In Large Language Models (LLMs) generation, there exist knowledge conflicts, and scenarios where parametric knowledge contradicts knowledge provided in the context. Previous works studied tuning, decoding algorithms, or locating and editing context-aware neurons to adapt LLMs to be faithful to new contextual knowledge. However, they are usually inefficient or ineffective for large models, not workable for black-box models, or unable to continuously adjust LLMs’ sensitivity to the knowledge provided in the context. To mitigate these problems, we propose CSKS (Continuously Steering Knowledge Sensitivity), a simple framework that can steer LLMs’ sensitivity to contextual knowledge continuously at a lightweight cost. Specifically, we tune two small LMs (i.e. proxy models) and use the difference in their output distributions to shift the original distribution of an LLM without modifying the LLM weights. In the evaluation process, we not only design synthetic data and fine-grained metrics to measure models’ sensitivity to contextual knowledge but also use a real conflict dataset to validate CSKS’ practical efficacy. Extensive experiments demonstrate that our framework achieves continuous and precise control over LLMs’ sensitivity to contextual knowledge, enabling both increased sensitivity and reduced sensitivity, thereby allowing LLMs to prioritize either contextual or parametric knowledge as needed flexibly. Our data and code are available at https://github.com/OliveJuiceLin/CSKS.
Evaluating the factual consistency of automatically generated summaries is essential for the progress and adoption of reliable summarization systems. Despite recent advances, existing factuality evaluation models are not robust, being especially prone to entity and relation errors in new domains. We propose FactKB—a simple new approach to factuality evaluation that is generalizable across domains, in particular with respect to entities and relations. FactKB is based on language models pretrained using facts extracted from external knowledge bases. We introduce three types of complementary factuality pretraining objectives based on entity-specific facts, facts extracted from auxiliary knowledge about entities, and facts constructed compositionally through knowledge base walks. The resulting factuality evaluation model achieves state-of-the-art performance on two in-domain news summarization benchmarks as well as on three out-of-domain scientific literature datasets. Further analysis of FactKB shows improved ability to detect erroneous entities and relations in summaries and is robust and easily generalizable across domains.
Online movie review platforms are providing crowdsourced feedback for the film industry and the general public, while spoiler reviews greatly compromise user experience. Although preliminary research efforts were made to automatically identify spoilers, they merely focus on the review content itself, while robust spoiler detection requires putting the review into the context of facts and knowledge regarding movies, user behavior on film review platforms, and more. In light of these challenges, we first curate a large-scale network-based spoiler detection dataset LCS and a comprehensive and up-to-date movie knowledge base UKM. We then propose MVSD, a novel spoiler detection model that takes into account the external knowledge about movies and user activities on movie review platforms. Specifically, MVSD constructs three interconnecting heterogeneous information networks to model diverse data sources and their multi-view attributes, while we design and employ a novel heterogeneous graph neural network architecture for spoiler detection as node-level classification. Extensive experiments demonstrate that MVSD advances the state-of-the-art on two spoiler detection datasets, while the introduction of external knowledge and user interactions help ground robust spoiler detection.