Zheyong Xie


2025

pdf bib
iPET: An Interactive Emotional Companion Dialogue System with LLM-Powered Virtual Pet World Simulation
Zheyong Xie | Shaosheng Cao | Zuozhu Liu | Zheyu Ye | Zihan Niu | Chonggang Lu | Tong Xu | Enhong Chen | Zhe Xu | Yao Hu | Wei Lu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

The rapid advancement of large language models (LLMs) has unlocked transformative potential for role-playing emotional companion products, enabling systems that support emotional well-being, educational development, and therapeutic applications. However, existing approaches often lack sustained personalization and contextual adaptability, limiting their effectiveness in real-world settings. In this paper, we introduce iPET, an LLM-powered virtual pet agent designed to enhance user engagement through rich, dynamic pet behaviors and interactions tailored to individual preferences. iPET comprises three core components: a dialogue module that instantiates virtual pet agents for emotionally interactive conversations; a memory module that stores and synthesizes records of both agent and user experiences; and a world simulation module that generates diverse, preference-driven pet behaviors guided by high-level reflections. Deployed for over 200 days in a real-world, non-commercial product, iPET has served millions of users – providing emotional support to psychologically distressed individuals and demonstrating its effectiveness in practical applications.

pdf bib
RedOne: Revealing Domain-specific LLM Post-Training in Social Networking Services
Fei Zhao | Chonggang Lu | Wangyue | Zheyong Xie | Ziyan Liu | Haofu Qian | Jianzhao Huang | Fangcheng Shi | Zijie Meng | Hongcheng Guo | Mingqian He | Xinze Lyu | Zheyu Ye | Weiting Liu | Boyang Wang | Shaosheng Cao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

As a primary medium for modern information dissemination, social networking services (SNS) have experienced rapid growth, which has proposed significant challenges for platform content management and interaction quality improvement. Recently, the development of large language models (LLMs) has offered potential solutions but existing studies focus on isolated tasks, which not only encounter diminishing benefit from the data scaling within individual scenarios but also fail to flexibly adapt to diverse real-world context. To address these challenges, we introduce RedOne, a domain-specific LLM designed to break the performance bottleneck of single-task baselines and establish a comprehensive foundation for the SNS. RedOne was developed through a three-stage training strategy consisting of continue pretraining, supervised fine-tuning, and preference optimization, using a large-scale real-world dataset. Through extensive experiments, RedOne maintains strong general capabilities, and achieves an average improvement up to 14.02% across 8 major SNS tasks and 7.56% in SNS bilingual evaluation benchmark, compared with base models. Furthermore, through online testing, RedOne reduced the exposure rate in harmful content detection by 11.23% and improved the click page rate in post-view search by 14.95% compared with single-tasks baseline models. These results establish RedOne as a robust domain-specific LLM for SNS, demonstrating excellent generalization across various tasks and promising applicability in real-world scenarios.

2024

pdf bib
Retrieve-Plan-Generation: An Iterative Planning and Answering Framework for Knowledge-Intensive LLM Generation
Yuanjie Lyu | Zihan Niu | Zheyong Xie | Chao Zhang | Tong Xu | Yang Wang | Enhong Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Despite the significant progress of large language models (LLMs) in various tasks, they often produce factual errors due to their limited internal knowledge. Retrieval-Augmented Generation (RAG), which enhances LLMs with external knowledge sources, offers a promising solution. However, these methods can be misled by irrelevant paragraphs in retrieved documents. Due to the inherent uncertainty in LLM generation, inputting the entire document may introduce off-topic information, causing the model to deviate from the central topic and affecting the relevance of the generated content. To address these issues, we propose the Retrieve-Plan-Generation (RPG) framework. RPG generates plan tokens to guide subsequent generation in the plan stage. In the answer stage, the model selects relevant fine-grained paragraphs based on the plan and uses them for further answer generation. This plan-answer process is repeated iteratively until completion, enhancing generation relevance by focusing on specific topics. To implement this framework efficiently, we utilize a simple but effective multi-task prompt-tuning method, enabling the existing LLMs to handle both planning and answering. We comprehensively compare RPG with baselines across 5 knowledge-intensive generation tasks, demonstrating the effectiveness of our approach.

pdf bib
In-Context Former: Lightning-fast Compressing Context for Large Language Model
Xiangfeng Wang | Zaiyi Chen | Tong Xu | Zheyong Xie | Yongyi He | Enhong Chen
Findings of the Association for Computational Linguistics: EMNLP 2024

With the rising popularity of Transformer-based large language models (LLMs), reducing their high inference costs has become a significant research focus. One effective approach to mitigate these costs is compressing the long input contexts. Existing methods typically leverage the self-attention mechanism of the large model itself for context compression. While these methods have achieved notable results, the compression process still entails quadratic complexity. To mitigate this limitation, we propose the In-Context Former (IC-Former). This method does not rely on the target large model but instead utilizes cross-attention mechanisms to extract and condense information from the contextual embeddings. The computational overhead of our method grows linearly with the compression range. Experimental results indicate that our method requires only 1/32 of the floating-point operations of the baseline during compression and improves processing speed by 68 to 112 times while achieving 90% of the baseline performance on evaluation metrics. Additionally, IC-Former demonstrates strong regularity in its interactions with the context, enhancing its interpretability. Overall, IC-Former significantly reduces compression costs, making real-time compression scenarios feasible.