Zhikang Niu


2025

pdf bib
F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
Yushen Chen | Zhikang Niu | Ziyang Ma | Keqi Deng | Chunhui Wang | JianZhao JianZhao | Kai Yu | Xie Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper introduces F5-TTS, a fully non-autoregressive text-to-speech system based on flow matching with Diffusion Transformer (DiT). Without requiring complex designs such as duration model, text encoder, and phoneme alignment, the text input is simply padded with filler tokens to the same length as input speech, and then the denoising is performed for speech generation, which was originally proved feasible by E2 TTS. However, the original design of E2 TTS makes it hard to follow due to its slow convergence and low robustness. To address these issues, we first model the input with ConvNeXt to refine the text representation, making it easy to align with the speech. We further propose an inference-time Sway Sampling strategy, which significantly improves our model’s performance and efficiency. This sampling strategy for flow step can be easily applied to existing flow matching based models without retraining. Our design allows faster training and achieves an inference RTF of 0.15, which is greatly improved compared to state-of-the-art diffusion-based TTS models. Trained on a public 100K hours multilingual dataset, our F5-TTS exhibits highly natural and expressive zero-shot ability, seamless code-switching capability, and speed control efficiency. We have released all codes and checkpoints to promote community development, at https://SWivid.github.io/F5-TTS/.

pdf bib
SLAM-Omni: Timbre-Controllable Voice Interaction System with Single-Stage Training
Wenxi Chen | Ziyang Ma | Ruiqi Yan | Yuzhe Liang | Xiquan Li | Ruiyang Xu | Zhikang Niu | Yanqiao Zhu | Yifan Yang | Zhanxun Liu | Kai Yu | Yuxuan Hu | Jinyu Li | Yan Lu | Shujie Liu | Xie Chen
Findings of the Association for Computational Linguistics: ACL 2025

Recent advancements highlight the potential of end-to-end real-time spoken dialogue systems, showcasing their low latency and high quality. In this paper, we introduce SLAM-Omni, a timbre-controllable, end-to-end voice interaction system with single-stage training. SLAM-Omni achieves zero-shot timbre control by modeling spoken language with semantic tokens and decoupling speaker information to a vocoder. By predicting grouped speech semantic tokens at each step, our method significantly reduces the sequence length of audio tokens, accelerating both training and inference. Additionally, we propose historical text prompting to compress dialogue history, facilitating efficient multi-round interactions. Comprehensive evaluations reveal that SLAM-Omni outperforms prior models of similar scale, requiring only 15 hours of training on 4 GPUs with limited data. Notably, it is the first spoken dialogue system to achieve competitive performance with a single-stage training approach, eliminating the need for pre-training on TTS or ASR tasks. Further experiments validate its multilingual and multi-turn dialogue capabilities on larger datasets.

pdf bib
URO-Bench: Towards Comprehensive Evaluation for End-to-End Spoken Dialogue Models
Ruiqi Yan | Xiquan Li | Wenxi Chen | Zhikang Niu | Chen Yang | Ziyang Ma | Kai Yu | Xie Chen
Findings of the Association for Computational Linguistics: EMNLP 2025

Recent advances in large language models (LLMs) have driven significant progress in end-to-end spoken dialogue models (SDMs). In contrast to text-based LLMs, the evaluation framework for SDMs should encompass both cognitive dimensions (e.g., logical reasoning, knowledge) and speech-related aspects (e.g., paralinguistic cues, audio quality). However, there is still a lack of comprehensive evaluations for SDMs in speech-to-speech (S2S) scenarios. To address this gap, we propose **URO-Bench**, an extensive benchmark for SDMs. Notably, URO-Bench is the first S2S benchmark that covers evaluations about multilingualism, multi-round dialogues, and paralinguistics. Our benchmark is divided into two difficulty levels: basic track and pro track, each comprising 20 test sets, evaluating the spoken dialogue model’s abilities in **U**nderstanding, **R**easoning, and **O**ral conversation. Evaluations on our proposed benchmark reveal that current open-source SDMs perform rather well in daily QA tasks, but lag behind their backbone LLMs in terms of instruction-following ability and also suffer from catastrophic forgetting. Their performance in advanced evaluations of paralinguistic information and audio understanding remains subpar, highlighting the need for further research in this direction. We hope that URO-Bench can facilitate the development of spoken dialogue models by providing a multifaceted evaluation of existing models and helping to track progress in this area.