Yuxuan Huang


2025

pdf bib
ATLAS: Agent Tuning via Learning Critical Steps
Zhixun Chen | Ming Li | Yuxuan Huang | Yali Du | Meng Fang | Tianyi Zhou
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Model (LLM) agents have demonstrated remarkable generalization capabilities across multi-domain tasks. Existing agent tuning approaches typically employ supervised finetuning on entire expert trajectories. However, behavior-cloning of full trajectories can introduce expert bias and weaken generalization to states not covered by the expert data. Additionally, critical steps—such as planning, complex reasoning for intermediate subtasks, and strategic decision-making—are essential to success in agent tasks, so learning these steps is the key to improving LLM agents. For more effective and efficient agent tuning, we propose ATLAS that identifies the critical steps in expert trajectories and finetunes LLMs solely on these steps with reduced costs. By steering the training’s focus to a few critical steps, our method mitigates the risk of overfitting entire trajectories and promotes generalization across different environments and tasks. In extensive experiments, an LLM finetuned on only 30% critical steps selected by ATLAS outperforms the LLM finetuned on all steps and recent open-source LLM agents. ATLAS maintains and improves base LLM skills as generalist agents interacting with diverse environments.

pdf bib
Spiral of Silence in Large Language Model Agents
Mingze Zhong | Meng Fang | Zijing Shi | Yuxuan Huang | Shunfeng Zheng | Yali Du | Ling Chen | Jun Wang
Findings of the Association for Computational Linguistics: EMNLP 2025

The Spiral of Silence (SoS) theory holds that individuals with minority views often refrain from speaking out for fear of social isolation, enabling majority positions to dominate public discourse. When the “agents” are large language models (LLMs), however, the classical psychological explanation is not directly applicable, since SoS was developed for human societies. This raises a central question: can SoS-like dynamics nevertheless emerge from purely statistical language generation in LLM collectives? We propose an evaluation framework for examining SoS in LLM agents. Specifically, we consider four controlled conditions that systematically vary the availability of “History” and “Persona” signals. Opinion dynamics are assessed using trend tests such as Mann–Kendall and Spearman’s rank, along with concentration measures including kurtosis and interquartile range. Experiments across open-source and closed-source models show that history and persona together produce strong majority dominance and replicate SoS patterns; history signals alone induce strong anchoring; and persona signals alone foster diverse but uncorrelated opinions, indicating that without historical anchoring, SoS dynamics cannot emerge. The work bridges computational sociology and responsible AI design, highlighting the need to monitor and mitigate emergent conformity in LLM-agent systems.