbana-Champaign

Chengzhi Zhang, Nanjing University of Science and Technology
Zixuan Zhang, University of Illinois at Urbana-Champaign

Qi Zhang, Fudan University

Tiancheng Zhao, SOCO.AI

Deyu Zhou, Southeast University

Cangqi Zhou, Nanjing University of Science and Technology
Erion Cano, University of Vienna

viii

Table of Contents

TexSmart: A System for Enhanced Natural Language Understanding

Lemao Liu, Haisong Zhang, Haiyun Jiang, Yangming Li, Enbo Zhao, Kun Xu, Linfeng Song,
Suncong Zheng, Botong Zhou, Dick Zhu, Xiao Feng, Tao Chen, Tao Yang, Dong Yu, Feng Zhang,
ZhanHui Kang and Shuming Shi e e 1

IntelliCAT: Intelligent Machine Translation Post-Editing with Quality Estimation and Translation Sug-
gestion
Dongjun Lee, Junhyeong Ahn, Heesoo Park and JaeminJo.................................. 11

The Classical Language Toolkit: An NLP Framework for Pre-Modern Languages
Kyle P. Johnson, Patrick J. Burns, John Stewart, Todd Cook, Clément Besnier and William J. B.
M attin gLy . . .\ttt e e e 20

TextBox: A Unified, Modularized, and Extensible Framework for Text Generation
Junyi Li, Tianyi Tang, Gaole He, Jinhao Jiang, Xiaoxuan Hu, Puzhao Xie, Zhipeng Chen, Zhuohao
Yu, Wayne Xin Zhao and Ji-Rong Wen e 30

Inside ASCENT: Exploring a Deep Commonsense Knowledge Base and its Usage in Question Answering
Tuan-Phong Nguyen, Simon Razniewski and Gerhard Weikum.............................. 40

SciConceptMiner: A system for large-scale scientific concept discovery
Zhihong Shen, Chieh-Han Wu, Li Ma, Chien-Pang Chen and Kuansan Wang 48

NeurST: Neural Speech Translation Toolkit
Chengqi Zhao, Mingxuan Wang, Qiangian Dong, Rong Yeand Lei Li........................ 55

ParCourE: A Parallel Corpus Explorer for a Massively Multilingual Corpus
Ayyoob ImaniGooghari, Masoud Jalili Sabet, Philipp Dufter, Michael Cysou and Hinrich Schiitze
63

MT-Telescope: An interactive platform for contrastive evaluation of MT systems
Ricardo Rei, Ana C Farinha, Craig Stewart, Luisa Coheur and Alon Lavie.................... 73

Supporting Complaints Investigation for Nursing and Midwifery Regulatory Agencies
Piyawat Lertvittayakumjorn, Ivan Petej, Yang Gao, Yamuna Krishnamurthy, Anna Van Der Gaag,
Robert Jago and Kostas Stathis. e e 81

CoglE: An Information Extraction Toolkit for Bridging Texts and CogNet
Zhuoran Jin, Yubo Chen, Dianbo Sui, Chenhao Wang, Zhipeng Xue and Jun Zhao 92

fastHan: A BERT-based Multi-Task Toolkit for Chinese NLP
Zhichao Geng, Hang Yan, Xipeng Qiu and Xuanjing Huang................................. 99

Erase and Rewind: Manual Correction of NLP Output through a Web Interface
Valentino Frasnelli, Lorenzo Bocchi and Alessio Palmero Aprosio...............oovvuve.... 107

ESRA: Explainable Scientific Research Assistant
Pollawat Hongwimol, Peeranuth Kehasukcharoen, Pasit Laohawarutchai, Piyawat Lertvittayakumjorn,
Aik Beng Ng, Zhangsheng Lai, Timothy Liu and Peerapon Vateekul............................. 114

Trafilatura: A Web Scraping Library and Command-Line Tool for Text Discovery and Extraction
Adrien Barbaresi 122

Dodrio: Exploring Transformer Models with Interactive Visualization
Zijie J. Wang, Robert Turko and Duen Horng Chau oo ot 132

REM: Efficient Semi-Automated Real-Time Moderation of Online Forums
Jakob Smedegaard Andersen, Olaf Zukunft and Walid Maalej.............................. 142

SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization
Jesse Vig, Wojciech Kryscinski, Karan Goel and Nazneen Rajani........................... 150

A Graphical Interface for Curating Schemas
Piyush Mishra, Akanksha Malhotra, Susan Windisch Brown, Martha Palmer and Ghazaleh Kazem-
INE A . .o 159

TEXTOIR: An Integrated and Visualized Platform for Text Open Intent Recognition
Hanlei Zhang, Xiaoteng Li, Hua Xu, Panpan Zhang, Kang Zhao and Kai Gao................ 167

KuilLeiXi: a Chinese Open-Ended Text Adventure Game

Yadong Xi, Xiaoxi Mao, Le Li, Lei Lin, Yanjiang Chen, Shuhan Yang, Xuhan Chen, Kailun Tao,
Zhi Li, Gongzheng Li, Lin Jiang, Siyan Liu, Zeng Zhao, Minlie Huang, Changjie Fan and Zhipeng Hu
175

CRSLab: An Open-Source Toolkit for Building Conversational Recommender System
Kun Zhou, Xiaolei Wang, Yuanhang Zhou, Chenzhan Shang, Yuan Cheng, Wayne Xin Zhao,
Yaliang Li and Ji-Rong Wen. 185

Does My Representation Capture X? Probe-Ably
Deborah Ferreira, Julia Rozanova, Mokanarangan Thayaparan, Marco Valentino and André Freitas
194

CLTR: An End-to-End, Transformer-Based System for Cell-Level Table Retrieval and Table Question
Answering
Feifei Pan, Mustafa Canim, Michael Glass, Alfio Gliozzo and Peter Fox..................... 202

Neural Extractive Search
Shauli Ravfogel, Hillel Taub-Tabib and Yoav Goldberg............... ...t 210

FastSeq: Make Sequence Generation Faster
Yu Yan, Fei Hu, Jiusheng Chen, Nikhil Bhendawade, Ting Ye, Yeyun Gong, Nan Duan, Desheng
Cui, Bingyu Chi and Ruofei Zhang. i e 218

LOA: Logical Optimal Actions for Text-based Interaction Games
Daiki Kimura, Subhajit Chaudhury, Masaki Ono, Michiaki Tatsubori, Don Joven Agravante, Asim
Munawar, Akifumi Wachi, Ryosuke Kohita and Alexander Grayc.ccoviinenn.... 227

ProphetNet-X: Large-Scale Pre-training Models for English, Chinese, Multi-lingual, Dialog, and Code
Generation

Weizhen Qi, Yeyun Gong, Yu Yan, Can Xu, Bolun Yao, Bartuer Zhou, Biao Cheng, Daxin Jiang,
Jiusheng Chen, Ruofei Zhang, Houqiang Liand NanDuano ... 232

IFIyEA: A Chinese Essay Assessment System with Automated Rating, Review Generation, and Recom-
mendation
Jiefu Gong, Xiao Hu, Wei Song, Ruiji Fu, Zhichao Sheng, Bo Zhu, Shijin Wang and Ting Liu. 240

Ecco: An Open Source Library for the Explainability of Transformer Language Models
JALAMMAT . .o e 249

PAWLS: PDF Annotation With Labels and Structure
Mark Neumann, Zejiang Shen and Sam Skjonsberg o il 258

TweeNLP: A Twitter Exploration Portal for Natural Language Processing
Viraj Shah, Shruti Singh and Mayank Singh........ 265

ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality Estimation and Corrective
Feedback
Shiyue Zhang, Benjamin Frey and MohitBansal 272

ExplainaBoard: An Explainable Leaderboard for NLP
Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan, Shuaichen Chang, Junqi Dai, Yixin Liu, Zihuiwen
Ye and Graham NeUDIgot e e e e 280

Exploring Word Usage Change with Continuously Evolving Embeddings
Franziska Horno 290

TURING: an Accurate and Interpretable Multi-Hypothesis Cross-Domain Natural Language Database
Interface

Peng Xu, Wenjie Zi, Hamidreza Shahidi, Akos K4dér, Keyi Tang, Wei Yang, Jawad Ateeq, Harsh
Barot, Meidan Alon and Yanshuai Caot e 298

Many-to-English Machine Translation Tools, Data, and Pretrained Models
Thamme Gowda, Zhao Zhang, Chris Mattmann and Jonathan May 306

LEGOEval: An Open-Source Toolkit for Dialogue System Evaluation via Crowdsourcing
Yu Li, Josh Arnold, Feifan Yan, Weiyan Shiand Zhou Yu...........................oa... 317

ReTraCk: A Flexible and Efficient Framework for Knowledge Base Question Answering
Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin, Jian-Guang Lou and Feng Jiang.......... 325

skweak: Weak Supervision Made Easy for NLP
Pierre Lison, Jeremy Barnes and Aliaksandr Hubin o oL 337

TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng Zou, Xin Zhou, Jiacheng Ye, Yongxin Zhang,
Rui Zheng, Zexiong Pang, Qinzhuo Wu, Zhengyan Li, Chong Zhang, Ruotian Ma, Zichu Fei, Ruijian
Cai, Jun Zhao, Xingwu Hu, Zhiheng Yan, Yiding Tan, Yuan Hu, Qiyuan Bian, Zhihua Liu, Shan Qin,
Bolin Zhu, Xiaoyu Xing, Jinlan Fu, Yue Zhang, Minlong Peng, Xiaoqing Zheng, Yaqian Zhou, Zhongyu
Wei, Xipeng Qiu and Xuanjing Huang. e e 347

Stretch-VST: Getting Flexible With Visual Stories
Chi-yang Hsu, Yun-Wei Chu, Tsai-Lun Yang, Ting-Hao Huang and Lun-Wei Ku............. 356

OpenAttack: An Open-source Textual Adversarial Attack Toolkit
Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji Zhang, Zixian Ma, Bairu Hou, Yuan Zang,
Zhiyuan Liu and Maosong SUNo e 363

X1

TexSmart: A System for Enhanced Natural Language
Understanding

Lemao Liu, Haisong Zhang, Haiyun Jiang, Yangming Li, Enbo Zhao,
Kun Xu, Linfeng Song, Suncong Zheng, Botong Zhou, Jianchen Zhu, Xiao Feng,
Tao Chen, Tao Yang, Dong Yu, Feng Zhang, Zhanhui Kang, Shuming Shi*

Tencent Al
{texsmart, redmondliu, hansonzhang, shumingshi}@tencent.com

Abstract

This paper introduces TexSmart, a text
understanding system that supports fine-
grained named entity recognition (NER)
and enhanced semantic analysis functional-
ities. Compared to most previous publicly
available text understanding systems and
tools, TexSmart holds some unique features.
First, the NER function of TexSmart sup-
ports over 1,000 entity types, while most
other public tools typically support several
to (at most) dozens of entity types. Second,
TexSmart introduces new semantic analysis
functions like semantic expansion and deep
semantic representation, that are absent in
most previous systems. Third, a spectrum
of algorithms (from very fast algorithms
to those that are relatively slow but more
accurate) are implemented for one function
in TexSmart, to fulfill the requirements of
different academic and industrial applica-
tions. The adoption of unsupervised or
weakly-supervised algorithms is especially
emphasized, with the goal of easily updat-
ing our models to include fresh data with
less human annotation efforts. !

1 Introduction

The long-term goal of natural language process-
ing (NLP) is to help computers understand natural
language as well as we do, which is one of the
most fundamental and representative challenges
for artificial intelligence. Natural language under-
standing includes a broad variety of tasks covering
lexical analysis, syntactic analysis and semantic
analysis. In this paper we introduce TexSmart, a
new text understanding system that provides en-
hanced named entity recognition (NER) and seman-
tic analysis functionalities besides standard NLP
modules. Compared to most previous publicly-
available text understanding systems (Loper and

Project lead and chief architect

!TexSmart is available at https://texsmart.qq.

com/en, and the long version of this paper can be found
in the technical report (Zhang et al., 2020).

1

Bird, 2002; OpenNLP; Manning et al., 2014; Gard-
ner et al., 2018; Che et al., 2010; Qiu et al., 2013),
TexSmart holds the following key characteristics:
e Fine-grained named entity recognition (NER)
e Enhanced semantic analysis
e A spectrum of algorithms implemented for one
function, to fulfill the requirements of different
academic and industrial applications
First, the fine-grained NER function of TexS-
mart supports over 1,000 entity types while most
previous text understanding systems typically sup-
port several to (at most) dozens of coarse entity
types (among which the most popular types are
people, locations, and organizations). Large-scale
fine-grained entity types are expected to provide
richer semantic information for downstream NLP
applications. Figure 1 shows a comparison between
the NER results of a previous system and the fine-
grained NER results of TexSmart. It is shown
that TexSmart recognizes more entity types (e.g.,
work.movie) and finer-grained ones (e.g., loc.city
vs. the general location type). Examples of en-
tity types (and their important sub-types) which
TexSmart is able to recognize include people, lo-
cations, organizations, products, brands, creative
work, time, numerical values, living creatures, food,
drugs, diseases, academic disciplines, languages, ce-
lestial bodies, organs, events, activities, colors, etc.
Second, TexSmart provides two advanced seman-
tic analysis functionalities: semantic expansion, and
deep semantic representation for a few entity types.
These two functions are not available in most pre-
vious public text understanding systems. Semantic
expansion suggests a list of related entities for an
entity in the input sentence (as shown in Figure 1).
It provides more information about the semantic
meaning of an entity. Semantic expansion could
also benefit upper-layer applications like web search
(e.g., for query suggestion) and recommendation
systems. For time and quantity entities, in addi-
tion to recognizing them from a sentence, TexSmart
also tries to parse them into deep representations
(as shown in Figure 1). This kind of deep repre-
sentations is essential for some NLP applications.
For example, when a chatbot is processing query

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 1-10, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

(a)

(b) Semantic Expansion

No. Entity Type ID No. Entity Type ID Semantics /
{"related":["Batman","Superman","Wonder Woman”,
1 Marvel person 1 Captain Marvel work.movie "Green Lantern”,"the flash”,"Aquaman","Spider-Man",
"Green Arrow”,"Supergirl","Captain America"]}
} . {“related":["Toronto","Montreal","Vancouver","Ottawa",
2 Los Angeles location 2 Los Angeles loc.city "Calgary","London","Paris","Chicago","Edmonton","Boston"]}
3 |24 months ago time 3 24 months ago time.generic {“value”:[2019,3]} |

Fine-grained NER

Deep Semantic Expression

Figure 1: Comparison between the NER results of a traditional text understanding system in (a) and
the fine-grained NER and semantic analysis results provided by TexSmart in (b). The input sentence is
“Captain Marvel was premiered in Los Angeles 24 months ago.”. The screenshot was taken in Mar. 2021.

“please book an air ticket to London at 4 pm the
day after tomorrow”, it needs to know the exact
time represented by “4 pm the day after tomorrow”.

Third, a spectrum of algorithms is implemented
for one task (e.g., part-of-speech tagging and NER)
in TexSmart, to fulfill the requirements of differ-
ent academic and industrial applications. On one
side of the spectrum are the algorithms that are
very fast but not necessarily the best in accuracy.
On the opposite side are those that are relatively
slow yet delivering state-of-the-art performance in
terms of accuracy. Different application scenarios
may have different requirements for efficiency and
accuracy. Unfortunately, it is often very difficult or
even impossible for a single algorithm to achieve
the best in both speed and accuracy at the same
time. With multiple algorithms implemented for
one task, we have more chances to better fulfill the
requirements of more applications.

One design principle of TexSmart is to put a lot
of efforts into designing and implementing unsuper-
vised or weakly-supervised algorithms for a task,
based on large-scale structured, semi-structured,
or unstructured data. The goal is to update our
models easier to include fresh data with less human
annotation efforts.

2 System Modules

Compared to most other public text understanding
systems, TexSmart supports three unique modules,
i.e., fine-grained NER, semantic expansion and deep
semantic representation. Besides, traditional tasks
supported by both TexSmart and many other sys-
tems include word segmentation, part-of-speech
(POS) tagging, coarse-grained NER, constituency
parsing, semantic role labeling, text classification
and text matching. Below we first introduce the
unique modules, and then describe the traditional
tasks, followed by System Usage.

2.1 Key Modules

Since the implementation of fine-grained NER de-
pends on semantic expansion, we first present se-
mantic expansion, then fine-grained NER, and fi-

nally deep semantic representation.

2.1.1

Given an entity within a sentence, the semantic ex-
pansion module suggests a list of entities related to
the given entity. For example in Figure 1, the sug-
gestion results for “Captain Marvel” include “Spider-
Man”, “Captain America”, and other related movies.
Semantic expansion attaches additional information
to an entity mention, which could be leveraged by
upper-layer applications for better understanding
the entity and the source sentence. Possible appli-
cations of the expansion results include web search
(e.g., for query suggestion) and recommendation
systems.

Semantic expansion task was firstly introduced
in Han et al. (2020), and it was addressed by a neu-
ral method. However, this method is not as efficient
as one expected for some industrial applications.
Therefore, we propose a light-weight alternative
approach in TexSmart for this task.

This approach includes two offline steps and two
online ones, as illustrated in Figure 2. During the
offline procedure, Hearst patterns are first applied
to a large-scale text corpus to obtain a is-a map (or
called a hyponym-to-hypernym map) (Hearst, 1992;
Zhang et al., 2011). Then a clustering algorithm is
employed to build a collection of term clusters from
all the hyponyms, allowing a hyponym to belong
to multiple clusters. Each term cluster is labeled
by one or more hypernyms (or called type names).
Term similarity scores used in the clustering al-
gorithm are calculated by a combination of word
embedding, distributional similarity, and pattern-
based methods (Mikolov et al., 2013; Song et al.,
2018; Shi et al., 2010).

During the online testing time, clusters contain-
ing the target entity mention are first retrieved by
referring to the cluster collection. Generally, there
may be multiple (ambiguous) clusters containing
the target entity mention and thus it is necessary
to pick the best cluster through disambiguation.
Once the best cluster is chosen, its members (or
instances) can be returned as the expansion results.

Now the core challenge is how to calculate the

Semantic Expansion

Offline Training

(apple, fruit)

(banana, fruit)
(apple, company)
(google, company)

(microsoft, company)

fruits such as
apple and banana
Apple, Google, Microsoft
and other companies

Extraction

Clustering

Online Testing

C1:({apple, banana, “Apple juice”

peach, ...}, fruit)

|<_I<_

C1,C2
Disambiguation ¥

C1
{apple, banana, peach, ...}

C2:({apple, google
microsoft,...},
company)

|
|
|
I Retrieval
|
|
|
|

Figure 2: Key steps for semantic expansion: extraction, clustering, retrieval and disambiguation. The
first two steps are conducted offline and the last two are performed online.

score of a cluster given an entity mention. We
choose to compute the score as the average simi-
larity score between a term in the cluster and a
term in the context of the entity mention. For-
mally, suppose e is a mention in a sentence, context
C ={c1,co, - ,cn} is a window of e within the
sentence, and L = {ej,eq, -+ ,e,} is a term cluster
containing the entity mention (i.e., e € L). The
cluster score is then calculated below:

sim(C,L;e) =
1
(m—1)x(n—-1) Z

z€C\{e},yeL\{e}

cos(vg,wy) (1)

where C\ {e} means excluding a subset {e} from a
set C, v, denotes the input word embedding of x,
w, denotes the output word embedding of y from
a well-trained word embedding model, and cos is
the cosine similarity function.

2.1.2 Fine-Grained NER

Generally, it is challenging to build a fine-grained
NER system. Xu et al. (2020) create a fine-grained
NER dataset for Chinese, but the number of its
types is less than 20. A knowledge base (such as
Freebase (Bollacker et al., 2008)) is utilized in Ling
and Weld (2012) as distant supervision to obtain
a training dataset for fine-grained NER. However,
this dataset only includes about one hundred types
whereas TexSmart supports up to one thousand
types. Moreover, the fine-grained NER module in
TexSmart does not rely on any knowledge bases and
thus can be readily extended to other languages for
which there is no knowledge base available.

Ontology To establish fine-grained NER in TexS-
mart, we need to define an ontology of entity
types. The TexSmart ontology was built in a semi-
automatic way, based on the term clusters in Fig-
ure 2. Please note that each term cluster is labeled
by one or more hypernyms as type names of the
cluster. We first conduct a simple statistics over
the term clusters to get a list of popular type names
(i.e., those having a lot of corresponding term clus-
ters). Then we manually create one or more formal
types from one popular type name and add the type
name to the name list of the formal types. For ex-
ample, formal type “work.movie” is manually built

from type name “movie”, and the word “movie” is
added to the name list of “work.movie”. As another
example, formal types “language.human lang” and
“language.programming” are manually built from
type name “language”, and the word “language” is
added to the name lists of both the two formal types.
Each formal type is also assigned with a sample in-
stance list in addition to a name list. Instances can
be chosen manually from the clusters correspond-
ing to the names of the formal type. To reduce
manual efforts, the sample instance list for every
type is often quite short. The supertype/subtype
relation between the formal types are also specified
manually. As a result, we obtain a type hierarchy
containing about 1,000 formal types, each assigned
with a standard id (e.g., work.movie), a list of
names (e.g., “movie” and “film”), and a short list of
example instances (e.g., “Star Wars”). The TexS-
mart ontology is available on the download page?.
Figure 3 shows a sub-tree (with type id “loc.generic”
as the root) sampled from the entire ontology.

Unsupervised method The unsupervised fine-
grained NER method works in two steps. First, run
the semantic expansion algorithm (referring to the
previous subsection) to get the best cluster for the
entity mention. Second, derive an entity type from
the cluster.

For the best cluster obtained in the first step,
it contains a list of terms as instances and is also
labeled with a list of hypernyms (or type names).
The final entity type id for the cluster is determined
by a type scoring algorithm. The candidate types
are those in the TexSmart ontology whose name
lists contain at least one hypernym of the cluster.
Please note that each entity type in the TexSmart
ontology has been assigned with a name list and
a sample instance list. Therefore the score of a
candidate entity type can be calculated according
to the information of the entity type and cluster.

This unsupervised method has a major drawback:
It cannot recognize unknown entity mentions (i.e.,
entity mentions that are not in any of our term
clusters).

’https://ai.tencent.com/ailab/nlp/texsmart/
en/download.html

loc.generic

loc.geo

loc.geo.district

loc.geo.populated_place

loc.country_region

loc.admin_division

loc.county_level loc.city loc.state_in_country loc.town

loc.natural_geo

land_form.mountain land_form.peak land_form.plateau

Figure 3: A sub-tree of the TexSmart ontology, with “loc.generic” as the root

Hybrid method In order to address the above
issue, we propose a hybrid method for fine-grained
NER. Its key idea is to combine the results of
the unsupervised method and those of a coarse-
grained NER model. We train a coarse-grained
NER model in a supervised manner using an off-
the-shelf training dataset (for example, Ontonotes
dataset (Weischedel et al., 2013)). Given the su-
pervised and unsupervised results, the combination
policy is as follows: If the fine-grained type is com-
patible with the coarse type, i.e., the fine-grained
one is a subtype of the coarse one, the fine-grained
type is returned; otherwise the coarse type is cho-
sen.

For example, assume that the entity mention “ap-
ple” in the sentence “...apple juice...” is determined
as “food.fruit” by the unsupervised method and
“food.generic” by the supervised model. The hy-
brid approach returns “food.fruit” according to the
above policy. However, if the unsupervised method
returns “org.company”; the hybrid approach will re-
turn “food.generic” because the two types returned
by the supervised method and the unsupervised
method are not compatible.

Although both unsupervised and hybrid meth-
ods are described on top of the ontology manually
defined above, they can actually be used for other
ontologies such as those in FIGER and Ontonotes
datasets, because most type names in these on-
tologies can be covered by our clusters obtained in
semantic expansion as long as the training data is
sufficient. In this sense, both methods are general
in practice.

2.1.3 Deep Semantic Representation

For a time or quantity entity within a sentence,
TexSmart can analyze its potential structured rep-
resentation, so as to further derive its precise se-
mantic meaning. For example in Figure 1, the deep
semantic representation given by TexSmart for “24
months ago” is a structured string with a precise
date in JSON format: {"value": [2019, 3|} if the
screenshot time was Mar. 2021. Deep semantic
representation is important for applications like
task-oriented chatbots, where the precise meanings
of some entities are required. So far, most public
text understanding tools do not provide such a fea-

ture. As a result, applications using these tools
have to implement deep semantic representation by
themselves.

Some NLP toolkits make use of regular expres-
sions or supervised sequence tagging methods to
recognize time and quantity entities. However, it is
difficult for those methods to derive structured or
deep semantic information of entities. To overcome
this problem, time and quantity entities are parsed
in TexSmart by Context Free Grammar (CFG),
which is more expressive than regular expressions.
Its key idea is similar to that in Shi et al. (2015) and
can be described as follows: First, CFG grammar
rules are manually written according to possible nat-
ural language expressions of a specific entity type.
Second, the Earley algorithm (Earley, 1970) is em-
ployed to parse a piece of text to obtain semantic
trees of entities. Finally, deep semantic represen-
tations of entities are derived from the semantic
trees.

2.2 Other Modules

Word Segmentation In order to support differ-
ent application scenarios, TexSmart provides word
segmentation results of two granularity levels: word
level (or basic level), and phrase level. For phrase-
level segmentation, some phrases (especially noun
phrases) may contained as a unit. An unsuper-
vised algorithm is implemented in TexSmart for
both English and Chinese word segmentation. We
choose an unsupervised method over supervised
ones due to two reasons. First, it is at least 10
times faster. Second, its accuracy is good enough
for most applications.

Part-of-Speech Tagging Part-of-Speech (POS)
denotes the syntactic role of each word in a sentence,
also known as word classes or syntactic categories
and it is helpful for many downstream text under-
standing tasks such as parsing (Huang, 2008; Chen
and Manning, 2014; Liu et al., 2018a). We imple-
ment three models among many popular ones for
part-of-speech tagging (Ratnaparkhi, 1996; Huang
et al., 2015; Li et al., 2021b): Log-linear based
model (Ratnaparkhi, 1996), conditional random
field (CRF) based model (Lafferty et al., 2001) and
deep neural network (DNN) based model (Akbik

et al., 2018; Liu et al., 2019). We denote them as:
log linear, crf and dnn, respectively.

Coarse-grained NER The difference between
fine-grained and coarse-grained NERs is that the
former involves more entity types with a finer gran-
ularity. We implement coarse-grained NER using
supervised learning methods, including conditional
random field (CRF) (Lafferty et al., 2001) based
and deep neural network (DNN) based models (Ak-
bik et al., 2018; Liu et al., 2019; Li et al., 2020).

Constituency Parsing We implement the con-
stituency parsing model based on the work (Kitaev
and Klein, 2018). Kitaev and Klein (2018) build
the parser by combining a sentence encoder with
a chart decoder based on the self-attention mecha-
nism. Different from work (Kitaev and Klein, 2018)
, we use pre-trained BERT model as the text en-
coder to extract features to support the subsequent
decoder-based parsing. Our model achieves excel-
lent performance and has low search complexity.

Semantic Role Labeling Semantic role label-
ing (also called shallow semantic parsing) tries to
assign role labels to words or phrases in a sen-
tence. TexSmart takes a sequence labeling model
with BERT as the text encoder for semantic role
labeling similar to Shi and Lin (2019). TexSmart
supports semantic role labeling on both Chinese
and English texts.

Text Classification Text Classification aims to
assign a semantic label for an input text among a
predefined label set. Text Classification is a clas-
sical task in NLP and it has been widely used in
many applications, such as spam filtering, sentiment
analysis and question classification. The predefined
label set in TexSmart is available on the web page.?

Text Matching We implement two text match-
ing algorithms in TexSmart: Linkage and ESIM
(Chen et al., 2017). Linkage is an unsupervised
algorithm designed by ourselves that incorporates
synonymy information and word embedding knowl-
edge to compute semantic similarity. Different from
the previous models with complicated network ar-
chitectures, ESIM carefully designs the sequential
model with both local and global inference based
on chain LSTMs and outperforms the counterparts.

3 System Usage

Two ways are available to use TexSmart: Calling
the HT'TP API directly, or downloading one version
of the offline SDK. Note that for the same input
text, the results from the HTTP API and the SDK
may be slightly different, because the HT TP API
employs a larger knowledge base and supports more

Shttps://ai.tencent.com/ailab/nlp/texsmart/
table_html/tc_label_set.html.

text understanding tasks and algorithms. The de-
tailed comparison between the SDK and the HTTP
APIT is available in https://ai.tencent.com/
ailab/nlp/texsmart/en/instructions.html.

Offline Toolkit (SDK) So far the SDK sup-
ports Linux, Windows, and Windows Subsystem
for Linux (WSL). Mac OS support will be added in
v0.3.0. Programming languages supported include
C, C++, Python (both version 2 and version 3) and
Java (version > 1.6.0). Example codes for using the
SDK with different programming languages are in
the ./examples sub-folder. For example, the Python
codes in ./examples/python/en nlu_examplel.py
show how to use the TexSmart SDK to process
an English sentence. The C++ codes in ./exam-
ples/c_cpp/src/nlu_cpp examplel.cc show how
to use the SDK to analyze both an English sentence
and a Chinese sentence.

HTTP API The HTTP API of TexSmart con-
tains two parts: the text understanding API and
the text matching API. The text understanding API
can be accessed via HTTP-POST and the URL is
available on the web page.* The text matching
API is used to calculate the similarity between a
pair of sentences. Similar to the text understanding
API, the text matching API also supports access
via HTTP-POST and the URL is available on the
web page.®

4 System Evaluation

4.1 Settings

Semantic Expansion The performance of se-
mantic expansion are evaluated based on human
annotation. We first select at random 5,000
<sentence, entity mention> pairs (called SE
pairs) from our test set of NER (to make sure
that the entities selected are correct). Then our
semantic expansion algorithm is applied to the SE
pairs to generate a related-entity list for each pair.
Top nine expansion results of each SE pair are then
judged by human annotators in terms of quality
and relatedness, with each result annotated by two
annotators. For each result, a label of 2, 1, or 0 is
assigned by each annotator. The three labels mean
“highly related”, “slightly related”, and “not related”
respectively. In calculating evaluation scores, the
three labels are normalized to scores 100, 50, and
0 respectively. As there is no context for each
expanded entity, it is challenging for human to an-
notate its ground-truth label. In fact, the overall
disagreement rate between two annotators is 23.5%.
To measure the quality of our model, we report the
average score according to both annotators.

Fine-grained NER Ling and Weld (2012) pro-
vide a test set for fine-grained NER evaluation.

‘https://texsmart.qq.com/api
Shttps://texsmart.qq.com/api/match_text.

SE FGNER
ZH | EN | Base | Hybrid
Quality | 79.5 | 80.5 | 45.9 53.8

Table 1: Semantic expansion (SE) and fine-grained
NER (FGNER) evaluation results. SE is evaluated
by human annotators and FGNER is evaluated by
a variant of F1 score. Base denotes the supervised
coarse NER model.

However, this dataset only contains about 400 sen-
tences. In addition, it misses some important en-
tities during human annotation, which is a com-
mon issue in building a dataset for evaluating fine-
grained NER (Li et al., 2021a). Therefore, we
create a larger fine-grained NER dataset, based
on the Ontonotes 5.0 dataset. We ask three hu-
man annotators to label fine-grained types for each
coarse-labeled entity. Since human annotators do
not need to identify mentions from scratch, it would
mitigate the missing entities issue to some extent.
Furthermore, because it is too costly for three hu-
man annotators to annotate types from the entire
ontology, we instead take a sub-ontology for human
annotation which combines all types from Ling and
Weld (2012) and Gillick et al. (2014), including 140
types in total. Due to ambiguous entities, there
are indeed some disagreement annotations among
three annotators but their overall agreement rate
is respectful, i.e., the averaged pair-wise agreement
rate is about 87.1% in terms of Mi-F1 scores.

Parsing SRL
EN ZH EN | ZH
F1 95.42 | 92.25 | 86.7 | 82.1
Sents/sec | 16.60 | 16.00 | 10.2 | 11.5

Table 2: Evaluation results for constituency parsing
and SRL. The decoding speed in is measured upon
a GPU P40 machine.

To set the hybrid method for fine-grained NER,
we select LUA (Li et al., 2020) as the coarse-grained
NER model, which is trained on Ontonotes 5.0 train-
ing dataset (Weischedel et al., 2013). To compare
fine-grained NER against coarse-grained NER, we
report a variant of F1 measure for evaluation which
only differs from standard F1 in matching count ac-
cumulation: if an output type is a fine-grained type
and it exactly matches a gold fine-grained type, the
matching count accumulates 1; if an output is a
coarse grained type and it is compatible with a gold
fine-grained type, the matching count accumulates
0.5.

POS Tagging We evaluate three POS tagging
algorithms: log-linear, CRF, and DNN. They are
all trained on the standard training datasets from

PTB for English and CTB 9.0 for Chinese. We
use their corresponding test sets to evaluate all the
models.

Coarse-grained NER To ensure better gener-
alization to industrial applications, we combine
several public training sets together for English
NER. They are CoNLL2003 (Sang and De Meulder,
2003), BTC (Derczynski et al., 2016), GMB (Bos
et al., 2017), SEC_FILING (Alvarado et al., 2015),
WikiGold (Balasuriya et al., 2009; Nothman et al.,
2013), and WNUT17 (Derczynski et al., 2017).
Since the label set for all these datasets are slightly
different, we only maintain three common labels
(Person, Location and Organization) for training
and testing. For Chinese, we create a NER dataset
including about 80 thousand sentences labeled with
12 entity types, by following a similar guideline to
that of the Ontonotes dataset. We randomly split
it into a training set and a test set with ratio of
3:1. We evaluate two algorithms for coarse-grained
NER: CRF and DNN. For DNN, we implement the
RoBERTa-CRF and Flair models. As we found
RoBERTa-CRF performs better on the Chinese
dataset while Flair is better on the English dataset,
we report results of ROBERTa-CRF for Chinese
and Flair for English in our experiments.

Constituency Parsing We conduct parsing ex-
periments on both English and Chinese datasets.
For English task, we use WSJ sections in Penn
Treebank (PTB) (Marcus et al., 1993), and we
follow the standard splits: the training data ranges
from section 2 to section 21; the development data
is section 24; and the test data is section 23. For
Chinese task, we use the Penn Chinese Treebank
(CTB) of the version 5.1 (Xue et al., 2005). The
training data includes the articles 001-270 and arti-
cles 440-1151; the development data is the articles
301- 325; and the test data is the articles 271-300.

SRL Semantic role labeling experiments are con-
ducted on both English and Chinese datasets. We
use the CoNLL 2012 datasets (Pradhan et al., 2013)
and follow the standard splits for the training, de-
velopment and test sets. The network parameters
of our model are initialized using RoBERTa. The
batch size is set to 32 and the learning rate is
5x107°.

Text Matching Two text matching algorithms
are evaluated: ESIM and Linkage. The datasets
used in evaluating English text matching are
MRPC® and QUORAT". For Chinese text match-
ing, four datasets are involved: LCQMC (Liu
et al., 2018b), AFQMC (Xu et al., 2020),
BQ CORPUS (Chen et al., 2018), and PAWS-
zh (Zhang et al., 2019). We evaluate the quality

Shttps://www.microsoft.com/en-us/download/
details.aspx?id=52398.

"https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs.

POS Tagging Coarse-grained NER,
Log-linear CRF DNN CRF DNN

EN ZH EN ZH EN ZH EN ZH EN 7ZH

F1 96.76 | 93.94 | 96.50 | 93.73 | 97.04 | 98.08 | 73.24 | 67.26 | 83.12 | 75.23
Sents/sec 3.9K 1.3K 149 1.1K 107

Table 3: Evaluation results for some POS Tagging and coarse-grained NER algorithms in TexSmart on
both English (EN) and Chinese (ZH) datasets. The English and Chinese NER datasets are labeled with 3

and 12 entity types respectively.

Algorithms | Sents/Sec English Chinese
MRPC | QUORA | LCQMC | AFQMC | BQ_CORPUS | PAWS-zh
ESIM 861 - - 82.63 51.30 71.05 61.55
Linkage 1973 82.18 74.94 79.26 48.66 71.23 62.30

Table 4: Text matching evaluation results. ESIM is a supervised algorithm and it is trained on an
in-house labeled dataset only for Chinese. Linkage is an unsupervised algorithm and it is trained for both

English and Chinese.

and speed for both ESIM and Linkage algorithms
in terms of F1 score and sentences per second, re-
spectively. Since we have not trained the English
version of ESIM yet, the corresponding evaluation
results are not reported.

4.2 Evaluation Results

Table 1 shows the evaluation results of semantic
expansion and fine-grained NER. For semantic ex-
pansion, it is shown that TexSmart achieves an
accuracy of about 80.0 on both English and Chi-
nese datasets. It is a pretty good performance. For
fine-grained NER, it is observed that the hybrid
approach performs much better than the supervised
model (LUA).

Evaluation results for constituency parsing and
semantic role labeling are summarized in Table 2.
For constituency parsing, the F1 scores on the En-
glish and Chinese test sets are 95.42 and 92.25,
respectively. The decoding speed depends on the
input sentence length. It can process 16.6 and 16.0
sentences per second on our test sets. For SRL, the
F1 scores on the English and Chinese test sets are
86.7 and 82.1 respectively and it processes about
10 sentences per second. The speed may be not
efficient enough for some applications. As future
work, we plan to design more efficient syntactic
parsing and SRL algorithms.

The evaluation results for POS Tagging and
coarse-grained NER are listed in Table 3. The
speed values in this table are measured in sen-
tences per second and they are measured upon
a machine with Platinum 8255C CPU @ 2.50GHz.
Please note that the speed results for Log-linear and
CRF are obtained using one single thread, while
the speed results for DNN are on 6 threads.

It is clear from the POS tagging results that the
three algorithms form a spectrum. On one side of

the spectrum is the log-linear algorithm, which is
very fast but less accurate than the DNN algorithm.
On the opposite side is the DNN algorithm, which
achieves the best accuracy but are much slower
than the other two algorithms. The CRF algorithm
is in the middle of the spectrum.

Also from Table 3, we can see that the two coarse-
grained NER algorithms form another spectrum.
The CRF algorithm is on the high-speed side, while
the DNN algorithm is on the high-accuracy side.
Note that for DNN methods in this table, we em-
ploy a data augmentation method to improve their
generalization abilities and a knowledge distillation
method to speed up its inference (Hinton et al.,
2015).

Table 4 shows the performance of two algorithms
for text matching. We can see from this table
that, in terms of speed, both algorithms are fairly
efficient. Please note that the speed is measured
in sentences per second using one single CPU from
a machine with Platinum 8255C CPU @ 2.50GHz.
In terms of accuracy, their performance comparison
depends on the dataset being used. ESIM performs
apparently better on the first two datasets, while
slightly worse on the last one. Applications may
need to test on their datasets before making decision
between the two algorithms.

5 Conclusion

In this paper we have presented TexSmart, a text
understanding system that supports fine-grained
NER, enhanced semantic analysis, as well as some
common text understanding functionalities. We
have introduced the main functions of TexSmart
and key algorithms for implementing the functions.
We have also reported some evaluation results on
major modules of TexSmart.

References

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In COLING 2018, 27th International
Conference on Computational Linguistics, pages

1638-1649.

Julio Cesar Salinas Alvarado, Karin Verspoor, and
Timothy Baldwin. 2015. Domain adaption of
named entity recognition to support credit risk
assessment. In Proceedings of the Australasian
Language Technology Association Workshop 2015,
pages 84-90.

Dominic Balasuriya, Nicky Ringland, Joel Noth-
man, Tara Murphy, and James R Curran. 2009.
Named entity recognition in wikipedia. In Pro-
ceedings of the 2009 Workshop on The People’s
Web Meets NLP: Collaboratively Constructed Se-
mantic Resources (People’s Web), pages 10-18.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for struc-
turing human knowledge. In Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, pages 1247-1250.

Johan Bos, Valerio Basile, Kilian Evang, Noortje
Venhuizen, and Johannes Bjerva. 2017. The
groningen meaning bank. In Nancy Ide and
James Pustejovsky, editors, Handbook of Lin-
guistic Annotation, volume 2, pages 463-496.
Springer.

Wanxiang Che, Zhenghua Li, and Ting Liu. 2010.
Ltp: A chinese language technology platform. In
Coling 2010: Demonstrations, pages 13—16.

Danqgi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 740-750.

Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang,
Daohe Lu, and Buzhou Tang. 2018. The BQ
corpus: A large-scale domain-specific Chinese
corpus for sentence semantic equivalence identi-
fication. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing.

Qian Chen, Xiao-Dan Zhu, Z. Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm
for natural language inference. In ACL.

Leon Derczynski, Kalina Bontcheva, and Ian
Roberts. 2016. Broad twitter corpus: A diverse
named entity recognition resource. In Proceedings
of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical
Papers, pages 1169-1179.

Leon Derczynski, Eric Nichols, Marieke van Erp,
and Nut Limsopatham. 2017. Results of the

wnut2017 shared task on novel and emerging
entity recognition. In Proceedings of the 3rd
Workshop on Noisy User-generated Text, pages
140-147.

Jay Earley. 1970. An efficient context-free pars-
ing algorithm. Communications of the ACM,
13(2):94-102.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke Zettlemoyer.
2018. AllenNLP: A deep semantic natural lan-
guage processing platform. In Proceedings of
Workshop for NLP Open Source Software (NLP-
0S5S), pages 1-6, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse
Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. arXiv
preprint arXiv:1412.1820.

Jialong Han, Aixin Sun, Haisong Zhang, Chenliang
Li, and Shuming Shi. 2020. Case: Context-aware
semantic expansion. In AAAI pages 7871-7878.

Marti A Hearst. 1992. Automatic acquisition of
hyponyms from large text corpora. In Coling
1992 volume 2: The 15th international conference
on computational linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.
arXiw preprint arXiw:1503.02531.

Liang Huang. 2008. Forest reranking: Discrimina-
tive parsing with non-local features. In Proceed-

ings of ACL-08: HLT, pages 586—-594.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional Istm-crf models for sequence tagging.
In Proceedings of ACL.

Nikita Kitaev and D. Klein. 2018. Constituency
parsing with a self-attentive encoder. In ACL.

John Lafferty, Andrew McCallum, and Fer-
nando CN Pereira. 2001. Conditional random
fields: Probabilistic models for segmenting and
labeling sequence data.

Yangming Li, Lemao Liu, and Shuming Shi. 2020.
Segmenting natural language sentences via lexical
unit analysis. arXiv preprint arXiw:2012.05418.

Yangming Li, Lemao Liu, and Shuming Shi. 2021a.
Empirical analysis of unlabeled entity problem
in named entity recognition. In Proceedings of
ICLR.

Yangming Li, Lemao Liu, and Kaisheng Yao. 2021b.
Neural sequence segmentation as determining the
leftmost segments. In Proceedings of NAACL.

Xiao Ling and Daniel S Weld. 2012. Fine-grained
entity recognition. In AAAI volume 12, pages
94-100.

Lemao Liu, Muhua Zhu, and Shuming Shi. 2018a.
Improving sequence-to-sequence constituency
parsing. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32.

Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng,
Jing Chen, Dongfang Li, and Buzhou Tang.
2018b. LCQMC:a large-scale Chinese question
matching corpus. In Proceedings of the 27th In-
ternational Conference on Computational Lin-
guastics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqgi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

Edward Loper and Steven Bird. 2002. Nltk: the
natural language toolkit. In Proceedings of the
ACL-02 Workshop on Effective tools and method-
ologies for teaching natural language processing
and computational linguistics.

Christopher D Manning, Mihai Surdeanu, John
Bauer, Jenny Rose Finkel, Steven Bethard, and
David McClosky. 2014. The stanford corenlp
natural language processing toolkit. In Proceed-
ings of 52nd annual meeting of the association for
computational linguistics: system demonstrations,
pages 55-60.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed repre-
sentations of words and phrases and their com-
positionality. Advances in neural information
processing systems, 26:3111-3119.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R Curran. 2013. Learn-
ing multilingual named entity recognition from
wikipedia. Artificial Intelligence, 194:151-175.

OpenNLP. https://opennlp.apache.org.

Sameer Pradhan, Alessandro Moschitti, Nian-
wen Xue, Hwee Tou Ng, Anders Bjorkelund,
Olga Uryupina, Yuchen Zhang, and Zhi Zhong.
2013. Towards robust linguistic analysis using
ontonotes. In Proceedings of the Seventeenth
Conference on Computational Natural Language
Learning, pages 143-152.

Xipeng Qiu, Qi Zhang, and Xuan-Jing Huang. 2013.
Fudannlp: A toolkit for chinese natural language
processing. In Proceedings of the 51st Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 49—
54.

Adwait Ratnaparkhi. 1996. A maximum entropy
model for part-of-speech tagging. In Conference
on empirical methods in natural language process-
mg.

Erik F Sang and Fien De Meulder. 2003. Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint ¢s/0306050.

Peng Shi and Jimmy Lin. 2019. Simple bert models
for relation extraction and semantic role labeling.
arXiw preprint arXiw:1904.05255.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiao-
jlang Liu, and Yong Rui. 2015. Automatically
solving number word problems by semantic pars-
ing and reasoning. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1132-1142.

Shuming Shi, Huibin Zhang, Xiaojie Yuan, and
Ji-Rong Wen. 2010. Corpus-based semantic
class mining: distributional vs. pattern-based
approaches. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics
(Coling 2010), pages 993-1001.

Yan Song, Shuming Shi, Jing Li, and Haisong
Zhang. 2018. Directional skip-gram: Explicitly
distinguishing left and right context for word em-
beddings. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages
175-180.

Ralph Weischedel, Martha Palmer, Mitchell Mar-
cus, Eduard Hovy, Sameer Pradhan, Lance
Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kauf-
man, Michelle Franchini, et al. 2013. Ontonotes
release 5.0 1dc2013t19. Linguistic Data Consor-
tium, Philadelphia, PA, 23.

Liang Xu, Xuanwei Zhang, Lu Li, Hai Hu, Chenjie
Cao, Weitang Liu, Junyi Li, Yudong Li, Kai
Sun, Yechen Xu, et al. 2020. Clue: A chinese
language understanding evaluation benchmark.
arXiv preprint arXiw:2004.05986.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta
Palmer. 2005. The penn chinese treebank:
Phrase structure annotation of a large corpus.
Natural language engineering, 11(2):207.

Fan Zhang, Shuming Shi, Jing Liu, Shuqi Sun, and
Chin-Yew Lin. 2011. Nonlinear evidence fusion
and propagation for hyponymy relation mining.
In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics:
Human Language Technologies, pages 1159-1168.

Haisong Zhang, Lemao Liu, Haiyun Jiang, Yang-
ming Li, Enbo Zhao, Kun Xu, Linfeng Song, Sun-
cong Zheng, Botong Zhou, Jianchen Zhu, et al.
2020. Texsmart: A text understanding system for
fine-grained ner and enhanced semantic analysis.
arXiw preprint arXiw:2012.15639.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: paraphrase adversaries from word scram-
bling. CoRR, abs/1904.01130.

10

IntelliCAT: Intelligent Machine Translation Post-Editing with Quality
Estimation and Translation Suggestion

Dongjun Lee!, Junhyeong Ahn', Heesoo Park', Jaemin Jo?

!Bering Lab, Republic of Korea
2Sungkyunkwan University, Republic of Korea
{djlee, rkdrnf, heesoo.park} @beringlab.com, jmjo @ skku.edu

Abstract

We present IntelliCAT, an interactive transla-
tion interface with neural models that stream-
line the post-editing process on machine trans-
lation output. We leverage two quality esti-
mation (QE) models at different granularities:
sentence-level QE, to predict the quality of
each machine-translated sentence, and word-
level QE, to locate the parts of the machine-
translated sentence that need correction. Addi-
tionally, we introduce a novel translation sug-
gestion model conditioned on both the left and
right contexts, providing alternatives for spe-
cific words or phrases for correction. Finally,
with word alignments, IntelliCAT automati-
cally preserves the original document’s styles
in the translated document. The experimental
results show that post-editing based on the pro-
posed QE and translation suggestions can sig-
nificantly improve translation quality. Further-
more, a user study reveals that three features
provided in IntelliCAT significantly acceler-
ate the post-editing task, achieving a 52.9%
speedup in translation time compared to trans-
lating from scratch. The interface is publicly
available at https://intellicat.beringlab.com/.

1 Introduction

Existing computer-aided translation (CAT) tools
incorporate machine translation (MT) in two ways:
post-editing (PE) or interactive translation predic-
tion (ITP). PE tools (Federico et al., 2014; Pal et al.,
2016) provide a machine-translated document and
ask the translator to edit incorrect parts. By con-
trast, ITP tools (Alabau et al., 2014; Green et al.,
2014a; Santy et al., 2019) aim to provide transla-
tion suggestions for the next word or phrase given
a partial input from the translator. A recent study
with human translators revealed that PE was 18.7%
faster than ITP in terms of translation time (Green
et al., 2014b) and required fewer edits (Do Carmo,
2020). However, many translators still prefer ITP

11

over PE because of (1) high cognitive loads (Koehn,
2009) and (2) the lack of subsegment MT sugges-
tions (Moorkens and O’Brien, 2017) in PE.

In this paper, we introduce IntelliCAT', a hybrid
CAT interface designed to provide PE-level effi-
ciency while retaining the advantages of ITP, such
as subsegment translation suggestions. To mitigate
the cognitive loads of human translators, Intelli-
CAT aims to automate common post-editing tasks
by introducing three intelligent features: (1) quality
estimation, (2) translation suggestion, and (3) word
alignment.

Quality estimation (QE) is the task of estimating
the quality of MT output without reference trans-
lations (Specia et al., 2020). We integrate QE into
the CAT interface so that the human translator can
easily identify which machine-translated sentences
and which parts of the sentences require correc-
tions. Furthermore, for words that require post-
editing, our interface suggests possible translations
to reduce the translators’ cognitive load. Finally,
based on word alignments, the interface aligns the
source and translated documents in terms of for-
matting by transferring the styles applied in the
source document (e.g., bold, hyperlink, footnote,
equation) to the translated document to minimize
the post-editing time. Our contributions are:

* We integrate state-of-the-art sentence-level
and word-level QE (Lee, 2020) techniques
into an interactive CAT tool, IntelliCAT.

* We introduce a novel words and phrases sug-
gestion model, which is conditioned on both
the left and right contexts, based on XLM-
RoBERTa (Conneau et al., 2020). The model
is fine-tuned with a modified translation lan-
guage modeling (TLM) objective (Lample and
Conneau, 2019).

'A demonstration video
https://youtu.be/mDmbdrQE9tc

is available at

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 11-19, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

BeringLab

©

1 Male moths can sense the (@]pheromones|[r) of female moths over
great distances.

v

A v

We loved their songwriting and beautiful harmonies.

Powell(D) resigned from the (z]Union Army[2) on January 5, 1865.

However, A and B do not contain (IJthe same[L) objects:

The Barnstormers currently play in the Indoor Football League.

They constantly flew by overhead and sometimes exploded nearby.

©

Mannliche Motten kénnen die (i]Pheromone[T) weiblicher Motte
uber groBe Entfernungen spiiren.

4
Wir liebten ihr Songwriting und schéne Harmonien.

Powell (@) trat am 5. Januar 1865 aus der (2]Unionsarmee[2) aus.
MT qual 89'

A und B enthalten jedoch nicht (T]die gleichen[T) Objekte:

dieselben

Die Barnstormer spielen derzeit in der Indos

gleichen

v N
Sie flogen standig vorbei und explodierten | die selben

die gleichen beiden |°

|

®

Y

Figure 1: The IntelliCAT Interface. After a document (i.e., an MS Word file) is uploaded, @ sentences from the
original document (source) and the initial MT output for each sentence (target) are shown side-by-side. @

Formatting tags indicate where a specific style (identified by an integer style id) is applied and @ are automatically

inserted at the proper position of the MT output based on word alignments. @ The interface shows the quality of

each machine-translated sentence based on sentence-level QE. @ Potentially incorrect words and

locations

of missing words are highlighted based on word-level QE. When the user selects a sequence of words in the MT
output, @ the corresponding words in the source sentence are highlighted with a heat map, and @ up to five

alternative translations are recommended.

* We conduct quantitative experiments and a
user study to evaluate IntelliCAT.

The experimental results on the WMT 2020
English-German QE dataset show that post-editing
with the proposed QE and translation suggestion
models could significantly improve the translation
quality (—6.01 TER and +6.15 BLEU). More-
over, the user study shows that the three features
provided by IntelliCAT significantly reduce post-
editing time (19.2%), which led to a 52.6% re-
duction in translation time compared to translating
from scratch. Finally, translators evaluate our in-
terface to be highly effective, with a SUS score of
88.61.

2 Related Work

CAT Tool and Post-Editing In the localization
industry, the use of CAT tools is a common prac-
tice for professional translators (Van den Bergh
et al., 2015). As MT has improved substantially
in recent years, approaches incorporating MT into
CAT tools have been actively researched (Alabau
etal., 2014; Federico et al., 2014; Santy et al., 2019;
Herbig et al., 2020). One of the approaches is post-
editing in which the translator is provided with a

12

machine-translated draft and asked to improve the
draft. Recent studies demonstrate that post-editing
MT output not only improves translation productiv-
ity but also reduces translation errors (Green et al.,
2013; Aranberri et al., 2014; Toral et al., 2018).

Translation Suggestion Translation suggestions
from interactive translation prediction (ITP) (Al-
abau et al., 2014; Santy et al., 2019; Coppers et al.,
2018) are conditioned only on the left context of the
word to be inserted. Therefore, ITP has intrinsic
limitations in post-editing tasks where the com-
plete sentence is presented, and the right context
of the words that need correction should also be
considered. We propose a novel translation sugges-
tion model in which suggestions are conditioned
on both the left and right contexts of the words
or phrases to be modified or inserted to provide
more accurate suggestions when post-editing the
complete sentence.

Cross-Lingual Language Model Cross-lingual
language models (XLMs), which are language
models pre-trained in multiple languages, have led
to advances in MT (Lample and Conneau, 2019)
and related tasks such as QE (Lee, 2020), auto-
matic post-editing (Wang et al., 2020; Lee et al.,

2020), and parallel corpus filtering (Lo and Joanis,
2020). Accordingly, our QE and translation sugges-
tion models are trained on top of XLM-R (Conneau
et al., 2020), an XLLM that shows state-of-the-art
performance for a wide range of cross-lingual tasks.
To the best of our knowledge, IntelliCAT is the first
CAT interface that leverages XLLM to assist human
post-editing for MT outputs.

3 System Description

3.1 Overview

IntelliCAT is a web-based interactive interface for
post-editing MT outputs (Figure 1). Once loaded,
it shows two documents side-by-side: the uploaded
original document (an MS Word file) on the left and
the machine-translated document on the right. Each
document is displayed as a list of sentences with
formatting tags inserted, tags that show the style of
the original document, including text styles (e.g.,
bold, italic, or hyperlinked) and inline contents
(e.g., a media element or an equation).

The user can post-edit MT outputs on the right
using the following three features: (1) sentence-
level and word-level QE, (2) word or phrase sugges-
tion, and (3) automatic tagging based on word align-
ments. The sentence-level QE shows the estimated
MT quality for each sentence, and word-level QE
highlights the parts of each machine-translated sen-
tence that need correction. When the user selects
a specific word or phrase, the top-5 recommended
alternatives appear below, allowing the user to re-
place the selected words or insert a new word. Fi-
nally, the system automatically captures the origi-
nal document style and inserts formatting tags in
machine-translated sentences at the appropriate lo-
cations. After post-editing, the user can click on the
export button to download the translated document
with the original style preserved. A sample docu-
ment and its translated document without human
post-editing is presented in Appendix A.

3.2 Machine Translation

Our system provides MT for each sentence in
the input document. We build our NMT model
based on Transformer (Vaswani et al., 2017) using
OpenNMT-py (Klein et al., 2017). As training data,
the English-German parallel corpus provided in the
2020 News Translation Task (Barrault et al., 2020)
is used. We use unigram-L.M-based subword seg-
mentation (Kudo, 2018) with a vocabulary size of
32K for English and German, respectively, and the

13

remaining hyperparameters follow the base model
of Vaswani et al. (2017).

3.3 Quality Estimation

Quality estimation (QE) is the task of estimating
the quality of the MT output, given only the source
text (Fonseca et al., 2019). We estimate the quality
at two different granularities: sentence and word
levels. Sentence-level QE aims to predict the hu-
man translation error rate (HTER) (Snover et al.,
2006) of a machine-translated sentence, which mea-
sures the required amount of human editing to fix
the the machine-translated sentence. By contrast,
word-level QE aims to predict whether each word
in the MT output is OK or BAD and whether there
are missing words between each word.

Figure 1 demonstrates the use of QE in our in-
terface. Based on the sentence-level QE, we show
the MT quality for each machine-translated sen-
tence computed as 1 — (predicted HTER). In
addition, based on word-level QE, we show words
that need to be corrected (with red or yellow un-
derlines) or locations for missing words (with red
or yellow checkmarks). To display the confidence
of word-level QE predictions, we encode the pre-
dicted probability of the color of underlines and
checkmarks (yellow for Pp4ap > 0.5 and red for
Ppap > 0.8).

For QE training, we use a two-phase cross-
lingual language model fine-tuning approach fol-
lowing Lee (2020), which showed the state-of-the-
art performance on the WMT 2020 QE Shared Task
(Specia et al., 2020). We fine-tune XLM-RoBERTa
(Conneau et al., 2020) with a few additional param-
eters to jointly train sentence-level and word-level
QEs. We train our model in two phases. First, we
pre-train the model with a large artificially gener-
ated QE dataset based on a parallel corpus. Sub-
sequently, we fine-tune the model with the WMT
2020 English-German QE dataset (Specia et al.,
2020), which consists of 7,000 triplets consisting
of source, MT, and post-edited sentences.

3.4 Translation Suggestion

As shown in Figure 1, when the user selects a spe-
cific word or phrase to modify or presses a hotkey
(ALT+s) between words to insert a missing word,
the system suggests the top-5 alternatives based on
fine-tuned XLM-R.

XLM-R Fine-Tuning For translation suggestion,
we fine-tune XLM-R with a modified translation

language modeling (TLM) objective (Lample and
Conneau, 2019), which is designed to better pre-
dict the masked spans of text in the translation.
Following Lample and Conneau (2019), we tok-
enize source (English) and target (German) sen-
tences with the shared BPE model (Sennrich et al.,
2016), and concatenate the source and target tokens
with a separation token (</s>). Unlike the TLM
objective of Lample and Conneau (2019), which
randomly masked tokens in both the source and
target sentences, we only mask tokens in target
sentences since the complete source sentence is
always given in the translation task. We randomly
replace p% (p € [15, 20, 25)) of the BPE tokens in
the target sentences by <mask> tokens and train
the model to predict the actual tokens for the masks.
In addition, motivated by SpanBERT (Joshi et al.,
2020), we always mask complete words instead
of sub-word tokens since translation suggestion re-
quires predictions of complete words. As training
data, we use the same parallel corpus that is used
for MT training.

Inference To suggest alternative translations for
the selected sequence of words, we first replace
it with multiple <mask> tokens. The alternative
translations may consist of sub-word tokens of
varying lengths. Hence, we generate m inputs,
where m denotes the maximum number of masks,
and in the i'" input (i € [1,...,m]), the selected
sequence is replaced with ¢ consecutive <mask>
tokens. In other words, we track all cases in which
alternative translations consist of 1 to m sub-word
tokens. Then, each input is fed into the fine-tuned
XLM-R, and <mask> tokens are iteratively re-
placed by the predicted tokens from left to right.
In each iteration, we use a beam search with a
beam size k to generate the top-k candidates. Fi-
nally, all mask prediction results from m inputs are
sorted based on probability, and the top-k results
are shown to the user.

3.5 Word Alignment and Automatic
Formatting

To obtain word alignments, we jointly train the
NMT model (§3.2) to produce both translations
and alignments following Garg et al. (2019). One
attention head on the Transformer’s penultimate
layer is supervised with an alignment loss to learn
the alignments. We use Giza++ (Och and Ney,
2003) alignments as the guided labels for the train-
ing. As sub-word segmentation is used to train the

14

NMT model, we convert the sub-word-level align-
ments back to the word-level. We consider each
target word to be aligned with a source word if any
of the target sub-words is aligned with the source
sub-words.

We provide two features based on word align-
ment information. First, when the user selects a
specific word or phrase in the machine-translated
sentence, the corresponding words or phrases
in the source sentence are highlighted using a
heatmap. Second, formatting tags are automati-
cally inserted at the appropriate locations in the
machine-translated sentences. We use two types of
tags to represent the formatting of the document:
paired tags and unpaired tags. Paired tags repre-
sent styles applied across a section of text (e.g.,
bold or italic). To retain the style applied in the
source sentence to the MT, we identify the source
word with the highest alignment score for each tar-
get word and apply the the corresponding source
word’s style to the target word. By contrast, un-
paired tags represent inline non-text contents such
as media elements and equations. To automatically
insert an unpaired tag in the MT, we identify the
target word with the highest alignment score with
the source word right before the tag and insert the
corresponding tag after the target word.

4 Experiments

4.1 Model Evaluation

Experimental Setup To evaluate the perfor-
mance of translation suggestions, we measure MT
quality improvement when a sentence is corrected
with the suggested words or phrases. We intro-
duce two selection conditions (Oracle QE and Pre-
dicted QE) and two suggestion methods (XLM-R
and Proposed). The selection conditions locate the
words that need to be corrected in a sentence; in
Oracle QE condition, the ground truth word-level
QE label is used as a baseline, and in Predicted
QE condition, our word-level QE model is used to
identify the target words. The suggestion methods
determine the words that the selected words should
be replaced with. We test two suggestion models,
the pre-trained XLM-R? and the proposed model,
fine-tuned with the modified TLM objective, with
three different suggestion sizes: top-1, top-3, and
top-5.

Each of the QE and translation suggestion mod-
els was trained using two Tesla V100 GPUs. As an

*https://pytext.readthedocs.io/en/master/xIm_r.html

(With Predicted QE) (With Oracle QE)
Model TER| BLEUT \ TER| BLEU?T
Baseline (MT) 31.37 50.37 \ 31.37 50.37
XLM-R
(Conneau et al., 2020)
Top-1 30.28 (-1.09) 50.78 (+0.41) | 26.57 (-4.80) 56.02(+5.65)
Top-3 29.47 (-1.90) 50.89 (+0.52) | 24.10(-7.27) 60.28 (+9.91)
Top-5 28.75(-2.62) 51.85(+1.48) | 22.78 (-8.59) 62.40 (+12.03)
Proposed
Top-1 29.04 (-2.33) 51.93 (+1.56) | 24.26 (-7.11) 59.38 (+9.01)
Top-3 26.69 (-4.68) 54.70 (+4.33) | 19.08 (-12.29) 67.51 (+17.14)
Top-5 25.36 (-6.01) 56.52 (+6.15) | 17.30 (-14.07) 70.50 (+20.13)

Table 1: TER and BLEU for machine-translated sentences (Baseline) and post-edited sentences (XLM-R and
Proposed) based on word-level QE and translation suggestion.

evaluation dataset, we use the WMT 2020 English-
German QE dev dataset (Specia et al., 2020). As
evaluation metrics, we use the translation error rate
(TER) (Snover et al., 2006) and BLEU (Papineni
et al., 2002).

Experimental Result Table 1 shows the trans-
lation quality of (1) MT sentences (baseline), (2)
post-edited sentences with XI.LM-R-based transla-
tion suggestion, and (3) post-edited sentences with
the proposed translation suggestion model. When
MT sentences are post-edited based on QE predic-
tion with the top-1 suggestion, TER and BLEU are
improved over the baseline by —2.33 and +1.56,
respectively. This result suggests that our QE and
translation suggestion models can be used to im-
prove MT performance without human interven-
tion. When the top-5 suggestions are provided,
TER and BLEU are improved by —6.01 and +6.15,
respectively, for the QE prediction condition and
improved by —14.07 and +-20.13, respectively, for
the oracle QE condition. These results imply that
post-editing based on translation suggestions can
significantly improve the translation quality. Fi-
nally, the proposed model significantly outperforms
XLM-R in all experimental settings, showing that
fine-tuning XLM-R with the modified TLM objec-
tive is effective for the suggestion performance.

4.2 User Study

We conducted a user study to evaluate the effective-
ness of IntelliCAT.

Tasks and Stimuli We asked participants to
translate an English document to German using
the given interface. As stimuli, we prepared three
English documents, each with 12 sentences and
130, 160, and 164 words. The documents included

15

22, 18, and 20 styles, respectively (e.g., bold, italic,
or a footnote), and participants were also asked to
apply these styles in the target document.

Translation Interfaces We compared three
translation interfaces: MSWord, MT-Only, and
Full. In MSWord, the participants were asked to
translate documents using a popular word proces-
sor, Microsoft Word. In this baseline condition, two
Microsoft Word instances were shown side-by-side:
one showing an English document (source) and the
other showing an empty document where one could
type the translated sentences (target). In MT-Only,
participants started with a machine-translated docu-
ment on IntelliCAT without QE, translation sugges-
tion, and word alignment; they had to edit incorrect
parts and transfer styles by themselves. In Full, the
participants could use all the features of IntelliCAT.

Participants and Study Design We recruited
nine participants (aged 23-31 years). All partici-
pants majored in German and were fluent in both
English and German. We adopted a within-subject
design; each participant tested all three interfaces
and three documents. Thus, our study consisted
of nine (participants) x 3 (conditions) = 27 trials
in total. The order of interfaces and documents
was counterbalanced using a 3 x 3 Latin square
to alleviate the possible bias of learning effects or
fatigue. For each trial, we measured the translation
completion time.

Procedure Participants attended a training ses-
sion for ten minutes, where they tried each inter-
face with a short sample document. Subsequently,
they performed three translation tasks with differ-
ent interfaces. We allowed them to look up words
for which they did not know the translation before

Positive SUS Statements

Use frequent I
Easy to use]
Well integrated L
Learn quick |
Confident |
0 3 6 9

B Strongly disagree m Disagree

Figure 2:

88.61+7.82.

starting each translation task. Upon completing
the three tasks, participants responded to a system
usability scale (SUS) questionnaire (Brooke, 1996),
and we gathered subjective feedback. The entire
session took approximately 90 min per participant.

Interface Avg. time (s)

MSWord 1178.78 +280.41
MT-Only 688.00 + 175.02
Full 555.66 + 200.81

Table 2: Translation completion time. The differences
between the three interface conditions are statistically
significant.

Result and Discussion Table 2 summarizes
the result of the user study. A repeated mea-
sures ANOVA with a Greenhouse-Geisser cor-
rection found a significant difference in comple-
tion time between the three translation interfaces
(F(1.306,10.449) = 56.398, p < 0.001). Post
hoc tests using the Bonferroni correction revealed
that Full (555.66 £ 200.81 s) was significantly
faster than MT-Only (688.00 = 175.02 s) (p =
0.013) and MT-Only was significantly faster than
MSWord (1,178.78 + 280.41 s) (p < 0.001).
These results suggest that our QE, translation sug-
gestion, and word alignment features could further
accelerate post-editing (a 19.2% speedup) (Full vs.
MT-Only), and our system could reduce the trans-
lation time by more than half (52.9%) compared to
translating from scratch (Full vs. MSWord).

We could not find a significant difference be-
tween documents (F'(1.964,15.712) = 0.430, ns)
with the same statistical procedure, which suggests
that the translation difficulties of the three English
documents were not statistically different.

Our interface received a mean SUS score of
88.61 (o0 = 7.82), which is slightly higher than the

Cumbersome

Neutral

16

Inconsistent

Negative SUS Statements
I

Complex

Technical

Learn much

Agree M Strongly agree

SUS Feedback. The usability of IntelliCAT was evaluated as an excellent level with a score of

score for an “Excellent” adjective ratings (85.58,
Bangor et al. (2008)). Eight out of nine participants
reported that QE was useful for proofreading pur-
poses; P2 stated, “With QE, I could double-check
the words that are possibly wrong.” All partici-
pants evaluated the translation suggestions to be
useful; P7 mentioned “Translation suggestion was
very convenient. It might significantly reduce the
dependence on the dictionary.”

Overall, the user study results demonstrated the
effectiveness of IntelliCAT both quantitatively and
qualitatively, and we found that human translators
could streamline their post-editing process with the
three features provided in IntelliCAT.

5 Conclusion and Future Work

In this paper, we introduce IntelliCAT, an intelli-
gent MT post-editing interface for document trans-
lation. The interface provides three neural network-
based features to assist post-editing: (1) sentence-
level and word-level QEs, (2) alternative translation
suggestions for words or phrases, and (3) automatic
formatting of the translated document based on
word alignments. The model evaluation shows that
post-editing based on the proposed QE and transla-
tion suggestion models can significantly improve
the quality of translation. Moreover, the user study
shows that these features significantly accelerate
post-editing, achieving a 52.9% speedup in trans-
lation time compared to translating from scratch.
Finally, the usability of IntelliCAT was evaluated
as an “excellent” level, with a SUS score of 88.61.

In future work, we will build a pipeline that con-
tinuously improves the performance of neural mod-
els based on automatically collected triplets con-
sisting of source, MT, and post-edited sentences.
We will implement an automatic post-editing (Chat-
terjee et al., 2020) model to continuously improve
MT performance and apply online learning to QE

models to continually enhance QE performance.

References

Vicent Alabau, Christian Buck, Michael Carl, Fran-
cisco Casacuberta, Mercedes Garcia-Martinez, Ul-
rich Germann, Jesus Gonzalez-Rubio, Robin Hill,
Philipp Koehn, Luis A Leiva, et al. 2014. Casmacat:
A computer-assisted translation workbench. In Pro-
ceedings of the Demonstrations at the 14th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 25-28.

Nora Aranberri, Gorka Labaka, A Diaz de Ilarraza, and
Kepa Sarasola. 2014. Comparison of post-editing
productivity between professional translators and
lay users. In Proceeding of AMTA Third Workshop
on Post-editing Technology and Practice (WPTP-3),
Vancouver, Canada, pages 20-33.

Aaron Bangor, Philip T Kortum, and James T Miller.
2008. An empirical evaluation of the system usabil-

ity scale. Intl. Journal of Human—Computer Interac-
tion, 24(6):574-594.

Loic Barrault, Magdalena Biesialska, Ondfej Bojar,
Marta R Costa-jussa, Christian Federmann, Yvette
Graham, Roman Grundkiewicz, Barry Haddow,
Matthias Huck, Eric Joanis, et al. 2020. Find-
ings of the 2020 conference on machine translation
(wmt20). In Proceedings of the Fifth Conference on
Machine Translation, pages 1-55.

Jan Van den Bergh, Eva Geurts, Donald Degraen,
Mieke Haesen, Iulianna Van der Lek-Ciudin, Karin
Coninx, et al. 2015. Recommendations for transla-
tion environments to improve translators’ workflows.
Translating and the Computer, 37:106—119.

John Brooke. 1996. Sus: a “quick and dirty’usability.
Usability evaluation in industry, 189.

Rajen Chatterjee, Markus Freitag, Matteo Negri, and
Marco Turchi. 2020. Findings of the wmt 2020
shared task on automatic post-editing. In Proceed-
ings of the Fifth Conference on Machine Translation,
pages 646-659.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451.

Sven Coppers, Jan Van den Bergh, Kris Luyten, Karin
Coninx, Iulianna Van der Lek-Ciudin, Tom Vanalle-
meersch, and Vincent Vandeghinste. 2018. In-
tellingo: An intelligible translation environment. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pages 1-13.

17

Félix Do Carmo. 2020. Comparing post-editing based
on four editing actions against translating with an
auto-complete feature. In Proceedings of the 22nd
Annual Conference of the European Association for
Machine Translation, pages 421-430.

Marcello Federico, Nicola Bertoldi, Mauro Cettolo,
Matteo Negri, Marco Turchi, Marco Trombetti,
Alessandro Cattelan, Antonio Farina, Domenico
Lupinetti, Andrea Martines, et al. 2014. The mate-
cat tool. In COLING (Demos), pages 129-132.

Erick Fonseca, Lisa Yankovskaya, André FT Martins,
Mark Fishel, and Christian Federmann. 2019. Find-
ings of the wmt 2019 shared tasks on quality esti-
mation. In Proceedings of the Fourth Conference on
Machine Translation (Volume 3: Shared Task Papers,
Day 2), pages 1-10.

Sarthak Garg, Stephan Peitz, Udhyakumar Nallasamy,
and Matthias Paulik. 2019. Jointly learning to align
and translate with transformer models. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4443—4452.

Spence Green, Jason Chuang, Jeffrey Heer, and
Christopher D Manning. 2014a. Predictive transla-
tion memory: A mixed-initiative system for human
language translation. In Proceedings of the 27th an-
nual ACM symposium on User interface software
and technology, pages 177-187.

Spence Green, Jeffrey Heer, and Christopher D Man-
ning. 2013. The efficacy of human post-editing for
language translation. In Proceedings of the SIGCHI
conference on human factors in computing systems,
pages 439—-448.

Spence Green, Sida I Wang, Jason Chuang, Jeffrey
Heer, Sebastian Schuster, and Christopher D Man-
ning. 2014b. Human effort and machine learnability
in computer aided translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1225-1236.

Nico Herbig, Tim Diiwel, Santanu Pal, Kalliopi
Meladaki, Mahsa Monshizadeh, Antonio Kriiger,
and Josef van Genabith. 2020. Mmpe: A multi-
modal interface for post-editing machine translation.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
1691-1702.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64-77.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Philipp Koehn. 2009. A process study of computer-
aided translation. Machine Translation, 23(4):241—
263.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 66-75.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Dongjun Lee. 2020. Two-phase cross-lingual language
model fine-tuning for machine translation quality es-
timation. In Proceedings of the Fifth Conference on
Machine Translation, pages 1024—1028, Online. As-
sociation for Computational Linguistics.

Jihyung Lee, WonKee Lee, Jachun Shin, Baikjin
Jung, Young-Gil Kim, and Jong-Hyeok Lee. 2020.
Postech-etri’s submission to the wmt2020 ape
shared task: Automatic post-editing with cross-
lingual language model. In Proceedings of the Fifth
Conference on Machine Translation, pages 777—
782.

Chi-kiu Lo and Eric Joanis. 2020. Improving parallel
data identification using iteratively refined sentence
alignments and bilingual mappings of pre-trained
language models. In Proceedings of the Fifth Con-
ference on Machine Translation, pages 972-978.

Joss Moorkens and Sharon O’Brien. 2017. Assess-
ing user interface needs of post-editors of machine
translation. Human issues in translation technology,
pages 109-130.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19-51.

Santanu Pal, Marcos Zampieri, Sudip Kumar Naskar,
Tapas Nayak, Mihaela Vela, and Josef van Genabith.
2016. Catalog online: Porting a post-editing tool to
the web. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 599-604.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Sebastin Santy, Sandipan Dandapat, Monojit Choud-
hury, and Kalika Bali. 2019. Inmt: Interactive neural
machine translation prediction. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
103-108.

18

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715-
1725.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine transla-
tion in the Americas, volume 200.

Lucia Specia, Frédéric Blain, Marina Fomicheva, Er-
ick Fonseca, Vishrav Chaudhary, Francisco Guzmén,
and André F. T. Martins. 2020. Findings of the wmt
2020 shared task on quality estimation. In Proceed-
ings of the Fifth Conference on Machine Translation,
pages 743-764, Online. Association for Computa-
tional Linguistics.

Antonio Toral, Martijn Wieling, and Andy Way. 2018.
Post-editing effort of a novel with statistical and neu-
ral machine translation. Frontiers in Digital Human-
ities, 5:9.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Jiayi Wang, Ke Wang, Kai Fan, Yuqi Zhang, Jun Lu,
Xin Ge, Yangbin Shi, and Yu Zhao. 2020. Al-
ibaba’s submission for the wmt 2020 ape shared task:
Improving automatic post-editing with pre-trained
conditional cross-lingual bert. In Proceedings of
the Fifth Conference on Machine Translation, pages
789-796.

A Sample Document Translation

Figure 3 shows a sample document and the trans-
lated document using IntelliCAT without human
intervention.

a o

Draw

e = sample

Design

d o

Draw

& = sample_out

Design

Qv

P
Insert

@
Insert

References

Review View

Home Home References Review View

Layout Mailings Layout Mailings

Time:

i

R 12 %

|
4 Ways to Do
More With Your
Smartphone
Camera

im Clip, was fiigt Drama Video von

4 Moglichkeiten, spormenundtio possen.
mehr mit Ihrer
Smartphone-

Kamera zu tun

Take & EmailPhoto @

Take & Email Photo®

Auch wenn Sie nicht iiber das neueste und
grite Smartphone, die Werkzeuge fiir Thre
Fotografie kann iiber die hiufiger
verwendeten diejenigen wie das Portriit und
Lowlight-Modi gehen. Mit einem recht
aktuellen Betriebssystem konnen Sie Voice-
aktivierte Fotosessions haben,

Even if you don't have the latest and
greatest smartphone, the tools for your
photography can go beyond the more
commonly used ones like the portrait and
lowlight modes. With a reasonably up-to-
date operating system, you can have voice-
activated photo sessions, create wide-screen

images, record video at different playback Breitbildbilder erstellen, Video mit 1. Der Google Assistant,lnks, st Sie ein Bildper
speeds and visually search the internet. unterschiedlichen Sprachbefehl machen. Apple’s Sri Assstent ann iffven
Wiedergabegeschwindigkeiten aufnehmen Sie die Kamera-app, wenn Sie fragen, und die i0S

Shorteuts app. rechts, kinnen Sie eine Reihe von Aktionen

und visuell im Internet suchen. i Sir e,

Hands-Free Hilfe erhalten
Thr Handy ’s virtuellen Assistenten kann
mit einem Teil Ihrer Kameraarbeit, um
schnell den Schuss. Zum Beispiel, mit dem
Google-Assistenten:, einfach sagen,, “OK,
Google, nehmen Sie ein Bild ” oder* 0.Go.,
nehmen eine selfie ” — und Google Camera
erscheint, zeigt einen Countdown un
schnappt das Bild. Sie kénnen dem
Assistenten auch sagen, die Fotos zu teilen,
ein Video aufzunchmen und mehr zu tun.
Google Assistant ist fiir Android und i0S.
verfiigbar.

part of your camerawork to quickly get the
shot. For example, with the Goo
Assistant’, just say, “OK, Google, take a
picture” or “OK, Google, take a selfie” —and
Google Camera pops up, displays a
countdown and snaps the picture. You can
also tell the Assistant to share the photos,
start recording a video and do more. Google
Assistant is available for Android and iOS.

Alter Time With Video

Google and Apple’s camera software include
‘modes for adding cinematic effects to your
video. The time-lapse setting speeds up the
playback of slow events like sunsets or

2. Reaching the settings for slow-motion and time-lapse Zeit iindern mit Video

storms rolling in. The slow-motion setting video n Google Camera, lf. and Apple’s i0S Camera Google und Apple s Kamera-Software
records normally and then decreases the app can take a few swipes. A tap at the top of the screen gehdren Modi zum Hinzufiigen filmischer
speed of the action in the clip, which adds allows you to adjust video resolution and frame rates. Effekte auf Thr Video. Di itraffer-

10 video of spors scenes and animal Binstellung beschleunigt die Wiedergabe 2 Eretchon der Entllingen fir Zelp s Zetole
antics. langsamer Ereignisse wie Video in Google Camera, links, und Apple’s iOS Camera
Sonnenuntergiinge oder Stiirme, die App kann ein paar Schlucke nehmen. Ein Tippen Sie oben

o o e Bimarang e dom i o i o Ao

Aufzeichnungen in der Regel und dann Bildrates avpatien

verringert die Geschwindigkeit der Aktion

“Google Assistant Ist eine kinstliche Intelligenz —
powered virtuellen Assistent von Google auf mabilen
und Smart Home-Geréten entwickelt.

+Google Assistant is an artifcial intelligence~
powered virtual assistant developed by Google
available on mobile and smart home devices.

1of1 301words [¥ English (i rds (¥ English (Korea) [l

Pagelof1 2

Figure 3: A sample document (left) and the translated document (right) without human intervention.

19

X The Classical Language Toolkit: An NLP Framework for Pre-Modern

Languages
Kyle P. Johnson Patrick J. Burns John Stewart
Accenture Department of Classics Amplify

kyle@kyle-p-johnson.com

University of Texas at Austin

johnstewart@aya.yale.edu

patrick.burns@austin.utexas.edu

Todd G. Cook
Appen

todd.g.cook@gmail.com

Abstract

This paper announces version 1. 0 of the Clas-
sical Language Toolkit (CLTK), an NLP frame-
work for pre-modern languages. The vast ma-
jority of NLP, its algorithms and software, is
created with assumptions particular to living
languages, thus neglecting certain important
characteristics of largely non-spoken historical
languages. Further, scholars of pre-modern
languages often have different goals than those
of living-language researchers. To fill this void,
the CLTK adapts ideas from several leading
NLP frameworks to create a novel software ar-
chitecture that satisfies the unique needs of pre-
modern languages and their researchers. Its
centerpiece is a modular processing pipeline
that balances the competing demands of algo-
rithmic diversity with pre-configured defaults.
The CLTK currently provides pipelines, includ-
ing models, for almost 20 languages.

1 Introduction

Pre-modern (or historical) languages are linguisti-
cally no different than those with speakers living
today. Differences, however, manifest in how pre-
modern languages are preserved, to what extent
they are preserved, how they may be analyzed, and
the ends to which they are studied. NLP is com-
prised of “computational techniques for the pur-
pose of learning, understanding, and producing hu-
man language content” (Hirschberg and Manning,
2015, 261). In principle, such techniques may
be applied to pre-modern languages. But because
NLP, its algorithms and software, presumes living
languages, there remains a significant void for NLP
for pre-modern languages.

The Classical Language Toolkit (CLTK) is a
Python library that borrows ideas from state-of-the-
art NLP software, in order to cater to the partic-
ular needs of pre-modern languages and their re-

Clément Besnier

clem@clementbesnier.fr

20

William J. B. Mattingly
Data Science Lab
Smithsonian Institution
wmaz229@g.uky.edu

searchers.! Its centerpiece is a modular processing
pipeline that balances the competing demands of
algorithmic diversity with pre-configured defaults.
The CLTK currently provides pipelines, including
models, for almost 20 languages. This architec-
ture allows for relatively easy customization of cur-
rently available pipelines to new languages.

1.1 NLP for Pre-modern Languages

The authors adopt the term pre-modern to encom-
pass the ISO 639-3 definitions of ancient (whose
speakers died over 1,000 years ago), extinct (speak-
ers who died within the last 200-300 years), and
historic (distinct antecedents to living languages)
(SIL International). The CLTK aims to treat all
such languages, as they survive in written texts,
from the 33rd century B.C. (Sumerian) up until the
start of the A.D. 19th century.’

Pre-modern languages have traits distinguishing
them from living languages, including:

* A finite corpus: Since native speakers no
longer generate new texts, corpora may be
too small for some machine learning algo-
rithms, thus requiring rules-based or hybrid

'nttp://cltk.org. Begunin 2014, v. 0.1 was a
collection of user-submitted NLP algorithms, plus models, for
about a dozen pre-modern languages. In this 1. 0 release, the
CLTK offers a standard API and pre-configured processing
pipelines. Burns et al. (2019) contains some earlier history
and concepts behind v. 0. 1. The MIT-licensed code is avail-
able in version control (https://github.com/cltk/
cltk)and packaged on PyPl (withpip install cltk).

“This cutoff date need not be absolute, as the date of intro-
duction of the printing press may be taken into consideration.
The press, which spread asynchronously, normalizes orthog-
raphy and reduces copyist errors (Eisenstein, 1979, 181-225),
thus obviating need for some of the CLTK’s tools. As orthog-
raphy stabilizes, coming closer to contemporary usage, living-
language NLP becomes increasingly tractable. The Chinese
movable type press (A.D. 11th century) could be considered
an exception, though modern metal typefaces, with attendant
productivity gains, were not applied to Chinese texts until the
mid-19th century (Wilkinson, 2000, 451-453). The Sume-
rian date comes from (Michalowski, 2004, 19).

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 20-29, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

approaches. In some cases, a language’s cor-
pus may be small enough that it can be fully
annotated.’

* Variation: Corpora of pre-modern languages
are likely to demonstrate greater variation
than living languages. This may include non-
standardized orthography, regional dialects,
and temporal language change (over spans of
hundreds and even thousands of years).*

* Limited resources: Interest in pre-modern
languages is largely scholarly or religious,
meaning less funding from government and
industry for the creation of resources such as
text corpora, treebanks, and lexica.

These three differences spur the need for NLP spe-
cific to pre-modern languages.

1.2 Researchers of Pre-modern Languages

Researchers of pre-modern languages have con-
cerns that are likely philological, linguistic, or ped-
agogical. Philology is an approach to pre-modern
writing that focuses on the historical origins of
texts; it is comparative as well as genealogical in
nature (Turner, 2014, x). Historical linguists study
diachronic change in a language itself, as opposed
to philologists’ focus upon written language.> Ed-
ucators have unique concerns, too, including fore-
most that students generally do not learn by speak-
ing and that they begin studying difficult, orig-
inal texts within a year of study. In the class-
room, a high premium is put upon sight translation,
which is accomplished by the sub-tasks of identify-
ing words’ parts-of-speech, grammatical construc-
tions, and lexical headwords.® These three objec-
tives may find some representation among users
of living-language NLP,” however they are not sig-

3 As with Gothic, for which the only sizable evidence sur-
viving is a 6th century manuscript containing a 4th century
translation of the Bible (Miller, 2019, 1, 8-15), most of which
the PROIEL project has annotated (Haug and Jphndal, 2008).

“Sumerian, for example, survived 3,000 years (Michalow-
ski, 2004, 19). Piotrowski (2012, 14-22) introduces the cat-
egories of difference (diachronic spelling variation), variance
(synchronic spelling variation), and uncertainty (information
loss during digital transcription).

50On linguists’ focus on spoken language change: Hock
(1991, 1-10) and Campbell (2013, 1-5); on contrast to philol-
ogy: Hock (1991, 3-5) and Campbell (2013, 373, 391-
392). Philology is fundamentally “intepretation of textual
data” (Hock 1991, 5).

8See Adams (2016) on the origins of this pedagogy in the
English-speaking world.

’E.g., for secondary language acquisition (Inniss et al.,
2006)

21

nificant stimuli to industrial and governmental re-
search.

1.3 Previous Work

Two software architectural patterns, the framework
and the pipeline, are most relevant to the CLTK’s
design.

As NLP matured in the early 2000’s, frame-
works (or foolkits) emerged with the purpose of
making the technology easier for non-specialists to
use. To this end, these frameworks generally have
documentation friendly for beginners, value diver-
sity in algorithms, treat multiple languages, pro-
vide data sets, help with text preprocessing, and
provide pre-trained models.® Of these characteris-
tics, the CLTK especially values multilingual and
multi-algorithmic NLP, the latter of which being
necessary to accommodate the varying state of data
sets of pre-modern languages. The CLTK shows
some especial similarity to the quanteda library for
the R language (Benoit et al., 2018), as it contains
novel algorithms yet also “wraps” other NLP li-
braries.

Several NLP frameworks have popularized the
pipeline processing architecture, in which default
algorithms (tokenization, POS tagging, depen-
dency parsing, etc.) are run in series upon input
text. Algorithms may be added or removed from
a default pipeline. Increasingly, frameworks use
identical algorithms for every language, without
special consideration for a language’s nuances.

Aside from the CLTK, NLP tools for pre-
modern languages have been uncommon,’ despite
a steady growth of language resources.'® Pre-
modern languages are often low-resource. Low-
resource software applications, however, have
tended toward transcription'! and, in the case of en-

8Prominent frameworks include the NLTK (Bird and Lo-
per, 2004), OpenNLP (Apache Software Foundation, 2011),
CoreNLP (Manning et al., 2014), spaCy (Honnibal and John-
son, 2015), and Stanza (Qi et al., 2020).

°For a previous discussion of NLP pipelines for the CLTK,
see Burns (2019). There has been some noteworthy work on
how generally pre-modern NLP should be done (Piotrowski,
2012; Kontges et al., 2019; McGillivray et al., 2019); also
Zeldes and Schroeder (2016), a Python library for Coptic.

Treebanks exist for twelve Indo-European languages ac-
cording to the PROIEL annotation standards (Haug and Jgh-
ndal, 2008; Eckhoff and Berdicevskis, 2015; Bech and Eide,
2014); texts also for Greek and Latin (Celano et al., 2014),
Sanskrit (Hellwig et al., 2020), Cuneiform (Sumerian, Akka-
dian, etc.) (Englund, 2016), historical Arabic (Belinkov et al.,
2016), and Classical Chinese (Lee and Kong, 2012; Yasuoka,
2019).

“E.g., Brugman et al. (2004); Ulinski et al. (2014).

dangered languages, language preservation.'> An
interesting exception may be UralicNLP (Hamaila-
inen, 2019), which provides algorithms intended
for relatively small data sets in Finnish and related
languages.

2 System Design

An NLP pipeline within a framework architecture
standardizes I/O while preserving algorithmic di-
versity. The CLTK should provide:

* Modular processing pipelines: Each lan-
guage should come with a pre-configured
pipeline set to defaults expected by most users.
A user should be able to modify, replace, and
add processes to a pipeline. Pipelines may be
adjusted for new languages.

Diversity of algorithms: When there are sev-
eral popular ways researchers perform a par-
ticular process (e.g., tagging entities with a
word list or a neural network), the CLTK
should support them both. Due to limited lan-
guage resources, such as digitized texts and
treebanks, machine learning at times may not
be tractable (and if so, then only certain algo-
rithms).!> While rules-based approaches of-
ten do not adapt to the dynamism of living
languages, they can perform well in restricted
tasks within narrow domains.'*

Standard I/0: To optimize user productiv-
ity and facilitate scholarly communication, an
API should accept standard input for all hu-
man languages. Likewise, when linguistically
justified, outputs should be expressed using
data structures and representations that are
shared across languages.

Model management: The project must pro-
vide models for every pipeline.

]ZE.g., Katinskaia et al. (2017); Buszard-Welcher (2018).

BFor example, surviving literary Ancient Greek texts, from
c. 800 B.C. to A.D. 1453, amount to only 65M words (Berko-
witz and Squitier, 1990). By contrast, the original English-
language BERT was trained on 3,300M tokens (Devlin et al.,
2019, 5). (Nevertheless, a BERT model has been made for
the Latin language with 643M tokens (Bamman and Burns,
2020, 2).) On small historical corpora, Hamilton et al. (2016)
demonstrates benefits of SVD word embeddings over word2-
vec.

4For example, the CLTK’s meter scanners for Latin poetry
(cltk/prosody/lat/verse.py).

22

>>> from cltk import NLP
>>> cltk_nlp NLP (language="1lat")

4 CLTK version '1l.0
Pipeline for 1 3
— 'lat'):

— LatinStan

<

N

<

N

>>> text =

— municipio Tusculo adulescentulus,
— priusquam honoribus operam daret,
— versatus est in Sabinis, quod

— 1ibi heredium a patre relict um

— habebat."

>>> cltk_doc
cltk_nlp.analyze (text=text)
>>> print (cltk_doc.tokens[:12])
["Marcus', ! vt 'ortus',

'Cato', sy
icipio', 'Tusculo',

—

. - o
entulus', P

squam', 'honoribus',
'operam', 'daret']

>>> print (cltk_doc.pos[:12])
['"PROPN', 'PROPN', 'PUNCT',
'"NOUN', 'NOUN', 'ADJ', 'PUN
— 'ADV', 'NOUN', 'NOUN', 'VERB']
>>> print (cltk_doc.words[11].string)
daret

>>> print (cltk_doc.words[11] .pos)

'"NOUN"',

—

POS.verb
>>> print (cltk_
doc.words[11].features)

spect :

[imperfective], Mood:
j > Number :
[third],
VerbForm:

Code Block 1: Example of NLP () (3.1) processing the
first sentence of Cornelius Nepos’ M. Porcius Cato.

3 Architecture and Usage

The CLTK has one primary interface, NLP (), and
five custom data types: When a user calls NLP . |
analyze (), itoutputs a Doc, which contains all
processed information. At Doc.words is a list
of Word objects, each of which contains token-
level information added by each Process. A
Pipeline contains alistof Process objects for
a given language.

3.1 NLP()

The CLTK’s NLP () class offers a common in-
terface for all languages, for which a pipeline of
NLP algorithms is called. Calling analyze (),
the class’s only public method, triggers each
Process in succession. The CLTK executes the
algorithms and returns a Doc object. Code Block 1

Process

EmbeddingsProcess

ArabicEmbeddingsProcess

Figure 1: Illustration of the inheritance of Process
(3.2) objects.

illustrates its use.!?

3.2 Process

An algorithm in the CLTK may be called directly
or wrapped in a Process that is incorporated into
in a Pipeline. Each of the following classes,
which inherit from Process, keep the project’s
algorithms organized according the kind of NLP
they contain (Figure 1).'6

e NormalizeProcess: Reads Doc.raw,
then does Unicode normalization and other
text transformation as required per language;
outputs to Doc.normalized_text.

TokenizationProcess: Normally the
first Process run, splits input string into
word tokens; sets string value at Word. st |
ring.

SentenceProcess: Determines sentence
boundaries and sets integer at Word. inde |
X_sentence.

StopsProcess: Checks whether a token is
contained within a stopword list; adds Bool-
ean value at Word . stop.

LemmatizationProcess:Reads Word
.string, and perhaps other contextual in-

formation, then sets value at Word. lemm
17
a.

* MorphologyProcess: Determines mor-
phology and writes word class (noun, verb,
etc.) and features (case, tense, etc.).'® Values

3Text and translation from Rolfe (1984, 282-283): “Mar-
cus Cato, born in the town of Tusculum, in his early youth,
before entering on an official career, lived in the land of the
Sabines, since he had there an hereditary property, left him by
his father.”

16See Appendix for how the actual code is organized.

Previous work on CLTK lemmatization documented at
Burns (2020).

18 The CLTK relies on Stanza for morphological parsing
for Chinese, Coptic, Gothic, Greek, Latin, Old Church Sla-

23

output by morphological taggers, before being
set at Word.pos and Word. features,
are normalized to custom CLTK data types
that model the annotations of the Universal
Dependencies project (see 3.4.3).

DependencyProcess: Outputs results of
a dependency grammar parser at Word. de |
pendency_relationand Word.gove

rnor.19

NERProcess: Determines whether a token
is a named entity and, if so, what kind; sets
string value at Word.named_entity.

EmbeddingsProcess: Fetches word em-
bedding from a language model; sets array at
Word. embedding.20

PhonologyProcess: Ascertains phono-
logical properties of a word (specifically with
the inheriting PhonologicalTranscr

iptionProcess) and then reconstructs a
phonetic representation in IPA; sets output at
Word.phonetic_transcript ion.?!

ProsodyProcess: Scans input strings and
outputs scans of their poetic meter.?>

StemmingProcess: Writes a token’s stem
to Word. stem.??

WordNetProcess: Queries WordNet and
writes a word’s synset to Word . synsets.?

LexiconProcess: Matches Word. lem,
ma to a dictionary’s headword and writes to
Word.definition.

StanzaProcess: A Process has been
created for Stanza because of its usefulness

vonic, and Old French. See also StanzaProcess. Other
software, however, may be used, as in the case of Akkadian
(cltk/morphology/akk.py).

9 At time of publication, the CLTK uses the Stanza proj-
ect’s pretrained models with StanzaProcess. In the fu-
ture, custom-trained models (e.g., with spaCy or Stanza)
will be wrapped by DependencyProcess. See also sec-
tion 3.4.4 for post-processing the flat Doc . words into a tree.

20Using fastText embeddings for Arabic, Aramaic, Gothic,
Latin, Old English, Pali, and Sanskrit (Bojanowski et al.,
2016); using NLPL for Ancient Greek and Old Church Sla-
vonic (http://vectors.nlpl.eu).

2Subclassed SyllabifierProcess is also available
for dividing words into a list of syllable strings; sets output
atWord.syllables.

ZCurrently available for Greek, Latin, Middle High Ger-
man, and Old Norse. Prose analysis of Latin clausulae also
available (Keeline and Kirby, 2019).

23 Akkadian, Latin, Middle English, Middle High German,
and Old French.

24See Short for Latin WordNet API; Ancient Greek and San-
skrit WordNets are under development.

from dataclasses import dataclass,
— field

from typing import List, Type
from cltk.core.data_types import

— Language, Pipeline, Process
from cltk.languages.utils import
— get_lang
@dataclass
class LatinPipeline (Pipeline):
"""Default "~ 'Pipeline’ ' for
— Latin."""
description: str = "Pipeline for
— the Latin language"
language: Language =
— get_lang("lat")
processes: List[Type[Process]] =
— field(

default_factory=lambda: [
LatinNormalizeProcess,
LatinStanzaProcess,
LatinEmbeddingsProcess,
StopsProcess,
LatinNERProcess,
LatinLexiconProcess,

Code Block 2: Example of LatinPipeline (3.3)
and the processes declared within it; defined at c 1 t k /
languages/pipelines.py.

for seven languages (see ft. 18).

3.3 Pipeline

A language has one Pipeline defining alist of
Process objects, as illustrated in Code Block 2.
The objects within Pipeline.processes are
looped over when called by NLP.analyze ().
Each time, a Doc is sent into the Process and
anew Doc, now with an updated Doc . words, is
produced. These algorithms are invoked by default,
though a user may override them by declaring his
own Pipeline and passing itto NLP (). At time
of publication, 19 languages have pre-configured
pipelines.?

3.4 Doc

The NLP . analyze () method returns a Doc ob-
ject that contains all information generated by the
Pipeline (example at Code Block 1). Most of
this information is stored within a list of Word

ZAkkadian ("akk"), Arabic ("arb"), Aramaic
("arc"), Classical Chinese ("1zh"), Coptic ("cop"),
Gothic ("grc"), Hindi ("hin"), Latin ("1at"), Middle
High German ("gmh"), Old English ("ang"), Middle
English ("enm"), Old French ("frm"), Old Church Sla-
vonic ("chu"), Old Norse ("non™), Pali ("p1i"), Panjabi
("pan"), and Sanskrit ("san").

24

>>> print (cltk_doc.words[11])

Word (index_char_start=None,
index_char_stop=None,
index_token=11, index_sentence=0,

’

='VERB',
dependency_relation

—

[third],
VerbForm:

} 4
[neg], V:

ar], Person:
2ct],
[active]
[neg], N:
os]}, stop=False,
named_entity=False,
syllables=None,
phonetic_transcription=None,

embedding=array ([-1.245%9e-01,
.1, dtype=float32),
definition="do\n\n (old subj.
duis, duit, duint, etc.), dedi,
datus, are \nl DA-, \nto hand

give up, render,

surrender")

deliver,
pa ‘/' 14

over,

e

furnish,

Code Block 3: Example of processed information con-
tained within a Word (3.4.1) object. Continues from
Code Block 1.

objects at Doc.words, which may be accessed
directly or by helper methods, such as Doc.
tokens (returning a list of token strings) and
Doc.embeddings (alist of arrays). When these
access methods are not enough, a user may post-
process the Doc and add attributes to it or the
Word objects within.

3.4.1 Word

Word stores all token information. Code Block 3
shows some of what a Word object may contain.

3.4.2 Language

The module c1tk/languages/glottoloqg,
.py contains 219 Language objects, each of
which contains information about a pre-modern
language that is, or should be, covered by the
CLTK.?® Code Block 4 shows how to retrieve a
Language with a three-letter ISO code. Each

**Language definitions and data provided by Glottolog, a
database of the world’s languages (Hammarstrom et al., 2021).
These 219 languages are those falling within the definition of
pre-modern (discussed at 1.1), plus some with significant con-
tinuity between pre-modern and contemporary written forms:
Standard Arabic, nine South Asian languages (Bengali, Hindi,
etc.), Western Farsi, and Coptic.

>>> from cltk.languages.utils import
find_iso_name

>>> print (find_iso_name ("Latin"))
['lat']

>>> from cltk.languages.utils import
get_lang

>>> print (get_lang("lat"))

Language (name="'Latin"',
ttolog_id='latil2el',
itude=41.¢ 6

—

—

rerrrid

Code Block 4: Example of a Language (3.4.2) object
for Latin (ISO code "1at™).

Pipeline references these classes (see Code
Block 2).

3.4.3 MorphosyntacticFeature and
MorphosyntacticFeatureBundle

Beyond the categorical information at Word . pos,
a language’s Pipeline adds complete morphol-
ogy at the Word. features accessor (see Code
Block 5). The sometimes arbitrary output strings
of morphological taggers (“indicative,” “Indic.,”
etc.) are mapped to these specific CLTK classes
(inheriting from MorphosyntacticFeature)
that represent all features defined by version 2
of the Universal Dependencies project.?’” Hence,
different taggers resolve to a common annotation
schema.

3.44 DependencyTree

The CLTK uses the “built-in” xm1 library to make
trees for modeling dependency parses. A Word is
mapped into aForm, then Element Tree is used

to organize these into a DependencyTree (see
Code Block 6).

3.5 FetchCorpus

Git repositories host models developed by CLTK
contributors.?® When the software cannot find a re-
quired model, FetchCorpus is invoked to down-
load the required dependency and put it within the
appropriate directory at ~/c 1tk _data/.?

% Annotation guidelines at Universal Dependencies (2016)
and CLTK objects at c1tk/morphology/universal
_dependencies_annotations.py. 7

2 All CLTK models are stored on GitHub at: https://
github.com/cltk/?g=model.

A language-specific Git repository is available for most
languages, e.g., "lat_models_cltk" at the URI ht

25

>>> print (cltk_doc.words[11].featur
—
{Aspec

.
.
.
.

te oice: [active]}
>>> print (type (cltk_doc.wor |
< ds[1l1l].features))
'cltk.morphology.r

<class

/ntax.Morpho
dle'>

>>> print (cltk_doc.words[11].featur
es["Aspect"][0])
Aspect.imperfective

>>> print (cltk_doc.words[11]. featur
es["Mood"][01)

.subjunctive

—

<
Mood

Code Block 5: Example of MorphosyntacticFe
ature and MorphosyntacticFeatureBundle
(3.4.3). Continues from Code Block 3.

from cltk.dependency.tree import

DependencyTree

a_tree DependencyTree. to_treeJ

(cltk_doc.sentences[0])

print (a_tree.get_dependencie

s()[:5])

subj (daret_11, Marcus
nsubj(daret_11,

et_11,

_0),
Cato_

ortu

Marcus
Cato_]

Code Block 6: Example of DependencyTree (3.4.4).
Continues from Code Block 1.

4 Conclusion and Future Work

The architecture of the CLTK v. 1.0 has an engi-
neering rigor necessary to model the world’s sev-
eral hundred pre-modern languages. Currently, it
serves the basic, and several more advanced, needs
of researchers for 19 languages.

Software alone, however, is not sufficient. The
CLTK lacks formal evaluations of its models’ accu-
racies. At time of publication, most Process def-
initions wrap models trained by upstream projects
(e.g., Stanza). While these projects report accura-
cies respective to their training sets (i.e., with cross-
validation), they do not provide evaluations against
outside benchmarks. Unfortunately, such bench-
marks do not yet exist for pre-modern languages,
with the exception of the recent Sprugnoli et al.
tps://github.com/cltk/lat_models_clt

k.git. Users may share private or non-official reposito-
ries by defining themat ~ /c1tk_data/distributed

corpora.yaml.

(2020) for Latin. To remedy this problem, the au-
thors will focus upon the following areas:

to create evaluation benchmarks for each NLP
task, for each language;

to make a TrainingPipeline, similar to
the inference Pipeline, that would stan-
dardize the training of new models;

to normalize duplicative treebanks;3?

and to develop Internet infrastructure for train-
ing and hosting models;

These efforts will improve scientific procedure for
pre-modern NLP.

Another initiative involves experimentation with
transfer learning, along the lines of Multilingual
BERT (Pires et al., 2019), training on all surviving
pre-modern texts. Because languages are related
and because texts, even in different languages, of-
ten share entities, information sharing may prove
felicitous.’!

The pre-modern world, its languages and peo-
ples, was deeply networked.?> The CLTK is a com-
prehensive collection of NLP technologies to sup-
port the study of this history.

Acknowledgments

The authors owe a special dept of gratitude to all
of the CLTK’s contributors.>> They also thank
early readers of this manuscript: Neil Coffee, Greg
Crane, Jonathan Everett, Luke Hollis, Thomas
Keeline, Leonard Muellner, Nigel Nicholson, Mo-
nica Park, Michael Piotrowski, Marco Romani, and
William M. Short. The project’s name is a play on
the Natural Language Toolkit (NLTK), on which
v. 0.1 heavily relied. The CLTK logo of a Phoeni-
cian aleph (or ‘alep, &), being the first letter of
the first alphabet, was created by Pierre-Marie Pé-
drot.>*

3For example, Universal Dependencies hosts five different,
and to various degrees incompatible, Latin treebanks. The
largest is 450,000 tokens, though adding the other four would
bring the count close to 1,000,000. Ancient Greek also has
duplicative treebanks (each at about 200,000 tokens).

3! Considerations include use of original orthography versus
normalizing to orthographic or phonetic transliteration.

32Several studies on trans-cultural diffusion across Eurasia:
Beckwith (2009); Frankopan (2015).

Bnttps://github.com/cltk/cltk/graphs/
contributors.

¥nttps://commons.wikimedia.org/wiki/F
ile:PhoenicianA-01.svg.

26

References

M. Adams. 2016. Teaching Classics in English Schools,
1500-1840. Cambridge Scholars Publishing, New-
castle upon Tyne.

Apache Software Foundation. Apache OpenNLP [on-
line]. 2011.

David Bamman and Patrick J. Burns. 2020. Latin
BERT: A contextual language model for classical
philology.

Kristin Bech and Kristine Eide. The ISWOC corpus
[online]. 2014.

Christopher 1. Beckwith. 2009. Empires of the Silk
Road: A History of Central Eurasia from the Bronze
Age to the Present. Princeton University Press,
Princeton.

Yonatan Belinkov, Alexander Magidow, Maxim Ro-
manov, Avi Shmidman, and Moshe Koppel. 2016.
Shamela: A large-scale historical Arabic corpus. In
Proceedings of the Workshop on Language Tech-
nology Resources and Tools for Digital Humanities
(LT4DH), pages 4553, Osaka, Japan. The COLING
2016 Organizing Committee.

Kenneth Benoit, Kohei Watanabe, Haiyan Wang, Paul
Nulty, Adam Obeng, Stefan Miiller, and Akitaka
Matsuo. 2018. quanteda: An R package for the quan-
titative analysis of textual data. Journal of Open
Source Software, 3(30):774.

Luci Berkowitz and Karl A. Squitier. 1990. Thesau-
rus Linguae Graecae: Canon of Greek Authors and
Works, 3rd edition. Thesaurus Linguae Graecae. Ox-
ford University Press, New York.

Steven Bird and Edward Loper. 2004. NLTK: The Nat-
ural Language Toolkit. In Proceedings of the ACL
2004 on Interactive Poster and Demonstration Ses-
sions, page 31. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Toméas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Hennie Brugman, Albert Russel, and Xd Nijmegen.
2004. Annotating multi-media/multi-modal re-
sources with ELAN. In The Fourth International
Conference on Language Resources and Evaluation.
European Language Resources Association (ELRA),
Lisbon.

Patrick J. Burns. 2019. Building a text analysis pipeline
for classical languages. In Monica Berti, editor, Dig-
ital Classical Philology: Ancient Greek and Latin
in the Digital Revolution, number 10 in Age of
Access? Grundfragen der Informationsgesellschaft,
pages 159-176. de Gruyter, Berlin.

Patrick J. Burns. 2020. Ensemble lemmatization with
the Classical Language Toolkit. Studi e Saggi Lin-
guistici, 58(1):157-176.

Patrick J. Burns, Luke Hollis, and Kyle P. Johnson.
2019. The future of ancient literacy: Classical Lan-
guage Toolkit and Google Summer of Code. Clas-
sics@, 17.

Laura Buszard-Welcher. 2018. New media for endan-
gered languages. In Kenneth L. Rehg and Lyle Camp-
bell, editors, The Oxford Handbook of Endangered
Languages, Oxford Handbooks, chapter 22. Oxford
University Press, Oxford.

Lyle Campbell. 2013. Historical Linguistics. Edin-

burgh University Press, Edinburgh.

Giuseppe G. A. Celano, Gregory Crane, and Bridget Al-
mas. Ancient Greek and Latin dependency treebank
v.2.1 [online]. 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kris-
tina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Hanne Martine Eckhoff and Aleksandrs Berdicevskis.
2015. Linguistics vs. digital editions: The Tromsg
Old Russian and OCS treebank. Scripta & e-Scripta,
14(15):9-25.

Elizabeth L. Eisenstein. 1979. The Printing Press as
an Agent of Change. Cambridge University Press,
Cambridge.

Robert K. Englund. 2016. The Cuneiform Digital Li-
brary Initiative: DL in DH. Microsoft PowerPoint.

Peter Frankopan. 2015. The Silk Roads: A New History
of the World. Vintage Books, New York.

Mika Héamaldinen. 2019. UralicNLP: An NLP library
for Uralic languages. Journal of Open Source Soft-
ware, 4(37):1345.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1489-1501, Berlin, Germany. Association for Com-
putational Linguistics.

Harald Hammarstrom, Robert Forkel, Martin Haspel-
math, and Sebastian Bank. Glottolog 4.4 [online].
2021.

Dag T. T. Haug and Marius L. Jghndal. 2008. Creating
a parallel treebank of the old Indo-European Bible
translations. In Caroline Sporleder and Kiril Rib-
arov, editors, Proceedings of the Second Workshop
on Language Technology for Cultural Heritage Data
(LaTeCH 2008), pages 27-34. European Language
Resources Association (ELRA), Marrakech.

27

Oliver Hellwig, Salvatore Scarlata, Elia Ackermann,
and Paul Widmer. 2020. The treebank of Vedic
Sanskrit. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 5137-
5146, Marseille, France. European Language Re-
sources Association.

Julia Hirschberg and Christopher D. Manning. 2015.
Advances in natural language processing. Science,
349(6245):261-266.

Hans Henrich Hock. 1991. Principles of Historical Lin-
guistics, 2nd edition. Mouton de Gruyter, Berlin.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1373-1378, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Tasha R. Inniss, John R. Lee, Marc Light, Michael A
Grassi, George Thomas, and Andrew B. Williams.
2006. Towards applying text mining and natural lan-
guage processing for biomedical ontology acquisi-
tion. In Proceedings of the Ist International Work-
shop on Text Mining in Bioinformatics, pages 7-14.

Anisia Katinskaia, Javad Nouri, and Roman Yangarber.
2017. Revita: A system for language learning and
supporting endangered languages. In Proceedings
of the joint workshop on NLP for Computer Assisted
Language Learning and NLP for Language Acquisi-
tion, pages 27-35, Gothenburg, Sweden. LiU Elec-
tronic Press.

Tom Keeline and Tyler Kirby. 2019. Auceps syllaba-
rum: A digital analysis of Latin prose rhythm. Jour-
nal of Roman Studies, 109:161-204.

Thomas Kontges, Rhea Lesage, Bruce Robertson, Jean-
nie Sellick, and Lucie Wall Stylianopoulos. 2019.
Open Greek and Latin: Digital humanities in an open
collaboration with pedagogy. In Libraries: Dia-
logue for Change, Athens. IFLA WLIC.

John Lee and Yin Hei Kong. 2012. A dependency
treebank of Classical Chinese poems. In Proceed-
ings of the 2012 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
191-199, Montréal, Canada. Association for Compu-
tational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55—60.

Barbara McGillivray, Jon Wilson, and Tobias Blanke.
2019. Towards a quantitative research framework for
historical disciplines. In CEUR Workshop Proceed-
ings, volume 2314.

Piotr Michalowski. 2004. Sumerian. In Roger D.
Woodard, editor, The Cambridge Encyclopedia of
the World’s Ancient Languages, pages 19-59. Cam-
bridge University Press, Cambridge.

D. Gary Miller. 2019. The Oxford Gothic Grammar.
Oxford Linguistics. Oxford University Press, Oxford.

Michael Piotrowski. 2012. Natural Language Process-
ing for Historical Texts. Number 17 in Synthesis Lec-
tures on Human Language Technologies. Morgan &
Claypool Publishers, San Rafael.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is Multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996—
5001, Florence, Italy. Association for Computational
Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101-108, Online. As-
sociation for Computational Linguistics.

John C. Rolfe. 1984. Cornelius Nepos, volume 467
of The Loeb Classical Library. Harvard University
Press, Cambridge, Mass.

William Michael Short. Latin WordNet [online].
SIL International. ISO 639-3 [online].

Rachele Sprugnoli, Marco Passarotti, Flavio Mas-
similiano Cecchini, and Matteo Pellegrini. 2020.
Overview of the Evalatin 2020 evaluation campaign.
In Proceedings of LT4HALA 2020 - 1st Workshop on
Language Technologies for Historical and Ancient
Languages, pages 105-110, Marseille, France. Euro-
pean Language Resources Association (ELRA).

James Turner. 2014. Philology: The Forgotten Ori-
gins of the Modern Humanities. Princeton Univer-
sity Press, Princeton.

Morgan Ulinski, Anusha Balakrishnan, Daniel Bauer,
Bob Coyne, Julia Hirschberg, and Owen Rambow.
2014. Documenting endangered languages with the
WordsEye linguistics tool. In Proceedings of the
2014 Workshop on the Use of Computational Meth-
ods in the Study of Endangered Languages, pages
6—14, Baltimore, Maryland, USA. Association for
Computational Linguistics.

Universal Dependencies. UD Guidelines V2 [online].
2016.

Endymion Wilkinson. 2000. Chinese History: A Man-
ual. Number 52 in Harvard-Yenching Institute Mon-
ograph Series. Harvard University Press, Cambridge,
Mass.

28

Koichi Yasuoka. 2019. Universal dependencies tree-
bank of the Four Books in Classical Chinese. In
DADH?2019: 10th International Conference of Dig-
ital Archives and Digital Humanities, pages 20-28.
Digital Archives and Digital Humanities.

Amir Zeldes and Caroline T. Schroeder. 2016. An
NLP pipeline for Coptic. In Proceedings of the
10th SIGHUM Workshop on Language Technology
for Cultural Heritage, Social Sciences, and Human-
ities, pages 146-155, Berlin, Germany. Association
for Computational Linguistics.

A Appendix

The following top-level directories are found at
src/cltk, within the project’s repository.

nlp: The main module, contains class NLP |

0

alphabet: Manipulate characters of a lan-
guage’s orthographic system

core: Custom data types, error handling

corpora: Metadata for and preprocessing
of specific data sets

data: Download CLTK-hosted data sets
dependency: Dependency parsing

embeddings: Making and loading word
embeddings

languages: Definition of all pre-modern
languages, text snippets for demonstration

lemmatize: Find lemma for an inflected
form

lexicon: Find alemma’s definition in a dic-
tionary

morphology: Model morphology and syn-
tax with data types from Universal Dependen-
cies

ner: Tag named entities (i.e., proper nouns)

phonology: Syllabifying and tagging pho-
nemes

prosody: Scanning poetic meter
sentence: Splitting sentences

stem: Create unique stem from inflected
form

stops: Identify if a token is a stopword
tag: Part-of-speech tagging

text: Language-specific, extensible text pre-
processing

* tokenizers: Create tokens from an input
string

* utils: Helpers for feature extraction and
disk I/0

* wordnet: Lookup of lemma on available on-
line WordNets

29

TextBox: A Unified, Modularized, and Extensible
Framework for Text Generation

Junyi Li"3] Tianyi Tang'] Gaole He?, Jinhao Jiang', Xiaoxuan Hu?,
Puzhao Xie?, Zhipeng Chen?, Zhuohao Yu?, Wayne Xin Zhao'*** and Ji-Rong Wen'?*
!Gaoling School of Artificial Intelligence, Renmin University of China
2School of Information, Renmin University of China
3Beijing Key Laboratory of Big Data Management and Analysis Methods
“Beijing Academy of Artificial Intelligence, Beijing, 100084, China

{lijunyi, steven_tangl}@ruc.edu.cn

Abstract

In this paper, we release an open-source li-
brary, called TextBox, to provide a unified,
modularized, and extensible text generation
framework. TextBox aims to support a broad
set of text generation tasks and models. In
our library, we implement 21 text generation
models on 9 benchmark datasets, covering the
categories of VAE, GAN, and pretrained lan-
guage models. Meanwhile, our library main-
tains sufficient modularity and extensibility by
properly decomposing the model architecture,
inference, and learning process into highly
reusable modules, which allows users to eas-
ily incorporate new models into our frame-
work. The above features make TextBox es-
pecially suitable for researchers and practi-
tioners to quickly reproduce baseline models
and develop new models. TextBox is imple-
mented based on PyTorch, and released un-
der Apache License 2.0 at the link https:
//github.com/RUCAIBox/TextBox.

1 Introduction

Text generation, which has emerged as an impor-
tant branch of natural language processing (NLP),
is often formally referred as natural language gen-
eration (NLG) (Li et al., 2021b). It aims to produce
plausible and understandable text in human lan-
guage from input data (e.g., a sequence, keywords)
or machine representation. Because of incredible
performance of deep learning models, many classic
text generation tasks have achieved rapid progress,
such as machine translation (Vaswani et al., 2017),
dialogue systems (Li et al., 2016b), text summariza-
tion (See et al., 2017), graph-to-text generation (Li
et al., 2021a), and more.

To facilitate the development of text generation
models, a few remarkable open-source libraries

TEqual contribution.
*Corresponding author.

30

batmanfly@gmail.com

have been developed (Britz et al., 2017; Klein et al.,
2017b; Miller et al., 2017b; Zhu et al., 2018; Hu
et al., 2019). These frameworks are mainly de-
signed for some or a small number of specific tasks,
particularly machine translation and dialogue sys-
tems. They usually focus on a special kind of tech-
niques for text generation such as generative adver-
sarial networks (GAN), or have limitations in cov-
ering commonly-used baseline implementations.
Even for an experienced researcher, it is difficult
and time-consuming to implement all compared
baselines under a unified framework. Therefore, it
is highly desirable to re-consider the implementa-
tion of text generation algorithms in a unified and
modularized framework.

In order to alleviate the above issues, we initi-
ate a project to provide a unified framework for
text generation algorithms. We implement an open-
source text generation library, called TextBox,
aiming to enhance the reproducibility of existing
text generation models, standardize the implemen-
tation and evaluation protocol of text generation
algorithms, and ease the development process of
new algorithms. Our work is also useful to support
several real-world applications in the field of text
generation. We have extensively surveyed related
text generation libraries and broadly fused their
merits into TextBox. The key features and capabili-
ties of our library are summarized in the following
three aspects:

* Unified and modularized framework. TextBox
is built upon PyTorch (Paszke et al., 2019), which is
one of the most popular deep learning frameworks
(especially in the research community). Moreover,
it is designed to be highly modularized, by decou-
pling text generation models into a set of highly
reusable modules, including data module, model
module, evaluation module, and many common
components and functionalities. In our library, it
is convenient to compare different text generation

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 30-39, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

Applications

Generation Training
| Strategy 11 Model i\ Data |1 Evaluation
1 1 | 1 1 1
I ! . 1 1!
!'| Greedy Search i 1| Architecture Module i i | DataLoader |} Task-agnostic i
1 1
| P ' | | ! Metric .
' b LM Encoder : | | ! !
1
i Top-k Search | ! GAN Decoder ;! Dataset i ' |
1 1 1
1 ! . ! 1! ,
i :i SV;A‘SE Stt;n(t;;)n ' i i i Task-specific .
. eq2Se mbedder
i | Beam Search |! i L i i | Preprocessing | | i Evaluator i
| ‘! H 1l ,
1 1) 1

Configuration [Command Line] [

Config Files] [Parameter Dicts]

Figure 1: The illustration of the main functionalities and modules in our library TextBox.

algorithms with built-in evaluation protocols via
simple yet flexible configurations, or develop new
text generation models at a highly conceptual level
by plugging in or swapping out modules.

* Comprehensive models, benchmark datasets
and standardized evaluations. TextBox contains
a wide range of text generation models, covering
the categories of variational auto-encoder (VAE),
generative adversarial networks (GAN), recurrent
neural network (RNN) and pretrained language
models (PLMs). We provide flexible supporting
mechanisms via the configuration file or command
line to run, compare and test these traditional and
state-of-the-art algorithms. Based on these mod-
els, we implement two major text generation tasks,
namely unconditional text generation tasks and con-
ditional text generation tasks (e.g., text summa-
rization and machine translation). To construct a
reusable benchmark, we incorporate 9 widely-used
datasets with regards to different text generation
tasks for evaluation. Our library supports a series
of frequently adopted evaluation protocols for test-
ing and comparing text generation algorithms, such
as perplexity, BLEU, ROUGE, and Distinct.

* Extensible and flexible framework. TextBox
provides convenient interfaces of various common
functions or modules in text generation models,
e.g., RNN-based and Transformer-based encoders
and decoders, pretrained language models, and at-
tention mechanisms. Within our library, users are
convenient to choose different API interfaces for
building and evaluating their own models. Besides,
the interfaces of our library are fully compatible
with the PyTorch interface which allows seamless
integration of user-customized modules and func-

31

tions as needed.

2 Architecture and Design

Figure 1 presents the illustration of the main func-
tionalities and modules in our library TextBox. The
configuration module at the bottom helps users
set up the experimental environment (e.g., hyper-
parameters and running details). Built upon the
configuration module, the data, model, and evalua-
tion modules form the core elements of our library.
In the following, we describe the detailed structure
of these three modules.

2.1 Data Module

A major design principle of our library is to support
different text generation tasks. For this purpose,
data module is the fundamental part to provide
various data structures and functions adapting to
different generation tasks.

For extensibility and reusability, our data mod-
ule designs a unified data flow feeding input text
into the models. The data flow can be described
as: input text — Dataset — DataLoader —
models. The class Dataset involves two special
data structures, i.e., single sequence and paired se-
quence, which are oriented to unconditional and
conditional text generation tasks, respectively. The
single sequence structure requires users to prepro-
cess input text into one sequence per line in input
files, while the paired sequence structure requires
users to separate the source and target into two files
with one sequence per line in each file. Specifically,
for conditional text generation, TextBox supports
several source formats corresponding to different
tasks, e.g., discrete attributes or tokens for attribute-

to-text and keyword-to-text generation, a text se-
quence for machine translation or text summariza-
tion, and multiple text sequences for multi-turn dia-
logue systems. Furthermore, users can also provide
additional information as inputs, e.g., background
text for agents in dialogues. The implementation
of Dataset contains many common data prepro-
cessing functionalities, such as converting text into
lowercase, word tokenization, and building vocab-
ulary. And the class Dataloader is based on the
above two data structures, which is responsible for
organizing the data stream.

In order to compare different generation models,
we have collected 9 commonly-used benchmarks
for text generation tasks, which makes it quite con-
venient for users to start with our library.

2.2 Model Module

To support a variety of models, we set up the model
module by decoupling the algorithm implemen-
tation from other components and abstracting a
set of widely-used modules, e.g., encoder and
decoder. These modules can be flexibly com-
bined following the required interface and then con-
nected with data and evaluation modules. Based
on this abstract design, it is convenient to switch
between different text generation tasks, and change
from one modeling paradigm to another by simply
plugging in or swapping out modules.

In addition to modularized design, our library
also includes a large number of text genera-
tion baseline models for reproducibility. At the
current released version, we have implemented
21 baseline models within four main categories
of text generation models, namely VAE-based,
GAN-based, pretrained language models, and
sequence-to-sequence, corresponding to different
generation architectures and tasks. For example,
GAN-based models consist of generator and
discriminator, and VAE-based models con-
tain encoder and decoder. We summarize all
the implemented models in Table 1. For all the
implemented models, we test their performance for
unconditional and conditional generation tasks on
corresponding benchmarks, and invite a code re-
viewer to examine the correctness of the implemen-
tation. Overall, the extensible and comprehensive
model modules can be beneficial for fast explo-
ration of new algorithms for a specific task, and
convenient comparison between different models.

In specific, for each model, we utilize two inter-

32

Category \ Models Reference
LSTM-VAE (Bowman et al., 2016)
VAE CNN-VAE (Yang et al., 2017)
Hybrid-VAE | (Semeniuta et al., 2017)
CVAE (Li et al., 2018)
SeqGAN (Yuetal., 2017)
TextGAN (Zhang et al., 2017)
GAN RankGAN (Lin et al., 2017)
MaliGAN (Che et al., 2017)
LeakGAN (Guo et al., 2018)
MaskGAN (Fedus et al., 2018)
GPT-2 (Radford et al., 2019)
Pretrained XLNet (Yang et al., 2019)
Language BERT2BERT (Rothp et al., 2020)
Model BART (Lewis et al., 2020)
ProphetNet (Qi et al., 2020)
T5 (Raffel et al., 2020)
RNN (Sutskever et al., 2014)
Transformer (Vaswani et al., 2017)
Seq2Seq Context2Seq (Tang et al., 2016)
Attr2Seq (Dong et al., 2017)
HRED (Serban et al., 2016)

Table 1: Implemented models in our library TextBox.

face functions, i.e., forward and generate, for
training and testing, respectively. These functions
are general to various text generation algorithms,
so that we can implement various algorithms in
a highly unified way. Such a design also enables
quick development of new models.

In order to improve the quality of generation
results, we also implement a series of generation
strategies when generating text, such as greedy
search, top-k search and beam search. Users are al-
lowed to switch between different generation strate-
gies leading to better performance through setting
a hyper-parameter, i.e., decoding_strategy.
Besides, we add the functions of model saving and
loading to store and reuse the learned models, re-
spectively. In the training process, one can print
and monitor the change of the loss value and apply
training tricks such as warm-up and early-stopping.
These tiny tricks largely improve the usage experi-
ences with our library.

2.3 Evaluation Module

It is important that different models should be com-
pared under the unified evaluate protocols, which
is useful to standardize the evaluation of text gener-
ation. To achieve this goal, we set up the evaluation
module to implement commonly-used evaluation
protocols for text generation models.

Our library supports both logit-based and word-
based evaluation metrics. The logit-based met-

rics include perplexity (PPL) (Brown et al., 1992)
and negative log-likelihood (NLL) (Huszar, 2015),
measuring how well the probability distribution
or a probability model predicts a sample com-
pared with the ground-truth. The word-based
metrics include the most widely-used generation
metrics for evaluating lexical similarity, semantic
equivalence and diversity. For example, BLEU-
n (Papineni et al., 2002) and ROUGE-n (Lin,
2004) measure the ratios of the overlapping n-
grams between the generated and real samples,
METEOR (Banerjee and Lavie, 2005) measures
the word-to-word matches based on WordNet,
CIDEr (Vedantam et al., 2015) computes the TF-
IDF weights for each n-gram in generated/real sam-
ples and CHRF++ (Popovic, 2015) computes F-
score averaged on both character- and word-level
n-grams. To evaluate the semantic equivalence
between generated and real samples, we include
BERTScore (Zhang et al., 2020), a metric based
on the similarity of sentence embeddings relied on
pretrained language model BERT (Devlin et al.,
2019). Moreover, Distinct-n and Unique-n (Li
et al., 2016a) measures the degree of diversity of
generated text by calculating the number of dis-
tinct unigrams and bigrams in generated text. Be-
sides, to evaluate the diversity of unconditionally
generated samples, we also take into account the
Self-BLEU (Zhu et al., 2018) metric. In summary,
users can choose different evaluation protocols
towards a specific generation task by setting the
hyper-parameter, i.e., metrics.

In practice, as the model may generate many
text pieces, evaluation efficiency is an important
concern. Hence, we integrate efficient computing
package, fastBLEU (Alihosseini et al., 2019), to
compute evaluation scores. Compared with other
package, fastBLEU adopts the multi-threaded
C++ implementation.

3 System Usage

In this section, we show a detailed guideline to
use our system library. Users can run the existing
models or add their own models as needed.

3.1 Running Existing Models

To run an existing model within TextBox, users
only need to specify the dataset and model by
setting hyper-parameters, i.e., dataset and
model. And then experiments can be run with a
simple command-line interface:

33

python run_textbox.py \
—-model=GPT2 —--dataset=COCO

The above case shows an example that runs
GPT-2 (Radford et al., 2019) model on COCO
dataset (Lin et al., 2015). In our system library,
the generation task, such as translation, and
summarization, is determined once users spec-
ify the dataset, thus the task is not necessary to
be explicitly specified in hyper-parameters. To fa-
cilitate the modification of hyper-parameters, we
provides two kinds of YAML configuration files,
i.e., dataset configuration and model configuration,
which allow running many experiments without
modifying source code. It also supports users to
include hyper-parameters in the command line,
which is useful for some specifically defined param-
eters. TextBox is designed to be run on different
hardware devices. By default, CUDA devices will
be used if users set the hyper-parameter use_gpu
as True, or otherwise CPU will be used. Users
can determine the ID of used CUDA devices by
setting hyper-parameter gpu_id. We also sup-
port distributed model training in multiple GPUs
by setting the hyper-parameter DDP as True.

Based on the configuration, we provide the aux-
iliary function to split the dataset into train, valida-
tion and test sets according to the provided hyper-
parameter split_ratio, or load the pre-split
dataset. Moreover, TextBox also allows users to
load and re-train the saved model for speeding up
reproduction, rather than training from scratch.

Figure 2 presents a general usage flow when
running a model in our library. The running pro-
cedure relies on some experimental configuration,
obtained from the files, command line or parameter
dictionaries. The dataset and model are prepared
and initialized according to the configured settings,
and the execution module is responsible for training
and evaluating models.

3.2 Implementing a New Model

With the unified Data and Evaluation mod-
ules, one needs to implement a specific Model
class and three mandatory functions as follows:

e init__ () function. In this function, the
user performs parameters initialization, global vari-
able definition and so on. It is worth noting that, the
imported new model should be a sub-class of the
abstract model class defined in our library. One can

| CMD, File or Variable |

i

| Parameter Configuration |

T~

Data Preparation | | Model Initialization |

| |
l

| Train |

| Evaluate |

| Applications |

Figure 2: An illustractive usage flow of our library.

reuse the modules (e.g., Transformer) and layers
(e.g., Highway net) already existing in our library
for convenience. A configuration file is preferable
to conduct further flexible adjustment.

* forward () function. This function calcu-
lates the training loss to be optimized and valida-
tion loss to avoid overfitting. Based on the returned
training loss, our library will automatically invoke
different optimization methods to learn the param-
eters according to pre-defined configuration.

e generate () function. This function is em-
ployed to generate output text based on input text
or free text. Our library also provides several gen-
eration strategies, such as beam search and top-k
search, for users to improve generation results.

In order to implement user-customized modules,
one can reuse functions and classes inherited from
our basic modules, or override original functions
and add new functions.

4 Performance Evaluation

To evaluate the models in TextBox, we conduct ex-
tensive experiments to compare their performance
on unconditional and conditional generation tasks.

4.1 Unconditional Text Generation

Following previous work, we adopt COCO (Lin
etal., 2015), EMNLP2017 WMT News (Chatterjee
etal., 2017) and IMDB Movie Reviews (Maas et al.,
2011) datasets for comparing the performance of
five traditional and state-of-the-art models, i.e.,
LSTM-VAE, SeqGAN, RankGAN, MaliGAN, and
GPT-2, in the unconditional text generation task.
In our experiments, we run models with the pa-
rameter configurations described in their original

34

papers. Note that the BLEU-n metric employs
the one-hot weights (e.g., (0,0,0,1) for BLEU-
4) instead of average weights, since we consider
that one-hot weights can reflect the overlapping
n-grams more realistically.

These results on COCO datasets are shown in Ta-
ble 2, and other results on EMNLP2017 and IMDB
datasets can be found in our GitHub page. We
can see from Table 2, these models implemented
in our library have the comparable performance
compared with the results reported in the original
papers. Moreover, the pretrained language model,
i.e., GPT-2, achieves consistent and remarkable per-
formance, which is in line with our expectations.

4.2 Conditional Text Generation

In this section, we apply various models on four
conditional text generation tasks, i.e., attribute-to-
text generation, dialogue systems, machine transla-
tion, and text summarization. The task of attribute-
to-text generation is to generate text given sev-
eral discrete attributes, such as user, item, and rat-
ing. We use the popular context-to-sequence (Con-
text2Seq) and attribute-to-sequence (Attr2Seq) as
base models, which utilize the multi-layer percep-
tron (MLP) and RNN as the encoder and decoder,
respectively. Besides, dialogue systems aim to gen-
erate response given a conversation history. We
consider two typical models, i.e., attention-based
RNN and Transformer, and one popular hierarchi-
cal recurrent encoder-decoder model (HRED) as
base models. In RNN and Transformer, the multi-
sequence conversation history is concatenated as
one sequence feeding into the encoder, while in
HERD the hierarchical structure of the conversa-
tion history is kept and modeled with a hierarchical
encoder. Their results are shown in Table 2.

To showcase how our TextBox can support di-
verse techniques on several tasks with different
decoding strategies, we compare the attention-
based RNN model, Transformer, and four state-
of-the-art pretrained language models, i.e., BART,
BERT2BERT, ProphetNet, and T5, for both ma-
chine translation and text summarization tasks. In
Table 3, we adopt the IWSLT2014 German-to-
English (Cettolo et al., 2014) translation dataset
and utilize three generation strategies, i.e., top-
k, greedy, and beam search. The greedy strategy
considers the most probable token at each gener-
ation step, the top-k search strategy means sort-
ing by probability and zero-ing out the probabili-

Tasks Datasets Models Distinct-1 Distinct-2 | BLEU-1 BLEU-2 BLEU-3 BLEU-4
LSTM-VAE - - 63.97 46.56 18.53 5.97
Unconditional SeqGAN - - 99.76 82.32 51.26 25.18
GCO t.o a COCO | RankGAN - ; 99.76 82.92 52.46 26.40
eneration MailGAN - - 99.71 81.95 50.86 24.87
GPT-2 - - 88.15 78.13 55.81 31.88
Attribute-to-Text Context2Seq 0.07 0.39 17.21 2.80 0.83 0.43
Generation AMAZON Attr2Seq 0.14 2.81 17.14 2.81 0.87 0.48
Dial personal | RNN+AUD 0.24 0.72 17.51 4.65 211 1.47
S at"gue eCilota Transformer 0.38 2.08 17.29 4.85 2.32 1.65
ystems & HRED 0.22 0.63 17.29 4.72 2.20 1.60

Table 2: Performance comparisons of different methods for three tasks, i.e., unconditional generation, attribute-

to-text generation, and dialogue systems. Distinct-n is not applicable to the unconditional generation task.

9

denotes the metric Distinct-n is generally not applicable to unconditional text generation.

Model | Strategy | BLEU2 BLEU3 BLEU4 Model | ROUGE-1 ROUGE-2 ROUGE-L
Top-k 26.68 16.95 10.85 RNN+Attn 36.32 17.63 38.36

RNN+Attn | Greedy 33.74 23.03 15.79 Transformer 36.21 17.64 38.10
Beam 35.68 24.94 17.42 BART 3934 2007 1125

Top-k 30.96 20.83 14.16 BERT2BERT 38.16 18.89 40.06

Transformer | Greedy 35.48 24.76 17.41 ProphetNet 38.49 18.41 39.84
Beam 36.88 26.10 18.54 T5 38.83 19.68 40.76

Table 3: Performance comparison of different genera-
tion models with three strategies for machine transla-
tion from German to English.

ties for anything below the k-th token, and beam
search (Vijayakumar et al., 2018) strategy selects
the top scoring B candidates from the set of all pos-
sible one token extensions of its beams, where B
is the beam size (B = 5 in our experiments). From
Table 3 we observe that the beam search strategy
brings more improvement than the others. For text
summarization, we compare RNN and Transformer
with four pretrained models as shown in Table 4.
These models are trained or fine-tuned in Giga-
Word (Graff et al., 2003) dataset. As observed in
Table 4, pretrained models outperform the RNN
model and Transformer by a clear margin.

The results of all implemented models in other
tasks can be acquired from our GitHub page.

5 Related Work

Several toolkits have been released focusing on one
or a few specific text generation tasks or techniques.
For example, Tensor2Tensor (Vaswani et al., 2018),
MarianNMT (Junczys-Dowmunt et al., 2018) and
OpenNMT (Klein et al., 2017a) are designed for
machine translation task, while ParlAI (Miller et al.,
2017a) and Plato (Papangelis et al., 2020) special-

35

Table 4: Performance comparison of different genera-
tion models for text summarization. Specifically, we
adopt the base version of BART, BERT2BERT, T5 and
the large version of ProphetNet.

ized for dialog research in this field. There are
two text generation libraries closely related to our
library, including Texygen (Zhu et al., 2018) and
Texar (Hu et al., 2019) focusing on GAN technique
and high modularization, respectively. TextBox
has drawn inspirations from these toolkits when
designing relevant functions.

Compared with them, TextBox covers more text
generation tasks and models, which is useful for re-
producibility. Besides, we implement standardized
evaluation to compare different models. Also, our
library provides various common modules for con-
venience. It has a proper focus on text generation
field, and provide a comprehensive set of modules
and functionalities.

6 Conclusion

This paper presented a unified, modularized, and
extensible text generation library, called TextBox.
So far, we have implemented 21 text generation
models, including VAE-based, GAN-based, pre-
trained language models, sequence-to-sequence
and 9 benchmark datasets for unconditional and

conditional text generation tasks. Moreover, Our
library is modularized to easily plug in or swap out
components, and extensible to support seamless
incorporation of other external modules. In the fu-
ture, features and functionalities will continue be
added to our library, including more models and
datasets, diverse inputs such as graph and table,
and distributed training in multiple machines. We
invite researchers and practitioners to join and en-
rich TextBox, and help push forward the research
on text generation.

7 Broader Impacts

Text generation has a wide range of beneficial appli-
cations for society, including code auto-completion,
game narrative generation, and answering ques-
tions. But it also has potentially harmful applica-
tions. For example, GPT-3 improves the quality of
generated text over smaller models and increases
the difficulty of distinguishing synthetic text from
human-written text, such as fake news and reviews.

Here we focus on two potential issues: the po-
tential for deliberate misuse of generation models
and the issue of bias. Malicious uses of generation
models can be somewhat difficult to anticipate be-
cause they often involve repurposing models in a
very different environment or for a different pur-
pose than researchers intended. To mitigate this,
we can think in terms of traditional security risk
assessment frameworks such as identifying threats.
Biases present in training text may lead models to
generate stereotyped or prejudiced content. This is
concerning, since model bias could harm people in
the relevant groups in different ways. In order to
prevent bias, there is a need for building a common
vocabulary tying together the normative, technical
and empirical challenges of bias mitigation for gen-
eration models. We expect this to be an area of
continuous research for us.

Acknowledgement

This work was partially supported by the Na-
tional Natural Science Foundation of China un-
der Grant No. 61872369 and 61832017, Beijing
Academy of Artificial Intelligence (BAAI), Beijing
Outstanding Young Scientist Program under Grant
No. BJJWZYJH012019100020098, the Fundamen-
tal Research Funds for the Central Universities, and
the Research Funds of Renmin University of China
under Grant No. 18 XNLG22 and 19XNQO047. Xin
Zhao is the corresponding author.

36

References

Danial Alihosseini, Ehsan Montahaei, and Mahdieh So-
leymani Baghshah. 2019. Jointly measuring diver-
sity and quality in text generation models. In Pro-
ceedings of the Workshop on Methods for Optimiz-
ing and Evaluating Neural Language Generation,
pages 90-98, Minneapolis, Minnesota. Association
for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
an automatic metric for MT evaluation with im-
proved correlation with human judgments. In IEE-
valuation@ACL, pages 65-72. Association for Com-
putational Linguistics.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Jézefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. In Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning,
CoNLL 2016, Berlin, Germany, August 11-12, 2016,
pages 10-21.

Denny Britz, Anna Goldie, Minh-Thang Luong, and
Quoc Le. 2017. Massive exploration of neural ma-
chine translation architectures. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1442—1451, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Peter F. Brown, Stephen Della Pietra, Vincent J. Della
Pietra, Jennifer C. Lai, and Robert L. Mercer. 1992.
An estimate of an upper bound for the entropy of
english. Comput. Linguistics, 18(1):31-40.

Mauro Cettolo, Jan Niehues, Sebastian Stiiker, Luisa
Bentivogli, and Marcello Federico. 2014. Report
on the 11th iwslt evaluation campaign, iwslt 2014.
In Proceedings of the International Workshop on
Spoken Language Translation, Hanoi, Vietnam, vol-
ume 57.

Rajen Chatterjee, Matteo Negri, Marco Turchi, Mar-
cello Federico, Lucia Specia, and Frédéric Blain.
2017. Guiding neural machine translation decoding
with external knowledge. In Proceedings of the Sec-
ond Conference on Machine Translation, Volume 1:
Research Papers, pages 157-168, Copenhagen, Den-
mark. Association for Computational Linguistics.

Tong Che, Yanran Li, Ruixiang Zhang, R. Devon
Hjelm, Wenjie Li, Yangqiu Song, and Yoshua Ben-
gio. 2017. Maximum-likelihood augmented discrete
generative adversarial networks. arXiv preprint
arXiv:1702.07983.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT (1), pages 4171-4186. As-
sociation for Computational Linguistics.

Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata,
Ming Zhou, and Ke Xu. 2017. Learning to gen-
erate product reviews from attributes. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL 2017, Valencia, Spain, April 3-7, 2017, Vol-
ume 1: Long Papers, pages 623—632. Association
for Computational Linguistics.

William Fedus, Ian J. Goodfellow, and Andrew M. Dai.
2018. Maskgan: Better text generation via filling
in the In 6th International Conference
on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings.

David Graff, Junbo Kong, Ke Chen, and Kazuaki
Maeda. 2003. English gigaword. Linguistic Data
Consortium, Philadelphia, 4(1):34.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. 2018. Long text generation via
adversarial training with leaked information. In Pro-
ceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innova-
tive Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Ad-
vances in Artificial Intelligence (EAAI-18), New Or-
leans, Louisiana, USA, February 2-7, 2018, pages
5141-5148.

Zhiting Hu, Haoran Shi, Bowen Tan, Wentao Wang,
Zichao Yang, Tiancheng Zhao, Junxian He, Lianhui
Qin, Di Wang, Xuezhe Ma, Zhengzhong Liu, Xiao-
dan Liang, Wanrong Zhu, Devendra Singh Sachan,
and Eric P. Xing. 2019. Texar: A modularized,
versatile, and extensible toolkit for text generation.
In Proceedings of the 57th Conference of the As-
sociation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28 - August 2, 2019, Volume
3: System Demonstrations, pages 159—164. Associa-
tion for Computational Linguistics.

Ferenc Huszar. 2015. How (not) to train your genera-
tive model: Scheduled sampling, likelihood, adver-
sary? arXiv preprint arXiv:1511.05101.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116—
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017a. OpenNMT: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,
pages 67-72, Vancouver, Canada. Association for
Computational Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017b. Opennmt:

37

Open-source toolkit for neural machine translation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, System
Demonstrations, pages 67-72. Association for Com-
putational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 7871-7880.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
NAACL HLT 2016, The 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, San Diego California, USA, June 12-17, 2016,
pages 110-119. The Association for Computational
Linguistics.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016b. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016, pages
1192-1202. The Association for Computational Lin-
guistics.

Juntao Li, Yan Song, Haisong Zhang, Dongmin Chen,
Shuming Shi, Dongyan Zhao, and Rui Yan. 2018.
Generating classical chinese poems via conditional
variational autoencoder and adversarial training. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages
3890-3900. Association for Computational Linguis-
tics.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Zhicheng Wei,
Nicholas Jing Yuan, and Ji-Rong Wen. 2021a. Few-
shot knowledge graph-to-text generation with pre-
trained language models. In Findings of ACL.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong
Wen. 2021b. Pretrained language models for text
generation: A survey. In Proceedings of the 30th
International Joint Conference on Artificial Intelli-
gence, IJCAI 2021.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Kevin Lin, Diangi Li, Xiaodong He, Ming-Ting Sun,
and Zhengyou Zhang. 2017. Adversarial ranking
for language generation. In Advances in Neural
Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems

2017, December 4-9, 2017, Long Beach, CA, USA,
pages 3155-3165.

Tsung-Yi Lin, Michael Maire, Serge Belongie,
Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick,
and Piotr Dollar. 2015. Microsoft coco: Common
objects in context.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142—150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Alexander Miller, Will Feng, Dhruv Batra, Antoine
Bordes, Adam Fisch, Jiasen Lu, Devi Parikh, and
Jason Weston. 2017a. ParlAl: A dialog research
software platform. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 79-84,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Alexander H. Miller, Will Feng, Dhruv Batra, Antoine
Bordes, Adam Fisch, Jiasen Lu, Devi Parikh, and
Jason Weston. 2017b. Parlai: A dialog research
software platform. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2017, Copenhagen, Den-
mark, September 9-11, 2017 - System Demonstra-
tions, pages 79—84. Association for Computational
Linguistics.

Alexandros Papangelis, Mahdi Namazifar, Chandra
Khatri, Yi-Chia Wang, Piero Molino, and Gokhan
Tur. 2020. Plato dialogue system: A flexible conver-
sational ai research platform.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311-318. ACL.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 8024-8035.

Maja Popovic. 2015. chrf: character n-gram f-score
for automatic MT evaluation. In WMT@EMNLP,

38

pages 392-395. The Association for Computer Lin-
guistics.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. 2020. Prophetnet: Predicting future n-gram
for sequence-to-sequence pre-training. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Findings, EMNLP
2020, Online Event, 16-20 November 2020, pages
2401-2410. Association for Computational Linguis-
tics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Trans. Assoc. Comput. Lin-
guistics, 8:264-280.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, pages 1073—1083.
Association for Computational Linguistics.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. 2017. A hybrid convolutional variational au-
toencoder for text generation. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9-11, 2017, pages 627-637.

Tulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C. Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In Pro-
ceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA, pages 3776-3784. AAAI Press.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 3104-3112.

Jian Tang, Yifan Yang, Samuel Carton, Ming Zhang,
and Qiaozhu Mei. 2016. Context-aware natural
language generation with recurrent neural networks.
arXiv preprint arXiv:1611.09900.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan Gomez, Stephan Gouws, Llion
Jones, Lukasz Kaiser, Nal Kalchbrenner, Niki Par-
mar, Ryan Sepassi, Noam Shazeer, and Jakob Uszko-

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo

Henao, Dinghan Shen, and Lawrence Carin. 2017.
Adpversarial feature matching for text generation. In
Proceedings of the 34th International Conference on

reit. 2018. Tensor2Tensor for neural machine trans-
lation. In Proceedings of the 13th Conference of the
Association for Machine Translation in the Ameri-
cas (Volume 1: Research Track), pages 193-199,
Boston, MA. Association for Machine Translation
in the Americas.

Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, pages 4006—4015.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. 2018. Texy-
gen: A benchmarking platform for text generation
models. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, SIGIR 2018, Ann Arbor, M1, USA, July 08-
12, 2018, pages 1097-1100. ACM.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998—6008.

Ramakrishna Vedantam, C. Lawrence Zitnick, and
Devi Parikh. 2015. Cider: Consensus-based image
description evaluation. In CVPR, pages 4566-4575.
IEEE Computer Society.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. 2018. Diverse beam
search for improved description of complex scenes.
In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educa-
tional Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018,
pages 7371-7379. AAAI Press.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 5754-5764.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
pages 3881-3890.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial
nets with policy gradient. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelli-
gence, February 4-9, 2017, San Francisco, Califor-
nia, USA, pages 2852-2858.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with BERT. In ICLR. Open-
Review.net.

39

Inside ASCENT: Exploring a Deep Commonsense Knowledge Base and its
Usage in Question Answering

Tuan-Phong Nguyen

Simon Razniewski

Gerhard Weikum

Max Planck Institute for Informatics
Saarbriicken, Germany
{tuanphong, srazniew, weikum}@mpi-inf.mpg.de

Abstract

ASCENT is a fully automated methodology
for extracting and consolidating commonsense
assertions from web contents (Nguyen et al.,
2021). It advances traditional triple-based
commonsense knowledge representation by
capturing semantic facets like locations and
purposes, and composite concepts, i.e., sub-
groups and related aspects of subjects. In this
demo, we present a web portal that allows
users to understand its construction process,
explore its content, and observe its impact in
the use case of question answering. The demo
website! and an introductory video? are both
available online.

1 Introduction

Commonsense knowledge (CSK) is an enduring
theme of Al (McCarthy, 1960) that has been re-
cently revived for the goal of building more robust
and reliable applications (Monroe, 2020). Recent
years have witnessed the emerging of large pre-
trained language models (LMs), notably BERT (De-
vlin et al., 2018), GPT (Brown et al., 2020) and
their variants which significantly boosted the per-
formance of tasks requiring natural language under-
standing such as question answering and dialogue
systems (Clark et al., 2020). Although it has been
shown that such LMs implicitly store some com-
monsense knowledge (Talmor et al., 2019), this
comes with various caveats, for example regarding
degree of truth, or negation, and their commercial
development is inherently hampered by their low
interpretability and explainability.

Structured knowledge bases (KBs), in contrast,
give a great possibility of explaining and interpret-
ing outputs of systems leveraging the resources.
There have been great efforts towards build-
ing large-scale commonsense knowledge bases

'"https://ascent.mpi-inf.mpg.de
https://youtu.be/qMkJIXqu_Yd4

40

(CSKBs), including expert-annotated KBs (e.g.,
Cyc (Lenat, 1995)), crowdsourced KBs (e.g., Con-
ceptNet (Speer and Havasi, 2012) and Atomic (Sap
et al., 2019)) and KBs built by automatic acqui-
sition methods such as WebChild (Tandon et al.,
2014, 2017), TupleKB (Mishra et al., 2017), Quasi-
modo (Romero et al., 2019) and CSKG (Ilievski
et al., 2020). Human-created KBs, although pos-
sessing high precision, usually suffer from low cov-
erage. On the other hand, automatically-acquired
KBs typically have better coverage, but also con-
tain more noise. Nonetheless, despite different
construction methods, these KBs are all based on a
simple subject-predicate-object model, which has
major limitations in validity and expressiveness.

We recently presented ASCENT (Nguyen et al.,
2021), a methodology for automatically collecting
and consolidating commonsense assertions from
the general web. To overcome the limitations of
prior works, ASCENT refines subjects with sub-
groups (e.g., circus elephant and domesticated ele-
phant) and aspects (e.g., elephant tusk and elephant
habitat), and captures semantic facets of assertions
(e.g., (lawyer, represents, clients, LOCATION: in
courts) or {(elephant, uses, its trunk, PURPOSE: to
suck up watery)).

For a given concept, ASCENT searches through
the web with pattern-based search queries dis-
ambiguated using WordNet (Miller, 1995) hyper-
nymy. Then, irrelevant documents are filtered out
based on similarity comparison against the corre-
sponding Wikipedia articles. We then use a se-
ries of judicious dependency-parse-based rules to
collect faceted assertions from the retained texts.
The semantic facets, which come from preposi-
tional phrases and supporting adverbs are then la-
beled by a supervised classifier. Finally, asser-
tions are clustered using similarity scores from
word2vec (Mikolov et al., 2013) and a fine-tuned
RoBERTa (Liu et al., 2019) model.

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 40-47, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

We executed the ASCENT pipeline for 10,000
prominent concepts (selected based on their respec-
tive number of assertions in ConceptNet) as pri-
mary subjects. In (Nguyen et al., 2021), we showed
that the content of the resulting CSKB (hereinafter
referred to as ASCENT KB) is a milestone in both
salience and recall. As extrinsic evaluation, we
conducted a comprehensive evaluation of the con-
tribution of CSK to zero-shot question answering
(QA) with pre-trained language models (Petroni
et al., 2020; Guu et al., 2020).

This paper presents a companion web portal of
the ASCENT KB, which enables the following in-
teractions:

1. Exploration of the construction process
of ASCENT, by inspecting word sense
and Wikipedia disambiguation, web search
queries, clustered statements, and source sen-
tences and documents.

Inspection of the resulting KB, starting from
subjects, predicates, objects, or examining
specific subgroups or aspects.

. Observation of the impact of structured knowl-
edge on question answering with pretrained
language models, comparing generated an-
swers across various CSKBs and QA settings.

The web portal is available at https://ascent.

mpi-inf.mpg.de, and a screencast demonstrating
the system can be found at https://youtu.be/
agMkJIXqu_Yd4.

2 ASCENT

Two major contributions of ASCENT are its ex-
pressive knowledge model, and its state-of-the-art
extraction methodology. Details are in the techni-
cal paper (Nguyen et al., 2021). In this section, we
revisit the most important points.

2.1 Knowledge model

ASCENT extends the traditional triple-based data
model in existing CSKBs in two ways.

Expressive subjects. Subjects in existing CSKBs
are usually single nouns, which implies two short-
comings: (i) different meanings for the same word
are conflated, and (ii) refinements and variants of
word senses are missed out. ASCENT has addressed
this problem with the following means:

41

1. When searching for source texts, ASCENT
combines the target subject with an informa-
tive hypernym from WordNet to distinguish
different senses of the word (e.g., “bus public
transport” and “bus network topology” for the
subject bus).

. ASCENT refines subjects with multi-word
phrases into subgroups and aspects. For ex-
ample, subgroups for the subject bus would
be tourist bus and school bus, while one of its
aspects would be bus driver.

Semantic facets. The validity of commonsense
assertions is usually non-binary (Zhang et al., 2017;
Chalier et al., 2020), and depends on specific tem-
poral and spatial circumstances (e.g., lions live for
10-14 years in the wild but for more than 15 years
in captivity). Moreover, CSK triples often ben-
efit from further context regarding causes/effects
and instruments (e.g., elephants communicate with
each other by creating sounds, beer is served in
bars). In ASCENT’s knowledge model, such infor-
mation is added to SPO triples via semantic facets.
ASCENT distinguished 8 types of facets: cause,
manner, purpose, transitive-object, degree, loca-
tion, temporal and other-quality.

2.2 Extraction pipeline

ASCENT is a pipeline operating in three phases:
source discovery, knowledge extraction and knowl-
edge consolidation. Fig. 1 illustrates the architec-
ture of the pipeline.

Source discovery. We utilize the Bing Web
Search API to obtain documents specific to each
subject, with search queries refined by the sub-
ject’s hypernyms in WordNet. We manually de-
signed query templates for 35 prominent hyper-
nyms (e.g., if subject sg has hypernym animal.n.01,
we produce the search query “sg animal facts”,
similarly for the hypernym professional.n.01, the
search query will be “sg job descriptions™). We
then compute the cosine similarity between the
bag-of-words representations of each obtained doc-
ument and a respective Wikipedia article to deter-
mine the relevance of the documents. Low-ranked
documents will be omitted in further steps.

Knowledge extraction. The extractors take in the
relevant documents and their outputs include: open
information extraction (OIE) tuples, list of sub-
groups and list of aspects. To obtain OIE tuples,
we extend the STUFFIE approach (Prasojo et al.,

Open |IE

¢

D

B

(Supervised Facet Labelin@

(Assertion Clustering)

Relevant websites (Coreference Resolution

)

)

(Noun Chunking
Web Search =

Noun chunks

OpenlE assertions

Facet Clustering

Concept S

(Subgroup/Aspect Extractio@

S

(1) Retrieval (2) Extra

ction

Related terms Commonsense assertions of S

(3) Consolidation

Figure 1: Architecture of the ASCENT extraction pipeline (Nguyen et al., 2021).

2018), a list of carefully crafted dependency-parse-
based rules, to pull out faceted assertions from the
texts. Then we classify each facet into one of the
eight semantic labels using a fine-tuned RoBERTa
model. For subgroups, noun phrases whose head
word is the target subject are collected as candi-
dates and then are clustered using the hierarchical
agglomerative clustering (HAC) algorithm on av-
erage word2vec representations. Finally, we col-
lect aspects from possessive noun chunks and SPO
triples where P is either “have”, “contain”, “be
assembled of” or “be composed of”.

Knowledge consolidation. We perform cluster-
ing on SPO triples and facet values. As SPO
triples, we first filter triple-pair candidates with
fast word2vec similarity. After that, advanced simi-
larity of triple pairs computed by another fine-tuned
RoBERTa model is fed to the HAC algorithm to
group the triples into semantically similar clusters.
For facet values, we group phrases with the same
head words together (e.g., “during evening” and
“in the evening”).

2.3 Web portal

The web portal (https://ascent.mpi-inf.mpg.

de) is implemented in Python using Django, and
hosted on an Nginx web server. The underlying
structured CSK is stored in a PostgreSQL database,
while for the QA part, statements of all CSKBs
are indexed and queried via Apache Solr, for fast
text-based querying. All components are deployed
on a virtual machine with access to 4 virtual CPUs
and 8 GB of RAM.

In the demonstration session, we show how users
can interact with the portal for exploring the KB
(Section 4.1), understanding the KB construction
(Section 4.2), and observing its utility for question

42

answering (Section 4.3).

3 Commonsense QA setups

One common extrinsic use case of KBs is question
answering. Recently, it was observed that prim-
ing language models (LMs) with relevant context
can considerably benefit their performance in QA-
like tasks (Petroni et al., 2020; Guu et al., 2020).
In (Nguyen et al., 2021), to evaluate the contri-
bution of structured CSK to QA, we conducted a
comprehensive evaluation consisting of four differ-
ent setups, all based on the above idea.

1. In masked prediction (MP), LMs are asked
to predict single masked tokens in generic
sentences.

In free generation (FG), LMs arbitrarily gen-
erate answer sentences to given questions.

. Guided generation (GG) extends free genera-
tion by answer prefixes that prevent the LMs
from evading answering.

. Span prediction (SP) is the task of locating
the answer of a question in provided context.

Examples of the QA setups can be seen in Ta-
ble 1. Generally, given a question, our system
will retrieve from CSKBs assertions relevant to it,
and then use the assertions as additional context
to guide the LMs. In the ASCENT demonstrator,
we provide a web interface for experimenting with
all of those QA setups with context retrieved from
several popular CSKBs.

4 Demonstration experience

In the demonstration session, attendees will experi-
ence three main functionalities of our demonstra-
tion system.

Setup Input Sample output

Elephants eat [MASK]. [SEP] Ele-
MP phants eat roots, grasses, fruit, and
bark, and they eat a lot of these things.

everything (15.52%),
trees (15.32%), plants
(11.26%)

C: Elephants eat roots, grasses, fruit,
and bark, and they eat...

They eat a lot of
grasses, fruits, and...

FG Q: What do elephants eat?

A:

C: Elephants eat roots, grasses, fruit, Elephants eat a lot of
GG and bark, and they eat... things.

Q: What do elephants eat?
A: Elephants eat

start=14, end=46,
answer="roots, grasses,
fruit, and bark”

question="What do elephants eat?”
SP context="Elephants eat roots, grasses,
fruit, and bark, and they eat...”

Table 1: Examples of QA setups (Nguyen et al., 2021).

4.1 Exploring the ASCENT KB

Concept page. Suppose a user wants to know
which knowledge ASCENT stores for elephants.
They can enter the concept into the search field in
the top right of the start page, and select the first
result from the autocompletion list, or press enter,
to arrive at the intended concept. The resulting
website (see Fig. 2) is divided into three main areas.

At the top left, they can inspect an image from
https://pixabay.com, the WordNet synset used
for disambiguation, the Wikipedia page used for
result filtering, and a list of alternative lemmas, if
existing.

At the top right, users can see subgroups and
related aspects, which in our knowledge represen-
tation model, can carry their own statements. This
way, they can learn that the most salient aspects of
elephants are their trunks, tusks and ears, or that
elephant trunks have more than 40,000 muscles.

The body of the page, presents the assertions,
organized into groups of same-predicate assertions.
In each group, assertions are sorted by their fre-
quency displayed beside their objects. For example,
the most commonly mentioned foods of elephants
are grasses, fruits, and plants. Many assertions
come with a red asterisk. This indicates that the as-
sertion comes with semantic facets. When clicking
on an assertion, it will show a small box display-
ing an SVG-based visualisation of the assertion in
which we illustrate all elements of the assertion: its
subject, predicate, object, facet labels and values,
frequency of the assertion as well as frequency of
each facet. For example, one can see that the pur-
pose of elephants using their trunks is to suck up
water.

Searching and downloading assertions. Alter-
natively to exploring statements starting from a
subject, users can start from a search functional-

43

ity under the Browse menu. This way, they can
search, for instance, for all concepts that eat grass
(capybara, zebra, kangaroo, ...).

The website also provides a JSON-formatted
data dump (678MB) of all 8.9 million assertions
extracted by the pipeline and their corresponding
source sentences and documents. This dataset is
also accessible via the HuggingFace Datasets pack-

age’.

4.2 Inspecting the construction of assertions

For many downstream use cases, it is important to
know about the provenance of information.

Users can inspect general properties of the con-
struction process by observing the WordNet lemma
and the Wikipedia page used for filtering, as well
as inspect specific statistics about the number of
retained websites, sentences, and assertions, in a
panel at the bottom of subject pages (e.g., 435 web-
sites were retained for elephant, from which 50k
OpenlE assertions could be extracted).

Furthermore, users can look deeply into the con-
struction process of each assertion on its own dedi-
cated page, which displays the following:

1. Clustered triples: These are triples that were
grouped together in the knowledge consolida-
tion phase (cf. Section 2.2), where the most
frequent triple was selected as cluster repre-
sentative. For example, for the assertion (lion,
eat, zebra, DEGREE: mostly) (14), the cluster
contains: (lion, eat, zebra) (9), (lion, prey on,
zebra) (2), (lion, feed on, zebra) (1), (lion,
feed upon, zebra) (1), (lion, prey upon, zebra)
(1). The numbers in parentheses indicate their
corresponding frequency.

2. Facets: The assertion’s facets are presented in
a table whose columns are facet value, facet
type and clustered facets. The frequency of
each clustered facet is also indicated.

3. Source sentences and documents: Finally, we
exhibit the sentences from which the asser-
tions were extracted and their parent docu-
ments (in the form of URLs). Furthermore, in
the extraction phase, we also recorded the po-
sition of assertion elements (i.e., subject, pred-
icate, object, facet) in the source sentences.

*https://huggingface.co/datasets/

ascent_kb

asian elephant 825

indian elephant 135

59 salient subgroups of Elephant

african elephant 773

female elephant 133

fo

Elephant
143 salient aspects of Elephant

Wordet

Wikipedia Elephant trunk 333 tusk 167 ear 166
2,828 assertions
Elephant is ... Elephant has ...
the largest land animals * 44 26teeth*® 8
herbivore * 34 tusk * &
intelligent 32 good memoaries 6

22

endangered * long trunk

more more...

n2

Construction process statistics

Bing query elephant animal facts

Bing results 500 Retained sites

Sites crawled successfully

Sentences of retained sites

forest elephant 245 bush elephant 181

more

male elephant 128

ot 65 skin 62 mouth 62 teeth 43 more..

Elephant is found ... Elephant eats ...

19

in forest grass”

19

indesert fruit *

18

in africa® plant

insavanna’ root 16

more... more...

470 OpenlE assertions 50,229

435 Relevant assertions 4,085

28,319 Clustered assertions 2,828

Figure 2: Example of ASCENT’s page for the concept elephant.

We show that information to users by high-
lighting each kind of element with a different
color in the source sentences.

4.3 Experimenting with commonsense QA

The third functionality experienced in the demo ses-
sion is the utilization of commonsense knowledge
for question answering (QA).

Input. There are four main parts in the input in-
terface for the QA experiment:

1. QA setup: The user chooses one QA setup
they want to experiment with. Available
are Masked Prediction, Span Prediction and
Free/Guided Generation. If Masked Predic-
tion is selected, the user can choose how many
answers the LM should produce. For the Gen-
eration settings, users can provide an answer
prefix to avoid overly evasive answers.

. Input query: The user enters the text question
as input. The question can be in the form
of a masked sentence (in the case of Masked
Prediction), or a standard natural-language
question (in other setups).

. Retrieval options: The user can select one
supported retrieval method and the number of

44

assertions to be retrieved per CSKB for each
question.

. Context sources: The user selects the sources
of context (i.e., “no context”, CSKBs and
“custom context”). If a CSKB is selected, the
system will retrieve from that KB assertions
relevant to the given input question. If “cus-
tom context” is selected, user must then enter
their own content. The “no context” option is
available for all setups but Span Prediction.

Output. The QA system presents its output in the
form of a table which has three columns: Source,
Answer(s) and Context. For Masked Prediction
and Span Prediction, answers are printed with
their respective confidence scores, meanwhile for
Free/Guided Generation, only answers are printed.
For Span Prediction in which answers come di-
rectly from given contexts, we also highlight the
answers in the contexts.

An example of the QA demo’s output for the
question “What do rabbits eat?” under the Free
Generation setting can be seen in Fig. 3. One can
observe that language models’ predictions are heav-
ily influenced by given contexts. Without context,
GPT-2 is only able to generate an evasive answer.

When being given context, it tends to re-generate
the first sentence in the context first, (e.g., see the
answers aligning with ASCENT, TupleKB and Con-
ceptNet in Fig. 3). For the context retrieved from
Quasimodo, GPT-2 is able to overlook the erro-
neous first sentence, however its generated answer
is rather elusive despite the fact that subsequent
statements in the context all contain direct answers
to the question.

The question “Bartenders work in [MASK].” un-
der the Masked Prediction setting is another ex-
ample for the influence of context on LMs’ output.
Since bartender is a subject well covered by the As-
CENT KB, the assertions pulled out are all relevant
(i.e., Bartenders work in bar. Bartenders work in
restaurant. ..) which help guide the LM to a good
answer (bar). Meanwhile, because this subject is
not present in TupleKB, its retrieved statements are
rather unrelated (Work capitals have firm. Work
experiences include statement. . .). Given that, the
top-1 prediction for this KB was tandem which is
obviously an evasive answer.

5 Related work

CSKB construction. Cyc (Lenat, 1995) is the
first attempt to build a large-scale common-
sense knowledge base. Since then, there have
been a number of other CSKB construction
projects, notably ConceptNet (Speer and Havasi,
2012), WebChild (Tandon et al., 2014, 2017), Tu-
pleKB (Mishra et al., 2017), and more recently
Quasimodo (Romero et al., 2019), Dice (Chalier
et al., 2020), Atomic (Sap et al., 2019), and
CSKG (Ilievski et al., 2020). The early approach
to building a CSKB is based on human annota-
tion (e.g., Cyc with expert annotation and Con-
ceptNet with crowdsourcing annotation). Later
projects tend to use automated methods based on
open information extraction to collect CSK from
texts (e.g., WebChild, TupleKB and Quasimodo).
Lately, CSKG is an attempt to combine various
commonsense knowledge resources into a single
KB. The common thread of these CSKB is that
they are all based on SPO triples as knowledge
representation, which has shortcomings (Nguyen
etal., 2021). ASCENT is the first attempt to build
a large-scale CSKB with assertions equipped with
semantic facets built upon the ideas of semantic
role labeling (Palmer et al., 2010).

KB visualization. Most CSKBs share their con-

45

tent via CSV files. Some, like ConceptNet*, We-
bChild’, Atomic® and Quasimodo7, have a web por-
tal to visualise their assertions. The most common
way for CSKB visualisation is to use a single page
for each subject and group assertions by predicate
(e.g., in ConceptNet and WebChild). Quasimodo,
on the other hand, implements a simple search in-
terface to filter assertions and presents assertions
in a tabular way (Romero and Razniewski, 2020).
The ASCENT demo has both functionalities: ex-
hibiting assertions of each concept in a separated
page, and supporting assertion filtering. Our demo
also uses an SVG-based visualisation of assertions
with semantic facets, which are a distinctive feature
of the ASCENT knowledge model.

Context in LM-based question answering.
Priming large pretrained LMs with context in
QA-like tasks is a relatively new line of research
(Petroni et al., 2020; Guu et al., 2020). In our orig-
inal paper, we made the first attempt to evaluate
the contribution of CSKB assertions to QA via four
different setups based on that idea. While others
use commonsense knowledge for (re-)training lan-
guage models (Hwang et al., 2021; Ilievski et al.,
2021; Ma et al., 2021; Mitra et al., 2020), to the
best of our knowledge, our demo system is the first
to visualize the effect of priming vanilla language
models, i.e., without task-specific retraining.

6 Conclusion

We presented a web portal for a state-of-the-art
commonsense knowledge base—the ASCENT KB.
It allows users to fully explore and search the
CSKB, inspect the construction process of each
assertion, and observe the impact of structured
CSKBs on different QA tasks. We hope that the
portal enables interesting interactions with the AS-
CENT methodology, and that the QA demo allows
researchers to explore the potentials of combining
structured data with pre-trained language models.

References

Tom B Brown et al. 2020. Language models are few-
shot learners. In NeurIPS.

*http://conceptnet.io
Shttps://gate.d5.mpi-inf.mpg.de/
webchild
®https://mosaickg.apps.allenai.org/
kg—atomic2020
7https://quasimodo.rZ.enst.fr

Output

Retriever: BM25 Retriever
Predictor: Free Generator gpt2

Source Answer(s)

No context They are very good at eating rabbits.

Ascenttriele Rabbits eat grass.

Quasimodo Rabbits eat the same things as humans.
TupleKB Rabbits eat rabbit.
ConceptNet Rabbits are good to eat.

Context

Rabbits eat grass. Rabbits eat plant. Rabbits eat vegetable. Rabbits eat food.
Rabbits eat weed.

Eats canrabbit. Rabbits eat wires. Rabbits eat roses. Rabbits eat carpet.
Rabbits eat mice.

Rabbits eat rabbit. Rabbits eat food. Rabbits eat carrot. Rabbits eat leaf.
Rabbits eat lettuce.

Rabbits are good to eat. Eat vegetables need rabbit. Eating vegetables have
pretend rabbit. Rabbits are cute. Rabbits are fast.

Figure 3: Free Generation output for question: “What do rabbits eat?”.

Yohan Chalier, Simon Razniewski, and Gerhard
Weikum. 2020. Joint reasoning for multi-faceted
commonsense knowledge. In AKBC.

Peter Clark et al. 2020. From ‘F’to ‘A’ on the NY
regents science exams: An overview of the Aristo
project. AI Magazine.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. In ICML.

Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. Comet-atomic 2020: On sym-
bolic and neural commonsense knowledge graphs.
In AAAIL

Filip Ilievski, Alessandro Oltramari, Kaixin Ma, Bin
Zhang, Deborah L. McGuinness, and Pedro Szekely.
2021. Dimensions of commonsense knowledge.
arXiv preprint arXiv:2101.04640.

Filip Ilievski, Pedro Szekely, and Bin Zhang. 2020.
Cskg: The commonsense knowledge graph. arXiv
preprint arXiv:2012.11490.

Douglas B Lenat. 1995. Cyc: A large-scale investment
in knowledge infrastructure. Communications of the
ACM.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kaixin Ma, Filip Ilievski, Jonathan Francis, Yonatan
Bisk, Eric Nyberg, and Alessandro Oltramari. 2021.
Knowledge-driven data construction for zero-shot

evaluation in commonsense question answering. In
AAAL

John McCarthy. 1960. Programs with common sense.
RLE and MIT computation center.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ICLR.

George A Miller. 1995. Wordnet: a lexical database for
English. Communications of the ACM.

Bhavana Dalvi Mishra, Niket Tandon, and Peter Clark.
2017. Domain-targeted, high precision knowledge
extraction. TACL.

Arindam Mitra, Pratyay Banerjee, Kuntal Kumar Pal,
Swaroop Mishra, and Chitta Baral. 2020. How ad-
ditional knowledge can improve natural language
commonsense question answering? arXiv preprint
arXiv:1909.08855.

Don Monroe. 2020. Seeking artificial common sense.
Communications of the ACM.

Tuan-Phong Nguyen, Simon Razniewski, and Gerhard
Weikum. 2021. Advanced semantics for common-
sense knowledge extraction. In WWW.

Martha Palmer, Daniel Gildea, and Nianwen Xue. 2010.
Semantic role labeling. Synthesis Lectures on Hu-
man Language Technologies.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktischel, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. In AKBC.

Radityo Eko Prasojo, Mouna Kacimi, and Werner Nutt.
2018. Stuffie: Semantic tagging of unlabeled facets
using fine-grained information extraction. In CIKM.

Julien Romero and Simon Razniewski. 2020. Inside
quasimodo: Exploring construction and usage of
commonsense knowledge. In CIKM.

46

Julien Romero, Simon Razniewski, Koninika Pal,
Jeff Z. Pan, Archit Sakhadeo, and Gerhard Weikum.
2019. Commonsense properties from query logs and
question answering forums. In CIKM.

Maarten Sap et al. 2019. Atomic: An atlas of machine
commonsense for if-then reasoning. In AAAL

Robyn Speer and Catherine Havasi. 2012. Conceptnet
5: A large semantic network for relational knowl-

edge. Theory and Applications of Natural Language
Processing.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2019. olmpics - on what language
model pre-training captures. TACL.

47

Niket Tandon, Gerard de Melo, Fabian M. Suchanek,
and Gerhard Weikum. 2014. Webchild: harvesting

and organizing commonsense knowledge from the
web. In WSDM.

Niket Tandon, Gerard de Melo, and Gerhard Weikum.
2017. Webchild 2.0 : Fine-grained commonsense
knowledge distillation. In ACL.

Sheng Zhang, Rachel Rudinger, Kevin Duh, and Ben-
jamin Van Durme. 2017. Ordinal common-sense in-
ference. TACL.

SciConceptMiner: A system for large-scale scientific concept discovery

Zhihong Shen Chieh-Han Wu

Li Ma

Chien-Pang Chen Kuansan Wang

Microsoft Research
Redmond, WA, USA
{zhihosh, chiewu,v-1lima3, v-chienc, kuansanw}@microsoft .com

Abstract

Scientific knowledge is evolving at an unprece-
dented rate of speed, with new concepts con-
stantly being introduced from millions of aca-
demic articles published every month. In this
paper, we introduce a self-supervised end-to-
end system, SciConceptMiner, for the auto-
matic capture of emerging scientific concepts
from both independent knowledge sources
(semi-structured data) and academic publica-
tions (unstructured documents). First, we
adopt a BERT-based sequence labeling model
to predict candidate concept phrases with self-
supervision data. Then, we incorporate rich
Web content for synonym detection and con-
cept selection via a web search API. This
two-stage approach achieves highly accurate
(94.7%) concept identification with more than
740K scientific concepts. These concepts are
deployed in the Microsoft Academic' produc-
tion system and are the backbone for its seman-
tic search capability.

1 Introduction

Scientific knowledge has been expanded at an ex-
ponential rate over the past decades and the fast-
growing volume of academic literature accentu-
ates a pressing need for automated capture of fine-
grained emerging concepts. Statistical topic mod-
els (Blei, 2012), such as latent Dirichlet alloca-
tion (LDA) (Blei et al., 2003), have been well-
recognized for automatically extracting the topic
structure of large document collections for past
decades. However, it has two main limitations to
prevent it from being widely applied in a modern
large-scale document collection.

First, it is the scalability issue on the number of
topics an LDA can model. The latest development
(Chen et al., 2018) can process 131M documents
with 28B tokens efficiently, however, it only ex-
tracts 1,722 topics. With the fast-growing body

"https://academic.microsoft .com/

48

Trending Topics in Embedding

Based on citation growth rate in the past 5 years.

Network embedding |

Triplet loss |

— — Network representation learning |
Graph embedding

—-— Zero shot learning

2016

2017 2018 2019 2020

Scientific concepts|that are discovered by SciConceptMiner

from the latest academic publications

Figure 1: Trending Topics under concept Embedding.

of scholarly communications, a comprehensive
manually controlled vocabulary like Medical Sub-
ject Headings(MeSH) (Lowe and Barnett, 1994)
contains tens of thousands of subjects (concepts)
mostly in the bio-med domain; and an automated
scientific knowledge exploration system such as
Microsoft Academic Graph (MAG) (Shen et al.,
2018) has hundreds of thousands of topics across
all academic disciplines. A topic modeling system
that is scalable not only to the size of documents
but also to the number of topics is imperative.

Second, the result of an LDA model is a list of
frequency-based terms that form a topic. It requires
manual efforts to annotate such lists to generate
a human-readable theme or topic name. An au-
tomatic process of identifying topic themes with
authoritative names and meaningful descriptions is
desired to reduce costly human interventions.

In this paper, we introduce a self-supervised
end-to-end system, SciConceptMiner, for automat-
ically discovering scientific concepts from both
semi-structured independent knowledge sources
and unstructured academic documents. It first
obtains a list of concept candidates, either
from external knowledge repositories such as
Wikipedia (Volkel et al., 2006; Vrandeci¢ and
Krotzsch, 2014) and Unified Medical Language
System (UMLS) (Bodenreider, 2004), or directly

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 48-54, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

\

New concept 1

Web Doc 1

WIKIPEDIA < E
The Free Encyclopedia N
e >
Independent gk | Scientific Concept Filtering
Knowledge s ‘:/j

Sources

i =

nih.gov

NEW

I

Unified Medical Language System® Ji:
(UMLS®)

)
Scientific Concept Filtering

Web Doc 2
nih.gov

New concept 2

Domains
Allowed:
nih.gov

e

EXISTING

<

Academic
Publications

Self-supervised
Concept Extractor
Learning

1. Concept Candidates Discovery
via External Sources & Academic Documents

Web Doc 3
webmd.org

Term 4

L

Existing concept

DISCARD

Web Doc 4
K Xyz.co

2. Synonym Detection & Concept Selection
via Web Search API

Wedmd.org
Springer.com
Wiley.com

Scientific Concept Candidates

Figure 2: An overview of the SciConceptMiner system.

mining concepts from a collection of academic
documents. Such concept lists are large and noisy.
They are in the scale of millions and dominated
by invalid or duplicate terms. We then send these
candidates as queries to a search engine API and
leverage rich Web content to identify legitimate
concepts, cluster synonyms, and discard improper
terms. The search API is also used to retrieve high-
quality concept descriptions.

One example is shown in Figure 1.2 Four out
of five trending topics (network embedding, triplet
loss, network representation learning, and zero shot
learning) under embedding are extracted by our
automatic concept extractor model trained on CS
corpus. It demonstrates that our designed model
can effectively capture the emerging trending topics
from the latest scientific articles.

The SciConceptMiner has been deployed to
identify concepts from millions of scholarly com-
munications in Microsoft Academic Graph (MAG)
(Sinha et al., 2015; Wang et al., 2019, 2020). The
MAG with the full list of 740K scientific concepts
can be freely accessed via the Microsoft Academic®
search website and MAG data set*.

2 System Description

As shown in Figure 2, the SciConceptMiner sys-
tem has two stages: the first is the concept can-
didates discovery from various data sources; the

2This is a snapshot captured in March 2021 for Embedding concept at Microsoft Aca-
demic production system: https://academic.microsoft.com/topics/41608201.

*https://academic.microsoft.com/

‘nttps://docs.microsoft.com/en-us/
academic-services/graph/

49

second is synonym detection and concept cluster-
ing via a Web search APL.

In the concept candidates discovery stage, we
first integrate the semi-structured independent
knowledge sources, Wikipedia and UMLS, into
the system. Such an existing concept list in the
system with associated documents enables us to
train a concept extractor learning model with self-
supervision. We design a BERT-based sequence
labeling model to make a binary prediction on
whether a word or phrase in a sentence is a scien-
tific concept or not. This proposed model is trained
on self-supervised data generated from existing
concepts (from Wikipedia and UMLS) tagged to a
collection of academic documents. We do the con-
cept inference with the trained model to generate
concept candidates for the next stage.

Concept candidates, as the input to the sec-
ond stage, are either from external knowledge
sources or inferred from academic documents.
Both sources have high noisy ratios with different
natures. The independent source such as Wikipedia
has high-quality entities (well-defined names and
descriptions, rare duplication, and rich links and
relationships with each other) but type noisy (many
other types of entities than academic concepts).
The UMLS candidates and the inferred candidates
from an unstructured corpus have more irrelevant
phrases and concept synonyms. With the help of a
search engine API to retrieve top N documents by
using concept candidates as queries, we analyze the
returning web pages and associated URL domain
information collectively. This process would iden-

tify around 3-5% of candidates from the first stage
as proper scientific concepts with consistently high
accuracy (94-95% based on sample results) across
all data sources, with over 740K concepts in total.

2.1 Concept Candidate Discovery

2.1.1 Semi-structured Independent
Knowledge Sources

There are many independent knowledge sources,
either manually curated or automatically created or
a hybrid of both. Among them, the most notable
ones are Wikipedia, WikiData?, DBpedia6, and
Yago’ in general domains and MeSH®, UMLS? in
the bio-med fields. We have applied Wikipedia
and UMLS as sources for SciConceptMiner system
because of their data quality and comprehensive
coverage on scientific terms and phrases. Other
semi-structured sources can be integrated with the
current system design seamlessly as long as they
pass the quality and relevancy examination of their
contents.

Wikipedia: Wikipedia'® is the largest collabo-
ratively edited online encyclopedic knowledge. It
contains contents in more than 300 languages and
has over 6 million English articles as of July 2020.
It was the first external data source being integrated
into MAG considering its comprehensive coverage
on academic topics spanning from social sciences
to natural sciences, as well as technology and ap-
plied sciences. Each topic in Wikipedia (as a sepa-
rate article) is written in high quality and has rare
duplication (Lewoniewski, 2018). The key chal-
lenge of mining quality academic concepts from
Wikipedia is to identify the right type of entities, as
most articles in Wikipedia are missing entity type
information. We used graph link analysis (Milne
and Witten, 2008) for type prediction and had ex-
panded the concepts from an initial 3K to over
200K. The details are described in the Concept Dis-
covery section in (Shen et al., 2018). For concepts
from Wikipedia, we did not use the search engine
API to further filter as the resulting concept list is
already with high quality and rare duplication.

UMLS:

The Unified Medical Language System (UMLYS)

5https:

6https:

7https:

8https:
html

‘https://www.nlm.nih.gov/research/
umls/index.html

Yhttps://www.wikipedia.org/

//www.wikidata.org/
//wiki.dbpedia.org/
//yago-knowledge.org/
//www.nlm.nih.gov/mesh/meshhome.

50

is a repository of biomedical vocabularies devel-
oped by the US National Library of Medicine
(NLM) with sources from multiple datasets and
standards. The latest 2020AA release contains
approximately 4.28 million medical concepts and
15.5 million unique concept names from over 200
sources. A system with large, complex data sources
typically has various inherent limitations on the
data quality. For UMLS, these include structural
inconsistencies such as cycles in graph hierarchy,
semantic inconsistencies between different vocabu-
laries, and missing hierarchical relationships (Bo-
denreider, 2004, 2007; Humphreys et al., 1998).

In the concept candidate discovery stage, we take
the full list of the concept names from UMLS and
first clean it with simple rules such as removing
digit-only terms, two-char terms, too long terms
(over 30 chars), etc. We further filter the remain-
ing terms with a corpus consisting of titles and
abstracts from 170 million English scientific arti-
cles in MAG and only keep terms that appeared
at least N times in above academic corpus. The
resulting list is ready to be sent to a search engine
API for duplication detection and concept selection
in the second stage.

2.1.2 Self-supervised Concept Extractor
Learning

The volume of new research being published is
rapidly increasing, with MAG adding over 1 mil-
lion new papers every month. This creates a unique
challenge to identify, describe, and categorize an
ever-evolving set of emerging concepts in a timely
fashion.

To tackle this challenge, we formulate the con-
cept detection as a self-supervised sequence label-
ing problem that allows us to extract concept can-
didates directly from unstructured academic docu-
ments. This is motivated by the recent development
of deep learning (DL) based Named Entity Recog-
nition (NER) models, which become dominant and
achieve state-of-the-art results (Lample et al., 2016;
Chiu and Nichols, 2016; Yadav and Bethard, 2019).
NER is the task of identifying named entities of a
specific type, such as person or location, in text. A
most recent survey (Li et al., 2020) proposed a new
taxonomy of DL-based NER with three parts: dis-
tributed representations for input, context encoder,
and tag decoder. We adopt this taxonomy to design
our concept extractor learning model.

Instead of a typical NER model which would
learn to identify several entity types at the same

O

T 1

CRF layer

Tt

I

N

BERT layer

Lw, [[w, J[wa [we J[ws [] W [

Network embedding aims to map the eee

BERT-based Sequence Labeling

Figure 3: Concept extractor learning with a BERT-
based sequence labeling model.

time, we reduce our model design to identify a sin-
gle entity type - scientific concept type. We propose
to treat scientific concept extraction as a sequence
labeling task. Tokens in the text are labeled with
the BIO notation. ‘B’, ‘I, and ‘O’ represent the be-
ginning, inside, and outside of a scientific concept
chunk respectively. On a sampled set of scientific
articles in MAG, we do lexical matching using the
synonyms of our existing concepts harvested from
Wikipedia and UMLS as self-supervised labels. We
fine-tune a transformer-based BERT model (De-
vlin et al., 2018) (e.g. BERT-Large) as a con-
text encoder and use a Conditional Random Field
(CRF) layer as a tag decoder to train a binary clas-
sifier on each word in a sentence to detect concept
mentions.'! Figure 3 illustrates the design of our
concept extractor learning model. We infer scien-
tific concept candidates using the trained model on
a larger set of high-quality MAG documents, i.e.
those published in prestigious journals/conferences.
Figure 4 provides some self-supervised concept la-
beling samples as well as sample sentences with
inferred new concepts. These new concept candi-
dates are ready to be used in the next stage.

2.2 Synonym Detection and Concept
Selection

In the second stage, we classify the scientific con-
cept candidates detected in the first stage (either
from UMLS or from automatic concept extractor
models) into three broad categories: (1) synonyms
of existing concepts, (2) new concepts, or (3) low-
quality words/phrases we shall discard.

1
We re-use the BERT vocabularies and their pre-trained embedding without regenerat-
ing and retraining on academic corpus.

51

/Title 1: A global geometric framework for nonlinear \

dimensionality reduction

Abs 1-1: Unlike... such as principal component analysis
(PCA) such and multidimensional scaling (MDS), our
approach is capable...

Title 2: PLS-regression: a basic tool of chemometrics
Abs 2-1: First, a Quantitative Structure-Activity
Relationship (QSAR)/ Quantitative Structure-Property
Relationship (QSPR) data

\ Self-supervised Training Samples /

Title 3: An attention-based collaboration framework for
multi-view network representation learning
Abs 3-1: combination of desirable properties for
noninvasive imaging and spectroscopy of materials.
Title 4: Distributed averaging in sensor networks based
on broadcast gossip algorithms
Abs 4-1: Multivariate calibration models are of critical
importance to many...

Inferred New Concepts Samples

Figure 4: Self-supervised concept labeling samples.

This is accomplished by searching for each con-
cept candidate using the Bing Web Search API'?
and clustering candidates into scientific concept
“identities” based on the URL relevance/reputation
and the consistency of the mentions among top
search results.

More specifically, if K out of top N URLSs re-
turned by two concept candidates is the same, we
consider these two candidates are synonyms of
a concept. We also curate the allowed-list and
block-list of URL domains. The concept candi-
dates whose top search results are from well-known
domains of high-quality academic knowledge (in
the allowed-list) would be accepted, and otherwise,
they would be rejected. The block-list is used to
reject terms that also have results from domains in
the allowed list. That is usually the case for com-
mon words and phrases which returned with pages
in online dictionary domains.

This simple yet effective approach can help
trim around 92%-97% concept candidates as noisy
terms and keep 3%-7% of high-quality concepts,
synonyms, and well-written descriptions from do-
mains containing credible academic knowledge and
are in the allowed-list.

3 Evaluation and Analysis

3.1 Self-supervised concept extractor
learning

We use the BERT-Large-Cased as the pre-trained
language model and fine-tune the described con-

12 . . - . . .
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/

cept extractor learner model with 4 epochs. We
generate the training corpus from MAG from CS
and Medicine domain respectively and split them
in 8:1:1 for train/dev/test. Table 1 shows the corpus
size used for training and inference.

CS

500K

3.4M
72.8M
8.9M

CS
2.56M

Med

414K

3.6M

82.7M
9.7M

Med
2.07TM

Training Corpus

of articles

of sentences

of tokens

of concept tokens

Inference Corpus

of articles

of sentences 17.6M 18.1M
of tokens 373.8M 413.4M
of concept tokens 26.2M 91.2M

CS

1.06 M
73,167
48,531
46,182
16,021
921k

Med

4.66M
88,350
34,744
31,302
11,389
4.53K

Inferred Concept Terms

of
of
of
of
of
of

distinct terms

cur. concept terms

new concept terms

new distinct concepts

new terms for cur. concepts
discarded terms

e oH e e W

Table 1: Training and Inference Corpus Stats.

To ensure that this model works for documents
across various scientific domains, we conduct ex-
periments training our model using documents in
different top domains (e.g. computer science and
medicine). We observe that higher-quality candi-
dates are generated using models trained from the
same domain corpus. For example, when we apply
the model trained with a CS corpus to predict con-
cepts in the medicine corpus, the F1 score drops
from 0.942 to 0.682. Therefore, we train different
models on the corpus from an individual top-level
domain, and the F1 scores of inference results on
in-domain and out-of-domain corpus are shown in
Table 2.

CS-Model | Medicine-Model
CS-Test 0.942 0.649
Medicine-Test 0.682 0.912

Table 2: F1 scores of test sets on different models.

We have only conducted model training and in-
ference on CS and medicine corpus. Continued
training on other discipline corpora as well as ex-
ploring more effective concept extractor learning
models are among our ongoing efforts.

3.2 Concept Analysis Based on Data Sources

In this section, we conduct an evaluation of the
concept quality in terms of accuracy and coverage.
We estimate the coverage by evaluating potential
missed opportunities on discarded terms. We also
leverage MAG data to conduct the analysis of top
domain distribution and topic age distribution con-
ditioned on different data sources.

52

The stats in this section are collected on four
groups of concepts by their data sources: Wikipedia,
UMLS, automatically extracted concepts on Com-
puter Science (AutoCS or A-CS) and Medicine
(AutoMed or A-Med) corpus respectively. Since
the concepts discovered in SciConceptMiner are
already integrated into MAG, we use the paper-
concept relationship, concept hierarchy, and paper
metadata such as publication year in MAG to fa-
cilitate this analysis. The details on how to obtain
these relationships and meta-data are out of the
scope of this work and please refer to (Wang et al.,
2019; Shen et al., 2018) for more information.

3.2.1 Size, Impact, and Accuracy

In Table 3, we report the number of concepts, av-
erage number of papers associated with a concept,
average citation received of a paper tagged with
a concept, as well as the accuracy of concepts.
The independent knowledge sources (Wikipedia
and UMLS) provide similar topic sizes on a scale
of hundreds of thousands, while the automatic ex-
traction models identify about one-tenth of the size
from external sources. On average, the concepts
from Wikipedia are broader (with more papers as-
sociated) and have a higher impact (with more ci-
tations received), while concepts from UMLS are
more fine-grained with slightly smaller influence.
We evaluate the accuracy with the same approach
described in (Shen et al., 2018) and it achieves
a similar accuracy level between 94% and 95%
across all data sources.

Data Source Size Paper | Cit. | Acc.

Wiki 226,466 | 3,386 | 15.6 | 94.8%
UMLS 433,468 59 9.1 | 94.5%
AutoCs 46,182 | 1,462 | 10.1 | 94.8%
AutoMed 31,302 | 1,498 | 10.7 | 94.2%

Table 3: Concept size, impact, and accuracy.

3.2.2 Potential Opportunities on Discarded
Contents

It is generally challenging to evaluate the cover-
age of such a large-scale concept discovery system
since it is nearly impossible to identify the “ground
truth” of full coverage, even in a narrowed sub-
domain. In order to estimate the coverage, we iden-
tify the potential opportunities that we may have
missed by sampling and inspecting the discarded
inferred terms from learned concept extractor mod-
els. We sample 300 discarded terms in AutoCS and
AutoMed respectively and report the size and accu-

racy!? in Table 4. In all terms with a positive label,
roughly one quarter to one third are new concepts
not in the current system, and the remaining 66%
to 75% are synonyms. Hence, we estimate that we
might have missed about 100K concepts and 200K
synonyms from the inference results of our concept
extractor models.

Source Discarded Size | Accuracy
Auto-CS terms 453 M 3.3%
Auto-Med terms 921 K 12.7%

Table 4: Discarded term size and accuracy.

3.2.3 Topic Domain Distribution

About 75% of 740K concepts in MAG are orga-
nized into a six-level DAG (directed acyclic graph)
structure taxonomy, with top two levels manually
curated (19 domains and 270 sub-domains). We
use this taxonomy to aggregate all concepts to top-
level 19 domains and report the percentage distri-
bution on top 5 domains per data source and for
all concepts. As shown in Table 5, Bio-Med-Chem
3 domains dominate all concepts (67%),Wikipedia
(51%), UMLS (90%), and auto-extracted AutoMed
(73%). Technology and applied sciences such as
Computer Science and Material Science are the
second biggest categories for all concepts. These
two applied sciences together with Mathematics
and Engineering dominate the AutoCS data source
(58%).

ALL

28.4%

24.2%
14.7%
7.0%
5.1%

Wiki
28.3%
11.0%
11.6%

9.3%

UMLS

35.4%
35.9%
18.6%

AutoCS AutoMed

41.3%
16.2%
15.3%
4.9%
7.8%

Bio
Med
Chem
ComSci
MatSci
Math
Engr
Other

7.5%

25.8%
13.8%
8.5%

9.3%

35.0%

- 2.6%
6.0% -

20.7% 33.9% 7.5% 14.5%

Table 5: Top domain distribution of concepts.

3.2.4 Topic Age Distribution

In Table 6, we report the average age of the papers
associated with a concept. The average publication
year (rounded off to the floor), as well as 5%, 50%
(the median), and 95% publication year of a con-
cept are also reported. It shows that concepts from
UMLS are generally discovered and used in ear-
lier years, lasting longer (25 years for the middle
90%), while AutoCS and AutoMed contain newer
concepts with shorter life span (17-18 years for the
middle 90%).

]3We split the sampled data of each category to 3 groups with 100 each and they are
evaluated by 3 judges. We report the average of positive label ratios.

53

Source | Age | AvgY | 5% Y | 50%Y | 95% Y
Wiki 18.2 | 2002 1983 2003 2013
UMLS 21.0 | 1999 1982 1997 2007
A-CS 14.1 | 2006 1990 2008 2017
A-Med | 15.7 | 2004 1989 2006 2016

Table 6: Age distribution of concepts.

Figure 5 provides a yearly distribution from 2010
to 2019. It represents the percentage of papers
(associated with concepts in respective sources)
over the past 10 years.'* This is consistent with
our expectation as one of our primary goals of
leveraging the automatic concept extraction is to
discover emerging concepts in the latest scientific
documents.

Concept Age Distribution

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Wikipedia

Figure 5: Concept Age Distribution 2010-2019.

UmMLS Auto-Extract

4 Conclusion

In this work, we demonstrated a large-scale scien-
tific concept discovery production system, SciCon-
ceptMiner, for automatically capturing academic
concepts from both semi-structured data and un-
structured documents. The system has two parts:
the first is the concept candidate identification,
and the second is synonym detection and concept
selection. We used a BERT-based sequence la-
beling model to learn concept phrases with self-
supervision and leverage a Web search API to clus-
ter synonyms and identify valid concepts.
SciConceptMiner has discovered more than
740K scientific concepts across all research do-
mains from Wikipedia, UMLS, and scholarly arti-
cles with high accuracy (94.7%). These concepts
are integrated to build the Microsoft Academic
Graph, which publishes one of the largest cross-
domain scientific taxonomy. It enables easy explo-
ration of scientific knowledge as well as facilitates
many downstream applications like information re-
trieval, question answering, and recommendations.
please note that the percentage of papers of each year is calculated by dividing by all

papers for a source. Since the earlier years’ distributions are very close, we do not plot them.
The sum of each source over the past 10 years is less than 1.

References

David M Blei. 2012. Probabilistic topic models. Com-
munications of the ACM, 55(4):77-84.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993-1022.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl_1):D267—
D270.

Olivier Bodenreider. 2007. The unified medical lan-
guage system what is it and how to use it? Tutorial
at Medinfo.

Jianfei Chen, Jun Zhu, Jie Lu, and Shixia Liu. 2018.
Scalable training of hierarchical topic models. Pro-
ceedings of the VLDB Endowment, 11(7):826-839.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional Istm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357-370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Betsy L Humphreys, Donald AB Lindberg, Harold M
Schoolman, and G Octo Barnett. 1998. The unified
medical language system: an informatics research
collaboration. Journal of the American Medical In-
formatics Association, 5(1):1-11.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Wiodzimierz Lewoniewski. 2018. Measures for qual-
ity assessment of articles and infoboxes in mul-
tilingual wikipedia. In International Conference
on Business Information Systems, pages 619-633.
Springer.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and
Data Engineering.

Henry J Lowe and G Octo Barnett. 1994. Understand-
ing and using the medical subject headings (mesh)
vocabulary to perform literature searches. Jama,
271(14):1103-1108.

David Milne and Ian H Witten. 2008. Learning to link
with wikipedia. In Proceedings of the 17th ACM
conference on Information and knowledge manage-
ment, pages 509-518.

Zhihong Shen, Hao Ma, and Kuansan Wang. 2018.
A web-scale system for scientific knowledge explo-
ration. arXiv preprint arXiv:1805.12216.

54

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Dar-
rin Eide, Bo-June Hsu, and Kuansan Wang. 2015.
An overview of microsoft academic service (mas)
and applications. In Proceedings of the 24th inter-
national conference on world wide web, pages 243—
246.

Max Volkel, Markus Krotzsch, Denny Vrandecic,
Heiko Haller, and Rudi Studer. 2006. Semantic
wikipedia. In Proceedings of the 15th international
conference on World Wide Web, pages 585-594.

Denny Vrandeci¢ and Markus Krotzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78-85.

Kuansan Wang, Zhihong Shen, Chi-Yuan Huang,
Chieh-Han Wu, Darrin Eide, Yuxiao Dong, Junjie
Qian, Anshul Kanakia, Alvin Chen, and Richard Ro-
gahn. 2019. A review of microsoft academic ser-
vices for science of science studies. Frontiers in Big
Data, 2:45.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-
Han Wu, Yuxiao Dong, and Anshul Kanakia. 2020.
Microsoft academic graph: When experts are not
enough. Quantitative Science Studies, 1(1):396—
413.

Vikas Yadav and Steven Bethard. 2019. A survey on re-
cent advances in named entity recognition from deep
learning models. arXiv preprint arXiv:1910.11470.

NeurST: Neural Speech Translation Toolkit

Chengqi Zhao

Mingxuan Wang Qiangian Dong Rong Ye

Lei Li

ByteDance Al Lab, Shanghai, China

{zhaochengqi .d, wangmingxuan.89, donggiangian, yerong, lileilab}@bytedance .com

Abstract

NeurST is an open-source toolkit for neural
speech translation. The toolkit mainly fo-
cuses on end-to-end speech translation, which
is easy to use, modify, and extend to ad-
vanced speech translation research and prod-
ucts. NeurST aims at facilitating the speech
translation research for NLP researchers and
building reliable benchmarks for this field. It
provides step-by-step recipes for feature ex-
traction, data preprocessing, distributed train-
ing, and evaluation. In this paper, we will in-
troduce the framework design of NeurST and
show experimental results for different bench-
mark datasets, which can be regarded as reli-
able baselines for future research. The toolkit
is publicly available at https://github.
com/bytedance/neurst and we will con-
tinuously update the performance of NeurST
with other counterparts and studies at https:
//st-benchmark.github.io/.

1 Introduction

Speech translation (ST), which translates audio sig-
nals of speech in one language into text in a foreign
language, is a hot research subject nowadays and
has widespread applications, like cross-language
videoconferencing or customer support chats.
Traditionally, researchers build a speech transla-
tion system via a cascading manner, including an
automatic speech recognition (ASR) and a machine
translation (MT) subsystem (Ney, 1999; Casacu-
berta et al., 2008; Kumar et al., 2014). Cascade sys-
tems, however, suffer from error propagation prob-
lems, where an inaccurate ASR output would theo-
retically cause translation errors. Owing to recent
progress of sequence-to-sequence modeling for
both neural machine translation (NMT) (Bahdanau
et al., 2015; Luong et al., 2015; Vaswani et al.,
2017) and end-to-end speech recognition (Chan
et al., 2016; Chiu et al., 2018; Dong et al., 2018),

55

it becomes feasible and efficient to train an end-to-
end direct ST model (Berard et al., 2016; Duong
et al., 2016; Weiss et al., 2017). This end-to-end
fashion attracts much attention due to its appealing
properties: a) modeling without intermediate ASR
transcriptions obviously alleviates the propagation
of errors; b) a single and unified ST model is bene-
ficial to deployment with lower latency in contrast
to cascade systems.

Recent studies show that end-to-end ST models
achieve promising performance and are compara-
ble with cascaded models (Ansari et al., 2020). The
end-to-end solution has great potential to be the
dominant technology for speech translation, how-
ever challenges remain. The first is about bench-
marks. Many ST studies conduct experiments
on different datasets. Liu et al. (2019) evaluate
the method on TED English-Chinese; and Dong
et al. (2021) use libri-trans English-French and
IWSLT2018 English-German dataset; and Wu et al.
(2020) show the results on CoVoST dataset and
the FR/RO portions of MuST-C dataset. Different
datasets make it difficult to compare the perfor-
mance of their approaches. Further, even for the
same dataset, the baseline results are not necessar-
ily kept consistent. Take the libri-trans English-
French dataset as an example. Dong et al. (2021)
report the pre-trained baseline as 15.3 and the result
of Liu et al. (2019) is 14.3 in terms of tokenized
BLEU, while Inaguma et al. (2020) report 15.5
(detokenized BLEU). The mismatching baseline re-
sults in an unfair comparison on the improvements
of their approaches. We think one of the primary
reasons is that the preprocessing of audio data is
complex, and the ST model training involves many
tricks, such as pre-training and data augmentation.

Therefore a reproducible and reliable benchmark
is required. In this work, we present NeurST ,
a toolkit for easily building and training end-to-
end ST models, as well as end-to-end ASR and

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 55-62, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

NMT for cascade systems. We implement state-of-
the-art Transformer-based models (Vaswani et al.,
2017; Karita et al., 2019) and provide step-by-step
recipes for feature extraction, data preprocessing,
model training, and inference for researchers to
reproduce the benchmarks. Though there exist
several counterparts, such as Lingvo (Shen et al.,
2019), fairseq-ST (Wang et al., 2020a) and Kaldi '
style ESPnet-ST (Inaguma et al., 2020), NeurST
is specially designed for speech translation tasks,
which encapsulates the details of speech processing
and frees the developers from data engineering. It
is easy to use and extend. The contributions of this
work are as follows:

* NeurST is designed specifically for end-to-

end ST, with clean and simple code. It is
lightweight and independent of Kaldi, which
simplifies installation and usage, and is more
compatible for NLP researchers.
We report strong benchmarks with well-
designed hyper-parameters and show best
practice on several ST corpora. We provide a
series of recipes to reproduce them, which
serves as reliable baselines for the speech
translation field.

2 Design and Features

NeurST is implemented with both TensorFlow?2
and PyTorch backends. In this section, we will
introduce the design components and features of
this toolkit.

2.1 Design

NeurST divides one running job into four compo-
nents: Dataset, Model, Task and Executor.

Dataset NeurST abstracts out a common inter-
face Dataset for data input. For example, we
can train a speech translation model from either
a raw dataset tarball or pre-extracted record files.
The Dataset iterates on the data files and stan-
dardizes the read records, e.g., ST tasks only accept
key-value pairs storing audio signals/features and
translations. One can implement their logic to ac-
cept the data of various modalities.

Model NeurST provides an optimal implementa-
tion of Transformer and its adaptation to speech-
to-text tasks, which achieve state-of-the-art per-
formance on standard benchmarks. Moreover,

"https://kaldi-asr.org/

56

one can customize various models using Tensor-
Flow2/PyTorch APIs or combine the encoders, de-
coders, and layers inside the NeurST .

Task NeurST abstracts out Task interface to
bridge Dataset and Model. In detail, Task de-
fines data pipelines to match the data samples from
Dataset to the input formats of Model. For
examples, ST task does tokenization on the text
translations and transforms each token to index. In
this way, user-defined Dataset and Model can
be efficiently integrated into NeurST , as long as
they share the same Task.

Executor NeurST provides the execution logic
for handling basic workflows of training, valida-
tion, and inference. Researchers can either define
their specific process of training and evaluation,
or pay less attention to API details in Executor
but reuse them by simply customizing Dataset,
Model and Task.

2.2 Features

Computation NeurST has high computation ef-
ficiency and it can be further optimized by en-
abling mixed-precision (Micikevicius et al., 2018)
and XLA (Accelerated Linear Algebra). Further-
more, NeurST supports fast distributed training
using Horovod (Sergeev and Balso, 2018) and
Byteps (Peng et al., 2019; Jiang et al., 2020) on
large-scale scenarios.

Data Preprocessing NeurST supports on-the-fly
data preprocessing via a number of lightweight
python packages, like python_speech_features” for
extracting audio features (e.g. mel-frequency cep-
stral coefficients and log-mel filterbank coeffi-
cients). And for text processing, NeurST inte-
grates some effective tokenizers, including moses
tokenizer®, byte pair encoding (BPE) (Sennrich
et al., 2016b) and SentencePiece”. Alternatively,
the training data can be preprocessed and stored in
binary files (e.g., TFRecord) beforehand, which is
guaranteed to improve the I/O performance during
training. Moreover, to simplify such operations,
NeurST provides the command-line tool to create
such record files, which automatically iterates on

https://github.com/jameslyons/python_
speech_features

3The python version:
alvations/sacremoses

*nttps://github.com/google/
sentencepiece

https://github.com/

various data formats defined by Dataset, prepro-
cesses data samples according to Task and writes
to the disk.

Transfer Learning NeurST supports initializing
the model variables from well-trained models as
long as they have the same variable names. As
for ST, we can initialize the ST encoder with a
well-trained ASR encoder and initialize the ST
decoder with a well-trained MT decoder, which
facilitates to achieve promising improvements. Be-
sides, NeurST also provides scripts for convert-
ing released models from other repositories, like
wav2vec2.0 (Baevski et al., 2020) and BERT (De-
vlin et al., 2019). Researchers can conveniently
integrate these pre-trained components to the cus-
tomized models.

Simultaneous Translation NeurST keeps up
with the recent progress of simultaneous translation.
The models are extended to train with streaming
audio or text input.

Validation while Training NeurST supports
customizing validation process during training. By
default, NeurST offers evaluation on development
data during training and keeps track of the check-
points with the best evaluation results.

Monitoring NeurST supports TensorBoard for
monitoring metrics during training, such as training
loss, training speed, and evaluation results.

Model Serving There is no gap between the
research models and production models under
NeurST , while they can be easily served with
TensorFlow Serving. Moreover, for higher per-
formance serving of standard transformer models,
NeurST is able to integrate with other optimized in-
ference libraries, like lightseq (Wang et al., 2021).

3 Speech Translation Benchmarks

We conducted experiments on several benchmark
speech translation corpora using NeurST and com-
pared the performance with other open-source
codebases and studies. Though that would be an
unfair comparison due to the different model struc-
tures and hyperparameters, the goal of NeurST is
to provide strong and reproducible benchmarks for
future research.

3.1 Datasets

We choose the following publicly available speech
translation corpora that include speech in a source

57

task initscale endscale decayat decay steps
MT 1.0 1.0 - -
ASR 35 2.0 50k 50k

ST 35 1.5 50k 50k

Table 1: Hyperparameters of the learning rate schedule.
Take the case of ST, the learning rate is scaled up by
3.5x for the first S0k steps. Then, we linearly decrease
the scaling factor to 1.5 for 50k steps.

language aligned to text in a target language:
libri-trans (Kocabiyikoglu et al., 2018) ° is a small
EN—FR dataset which was originally started from
the LibriSpeech corpus, the audiobook recordings
for ASR (Panayotov et al., 2015). The English ut-
terances were automatically aligned to the e-books
in French, and 236 hours of English speech aligned
to French translations at utterance level were fi-
nally extracted. It has been widely used in previous
studies. As such, we use the clean 100-hour por-
tion plus the augmented machine translation from
Google Translate as the training data and follow its
split of dev and test data.

MuST-C (Di Gangi et al., 2019)° is a multilingual
speech translation corpus from English to 8 lan-
guages: Dutch (NL), French (FR), German (DE),
Italian (IT), Portuguese (PT), Romanian (RO), Rus-
sian (RU) and Spanish (ES). MuST-C comprises
at least 385 hours of audio recordings from En-
glish TED talks with their manual transcriptions
and translations at sentence level for training, and
we use the dev and tst-COMMON as our develop-
ment and test data, respectively. To the best of our
knowledge, MuST-C is currently the largest speech
translation corpus available for each language pair.

3.2 Data Preprocessing

Beyond the officially released version, we per-
formed no other audio to text alignment and data
cleaning on libri-trans and MuST-C datasets.

For speech features, we extracted 80-channel log-
mel filterbank coefficients with windows of 25ms
and steps of 10ms, resulting in 80-dimensional fea-
tures per frame. The audio features of each sample
were then normalized by the mean and the standard
deviation. All texts were segmented into subword
level by first applying Moses tokenizer and then
BPE. In detail, we removed all punctuations and
lowercased the sentences in the source side while

Shttps://github.com/alicank/
Translation-Augmented-LibriSpeech-Corpus
*https://ict.fbk.eu/must-c/

Model tok detok
ESPnet-ST ASR transf-s + CTC — MT (Inaguma et al., 2020)" - 17.0
Cascade
NeurST ASR transf-s — MT 18.2 16.8
ST BiLSTM (Bahar et al., 2019) 17.0 16.2
ST transf-s (Liu et al., 2019) 14.3 -
ST transf-s + KD (Liu et al., 2019) 170 -
ESPnet-ST ST transf-s (Inaguma et al., 2020) - 16.7
End-to-End TCEN-LSTM (Wang et al., 2020b)” - 171
ST transf-s (Wang et al., 2020c) 16.0 -
ST transf-s + curriculum pre-training (Wang et al., 2020c) 177 -
LUT (Dong et al., 2021) 17.8 -
NeurST ST transf-s 18.7 17.2

Table 2: Case-insensitive BLEU scores on libri-trans test set under constrained setting (without additional ASR
and MT data). TNotably, we refer to the results presented in espnet /egs/libri_trans/st1 and consider
them as detokenized BLEU according to the evaluation script in the repository’. * The result of TCEN-LSTM is
also marked as detokenized BLEU due to its implementation on ESPnet-ST.

Model DE ES FR IT NL PT RO RU avg.
ESPnet-ST ASR transf-s + CTC — MT
Cascade (Inaguma et al., 2020) 2377 28.7 338 24.0 279 29.0 227 164 25.8
NeurST ASR transf-s — MT 234 28.0 339 238 27.1 283 222 160 253
ESPnet-ST ST transf-s (Inaguma et al., 2020) 22.9 28.0 32.8 23.8 27.4 28.0 219 158 25.1
End-to-End fairseq-ST ST transf-s (Wang et al., 2020a) 22.7 27.2 329 227 273 28.1 219 153 248
ST transf-base + AFS"Y (Zhang et al., 2020) 22.4 269 31.6 23.0 249 263 21.0 147 239
NeurST ST transf-s 22.8 274 333 229 272 28.7 222 151 249

Table 3: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON.

the cases and punctuations of target sentences were
reserved. The BPE rules were jointly learned with
8,000 merge operations and shared across ASR,
MT, and ST tasks.

3.3 Benchmark Models

We implemented Transformer (Vaswani et al.,
2017), the state-of-the-art sequence-to-sequence
model, for all our tasks.

In detail, for MT in cascade systems, the model
included 6 layers for both encoder and decoders.
The embedding dimension was 256, and the size of
hidden units in feedforward layer was 2,048. The
attention head for self-attention and cross-attention
was set to 4. We used Adam optimizer (Kingma
and Ba, 2015) with 5; = 0.9, 82 = 0.98 and ap-
plied the same schedule algorithm as Vaswani et al.
(2017) for learning rate. We trained the MT models
with a global batch size of 25,000 tokens.

As for ASR/ST, we referred to the recent
progress of Transformer-based end-to-end ASR

"multi-bleu-detok.perl in https:
//github.com/espnet/espnet/blob/master/
utils/score_bleu.sh

58

models (Dong et al., 2018; Karita et al., 2019) and
extended the basic transformer model to be compat-
ible with audio inputs. The audio frames were first
compressed by two-layer CNN with 256 channels,
3 x 3 kernel and stride size 2, each of which was
followed by a layer normalization. Then, we per-
formed a linear transformation on the compressed
audio representations to match the width of the
transformer model. We used the same model struc-
ture as MT, except that we enlarged the number
of encoder layers to 12 to obtain better perfor-
mance. This configuration is labeled as transf-s
(transformer small). For training, we used the same
Adam optimizer as MT but set the warmup steps to
25,000, and we empirically scaled up the learning
rate to accelerate the convergence. The hyperpa-
rameters of the learning rate schedule are listed in
Table 1. Moreover, for GPU memory efficiency,
we truncated the audio frames to 3,000 and re-
moved training samples whose transcription length
exceeded 120 and 150 for ASR and ST, respectively.
The ASR models were trained with 120,000 frames
per batch, while the batch size for ST was 80,000
frames. To further improve the performance of ST,

Model tok detok
Cascade

NeurST ASR transf-s - MT 174 16.0

End-to-End

NeurST ST transf-s 17.8 163

ST transf-base + AFSHF 186 172

Table 4: Case-sensitive BLEU scores on libri-trans
test set under constrained setting. <is from Zhang
et al. (2020) with the proposed adaptive feature selec-
tion method, which uses the transformer base setting
(embedding size=512).

we applied SpecAugment technique (Park et al.,
2019) with frequency masking (mF = 2, F' = 27)
and time masking (m7T = 2,7 = 70,p = 0.2).

Additionally, we applied label smoothing of
value 0.1 for training all three tasks. The encoder
of the ST model is initialized by the ASR encoder
by default unless noted.

3.4 Evaluation

For evaluation, we averaged the latest 10 check-
points and used a beam width of 4 with no length
penalty for all the above tasks.

We use word error rate (WER) to evaluate
ASR models and report case-sensitive detok-
enized BLEU® for MT and ST models. In or-
der to compare with existing works, we also
report case-insensitive tokenized BLEU using
multi-bleu.perl in Moses for libri-trans
dataset.

3.5 Main Results

The overall results and comparisons with other stud-
ies are illustrated in Table 2 and 3. It is worth noting
that all results are from single models rather than
ensemble models.

To make a fair comparison on [libri-trans cor-
pus, we list both tokenized and detokenized BLEU
scores in Table 2 and strive to distinguish the met-
ric of existing literature. Our transformer-based ST
model, which only applies ASR pre-training and
SpecAugment, achieves superior results versus re-
cent works about knowledge distillation (Liu et al.,
2019), curriculum pre-training (Wang et al., 2020c),
and LUT (Dong et al., 2021). Compared with the
counterpart ESPnet-ST, we also outperform by 0.5
BLEU, even though Inaguma et al. (2020) apply
additional techniques like speed perturbation, pre-
trained MT decoder, and CTC loss for ASR pre-

$https://github.com/mjpost/sacrebleu

59

Model NeurST ESPnet-ST
ST + ASR enc init. 16.5 15.5
+ MT dec init. 16.6 16.2
+ SpecAug. 17.2 16.7
ST + ASR enc init. + SpecAug. 17.2 -

Table 5: Case-insensitive detokenized BLEU scores on
libri-trans test set with difference setups.

Model NeurST ESPnet-ST
pure ST 18.6 -
+ ASR enc init. 21.9 21.8
+ MT dec init. 22.1 22.3
+ SpecAug. 233 22.9
ST + ASR enc init. + SpecAug. 22.8 -

Table 6: Case-sensitive detokenized BLEU scores on
MuST-C EN-DE tst-COMMON with difference setups.

training. The cascade baseline is slightly worse
than that of ESPnet-ST (-0.2 BLEU) because the
ASR+CTC can achieve lower WER (6.4)° while
our pure end-to-end ASR obtains 8.8. We surpris-
ingly find that the end-to-end ST model exceeds the
cascade system by 0.4~0.5 BLEU. We will discuss
this in detail in section 3.7. And as a supplemen-
tary benchmark, we present case-sensitive BLEU
scores in Table 4.

Table 3 illustrates the results on MuST-C tst-
COMMON. The results of our end-to-end ST model
are competitive with both fairseq-ST and ESPnet-
ST.

3.6 Ablation Study

Training a direct ST model is more complicated
than training an ASR or MT model. Our prelim-
inary experiment based on a pure end-to-end ST
model fails to converge on libri-trans corpus, which
can be the result of the data scarcity. To alleviate
this problem, pre-training some parts of the neural
network is the most effective way and has been
validated in all existing end-to-end ST studies. We
show our results in Table 5 and 6 as a reference
for future works. It turns out that we can obtain a
reasonable or even better BLEU score by simply
initializing the ST encoder with a pre-trained ASR
encoder. The improvement by MT decoder initial-
ization is relatively marginal in our setup. Further-
more, the SpecAugment technique can consistently
boost ST models.

°from https://github.com/espnet/espnet/
blob/master/egs/libri_trans/asrl/RESULTS.
md

Model BLEU
large MT (w/ punc. & cased) 36.2
large MT (w/o punc.& Ic) 343
large cascade ST 314
large end-to-end ST 29.7

Table 7: Case-sensitive detokenized BLEU scores on
MuST-C EN-DE tst-COMMON.

3.7 Cascade versus End-to-End

Previous experiments on libri-trans and MuST-C
NL/PT show that the end-to-end systems have out-
performed the cascade systems. Here we argue that
the performance of the cascade systems above is
hampered by a lack of quantitative data, and they
should take advantage of large amounts of ASR
and MT data separately. Hence, we further ex-
tended NeurST to large-scale scenarios and exper-
imented on the allowed datasets for IWSLT 2021
evaluation campaign!®. We followed the practice
of Zhao et al. (2021) to build our large cascade
and end-to-end ST systems, which contains large-
scale back-translation (Sennrich et al., 2016a) and
pseudo labeling (also known as knowledge distil-
lation) technologies. The results are illustrated in
Table 7. As seen, there is a significant loss of
1.7 BLEU between end-to-end ST and cascade ST.
And the cascade system would have the potential
to narrow the gap to the pure MT system by intro-
ducing extra punctuation restoration and true-case
modules.

Though the cascade system is superior under
large data conditions, we believe future researches
on self-supervised learning, knowledge distillation,
and dataset construction would realize the potential
of end-to-end models.

4 Conclusion

We introduce NeurST toolkit for easily building
and training end-to-end speech translation models.
We provide straightforward recipes for audio data
pre-processing, training, and inference, which we
believe is friendly with NLP researchers. Moreover,
we report strong and reproducible benchmarks and
will continuously catch up on advanced progress us-
ing NeurST , which can be regarded as the reliable
baselines for the ST field.

Yhttps://iwslt.org/2021/0ffline

60

References

Ebrahim Ansari, Amittai Axelrod, Nguyen Bach,
Ondfej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir
Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stiiker, Marco
Turchi, Alexander Waibel, and Changhan Wang.
2020. FINDINGS OF THE IWSLT 2020 EVALU-
ATION CAMPAIGN. In Proceedings of the 17th In-
ternational Conference on Spoken Language Trans-
lation, pages 1-34, Online. Association for Compu-
tational Linguistics.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech represen-
tations. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurlPS 2020,
December 6-12, 2020, virtual.

Parnia Bahar, Albert Zeyer, Ralf Schliiter, and Her-
mann Ney. 2019. On using specaugment for end-to-
end speech translation. In International Workshop
on Spoken Language Translation (IWSLT) 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Alexandre Berard, Olivier Pietquin, Christophe Servan,
and Laurent Besacier. 2016. Listen and translate: A
proof of concept for end-to-end speech-to-text trans-
lation. NIPS workshop on End-to-end Learning for
Speech and Audio Processing.

Francisco Casacuberta, Marcello Federico, Hermann
Ney, and Enrique Vidal. 2008. Recent efforts in
spoken language translation. IEEE Signal Process.
Mag., 25(3):80-88.

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing,
ICASSP 2016, Shanghai, China, March 20-25, 2016,
pages 4960-4964. IEEE.

Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Ro-
hit Prabhavalkar, Patrick Nguyen, Zhifeng Chen,
Anjuli Kannan, Ron J. Weiss, Kanishka Rao, Ekate-
rina Gonina, Navdeep Jaitly, Bo Li, Jan Chorowski,
and Michiel Bacchiani. 2018. State-of-the-art
speech recognition with sequence-to-sequence mod-
els. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP
2018, Calgary, AB, Canada, April 15-20, 2018,
pages 4774-4778. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2019. MuST-C:
a Multilingual Speech Translation Corpus. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2012-2017,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-
transformer: A no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP 2018, Calgary, AB, Canada,
April 15-20, 2018, pages 5884-5888. IEEE.

Qiangian Dong, Rong Ye, Mingxuan Wang, Hao Zhou,
Shuang Xu, Bo Xu, and Lei Li. 2021. Listen, un-
derstand and translate: Triple supervision decouples
end-to-end speech-to-text translation. Proceedings
of the AAAI Conference on Artificial Intelligence.

Long Duong, Antonios Anastasopoulos, David Chiang,
Steven Bird, and Trevor Cohn. 2016. An attentional
model for speech translation without transcription.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 949-959, San Diego, California. Association
for Computational Linguistics.

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki
Karita, Nelson Yalta, Tomoki Hayashi, and Shinji
Watanabe. 2020. ESPnet-ST: All-in-one speech
translation toolkit. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 302-
311, Online. Association for Computational Linguis-
tics.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. 2020. A unified archi-
tecture for accelerating distributed DNN training in
heterogeneous gpu/cpu clusters. In /4th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 463—479.

Shigeki Karita, Xiaofei Wang, Shinji Watanabe,
Takenori Yoshimura, Wangyou Zhang, Nanxin
Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi In-
aguma, Ziyan Jiang, Masao Someki, Nelson En-
rique Yalta Soplin, and Ryuichi Yamamoto. 2019. A
comparative study on transformer vs RNN in speech

61

applications. In IEEE Automatic Speech Recog-
nition and Understanding Workshop, ASRU 2019,
pages 449-456.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ali Can Kocabiyikoglu, Laurent Besacier, and Olivier
Kraif. 2018. Augmenting librispeech with French
translations: A multimodal corpus for direct speech
translation evaluation. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Gaurav Kumar, Matt Post, Daniel Povey, and Sanjeev
Khudanpur. 2014. Some insights from translating
conversational telephone speech. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, ICASSP 2014, pages 3231-3235.

Yuchen Liu, Hao Xiong, Jiajun Zhang, Zhongjun
He, Hua Wu, Haifeng Wang, and Chengqing Zong.
2019. End-to-End Speech Translation with Knowl-
edge Distillation. In Proc. Interspeech 2019, pages
1128-1132.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412-1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory F. Diamos, Erich Elsen, David Garcfa,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2018. Mixed pre-
cision training. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Hermann Ney. 1999. Speech translation: coupling of
recognition and translation. In Proceedings of the
1999 IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP 1999, pages
517-520.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An ASR
corpus based on public domain audio books. In
2015 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2015, South
Brisbane, Queensland, Australia, April 19-24, 2015,
pages 5206-5210. IEEE.

Daniel S. Park, William Chan, Yu Zhang, Chung-
Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and
Quoc V. Le. 2019. Specaugment: A simple data

augmentation method for automatic speech recogni-
tion. In Interspeech 2019, 20th Annual Conference
of the International Speech Communication Associ-
ation, Graz, Austria, 15-19 September 2019, pages
2613-2617.

Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong
Guo. 2019. A generic communication scheduler for
distributed DNN training acceleration. In Proceed-
ings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP 2019, pages 16-29.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86-96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715—
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Alexander Sergeev and Mike Del Balso. 2018.
Horovod: fast and easy distributed deep learning in
tensorflow. CoRR, abs/1802.05799.

Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng
Chen, Mia Xu Chen, Ye Jia, Anjuli Kannan, Tara N.
Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang
He, Jan Chorowski, Smit Hinsu, Stella Laurenzo,
James Qin, Orhan Firat, Wolfgang Macherey, Suyog
Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming
Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao
Liang, Benoit Jacob, Bowen Liang, HyoukJoong
Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin
Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing
Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari,
Colin Cherry, Parisa Haghani, Otavio Good, You-
long Cheng, Raziel Alvarez, Isaac Caswell, Wei-
Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Eka-
terina Gonina, Katrin Tomanek, Ben Vanik, Zelin
Wu, Llion Jones, Mike Schuster, Yanping Huang,
Dehao Chen, Kazuki Irie, George F. Foster, John
Richardson, and et al. 2019. Lingvo: a modular and
scalable framework for sequence-to-sequence mod-
eling. CoRR, abs/1902.08295.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998-6008.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020a. Fairseq
S2T: Fast speech-to-text modeling with fairseq. In

62

Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 33-39, Suzhou, China. Association
for Computational Linguistics.

Chengyi Wang, Yu Wu, Shujie Liu, Zhenglu Yang, and
Ming Zhou. 2020b. Bridging the gap between pre-
training and fine-tuning for end-to-end speech trans-
lation. In AAAI, pages 9161-9168. AAAI Press.

Chengyi Wang, Yu Wu, Shujie Liu, Ming Zhou, and
Zhenglu Yang. 2020c. Curriculum pre-training for
end-to-end speech translation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3728-3738, Online. As-
sociation for Computational Linguistics.

Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan
Wang, and Lei Li. 2021. LightSeq: A high perfor-
mance inference library for transformers. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies: Indus-
try Papers, pages 113-120, Online. Association for
Computational Linguistics.

Ron J. Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui
Wu, and Zhifeng Chen. 2017. Sequence-to-
sequence models can directly translate foreign
speech. In Interspeech 2017, 18th Annual Confer-
ence of the International Speech Communication As-
sociation, pages 2625-2629.

Anne Wu, Changhan Wang, Juan Pino, and Jiatao Gu.
2020. Self-supervised representations improve end-
to-end speech translation. In Interspeech 2020.

Biao Zhang, Ivan Titov, Barry Haddow, and Rico Sen-
nrich. 2020. Adaptive feature selection for end-to-
end speech translation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 2533-2544, Online. Association for Compu-
tational Linguistics.

Chengqi Zhao, Zhicheng Liu, Jian Tong, Tao Wang,
Mingxuan Wang, Rong Ye, Qiangian Dong, Jun
Cao, and Lei Li. 2021. The volctrans neural
speech translation system for IWSLT 2021. CoRR,
abs/2105.07319.

ParCourE: A Parallel Corpus Explorer for
a Massively Multilingual Corpus

Ayyoob Imani', Masoud Jalili Sabet', Philipp Dufter’,
Michael Cysouw?, Hinrich Schiitze'
Center for Information and Language Processing (CIS), LMU Munich, Germany
Research Center Deutscher Sprachatlas, Philipps University Marburg, Germany.
{ayyoob, masoud, philipp}@cis.lmu.de

Abstract

With more than 7000 languages world-
wide, multilingual natural language process-
ing (NLP) is essential both from an academic
and commercial perspective. Researching ty-
pological properties of languages is fundamen-
tal for progress in multilingual NLP. Exam-
ples include assessing language similarity for
effective transfer learning, injecting inductive
biases into machine learning models or creat-
ing resources such as dictionaries and inflec-
tion tables. We provide ParCourE, an online
tool that allows to browse a word-aligned par-
allel corpus, covering 1334 languages. We
give evidence that this is useful for typologi-
cal research. ParCourE can be set up for any
parallel corpus and can thus be used for typo-
logical research on other corpora as well as for
exploring their quality and properties.

1 Introduction

While ~7000 languages are spoken (Eberhard et al.,
2020), the bulk of NLP research addresses English
only. However, multilinguality is an essential ele-
ment of NLP. It not only supports exploiting com-
mon structures across languages and eases mainte-
nance for globally operating companies, but also
helps save languages from digital extinction and
fosters more diversity in NLP techniques.

There are extensive resources that can be used
for massively multilingual typological research,
such as WALS (Dryer and Haspelmath, 2013), Glot-
tolog (Hammarstrm et al., 2020), BabelNet (Nav-
igli and Ponzetto, 2012) or http://panlex.org. Many
of them are manually created or crowdsourced,
which guarantees high quality, but limits coverage,
both in terms of content and languages.

We work on the Parallel Bible Corpus (PBC)
(Mayer and Cysouw, 2014), covering 1334 lan-
guages. More specifically, we provide a word-
aligned version of PBC, created using state-of-the-
art word alignment tools. As word alignments

ParCourE

Makel

o oo .0/- .
1 tache

A

/
///
blam
e e 000000 o o
e forvrse: 66012005 Eions i rderdev newnor. it neevord_sog neuling

Figure 1: Screenshot of the ParCourE interface. It pro-
vides a word-aligned version of the Parallel Bible Cor-
pus (PBC) spanning 1334 languages. Users can search
for sentences in any language and see their alignments
in other languages from MULTALIGN page. Alterna-
tively they can feed their parallel sentences to INTER-
ACTIVE view and see their word level alignments. They
can look up translations of words in other languages,
automatically induced from word alignments, from the
LEXICON view (This page is interconnected with MUL-
TALIGN). Statistics of the corpus is calculated and
shown in the Stats view.

themselves are only of limited use, we provide an
interactive online tool' that allows effective brows-
ing of the alignments.

The main contributions of this work are: i) We
provide a word-aligned version of the Parallel Bible
Corpus (PBC) spanning 1334 languages and a total
of 20M sentences (‘verses’). For the alignment we
use the state-of-the-art alignment methods SimA-
lign (Jalili Sabet et al., 2020) and Eflomal (Ostling
and Tiedemann, 2016a). ii) We release ParCourE,

"http://parcoure.cis.lmu.de/

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 63—72, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

a user interface for browsing word alignments, see
the MULTALIGN view in Figure 1. We demon-
strate the usefulness of ParCourE for typological
research by presenting use cases in §6. iii) In addi-
tion to browsing word alignments, we provide an
aggregated version in a LEXICON view and com-
pute statistics that support assessing the quality of
the word alignments. The two views (MULTALIGN
and LEXICON views) are interlinked, resulting in a
richer user experience. iv) ParCourE has a generic
design and can be set up for any parallel corpus.
This is useful for analyzing and managing paral-
lel corpora; e.g., errors in an automatically mined
parallel corpus can be inspected and flagged for
correction.

2 Related Work

Word Alignment is an important tool for typolog-
ical analysis (Lewis and Xia, 2008) and annotation
projection (Yarowsky et al., 2001; Ostling, 2015;
Asgari and Schiitze, 2017). Statistical models
such as IBM models (Brown et al., 1993), Giza++
(Och and Ney, 2003), fast-align (Dyer et al., 2013)
and Eflomal (Ostling and Tiedemann, 2016b) are
widely used. Recently, neural models were pro-
posed, such as SimAlign (Jalili Sabet et al., 2020),
Awesome-align (Dou and Neubig, 2021), and meth-
ods that are based on neural machine translation
(Garg et al., 2019; Zenkel et al., 2020). We use
Eflomal and SimAlign for generating alignments.

Resources. There are many online resources
that enable typological research. WALS (Dryer
and Haspelmath, 2013) provides manually created
features for more than 2000 languages. We pre-
pare a multiparallel corpus for investigating these
features on real data. http://panlex.org is an on-
line dictionary project with 2500 dictionaries cov-
ering 5700 languages and BabelNet (Navigli and
Ponzetto, 2012) is a large semantic network cover-
ing 500 languages, but their information is gener-
ally on the type level, without access to example
contexts. In contrast, ParCourE supports the explo-
ration of word translations across 1334 languages
in context.

Another line of work uses the Parallel Bible
Corpus (PBC) for analysis. Asgari and Schiitze
(2017) investigate tense typology across PBC lan-
guages. Xia and Yarowsky (2017) created a mul-
tiway alignment based on fast-align (Dyer et al.,
2013) and extracted resources such as paraphrases
for 27 Bible editions. Wu et al. (2018) used align-

64

ments to extract names from the PBC.

One of the first attempts to index the Bible and
align words in multiple languages were Strong’s
numbers (Strong, 2009[1890]); they tag words with
similar meanings with the same ID. Mayer and
Cysouw (2014) created an inverted index of word
forms. Ostling (2014) align massively parallel cor-
pora simultaneously. We use the Eflomal word
aligner by the same authorsostling2016efficient.

Finally, we review work on Word Alignment
Browsers. Gilmanov et al. (2014)’s tool supports
visualization and editing of word alignments. Ak-
bik and Vollgraf (2017) use co-occurrence weights
for word alignment and provide a tool for the in-
spection of annotation projection. Aulamo et al.
(2020)’s filtering tool increases the quality of
(mined) parallel corpora. Graén et al. (2017) rely
on linguistic preprocessing, target corpus and word
alignment exploration, do not show the graph of
alignment edges and do not provide a dictionary
view. While there is commonality with this prior
work, ParCourE is distinguished by both its func-
tionality and its motivating use cases: an important
use case for us are typological searches; linguis-
tic preprocessing is not available for many PBC
languages; ParCourE can be used as an interactive
explorer (but is not a fully-automated pipeline for
a specific use case); our goal is not annotation;
we use state-of-the-art word alignment methods.
However, much of the complementary functional-
ity in prior work would be useful additions to Par-
CourE. Another source of useful additional func-
tionality would be work on embedding learning
(Dufter et al., 2018; Kurfal and Ostling, 2018) and
machine translation (Tiedemann, 2018; Santy et al.,
2019; Mueller et al., 2020) for PBC.

3 Features

ParCourE’s user facing functionality can be divided
into three main parts: MULTALIGN and LEXICON
views and interconnections between the two.

3.1 Multiparallel Alignment Browser:
MULTALIGN

ParCourE allows the user to search through the
parallel corpus and check word alignments in a
multiparallel corpus. An overview of MULTALIGN
is shown in Figure 2.

In the search field (a(1)), the user can enter a
text query and select (a(2)) multiple sentences for
alignment. For narrowing the search scope, the

eng-newliving: They have told no lies ; they are without blame .
l:eng-newliving blame

Target editions:

Ddeu-newworld Dfra-newworld

Get Alignments

retrieve search

name

[]

Makel

tache

blam
® 6 00000 O O
Alignments for verse: 66014005. Languages in order: deu-newworld, fra-newworld, eng-
newliving

Figure 2: An overview of the MULTALIGN view. a)
Search field for selecting sentences [a(1)] and the list
of selected sentences [a(2)]. Any language can be used
for the source sentence — in this case, it is English. b)
Search bar for selecting the target languages. c) The
alignment graph for the selected sentences in the source
and the target languages. d) Switch button for simple
view / cluster view. e) Save and retrieve search results

language and edition of the text segment can be
specified in the beginning, e.g., by typing [:eng-
newworld2013. Similarly, v:40002017 specifies a
verse ID.

PBC has 1334, so showing alignments for all
translations of a sentence is difficult. We provide a
drop-down (b) to select a subset of target languages
for display.

For each sentence, a graph of alignment edges
between selected languages is shown (c). By hover-
ing over a word, the alignments of that word will be
highlighted. Above each alignment graph, there is
a button to switch between Simple view and Clus-
ter view (d). In the simple view, when hovering
over a word, only the alignment edges connected
to that word are highlighted; in the cluster view,
all words in a cluster (neighbors of neighbors) that
are aligned together will be highlighted. We do not
actually run any clustering algorithm on the align-
ment graph. Instead we simply highlight words that
are up to two hops away from the hovered word.
This helps spot a group of words across languages
that have the same meaning.

Creating queries for typology research can take
time. Thus, MULTALIGN allows the user to save
and retrieve (e) queries.

65

fregung(151)

Verwirrung(521) Aufruhr(228)

Schmach(178) Unordnung(452)

Figure 3: LEXICON view example: for the English
word “confusion”, there are five frequent translations in
German. “Unordnung” literally means “disorder” and
“Verwirrung” means “bewilderment”.

3.2 Lexicon View: LEXICON

The MULTALIGN view allows the user to focus on
word alignments on the sentence level and study the
typological structure of languages in context. The
LEXICON view focuses on word translations. The
user can specify a source language by selecting
the language code. This is to distinguish words
with the same spelling in different languages. The
user can search for one or multiple word(s) and
specify target language(s). A pie chart for each
target language depicting translations of the word
is generated. Figure 3 shows German translations
of “confusion” and the number of alignment edges
for each. Word alignments are not perfect, so pie
charts may also contain errors.

3.3 Interconnections

Both MULTALIGN and LEXICON views provide
important features to the user for exploring the par-
allel corpus. For many use cases (cf. §6), the user
may need to go back and forth between the views.
For example, if she notices an error in the word
alignment, she may want to check the LEXICON
statistics to see if one of the typical translations of
an incorrectly aligned word occurs in the sentence.

Thus, the two views are interconnected. In the
MULTALIGN view, the user will be transferred to
the LEXICON statistics of a word by clicking on
it. This will open the LEXICON view, showing the
search results for the selected word. Conversely,
if the user clicks on one of the target translations
in the LEXICON view, the MULTALIGN view will
show sentences where this correspondence is part
of the word alignment between source and target
translation.

editions 1758 | # verses 20,470,892
#languages 1334 | # verses/# editions 11,520
tokens / # verses 28.6

Table 1: PBC corpus statistics

3.4 Alignment Generation View:
INTERACTIVE

The views mentioned so far provide the ability to
search over the indexed corpus. This is useful when
the main corpus of interest is fixed and the user has
generated its alignments.

The INTERACTIVE view allows the user to study
the alignments between arbitrary input sentences
that are not necessarily in the corpus. Since the
input sentences are not part of a corpus, INTERAC-
TIVE uses SimAlign to generate alignments for all
possible pairs of sentences. Similar to MULTAL-
IGN, the INTERACTIVE view shows the alignment
between the input sentences.

4 Experimental Setup

Corpus. We set up ParCourE on the PBC corpus
provided by Mayer and Cysouw (2014). The ver-
sion we use consists of 1758 editions (i.e., transla-
tions) of the Bible in 1334 languages (distinct ISO
639-3 codes). Table 1 shows corpus statistics. We
use the PBC tokenization, which contains errors
for a few languages (e.g., Thai). We extract word
alignments for all possible language pairs. Since
not all Bible verses are available in all languages,
for each language pair we only consider mutually
available verses.

PBC aligns Bible editions on the verse level by
using verse-IDs that indicate book, chapter and
verse (see below). Although one verse may contain
multiple sentences, we do not split verses into in-
dividual sentences and consider each verse as one
sentence.

Retrieval. Elasticsearch? is a fast and scalable
open source search engine that provides distributed
fulltext search. The setup is straightforward using
an easy-to-use JSON web interface. We use it as the
back-end for ParCourE’s search requirement. We
find that a single instance is capable of handling the
whole PBC corpus efficiently, so we do not need a
distributed setup. For bigger corpora, a distributed
setup may be required. We created two types of
inverted indices for our data: an edge-ngram in-

https://www.elastic.co/

66

dex to support search-as-you-type capability and a
standard index for normal queries.

Alignment Generation. SimAlign (Jalili Sabet
et al., 2020) is a recent word alignment method
that uses representations from pretrained language
models to align sentences. It has achieved bet-
ter results than statistical word aligners. For the
languages that multilingual BERT (Devlin et al.,
2019) supports, we use SimAlign to generate word
alignments. For the remaining languages, we use
Eflomal (Ostling and Tiedemann, 2016a), an effi-
cient word aligner using a Bayesian model with
Markov Chain Monte Carlo (MCMC) inference.
The alignments generated by SimAlign are sym-
metric. We use atools® and the grow-diag-final-and
heuristic to symmetrize Eflomal alignments.

Lexicon Induction. We exploit the generated
word alignments to induce lexicons for all 889,111
language pairs. To this end, we consider aligned
words as translations of each other. For a given
word from the source language, we count the num-
ber of times a word from the target language is
aligned with it. The higher the number of align-
ments between two words, the higher the probabil-
ity that the two have the same meaning. We filter
out translations with frequency less than 5%.

5 Backend Design

An overview of our architecture can be found in
Figure 4. The code is available online.*

Parallel Data Format. We use the PBC corpus
format (Mayer and Cysouw, 2014): each verse has
a unique ID across languages / editions, the verse-
ID. The verse-ID is an 8-digit number, consisting
of two digits for the book (e.g., 41 for the Gospel of
Mark), three digits for the Chapter, and two digits
for the verse itself. There are separate files for each
edition. In each edition file, a line consists of the
ID and the verse, separated by a tab.

Indexing. We identify a PBC verse using the
following format: {verse-ID} @ {language-code }-
{edition-name}. We use this identifier to save and
retrieve sentences with Elasticsearch. In addition,
we store all metadata identifiers within Elastic-
search. Thus, we can search for a sentence by
keyword, sentence number (= verse-ID), language
code, or edition name.

ParCourE also supports the Corpus Alignment

*https://github.com/clab/fast_align
*nttps://github.com/cisnlp/parcoure

(7]

User
Interaction

i

D

5] =

HTML Javascript

1

z
g
o
£
a

I—l
Nl

&0

i

)

5

=

|

S8

SimAlign Corpus
Data

Presentation Logic

Figure 4: Overview of the system architecture. We
use a standard front-end stack with d3.js for visual-
ization. The backend is written in Python, which we
use for computing alignments and performing analy-
ses such as lexicon induction. We use Elasticsearch
for search. The input is a multiparallel corpus for
which all alignments are precomputed. For speeding
up the system we use smart caching algorithms for our
analyses. Icons taken without changes from https:
//fontawesome.com/license.

Encoding (CES)’ format. One can download par-
allel corpora in CES format and use our tools to
adapt them to ParCourE’s input format.

Alignment Computation. Since Eflomal’s per-
formance depends on the amount of data it uses
for training, we concatenate all editions to create
a bigger training corpus for languages that have
more than one edition. If language [; has two, and
language [three different editions, then the final
training corpus for this language pair will contain
six aligned edition pairs.

System Architecture. ParCourE is built on top
of modern open source technologies, see Figure 4.
The back-end uses the Flask web framework,® Gu-
nicorn web server,” and Elasticsearch.® The front-
end utilizes the Bootstrap CSS framework,” and
the d3 visualization library.!? Since all these tools
are free and open-source, there is no restriction on
setting up and releasing a new ParCourE instance.
To extract word alignments, one can use any tool,
such as Eflomal, fast_align or SimAlign.

Performance Improvements. For good run-
time performance, we precompute the word align-
ments. Regarding LEXICON, given a query word
and a target language, ParCourE first looks for a
precomputed lexicon file; if it does not exist, Par-

//www.cs.vassar.edu/CES/
//flask.palletsprojects.com
//gunicorn.org/
$https://www.elastic.co/
‘https://getbootstrap.com/
Yhttps://d3js.org/

5https:
*https:
7https:

67

CourE obtains the translations for the query word
online. To accelerate the translation process, Par-
CourE employs Python’s multiprocessing library.
The number of CPU cores is decided online based
on the number of editions available for source and
target languages.

For a corpus with 1334 languages, we will end
up with 890,445 alignment files and the same num-
ber of lexicon files. We cache alignment / lexicon
files to speed up access. We use the Last Recently
Used (LRU) cache replacement algorithm.

6 ParCourE Use Cases

Languages differ in how they encode mean-
ings/functions. There are various aspects that make
such differences an interesting problem when deal-
ing with a dataset that has good coverage of the
entire variation of the world’s languages. (i) Many
such differences between languages are not widely
acknowledged in linguistic theory, so to document
the extent of variation becomes a discovery of sorts.
For example, the fact that interrogative words might
distinguish between singular and plural (Figure 6)
turns out to be a typologically salient differentiation
(Mayer and Cysouw, 2012). (ii) The variation of
linguistic marking is even stronger in the domain
of grammatical function, like the differentiation
between the interrogative and relative pronoun in
Figure 6. (iii) In lexical semantics, ParCourE sup-
ports the investigation of how languages carve up
the meaning space differently (cf. Figure 5), espe-
cially when it comes to the ~1000 low-resource
languages covered in PBC. Massively parallel texts
are an ideal resource to investigate such variation
(Haspelmath, 2003).

Grammatical differences between languages,
like differences in word order, have a long his-
tory in research on worldwide linguistic variation
(Greenberg, 1966; Dryer, 1992). However, being
able to look at the usage of word order in specific
contexts (and being able to directly compare ex-
actly the same context across languages) is only
possible by using parallel texts. For example, spe-
cific orders of more than two elements can be di-
rectly extracted from the parallel texts, like the
order of demonstrative, numeral and noun “these
two commandments” in Figure 7 (Cysouw, 2010).

For lack of space, we describe four more use
cases only briefly: grammatical markers vs. mor-
phology as devices to express grammatical features
(Figure 8); differences in how languages use gram-

‘ simple view

Frau

Alignments for verse: 42017032. Languages in order: deu-neue, fra-courant1997,_eng-amplified

cluster view l

Frau

starb

w
o 0000

Alignments for verse: 40022027. Languages in order: deu-neue, fra-courant1997, eng-amplified

Figure 5: Use case 1, lexical differentiation. French
“femme” has two different translations in English
(“wife” and “woman’’) whereas German also conflates
the two different meanings.

en es Mi madre qulenes

N ddddidr

Alignments for verse: 40012048, Languages in order: spa-nuevadehoi, eng-amplified

Figure 6: Use case 2, grammatical differentiation. En-
glish “who’ has three different translations in this Span-
ish example: relative pronoun (“que”), and singular
(““quién)” and plural (“quiénes”) interrogative pronoun.

matical case (Figure 9, ablative/dative in Latin can
correspond to five different cases in Croatian); and
exploration of paraphrases (Figure 10). See the
captions of the figures for more details.

7 Extension to Other Corpora

Our code is available on GitHub and can be generi-
cally applied: you can create a ParCourE instance
for your own parallel corpus. Parallel corpora are
essential for machine translation (MT); ParCourE’s
functionality is useful for analyzing the quality of
a parallel corpus and the difficulty of the transla-
tion problem it poses. We give three examples
i) Incorrect sentence alignments can be identified,
e.g., cases in which a target sentence is matched
with the merger of two sentences in the source:
cf. Figure 11 where a short sentence in English
is aligned with German and French sentences that
also contain a second sentence that is missing in
English. This functionality is particularly helpful
for mined parallel corpora that tend to contain er-

68

amri hizi mbili

Thesé two'commandments

Alignments for verse: 40022040. Languages in order: swh-union1997, eng-amplified

Figure 7: Use case 3, word order variation. The En-
glish order is demonstrative, numeral, noun whereas
Swahili has noun, demonstrative, numeral.

slmple view
uttered breathed

T

Alignments for verse: 41015037. L in order: eng-amplified, crs

Figure 8: Use case 4, grammatical markers. In contrast
to English, Seychelles Creole does not inflect verbs for
tense and uses the past tense marker “ti” instead.

roneous sentence pairs. ii) Suppose an MT system
trained on the parallel corpus makes a lexical error
in a particular context ¢ by mistranslating source
word wg with target word wy. The LEXICON view
can be consulted for wy and the user can then click
on the erroneous target word w;y to get back to a
MULTALIGN view of aligned sentence pairs con-
taining ws and w;. She can then analyze why the
MT system mismatched ¢ with these contexts. Ex-
amples of the desired translation are easy to find
and inspect to support the formation of hypotheses
as to the source of the error. iii) For multi-source
approaches to MT (Zoph and Knight, 2016; Fi-
rat et al., 2016; Libovicky and Helcl, 2017; Crego
et al., 2010), ParCourE supports the inspection of
all input sentences together. The MT system output
can also be loaded into ParCourE for a view that
contains all input sentences and the output sentence.
Since any of the input sentences can be responsible
for an error in multi-source MT, this facilitates anal-
ysis and hypothesis formation as to what caused a
specific error.

7.1 Computing Infrastructure and Runtime

We did all computations on a machine with 48
cores of Intel(R) Xeon(R) CPU E7-8857 v2 with
1TB memory. In this experiment only one core was
used.

We created a corpus of 5 translations in 4 lan-
guages, with around 31k parallel sentences (over-
ally 155k sentences) and applied the ParCourE
pipeline to it. Runtimes for different parts of the

fratribus translations in hrv

/

braéu(40)

brac¢om(76)

braci(92)

brace(58)

braca(32)

Figure 9: Use case 5, morphology. The Latin ending
“ibus” in “fratribus” (dative/ablativ plural) corresponds
to five different cases in Croatian: accusative, loca-
tive/dative, nominative, genitive, instrumental (clock-
wise starting from “bracu”).

[simple view

to kill

e o []
Thelr run quickly tqg' kill
T ey r%qmzéy hzomN

Alignments for verse: 45003015. Editions in order: eng-newcentury, eng-worldwide, eng-newreaders

They
[{ BN]

Figure 10: Use case 6, paraphrases. PBC is a rich
source of paraphrases since high-resource languages
have several translations (32 for English). ParCourE
can be used to explore these paraphrases. Here, the
paraphrases “kill” and “murder” are correctly aligned,
“always ready” and “run quickly” are not.

pipeline are reported in Table 2. The installation
of the package is straightforward and as shown
in the table, it takes around 12 minutes to initiate
ParCourE on a small corpus with 4 languages.

Method | Runtime
Conversion from CES to ParCourE format 153
Indexing with Elasticsearch 14
Alignment generation with Eflomal 537
Stats calculation 22
Overall | 726

Table 2: Runtime in seconds for each part of the
pipeline to initiate a ParCourE instance on a corpus
with 4 languages and 31K parallel sentences.

8 Conclusion

Progress in multilingual NLP is an important goal
of NLP and requires researching typological prop-
erties of languages. Examples include assessing
language similarity for effective transfer learning,
injecting inductive biases into machine learning
models and creating resources such as dictionaries
and inflection tables. To serve such use cases, we

69

heiligen Kuss
[]

|

niy ki
e 6 o oo

bajser

Figure 11: Use case 7, quality analysis. ParCourE
makes it easy to analyze the quality of the parallel cor-
pus. For this sentence, part of a Bible verse present in
German and French is missing in English. Note that
the alignment of holy, heiligen to French fraternel is
not discovered.

have created ParCourE, an online tool for browsing
a word-aligned parallel corpus of 1334 languages,
and given evidence that it is useful for typological
research. ParCourE can be set up for any other par-
allel corpus, e.g., for quality control and improve-
ment of automatically mined parallel corpora.

Acknowledgments

This work was supported by the European Research
Council (ERC, Grant No. 740516) and the Ger-
man Federal Ministry of Education and Research
(BMBEF, Grant No. 01IS18036A). The third author
was supported by the Bavarian research institute for
digital transformation (bidt) through their fellow-
ship program. We thank the anonymous reviewers
for their constructive comments.

9 Ethical Considerations

Word alignments and lexicon induction as tasks
themselves may not have ethical implications.
However, working on a biblical corpus requires
special consideration of the following issues.

i) The Bible is the central religious text of Chris-
tianity and the Hebrew Bible that of Judaism. It
contains strong opinions and world views (e.g., on
divorce and homosexuality) that are not generally
shared. We would like to emphasize that we treat
the PBC simply as a multiparallel corpus, and the
corpus does not necessarily reflect the opinions of
the authors nor of the institutions funding the au-
thors. ii) In a similar vein, while the PBC has great
language coverage and allows for typological anal-
ysis, we need to be aware that languages might not
be accurately and completely reflected in the PBC.
The language used in the PBC might be outdated
and is restricted to a relatively small subset of top-
ics and thus cannot be considered a balanced and
complete view of the language. iii) We also need to

be aware of selection bias. The PBC only covers a
subset of the world’s languages. The selection cri-
teria are unknown and may be based on historical
and cultural biases that we are not able to assess.

References

Alan Akbik and Roland Vollgraf. 2017. The projec-
tor: An interactive annotation projection visualiza-
tion tool. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 43—48, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Ehsaneddin Asgari and Hinrich Schiitze. 2017. Past,
present, future: A computational investigation of the
typology of tense in 1000 languages. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 113-124,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Mikko Aulamo, Sami Virpioja, and Jorg Tiedemann.
2020. OpusFilter: A configurable parallel corpus
filtering toolbox. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 150-156,
Online. Association for Computational Linguistics.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2).

Josep Maria Crego, Aurélien Max, and Francois Yvon.
2010. Local lexical adaptation in machine transla-
tion through triangulation: SMT helping SMT. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pages
232-240, Beijing, China. Coling 2010 Organizing
Committee.

Michael Cysouw. 2010. Dealing with diversity: to-
wards an explanation of NP word order frequencies.
Linguistic Typology, 14(2):253-287.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Zi-Yi Dou and Graham Neubig. 2021. Word align-
ment by fine-tuning embeddings on parallel corpora.
CoRR, abs/2101.08231.

Matthew S. Dryer. 1992. The Greenbergian word order
correlations. Language, 68(1):80-138.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig.

Philipp Dufter, Mengjie Zhao, Martin Schmitt, Alexan-
der Fraser, and Hinrich Schiitze. 2018. Embedding
learning through multilingual concept induction. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1520-1530, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644-648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

David M. Eberhard, F. Simons Gary, and D. Fen-
nig (eds.) Charles. 2020. Ethnologue: Languages
of the World, 23rd edition. SIL International.

Orhan Firat, Baskaran Sankaran, Yaser Al-onaizan,
Fatos T. Yarman Vural, and Kyunghyun Cho. 2016.
Zero-resource translation with multi-lingual neural
machine translation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 268-277, Austin, Texas.
Association for Computational Linguistics.

Sarthak Garg, Stephan Peitz, Udhyakumar Nallasamy,
and Matthias Paulik. 2019. Jointly learning to align
and translate with transformer models. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4453-4462, Hong
Kong, China. Association for Computational Lin-
guistics.

Timur Gilmanov, Olga Scrivner, and Sandra Kiibler.
2014. SWIFT aligner, a multifunctional tool for
parallel corpora: Visualization, word alignment,
and (morpho)-syntactic cross-language transfer. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 2913-2919, Reykjavik, Iceland. European
Language Resources Association (ELRA).

Johannes Graén, Dominique Sandoz, and Martin Volk.
2017. Multilingwis2 eéxtendash explore your par-
allel corpus. In Proceedings of the 21st Nordic
Conference on Computational Linguistics, NODAL-
IDA 2017, Gothenburg, Sweden, May 22-24, 2017,
volume 131 of Linkoping Electronic Conference
Proceedings, pages 247-250. Linkoping University
Electronic Press / Association for Computational
Linguistics.

Joseph H. Greenberg. 1966. Language Universals:
with special reference to feature hierarchies. Janua
Linguarum, Series Minor. Mouton, The Hague.

Harald Hammarstrm, Robert Forkel, Martin Haspel-
math, and Sebastian Bank. 2020. Glottolog 4.3.
Max Planck Institute for the Science of Human His-
tory.

Martin Haspelmath. 2003. The geometry of grammat-
ical meaning: Semantic maps and cross-linguistic
comparison. In Michael Tomasello, editor, The
New Psychology of Language: Cognitive and Func-
tional Approaches to Language Structure (Volume
2), pages 211-242. Erlbaum, Mahwah, NJ.

Masoud Jalili Sabet, Philipp Dufter, Francois Yvon,
and Hinrich Schiitze. 2020. SimAlign: High qual-
ity word alignments without parallel training data us-
ing static and contextualized embeddings. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 1627-1643, Online. As-
sociation for Computational Linguistics.

Murathan Kurfal and Robert Ostling. 2018. Word em-
beddings for 1250 languages through multi-source
projection. In Seventh Swedish Language Technol-
ogy Conference.

William D. Lewis and Fei Xia. 2008. Automatically
identifying computationally relevant typological fea-
tures. In Proceedings of the Third International
Joint Conference on Natural Language Processing:
Volume-II.

Jindrich Libovicky and Jindrich Helcl. 2017. Attention
strategies for multi-source sequence-to-sequence
learning. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 2: Short Papers, pages 196-202. Associa-
tion for Computational Linguistics.

Thomas Mayer and Michael Cysouw. 2012. Language
comparison through sparse multilingual word align-
ment. In Proceedings of the EACL 2012 Joint Work-
shop of LINGVIS & UNCLH, pages 54—62, Avignon,
France. Association for Computational Linguistics.

Thomas Mayer and Michael Cysouw. 2014. Creating
a massively parallel Bible corpus. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 3158—
3163, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Aaron Mueller, Garrett Nicolai, Arya D. McCarthy,
Dylan Lewis, Winston Wu, and David Yarowsky.
2020. An analysis of massively multilingual neu-
ral machine translation for low-resource languages.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 3710-3718, Mar-
seille, France. European Language Resources Asso-
ciation.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual seman-
tic network. Artif. Intell., 193:217-250.

71

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1).

Robert Ostling. 2014. Bayesian word alignment for
massively parallel texts. In Proceedings of the 14th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, EACL 2014,
April 26-30, 2014, Gothenburg, Sweden, pages 123—
127. The Association for Computer Linguistics.

Robert Ostling. 2015. Word order typology through
multilingual word alignment. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), pages 205-211, Beijing,
China. Association for Computational Linguistics.

Robert Ostling and Jorg Tiedemann. 2016a. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics,
106:125-146.

Robert Ostling and Jorg Tiedemann. 2016b. Efficient
word alignment with Markov Chain Monte Carlo.
The Prague Bulletin of Mathematical Linguistics,
106(1).

Sebastin Santy, Sandipan Dandapat, Monojit Choud-
hury, and Kalika Bali. 2019. INMT: Interactive neu-
ral machine translation prediction. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP): System Demonstrations,
pages 103—-108, Hong Kong, China. Association for
Computational Linguistics.

James Strong. 2009[1890]. Strong’s exhaustive concor-
dance of the Bible. Hendrickson Publishers.

Jorg Tiedemann. 2018. Emerging language spaces
learned from massively multilingual corpora. In
Proceedings of the Digital Humanities in the Nordic
Countries 3rd Conference, DHN 2018, Helsinki, Fin-
land, March 7-9, 2018, volume 2084 of CEUR Work-
shop Proceedings, pages 188—-197. CEUR-WS.org.

Winston Wu, Nidhi Vyas, and David Yarowsky. 2018.
Creating a translation matrix of the Bible’s names
across 591 languages. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Patrick Xia and David Yarowsky. 2017. Deriving con-
sensus for multi-parallel corpora: an English Bible
study. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 448—453, Taipei,
Taiwan. Asian Federation of Natural Language Pro-
cessing.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora. In
Proceedings of the First International Conference on
Human Language Technology Research.

Thomas Zenkel, Joern Wuebker, and John DeNero.
2020. End-to-end neural word alignment outper-
forms GIZA++. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1605-1617, Online. Association for
Computational Linguistics.

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 30-34, San Diego, Cali-
fornia. Association for Computational Linguistics.

72

MT-TELESCOPE
An interactive platform for contrastive evaluation of MT systems

Ricardo Rei*'*

Ana C Farinha*
Luisa Coheur'*

Craig Stewart*
Alon Lavie*

*“Unbabel Research
*Instituto Superior Técnico, Universidade de Lisboa, Portugal
TINESC-ID, Lisboa, Portugal

“{firstname.lastname}@unbabel.com

luisa.coheur@inesc-id.pt

Abstract

We present MT-TELESCOPE, a visualization
platform designed to facilitate comparative
analysis of the output quality of two Machine
Translation (MT) systems. While automated
MT evaluation metrics are commonly used to
evaluate MT systems at a corpus-level, our
platform supports fine-grained segment-level
analysis and interactive visualisations that ex-
pose the fundamental differences in the per-
formance of the compared systems. MT-
TELESCOPE also supports dynamic corpus fil-
tering to enable focused analysis on specific
phenomena such as; translation of named en-
tities, handling of terminology, and the im-
pact of input segment length on translation
quality. Furthermore, the platform provides a
bootstrapped t-test for statistical significance
as a means of evaluating the rigor of the re-
sulting system ranking. MT-TELESCOPE is
open source', written in Python, and is built
around a user friendly and dynamic web inter-
face. Complementing other existing tools, our
platform is designed to facilitate and promote
the broader adoption of more rigorous analysis
practices in the evaluation of MT quality.

1 Introduction

When developing MT systems or comparing exper-
iments across papers, it has been common practice
for researchers and developers to rely on automated
metrics such as BLEU (Papineni et al., 2002) and
METEOR (Banerjee and Lavie, 2005) as a means
of quantifying the relative performance difference
between two models. Commercial deployment
of systems and the establishment of state-of-the-
art in academia is often driven by these metrics
alone. Automated metrics have long been an es-
sential means for assessing quality improvements

!Code available at: https://github.com/

Unbabel/MT-Telescope and Demo video at:
https://youtu.be/MZ0OelyX8mII

73

and driving progress in the field of MT. Recent
state-of-the-art metrics such as COMET (Rei et al.,
2020a), Pr1SM (Thompson and Post, 2020), and
BLEURT (Sellam et al., 2020), show much higher
levels of correlation with human judgement than
their predecessors.

Notwithstanding the strength of available met-
rics, when applied and reported at corpus-level,
they are only able to provide a general indication
of whether one system is superior, based on a single
score which in some cases is limited to an arith-
metic mean of segment-level score predictions (Rei
et al., 2020a). We contend that the broad defini-
tion of ‘improvement’ as an increase in a relevant
corpus-level score is insufficient, especially when
the relative difference between high-performing
MT systems is negligible. Exposure of the chang-
ing distribution of performance at segment-level on
targeted phenomena is fundamental to our under-
standing of translation quality. Manual inspection
at this level is often too time-consuming and in-
efficient to be done rigorously and on a regular
basis.

MT-TELESCOPE was inspired by other recent
work on developing holistic approaches for fine-
grained comparison of MT systems, such as
COMPARE-MT (Neubig et al., 2019) and MT-
CoMPAREVAL (Klejch et al., 2015) and other more
general comparative tools such as VIZSEQ (Wang
et al., 2019). Despite the intention of such tools
in addressing the above problem, none have been
widely adopted as a standard method of evaluating
MT. MT-TELESCOPE was specifically developed
to leverage the best of existing approaches in a
manner that is as user friendly as possible, with
features specifically tailored to the MT use case.
The platform supports fine-grained segment-level
analysis and interactive visualisations that provide
relevant and informative quality intelligence. In
particular, the platform also supports focused anal-

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 73-80, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

0.8+

0.6

0.4+

0.2+

y_score

0.0+

-0.2
reference:
-0.4

0.6 difference:

-0.8+ source:

-1.0 T T T T
0.0

X_score:

y_score:

difference
0.2
0.4

® os

The coordinator of the Archangel headquarters Navalny
sentenced to community service

. The coordinator of the Arkhangelsk headquarters of Navalny
was sentenced to community service

The coordinator of Navalny's Arkhangelsk headquarters was
sentenced to community service

0.721469957381

KoopauvHatopa apxaHrensckoro wraba HasansHoro
NpUroBopUM K o6ecTeeHHbIM paboTam

—0.000969428569078
0.720500528812

Figure 1: Segment comparison bubble plot.

ysis of MT-specific phenomena through interactive
corpus filtering.

MT-TELESCOPE is differentiated from existing
MT-specific tools by exposing features such as
named entities and glossary handling which play
a fundamental role in determining the suitability
of an MT system for a production environment.
Furthermore, the platform applies a bootstrapped
t-test for statistical significance (Koehn, 2004) as a
means of exposing the experimental rigor of system
comparisons. These features are not widely avail-
able in other tools and provide a uniquely tailored
solution to MT comparison that is highly informa-
tive and easy to use.

The fundamental goal of MT-TELESCOPE is to
widen access to state-of-art, robust MT compari-
son, to the benefit of the MT community at large.
MT-TELESCOPE is open source, written in Python
and uses a dynamic web interface implemented in
streamlit?. In this manner, MT-TELESCOPE pro-
vides a uniquely accessible framework that requires
little technical skill to operate and exposes infor-
mation about the critical differences between MT
outputs that is interactive, informative and highly
customizable.

2 MT-TELESCOPE: Features

In this section, we describe the main features and vi-
sualizations implemented in MT-TELESCOPE and
illustrate the user experience with examples:

https://streamlit.io/

74

2.1 User input and data

MT-TELESCOPE is opened in a web browser and
takes four text (.zxr) files as input; source and ref-
erence segments and one set of MT outputs for
each of the compared systems. Users drag and
drop these files directly onto the interface to be-
gin evaluation. COMET (Rei et al., 2020a) is pro-
vided as a default metric given its proven value in
the WMT Metrics Shared Task 2020 (Rei et al.,
2020b; Mathur et al., 2020). Optionally the user
can choose an alternate metric using a selection
box. Currently available metrics include BLEU,
METEOR and CHRF, and a selection of more re-
cently proposed metrics such as PRISM, BLEURT,
and BERTSCORE.

2.2 Visualizations

High-level results of the analysis are output in ta-
ble format with the corresponding system scores.
MT-TELESCOPE then exposes segment-level com-
parison in three primary visualizations:

First, a bubble plot (Figure 1) where the position
of bubbles show how scores between the two sys-
tems differ for each segment, notable differences
being highlighted with variations in bubble size
and color. This method of visualization of MT is
unique to MT-TELESCOPE in that it is fully inter-
active; by hovering the cursor over individual data
points the user can preview the segments and out-
put as well as relevant scores and the magnitude of
the difference between them (as depicted in Figure
1). This plot allows for interactive exploration of
the data which easily exposes differences in model

Red bucket max threshold
0.10

-0.86 0.30 0.10

The bucket analysis separates translations
according to 4 different categories:

Green bucket: Translations with residual
errors.

Light Green bucket: Translations with
Mminor errors.

Yellow bucket: Translations with major
errors.

Red bucket: Translations with critical
errors

Orange bucket max threshold
0.30

—_—

Light Green bucket max threshold
0.70

0.50 0.30

100 A

804

60 4

40 A

204

System X System Y

Model

Figure 2: Segment-level error bucket analysis plot. In this plot, we can compare the two systems side by side
according to the percentage of segments falling into 4 different category buckets: residual errors, ,
, critical errors. The thresholds for defining these buckets can be dynamically adjusted using the

sliders displayed above the plot.

behaviour at a glance. In particular, the distribution
of points along the diagonal of this plot is highly
informative; clustering along the diagonal indicates
that the systems have minor differences whereas
the contrary can indicate more dramatic change in
behavior which can be hidden by the corpus-level
mean.

Second, MT-TELESCOPE provides a bucketed
error analysis in the form of a stacked bar plot (Fig-
ure 2). This plot serves to isolate specific bands
of translation quality. These bands are highly cus-
tomizable but can serve as a means of evaluating
system utility; the plot can expose the extent to
which either model outputs critical error for exam-
ple. This is particularly useful in a commercial
setting where the utility of a production system is
inhibited by the presence of particular error types.

Segments are grouped into four buckets: resid-
ual errors, , , and crit-
The thresholds for each bucket can
be dynamically adjusted by the user with appro-
priate sliders and (as with many of the features of
MT-TELESCOPE) the plots are updated in real-time
to reflect adjustments. Defaults were determined
in line with suggestions outlined in the COMET
GitHub documentation and with distributions of
system-level scores from the WMT News Transla-
tion Shared Task 2020.

ical errors.

75

Residual Errors: The highest tier of quality
by default reflects scores greater than 0.70, which
generally equates to almost human-like translation
with only minor, inconsequential error.

Minor Errors: By default this band reflects
scores between 0.30 and 0.70 to reflect the division
of quartiles from the distribution of system-level
scores from the WMT News Translation Shared
Task 2020. In general the band is associated with
translation that is adequate but with minor flaws.

Major Errors: Translations scoring between
0.10 and 0.30 by default inhabit this band and are
generally inadequate due to more serious error.

Critical Errors: Any translation scoring under
0.10 here is considered to contain critical error.

These bands are intended as a guide and util-
ity of the default thresholds will vary according to
use case. Translation quality and the difference be-
tween adequate and inadequate translation is highly
subjective and language dependant; optimization
of these thresholds is a critical direction for future
work. Notwithstanding, we find that exposure of
the general shift in distribution of inadequate trans-
lation in general is potentially informative, particu-
larly given that corpus-level scores do not expose
this type of analysis.

Finally, MT-TELESCOPE provides a histogram
plot (Figure 3) for general evaluation of the distri-

-0.5 0

System Y
System X

—

0N O0 AL 0T R O it 1 0 11 0010
-

0.5 1

Figure 3: Segment-level histogram comparison.

bution of scores between models. We propose that
this kind of plot can potentially provide a high-level
overview of the shift in performance between mod-
els. A corpus-level score (particularly an arithmetic
mean) can mask variance between distributions of
scores.

2.3 Example evaluation

To demonstrate the utility of the MT-TELESCOPE
evaluation we expose analyses for the Online-G
and the PROMT (Molchanov, 2020) systems from
the WMT News Translation Shared Task 2020 (Bar-
rault et al., 2020) for Russian-English:

The Online-G system (System Y) achieves
a COMET score of 0.6081, outperforming the
PROMT system (System X) which only achieves
0.5972. We have isolated this example in partic-
ular as it represents a common occurrence of two
systems achieving fairly comparable scores.

Figures 1, 2 and 3 above show the output of MT-
TELESCOPE analysis on two sampled systems:

Figures 2 and 3 illustrate that the second system
(System Y) in general exceeds performance of the
first (System X). We can conclude from these plots
that the systems perform comparably with System
Y producing a higher percentage of adequate trans-
lations. In particular we note that System Y outputs
fewer critical errors, consistent with its general per-
formance gain.

Figure 1 illustrates isolation of an example where
System Y makes substantial gain over System X.

76

Here we note that both systems struggle to render
the named entity and the corresponding possessive,
but that System Y successfully produces the named
entity as reflected in the reference and adds a pro-
noun to at least give possessive flavor.

3 MT-TELESCOPE: Dynamic Corpus
Filtering

Given a test corpus, MT-TELESCOPE provides
functionality to dynamically evaluate sub-samples
of the system outputs as a means of focused anal-
ysis tailored to particular phenomena relevant to
MT. On selection of any of the available filtering
criteria, the MT-TELESCOPE Dynamic Corpus Fil-
tering feature (DCF) updates the output evaluation
in real-time to allow the user to ‘zoom in’ on rele-
vant data points.

Currently, MT-TELESCOPE supports filtering by
named entity, glossary and source segment length,
as well as an option to remove duplicates. When-
ever any of these options is selected, the interface
will output the size of the sub-sample as a percent-
age of the original test corpus.

3.1 DCF: Named Entities

Successful rendering of named entities is a known
challenge for even modern MT systems and can
lead to distortion of locations, organization and
other names (Koehn and Knowles, 2017; Mod-
rzejewski et al., 2020). Recently, several meth-
ods have been proposed to improve the translation

Table 1: Example of named entity errors produced Online-G system in comparison to the PROMT system from

the WMT?20 shared task.

COMET
Source Mapyros Bpe3aJics Ha MOTOIUKJIE B TAKCH, KOTOPBIM YIIPaBJsii AKOGapOB.
Online-G~ Murugov crashed into a motorcycle taxi, which was ruled by Akbar. -0.1799
PROMT Marugov crashed into a taxi driven by Akbarov on a motorcycle. 0.5154
Reference Marugov crashed on a motorcyle into the taxi Akbarov was driving.

of named entities in Neural Machine Translation
(NMT) (Sennrich and Haddow, 2016; Ugawa et al.,
2018; Modrzejewski et al., 2020), but precise mea-
surement of translation quality improvements for
these techniques is inhibited by the fact that not
all sentences in traditional benchmark test sets (e.g.
WMT test sets) contain named entities and that
scores produced by automated evaluation metrics
are not sufficiently fine-grained to reflect this type
of variation. MT-TELESCOPE offers a potential
solution to this by applying the following filter:

We initially run the Stanza Named Entity Recog-
nition (NER) model (Stanza, Qi et al. 2020)> over
the source test corpus to isolate segments that con-
tain named entities. If the source language (as spec-
ified by the user) is not supported by Stanza, we
run NER on the reference. MT-TELESCOPE will
then update the output analysis allowing focused
evaluation of the handling of segments containing
named entities by either MT system.

To illustrate the utility of DCF analysis on named
entities we again compare the outputs of the Online-
G and the PROMT (Molchanov, 2020) systems
from the Metrics Shared Task 2020 (Barrault et al.,
2020) as above:

Applying DCF for named entities, the Online-G
system COMET score drops to 0.5851 (previously
0.6081), while the PROMT system only drops
to 0.5888 (previously 0.5972). We also observe
that the percentage of critical segments from the
Online-G system in our bucketed analysis jumps
from 6.26% to 7.0%, while the corresponding per-
centage output by the PROMT system drops from
6.66% to 6.29%.

On the basis of the DCF analysis for named en-
tities we can conclude that whilst in general the
Online-G exhibits superior quality, it may be under-
performing with regard to named entities. Interest-
ingly, the system description paper for the PROMT
system (Molchanov, 2020) specifically details a tar-
geted approach to handling translation of named en-
tities, which may explain its stronger performance

*https://stanfordnlp.github.io/stanza/
ner.html

77

on the isolated sub-sample.

In Table 1 we illustrate an example of a transla-
tion in which the Online-G system produces critical
errors as a consequence of translating named en-
tities incorrectly, specifically isolated by the DCF
feature.

3.2 DCF: Terminology

Similarly to named entities, enforcing that MT sys-
tems use specific terminology during translation
is a challenging task with particular relevance in
commercial use cases. Measuring terminology ad-
herence typically involves relying on automated
metrics for MT as well as measuring the accuracy
of terminology output (Dinu et al., 2019; Exel et al.,
2020).

This approach presents two concrete problems:
a) applying terminology constraints typically re-
sults in only minimal variance between translations,
which limits the utility of using automated metrics
at the corpus level; and b) measuring accuracy in
terminology usage typically relies on exact string
matching between a translation hypothesis and its
respective reference, which implies that properly in-
flected translated terms often do not receive proper
credit.

MT-TELESCOPE offers a DCF Terminology fea-
ture which allows a user to optionally upload a
glossary by which to isolate a corresponding sub-
sample of the test corpus. We apply string match-
ing on the source and filter to only those segments
which contain a corresponding glossary match.

3.3 DCF: Segment Length

Another common weakness of some MT systems
is their inability to accurately translate long seg-
ments (Koehn and Knowles, 2017). In general,
corpus level evaluation on a distribution that in-
cludes very short segments can artificially inflate
performance, with substantial drops in scores be-
ing observed when these segments are specifically
excluded (Koehn and Knowles, 2017). In the same
manner, quality-based decisions regarding two sys-
tems can change when we consider segments of

different lengths.

Using our example systems outlined above in
Section 3.1, when comparing the Online-G and the
PROMT systems using only the top 50% longest
segments, the PROMT system outperforms the
Online-G system according to COMET and CHRF
scores, changing the fundamental perception of
which system is ‘better’. With the above in mind,
MT-TELESCOPE also offers an option to filter by
segment length. This filter is adaptive to the distri-
bution of segment lengths in the test corpus. We
first build the distribution of the source segment
lengths (measured in terms of characters) for the en-
tire test set. Then, the user can select which part of
the distribution to analyse by adjusting the a and b
parameters of the density function P(a < X < b);
a and b being the minimum and maximum length
allowed, respectively.

3.4 DCF: Duplication

The removal of duplicates can be particularly im-
portant in situations where the test corpus sam-
ple contains repetition. Repeated segments in a
test sample can artificially inflate the corpus-level
score, particularly where that score results from
an average of segment-level scores. Whilst we ac-
knowledge that removal of duplicate segments is
fairly common in public data sets such as that used
in the WMT Shared Tasks and consequently our
example here, we propose that it is, nevertheless, a
useful tool when evaluating on random samples.

4 Statistical Significance Testing

By default, MT-TELESCOPE implements the boot-
strapped t-test for statistical significance promoted
for use in comparison of MT systems by Koehn
(2004). Specifically, we iteratively re-sample a por-
tion of the test set (of size P) N times, compare
corpus-level results of each sub-sample and record
the comparative conclusions. The ratio of wins of a
single system is a reasonable proxy to the probabil-
ity that that system is better than the other. In other
words, if one system outperforms the other sys-
tem 95% of the time, we conclude that the former
is better with a significance of p = 0.05 (Koehn,
2004).

This is particularly useful in cases where the rel-
ative difference between systems is minimal and
acts as a measure of the robustness of any resulting
decision. In our implementation P is an optional
parameter which defaults to 0.5 (50%) or 500 seg-

78

ments, whichever is larger, to ensure reasonable
stability in the output conclusion. N is also user
defined and by default is set at 300 iterations.

5 Related Tools

MT-TELESCOPE is similar in spirit and largely
inspired by recently proposed tools such as
COMPARE-MT (Neubig et al.,, 2019), MT-
COMPAREvAL (Klejch et al., 2015), and
VI1ZSEQ (Wang et al., 2019). COMPARE-MT also
provides a holistic analysis comparing two MT
systems, although with different features. Us-
ing COMPARE-MT, the user can, for example,
look at performance according to n-gram fre-
quency and part-of-speech (POS) accuracy. MT-
COMPAREVAL also provides comparative analysis
of segment-level errors with highlighting of vari-
ant n-grams. The tool also provides some limited
aggregate analysis. Both of the above tools also
offer statistical significance testing in the form of a
bootstrapped t-test.

VI1ZSEQ (Wang et al., 2019), whilst only tan-
gentially related, is one of the only comparative
tools that offers a web-based interface. More-
over, VIZSEQ has impressive coverage in terms
of Natural Language Generation metrics. How-
ever, VIZSEQ was developed for multi-model com-
parison and is primarily focused at corpus-level.
Other tools such as PET (Aziz et al., 2012) and AP-
PRAISE (Federmann, 2012) are complementary to
MT-TELESCOPE in that they offer features which
leverage annotation and post-edition.

6 Conclusions and Future Work

MT-TELESCOPE is designed to provide robust and
insightful comparative analysis specific to the MT
use case with state-of-the-art metrics. Data visu-
alizations are dynamic, interactive and highly cus-
tomizable. The tools have been built specifically
with ease of use in mind, in the hope of expanding
access to high quality MT evaluation.

There is tremendous scope in the adaptation of
the DCF framework to target many other phenom-
ena and future work will be focused primarily in
this area. We envisage for example adding filters
for specific discourse phenomenon such as pro-
noun translation. Ideally such filter would allow
researchers to measure context usage in NMT with-
out having to rely only on contrastive evaluation
(Miiller et al., 2018; Lopes et al., 2020) and/or hu-
man evaluation.

We also plan to extend MT-TELESCOPE to han-
dle a (possibly empty) set of references. This will
bring more flexibility to the tool allowing more in-
formed decision when multiple references are avail-
able while also supporting Quality Estimation (Spe-
cia et al., 2018) when references are not available.
Finally we hope to implement exporting functional-
ity to allow saving of analysis output in commonly
used formats (e.g. json and PDF). Given that M T-
TELESCOPE is an open source platform, we are
excited to encourage other users to contribute to its
growth with suggestions and new features.

Acknowledgments

We are grateful to the Unbabel MT team, specially
Austin Matthews and Joao Alves, for their valu-
able feedback. This work was supported in part
by the P2020 Program through projects MAIA and
Unbabel4EU, supervised by ANI under contract
numbers 045909 and 042671, respectively.

References

Wilker Aziz, Sheila Castilho, and Lucia Specia. 2012.
PET: a tool for post-editing and assessing machine
translation. In Proceedings of the Eighth Inter-
national Conference on Language Resources and
Evaluation (LREC’12), pages 3982-3987, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Loic Barrault, Magdalena Biesialska, Ondfej Bojar,
Marta R. Costa-jussa, Christian Federmann, Yvette
Graham, Roman Grundkiewicz, Barry Haddow,
Matthias Huck, Eric Joanis, Tom Kocmi, Philipp
Koehn, Chi-kiu Lo, Nikola Ljubesi¢, Christof
Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT?20). In Proceedings of
the Fifth Conference on Machine Translation, pages
1-55, Online. Association for Computational Lin-
guistics.

Georgiana Dinu, Prashant Mathur, Marcello Federico,
and Yaser Al-Onaizan. 2019. Training neural ma-
chine translation to apply terminology constraints.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages

79

3063-3068, Florence, Italy. Association for Compu-
tational Linguistics.

Miriam Exel, Bianka Buschbeck, Lauritz Brandt, and
Simona Doneva. 2020. Terminology-constrained
neural machine translation at SAP. In Proceedings
of the 22nd Annual Conference of the European As-
sociation for Machine Translation, pages 271-280,
Lisboa, Portugal. European Association for Machine
Translation.

Christian Federmann. 2012. Appraise: An open-source
toolkit for manual evaluation of machine translation
output. The Prague Bulletin of Mathematical Lin-
guistics, 98:25-35.

Ondrej Klejch, Eleftherios Avramidis, Aljoscha Bur-
chardt, and Martin Popel. 2015. MT-ComparEval:
Graphical evaluation interface for Machine Transla-
tion development. The Prague Bulletin of Mathe-
matical Linguistics, 104.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pages 388—
395, Barcelona, Spain. Association for Computa-
tional Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28-39, Vancouver. Association for
Computational Linguistics.

Anténio Lopes, M. Amin Farajian, Rachel Bawden,
Michael Zhang, and André F. T. Martins. 2020.
Document-level neural MT: A systematic compari-
son. In Proceedings of the 22nd Annual Conference
of the European Association for Machine Transla-
tion, pages 225-234, Lisboa, Portugal. European As-
sociation for Machine Translation.

Nitika Mathur, Johnny Wei, Markus Freitag, Qingsong
Ma, and Ondrej Bojar. 2020. Results of the WMT20
metrics shared task. In Proceedings of the Fifth
Conference on Machine Translation, pages 688—725,
Online. Association for Computational Linguistics.

Maciej Modrzejewski, Miriam Exel, Bianka
Buschbeck, Thanh-Le Ha, and Alexander Waibel.
2020. Incorporating external annotation to improve
named entity translation in NMT. In Proceedings
of the 22nd Annual Conference of the European
Association for Machine Translation, pages 45—
51, Lisboa, Portugal. European Association for
Machine Translation.

Alexander Molchanov. 2020. PROMT systems for
WMT 2020 shared news translation task. In Pro-
ceedings of the Fifth Conference on Machine Trans-
lation, pages 248-253, Online. Association for Com-
putational Linguistics.

Mathias Miiller, Annette Rios, Elena Voita, and Rico
Sennrich. 2018. A large-scale test set for the eval-
uation of context-aware pronoun translation in neu-
ral machine translation. In Proceedings of the Third
Conference on Machine Translation: Research Pa-
pers, pages 61-72, Brussels, Belgium. Association
for Computational Linguistics.

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel,
Danish Pruthi, and Xinyi Wang. 2019. compare-mt:
A tool for holistic comparison of language genera-
tion systems. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 3541, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101-
108, Online. Association for Computational Linguis-
tics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020a. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685-2702, Online. Associa-
tion for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and
Alon Lavie. 2020b. Unbabel’s participation in the
WMT20 metrics shared task. In Proceedings of
the Fifth Conference on Machine Translation, pages
911-920, Online. Association for Computational
Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7881-7892, Online. Association for Computa-
tional Linguistics.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proceedings of the First Conference on Machine
Translation: Volume 1, Research Papers, pages 83—
91, Berlin, Germany. Association for Computational
Linguistics.

Lucia Specia, Carolina Scarton, and Gustavo Henrique
Paetzold. 2018. Quality estimation for machine
translation. Synthesis Lectures on Human Language
Technologies, 11(1):1-162.

80

Brian Thompson and Matt Post. 2020. Automatic ma-

chine translation evaluation in many languages via
zero-shot paraphrasing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 90—-121, Online.
Association for Computational Linguistics.

Arata Ugawa, Akihiro Tamura, Takashi Ninomiya, Hi-

roya Takamura, and Manabu Okumura. 2018. Neu-
ral machine translation incorporating named entity.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 3240-3250,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Changhan Wang, Anirudh Jain, Danlu Chen, and Ji-

atao Gu. 2019. VizSeq: a visual analysis toolkit
for text generation tasks. In Proceedings of the
2019 Conference on Empirical