Zhining Liu


2025

pdf bib
SelfElicit: Your Language Model Secretly Knows Where is the Relevant Evidence
Zhining Liu | Rana Ali Amjad | Ravinarayana Adkathimar | Tianxin Wei | Hanghang Tong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Providing Language Models (LMs) with relevant evidence in the context (either via retrieval or user-provided) can significantly improve their ability to provide better-grounded responses. However, recent studies have found that LMs often struggle to fully comprehend and utilize key evidence from the context, especially when it contains noise and irrelevant information—an issue common in real-world scenarios.To address this, we propose SelfElicit, an inference-time approach that helps LMs focus on key contextual evidence through self-guided explicit highlighting.By leveraging the inherent evidence-finding capabilities of LMs using the attention scores of deeper layers, our method automatically identifies and emphasizes key evidence within the input context, facilitating more accurate and grounded responses without additional training or iterative prompting.We demonstrate that SelfElicit brings consistent and significant improvement on multiple evidence-based QA tasks for various LM families while maintaining computational efficiency.Our code and documentation are available at https://github.com/ZhiningLiu1998/SelfElicit.

pdf bib
Not All Voices Are Rewarded Equally: Probing and Repairing Reward Models across Human Diversity
Zihao Li | Feihao Fang | Xitong Zhang | Jiaru Zou | Zhining Liu | Wei Xiong | Ziwei Wu | Baoyu Jing | Jingrui He
Findings of the Association for Computational Linguistics: EMNLP 2025

The advancement of Large Language Models (LLMs) has made ensuring their trustworthiness increasingly critical, especially in terms of fairness across diverse human groups. While modern LLMs are aligned with user preferences through Reinforcement Learning from Human Feedback (RLHF), the reward models used for alignment are trained on preference data that may both reflect societal biases and suffer from demographic skewness, as labeler populations are often uneven due to systemic accessibility or participation gaps. In this work, we reveal that reward models can exhibit significant discrepancies across different demographic groups, posing a fundamental challenge to fair and robust alignment. Using real-world datasets, we conduct the most comprehensive study to date, auditing various state-of-the-art reward models across nine sensitive attributes, including age, gender, ethnicity, etc. Our evaluation spans both (1) the agreement level between reward models and specific user groups, and (2) the reward model’s preference toward responses associated with different groups. Based on these findings, we propose the first method to mitigate group disparities in reward modeling. Code is available at https://github.com/Violet24K/FaRM.

2022

pdf bib
Towards Unified Representations of Knowledge Graph and Expert Rules for Machine Learning and Reasoning
Zhepei Wei | Yue Wang | Jinnan Li | Zhining Liu | Erxin Yu | Yuan Tian | Xin Wang | Yi Chang
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

With a knowledge graph and a set of if-then rules, can we reason about the conclusions given a set of observations? In this work, we formalize this question as the cognitive inference problem, and introduce the Cognitive Knowledge Graph (CogKG) that unifies two representations of heterogeneous symbolic knowledge: expert rules and relational facts. We propose a general framework in which the unified knowledge representations can perform both learning and reasoning. Specifically, we implement the above framework in two settings, depending on the availability of labeled data. When no labeled data are available for training, the framework can directly utilize symbolic knowledge as the decision basis and perform reasoning. When labeled data become available, the framework casts symbolic knowledge as a trainable neural architecture and optimizes the connection weights among neurons through gradient descent. Empirical study on two clinical diagnosis benchmarks demonstrates the superiority of the proposed method over time-tested knowledge-driven and data-driven methods, showing the great potential of the proposed method in unifying heterogeneous symbolic knowledge, i.e., expert rules and relational facts, as the substrate of machine learning and reasoning models.