Zhengyu Hu


2025

pdf bib
Explaining Length Bias in LLM-Based Preference Evaluations
Zhengyu Hu | Linxin Song | Jieyu Zhang | Zheyuan Xiao | Tianfu Wang | Zhengyu Chen | Nicholas Jing Yuan | Jianxun Lian | Kaize Ding | Hui Xiong
Findings of the Association for Computational Linguistics: EMNLP 2025

The use of large language models (LLMs) as judges, particularly in preference comparisons, has become widespread, but this reveals a notable bias towards longer responses, undermining the reliability of such evaluations. To better understand such bias, we propose to decompose the preference evaluation metric, specifically the win rate, into two key components: desirability and information mass, where the former is length-independent and related to trustworthiness such as correctness, toxicity, and consistency, and the latter is length-dependent and represents the amount of information in the response. We empirically demonstrated the decomposition through controlled experiments and found that response length impacts evaluations by influencing information mass. To derive a reliable evaluation metric that assesses content quality without being confounded by response length, we propose AdapAlpaca, a simple yet effective adjustment to win rate measurement. Specifically, AdapAlpaca ensures a fair comparison of response quality by aligning the lengths of reference and test model responses under equivalent length intervals.

2024

pdf bib
Let’s Ask GNN: Empowering Large Language Model for Graph In-Context Learning
Zhengyu Hu | Yichuan Li | Zhengyu Chen | Jingang Wang | Han Liu | Kyumin Lee | Kaize Ding
Findings of the Association for Computational Linguistics: EMNLP 2024

Textual Attributed Graphs (TAGs) are crucial for modeling complex real-world systems, yet leveraging large language models (LLMs) for TAGs presents unique challenges due to the gap between sequential text processing and graph-structured data. We introduce AskGNN, a novel approach that bridges this gap by leveraging In-Context Learning (ICL) to integrate graph data and task-specific information into LLMs. AskGNN employs a Graph Neural Network (GNN)-powered structure-enhanced retriever to select labeled nodes across graphs, incorporating complex graph structures and their supervision signals. Our learning-to-retrieve algorithm optimizes the retriever to select example nodes that maximize LLM performance on graph. Experiments across three tasks and seven LLMs demonstrate AskGNN’s superior effectiveness in graph task performance, opening new avenues for applying LLMs to graph-structured data without extensive fine-tuning.