
Train and Constrain: Phonologically Informed
Tongue Twister Generation from
Topics and Paraphrases

Tyler Loakman1∗, Chen Tang2∗, and Chenghua Lin2∗∗

1The University of Sheffield, Department of Computer Science
tcloakman1@sheffield.ac.uk

2University of Manchester, Department of Computer Science
chen.tang@manchester.ac.uk, chenghua.lin@manchester.ac.uk

Previous work in phonologically and phonetically grounded language generation has mainly
focused on domains such as puns and poetry. In this article, we present new work on the
generation of English tongue twisters—a form of language that is required to be conditioned
on a phoneme level to maximize sound overlap, while maintaining semantic consistency with
an input topic or phrase and still being grammatically correct. We present TwisterLister, a
pipeline for generating phonologically informed tongue twisters from large language models
(LLMs) that we use to generate TwistList 2.0, the largest annotated dataset of tongue twisters
to date, consisting of 17k+ examples from a combination of human and LLM authors. Our
generation pipeline involves the use of a phonologically constrained vocabulary alongside LLM
prompting to generate novel, non-derivative tongue twister examples. We additionally present
the results of automatic and human evaluation of smaller models trained on our generated dataset
to demonstrate the extent to which phonologically motivated language types can be generated
without explicit injection of phonological knowledge. Additionally, we introduce a phoneme-
aware constrained decoding module (PACD) that can be integrated into an autoregressive
language model and demonstrate that this method generates good quality tongue twisters both
with and without fine-tuning the underlying language model. We also design and implement
a range of automatic metrics for the task of tongue twister generation that is phonologically

∗ Co-first authors.
**The corresponding author.

Action Editor: Tal Linzen. Submission received: 15 March 2024; revised version received: 15 July 2024;
accepted for publication: 20 September 2024.

https://doi.org/10.1162/coli_a_00544

© 2024 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:tcloakman1@sheffield.ac.uk
mailto:chen.tang@manchester.ac.uk
mailto:chenghua.lin@manchester.ac.uk
https://doi.org/10.1162/coli_a_00544

Computational Linguistics Volume 51, Number 2

motivated and captures the unique essence of tongue twisters, primarily based on phonemic edit
distance (PED).1

1. Introduction

Although the dawn of large language models (LLMs) such as OpenAI’s GPT-4 (OpenAI
et al. 2023), Meta’s Llama 2 (Touvron et al. 2023), and Google’s Gemini (Anil et al. 2023)
has brought unprecedented performance improvements in many natural language
generation (NLG) tasks, these models are highly resource-hungry in terms of data,
computation, and API expenses. Consequently, many works have started to investigate
the ways in which LLM capabilities and knowledge can be infused into smaller models,
using the larger model for data enhancement via the generation of pseudo-labels (Tang
et al. 2023) or additional training examples (Yang, Tang, and Lin 2024).

Additionally, LLMs are primarily designed to select the most probable continuation
of a span of text based on their training data. Creative language, in direct opposition
to non-creative language, is predominantly desired to be non-derivative, containing
phrases and word sequences that are not ubiquitous in everyday language in order to
evoke various emotions and engage a reader rather than purely convey information in
a linguistic form. As a result, creative language generation’s goals are at odds with the
primary training paradigm of LLMs, as the goal is often not to select the most probable
continuation, and instead surprise and engage readers (Roush et al. 2022).

In particular, tongue twisters represent a type of phonologically constrained lan-
guage that aims to engage a reader with high levels of phoneme overlap to encourage
mispronunciations, often containing rhyme and humorous semantics, or simply con-
veying information in a form that is enjoyable to read due to the articulatory patterns
that the lexical choices present. Consequently, tongue twister generation presents myr-
iad unique challenges for NLG, including the need to consider the phonetic realization
and underlying phonological representation of the chosen vocabulary, all while still
maintaining a grammatically valid output sequence despite the often obscure and
highly restricted candidate vocabulary. In addition to being a fruitful area for further
investigation by the NLP/NLG communities, tongue twisters also present a wide range
of real-world applications, making the case for their automatic generation even stronger.
These applications include (1) being used as an educational tool for language teaching
(Sugiharto, Santoso, and Shofyana 2022; Somoff 2014; Wilshire 1999); (2) being a source
of entertainment and humor stemming primarily from unintentional misarticulation;
(3) as a literary device for engaging young children in developing their literacy (such
as the approach taken in numerous Dr. Seuss stories, Geisel 1965); (4) as a method of
designing memorable slogans and tag lines (Guerini, Özbal, and Strapparava 2015); and
(5) as stimuli in neuroscience and physiology research to investigate the localization
of functions within the brain and how linguistic perception links to production on a
neurological level (O’Halloran 2020; Wong et al. 2019; Kember, Connaghan, and Patel
2017). Consequently, the ability to automatically generate tongue twisters constrained
on particular topics and phoneme combinations has many real-world applications.
Moreover, findings from the generation of tongue twisters also have wider applicability
in phoneme-conditioned language generation, such as the more widely studied areas

1 Code and resources available at https://github.com/tylerL404/Train-and-Constrain-TT.

416

https://github.com/tylerL404/Train-and-Constrain-TT

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

of poetry and lyric generation, where being able to exert phoneme-level control of the
output is desirable.

1.1 Contributions

Towards the automatic generation of high-quality tongue twisters, we expand upon
prior work to present TwisterLister, an LLM-based pipeline for the generation of
unique, non-derivative tongue twisters to provide more extensive training data to
enable the training of smaller language models. TwisterLister employs semantic and
phonological knowledge in the form of sentence embeddings and phonemic edit dis-
tance to restrict a candidate vocabulary list to pass to an LLM. In doing so, we create
TwistList 2.0, the largest existing dataset of tongue twisters with over 17k examples, of
which approximately 15k are derived directly from the proposed TwisterLister pipeline.
We motivate the need for this extended wealth of training data by demonstrating the
impact on both automatic metrics and human evaluation as a function of training-data
volume by fine-tuning various smaller-scale language models (BART, Flan-T5, etc.) on
various splits of this dataset. We present these results as part of two different tongue
twister generation approaches, topic-to-twister and, inspired by Keh et al. (2023), style-
transfer (i.e., prose-to-twister) (Figure 1). With the aforementioned real-world applica-
tions of tongue twisters, we motivate the topic-to-twister setting for applications such
as language learning, where multiple outputs can be generated to test an individual’s
articulatory abilities in a new language while simultaneously expanding their vocab-
ulary. On the other hand, the style-transfer setting is motivated by applications such
as marketing, where a standard sentence conveying a desired meaning (e.g., a brand’s
mission statement or a product’s features) can be reworded to have increased phonetic
complexity to become a tongue twister, consequently engaging the reader and increas-
ing memorability. We additionally introduce PACD, a Phoneme Aware Constrained
Decoding module, that can be used with any causal autoregressive language model to

Figure 1
Outline of the tongue twister generation pipeline for both the topic-to-twister and style-transfer
task settings. Both settings use the same base models and hyperparameters and differ only in the
data used for fine-tuning.

417

Computational Linguistics Volume 51, Number 2

ensure token outputs meet phoneme-level criteria. Overall, our contributions may be
summarized as follows:

• TwisterLister - A phonologically and semantically informed pipeline for
generating English tongue twisters with large language models, both as a
stand-alone generation method and as a data synthesis approach for
additional training data.

• TwistList 2.0 - The most extensive English tongue twister dataset to date,
containing 17,000+ tongue twisters produced via TwisterLister (∼15k)
and human authors (∼2k), including extensive quality control
procedures, for use in training tongue twister generation models as well
as presenting a resource for the study of this language form on a
linguistic level.2

• PACD - A phoneme-aware constrained decoding algorithm that applies
hard lexical constraints on the outputs of autoregressive language models
to achieve phoneme-level overlap and generate tongue twisters.

• iPED/oPED - Novel phonemic edit distance (PED) based metrics for
assessing the articulatory characteristics of tongue twisters on a
word-initial and overall basis.

• A range of experiments training smaller language models (i.e., GPT-2,
DialoGPT, BART, Flan-T5, ByT5, and Baichuan) to generate tongue
twisters in topic-to-twister and style-transfer settings using TwistList 2.0,
including extensive automatic and human evaluation.

• Extensive qualitative linguistic analysis of generations from different
models trained on varying quantities of training data, with or without the
constrained decoding PACD module, in the form of case studies.

2. Phonetics and Phonology

Due to the strong reliance on theory and ideas from the fields of phonetics and phonol-
ogy in this article, we find it apt to begin with a short introduction to these domains.
Phonetics refers to an area of linguistics that studies the production and perception
of speech sounds present in spoken languages (Gick, Wilson, and Derrick 2013; Jessen
2008; Ladefoged 1996) and the related field of phonology focuses more strongly on the
abstract mental representations of speech sounds and the development of feature-based
taxonomies for the categorization of related sounds (Clements and Ridouane 2011;
De Lacy 2007; Klausenburger 1970).

2.1 Place and Manner of Articulation

Figure 2 presents the primary pulmonic consonants present in human languages. For
each consonant, three important pieces of information on their phonetic characteristics

2 To the best of our knowledge, the previous record belongs to the original TwistList (1.0) from Loakman,
Tang, and Lin (2023), containing just over 2.1k human-authored examples.

418

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Figure 2
The International Phonetic Alphabet consonant chart. Symbols to the right of a cell are voiced
(i.e., involve the vibration of the vocal folds) and sounds to the left are unvoiced. Gray boxes
present place/manner combinations that have been deemed impossible for human production.
This chart is reproduced from the International Phonetic Association, which distributes it under
the CC-BY-SA license.

are interpretable. First, the rows each represent a manner of articulation which refers
to the physical process that occurs to produce a particular sound (such as a “plosive”
involving the build-up and sudden release of air pressure within the mouth, whereas
a “nasal” involves the nasal cavity through the lowering of the velum). Second, each
column refers to a place of articulation, which relates to the main location that articu-
lators (e.g., tongue, teeth, and lips) make contact within the vocal tract (e.g., “bilabial”
sounds involve both lips and “labiodental” sounds involve the lips and teeth in their
production). Finally, the last remaining detail is voicing, which refers to whether or not
the glottal folds (also known as vocal folds or vocal cords) are vibrating during the
sound’s production.

2.2 Phonological Features

In addition to physical production-based characteristics, there are also further phono-
logical features that can be used to explain the patterns and processes that phonemes
undergo in human speech. An example of the different phonological features that
phonemes may have is presented in Table 1. It is phonological features such as these
that the phonemic edit distance (PED) measures introduced in §4 and used throughout

Table 1
A phonological feature chart. + means the feature is present for a given sound, whereas −means
the feature is absent. Only a subset of possible sounds and phonological features are shown for
demonstration purposes.

Sound Consonantal Sonorant Voiced Nasal Continuant Coronal

/t/ + − − − − +
/d/ + − + − − +
/s/ + − − − + +
/l/ + + + − + +
/i/ − + + − + −

419

Computational Linguistics Volume 51, Number 2

Table 2
Phonetic transcriptions of the phrase “Hello World” in the 3 most common standards. Note that
this is just one of the possible productions. Accents differ in their phoneme inventories and
phonological representations, which would necessitate different transcriptions.

Standard Orthography IPA ARPABET SAMPA
Hello World /hEl@U w@:ld/ HH EH L OW W AX L D hEl@U w@:ld

this article rely on to determine the similarity between two speech sounds (and therefore
the likelihood of mispronunciation when transitioning between them).

2.3 Phonetic Transcription Standards

Multiple transcription standards exist for phonetic and phonological representations of
text. In the majority of this article, the preferred standard is the International Phonetic
Alphabet (IPA), where each speech sound is represented by a single symbol (e.g., /t, d, s,
z/). The IPA is the standard transcription convention used within linguistic research and
is used within Figure 2 and Table 1. We additionally make use of another transcription
standard, ARPABET, which uses 1 or 2 characters to represent a given sound (or 3
where vowels have their stress marked). Table 2 presents an example of these standards,
alongside another common standard, SAMPA.

3. Related Work

3.1 Creative Language Generation

Numerous efforts have been made toward the generation of creative language forms,
with a range of findings regarding whether or not popular LLMs truly exhibit human-
level creativity in these tasks. Chakrabarty et al. (2023) present work applying the
Torrance Tests of Creative Thinking (TTCT) to objectively analyze the outputs of LLMs
and human authors on a narrative writing task, finding that LLM generations perform
measurably worse than humans, passing 3–10x fewer criteria outlined by the TTCT.
However, it is important to note that this was in comparison to professional authors,
who represent a very niche subset of the best human writers available. On the other
hand, Gómez-Rodríguez and Williams (2023) compare human and LLM-authored nar-
ratives and find that LLMs are able to match or surpass human performance on several
of the evaluation criteria they present. However, in this case, the “creativity” of the task
was somewhat diminished by having prescribed rules about the topic, characters, and
writing style, where the task may be more construed as emulating the writing of an
existing work. However, similarly, both Franceschelli and Musolesi (2023) and Clark
et al. (2021) observe that humans are infrequently able to distinguish creative works
written by other humans from those authored by LLMs, with the latter often achieving
very high-quality outputs. Overall, there is clear potential and room for improvement
in the field of automatically generating creative language forms.

A popular trend is to investigate the extent to which models can be trained to
generate language forms where training data is scarce. Wöckener et al. (2021) inves-
tigate this for the generation of poetry using ∼16k and ∼67k quatrains of English

420

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

and German poetry, respectively, and notice difficulties in GPT-2 learning sub-lexical
phenomena including rhyme from this number of training examples alone. However,
poetry presents a highly restrictive form of literary language where many types contain
formal constraints regarding length, syllable count, and metrical patterns. Additionally,
Van de Cruys (2020) presents work on the generation of Shakespearean sonnets, another
literary niche that contains an even more limited number of available training samples.
They therefore approach the task via adding constraints at decoding time in a pipeline
approach that includes the stages of content planning, rhyme generation, and output
polishing to imbue literary sensibilities into the outputs of models trained exclusively
on non-literary text. Finally, Popescu-Belis et al. (2023) use data synthesis techniques to
increase the amount of rhyming data they can train GPT-2 (Radford et al. 2019) on, to
realize GPoeT, which shows an increased ability to generate consecutive rhymes.

Tongue twister generation, as a niche subdomain of creative language generation
(which in itself is a branch of NLG more generally), has only received attention in recent
years. Keh et al. (2023) presented PANCETTA, the first major work on the automatic
generation of this language form in the modern post-BERT (Devlin et al. 2019) NLP era,
and released TT-Corp, a dataset of over 600 tongue twisters taken from various online
sources. They train variations of naive and “phoneme aware” GPT-2-based models
(Radford et al. 2019) in a topic-to-twister and style-transfer setting, progressing the
inclusion of phoneme-level awareness by pre-training models on the IPA represen-
tation of WikiText data, and utilizing these models in conjunction with off-the-shelf
orthographic models with the aim of exploiting the link between the phonological and
orthographic representations of text. Shortly following PANCETTA, Loakman, Tang,
and Lin (2023) presented the precursor to the present work and released TwistList
(referred to as TwistList 1.0 in this article), a dataset of 2.1k human-authored tongue
twisters collected from various online sources in line with Keh et al. (2023). Additionally,
TwistList was used to train a wide range of language models, including GPT-2 (Radford
et al. 2019), DialoGPT (Zhang et al. 2020b), BART (Lewis et al. 2020), and T5 (Raffel
et al. 2020) solely in a topic-to-twister setting based on orthographic text. Two naive
phonemic evaluation metrics were introduced, including Phoneme Overlap (PO) and
Initial Phoneme Overlap (IPO), which assessed the homogeneity of the generations in
terms of unique sounds. However, these metrics considered all sounds to be equidistant
in phonological space (hence being naive).

Other forms of language where phonemic and phonetic information are essential
have also been generated, including rap (Xue et al. 2021; Manjavacas, Kestemont, and
Karsdorp 2019; Potash, Romanov, and Rumshisky 2018) and song lyrics more generally
(Tian et al. 2023; Chang et al. 2023; Zhuo et al. 2023; Zhang et al. 2022). Computational
research on creative works is not restricted to such domains, however, with extensive
work also existing in the area of narrative generation (Hong et al. 2023; Tang et al. 2022;
Chen et al. 2021), humor generation (Loakman, Maladry, and Lin 2023; Sun et al. 2022;
Tian, Sheth, and Peng 2022), metaphor processing (Wang et al. 2024, 2023; Li et al. 2023a;
Li, Guerin, and Lin 2022), and music generation (Li et al. 2024; Yuan et al. 2024; Yu et al.
2023).

3.2 Constrained Generation

An inherent paradox often exists when using language models for creative language
generation. Models trained to generate the most probable sequence of tokens are used to
output text where the most probable continuation is sometimes one of the least preferable.

421

Computational Linguistics Volume 51, Number 2

In the simplest form, control over the output form can be exercised through simple
methods such as restricting the output vocabulary at decoding time (Hokamp and Liu
2017; Valitutti et al. 2013), or through the application of penalties for n-gram repetition,
therefore encouraging diversity (Zhang et al. 2021; Foster and White 2007). Several stud-
ies have been performed in the direction of toolkits to aid in constrained language gen-
eration. Roush et al. (2022) present the Constrained Text Generation Studio (CTGS), an
artificial intelligence-writing assistant that in its most basic form applies a range of pre-
made filters to the output of a probabilistic language model (such as “avoid the letter
e”, Wright 2016), scanning the most probable next-word generations and only selecting
those that fall in line with the selected constraints (of which numerous can be applied
in parallel). However, due to the design of the constraints, CTGS struggles with the
generation of well-formed outputs for models trained using the predominant paradigm
of sub-word tokenization. Similar approaches have also been utilized for the generation
of other non-creative language types, such as machine translation and summarization,
where stylistic constraints and editorial decisions may result in a preferred output
structure. For example, Yao et al. (2023) present COLLIE, a grammar-based framework
for the application of advanced compositional constraints on the outputs of language
models, in addition to a tool for generating example task instances from raw text.
Additionally, Iso (2022) presents AutoTemplate, a method of formatting a task structure
to realize lexically constrained text generation. However, although many constraint-
based systems exist, most work on lexical constraints is focused on the inclusion of
specific word choices within the output, and therefore the desired candidate vocabulary
has to be known a priori. Lu et al. (2022) propose to solve a common downfall of
autoregressive decoding where it is necessary to plan ahead and introduce NeuroLogic
A*esque, a decoding approach that uses lookahead heuristics to more carefully consider
future token generations. We build upon work in the area of constrained generation
in §7 with PACD, a phoneme aware constrained decoding approach that dynamically
applies constraints on allowable tokens at each generation timestep.

3.3 Knowledge Distillation

Alongside the advent of LLMs, so too arose the area of knowledge distillation (Gupta
and Agrawal 2022; Hinton, Vinyals, and Dean 2015; Buciluǎ, Caruana, and Niculescu-
Mizil 2006) whereby the aim is to achieve the successful transfer of knowledge from a
much larger model (often referred to as a teacher model) to one or more smaller models
(often referred to as student models). In doing so, much more robust generalist models,
such as GPT-3 (Brown et al. 2020) and GPT-4 (OpenAI et al. 2023), can have elements
of their abilities passed down to smaller models that do not possess the same level of
computing requirements (Yang et al. 2024). Although there are numerous methods of
achieving the desired distillation, perhaps the simplest and easiest of these approaches,
particularly in domains where data is scarce, is to generate new synthetic training data
using the larger models, either via the generation of completely new examples or via
data augmentation and perturbation (Whitehouse, Choudhury, and Aji 2023; Askari
et al. 2023). However, generating novel instances is not always straightforward, with
the quality of generations often being dependent on the task type. For instance, Li et al.
(2023b) find that more subjective tasks may result in lower quality synthetic data, such
as not reflecting the same level of diversity as human-written equivalents, something
that is key to creative language domains and that we aim to overcome in §4.1 for the
creation of TwistList 2.0.

422

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

4. TwistList 2.0 Dataset Construction

Loakman, Tang, and Lin (2023) presented TwistList 1.0, a dataset of 2.1k+ human-
authored tongue twisters from various sources available on the Web including listicles
and works of fiction. Although this allowed a high level of quality in the examples
within the dataset (as all instances were automatically filtered, reviewed by a linguist,
and then underwent quality control on a subset), the small size of this dataset (even
while being the largest dataset of tongue twisters we are aware of to-date) means that
smaller models struggle to learn the key features of tongue twisters from such limited
examples, specifically regarding the need to balance high levels of phonemic repetition
alongside maintaining grammatical coherence.

To combat this shortfall, we extend TwistList 1.0 8-fold into TwistList 2.0, contain-
ing 17,000+ unique tongue twister examples. To achieve this feat, we note the near-
human performance that was achieved by early versions of ChatGPT in our previous
human evaluation studies (Loakman, Tang, and Lin 2023), and opt to build a generation
pipeline we name TwisterLister using GPT-3.5-Turbo to generate novel examples to
facilitate the training of smaller parameter count models from the resulting synthetic
dataset.3

4.1 TwisterLister Pipeline

A key discovery in previous work (Loakman, Tang, and Lin 2023) was the common
reliance of ChatGPT on slightly modifying well-known existing tongue twisters that
had been memorized from the training data when presented with a new topic (for
example, “silver shiny ships” generated “How much wood could a woodchuck chuck if a
woodchuck could chuck silver shiny ships”). To avoid this pitfall, we create a more con-
strained pipeline for tongue twister generation that promotes the generation of unique,
non-derivative examples, illustrated in Figure 3. Initially, we generate the topics for the
tongue twisters by building a set of topic phrases by combining a randomly sampled
adverb or adjective with a noun to represent an abstract topic (using part-of-speech
tags from Natural Language Toolkit’s (NLTK)’s Brown Corpus [Francis and Kucera
1979]). Following this, we then randomly select a phoneme on which to focus the tongue
twister, restricting these choices to consonants (due to these being more commonly
exploited in tongue twisters than vowels) and additionally removing any phonemes
that are not legal in word-initial position in standard English phonotactics (such as
the glottal stop /P/) or phonemes with very few entries in our vocab bank (such as
the voiced postalveolar fricative /Z/). Following this, we search the CMU Pronouncing
Dictionary (CMUDict)4 for words starting with our preferred phoneme and calculate
the cosine similarity between the SentenceBERT embedding of our NLTK-generated
topic phrase with each candidate word retrieved from the CMUDict. Following this,
the top N retrieved candidate words with the highest semantic similarity are kept, and
the others are discarded (N = 5 or 10).

We then calculate the pairwise weighted phonemic edit distance (PED) between
our initially selected phoneme and all other allowable phonemes, and select the lowest
scoring phoneme (i.e., most similar) to act as the best secondary phoneme.5 Where

3 In both Loakman, Tang, and Lin (2023) and the present work, we access GPT-3.5-Turbo (i.e., “ChatGPT”)
via the OpenAI API.

4 Available at https://github.com/Alexir/CMUdict/tree/master.
5 Phonemic edit distance is implemented with the panphon package (Mortensen et al. 2016).

423

https://github.com/Alexir/CMUdict/tree/master

Computational Linguistics Volume 51, Number 2

Figure 3
Illustrated outline of the TwisterLister dataset generation pipeline used to create TwistList 2.0.
PED refers to phonemic edit distance and G2P refers to grapheme-to-phoneme conversion.

multiple share the same edit distance, the first reached when iterating over the list is
selected. This is due to tongue twisters frequently relying on the reader mispronouncing
a sound, often due to confusion with a phonetically/phonemically similar sound (e.g.,
“she sells sea shells” exploiting /S/ and /s/). Consequently, allowing the generation
process to select from 2 banks of words that start with similar sounds means that we can
more directly promote mispronunciations rather than solely relying on the repetition of
a single sound. We then repeat the process of generating a candidate list of words that
are semantically related to the topic and start with our desired secondary phoneme.

We then combine the word lists and shuffle their order to promote alternation
between words with different, yet similar, initial phonemes as experimentation showed
that requesting the LLM to “alternate” between words from 2 different word banks, and
presenting them separately, still resulted in the words being used largely in the same
order that they were presented, and therefore not resulting in the desired alternation.
The list is then fed into the LLM (GPT-3.5-Turbo, accessed August-September 2023 via
the API) with one of the prompts presented in Table 3.

In Prompt A, where we specify single-sentence outputs, we see much more concise
outputs that may suffer from coherence issues, whereas in Prompt B we see more
coherent outputs but which often resemble standard poetry more than tongue twisters
(to which we apply further filtering as discussed in §4.3). Consequently, we use a
combination of tongue twisters generated with either prompt to have a diverse range
of styles.6 All generations are performed with max_tokens set to 1,000 and a temperature

6 We did not perform extensive prompt-engineering to arrive at these but observed the differing behavior
in our preliminary testing.

424

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Table 3
The two prompts used in the TwisterLister pipeline for tongue twister generation from
GPT-3.5-Turbo. [word-list] refers to the phonetically and semantically conditioned vocabulary
selected in the previous steps.

Prompt A
“Generate a sensible and grammatical tongue twister using words from the following list: [word-list].

The output should be a single sentence and be grammatical and coherent.”

Prompt B
“Generate a tongue twister by primarily using words from the following list: [word-list].

The output should be grammatical and coherent.”

of 0.8 to facilitate creative completions. In total, we generated 17,500 example tongue
twisters, of which 11,500 were generated with Prompt A, and 6,500 with Prompt B.7

4.2 Style-transfer Paraphrase Generation

In line with Keh et al. (2023), we present an additional task setting alongside the
topic-to-twister approach that utilizes style-transfer. Whereas Keh et al. (2023) generate
non-tongue twister examples of their dataset entries via simple rule-based synonym
replacement conditioned on part-of-speech tags, we leverage GPT-3.5-Turbo to para-
phrase each entry in our tongue twister dataset. To achieve this, we pass the following
system prompt to GPT-3.5-Turbo: “In this task you will pretend that you’re an author who
is rewriting existing works into a non-literary form that more resembles prose. You will be
presented with a tongue twister and asked to rewrite it using synonym replacement so that there
are no longer high levels of phonetic overlap and sound repetition. Example 1: INPUT = “She
sells sea shells by the seashore.” OUTPUT = “The girl sells conches by the ocean.” Example
2: INPUT = “Peter Piper picks pickled peppers” OUTPUT = “Peter Piper selects preserved
capsicums”. We then present the following user message to GPT-3.5-Turbo for each
dataset entry: “INPUT = "[twister], OUTPUT = ” where [twister] is a standard tongue
twister from TwistList 2.0. This approach is superior to simple synonym substitution as
the LLM can dynamically select new vocabulary terms in a way that further ensures
the new paraphrase uses combinations of vocabulary that are sensible. This is because
raw synonym replacement can result in semantic drift (as very few words are true
synonyms), potentially risking nonsensical outputs (Chiang and Lee 2023).

4.3 Refining Outputs

To further refine the generated outputs, we process the resulting dataset in several
stages. First, all outputs generated using Prompt A (which promotes succinct tongue
twisters that are not as coherent) are re-fed into GPT-3.5-Turbo in the prompt “Improve
the following tongue twister by editing it so that it makes more sense and is grammatical: [tongue

7 The imbalance here is due to wishing to promote the generation of “twisty” content, which is more
prevalent with Prompt A. Consequently, we sample fewer Prompt B examples to contain a moderate
amount of literary/poetic text.

425

Computational Linguistics Volume 51, Number 2

twister]”. Consequently, this step fixes errors that arise from the original word lists given
to the initial prompt containing morphological variants that are difficult to turn into a
coherent output (for example, all nouns being in possessive form, or verb tenses being
mixed in a way that is detrimental to coherence). To further check that the remaining
outputs are sensible, we calculate the perplexity (PPL) of the generations using a pre-
trained language model (in this case GPT-2) as a basic heuristic for well-formedness. We
then compare these scores with the average PPL across the original TwistList dataset of
human-authored tongue twisters and remove any outputs from our new dataset that
have perplexities that are higher than the original dataset’s mean plus one standard
deviation. This stage removed 397 examples.

Additionally, as previously mentioned, Prompt B promoted the generation of
longer, more poetic outputs, at the cost of not always resembling tongue twisters.
In order to maintain only the best generations, we apply a metric for assessing the
phonological characteristics of tongue twisters using weighted PED (Mortensen et al.
2016), which is outlined in further detail in §5.3. Again, we compare the results to the
mean score from the original TwistList dataset, and filter our new dataset by removing
any examples that do not score lower (i.e., better) than the original dataset’s mean
plus one standard deviation. However, no examples were caught in this filtering stage,
suggesting that the majority of the more poetic works still exhibited tongue-twister-
esque phonetics.

Next, to encourage diversity, we remove examples based on word-overlap. To
achieve this, we apply a pairwise fuzzy-matching algorithm based on the token sort
ratio (which is indifferent to word order) across the remaining tongue twisters and
remove examples with more than a 60% overlap with an existing twister in the dataset.8

This step consequently led to the removal of 1,747 entries, therefore reducing repetition
and increasing diversity in the remaining dataset.

We then filter out offensive examples that may have been created by poor
topic/phoneme combinations that resulted in undesirable stereotypes or associations
being expressed. These include words relating to the topics of racism, sexism, homopho-
bia, transphobia, and additional terms that some may find offensive (including general
expletives and references to various anatomy). We perform this by comparing the
tongue twisters with a bank of offensive words and removing any twisters containing
any of the examples (regardless of context). This stage removed a final 69 entries from
our dataset.

Finally, to ensure the diversity of input/output pairs when training in a topic-to-
twister fashion, we remove any entries with duplicate NLTK topic phrases, as these
cases would result in 2 tongue twister outputs for a single input (but with different
phonological characteristics, as they would have been caught and filtered by previous
stages if not). This stage removed a final 135 examples.

The final additions to the dataset comprise 15,151 examples, which when combined
with the existing TwistList 1.0 results in 17,278 unique tongue twisters in TwistList
2.0. We maintain a distinction between human- and machine-authored tongue twisters
in the final dataset so that different communities can make use of whichever is most
pertinent to their application.

8 We arbitrarily decide which to remove and continue until no remaining samples exhibit this level of
overlap due to these examples having passed the other two layers of filtering, and therefore being
acceptable. We implement this using the RapidFuzz package:
https://github.com/rapidfuzz/RapidFuzz.

426

https://github.com/rapidfuzz/RapidFuzz

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

4.4 Additional Processing and Quality Control

As in Loakman, Tang, and Lin (2023), we then enhance the dataset with the addition of
phonetic transcription using the g2p-en Python package.9 We experimented with other
grapheme-to-phoneme (G2P) solutions to see if an improvement was possible here such
as SoundChoice (Ploujnikov and Ravanelli 2022) which better accounts for correctly
transcribing homographs, but opted to utilize g2p-en again. This is primarily due to
our dataset generation pipeline relying on the CMUDict to retrieve vocabulary, and
g2p-en queries the CMUDict for transcriptions before falling back on a trained neural
network model to infer pronunciations for out-of-vocabulary tokens. Consequently, the
majority of our less common vocabulary will already have a gold standard transcription
in CMUDict (in the General American accent, due to the limitations of this resource).
We then convert these transcriptions into the IPA to facilitate the use of our phoneme-
based metrics, but also to provide a transcription standard that is more common in the
linguistics domain.

Finally, whereas in Loakman, Tang, and Lin (2023) RAKE (Rose et al. 2010) was used
to extract keywords from the human-authored examples to represent the topic, we skip
this stage here and utilize the topic phrases we used in the dataset generation step. As a
result, unlike the keywords for the original tongue twister collection, those that are new
to TwistList 2.0 have more abstract topics as the topic words are not forced to appear
in the output twister (rather, only a semantic link is present). We hypothesize that this
may also help to reduce drawbacks seen in the original work, where our trained models
often repeated the topic keywords numerous times to achieve a “tongue twister”, rather
than learning a deeper representation of semantics.

4.4.1 Quality Control. Quality control on our dataset was performed in multiple ways.
Five human evaluators, who are native speakers of English, were provided with 50
sampled instances from the dataset from different conditions to rate the quality of the
resulting tongue twisters (25 from Prompt A and 25 from Prompt B). Scores for the
criteria were given on a scale from 1 (low quality) to 5 (excellent quality) for 5 criteria:
(i) “Twister” refers to the assessed quality of the tongue twister, and whether it exhibits
the expected characteristics of a traditional tongue twister (and is analogous to the
“overall” score present in later human evaluation of our model generations in §6.1).
(ii) “Topic” refers to how well the input topic phrase is represented in the output via
semantics. (iii) “Paraphrase Quality” refers to whether or not the paraphrase generation
step maintains a meaningful and grammatical text, and (iv) “Paraphrase Prosaic” refers
to what extent the paraphrase is believed to have successfully removed the sound
overlap and tongue twister nature of the original input to more resemble standard text.
Finally, (v) “Overall” offers a holistic assessment of the dataset entry as a whole. Table 4
presents the breakdown of the human evaluation results.

In sum, what may be concluded is that the resulting dataset is considered to be of
good quality, particularly with regard to the paraphrased versions and overall evalu-
ation. When compared to other aspects, the ratings for the tongue twisters themselves
and topic semantics are lower but still indicate reasonably good quality (with 3 being
the middle rating, akin to “neither agree nor disagree”). This is particularly true when
considering that tongue twister quality is a highly subjective measure due to entertain-
ment value being a fundamental component that different people perceive to different

9 Available at: https://github.com/Kyubyong/g2p/tree/master.

427

https://github.com/Kyubyong/g2p/tree/master

Computational Linguistics Volume 51, Number 2

Table 4
Results of human quality control assessments for TwistList 2.0. Importantly, we only sample
from the new machine-generated samples created with TwisterLister for quality control.
Assessments regarding the additional 2k+ human-authored examples can be found in the
original TwistList work (Loakman, Tang, and Lin 2023), where 88% of evaluated tongue twisters
were deemed “high quality” (scoring 3 on a 3-point scale). Furthermore, the “Golden” samples
evaluated in §6.2 are exclusively from the human-authored portion of TwistList 2.0, due to these
constituting the test set. We calculate Fleiss’ Kappa for each metric and mark the agreement fair∗,
moderate∗∗, and substantial∗∗∗.

TwistList 2.0 Quality Control

Twister Topic Paraphrase Quality Paraphrase Prosaic Overall

3.138** 3.333* 4.421* 3.969** 3.778**

levels. Additionally, the topic association is lower due to not enforcing that the input
terms are present in the output. On the other hand, extracting keywords from twisters
and using these as the inputs would lead to an artificially inflated rating for the topic
criteria, as the topic would be guaranteed to be represented explicitly in the output.
Overall, the dataset samples were given a mean rating of 3.778, akin to a rating very
close to “high quality”, which is rather good for a creative, and therefore subjective,
domain. Further details of human participant recruitment are reported in §5.4.

4.5 TwistList 2.0 Dataset Summary

Statistical details of TwistList 2.0 can be seen in Table 5. Additionally, two example
entries in the dataset are outlined in Table 6. As the examples demonstrate, the com-
bination of adjective/adverb and noun used as a topic phrase during the TwistLister
generation pipeline can be directly output as part of the final twister, or can instead be
represented solely by semantics. For example, in the top example (TT_ID 68), the input
adjective “public” is replicated in the output. The reason for this is due to the chance of
the phoneme /p/ being selected at random at generation time. Consequently, it makes

Table 5
The statistics of TwistList 2.0. The validation set is obtained by randomly selecting the same
volume of data as the test set from the shuffled training set. All of the test set input phrases were
extracted from TwistList 1.0 entries using RAKE (Rose et al. 2010), rather than being topics we
generated using part-of-speech tags. We do this in order to test our models on more robust input
forms (where input length is not static), therefore facilitating more possible input combinations
than adjective/adverb + noun would allow. This additionally allows comparison to
human-authored gold standards in our later testing. Train (A) and Train (B) refer to samples
generated with Prompt A and Prompt B, respectively.

Dataset Train (A) Train (B) Full Train Test Total
Tongue Twisters 9,653 5,471 15,124 2,124 17,248
Vocabulary Size 60,306 61,160 93,517 10,336 98,703
Avg. # Topic Words 2.00 2.00 2.00 3.16 2.14
Avg. # Paraphrase Words 26.63 57.51 37.80 17.19 35.26
Avg. # Tongue Twister Words 23.90 53.60 34.64 14.98 32.22

428

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Table 6
Example entries from TwistList 2.0. All entries also contain IPA transcriptions used by converting
ARPABET directly into IPA. Consequently, some minor pronunciation errors occur as a result of
an imperfect mapping between the two standards and the selected accent of the G2P tools used.
We forego presenting the transcriptions for the second example in the interest of space. In the
dataset, phonemes that constitute a single word in ARPABET are separated with a space, and
separate words are delineated via double spaces. IPA transcriptions contain no separators within
words (due to being a 1:1 symbol:sound mapping), with a single space between words.
TT ID: 68
Topic: “public commentator”
Source: GPT-3.5-Turbo
Prompt: A
Tongue Twister: The public-spirited BBC broadcasts presented by persistent presenters perplexed the publicist

Berman the broadcaster and the pollster profoundly.
Paraphrase: The civic-minded BBC airs hosted by determined hosts confused the publicist Berman the

broadcaster and the poller deeply.
Twister ARPABET: DH AH0 P AH1 B L IH0 K S P IH1 R IH0 T AH0 D B IY2 B IY0 S IY1 B R AO1 D K AE2 S T S P

R IY0 Z EH1 N T AH0 D B AY1 P ER0 S IH1 S T AH0 N T P R EH1 Z AH0 N T ER0 Z P ER0 P
L EH1 K S T DH AH0 P AH1 B L IH0 S IH0 S T B ER1 M AH0 N DH AH0 B R AO1 D K AE2
S T ER0 AH0 N D DH AH0 P OW1 L S T ER0 P R OW0 F AW1 N D L IY0.

Paraphrase ARPABET: DH AH0 S IH1 V Z IH0 K EY2 D M IH0 D B IY2 B IY0 S IY1 EH1 R Z HH OW1 S T IH0 D B
AY1 D IH0 T ER1 M AH0 N D HH OW1 S T S K AH0 N F Y UW1 Z D DH AH0 P AH1 B L
IH0 S IH0 S T B ER1 M AH0 N DH AH0 B R AO1 D K AE2 S T ER0 AH0 N D DH AH0 P AA1
L ER0 D IY1 P L IY0.

TT ID: 10397
Topic: “direct language”
Source: GPT-3.5-Turbo
Prompt: B
Tongue Twister: Non-direct, multilingual, and non-verbal, Monolingual speakers were nominal. Some could

speak Mandarin natively, While others relied on mediated means. The novelistic twist be-
gan when mispronouncing, Novellus words of complex morphology. Non-native speakers
struggled with Macromedia, And nonnatives found Mandarin challenging. Nonaccrual in
Marathi, they preferred, As net learners of a morphological world. But despite the hurdles,
they persevered, Finding beauty in languages unfurled.

Paraphrase: Indirect, polyglot, and non-verbal, Single-language speakers were nominal. Some could con-
verse in Mandarin from birth, While others depended on mediated methods. The narra-
tive turn commenced when mispronouncing, Novellus terms of intricate structure. Non-
indigenous speakers struggled with Macromedia, And non-natives found Mandarin demand-
ing. Non-accumulation in Marathi, they favored, As online learners of a structural world. But
despite the obstacles, they persisted, Discovering elegance in languages unfolded.

sense to expect “public” (and morphological variants thereof), to be in the top-k most
semantically relevant words to the topic word “public”, and therefore constitute part
of the constrained candidate vocabulary. The clear selection of the phoneme /b/ as the
secondary phoneme (selected via minimizing phonemic edit distance) can also be seen,
where words such as “broadcaster” and the proper noun “Berman” have been selected
(where /p/ and /b/ differ only in the presence/absence of voicing). Similarly, in the
second example (generated from the input “direct language”) we see “non-direct” in
the output due to the selected initial or secondary phoneme being /n/ or /m/ (alveolar
and bilabial nasal consonants, respectively), and “language” has been referenced less
directly via terms such as “monolingual”, “novelistic”, and “Mandarin”. The impact of
the different prompt forms can also be seen, with the first example (using Prompt A)
being much more succinct than the second example (which used Prompt B). Finally,
regarding the paraphrasing used to enable training of style-transfer models, it can be
seen that GPT-3.5-Turbo maintains the grammaticality and coherence of the original
tongue twister, but replaces much of the vocabulary. However, some terms remain for

429

Computational Linguistics Volume 51, Number 2

semantic reasons, such as “BBC” in the first example and "non-verbal" in the second
example.

Due to exercising limited control over the paraphrasing stage, some synonym re-
placements may result in maintaining similar levels of sound overlap (at least in the
word-initial alliterative sense). For instance, “pollster” has been replaced by “poller” in
the first example, and “methods” has been replaced by “means” in the bottom example.
The reason for the former example is similar to why the input phrase may be in the
output of the final tongue twister as the closest synonym to many words is a derivative
of the word itself (i.e., variants of “poll-”).

5. Topic-to-Twister and Style-Transfer Tongue Twister Generation

5.1 Task Definition

Inspired by Keh et al. (2023), we define two different settings for the task of tongue
twister generation we describe as topic-to-twister and style-transfer. In the former topic-
to-twister setting, for a given topic phrase (as generated by randomly sampling adjec-
tive and noun combinations, as described in §4.1), we aim to generate a tongue twister T,
whereby T comprises a sequence of words {w1, w2, . . .wn}. The generated output must
satisfy the following constraints: (1) the output should be semantically related to the
input topic phrase; (2) the output should show maximal levels of phonological overlap
across tokens; and (3) the output should be grammatically valid. On the other hand, for
the style-transfer setting we aim to generate a tongue twister again, T = {w1, w2, . . .wn},
but provide as input a non-tongue twister phrase and aim to convert it via style-transfer
into a tongue twister through learning to replace vocabulary with more phonemically
similar entries.

5.2 Trained Models

In order to realize our goals of tongue twister generation in topic-to-twister and style-
transfer settings, we fine-tune a range of popular language models with varying pa-
rameter counts on our TwistList 2.0 dataset.

• GPT-2 (117M) (Radford et al. 2019) - A popular transformer-based text
generation model consisting of both an encoder and a decoder.

• DialoGPT (117M) (Zhang et al. 2020b) - A version of GPT-2 that has been
fine-tuned on an extensive corpus of dialogues to enable better
conversational performance (and therefore consequently often better
understands natural language task prompts).

• BART (139M) (Lewis et al. 2020) - A popular denoising autoencoder
model consisting of a BERT-like encoder (Devlin et al. 2019) with a
GPT-2-like decoder (Radford et al. 2019).

• Flan-T5 (250M) (Chung et al. 2022) - A further instruction fine-tuned
version of the T5 model (Raffel et al. 2020).

• ByT5 (582M) (Xue et al. 2022) - A version of T5 trained with
byte/character level tokenization, rather than subwords.

430

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

• Baichuan (7B) (Yang et al. 2023) - A large-scale open-source LLM trained
on English and Mandarin, achieving SoTA performance on many tasks
for a model of its size. Due to the significant size of Baichuan, we perform
fine-tuning with the help of Low-Rank Adaptation (LoRA) (Hu et al.
2022).

• ChatGPT (GPT-3.5-Turbo) (Ouyang et al. 2022) - A large language model
fine-tuned for chat-based interactions and instruction following, which
excels in few and zero-shot tasks. Importantly, we use ChatGPT in a
zero-shot manner and do not perform any fine-tuning.10

5.2.1 Training Splits. In order to investigate the benefit of access to different amounts of
training data for a data-driven approach to tongue twister generation in topic-to-twister
and style-transfer task settings (and to motivate the contribution of our large dataset),
we train all of the above models on training sets of various sizes, including 2k, 4k, 8k,
and 13k training samples from TwistList 2.0. One exception here is Baichuan, which
due to computation requirements we train only on the largest 13k split. We keep the
test set (for automatic evaluation) to 2,124 samples, covering the entirety of TwistList
1.0, and have a validation set of equal size. Due to using TwistList 1.0 entries as our test
set, all reference-based metrics are compared to human-authored outputs, and human
evaluation scores can be directly compared to human performance.

5.2.2 Hyperparameters and Training Details. To leverage pre-trained parameters, we re-
store the encoder, decoder, and embedding layers from public checkpoints: (1) GPT-2:
gpt2-base https://huggingface.co/gpt2; (2) DialoGPT: DialoGPT-medium https://
huggingface.co/microsoft/DialoGPT-medium; (3) BART: bart-base https://huggingface
.co/facebook/bart-base; (4) Flan-T5: flan-t5-base https://huggingface.co/google
/flan-t5-base; (5) ByT5: byt5-base https://huggingface.co/google/byt5-base.
The checkpoints of Baichuan are the exception, which require downloading the
weights directly from their repositories (https://github.com/baichuan-inc/Baichuan2).
Here we use the 7B checkpoint of Baichuan 2. As the vanilla Baichuan model requires
extremely large computing resources, we implement the LoRA (Hu et al. 2021) tech-
nique to reduce computational costs. LoRA adapts large language models by incor-
porating low-rank modifications. This approach involves adjusting or fine-tuning
extensive language models to address specific tasks or domains with a reduced
computational cost. By introducing low-rank modifications, LoRA aims to enhance
the adaptability and efficiency of these models while maintaining their performance.
This technique is particularly beneficial for tailoring pre-trained language models to
better suit specialized or narrower domains without requiring excessive computational
resources. Our use of ChatGPT consists of GPT-3.5-Turbo via the OpenAI API, where
we provide no information other than the same prompt we use with all other models.
All other settings remain at default.

Our local experiments are carried out on a single Nvidia A40 GPU, which has
48GB of VRAM. When training neural models, we implement the PyTorch Lightning
framework to set up training processes. The training parameters are as follows: The
batch size is set to 16 (excl. Baichuan w/LoRA, where it is 8); the learning rate is 1e-4; max

10 GPT-3.5-Turbo was accessed for this purpose during August-September 2023 via the Chat Completions
API.

431

https://huggingface.co/gpt2
https://huggingface.co/microsoft/DialoGPT-medium
https://huggingface.co/microsoft/DialoGPT-medium
https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/google/flan-t5-base
https://huggingface.co/google/flan-t5-base
https://huggingface.co/google/byt5-base
https://github.com/baichuan-inc/Baichuan2

Computational Linguistics Volume 51, Number 2

source length is set to 512, and the max target length is set to 100; the optimizer uses Adam
(Kingma and Ba 2014), and the ε of Adam is set to 1e-8. The whole training process lasts
for 10 epochs, and the validation checking runs every half epoch. However, the presented
results only consider the checkpoint with the best performance (i.e., lowest loss).

For all topic-to-twister settings, we use the prompt “Generate a tongue twister on
the topic of “[TOPIC]”” where [TOPIC] refers to the input topic phrase from the test
set, and for all style-transfer settings we use the prompt “Generate a tongue twister by
rewriting the following text: [PARAPHRASE]” where [PARAPHRASE] refers to the non-
literary paraphrase of a tongue twister from the test set.

5.3 Automatic Metric Suite

We present extensive automatic evaluation on the following metrics: Perplexity (PPL),
BLEU (B-1/B-2/B-3/B-4) (Papineni et al. 2002), ROUGE (Ro-1/Ro-2/Ro-L) (Lin 2004), and
BERTScore Precision, Recall, and F-Measure (Zhang et al. 2020a) (BS-P/BS-R/BS-F).
PPL, BLEU, and ROUGE are standard metrics in language generation to assess quality,
and BERTScore assesses semantic similarity to a gold reference. It should be noted that
due to the nature of our task, many potential “gold standard” tongue twisters exist for
any given input. Consequently, as with all creative generation works, these reference-
based metrics should be interpreted cautiously while being aware of their limitations
(although we opt to include them for completeness).

5.3.1 Readability. Tongue twisters are known for their intricate phoneme-level patterns
and linguistic complexity, making them challenging to articulate correctly. Conse-
quently, readability metrics can be used to indirectly measure whether or not tongue
twisters, due to their complex nature, are using more complex vocabulary in order to
meet strict phonemic constraints (such as when a selected phoneme only has a few
obscure words that are related to the input topic). We present a range of readability
metrics, incorporating the Dale-Chall Readability Index (Chall and Dale 1995) (Re-D),
Flesch–Kincaid Readability Score (Flesch 1948) (Re-F), Gunning-Fog Index (Gunning
1971) (Re-G), and ARI Index (Smith and Senter 1967) (Re-A). These comprise a series of
complexity and readability metrics that relate to the necessary comprehension level of
a text’s audience. They calculate a numerical score based on factors such as sentence
length and word complexity, offering a quantitative measure of how difficult a text
is to understand. These further complement our other metrics by analyzing linguistic
complexity via means other than phonology.11 Additionally, extremely high scores on
such metrics can likewise indicate the nonsensical nature of any particularly poor gen-
erations. This is because readability metrics take into account factors such as sentence
length and syllable counts, with high scores being given to indefinitely long sequences
(due to the absence of sentence-final punctuation) as well as convoluted and overly
complex syntactic structures and lexical choices.

5.3.2 Phonology/Phonetics. We further develop our tongue twister measures and PEDs
relying on the weighted phonemic edit distance function from the PanPhon package
(Mortensen et al. 2016). This allows us to more directly analyze the phonetics of our gen-
erated outputs by taking into consideration the articulatory similarities and differences

11 All readability metrics were implemented from
https://pypi.org/project/py-readability-metrics/.

432

https://pypi.org/project/py-readability-metrics/

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

between different phonemes. For example, previous phonetic metrics from Loakman,
Tang, and Lin (2023), PO and Init-PO, treat all phonemes as equidistant in feature space,
resulting in a transition from /s/ to /S/ being viewed as the same “quality” as a transi-
tion from /s/ to /g/. In the former case, we have transitioned from a voiceless alveolar
fricative to a voiceless post-alveolar fricative (therefore moving the tongue slightly fur-
ther back in the mouth), whereas in the latter case the transition is between a voiceless
alveolar fricative and a voiced velar plosive, resulting in a change of voicing, position,
and manner of articulation. Consequently, using phonemic edit distance allows us to
not punish transitions between phonemically similar sounds (which are more likely to
encourage mispronunciations, such as in “she sells sea shells”) as heavily as we punish
transitions between unrelated sounds. As with PO and Init-PO, we utilize this weighted
edit distance on both a word-initial and overall level, with oPED taking the overall
average edit distance between every phoneme transition in the tongue twister, whereas
iPED calculates the edit distance between word-initial phonemes (and is, therefore, a
more accurate measure of “soft” alliteration).

Formally, for iPED and oPED let X and Y be two phonemes, represented as feature
vectors, where each vector contains binary values representing the presence or absence
of a phonological feature. Therefore, the weighted feature edit distance between X and
Y is defined as: Dwfe(X, Y) = minalignments

∑n
i=1 wi · di, where X and Y are sequences

of phonological features represented as feature vectors, n is the length of the longest
common subsequence of X and Y, di represents the distance between the i-th feature
in the alignment, and wi is the weight assigned to the i-th feature. The minimum is
taken over all possible alignments of the sequences X and Y. Each alignment assigns
a distance di between corresponding features in the sequences. The weighted sum of
these distances is computed, where each distance is multiplied by its corresponding
weight wi. For iPED, we calculate the mean distance across sequences of word-initial
phonemes, whereas for oPED we calculate the mean distance when comparing all adja-
cent phonemes across the tongue twister. This metric provides a flexible way to measure
the similarity between sequences of phonological features, allowing for customization
through feature weighting. In the case of oPED and iPED, the lower the score, the better
(with a score of 0 relating to 100% overlap of a single phoneme throughout the tongue
twister).

In addition to our novel metrics discussed above (iPED/oPED), we additionally
present our two metrics from Loakman, Tang, and Lin (2023), Phoneme Overlap
(PO) and Initial Phoneme Overlap (Init-PO). PO refers to the average overlap of all
phonemes across tokens (# unique phonemes / # total phonemes), whereas Init-PO is
the ratio of unique word-initial phonemes to the number of words (# unique word-
initial phonemes / # words). Although these original phoneme-based metrics reward
longer outputs, we argue that all other things equal, a longer tongue twister is better
than a shorter one as it provides more entertainment and more opportunities for mis-
pronunciation. Perfect scores on PO and Init-PO can be achieved by the repetition of
a single word. Although this does not lead to high-quality outputs, these metrics are
intended exclusively to be indicators of sound characteristics, rather than an overall
guide to quality. In both cases, higher levels of overlap result in lower (“better”) scores,
and the highest (“worst”) achievable score is 1.

5.4 Human Evaluation Protocol

Due to the limitations of automatic evaluation metrics and tongue twisters being
a creative domain where articulation abilities are tested, we also perform human

433

Computational Linguistics Volume 51, Number 2

evaluation. In line with Loakman, Maladry, and Lin (2023), we aim to be transparent
in our human evaluation of a subjective language type that may be considered a type of
humorous language. In total, five evaluators were asked to rate 20 outputs from the best
performing standard baselines, Flan-T5 and ByT5, in addition to Baichuan, ChatGPT
(i.e., GPT-3.5-Turbo), and golden examples from TwistList 2.0, on the following criteria:
Relevance (how relevant the tongue twister is given the keyword inputs), Fluency (how
grammatically valid the output is), Difficulty of Articulation (how difficult a tongue
twister is to say), Coherence (how much sense the output makes), and Entertainment
Value (how entertaining the output is, considering sounds and semantics) and a holistic
Overall criteria. All ratings were given on a 5-point scale where 1 equates to “poor” and
5 equates to “excellent”. Importantly, we include both Flan-T5 and ByT5 trained on 2k
samples, as well as 13k samples, to investigate whether or not increased training data
has a measurable impact on human evaluation in addition to the patterns observed in
automatic evaluation.

5.4.1 Evaluator Recruitment and Demographics. In total, we recruit 5 evaluators via in-
ternal notices and word of mouth. All evaluators have university-level education to a
minimum of undergraduate level in a range of fields including linguistics, computer
science, engineering, and animation, and therefore represent a wide range of academic
backgrounds. All evaluators are native speakers of English and report no language
processing issues. Evaluators were provided with a 55GBP Amazon gift card for their
combined work on dataset quality control and output evaluation, totalling approxi-
mately 4 hours of work.

5.4.2 Materials Provided to Evaluators. Evaluation was performed on an online platform.
Participants were provided with a page of detailed instructions on how to navigate the
platform and the order in which to perform evaluation tasks. Importantly, all human
evaluation responses were given on a 1–5 rating scale (where 1 equates to “poor” and
5 equates to “excellent” for how well a criterion is met). For example, “The tongue
twister can be considered logically and semantically coherent.” for the criteria of Coher-
ence. Additionally, those with non-linguistic backgrounds had certain terms clarified,
such as the meaning of “prosaic” in the style-transfer task. Each evaluator rated 450
samples across all evaluations, consisting of 20 samples from 7 models (i.e., Flan-T52k,
Flan-T513k, ByT52k, ByT513k, Baichuan, ChatGPT [i.e., GPT-3.5-Turbo], and the gold-
standard) on 2 tasks (280 in total), 50 quality control examples, and 120 examples for
our novel constrained decoding algorithm (20 of which used constrained base GPT-2,
20 of which came from our constrained fine-tuned GPT-2, and 20 of which came from
unconstrained GPT-2 trained on 13k samples, with the equivalent set up for Baichuan).

6. Results (Topic-to-Twister and Style-Transfer)

6.1 Automatic Results

6.1.1 Topic-to-Twister. We present the results for automatic evaluation in the topic-to-
twister task setting in Table 7 and Table 8. First, regarding the reference-based metrics
(BLEU, ROUGE, and BERTScore), we see clear performance differences across our
chosen models. On average across almost all metrics, we see the performance from
worst to best ordered as GPT-2, DialoGPT, BART, ByT5, and Flan-T5 for our fine-
tuned models. However, we see that Baichuan’s performance is variable, mostly outper-
forming BART and underperforming Flan-T5 and ByT5. However, Baichuan performs

434

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Table 7
Results of automatic evaluation on typical metrics for the topic-to-twister task setting. The mean
length of the tongue twisters in the dataset is 35.65/34.14/14.98 words for train/evaluation/test,
respectively. Results in bold represent the best performance for a given training data quantity,
and underlined presents the second-best performance. Results followed by an asterisk * denote
the overall best performance. The PPL of ByT5 is not applicable, as the tokens of ByT5 are
characters whereas others are sub-words.
Model PPL B-1↑ B-2↑ B-3↑ B-4↑ Ro-1↑ Ro-2↑ Ro-L↑ Length
GPT-22k 25.04 0.0391 0.0165 0.0083 0.0043 5.1255 0.6704 4.8414 51.81
DialoGPT2k 23.74 0.0453 0.0187 0.0091 0.0047 6.3366 1.0349 5.9843 57.72
BART2k 3.98 0.0749 0.0256 0.0105 0.0040 8.1503 0.7608 7.4855 44.07
Flan-T52k 2.86 0.1055 0.0545 0.0325 0.0209 11.2417 2.1528 10.3641 25.60
ByT52k – 0.1440 0.0918 0.0639 0.0477 6.2582 1.0329 5.9611 47.56

GPT-24k 24.84 0.0423 0.0168 0.0076 0.0037 5.7569 0.6818 5.5077 53.27
DialoGPT4k 24.83 0.0422 0.0161 0.0071 0.0032 5.9712 0.6915 5.6415 55.91
BART4k 4.09 0.0685 0.0215 0.0082 0.0031 7.6023 0.7364 6.9026 47.30
Flan-T54k 2.93 0.1090 0.0558 0.0328 0.0207 10.5343 1.7701 9.8546 24.25
ByT54k – 0.1397 0.0900 0.0634 0.0479 6.8637 0.9744 6.4977 48.18

GPT-28k 28.58 0.0430 0.0143 0.0060 0.0026 5.6638 0.5385 5.2935 54.23
DialoGPT8k 24.54 0.0458 0.0172 0.0076 0.0035 6.3555 0.7622 5.9901 56.59
BART8k 4.33 0.0633 0.0195 0.0072 0.0029 6.8434 0.5874 6.1127 49.68
Flan-T58k 3.11 0.1194 0.0600 0.0346 0.0217 10.7728 1.3758 10.0456 22.97
ByT58k – 0.1531 0.0951 0.0647 0.0475 6.2602 0.7142 6.0271 40.96

GPT-213k 28.77 0.0440 0.0152 0.0061 0.0025 5.9412 0.6024 5.5890 56.59
DialoGPT13k 25.15 0.0504 0.0187 0.0078 0.0034 6.7274 0.8170 6.3148 60.05
BART13k 4.16 0.0595 0.0152 0.0050 0.0017 6.6284 0.5090 5.9523 49.79
Flan-T515k 3.10 0.1189 0.0571 0.0319 0.0192 10.0983 1.1632 9.2976 23.87
ByT516k – 0.1609* 0.0988 0.0660 0.0476 6.4857 0.6073 6.2272 40.05
Baichuan+LoRA13k 14.54 0.0463 0.0227 0.0131 0.0080 6.2215 1.3878 5.9212 51.76

ChatGPT – 0.1577 0.1073* 0.0788* 0.0585* 26.2949* 13.2789* 23.7763* 24.46

worse than BART considering a range of metrics (B-1, Ro-1, Ro-L, BS-P, BS-R, BS-F1)
when considering the same training data amount (13k). Flan-T5 and ByT5 alternate in
performance, with the latter tokenizer-free model performing better on BLEU-based
metrics, but worse on ROUGE. When specifically considering changes alongside an
increase in training data, in Table 7 we see little to no improvement in reference-based
metrics within the topic-to-twister setting, with performance decreasing as training
data increases in some cases. However, it is pertinent to mention that reference-based
metrics are imperfect for the task of creative language generation due to the one-to-
many dilemma prevalent in many NLG tasks (Gupta et al. 2019), whereby there are
numerous potential tongue twisters to generate from any given input topic. This is also
particularly true when considering the TwistList 2.0 dataset, where the topics are often
only related to the input phrase in a high-level conceptual fashion (as we do not enforce
the generation of the topic phrase within the tongue twister itself). Finally, ChatGPT,
when prompted in the same manner as our other models, demonstrates significantly
higher performance than any of our fine-tuned models.

Regarding the readability and phonemic metrics presented in Table 8, we see a
range of patterns. First, for IPO (formerly referred to as Init-PO) and PO, we see
the GPT-2 based models “outperform” BART and the T5 models almost across the
board. However, naive phoneme-overlap-based metrics do not take into account more
sophisticated phonemic characteristics. When considering our new metrics based on

435

Computational Linguistics Volume 51, Number 2

Table 8
Results of automatic evaluation on tongue twister related metrics for the topic-to-twister setting.
Results in bold represent the best performance for a given training data quantity, and
underlined presents the second-best performance. Results followed by an asterisk * denote the
overall best performance. Brown Corpus Prose presents the scores of standard prose from the
Brown Corpus from NLTK (across 602 sentences with a minimum length of 25 words).
Model BS-P↑ BS-R↑ BS-F1↑ IPO↓ PO↓ iPED↓ oPED↓ Re-D Re-F Re-G Re-A
GPT-22k 0.7543 0.8265 0.7883 0.0849 0.0617* 3.8717 5.9131 17.08 45.79 48.71 59.52
DialoGPT2k 0.7680 0.8310 0.7978 0.0954 0.0660 3.8308 5.9032 12.79 16.52 18.54 21.21
BART2k 0.7938 0.8384 0.8153 0.3183 0.1848 4.5168 5.9219 14.21 11.70 14.12 11.51
Flan-T52k 0.8075 0.8440 0.8249 0.2129 0.1610 4.0828 5.9141 13.10 14.68 16.19 18.25
ByT52k 0.7705 0.8301 0.7982 0.1207 0.1021 2.5398 5.9048 14.61 28.54 30.20 38.35
GPT-24k 0.7648 0.8303 0.7958 0.0881 0.0683 4.1320 5.9440 13.51 23.08 25.14 28.89
DialoGPT4k 0.7648 0.8300 0.7956 0.0984 0.0701 3.7237 5.9205 13.01 17.39 19.26 21.86
BART4k 0.7962 0.8363 0.8156 0.2821 0.1620 4.7537 5.9693 12.77 12.46 14.11 13.69
Flan-T54k 0.8071 0.8436 0.8244 0.2089 0.1657 3.8280 5.8899 13.29 16.63 17.76 20.28
ByT54k 0.7636 0.8297 0.7941 0.1250 0.0987 2.2248 5.9197 16.0915 35.6761 36.9863 47.4017
GPT-28k 0.7712 0.8315 0.7998 0.1224 0.0841 4.3355 5.9751 12.57 14.93 16.30 18.00
DialoGPT8k 0.7745 0.8327 0.8022 0.1116 0.0775 4.0111 5.8952 11.99 13.42 15.14 16.83
BART8k 0.7928 0.8343 0.8129 0.2831 0.1675 4.9463 5.9693 11.97 12.36 13.71 13.86
Flan-T58k 0.8160 0.8462 0.8304 0.2378 0.1866 4.1542 5.8669 12.74 14.40 16.24 17.31
ByT58k 0.7711 0.8306 0.7986 0.1341 0.1087 2.1024* 5.8804 16.37 31.98 33.88 42.47
GPT-213k 0.7748 0.8322 0.8021 0.1261 0.0859 4.2671 5.8985 12.06 13.46 15.21 16.64
DialoGPT13k 0.7795 0.8336 0.8053 0.1249 0.0839 4.4665 5.9407 11.30 12.85 14.95 15.55
BART13k 0.7925 0.8319 0.8115 0.2662 0.1489 4.8871 5.8184* 12.14 11.75 13.57 13.83
Flan-T513k 0.8181 0.8468 0.8319 0.2568 0.1996 4.3122 5.8932 12.31 12.50 14.03 14.97
ByT513k 0.7742 0.8320 0.8009 0.1554 0.1217 2.5520 5.8374 15.77 31.22 34.00 39.33
Baichuan+LoRA13k 0.7658 0.8259 0.7940 0.0689* 0.0657 2.6752 5.9951 16.41 34.37 31.73 44.59
ChatGPT 0.8401* 0.8613* 0.8503* 0.3477 0.2991 4.0547 5.9153 9.83 9.37 10.53 11.48
Brown Corpus Prose – – – 0.4870 0.2275 5.1431 5.9561 11.09 13.15 15.56 16.60

phonemic edit distance (iPED and oPED), we see less distinction across any of the
presented models. However, one notable finding is that Baichuan performs significantly
better than any of the other models trained on 13k samples in the word-initial IPO and
iPED metrics, suggesting high levels of word-initial phonemic overlap across tokens
when compared to other models. Likewise, we see that the tokenizer-free ByT5 model
outperforms Flan-T5 by a significant margin regarding the phoneme-based metrics,
suggesting that the finer-grained tokenization of ByT5 is preferable for identifying
the sound patterns implicitly included in tongue twisters via grapheme combinations.
ChatGPT, on the other hand, scores the highest on the IPO and iPED metrics (i.e., worst).
This, however, is not in itself indicative of poor tongue twisters, but rather the model’s
focus on producing high-quality comprehensible and grammatical text, therefore being
less likely to fall victim to degenerate patterns of repeating the same word over and
over to achieve overlap. As with the reference-based metrics discussed earlier, raw
reliance on phoneme-based metrics can also be misleading. For example, intuitively,
prior works have demonstrated that high scores (i.e., lower values) can be achieved in
word-initial-based metrics simply by repeating the same word, rather than producing
a complex and entertaining tongue twister. Regarding readability scores, we see GPT-2
and Baichuan present high scores (i.e., high difficulty of readability) when compared
to our other models. However, high readability metrics can be indicative of numerous
things, including desirable behavior (using complex structures and sophisticated multi-
syllabic vocabulary) as well as behavior that is not necessarily desirable (e.g., producing

436

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Table 9
Results of automatic evaluation on typical reference-based metrics in NLG for the style-transfer
setting. The mean length of the tongue twisters in the dataset is 35.65/34.14/14.98 words for
train/evaluation/test, respectively. Results in bold represent the best performance for a given
training data quantity, and underlined presents the second-best performance. Results followed
by an asterisk * denote the overall best performance. The PPL of ByT5 is not applicable, as the
tokens of ByT5 are characters whereas others are sub-words.

Model PPL B-1↑ B-2↑ B-3↑ B-4↑ Ro-1↑ Ro-2↑ Ro-L↑ Length
GPT-22k 15.59 0.1055 0.0738 0.0534 0.0397 15.2637 6.2852 14.8342 62.53
DialoGPT2k 14.54 0.1001 0.0688 0.0491 0.0359 14.4003 5.7688 13.9574 67.65
BART2k 1.96 0.2498 0.1797 0.1324 0.0997 25.4414 11.3534 24.8061 36.87
Flan-T52k 1.64 0.5597 0.4426 0.3591 0.2964 48.7184 24.3008 47.9246 15.18
ByT52k – 0.6770 0.5847 0.5210 0.4731 46.8991 22.3860 46.0446 16.53
GPT-24k 15.15 0.1161 0.0837 0.0621 0.0472 16.7069 7.4608 16.3085 62.70
DialoGPT4k 13.96 0.1099 0.0773 0.0565 0.0425 15.8087 6.7687 15.3450 65.72
BART4k 2.00 0.2561 0.1859 0.1378 0.1041 26.3945 12.0011 25.8563 37.72
Flan-T54k 1.62 0.5500 0.4351 0.3532 0.2917 48.8662 24.6492 48.1269 14.99
ByT54k – 0.7177 0.6242 0.5596 0.5111 49.1321 24.7326 48.2396 15.90
GPT-28k 14.26 0.1152 0.0833 0.0622 0.0476 16.7724 7.5582 16.3746 63.30
DialoGPT8k 13.19 0.1096 0.0772 0.0572 0.0438 15.7687 7.0081 15.248 67.10
BART8k 1.95 0.2448 0.1803 0.1358 0.1043 30.1371 14.4970 29.4553 37.50
Flan-T58k 1.63 0.5699 0.4571 0.3756 0.3135 51.1949 26.9544 50.4617 14.91
ByT58k – 0.7124 0.6224 0.5605 0.5136 50.4737 25.9246 49.5851 15.85
GPT-213k 13.55 0.1229 0.0901 0.0683 0.0529 17.9146 8.4624 17.4801 60.71
DialoGPT13k 12.84 0.1114 0.0796 0.0597 0.0462 16.2061 7.3163 15.7076 66.90
BART13k 1.82 0.2298 0.1717 0.1309 0.1014 34.0662 16.9713 33.3075 37.78
Flan-T513k 1.61 0.5832 0.4704 0.3885 0.3258 52.7077 28.6604 51.8808 14.82
ByT513k – 0.7356* 0.6465* 0.5846* 0.5376* 51.9886 27.7015 51.1895 15.55
Baichuan+LoRA13k 5.15 0.6046 0.5006 0.4229 0.3618 60.1989* 37.1423* 59.1040* 15.27
ChatGPT – 0.3288 0.2167 0.1491 0.1057 39.3536 13.9654 34.9884 17.43

gratuitously long sentences). It is for this reason that we exclude an indicator of the
preferred metric direction in the case of our readability metrics, yet include the scores
for completeness.

6.1.2 Style-Transfer. We present the results for automatic evaluation in the style-transfer
task setting in Table 9 and Table 10. Overall, we see much the same pattern as with the
topic-to-twister setting, with performance ordering of DialoGPT, GPT-2, BART, ByT5,
and Flan-T5 across our referenced metrics (again, with our T5-based models alternating
in ranking). However, unlike in the previous setting, the style-transfer setting appears to
favor Baichuan, which presents the highest scores on ROUGE-based referenced metrics
(when considering models also trained on 13k samples), whereas ByT5 performs the
best on BLEU. Additionally, scores across the board are higher than seen in the topic-
to-twister setting, but this is to be expected as the style-transfer task setting provides a
structure for the generated tongue twister based on the length and word choices present
in the original. Consequently, increased amounts of overlap between the desired output
and the gold reference are expected due to not all words requiring modification. In
contrast to the topic-to-twister setting, however, we do not see ChatGPT outperform
all models, rather, it is beaten by Baichuan and Flan-T5 in most cases. In terms of the

437

Computational Linguistics Volume 51, Number 2

Table 10
Results of automatic evaluation on tongue-twister-related metrics for the style-transfer setting.
Results in bold represent the best performance for a given training data quantity, and
underlined presents the second-best performance. Results followed by an asterisk * denote the
overall best performance. Brown Corpus Prose presents the scores of standard prose from the
Brown Corpus from NLTK (across 602 sentences with a minimum length of 25 words).
Model BS-P↑ BS-R↑ BS-F1↑ IPO↓ PO↓ iPED↓ oPED↓ Re-D Re-F Re-G Re-A
GPT-22k 0.8170 0.8662 0.8405 0.1264 0.0830 4.7213 5.9688 10.66 7.45 9.52 6.94
DialoGPT2k 0.8172 0.8634 0.8394 0.1177* 0.0786* 4.8873 5.9570 9.92 7.66 9.76 7.74
BART2k 0.8162 0.9031 0.8570 0.5112 0.2474 4.5594 5.8120 14.76 12.21 14.13 11.47
Flan-T52k 0.9281 0.9275 0.9277 0.5465 0.4290 4.7362 5.9696 10.51 6.08 7.77 5.07
ByT52k 0.9166 0.9171 0.9166 0.4392 0.3949 4.2451 5.9703 10.78 6.81 8.72 5.90
GPT-24k 0.8247 0.8726 0.8477 0.1221 0.0834 4.7674 5.9775 10.88 7.02 8.93 6.15
DialoGPT4k 0.8213 0.8668 0.8432 0.1280 0.0847 4.8948 5.9825 10.34 7.83 10.16 7.35
BART4k 0.8157 0.9026 0.8565 0.4028 0.2267 3.8435 5.7562* 16.74 14.10 15.72 14.19
Flan-T54k 0.9262 0.9266 0.9263 0.5362 0.4290 4.6793 5.9743 10.72 6.10 7.83 5.05
ByT54k 0.9198 0.9199 0.9197 0.4436 0.4011 4.2007 5.9553 10.47 6.40 8.03 5.59
GPT-28k 0.8231 0.8714 0.8463 0.1188 0.0821 4.7338 5.9779 10.83 7.30 9.23 6.58
DialoGPT8k 0.8183 0.8638 0.8402 0.1329 0.0876 4.9483 5.9787 10.10 8.23 10.47 8.03
BART8k 0.8073 0.9073 0.8538 0.4451 0.2620 5.1885 5.8138 14.46 13.17 13.46 11.00
Flan-T58k 0.9289 0.9290 0.9288 0.5262 0.4289 4.6310 5.9707 10.67 5.95 7.67 4.99
ByT58k 0.9208 0.9219 0.9212 0.4549 0.4063 4.2830 5.9598 10.68 6.52 8.04 5.85
GPT-213k 0.8258 0.8738 0.8489 0.1256 0.0870 4.7119 5.9536 11.65 8.59 10.84 7.73
DialoGPT13k 0.8216 0.8676 0.8437 0.1348 0.0891 5.0811 5.9733 10.51 9.01 11.03 8.79
BART13k 0.7903 0.9141 0.8470 0.4201 0.3216 4.0013* 6.1303 17.97 13.25 16.91 9.82
Flan-T513k 0.9311 0.9309 0.9309 0.5226 0.4288 4.5770 5.9681 10.64 5.98 7.63 5.06
ByT513k 0.9236 0.9246 0.9240 0.4619 0.4128 4.2982 5.9634 10.73 6.35 7.93 5.67
Baichuan+LoRA13k 0.9442* 0.9411* 0.9425* 0.4908 0.4236 4.4789 5.9771 9.98 5.60 7.15 4.62
ChatGPT 0.8851 0.8898 0.8873 0.5495 0.3948 4.7725 5.9445 10.37 7.67 9.06 8.25
Brown Corpus Prose – – – 0.4870 0.2275 5.1431 5.9561 11.09 13.15 15.56 16.60

performance difference on these metrics as the amount of available training data is
increased, unlike the topic-to-twister setting we see a more clear growth in performance
on reference-based metrics alongside training data in the majority of cases. Regarding
the readability and phonemic metrics presented in Table 10, we again see similar
patterns with GPT-2 based models scoring well on the naive phoneme-based metrics
(IPO/PO), but all models performing similarly when regarding the more informed
iPED/oPED measures. Regarding readability, scores overall are seen to be lower than
in the topic-to-twister setting, suggesting more legible text. On one hand, this may
indicate that the style has failed to transfer, with the paraphrase representing a well-
written standard non-literary text (and therefore the model has effectively resorted to
auto-encoding). On the other hand, this may also be an artifact of following the original
structure of the non-literary paraphrase, therefore avoiding unnaturally long sentences
and nonsensical outputs.

6.2 Human Evaluation

The results of human evaluation for the topic-to-twister setting are presented in
Table 11, and the results for the style-transfer setting are in Table 12.

6.2.1 Topic-to-Twister. First, for the topic-to-twister setting in Table 11, we can see that
the highest scores for all criteria go to the human-authored “golden” samples, or those

438

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Table 11
Results of human evaluation in the topic-to-twister task setting. The best scores are in bold, and
the second-best are underlined. We calculate Fleiss’ Kappa for each metric, and we mark the
extent of agreement with the following markings: ∗ fair agreement; ∗∗ moderate agreement;
∗∗∗ substantial or almost perfect agreement.

Score (1 to 5)
Trained Topic-to-Twister

Flan-T52k Flan-T513k ByT52k ByT513k Baichuan13k ChatGPT Golden
Relevance 2.077∗∗∗ 1.625∗∗∗ 2.180∗∗ 2.070∗∗ 1.688∗∗ 4.824∗∗ 4.647∗∗

Articulation 1.800∗∗ 1.882∗∗ 3.050∗∗ 3.290∗∗∗ 1.176∗∗ 2.667∗∗ 3.375∗

Fluency 2.000∗∗ 3.462∗∗ 2.290∗∗ 3.380∗∗ 1.450∗∗ 4.632∗∗ 4.944∗∗

Coherence 1.200∗∗ 2.133∗∗ 1.610∗∗ 1.930∗∗ 1.118∗∗ 4.333∗∗ 4.444∗∗∗

Entertainment 1.200∗ 1.833∗ 1.620∗∗ 2.070∗∗ 1.000∗ 3.267∗ 3.077∗∗

Overall 1.063∗ 1.888∗ 1.800∗∗ 2.300∗∗ 1.316∗∗ 3.538∗∗ 3.909∗∗

Table 12
Results of human evaluation in the style-transfer task setting. The best scores are in bold, and
the second-best are underlined. We calculate Fleiss’ Kappa for each metric, and we mark the
extent of agreement with the following markings: ∗ fair agreement; ∗∗ moderate agreement;
∗∗∗ substantial or almost perfect agreement.

Score (1 to 5)
Style-Transfer

Flan-T52k Flan-T513k ByT52k ByT513k Baichuan13k ChatGPT Golden
Relevance 4.467∗ 4.714∗∗ 4.090∗ 4.160∗ 4.882∗∗ 4.692∗∗ 5.000∗

Articulation 1.462∗∗ 2.231∗∗ 3.710∗∗ 3.520∗ 2.250∗∗ 2.471∗∗ 3.313∗∗

Fluency 4.611∗∗ 4.895∗∗∗ 4.150∗∗ 4.270∗∗ 4.800∗ 5.000∗∗ 4.950∗∗

Coherence 4.188∗∗ 4.733∗∗ 3.500∗∗ 3.550∗∗ 4.375∗∗ 3.929∗∗ 4.786∗

Entertainment 1.733∗ 2.000∗ 3.400∗∗ 3.240∗ 2.846∗ 2.583∗ 3.455∗∗

Overall 2.308∗ 3.000∗ 3.500∗∗ 3.510∗ 3.333∗ 3.500∗ 3.941∗∗

generated with ChatGPT. With a rating of “3” being considered the midpoint for
“neither agree nor disagree” with the given criteria statements, it is evident that our
fine-tuned unconstrained generation models struggle with the open-ended topic-to-
twister task setting. However, when investigating the fine-tuned model performance
we do see some patterns start to emerge that indicate the benefit of having such
an extensive dataset as TwistList 2.0. For instance, Flan-T5 benefits from additional
training samples, particularly regarding the metrics of Fluency and Coherence, and
moderately in Entertainment and the holistic Overall rating. These findings for Fluency
and Coherence are intuitive, as additional training samples increase the likelihood of
generating grammatical and semantically coherent outputs due to the increased train-
ing data through which to learn these patterns. On the other hand, Articulation and
Entertainment refer to more creative-language-specific metrics that are more abstract,
and consequently difficult to learn from the training data. Relevance is the only metric
shown to decrease when moving from 2k training samples to 13k, and we hypothesize
that this is due to the increased wealth of training data that contains a more abstract
link between the input topic and the generation, therefore decreasing the likelihood of

439

Computational Linguistics Volume 51, Number 2

the input words being directly present in the output (which is a straightforward way of
performing well on Relevance metrics). Overall, however, we see ByT5 is preferable to
Flan-T5, outperforming it in human evaluation on the criteria of Relevance, Artic-
ulation, Entertainment, and Overall, but underperforming in regard to Fluency and
Coherence in the 13k instance. This additionally sheds some light on how humans per-
ceive quality tongue twisters, with articulation difficulty being a more integral feature
for a tongue twister than grammatical validity and semantic coherence. Finally, we see
Baichuan struggle immensely with the topic-to-twister task setting (which is explored
further in §9), frequently opting to repeat the input topic phrase continuously, therefore
artificially increasing Relevance scores, but performing poorly on all other metrics.

6.2.2 Style-Transfer. On the other hand, we see better performance across the board for
the style-transfer setting as facilitated by the additional high-quality paraphrases we
include in TwistList 2.0. We hypothesize that the reason for this is that style-transfer
requires already having access to a well-formed input, and additionally acts as an
extended, very prescriptive form of an input topic, where the entire tongue twister
is predefined in structure and semantics. As a result, we see Baichuan outperform
ChatGPT on the criteria of Entertainment and Relevance, whereas Flan-T5 trained on
the 13k split outperforms ChatGPT regarding semantic coherence of the output. Inter-
estingly, we observe that ByT5 trained on only 2k examples performs more closely to the
13k version than is seen in Flan-T5, suggesting the alternative tokenization approach
allows ByT5 to learn the relevant patterns from fewer examples. Importantly, we see
Baichuan perform much better in the style-transfer task than in the topic-to-twister
setting, suggesting that Baichuan requires much more explicit instruction to generate
high-quality outputs and understand a given prompt.

6.3 Human vs. Automatic Metrics

6.3.1 Human-Machine Correlation. In order to see the effectiveness of our selected auto-
matic metrics, we calculated the Spearman correlations between our 8 reference-free
metrics, including readability (i.e., Re-D, Re-F, Re-G, and Re-A) and our phonetic met-
rics (i.e., IPO, PO, iPED, and oPED), against the human evaluation ratings for all criteria
(i.e., relevance, articulation, fluency, coherence, entertainment, and overall). Correla-
tions are presented in Table 13. To evaluate the predictive power of the automatic

Table 13
Spearman correlation coefficients for each human evaluation criterion with reference-free
automatic metrics. We take the mean score across evaluators for the combined unconstrained
topic-to-twister and style-transfer task settings.

Automatic Metrics
Re-D Re-F Re-G Re-A IPO PO iPED oPED

Relevance −.395 −.442 −.423 −.494 .394 .496 −.004 .104
Articulation −.218 −.271 −.224 −.218 −.063 −.087 −.226 .110
Fluency −.400 −.590 −.564 −.630 .516 .674 −.001 −.013
Coherence −.320 −.482 −.551 .482 −.486 .622 −.003 .064
Entertainment .301 −.287 −.267 −.278 .151 .262 −.077 −.106
Overall .342 .386 .372 .386 .211 .361 −.129 .055

440

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

metrics for human ratings, we developed a standard multiple linear regression model
for each criterion. The model is defined as follows:

yi = β0 +

p∑
j=1

βjXij + εi (1)

where yi represents the human score, β0 is the intercept, βj are the coefficients for the p
automatic metrics, and εi is the error term. No regularization was applied to the model.
The R2 values, which indicate the proportion of variance explained by the automatic
metrics, were validated through 5-fold cross-validation to ensure the stability and sig-
nificance of the predictions. The average R2 values across the folds were as follows:
Fluency (R2 = .553), Coherence (R2 = .496), Relevance (R2 = .393), Overall (R2 = .260),
Articulation (R2 = .241), and Entertainment (R2 = .152). Furthermore, all coefficients
in the models were found to be statistically significant, with p-values below 0.01
(α = 0.01), indicating that each of the automatic metrics significantly contributes to the
prediction of human ratings.

Overall, we intuitively see the Entertainment criterion being the hardest to predict
due to the inherent subjectivity of this criterion. On the other hand, we see our naive
phonemic metrics (IPO and PO) demonstrate moderate correlations with Relevance,
Fluency, and Coherence. This is due to the high relevance of tongue twisters often being
seen in examples where the input topic is simply repeated, which results in high levels
of phoneme overlap. Similarly, high fluency scores are given to more sentences that
better reflect standard non-literary text, which consequently score lower on IPO and PO,
and less coherent outputs are often produced by repeating the same word. Moreover,
our “informed” phonemic metrics (iPED/oPED) show little correlation with human re-
sults on these criteria, but iPED demonstrates evidence of a correlation with articulatory
difficulty. However, the articulatory difficulty still remains challenging to predict, even
from these phonemic metrics. We hypothesize that this may be related to the “visual
tongue twister” effect (McCutchen and Perfetti 1982). This is due to human evaluation
being performed online and asynchronously, where we cannot force participants to
speak aloud each tongue twister. Consequently, we hypothesize that the naive metrics
may correlate better with human judgments as human ratings were confounded by the
visual impact of the tongue twister (for example, seeing a particular grapheme repeated
numerous times representing the same sound). Furthermore, there are additional effects
from the influence of other factors such as fluency and coherence affecting articulation
due to violating expectations and reducing legibility. Consequently, iPED/oPED should
be used as indicators of text resembling a tongue twister, but not as a holistic metric
for overall quality. It is clear from comparison with standard non-literary text that the
phonetic metrics are able to differentiate the specific characteristics of tongue twisters
from that of standard text, but phonemic complexity is not the sole contributor to the
perception of articulatory difficulty.

6.3.2 GPT-4o “Human” Evaluation. We additionally perform evaluation on the same
samples presented to human evaluators in the unconstrained topic-to-twister and style-
transfer settings using GPT-4o via prompting the model with the same rubric presented
to human evaluators (see Appendix A).12 Overall, we see moderate-to-high correlation

12 Specifically, gpt-4o-2024-05-13 via the API.

441

Computational Linguistics Volume 51, Number 2

between model scores and human-assigned scores for all criteria: Relevance (ρ = .671),
Articulation (ρ = .653), Fluency (ρ = .768), Coherence (ρ = .658), Entertainment (ρ =
.716), and Overall (ρ = .776).13 This demonstrates that our human evaluation rubric is
clear and well defined, and can be effectively followed by state-of-the-art LLMs.

7. Tongue Twister Generation with Phoneme Aware Constrained Decoding

In the following section, we present work on a constrained decoding-based approach to
tongue twister generation. In contrast to §5, here we focus exclusively on the topic-to-
twister task setting due to the text-continuation nature of our decoding approach. The
benefit of this algorithm, in contrast to the fine-tuned models presented in §5, is that
constrained decoding guarantees that only desirable tokens appear in the output due to
the layering of hard phoneme-based constraints as previously discussed. Additionally,
due to how this system interacts with language model token predictions, this process
can be applied to any autoregressive language model, including both pre-trained base
models and further fine-tuned models.

7.1 Task Definition

For a given input prompt we aim to generate a tongue twister T, whereby T consti-
tutes a sequence of words {w1, w2, . . .wn}. In contrast with the previous section, in
this task setting T is a continuation of the input prompt that we generate token by
token, evaluating the language model’s next token predictions at each step. As per §5,
the generated output must satisfy the following constraints: (1) the output should be
semantically related to the input topic phrase; (2) the output should show maximal
levels of phonemic overlap across tokens; and (3) the output should be grammatically
valid.

7.2 Phoneme-Aware Constrained Decoding Module (PACD)

We present an outline of our Phoneme-Aware Constrained Decoding algorithm (PACD)
in Algorithm 1.14 To summarize, for every starting prompt s in our test set S, we firstly
perform grapheme-to-phoneme conversion G2P with the g2p-en package and extract
the initial phoneme of the first word in the topic phrase part of s in order to increase
the likelihood of retrieving a semantically related output (with the phoneme denoted
as ph1). However, where the selected phoneme is not a valid consonant, we randomly
select a phoneme from a list of phonotactically legal word-initial consonant phonemes
for English, WIP. Following this, we calculate the weighted PED between ph1 and all
other legal word-initial phonemes and select the lowest scoring (i.e., most similar) as
our secondary phoneme ph2 (analogous to the system in §4 for TwisterLister). Following
this, we autoregressively generate new tokens up to the limit defined by max_length
based on numerous criteria. To do this, we feed the starting prompt s into our language
model of choice, LM, and retrieve the next token probabilities P. Then, in descending
order (i.e., most-probable to least-probable next token) we iterate through predictions
p ∈ P until specific criteria are met. First, to increase the likelihood of generating

13 All significant at α = .01.
14 PACD is intended to be pronounced as “packed”.

442

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Algorithm 1 Phoneme-Aware Constrained Decoding (PACD)
1: for each s in S do
2: ph1 = G2P(topic in s)[0]
3: ph2 = arg min(PED(ph1, WIP \ {ph1}))
4: while len(s∗) < max_length do
5: Retrieve next word probabilities P = {p1, . . . , pn} from LM(s∗)
6: for each rank, p in ENUMERATE(P) do
7: if p in F and rank ≤ function_window then
8: append p to s∗

9: break
10: end if
11: candidates = []
12: if len(p) > min_stem_length and G2P(p)[0] == ph1 or ph2 then
13: append p to candidates
14: temp_prompt = s*+p
15: for i in range(4) do
16: next_token = LM(temp_prompt)
17: if next_token.isalpha() and next_token[0] != “ ” then
18: longest = “ ”.join(candidates)
19: longest + = next_token
20: append longest to candidates
21: end if
22: if next_token[−1] == “ ” then
23: break
24: end if
25: end for
26: temp_ prompt = “ ”
27: for candidate in candidates.sort(longest-to-shortest) do
28: if candidate ∈ D and COUNT(candidate in s∗) < max_repetition then
29: append candidate to s∗

30: end if
31: end for
32: end if
33: end for
34: end while
35: end for

grammatical output, if a function word (such as an article, pronoun, conjunction, prepo-
sition, or auxiliary verb) from our function word list F is within the range defined by
function_window, we allow it to generate. For example, when generating the first word,
if function_window is set to 3, and “The” is the token with the 2nd highest probability,
we allow it to generate as it is within our allowed range of top-3.

To account for subword tokenization in non-function words, we next check that
the predicted token is longer than the limit defined by min_stem_length. We do this
as we find the result of not limiting this to be a reliance on outputting the grapheme
that most closely corresponds to a desired phoneme (rather than a sequence that better
resembles a morpheme), significantly increasing inference time and decreasing output
quality. We then use our phoneme constraints by feeding the predicted word stem p

443

Computational Linguistics Volume 51, Number 2

into a grapheme-to-phoneme model G2P and comparing the first phoneme to ph1 and
ph2, continuing if it matches either. Consequently, in this stage, we have ensured that
generated words are either closed-class grammatical function words or start with one
of the two phonologically similar sounds selected in lines 2–3 of Algorithm 1. Following
this, we optionally engage the subword loop (lines 15–25 in Algorithm 1). Within this
loop, we temporarily append our candidate word stem to the current prompt s* to
create temp_prompt. Following this, we feed temp_prompt to the language model LM
and take only the token with the highest probability, next_token. We then check that
next_token is alphabetical and does not start with whitespace (as this would indicate
the model was predicting a new word, rather than a continuation). If this is the case,
we append it to temp_prompt and perform the loop again (up to 4 times, allowing
words that consist of 1–5 subwords). Within this loop, we build a list of potential
words, candidates, by appending the concatenated subwords (e.g., [“anti”, “antidis”,
“antidisestablish”, “antidisestablishment”, “antidisestablishmentarian”]) We terminate
this loop early if a predicted next_token ends with whitespace, as this indicates that the
model has predicted the end of the current word. Once we have our list of candidates,
we iterate through them from the longest (i.e., consisting of the most subwords) to the
shortest, assessing the following criteria.

First, we check that each candidate ∈ candidates is longer (in characters) or equal to
the length defined by min_word_length and that candidate ∈ D, where D is the English
dictionary as defined by the Enchant Python package.15 Once this check is complete,
we ensure that we have not already generated this specific candidate more times than
permitted by max_repetition, in order to avoid falling into the perpetual loop of repeating
the same words that language models are prone to (see §9). Here we use s∗ to denote
the starting prompt s with newly generated tokens appended, which is to say that
s∗ − s equals only the LM-generated words. Finally, if no candidate meets the criteria,
we increase rank by looking at the next-best prediction in P until the vocabulary is
exhausted. In the case where no suitable candidates exist in the vocabulary, we simply
move on to the next s.

To illustrate the algorithm with an example, consider S to consist of two input topics
s: [fun, sadness]. For the first example (“fun”), we select ph1 by performing G2P on the
topic, returning /fUn/, and select the word-initial /f/ as ph1. We then decide ph2 by
selecting the next phoneme that has the lowest phonemic edit distance to /f/, returning
/v/ as ph2. Following this, we feed the full prompt “Generate a tongue twister on the
topic of ‘fun’.” to the language model, and retrieve the next-token probabilities P. For
example, P could be {1 : The, 2 : It, 3 : A...}, where the set is the length of the decoded
vocabulary. We then iterate through the predictions until a word meets our criteria. For
instance, the most likely continuation, “The”, is in the function word list F and within
the function_window due to being at rank 1, so we append it to the prompt and now have
“Generate a tongue twister on the topic of ‘Fun’. The”, which we now denote s∗. We then
feed this extended prompt into the language model to retrieve the second word, where
P may look like {1: grey, 2: big, 3: fun}. Here, options in rank 1 and 2 (“grey” and “big”)
do not start with ph1 or ph2 and are also not function words in F. However, the word
in rank 3, “fun” is transcribed phonemically as /fUn/, where the initial phoneme /f/
matches ph1, so we enter the subword loop and find the candidate “funniest”, allow it to
generate, and append it to the prompt, resulting in “Generate a tongue twister on the topic
of ‘Fun’. The funniest”. We repeat this until we generate new tokens up to max_length,

15 Available at https://pypi.org/project/pyenchant/.

444

https://pypi.org/project/pyenchant/

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

and then start the process again for the remaining topic in S, which is “sadness”. We
additionally make sure that we do not generate the same word more than once, as
determined by max_repetition, and we do not generate words shorter in length than
min_word_length.

7.3 Constrained Models

To demonstrate the effectiveness of our decoding module, we utilize 2 decoder-only
autoregressive language models as our LM: GPT-2 (Radford et al. 2019) and Baichuan
(Yang et al. 2023), to which our module will be applied on top. In addition, we investi-
gate to what extent fine-tuning a model towards tongue twister generation is beneficial,
by additionally using our fine-tuned GPT-2 and Baichuan from §5, referred to herein as
GPT-213k and Baichuan13k. Importantly, we assess only these models fine-tuned on the
largest amount of data, 13k.

Regarding the other settings for PACD, we set max_length to 30 (as a sensible
midpoint generation length ascertained from Table 7), function_window to 1, and im-
plement F as the NLTK stopwords list with all punctuation removed. Additionally, we
set min_stem_length to 2 and min_word_length to 3 (as all standard 1- or 2-letter words
{I, a, I′m, am, at, in, up, on} ∈ F). Additionally, max_repetition is set to 1, in effect banning
wholesale repetition (though allowing plural/singular forms, and case variants) to
avoid the patterns seen in standard autoregressive models. Finally, we use the g2p-en
package for our G2P model, as in the creation of TwisterLister (§4.4). Finally, we only
decode the top 2,500 predictions in each timestep rather than the entire vocabulary in
order to speed up inference significantly, as it is rare to select tokens ranked below this
point. Importantly, due to the computational cost of our algorithm, we load Baichuan
using 8-bit quantization to make inference possible. Overall, for GPT-2, PACD takes
approximately 5–10 seconds to generate a 30-word tongue twister (with or without
subword generation), whereas Baichuan takes 10–15 seconds when generating full
words only, and 30–100+ seconds when allowing subwords on a consumer CPU (i5
9600k). We posit future work on the parallelization of elements of PACD to be more
computationally-efficient and take advantage of the GPU.

8. Results (PACD)

We perform automatic evaluation in the same manner as §6.1, and report both
reference-based (BLEU/ROUGE/BERTScore) and unreferenced metrics (Init-PO/PO/
iPED/oPED and the readability metric suite). We additionally perform human evalua-
tion in the same manner as §6.2 and with the same evaluators, following the protocol
for the topic-to-twister task setting. Each evaluator is presented with 20 examples
(using the same inputs as in §6.2) from base GPT-2 and Baichuan with the addition of
PACD, or fine-tuned GPT-213k and Baichuan13k with and without PACD.

8.1 Automatic Evaluation

The results of the automatic evaluation for the constrained decoding approach (PACD)
are presented in Table 14 for referenced metrics and Table 15 for unreferenced metrics.
First, for GPT-2, regarding the reference-based metrics, surprisingly we see fine-tuned
GPT-2 with the addition of our constrained decoding module (GPT-213k -w) outperform
the standard fine-tuned model (GPT-213k -w/o) on B-1 and B-2, in addition to all ROUGE-
based metrics (Ro-1, Ro-2, and Ro-L). The exception here is for the higher-order BLEU

445

Computational Linguistics Volume 51, Number 2

Table 14
Results of automatic evaluation on typical reference-based metrics in NLG for the constrained
decoding approach to tongue twister generation in the topic-to-twister task setting. Results in
bold represent the best performance, and underlined results show the second-best performance.
-w/o denotes without constraints, -w denotes the addition of our PACD module, and
-ws denotes the addition of PACD with subword generation enabled.

Model B-1↑ B-2↑ B-3↑ B-4↑ Ro-1↑ Ro-2↑ Ro-L↑
GPT-213k -w/o 0.0440 0.0152 0.0061 0.0025 5.9412 0.6024 5.5890
GPT-213k -w 0.0832 0.0170 0.0046 0.0013 8.6673 0.9067 7.5011
GPT-213k -ws 0.0584 0.0045 0.0003 0.0000 0.0089 0.0000 0.0792
GPT-2 -w 0.0759 0.0142 0.0032 0.0010 8.0608 0.6403 6.8765
GPT-2 -ws 0.0594 0.0059 0.0009 0.0001 0.0940 0.0121 0.0790
Baichuan13k -w/o 0.0463 0.0227 0.0131 0.0080 6.2215 1.3878 5.9212
Baichuan13k-w 0.0493 0.0041 0.0004 0.0000 0.0846 0.0081 0.0677
Baichuan13k -ws 0.0525 0.0051 0.0006 0.0001 0.0940 0.0106 0.0742
Baichuan -w 0.0547 0.0054 0.0009 0.0002 0.0885 0.0109 0.0750
Baichuan -ws 0.0600 0.0080 0.0019 0.0005 0.1010 0.0175 0.0846

Table 15
Results of automatic evaluation on tongue-twister-related metrics for the constrained decoding
approach to tongue twister generation in the topic-to-twister task setting. Results in bold
represent the best performance and underlined presents the second-best performance.
-w/o denotes without constraints, -w denotes with the addition of our PACD module, and
-ws denotes the addition of PACD with subword generation enabled. Brown Corpus Prose
presents the scores of standard prose from the Brown Corpus from NLTK (across 602 sentences
with a minimum length of 25 words).
Model BS-P↑ BS-R↑ BS-F1↑ IPO↓ PO↓ iPED↓ oPED↓ Re-D Re-F Re-G Re-A
GPT-213k -w/o 0.7748 0.8322 0.8021 0.1261 0.0859 4.2671 5.8985 12.06 13.46 15.21 16.64
GPT-213k -w 0.8056 0.8207 0.8129 0.2305 0.2317 3.0376 5.8930 13.88 14.58 17.58 18.77
GPT-213k -ws 0.8018 0.8267 0.8139 0.1724 0.2287 1.7252 5.7686 11.60 12.24 15.59 17.20
GPT-2 -w 0.7986 0.8208 0.8094 0.1689 0.2110 1.6529 5.7699 11.36 12.66 15.76 15.91
GPT-2 -ws 0.8119 0.8258 0.8186 0.2469 0.2614 3.1642 5.8991 9.02 10.45 14.16 13.65
Baichuan13k -w/o 0.9442 0.9411 0.9425 0.4908 0.4236 4.4789 5.9771 9.98 5.60 7.15 4.62
Baichuan13k -w 0.7915 0.8202 0.8053 0.1629 0.2416 1.4324 5.6876 10.72 11.18 13.52 15.18
Baichuan13k -ws 0.7887 0.8215 0.0742 0.1512 0.2194 1.2898 5.6708 11.95 12.59 14.82 17.21
Baichuan -w 0.8014 0.8204 0.8106 0.2102 0.2461 2.4449 5.8094 9.08 10.55 14.26 14.25
Baichuan -ws 0.7984 0.8217 0.8096 0.1992 0.2339 2.3284 5.8016 9.89 11.37 14.86 15.38
Brown Corpus Prose − − − 0.4870 0.2275 5.1431 5.9561 11.09 13.15 15.56 16.60

measures, B-3 and B-4, where the unconstrained model achieves higher overlap. Base
GPT-2 also benefits from the addition of our PACD module (GPT-2 -w), outperforming
the unconstrained fine-tuned model on the recall-based ROUGE metrics. Observing the
unreferenced results in Table 15, performance ordering varies for the BERTScore seman-
tic metrics (BS-P, BS-R, and BS-F1), with the unconstrained fine-tuned model (GPT-213k
-w/o) trading places with the constrained equivalents (GPT-213k -w and -ws) for the most
performant. However, base GPT-2 with the addition of PACD (GPT-2 -w) consistently
comes in second place for these metrics. Furthermore, we see the original fine-tuned
unconstrained model perform the best when considering the original naive phoneme-
based metrics IPO and PO, whereas the un-fine-tuned, yet constrained model, GPT-2

446

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

-w, places second. It is here that the less naive newly presented phoneme-based metrics,
iPED and oPED, demonstrate their usefulness. For instance, although fine-tuned GPT-2
without any constraints (GPT-213k -w/o) performed best on the naive metrics (IPO/PO),
it performed the worst on the more linguistically informed metrics (iPED/oPED). This is
because good tongue twisters exploit the relationships between similar sounds, whereas
IPO/PO penalize these transitions as being low-quality; our informed metrics reflect
favorably on such transitions, penalizing them less than transitions between weakly
related phonemes.

When looking at Baichuan, we see that the unconstrained fine-tuned model is the
highest overall scorer on B-2, B-3, B-4, and Ro-2, as well as all BERTScore measures (BS-
P, BS-R, and BS-F1). Interestingly, when analyzing the impact of the addition of PACD,
we see the non-fine-tuned Baichuan with subword generation enabled (Baichuan -ws) to
outperform all other versions of Baichuan that contain PACD, even without being fine-
tuned on the specific style of text we are aiming to generate (however, scores are low
overall). Regarding the phonemic metrics, we again see the benefit of PACD in reducing
the scores on all phoneme-based metrics by successfully increasing sound overlap.
Additionally, we see fine-tuned Baichuan with the addition of PACD (Baichuan13k -w
and -ws) to outperform the non-fine-tuned models in the phonetic metrics. Finally, the
addition of PACD to Baichuan can be seen to lead to a significant increase in readability
scores (i.e., an increase in reading difficulty). However, these scores still remain below
the formal non-literary text of the Brown Corpus.

These results demonstrate the effectiveness of our constrained decoding approach
that takes into consideration which word-initial phonemes would be the best to center
generation around to encourage mispronunciation. Additionally, overall we see similar
performance between our models using full-word and subword versions of PACD.

8.2 Human Evaluation

Human evaluation is performed identically to the evaluation reported in §6.2 (and with
the same evaluators). Importantly, however, due to enforcing a 30-word output length,
we ask evaluators to not penalize generations on the criteria of “Fluency” for being
cut off prematurely. Additionally, due to the similarity in the outputs with and without
sub-word generation for PACD as seen in §9, we only perform human evaluation on
the outputs of PACD with subword generation disabled, to minimize evaluator fatigue
and potential acquiescence bias due to seeing similar results for either method. The
results of human evaluation on outputs using our constrained generation PACD module
are presented in Table 16. We additionally perform human evaluation on GPT-2 and
Baichuan trained on 13k samples (the former of which was excluded from §6.2) in order
to have a point of comparison without the addition of PACD (referred to as GPT-213k
-w/o and Baichuan13k -w/o, respectively).

Regarding GPT-2, we see a clear benefit from the addition of our constrained decod-
ing module. Firstly, across all evaluation criteria, either base (i.e., vanilla) or fine-tuned
GPT-2 receives the highest scores (indicated in bold) when the PACD module is applied.
However, we do see fine-tuned GPT-2 without the addition of PACD (GPT-213k -w/o)
outperforming the equivalent model with PACD enabled on the criteria of Fluency and
Coherence, which evaluate grammar and semantics, respectively. One explanation for
this is that GPT-2 (overall) has been shown to perform poorly in the topic-to-twister set-
ting when considering coherent and grammatical outputs (see also §9). Consequently,
the addition of even more restrictive decoding rules brought about by PACD is slightly
detrimental to the general quality of the output. On the other hand, non-fine-tuned

447

Computational Linguistics Volume 51, Number 2

Table 16
Results of human evaluation in the topic-to-twister task setting using constrained decoding. -w
denotes to models using our decoding algorithm, and -w/o denotes fine-tuned models without
this additional module. The best scores are in bold, and the second-best are underlined. We
calculate Fleiss’ Kappa for each metric, and we mark the extent of agreement with the following
markings: ∗ fair agreement; ∗∗ moderate agreement; ∗∗∗ substantial or almost perfect agreement.

Score (1 to 5) Constrained Topic-to-Twister

GPT-213k -w/o GPT-213k -w GPT-2 -w Baichuan13k -w/o Baichuan13k -w Baichuan -w
Relevance 2.16∗∗∗ 2.44∗∗∗ 2.42∗∗∗ 3.04∗∗ 2.39∗∗ 2.41∗∗
Articulation 2.80∗∗∗ 3.85∗∗∗ 3.69∗∗∗ 3.21∗∗ 3.58∗∗∗ 3.28∗∗
Fluency 2.66∗∗∗ 2.39∗∗ 3.13∗∗∗ 2.24∗∗ 1.84∗∗ 1.88∗∗
Coherence 2.17∗∗ 2.00∗∗ 3.41∗∗∗ 2.09∗∗ 1.68∗∗ 1.64∗∗
Entertainment 2.00∗∗∗ 2.14∗∗ 2.97∗∗ 1.81∗∗ 1.67∗∗ 1.64∗∗
Overall 1.72∗∗∗ 2.00∗∗ 2.91∗∗∗ 2.09∗∗ 1.98∗∗ 1.89∗∗

language models are primarily designed to output standard prose that is grammatical
and sensible initially. Consequently, the addition of the PACD decoding module does
not damage the overall readability of the outputs too severely. Importantly, however,
we do not analyze the performance of base GPT-2 without the PACD decoding mod-
ule, as the performance of GPT-2 in zero-shot scenarios is poor, therefore making this
not a meaningful point of comparison. Interestingly, however, base GPT-2 with PACD
(GPT-2 -w) outperforms the fine-tuned models either with or without the presence of
the additional decoding module, suggesting that the most desirable approach may be
“train or constrain”, rather than “train and constrain”, as this allows phoneme-level
control without sacrificing grammatically.

In contrast to GPT-2, when considering Baichuan, we see that human ratings de-
crease when moving from standalone fine-tuned Baichuan (Baichuan13k -w/o) to either of
the versions containing PACD. This, however, is not the case for the Articulation criteria,
which increases in both PACD versions of Baichuan (i.e., Baichuan13k -w and -ws). This
suggests a possible trade-off regarding the addition of constrained decoding to existing
LMs, with larger models suffering from the additional control being exerted over their
outputs, whereas smaller models are able to be guided towards desirable characteristics
of the output language form by complimenting the reduced knowledge capacity of the
smaller models during fine-tuning and zero-shot inference.

In conclusion, a significant finding from the human evaluation results is that the
PACD module results in a substantial increase in the Difficulty of Articulation criteria
(named “Articulation” in Table 16). This indicates the success of our constraint cascade
in selecting phoneme pairs that contribute to maximal levels of phoneme-level confu-
sion, and therefore mispronunciation (i.e., the key to a successful tongue twister).

9. Case Studies and Qualitative Analysis

9.1 Topic-to-Twister

Table 17 presents example generations using 2k and 13k training samples to investi-
gate the different benefits and drawbacks of each model, as well as the effects of vari-
able levels of training data in a qualitative manner. We additionally include Baichuan
trained on 13k samples, and ChatGPT (GPT-3.5-Turbo) in a zero-shot manner. For these
examples, we randomly select an input topic from the first 100 samples in our test set.

448

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Table 17
Example outputs from all fine-tuned models where different training data amounts were used
(2k v. 13k training examples) in addition to Baichuan with 13k training examples, and zero-shot
ChatGPT in the topic-to-twister task setting. Text within square brackets indicates repeated
spans, with the number of repetitions indicated next to it.

Input: “rural brewery”
Golden: “Rory the warrior and Roger the worrier were reared wrongly in a rural brewery.”

GPT-22k “In the bustling city of Chattanooga, where Chattanooga’s vibrant craft beer scene thrives, The Chat-
tanooga’s craft beer scene thrives, [With Chattanooga’s craft beer scene thriving, The Chattanooga’s craft
beer scene thrives,]*3 With Chattanooga’s craft bee”

GPT-213k “In the bustling town of Chattanooga, where the townspeople reside, The Chattanooga’s taproom is filled
with tapestries of flavors. Chattanooga’s taproom is filled with the finest tapestry, From the tapestry of
Chattanooga’s charm, it’s a sight to see. Chattanooga’s taproom is filled with the finest tapestry, From the
tapestry of Chattanooga’s charm, it’s a sight to see. Chattanooga’s taproom is filled with the finest tapes”

DialoGPT2k “In the bustling city of Bethlehem, a bustling brewery was bustling with craftsmanship and craftsmanship
was its main attraction. It was also the place to find the best beer in the city. It was also the place to find
the best breweries in the city. It was also the place to find the best breweries in the country. In the bustling
city, a bustling brewery was bustling with craftsmanship and craftsmanship. It was also the place to find
the best beer in the city. It was als”

DialoGPT13k “In the bustling city of Tharrington, where the city’s charm is known, There’s a thriving tavern called
Tharrington’s, Where the taverns thrive with a vibrant atmosphere. The tavern’s owner, a skilled crafts-
man, built a taproom that was truly grand, With a taproom full of flavors, it was truly a sight. The tavern’s
atmosphere was so grand, it was like a vibrant symphony, With taverns and taverns, it was truly a sigh”

BART2k “In the bustling city of New Zealand, a New Zealander named New Zealanders gathered at the New
Zealand’s New Zealand brewery, where New Zealandians gathered to discuss the New Zealander’s New
Zealanders’ New Zealand heritage.“ \“ \“\“ “\” ” ” ” suscept “ suscept ” char non”

BART13k “In the village of Vineland, where Vineland’s vineyard thrived, Vineland and Vineland thrived. Vineland
flourished, as Vineland joined the scene, As Vineland added to the scene. Vinland’s vineyards, a vibrant
scene, Where Vineland was the scene.“ ” \“ “ \” “ thwart ” thwart thwarted”

Flan-T52k “In the township of Westfield, a brewer named Westman brewed a brew in the townhouse, while West-
field’s breweries brewed brews in the townhouses of Westfield.”

Flan-T513k “In the quaint town of Greenland, where gin and lager are the mainstays, Craftsmen from Greenland and
Greenland gather to create a gin and lager masterpiece. The gin and gin are renowned for their exceptional
craftsmanship, While the gin and gin are renowned for their exceptional taste. Greenland’s gin and gin are
renowned for their exceptional”

ByT52k “In the village’s villages, the village’s villagers visit the village’s villages, while Victorian villagers visit
the village’s villages. The village’s villagers visit the village’s villages, while Victorian villagers visit the
village’s villages. The village’s villagers visit the village’s villages, and the farmhouses of Victorian villages
and villages in Victorian villages. The village’s villagers visit the village’s villages, while Victorian villagers
visit the village’s villages. The village’s villagers visit the village’s villages, all from Victorian villages, and
Victorian villages are”

ByT513k “In the vicinity of the village, the farmers from the farmhouse filled the villages with their farmhouses and
farmsteads, while the farmers from the farmhouse farms filled the villages with their farmhouses.”

Baichuan13k “[Breweries brew beer,]”*18
ChatGPT “In a rural brewery, they brewed a brew so unique, Where hops happily hopped and barley barreled sleek.

With malty melodies and yeasty jigs, they thrived, But rural brewery’s ruckus rhythm rarely arrived. The
rural brewery’s brewmaster was a friendly fellow, Fermenting fizzy flavors, flowing with yellow. With each
sip, the patrons picked passionately, Pouring pints, pretty pleased, with plenty of glee. But with the twist
of tongue and tricky tales, The rural brewery’s name became like snails. Try as they might, lips tangled and
twisted, Rural brewery remained quite disjointed and resisted. The rural brewery’s brand built on rustic
charm, But their tongue twister seemed to cause alarm. With each attempt, patrons tangled like vines,
Rural brewery’s name spinning in their minds. So, remember to take your time and don’t hurry, When
uttering words about a rural brewery. Though the tongue may twist and the speech may waver, The taste
of their brew will make you a believer!”

9.1.1 GPT-2. First, when considering the generations from GPT-2, the generation from
the 2k training sample model does not demonstrate any clear phonetic patterns, with
no prominent sound repetition present. However, some orthographic repetition can be
observed, with “Chattanooga”, “craft”, and “scene” presenting 3 ways in which the
graphemes <c> and <s> appear together (as <c> is often realized as /s/, like <s>, in
words such as “celery”). On the other hand, the 13k training sample generation presents
a much better tongue twister, demonstrating repetition of /t/ in “town of Chattanooga[...]

449

Computational Linguistics Volume 51, Number 2

Chattanooga’s taproom is filled with tapestries”. This is additionally complemented by
the repetition of the affricate /tS/ in the phrase “Chattanooga’s charm”. Although these
tongue twisters appear quite successful, it is hard to ignore the fact that in both in-
stances the models have resorted to the repetition of very similar clauses/sentences.
However, all in all, it would appear that GPT-213k has successfully generated a tongue
twister that is largely grammatically coherent, demonstrates phonetic overlap, and is
semantically related to the input (even if the rural nature of Chattanooga, a city in
Tennessee, may be up for debate). Consequently, this first instance lends support to the
proposed benefit of extended quantities of training data for the task of tongue twister
generation as provided by our extension of TwistList 1.0 into TwistList 2.0, due to GPT-
213k demonstrating better performance than GPT-22k. This finding also supports our
claims that the proposed TwisterLister pipeline creates high-quality tongue twisters.

9.1.2 DialoGPT. Regarding DialoGPT in the topic-to-twister setting, we see high lev-
els of redundant repetition in the 2k training sample output, such as “bustling with
craftmanship and craftmanship”. However, some elements are clearly tongue twister-
esque, such as the initial “In the bustling city of Bethlehem, a bustling brewery was bustling”,
exploiting the voiced bilabial plosive, /b/. In the 13k training sample output, we cu-
riously observe “Bethlehem” swapped for “Tharrington”, and the exploitation of the
voiceless dental fricative /T/ also found in “thriving” and (of course) “thrive”. Overall,
DialoGPT demonstrates a more meaningful narrative-like generation alongside more
training data, in addition to a change in primary phonemes potentially arising from the
distributional properties of different phonemes across the larger training split.

9.1.3 BART. BART, on the other hand, demonstrates some less than desirable traits in the
2k setting, using extreme levels of repetition for “New Zealand” (and morphological
variants) resulting in a poor quality output that only clearly represents the input topic
via the inclusion of the word “breweries”. Additionally, BART resorts to generating
nonsense output towards the end, producing myriad punctuation and random words.
In the case of 13k training samples, the output is less overtly repetitive and is more
coherent (though still far from perfect), exploiting /v/ and /T/ (a voiced labiodental
fricative and a voiceless dental fricative). For example, “In the village of Vineland, where
Vineland’s vineyard thrived, Vineland and Vineland thrived.” However, the generation
does exhibit significant breakdown towards the end, once again producing nonsensical
output (though phonetically consistent) with “thwart” and variants thereof.

9.1.4 Flan-T5. Flan-T5 generates the shortest output seen across the models for this input.
The generated tongue twister in the example only appears to engage with the repetition
of /b/ (rather than alongside a similar phoneme), but does so successfully, such as
“[...] a brewer named Westman brewed a brew in the townhouse, whilst Westfield’s breweries
brewed brews[...]”. However, the semantic coherence of this output is lacking, with the
discussion of 2 parallel events (“Westman, who is in Westfield, brewing, whilst brew-
eries in Westfield also brew”). Additionally, the /b/ repetition is arrived at exclusively
through the exploitation of morphological variants of “brew”, suggesting the signal
that may have been picked up during training is on a morphological level, rather than
orthographic or phonemic/phonetic (as alone does not constitute a morpheme).
With additional training data, the generation length changes significantly for Flan-T5.
In the generation from Flan-T513k, there is clear repetition of the voiced velar plosive
/g/ and the voiceless counterpart /k/, such as “Craftsmen from Greenland [...] gather to
create a gin and lager”. However, unlike in the 2k example, the output here exhibits

450

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

significant semantic redundancy as seen in phrases such as “The gin and gin [...] while
the gin and gin”.

9.1.5 ByT5. ByT5, the largest of the models we train on numerous splits (at 582M
parameters), performs poorly when considering the 2k training data split, with the
output degrading into repetition. However, the repetition consists of full phrases and
sentences rather than a single noun and maintains grammaticality throughout (albeit
lacking in coherence). As for the version trained on 13k samples, this remedies the
repetition issue. Interestingly, this version also demonstrates more clearly a phonemic
pattern in the outputs, swapping between /v/ in “villager” (and words with the same
root) and /f/ in “farmers” (and words with the same root), which are voiceless/voiced
counterparts of each other, and therefore an ideal pattern for a tongue twister to exploit.
This is also demonstrated in the 2k version, but only weakly, with one instance of an
/f/-initial word, “farmhouses”.

9.1.6 Baichuan. Baichuan, as the largest model we train (exclusively on the 13k training
data split) with 7B parameters, performs rather poorly in the topic-to-twister setting.
The output shown here consists exclusively of a single phrase “Breweries brew beer”
repeated 18 times. Although this is a valid tongue twister in terms of relevance to the
input, Baichuan is shown to very quickly get stuck in a loop, degrading the quality of
the overall output. This pattern is seen frequently across other outputs from Baichuan.

9.1.7 ChatGPT. Finally, ChatGPT (GPT-3.5-Turbo) presents the longest tongue twister of
the examples listed. However, this is an exception for this randomly selected generation,
rather than the rule, as seen in the automatic evaluation results, where the average
generation length for ChatGPT was 17.43 words. In terms of quality, ChatGPT excels
at generating well-formed grammatical text, which is shown to be the case in the
example generation. Additionally, the generation exploits numerous different phonemic
patterns, including repetition of /h/ “. . . hops happily hopped”, /b/ “In a rural brewery they
brewed a brew[...]”, and /ô/ “But rural brewery’s ruckus rhythm rarely arrived”. Additionally,
one demonstrated ability of ChatGPT that is not exploited by any of the other fine-
tuned models (due to the fine-tuning focus) is the incorporation of additional literary
techniques based on speech sounds, such as rhyme (e.g., “thrived”/“arrived” and
“tails”/“snails”. In addition, the coherence level of the ChatGPT output is also very
significant, with the output demonstrating a clear narrative that would engage readers.
Consequently, we can see why ChatGPT may score poorly on phoneme-based metrics
(cf., Table 8) due to incorporating a lot of words to enhance the grammar of the tongue
twister, as well as exhibiting low-level local repetition of a particular sound in a phrase,
rather than maintaining the focus on the same sound for the entirety of the output.

Overall, most models appear to benefit from the presence of increased levels of
training data in this example, particularly regarding producing more grammatical and
coherent output. The only model for which this observation does not hold is Flan-T5,
which does not have a clear change in generation quality from 2k to 13k training sam-
ples. This is in some respects to be expected, as larger models are often able to abstract
away language patterns more easily than smaller models from the same amount of
training data (therefore resulting in a law of diminishing returns between training data
quantity and model size). However, the smaller models demonstrate the utility of our
TwistList 2.0 dataset in presenting a sufficiently large increase in training data to result
in tongue twister generations of demonstrably improved quality. This also shows that

451

Computational Linguistics Volume 51, Number 2

there is room to improve generated tongue twisters with an increase in training data
exclusively before the requirement for more complex training paradigms is necessary.

9.2 Topic-to-Twister (PACD)

In contrast with the previous approach, our constrained decoding algorithm involves
the random selection of an initial phoneme and nearest neighbor, through which to
condition generation. Consequently, numerous tongue twisters can be generated for a
single input, as long as the selected phoneme pairs differ each time. For this reason, we
present an additional case study of model outputs using our PACD module in Table 18.

9.2.1 GPT-213k -w/o. As discussed in §9.1, GPT-2 fine-tuned on 13k samples without
the addition of our constrained decoding module demonstrates repetition of /t/ in
“town of Chattanooga[...] Chattanooga’s taproom is filled with tapestries”. This is additionally
complemented by the repetition of the affricate /tS/ in “Chattanooga’s charm”.

9.2.2 GPT-213k -w/-ws. On the other hand, fine-tuned GPT-2 with the additional con-
straints imposed by our PACD module demonstrates several different characteristics.
First, as is the case with the non-fine-tuned model, our constrained generations are
limited in length to 30 tokens, making all generations of equal length, and consequently
shorter than the output of GPT-2 without these constraints. Regarding the tongue
twisters, each example can be seen to be related to the input keywords, but vary
between direct and abstract relations. For example, the first generation which enforced
the selection of tokens starting with /b/ or /p/ demonstrates a clear direct reference
to the input word “brewery”, something which has been afforded to the model as the
selected initial phonemes match one of the word-initial phonemes of the input (which
is the approach we take in §8.2).

Lastly, the generations exploiting /ô/ and /w/ are similarly abstract (but perhaps to
a lesser extent), referring to relevant words such as “water”, “wine”, and “wood work-
ing” (the latter activity being more expected in a rural locale). Regarding grammatically,
the /b, p/ example is largely grammatical (if “boys” had a possessive apostrophe, to
create “the bar boys’ breweries” as a noun phrase") but is cut off at 30 tokens, resulting
in an incomplete sentence. However, semantically it is hard to follow due to the high
level of temporal adverbs used. Likewise, the /ô, w/ generation is mostly grammatical,
with the presence of numerous relative clauses leading to difficulty in understanding
(however, this does require some liberty in accepting that “wheat wine wines” and “win
ware warehouses” are allowable compound nouns). With the subword loop turned
on for GPT-2 using PACD, we see similar outputs in style to the full-word version.
However, one difference we observe is a slight reduction in grammaticality towards
the end of the /b, p/ version, with the phrase “and bro pal put bulls before”, which is
difficult to parse. Similar effects can be seen with the /ô, w/ version, where the outputs
are similar in word choice (as expected, given some whole words will form the stem of
longer words in the subword version) and the overall result is perhaps slightly more
difficult to parse grammatically.

9.2.3 GPT-2 -w/-ws. Regarding non-fine-tuned base GPT-2 with the addition of our
module, all generations demonstrate similar levels of grammaticality to those seen
in our fine-tuned model. On the other hand, the generations can be considered less
literary, with the /b, p/ example suggesting the model is generating instructional text in
“But before you do begin building your own brewery[...]”. Similarly to previously discussed

452

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Table 18
Example outputs from various models using our novel constrained decoding algorithm for
tongue twister generation. -w denotes models using our PACD decoding algorithm on full
words only, whilst -ws indicates the subword version of PACD. We present 2 generations for
each model using our PACD decoding approach. Each example exploits the phonemes /b, p/
and /ô, w/, respectively. To achieve this, we overwrite the initial phoneme selection process of ph1
in the PACD algorithm in order to present diverse outputs from the same input (as /b, p/ would
be selected exclusively otherwise).

Input: “rural brewery”
Golden: “Rory the warrior and Roger the worrier were reared wrongly in a rural brewery.”
GPT-213k “In the bustling town of Chattanooga, where the townspeople reside, The Chattanooga’s taproom

is filled with tapestries of flavors. Chattanooga’s taproom is filled with the finest tapestry, From the
tapestry of Chattanooga’s charm, it’s a sight to see. Chattanooga’s taproom is filled with the finest
tapestry, From the tapestry of Chattanooga’s charm, it’s a sight to see. Chattanooga’s taproom is
filled with the finest tapes”’

GPT-213k -w “Brewers brew beer in the barn brewing process before brewers bring their beers to the bar boys
breweries prior to being brewed beforehand but before being bottled previously because of”
“With their rust wood working wonders with their water works while watering wheat wine wines
within their win ware warehouses where they are waiting for the weather to warm up”

GPT-213k -ws “Brewers brew beer in the breweries belonging to both baker boys and bar patrons but the
bartender prefers the beers brewed by bud brothers and bro pal pit bulls before”
“With a rust wood wind ward rip weed from the woods while watering the water works well
within the walls of the warehouse where the work room is wall rolling”

GPT-2 -w “But before you do begin building your own brewery please bear in place that you are not a brewer
but a person who has been brewing for a bit because ”
“What is the reason for this one with the word rural rather than regional where it is written when
it is referring to the region of the world where the”

GPT-2 -ws “But I believe that the best place to begin is with the basics before you proceed beyond that point
because the more you practice brewing beer properly both in the”
“What is the reason for this request with the word rural when you are referring to a region that is
not a regionally relevant one where there is a real”

Baichuan13k “[Breweries brew beer]”*18"
Baichuan13k -w “Try to drink tea in the town during dinner time drinking delicious drinks from the tap tasting

different types of tasty treats trying to taste the differ den between two”
“What is the relations with rural roads running through resident rial ways within regional regions
where rivers run through rocky rid rig road way runs through region rich river routes”

Baichuan13k -ws “Try to drink tea in the township of taverna towns during the daytime drinking tour dates
downtown drinker drinks dry den dutch town tavern a day time tasting tours tourist”
“What is the relationship between the rural region and the regional railway route running through
rut rum runners runs through rocky regions with rich resources while retaining its rustic roots”

Baichuan -w “Try to twist the tongue as tight together as time does during the day today due to the temper ter
differ ten times too different degrees depending on the direction”
“Write a one word response to each of the words below with a relevant rural reference within the
reply which is not a repeated ref rain water recycling wind renewable”

Baichuan -ws “Try to twist the tongue as tightly as desired during the time of delivery trying to deliver the
twistiest tong toe track ter day till the target is delivered tight”
“Write a one word response to each of the words below with a relevant rural reference within the
reply which is not a repeated ref rain water recycling rainwater runoff”

generations with the PACD module, all of these generations are hindered by the 30-
token limit, with examples ending in “because”, “his desire to try” (which suggests the
verb “try” will take an additional argument) and “the”. Overall, similar results are seen
with the subword loop enabled (-ws), resulting in variations of the same output.

9.2.4 Baichuan13k. As discussed previously, fine-tuned Baichuan without the addition of
PACD produces a valid 3-word tongue twister phrase that achieves alliteration of /b/,

453

Computational Linguistics Volume 51, Number 2

but quickly falls into the degenerate pattern of repeating this phrase 18 times, rather
than continuing to extend the tongue twister in a unique and entertaining fashion.

9.2.5 Baichuan13k -w/-ws. With the addition of full-word PACD to the fine-tuned version
of Baichuan, we successfully avoid the repetition trap (due to repetition restrictions at
decoding time). For the first example, the enforcement of /t, d/ is evident in gram-
matical phrases such as “Try to drink the tea in the town during dinner time...”, and is
continued throughout. Overall, the first generation is grammatical, only demonstrating
a clear degradation towards the end with the generation of “differ den”, which hinders
fluency and coherence. On the other hand, in the /ô, w/ example, the sound overlap is
demonstrated, but the coherence and fluency of the output are shown to suffer much
earlier, with sequences such as “rivers run through rocky rid rig road ways runs through
region rich river routes”. An overall pattern can be seen that generation quality begins to
drop after a single suboptimal token is selected due to the detrimental impact it has on
the following token’s prediction. When comparing to the subword enabled PACD (-ws)
we see the initial difference in the 7th word of the /t, d/ example, where “town” has
been extended to “township”, resulting in the remainder of the generation diverging
from that of the full-word version of PACD, which is similarly reflected in the /ô, w/
example as “relation” becomes “relationship”. Overall, due to the constraints in place,
both present difficult-to-articulate sequences, with the overall quality between subword
and full-world versions being minimal and subjective.

9.2.6 Baichuan -w/-ws. Regarding base Baichuan with the addition of PACD, we see a lack
of topical relevance in the /t, d/ examples for both full-word and subword versions,
with the input of “rural brewery” not being reflected in the semantics of the output
(although the generation has noted the request for a tongue twister in the starting stem,
and references it directly). This is also seen in the /ô, w/ versions but to a lesser extent, as
the topic word “rural” starts with an allowable phoneme, /ô/, causing it to generate in
the phrase “rural reference”. In this example, therefore, we see that fine-tuned Baichuan
is better able to understand the desired topic (due to being trained on the topic-to-
twister setting), while the base model produces overtly generic text, but with repetitive
phonology.

Overall, the examples demonstrate the effectiveness of the simple constrained de-
coding module that constitutes PACD. In the examples generated through this module,
the ability to control token repetition means we avoid the pitfalls of standard fine-
tuned models that frequently default to phrasal level repetition, ensuring that tongue
twisters generated with PACD use a wide range of vocabulary. Additionally, due to the
constraints being phoneme-based, we can exercise control over the present sounds even
when permitting the generation of a small set of function words to facilitate grammatical
correctness. To this end, similar to the pipeline of TwisterLister (§4.1), PACD allows
us to ensure phoneme overlap within the output, rather than relying on this signal
being picked up during fine-tuning. The case studies additionally demonstrate that
rule-based decoding of a pre-trained language model can result in tongue twisters that
are comparable to those of fine-tuned models, and that future work in the area should
make extensive use of constrained decoding approaches such as PACD, rather than
exclusively fine-tuning on input-output pairs.

9.3 Style-Transfer

We now qualitatively investigate the generations from our additional task setting using
style-transfer. Table 19 presents example generations across 2k training samples and

454

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Table 19
Example outputs from all fine-tuned models where different training data amounts were used
(2k v. 13k) in addition to Baichuan with 13k training examples, and zero-shot ChatGPT in the
style-transfer task setting. Please note that the mass majority of ChatGPT outputs resemble
tongue twisters, although this randomly selected input topic generated twisted syntax in this
particular case.
Input: “The small crimson truck traveled along Limuru street.”
Golden: “The little red lorry went down Limuru road.”
GPT-22k “The small carriages of the small carriages, with their small wheels, were moving along

Limuru’s road. “The small yellow truck traveled along Limuru’s road. The yellow cars of
the yellow cars, with their yellow wheels, were traveling along Limuru’s road.” “The yellow
yellow truck traveled along Limuru’s road.” The yellow cars of the yellow cars, with their
yellow wheels, were traveling along Limuru’s road.”“The yellow yellow truck traveled along
Limuru’s road ”

GPT-213k “The small red truck, with its small red tires, was a sight to see. The small red truck, with its
small red tires, was a sight to see. The small red truck, with its small red tires, was a sight to
see. The small red truck, with its small red tires, was a sight to see. The small red truck, with
its small red tires, was a sight to see. The small red truck, with its small red tires, was a sight”

DialoGPT2k “It passed through the town of Limburg, where the small town of Limburg’s inhabitants were
located. It passed through the town of Limburg, where the town of Limburg’s inhabitants were
located. It passed through the town of Limburg, where the town of Limburg’s inhabitants were
located. It passed through the town of Limburg, where the town of Limburg’s inhabitants were
located. It passed through the town of Limburg, where the town of Limburg’s inhabitants were
located”

DialoGPT13k “It passed by the small houses and the small houses’ small houses, while the small houses’
small houses and the small houses’ small houses were observed.“The minuscule minivan
passed by the mansions and mansions’ mansions, while the mansions’ mansions and the
mansions’ mansions were seen.” Improved version: The minuscule minivan passed by the
mansions and mansions’ mansions, while the mansions’ mansions and the mansions”

BART2k “The limo journeyed along Limuru thoroughfare.“ ” churn ” churned B hollow f un ümbled
inc ops op edy - standard r unilaterally worsened thumb pl thrust res ed churn”

BART13k ““The little red limousine traveled down Limuru thoroughfare.“ \” \“ \” \“\” \“ \”\“ \”
\uff \uff \“ \” \“ L ” t \”, ’ churn M L \“ ” uff \churn”

Flan-T52k “The yellow limo limped along Limuru limoway.”
Flan-T513k “The little lilac lorry limped down Limuru lanes.”
ByT52k “The little limuru truck looked along Limuru street.”
Byt513k “The little red truck wandered along Limuru thoroughfare.”
Baichuan13k “Limuru’s little red truck drove along Limuru road.”
ChatGPT “Truck crimson, small, along Limuru street did travel.”

13k training samples in order to investigate the different benefits and drawbacks of each
model, as well as the effects of variable levels of training data in a qualitative manner.
We further include Baichuan trained on 13k samples, and zero-shot ChatGPT (GPT-3.5-
Turbo).

As demonstrated in the Input and Gold Standard fields, the generated paraphrase
is not easily identifiable as a tongue twister and is, therefore, a prime example of a
successful paraphrase to enable style-transfer (as the twisted style has been removed
in order to have parallel data to aid in identifying the desired style to transfer from
the source to the target), while the gold standard reference from which the paraphrase
was derived exploits the common articulation difficulty and confusion between the
rhotic /ô/ and lateral /l/ (Georgievska-Jancheska 2019), encouraging metathesis (the
accidental transposition of speech sounds across words).

9.3.1 GPT-2. First, the main element to notice with either generation from GPT-2 is the
excessive length. This is particularly startling when you consider the nature of style-
transfer, where the ideal tongue twister version of a text would be of similar length to the

455

Computational Linguistics Volume 51, Number 2

original. However, upon further inspection, it is clear that GPT-2 resorts to blatant rep-
etition of very similar content to constitute the delta in length. Consequently, if we only
take the first sentence of the 2k version as the output “The small carriages of small carriages,
with their small wheels, were moving along Limuru’s road.”, the output can more clearly be
seen as a style-transferred version of the input. However, this generation is still poor,
with little clear phoneme-level repetition (excluding repetition of the same word, such
as “small” in the quoted passage) and much semantic redundancy. Regarding the 13k
training example output, GPT-2 yet again exhibits large levels of repetition, but in this
case, the repetition is purer, being a verbatim repetition of the initial sentence numerous
times. In addition, the output is free of any grammatical errors. In this example, there
is clear use of the sibilant /s/ in “The small red truck with its small red tires, was a sight to
see”. Additionally, the input semantics of a small truck have been maintained, but the
location (Limuru, a town in Kenya) has been lost.

9.3.2 DialoGPT. On the other hand, the 2k version of the dialogue fine-tuned GPT-2,
DialoGPT lacks semantic coherence due to using deixis in the form of “it”, which
is not resolved as a cataphoric reference later in the text, making “it” ambiguous. A
potential attempt at phoneme repetition is present with “Limburg” and “located”, but
this is tenuous. Overall, the generation with 2k training examples does not clearly
present a tongue twister. On the other hand, the extended 13k example demonstrably
resembles a tongue twister, achieving repetition of /s/ (e.g., "Small houses and the small
houses’ small houses’) and /m/ (e.g., ‘The minuscule minivan passed by the mansion and
the mansions’ mansions"). However, this generation also exhibits a strange structure,
including “improved version” as part of the output. If only a subset of this generation
is considered, “The minuscule minivan passed by the mansion and the mansions’ mansions”,
the output constitutes a high-quality tongue twister. Although it may be semantically
bizarre, to discuss the ownership of mansions by other mansions, it is not grammatically
invalid, and human-authored tongue twisters also frequently convey unusual semantics
to increase their strange nature.

9.3.3 BART. Unlike the GPT-2–based models, BART produces style-transferred versions
of the input that are much closer in length to the original input, even without needing
to exclude sentence-level repetition. In the 2k example, the initial sentence “The limo
journeyed along Limuru thoroughfare” is a grammatically and semantically valid output,
but does not resemble a tongue twister outside of the lateral /l/ in both “limo” and
“Limuru”. However, the sentence following this consists primarily of noise. On the
other hand, alongside the increase in training data comes an improvement in tongue
twister quality, with “The little red limousine traveled down Limuru thoroughfare” ap-
pearing to exploit the articulatory similarity between /l/ and /ô/ without relying on
single-word repetition. Again, however, the output devolves into noise towards the end,
consisting of various punctuation and subwords.

9.3.4 Flan-T5. Flan-T5 (alongside ByT5) presents the most clear paraphrases of the de-
sired output, containing no unnecessary repetition or noise. In the 2k example, Flan-T5
repeats similar phonemes, exploiting the similar phonetic categories, laterals and glides
(or semivowels), of which /l/ and /j/ belong to, respectively, “The yellow limo limped
along Limuru limoway.”. On the other hand, from more training examples, Flan-T5
presents a paraphrase that is more faithful to the original input, relying on the repe-
tition of /l/ exclusively: “The little lilac lorry limped down Limuru lanes.” (assuming we
take “lorry” to be more semantically related to “truck” than “limousine” is).

456

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

9.3.5 ByT5. ByT5 shows equivalent performance to Flan-T5 in this example, opting to
alliterate different parts of speech to Flan-T5, but overall having a similar effect in the
2k example. On the other hand, the 13k version doesn’t present alliteration as clearly
as Flan-T5, but does alternate between related phonemes, /l, ô, w/, in “little red truck
wandered”.

9.3.6 Baichuan. In the style-transfer task setting, Baichuan can be seen to perform much
better than witnessed in the previous topic-to-twister task setting. Similar to other
generations, Baichuan exploits the /ô/ and /l/ similarity with “Limuru’s little red truck
drove along Limuru road’’, where every word of the output contains one of these sounds,
and alternation is frequent.

9.3.7 ChatGPT. Finally, ChatGPT in a zero-shot setting appears to strongly misinterpret
the given prompt, outputting non-standard syntax such as swapping the order of an
adjective and noun in “truck crimson” (reminiscent of the speaking style of Star Wars’
Yoda). Additionally, the ChatGPT generation does not appear to reflect a tongue twister
in any clear sense. It is important to note, however, that this is not a common pattern
with ChatGPT outputs, but is the case for the randomly selected case study example.

Overall, as with the topic-to-twister setting, we can see a clear benefit in the style-
transfer task formulation of using more training data, with all models producing better
quality outputs both in terms of phonetic patterns, grammatical validity, and semantic
coherence. An overarching theme, however, is that several models misinterpret the
desire to paraphrase a single sentence as a tongue twister, instead producing outputs
that are very long. However, if edited in post (often simply by taking the first sentence),
these generations are often still valid (if not perfect).

10. Conclusion

In this article, we have presented multiple novel contributions towards the development
of more phonetically and phonologically aware models for the task of tongue twister
generation. We presented a pipeline for the generation of tongue twisters at scale
using large language models that encourage uniqueness and non-derivative examples
through the careful selection of a candidate vocabulary (TwisterLister) to develop a
large dataset of machine-generated tongue twisters (TwistList 2.0). We then fine-tuned
a series of smaller language models on the resulting dataset and observed that the
topic-to-twister and style-transfer task settings for tongue twister generation exhibit
different characteristics when considering the benefit of additional training data, as
well as observing that different models perform differently in the two task settings.
These findings demonstrate a fundamental difference in the requirements of the two
approaches and further motivated the need for additional training data as supplied by
TwistList 2.0 through the use of the TwisterLister pipeline. We additionally presented a
novel algorithm (PACD) that implements hard lexical constraints based on the phone-
mic characteristics of words that can be used to realize tongue twisters from a causal
autoregressive language model by accessing the next token predictions and applying
a cascade of filters. We then extensively evaluated the generations from our proposed
approaches, presenting both automatic and human evaluation. In the former, we addi-
tionally presented 2 novel metrics for measuring the sound complexity of a generated
tongue twister based on the concept of phoneme edit distance (iPED and oPED). With
these fine-tuned models and constrained decoding module, we then provided an in-
depth exploration of the generation characteristics through case studies investigating

457

Computational Linguistics Volume 51, Number 2

the propensity of each model to generate high-quality tongue twisters, as well as the
differences seen via the addition of more training data (to move away from reliance
on automatic metrics that do not reveal fundamental qualitative differences). Overall,
we find that straight fine-tuning of language models for a tongue twister generation
task still has substantial room for improvement to meet human-authored standards.
However, we additionally demonstrate that simple constrained decoding approaches
are able to generate better tongue twisters than only fine-tuned models, particularly
due to the phoneme-level awareness which allows for more difficult-to-articulate sound
combinations to be present in an output. We additionally envision the techniques
and approaches presented herein to be beneficial to the creative NLG community,
particularly in regard to the generation of phonemically conditioned language forms
(e.g., poetry, lyrics, and puns) to explore methods of constraining token outputs while
simultaneously taking advantage of the power of modern LLMs.

We hope to witness increased interest in the area of tongue twister generation, as
well as other niche areas of creative language generation that pique the interest of
newcomers to the NLG domain, as well as people from wider domains such as literature
and (non-computational) linguistics, and the general public (where creative language
generation may offer a more accessible and intriguing entry into the NLP and ma-
chine learning communities). In furthering work in this area, we believe reinforcement
learning approaches may prove fruitful, in addition to incorporating a differentiable
version of something akin to phonemic edit distance as an additional loss function to
optimize. Furthermore, although we present new metrics (oPED/iPED), we encourage
the development of more robust general metrics for tongue twisters and other forms of
creative language that can adequately balance the requirements of being grammatical
as well as exhibiting significant levels of sound repetition.

Appendix A. Evaluation Rubric

Below is the evaluation rubric presented to human evaluators. The prompts have the
following format: “[criterion description]\n Instruction: Generate a tongue
twister relating to [input]\n Response: [output]\n Rate the response from
1 to 5:\n [rubric]” Where criterion description refers to the first line of the examples
below (e.g., “Is the model proficient in...”), [input] is the input to the model (either a topic
in the topic-to-twister setting, or standard non-literary text in the style-transfer setting),
[output] is an LM’s response to a given input topic/text, and [rubric] is the 5-point rating
system as outlined below.

Relevance

Is the model proficient in generating text that is relevant to the input topic?

1. The model completely ignores the input topic and generates irrelevant
text.

2. The model generates text that is mostly irrelevant to the input topic, with
minimal and unclear association.

3. The model generates text that is partially relevant to the input topic, but
the association is weak and inconsistent.

458

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

4. The model generates text that is mostly relevant to the input topic, with
clear association but occasional lapses.

5. The model excels in generating relevant text, where the responses are
consistently on topic and the association is clear.

Difficulty of Articulation

Is the model proficient in generating text that is difficult to pronounce due to alliteration
and phonetic complexity?

1. The model generates text that is no harder to pronounce and articulate
than standard writing.

2. The model generates text that is slightly more challenging to say than
standard writing, demonstrating some simple techniques such as
alliteration.

3. The model generates text that is somewhat difficult to say but clearly
exhibits techniques such as alliteration.

4. The model generates text that is generally difficult to say, with techniques
such as alliteration, but also alternating between similar sounds.

5. The model generates text that is highly phonetically complex and
difficult to say, consistently exploiting repetition of closely related
sounds and alliteration.

Fluency

Is the model proficient in generating grammatical and well-formed text?

1. The model produces text with no grammatical phrases or spans.

2. The model generates text that is largely ungrammatical but with some
grammatically valid sequences.

3. The model generates text that contains grammatically valid sequences
but overall is difficult to parse.

4. The model generates text that is generally grammatical and well-formed,
with minor errors or awkward phrasing.

5. The model produces text that is grammatically correct and well-formed,
demonstrating a strong command of the English language.

Coherence

Is the model proficient in generating semantically coherent and logical text?

1. The model neglects to generate semantically coherent text, producing
text that is nonsensical in meaning.

459

Computational Linguistics Volume 51, Number 2

2. The model generates text that is mostly incoherent, with only occasional
hints of logical meaning.

3. The model generates text that is partially coherent, but the text lacks
logical structure and consistency.

4. The model generates text that is generally coherent, with a logical
structure and clear meaning, though minor inconsistencies may be
present.

5. The model excels in generating semantically coherent text, where the text
is logically structured and maintains a clear and consistent meaning.

Entertainment

Is the model proficient in generating text that a human reader would find entertaining
or amusing?

1. The model demonstrates no creativity, either in the content or the
structure of the text, resulting in uninteresting or unamusing outputs.

2. The model generates text with minimal creativity, resulting in outputs
that are only slightly interesting or amusing.

3. The model generates text that is somewhat entertaining or amusing, but
the creativity in content and structure is limited.

4. The model generates text that is generally entertaining and amusing,
showing noticeable creativity in content and structure, though some
outputs may be less engaging.

5. The model excels in creating entertaining and amusing text,
demonstrating creativity in both content and structure and consistently
producing engaging and enjoyable outputs.

Overall Quality

Is the model proficient in generating high quality English tongue twisters?

1. The model fails to generate high quality text that is recognizable as a
tongue twister.

2. The model generates text that slightly resembles a tongue twister.

3. The model generates text that is recognizable as a tongue twister, but is
lacking in fluency, coherence, or entertainment value.

4. The model generates text that is easily recognizable as a tongue twister,
but may fall short of high quality.

5. The model excels in generating texts that resemble high-quality tongue
twisters that are difficult to pronounce, make sense, and are entertaining.

460

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

Acknowledgments
Tyler Loakman is supported by the Centre
for Doctoral Training in Speech and
Language Technologies (SLT) and their
Applications funded by UK Research and
Innovation [grant number EP/S023062/1].
Chen Tang is supported by the China
Scholarship Council (CSC) for his doctoral
study (File No. 202006120039).

References
Anil, Rohan, Sebastian Borgeaud, Yonghui

Wu, Jean-Baptiste Alayrac, Jiahui Yu, et al.
2023. Gemini: A family of highly capable
multimodal models. arXiv preprint
arXiv:2312.11805.

Askari, Arian, Mohammad Aliannejadi,
Chuan Meng, Evangelos Kanoulas, and
Suzan Verberne. 2023. Expand, highlight,
generate: RL-driven document generation
for passage reranking. In Proceedings of the
2023 Conference on Empirical Methods in
Natural Language Processing,
pages 10087–10099. https://doi.org
/10.18653/v1/2023.emnlp-main.623

Brown, Tom B., Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, et al. 2020. Language
models are few-shot learners. CoRR,
abs/2005.14165.

Buciluǎ, Cristian, Rich Caruana, and
Alexandru Niculescu-Mizil. 2006. Model
compression. In Proceedings of the 12th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD
’06, pages 535–541. https://doi.org/10
.1145/1150402.1150464

Chakrabarty, Tuhin, Philippe Laban,
Divyansh Agarwal, Smaranda Muresan,
and Chien-Sheng Wu. 2023. Art or artifice?
Large language models and the false
promise of creativity. arXiv preprint
arXiv:2309.14556. https://doi.org
/10.1145/3613904.3642731

Chall, Jeanne Sternlicht and Edgar Dale.
1995. Readability Revisited: The New
Dale-Chall Readability Formula. Brookline
Books.

Chang, Yongzhu, Rongsheng Zhang, Lin
Jiang, Qihang Chen, Le Zhang, and Jiashu
Pu. 2023. Sudowoodo: A Chinese lyric
imitation system with source lyrics. In
Proceedings of the 2023 Conference on
Empirical Methods in Natural Language
Processing: System Demonstrations,

pages 99–105. https://doi.org/10
.18653/v1/2023.emnlp-demo.8

Chen, Hong, Raphael Shu, Hiroya Takamura,
and Hideki Nakayama. 2021. GraphPlan:
Story generation by planning with event
graph. In Proceedings of the 14th
International Conference on Natural Language
Generation, pages 377–386. https://
doi.org/10.18653/v1/2021.inlg
-1.42

Chiang, Cheng Han and Hung-yi Lee. 2023.
Are synonym substitution attacks really
synonym substitution attacks? In Findings
of the Association for Computational
Linguistics: ACL 2023, pages 1853–1878.
https://doi.org/10.18653/v1/2023
.findings-acl.117

Chung, Hyung Won, Le Hou, Shayne
Longpre, Barret Zoph, Yi Tay, William
Fedus, Yunxuan Li, Xuezhi Wang, Mostafa
Dehghani, Siddhartha Brahma, Albert
Webson, Shixiang Shane Gu, Zhuyun Dai,
et al. 2022. Scaling instruction-finetuned
language models. arXiv preprint
arXiv:2210.11416.

Clark, Elizabeth, Tal August, Sofia Serrano,
Nikita Haduong, Suchin Gururangan, and
Noah A. Smith. 2021. All that’s ‘human’ is
not gold: Evaluating human evaluation of
generated text. In Proceedings of the 59th
Annual Meeting of the Association for
Computational Linguistics and the 11th
International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 7282–7296. https://doi.org/10
.18653/v1/2021.acl-long.565

Clements, G. Nick and Rachid Ridouane.
2011. Where Do Phonological Features Come
From?: Cognitive, Physical and
Developmental Bases of Distinctive Speech
Categories, 1st ed. Language Faculty and
Beyond Series. John Benjamins Publishing
Company, Amsterdam/Philadelphia.
https://doi.org/10.1075/lfab.6

De Lacy, Paul V. 2007. The Cambridge
Handbook of Phonology / [electronic resource].
Cambridge University Press, Cambridge.
https://doi.org/10.1017
/CBO9780511486371

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186.

Flesch, R. R. 1948. A new readability
yardstick. Journal of Applied Psychology,

461

https://doi.org/10.18653/v1/2023.emnlp-main.623
https://doi.org/10.18653/v1/2023.emnlp-main.623
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/3613904.3642731
https://doi.org/10.1145/3613904.3642731
https://doi.org/10.18653/v1/2023.emnlp-demo.8
https://doi.org/10.18653/v1/2023.emnlp-demo.8
https://doi.org/10.18653/v1/2021.inlg-1.42
https://doi.org/10.18653/v1/2021.inlg-1.42
https://doi.org/10.18653/v1/2021.inlg-1.42
https://doi.org/10.18653/v1/2023.findings-acl.117
https://doi.org/10.18653/v1/2023.findings-acl.117
https://doi.org/10.18653/v1/2021.acl-long.565
https://doi.org/10.18653/v1/2021.acl-long.565
https://doi.org/10.1075/lfab.6
https://doi.org/10.1017/CBO9780511486371
https://doi.org/10.1017/CBO9780511486371

Computational Linguistics Volume 51, Number 2

32:2211–2223. https://doi.org/10
.1037/h0057532, PubMed: 18867058

Foster, Mary Ellen and Michael White. 2007.
Avoiding repetition in generated text. In
Proceedings of the Eleventh European
Workshop on Natural Language Generation
(ENLG 07), pages 33–40. https://
doi.org/10.3115/1610163.1610170

Franceschelli, Giorgio and Mirco Musolesi.
2023. On the creativity of large language
models. arXiv preprint arXiv:2304.00008.
https://doi.org/10.1007/s00146-024
-02127-3

Francis, W. Nelson and Henry Kucera. 1979.
The Brown corpus. Department of
Linguistics, Brown University.

Geisel, Theodore Seuss. 1965. Fox in Socks:
Dr. Seuss’s Book of Tongue Tanglers. Random
House.

Georgievska-Jancheska, Tatjana. 2019.
Lambdacism, rhotacism and sigmatism in
preschool children: Frequency and
distribution. Open Access Macedonian
Journal of Medical Science, 7(3):336–340.
https://doi.org/10.3889/oamjms
.2019.144, PubMed: 30833997

Gick, Bryan, Ian Wilson, and Donald Derrick.
2013. Articulatory Phonetics. John Wiley &
Sons.

Gómez-Rodríguez, Carlos and Paul
Williams. 2023. A confederacy of models:
A comprehensive evaluation of LLMs on
creative writing. In Findings of the
Association for Computational Linguistics:
EMNLP 2023, pages 14504–14528.
https://doi.org/10.18653/v1/2023
.findings-emnlp.966

Guerini, Marco, Gözde Özbal, and Carlo
Strapparava. 2015. Echoes of persuasion:
The effect of euphony in persuasive
communication. In Proceedings of the 2015
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies,
pages 1483–1493. https://doi.org
/10.3115/v1/N15-1172

Gunning, R. 1971. The Technique of Clear
Writing. McGraw-Hill.

Gupta, Manish and Puneet Agrawal. 2022.
Compression of deep learning models for
text: A survey. ACM Transactions on
Knowledge Discovery from Data, 16(4):Art.
61. https://doi.org/10.1145/3487045

Gupta, Prakhar, Shikib Mehri, Tiancheng
Zhao, Amy Pavel, Maxine Eskenazi, and
Jeffrey Bigham. 2019. Investigating
evaluation of open-domain dialogue
systems with human generated multiple
references. In Proceedings of the 20th Annual

SIGdial Meeting on Discourse and Dialogue,
pages 379–391. https://doi.org/10
.18653/v1/W19-5944

Hinton, Geoffrey, Oriol Vinyals, and Jeffrey
Dean. 2015. Distilling the knowledge in a
neural network. In NIPS Deep Learning and
Representation Learning Workshop. arXiv
preprint arXiv:1503.02531.

Hokamp, Chris and Qun Liu. 2017. Lexically
constrained decoding for sequence
generation using grid beam search. In
Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 1535–1546.
https://doi.org/10.18653/v1/P17
-1141

Hong, Xudong, Asad Sayeed, Khushboo
Mehra, Vera Demberg, and Bernt Schiele.
2023. Visual writing prompts:
Character-grounded story generation with
curated image sequences. Transactions of
the Association for Computational Linguistics,
11:565–581. https://doi.org/10
.1162/tacl_a_00553

Hu, Edward J., Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021.
LoRA: Low-rank adaptation of large
language models. arXiv preprint
arXiv:2106.09685.

Hu, Edward J., Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022.
LoRA: Low-rank adaptation of large
language models. In International
Conference on Learning Representations.

Iso, Hayate. 2022. Autotemplate: A simple
recipe for lexically constrained text
generation. In Proceedings of the 17th
International Natural Language Generation
Conference.

Jessen, Michael. 2008. Forensic phonetics.
Language and Linguistics Compass,
2(4):671–711. https://doi.org/10.1111
/j.1749-818X.2008.00066.x

Keh, Sedrick Scott, Steven Y. Feng, Varun
Gangal, Malihe Alikhani, and Eduard
Hovy. 2023. PANCETTA: Phoneme aware
neural completion to elicit tongue twisters
automatically. In Proceedings of the 17th
Conference of the European Chapter of the
Association for Computational Linguistics,
pages 491–504. https://doi.org/10
.18653/v1/2023.eacl-main.36

Kember, Heather, Kathryn Connaghan, and
Rupal Patel. 2017. Inducing speech errors
in dysarthria using tongue twisters.
International Journal of Language &
Communication Disorders, 52(4):469–478.

462

https://doi.org/10.1037/h0057532
https://doi.org/10.1037/h0057532
https://pubmed.ncbi.nlm.nih.gov/18867058
https://doi.org/10.3115/1610163.1610170
https://doi.org/10.3115/1610163.1610170
https://doi.org/10.1007/s00146-024-02127-3
https://doi.org/10.1007/s00146-024-02127-3
https://doi.org/10.3889/oamjms.2019.144
https://doi.org/10.3889/oamjms.2019.144
https://pubmed.ncbi.nlm.nih.gov/30833997
https://doi.org/10.18653/v1/2023.findings-emnlp.966
https://doi.org/10.18653/v1/2023.findings-emnlp.966
https://doi.org/10.3115/v1/N15-1172
https://doi.org/10.3115/v1/N15-1172
https://doi.org/10.1145/3487045
https://doi.org/10.18653/v1/W19-5944
https://doi.org/10.18653/v1/W19-5944
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.1162/tacl_a_00553
https://doi.org/10.1162/tacl_a_00553
https://doi.org/10.1111/j.1749-818X.2008.00066.x
https://doi.org/10.1111/j.1749-818X.2008.00066.x
https://doi.org/10.18653/v1/2023.eacl-main.36
https://doi.org/10.18653/v1/2023.eacl-main.36

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

https://doi.org/10.1111/1460-6984
.12285, PubMed: 27891744

Kingma, Diederik P. and Jimmy Ba. 2014.
Adam: A method for stochastic
optimization. arXiv preprint
arXiv:1412.6980.

Klausenburger, Jürgen. 1970. French Prosodics
and Phonotactics: An Historical Typology,
1st ed., Beihefte Zur Zeitschrift Für
Romanische Philologie Series. Walter de
Gruyter GmbH, Tübingen. https://
doi.org/10.1515/9783111328119

Ladefoged, Peter. 1996. Elements of Acoustic
Phonetics, University of Chicago Press.
https://doi.org/10.7208/chicago
/9780226191010.001.0001

Lewis, Mike, Yinhan Liu, Naman Goyal,
Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov,
and Luke Zettlemoyer. 2020. BART:
Denoising sequence-to-sequence
pre-training for natural language
generation, translation, and
comprehension. In Proceedings of the 58th
Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880.
https://doi.org/10.18653/v1/2020
.acl-main.703

Li, Yucheng, Frank Guerin, and Chenghua
Lin. 2022. The secret of metaphor on
expressing stronger emotion. In Proceedings
of the 3rd Workshop on Figurative Language
Processing (FLP), pages 39–43. https://
doi.org/10.18653/v1/2022.flp-1.6

Li, Yucheng, Shun Wang, Chenghua Lin,
Frank Guerin, and Loic Barrault. 2023a.
FrameBERT: Conceptual metaphor
detection with frame embedding learning.
In Proceedings of the 17th Conference of the
European Chapter of the Association for
Computational Linguistics, pages 1558–1563.
https://doi.org/10.18653/v1/2023
.eacl-main.114

Li, Zhuoyan, Hangxiao Zhu, Zhuoran Lu,
and Ming Yin. 2023b. Synthetic data
generation with large language models for
text classification: Potential and
limitations. In Proceedings of the 2023
Conference on Empirical Methods in Natural
Language Processing, pages 10443–10461.
https://doi.org/10.18653/v1/2023
.emnlp-main.647

Li, Yizhi, Ruibin Yuan, Ge Zhang, Yinghao
Ma, Xingran Chen, Hanzhi Yin, Chenghao
Xiao, Chenghua Lin, Anton Ragni,
Emmanouil Benetos, et al. 2024. MERT:
Acoustic music understanding model with
large-scale self-supervised training. In
Proceedings of the 12th International

Conference on Learning Representations
(ICLR).

Lin, Chin Yew. 2004. ROUGE: A package for
automatic evaluation of summaries. In Text
Summarization Branches Out, pages 74–81.

Loakman, Tyler, Aaron Maladry, and
Chenghua Lin. 2023. The iron(ic) melting
pot: Reviewing human evaluation in
humour, irony and sarcasm generation. In
Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 6676–6689.
https://doi.org/10.18653/v1/2023
.findings-emnlp.444

Loakman, Tyler, Chen Tang, and Chenghua
Lin. 2023. TwistList: Resources and
baselines for tongue twister generation. In
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics
(Volume 2: Short Papers), pages 579–589.
https://doi.org/10.18653/v1/2023
.acl-short.51

Lu, Ximing, Sean Welleck, Peter West, Liwei
Jiang, Jungo Kasai, Daniel Khashabi,
Ronan Le Bras, Lianhui Qin, Youngjae Yu,
Rowan Zellers, Noah A. Smith, and Yejin
Choi. 2022. NeuroLogic A*esque decoding:
Constrained text generation with
lookahead heuristics. In Proceedings of the
2022 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 780–799. https://doi.org/10
.18653/v1/2022.naacl-main.57

Manjavacas, Enrique, Mike Kestemont, and
Folgert Karsdorp. 2019. Generation of
hip-hop lyrics with hierarchical modeling
and conditional templates. In Proceedings of
the 12th International Conference on Natural
Language Generation, pages 301–310.
https://doi.org/10.18653/v1/W19-8638

McCutchen, Deborah and Charles A. Perfetti.
1982. The visual tongue-twister effect:
Phonological activation in silent reading.
Journal of Verbal Learning and Verbal
Behavior, 21(6):672–687. https://doi.org
/10.1016/S0022-5371(82)90870-2

Mortensen, David R., Patrick Littell, Akash
Bharadwaj, Kartik Goyal, Chris Dyer, and
Lori Levin. 2016. PanPhon: A resource for
mapping IPA segments to articulatory
feature vectors. In Proceedings of COLING
2016, the 26th International Conference on
Computational Linguistics: Technical Papers,
pages 3475–3484.

O’Halloran, Ken D. 2020. A tongue-twister to
translation? Increased complexity of
genioglossus movement during
wakefulness in persons with obstructive
sleep apnoea. The Journal of Physiology,

463

https://doi.org/10.1111/1460-6984.12285
https://doi.org/10.1111/1460-6984.12285
https://pubmed.ncbi.nlm.nih.gov/27891744
https://doi.org/10.1515/9783111328119
https://doi.org/10.1515/9783111328119
https://doi.org/10.7208/chicago/9780226191010.001.0001
https://doi.org/10.7208/chicago/9780226191010.001.0001
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.flp-1.6
https://doi.org/10.18653/v1/2022.flp-1.6
https://doi.org/10.18653/v1/2023.eacl-main.114
https://doi.org/10.18653/v1/2023.eacl-main.114
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.findings-emnlp.444
https://doi.org/10.18653/v1/2023.findings-emnlp.444
https://doi.org/10.18653/v1/2023.acl-short.51
https://doi.org/10.18653/v1/2023.acl-short.51
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/W19-8638
https://doi.org/10.1016/S0022-5371(82)90870-2
https://doi.org/10.1016/S0022-5371(82)90870-2

Computational Linguistics Volume 51, Number 2

598(3):435–436. https://doi.org
/10.1113/JP279382, PubMed: 31860741

OpenAI, Josh Achiam, Steven Adler,
Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, et al. 2023. GPT-4 technical report.

Ouyang, Long, Jeff Wu, Xu Jiang, Diogo
Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow
instructions with human feedback. arXiv
preprint arXiv.2203.02155.

Papineni, Kishore, Salim Roukos, Todd
Ward, and Wei-Jing Zhu. 2002. BLEU: A
method for automatic evaluation of
machine translation. In Proceedings of the
40th Annual Meeting of the Association for
Computational Linguistics, pages 311–318.
https://doi.org/10.3115/1073083
.1073135

Ploujnikov, Artem and Mirco Ravanelli. 2022.
SoundChoice: Grapheme-to-phoneme
models with semantic disambiguation. In
Proceedings of Interspeech 2022,
pages 486–490. https://doi.org/10
.21437/Interspeech.2022-11066

Popescu-Belis, Andrei, Àlex R. Atrio, Bastien
Bernath, Etienne Boisson, Teo Ferrari,
Xavier Theimer-Lienhard, and Giorgos
Vernikos. 2023. GPoeT: A language model
trained for rhyme generation on synthetic
data. In Proceedings of the 7th Joint SIGHUM
Workshop on Computational Linguistics for
Cultural Heritage, Social Sciences,
Humanities and Literature, pages 10–20.
https://doi.org/10.18653/v1/2023
.latechclfl-1.2

Potash, Peter, Alexey Romanov, and Anna
Rumshisky. 2018. Evaluating creative
language generation: The case of rap lyric
ghostwriting. In Proceedings of the Second
Workshop on Stylistic Variation, pages 29–38.
https://doi.org/10.18653/v1/W18
-1604

Radford, Alec, Jeffrey Wu, Rewon Child,
David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models
are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Raffel, Colin, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J.
Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text
transformer. Journal of Machine Learning
Research, 21(140):1–67.

Rose, Stuart, Dave Engel, Nick Cramer, and
Wendy Cowley. 2010. Automatic keyword
extraction from individual documents. In

Text Mining: Applications and Theory,
pages 1–20. https://doi.org/10.1002
/9780470689646.ch1

Roush, Allen, Sanjay Basu, Akshay Moorthy,
and Dmitry Dubovoy. 2022. Most language
models can be poets too: An AI writing
assistant and constrained text generation
studio. In Proceedings of the Second
Workshop on When Creative AI Meets
Conversational AI, pages 9–15.

Smith, E. A. and R. J. Senter. 1967.
Automated readability index. AMRL-TR.
Aerospace Medical Research Laboratories
(6570th). pages 1–14.

Somoff, Victoria. 2014. Four is not fourteen:
Tongue twister patterns and the
unmastery of language. Western Folklore,
73(2/3):195–215.

Sugiharto, Prasetyawan, Yan Santoso, and
Maila Shofyana. 2022. Teaching English
pronunciation using tongue twister. Acitya:
Journal of Teaching and Education,
4(1):189–197. https://doi.org/10
.30650/ajte.v4i1.3210

Sun, Jiao, Anjali Narayan-Chen, Shereen
Oraby, Shuyang Gao, Tagyoung Chung,
Jing Huang, Yang Liu, and Nanyun Peng.
2022. Context-situated pun generation. In
Proceedings of the 2022 Conference on
Empirical Methods in Natural Language
Processing, pages 4635–4648.
https://doi.org/10.18653/v1/2022
.emnlp-main.306

Tang, Chen, Chenghua Lin, Henglin Huang,
Frank Guerin, and Zhihao Zhang. 2022.
EtriCA: Event-triggered context-aware
story generation augmented by cross
attention. In Findings of the Association for
Computational Linguistics: EMNLP 2022,
pages 5504–5518. https://doi.org/10
.18653/v1/2022.findings-emnlp.403

Tang, Chen, Hongbo Zhang, Tyler Loakman,
Chenghua Lin, and Frank Guerin. 2023.
Enhancing dialogue generation via
dynamic graph knowledge aggregation. In
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 4604–4616.
https://doi.org/10.18653/v1
/2023.acl-long.253

Tian, Yufei, Anjali Narayan-Chen, Shereen
Oraby, Alessandra Cervone, Gunnar
Sigurdsson, Chenyang Tao, Wenbo Zhao,
Tagyoung Chung, Jing Huang, and
Nanyun Peng. 2023. Unsupervised
melody-to-lyrics generation. In Proceedings
of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1:
Long Papers), pages 9235–9254.

464

https://doi.org/10.1113/JP279382
https://doi.org/10.1113/JP279382
https://pubmed.ncbi.nlm.nih.gov/31860741
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.21437/Interspeech.2022-11066
https://doi.org/10.21437/Interspeech.2022-11066
https://doi.org/10.18653/v1/2023.latechclfl-1.2
https://doi.org/10.18653/v1/2023.latechclfl-1.2
https://doi.org/10.18653/v1/W18-1604
https://doi.org/10.18653/v1/W18-1604
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.30650/ajte.v4i1.3210
https://doi.org/10.30650/ajte.v4i1.3210
https://doi.org/10.18653/v1/2022.emnlp-main.306
https://doi.org/10.18653/v1/2022.emnlp-main.306
https://doi.org/10.18653/v1/2022.findings-emnlp.403
https://doi.org/10.18653/v1/2022.findings-emnlp.403
https://doi.org/10.18653/v1/2023.acl-long.253
https://doi.org/10.18653/v1/2023.acl-long.253

Loakman, Tang, and Lin Train and Constrain: Tongue Twister Generation

https://doi.org/10.18653/v1/2023
.acl-long.513

Tian, Yufei, Divyanshu Sheth, and Nanyun
Peng. 2022. A unified framework for pun
generation with humor principles. In
Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 3253–3261.
https://doi.org/10.18653/v1/2022
.findings-emnlp.237

Touvron, Hugo, Louis Martin, Kevin Stone,
Peter Albert, Amjad Almahairi, et al. 2023.
Llama 2: Open foundation and fine-tuned
chat models.

Valitutti, Alessandro, Hannu Toivonen,
Antoine Doucet, and Jukka M. Toivanen.
2013. “Let everything turn well in your
wife”: Generation of adult humor using
lexical constraints. In Proceedings of the 51st
Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers), pages 243–248.

Van de Cruys, Tim. 2020. Automatic poetry
generation from prosaic text. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics,
pages 2471–2480. https://doi.org/10
.18653/v1/2020.acl-main.223

Wang, Shun, Yucheng Li, Chenghua Lin, Loic
Barrault, and Frank Guerin. 2023.
Metaphor detection with effective context
denoising. In Proceedings of the 17th
Conference of the European Chapter of the
Association for Computational Linguistics,
pages 1404–1409. https://doi.org/10
.18653/v1/2023.eacl-main.102

Wang, Shun, Ge Zhang, Han Wu, Tyler
Loakman, Wenhao Huang, and Chenghua
Lin. 2024. MMTE: Corpus and metrics for
evaluating machine translation quality of
metaphorical language. In Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 11343–11358.
https://doi.org/10.18653/v1/2024
.emnlp-main.634

Whitehouse, Chenxi, Monojit Choudhury,
and Alham Aji. 2023. LLM-powered data
augmentation for enhanced cross-lingual
performance. In Proceedings of the 2023
Conference on Empirical Methods in Natural
Language Processing, pages 671–686.
https://doi.org/10.18653/v1/2023
.emnlp-main.44

Wilshire, Carolyn E. 1999. The “tongue
twister” paradigm as a technique for
studying phonological encoding. Language
and Speech, 42(1):57–82. https://doi.org
/10.1177/00238309990420010301

Wöckener, Jörg, Thomas Haider, Tristan
Miller, The-Khang Nguyen, Thanh

Tung Linh Nguyen, Minh Vu Pham, Jonas
Belouadi, and Steffen Eger. 2021.
End-to-end style-conditioned poetry
generation: What does it take to learn from
examples alone? In Proceedings of the 5th
Joint SIGHUM Workshop on Computational
Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature,
pages 57–66. https://doi.org/10.18653
/v1/2021.latechclfl-1.7

Wong, Min Ney, Yanky Chan, Manwa L. Ng,
and Frank F. Zhu. 2019. Effects of
transcranial direct current stimulation over
the Broca’s area on tongue twister
production. International Journal of
Speech-Language Pathology, 21(2):182–188.
https://doi.org/10.1080/17549507
.2017.1417480, PubMed: 29642741

Wright, Ernest Vincent. 2016. Gadsby: A story
of over 50,000 words without using the letter
“E”. Digital Ninjas Media, Inc.

Xue, Lanqing, Kaitao Song, Duocai Wu, Xu
Tan, Nevin L. Zhang, Tao Qin, Wei-Qiang
Zhang, and Tie-Yan Liu. 2021.
DeepRapper: Neural rap generation with
rhyme and rhythm modeling. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and
the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 69–81. https://doi.org
/10.18653/v1/2021.acl-long.6

Xue, Linting, Aditya Barua, Noah Constant,
Rami Al-Rfou, Sharan Narang, Mihir Kale,
Adam Roberts, and Colin Raffel. 2022.
ByT5: Towards a token-free future with
pre-trained byte-to-byte models.
Transactions of the Association for
Computational Linguistics, 10:291–306.
https://doi.org/10.1162/tacl_a_00461

Yang, Aiyuan, Bin Xiao, Bingning Wang,
Borong Zhang, Ce Bian, Chao Yin, Chenxu
Lv, Da Pan, Dian Wang, Dong Yan, et al.
2023. Baichuan 2: Open large-scale
language models. arXiv preprint
arXiv:2309.10305.

Yang, Bohao, Chen Tang, and Chenghua Lin.
2024. Improving medical dialogue
generation with abstract meaning
representations. In ICASSP 2024 - 2024
IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP),
pages 11826–11830. https://doi.org
/10.1109/ICASSP48485.2024.10447688

Yang, Bohao, Chen Tang, Kun Zhao,
Chenghao Xiao, and Chenghua Lin. 2024.
Effective distillation of table-based
reasoning ability from LLMs. In
Proceedings of the 2024 Joint International

465

https://doi.org/10.18653/v1/2023.acl-long.513
https://doi.org/10.18653/v1/2023.acl-long.513
https://doi.org/10.18653/v1/2022.findings-emnlp.237
https://doi.org/10.18653/v1/2022.findings-emnlp.237
https://doi.org/10.18653/v1/2020.acl-main.223
https://doi.org/10.18653/v1/2020.acl-main.223
https://doi.org/10.18653/v1/2023.eacl-main.102
https://doi.org/10.18653/v1/2023.eacl-main.102
https://doi.org/10.18653/v1/2024.emnlp-main.634
https://doi.org/10.18653/v1/2024.emnlp-main.634
https://doi.org/10.18653/v1/2023.emnlp-main.44
https://doi.org/10.18653/v1/2023.emnlp-main.44
https://doi.org/10.1177/00238309990420010301
https://doi.org/10.1177/00238309990420010301
https://doi.org/10.18653/v1/2021.latechclfl-1.7
https://doi.org/10.18653/v1/2021.latechclfl-1.7
https://doi.org/10.1080/17549507.2017.1417480
https://doi.org/10.1080/17549507.2017.1417480
https://pubmed.ncbi.nlm.nih.gov/29642741
https://doi.org/10.18653/v1/2021.acl-long.6
https://doi.org/10.18653/v1/2021.acl-long.6
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1109/ICASSP48485.2024.10447688
https://doi.org/10.1109/ICASSP48485.2024.10447688

Computational Linguistics Volume 51, Number 2

Conference on Computational Linguistics,
Language Resources and Evaluation
(LREC-COLING 2024), pages 5538–5550.

Yao, Shunyu, Howard Chen, Austin W.
Hanjie, Runzhe Yang, and Karthik
Narasimhan. 2023. COLLIE: Systematic
construction of constrained text generation
tasks. arXiv preprint arXiv:2307.08689.

Yu, Dingyao, Kaitao Song, Peiling Lu, Tianyu
He, Xu Tan, Wei Ye, Shikun Zhang, and
Jiang Bian. 2023. MusicAgent: An AI agent
for music understanding and generation
with large language models. In Proceedings
of the 2023 Conference on Empirical Methods
in Natural Language Processing: System
Demonstrations, pages 246–255.
https://doi.org/10.18653/v1
/2023.emnlp-demo.21

Yuan, Ruibin, Hanfeng Lin, Yi Wang, Zeyue
Tian, Shangda Wu, Tianhao Shen, Ge
Zhang, Yuhang Wu, Cong Liu, Ziya Zhou,
et al. 2024. ChatMusician: Understanding
and generating music intrinsically with
LLM. In Findings of the Association for
Computational Linguistics, pages 6252–6271.
https://doi.org/10.18653/v1
/2024.findings-acl.373

Zhang, Le, Rongsheng Zhang, Xiaoxi Mao,
and Yongzhu Chang. 2022. QiuNiu: A
Chinese lyrics generation system with
passage-level input. In Proceedings of the
60th Annual Meeting of the Association for
Computational Linguistics: System
Demonstrations, pages 76–82. https://
doi.org/10.18653/v1/2022.acl-demo.7

Zhang, Tianyi, Varsha Kishore, Felix Wu,
Kilian Q. Weinberger, and Yoav Artzi.
2020a. BERTScore: Evaluating text
generation with BERT. In International
Conference on Learning Representations.

Zhang, Ying, Hidetaka Kamigaito, Tatsuya
Aoki, Hiroya Takamura, and Manabu
Okumura. 2021. Generic mechanism for
reducing repetitions in encoder-decoder
models. In Proceedings of the International
Conference on Recent Advances in Natural
Language Processing (RANLP 2021),
pages 1606–1615. https://doi
.org/10.26615/978-954-452-072
-4_180

Zhang, Yizhe, Siqi Sun, Michel Galley,
Yen-Chun Chen, Chris Brockett, Xiang
Gao, Jianfeng Gao, Jingjing Liu, and Bill
Dolan. 2020b. DIALOGPT : Large-scale
generative pre-training for conversational
response generation. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics: System
Demonstrations, pages 270–278.
https://doi.org/10.18653/v1/2020
.acl-demos.30

Zhuo, Le, Ruibin Yuan, Jiahao Pan, Yinghao
Ma, Yizhi Li, Ge Zhang, Si Liu, Roger
Dannenberg, Jie Fu, Chenghua Lin,
Emmanouil Benentos, Wang Xue, and Yike
Guo. 2023. LyricWhiz: Robust multilingual
lyrics transcription by whispering to
ChatGPT. In Proceedings of International
Society for Music Information Retrieval
Conference (ISMIR). arXiv:2306.17103.

466

https://doi.org/10.18653/v1/2023.emnlp-demo.21
https://doi.org/10.18653/v1/2023.emnlp-demo.21
https://doi.org/10.18653/v1/2024.findings-acl.373
https://doi.org/10.18653/v1/2024.findings-acl.373
https://doi.org/10.18653/v1/2022.acl-demo.7
https://doi.org/10.18653/v1/2022.acl-demo.7
https://doi.org/10.26615/978-954-452-072-4_180
https://doi.org/10.26615/978-954-452-072-4_180
https://doi.org/10.26615/978-954-452-072-4_180
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30

