Yunghwei Lai
2025
MUCAR: Benchmarking Multilingual Cross-Modal Ambiguity Resolution for Multimodal Large Language Models
Xiaolong Wang
|
Zhaolu Kang
|
Wangyuxuan Zhai
|
Xinyue Lou
|
Yunghwei Lai
|
Ziyue Wang
|
Yawen Wang
|
Kaiyu Huang
|
Yile Wang
|
Peng Li
|
Yang Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Multimodal Large Language Models (MLLMs) have demonstrated significant advances across numerous vision-language tasks. Due to their strong performance in image-text alignment, MLLMs can effectively understand image-text pairs with clear meanings. However, effectively resolving the inherent ambiguities in natural language and visual contexts remains challenging. Existing multimodal benchmarks typically overlook linguistic and visual ambiguities, relying mainly on unimodal context for disambiguation and thus failing to exploit the mutual clarification potential between modalities. To bridge this gap, we introduce MUCAR, a novel and challenging benchmark designed explicitly for evaluating multimodal ambiguity resolution across multilingual and cross-modal scenarios. MUCAR includes: (1) a multilingual dataset where ambiguous textual expressions are uniquely resolved by corresponding visual contexts, and (2) a dual-ambiguity dataset that systematically pairs ambiguous images with ambiguous textual contexts, with each combination carefully constructed to yield a single, clear interpretation through mutual disambiguation. Extensive evaluations involving 19 state-of-the-art multimodal models—encompassing both open-source and proprietary architectures—reveal substantial gaps compared to human-level performance, highlighting the need for future research into more sophisticated cross-modal ambiguity comprehension methods, further pushing the boundaries of multimodal reasoning.
2024
ToMBench: Benchmarking Theory of Mind in Large Language Models
Zhuang Chen
|
Jincenzi Wu
|
Jinfeng Zhou
|
Bosi Wen
|
Guanqun Bi
|
Gongyao Jiang
|
Yaru Cao
|
Mengting Hu
|
Yunghwei Lai
|
Zexuan Xiong
|
Minlie Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Theory of Mind (ToM) is the cognitive capability to perceive and ascribe mental states to oneself and others. Recent research has sparked a debate over whether large language models (LLMs) exhibit a form of ToM. However, existing ToM evaluations are hindered by challenges such as constrained scope, subjective judgment, and unintended contamination, yielding inadequate assessments. To address this gap, we introduce ToMBench with three key characteristics: a systematic evaluation framework encompassing 8 tasks and 31 abilities in social cognition, a multiple-choice question format to support automated and unbiased evaluation, and a build-from-scratch bilingual inventory to strictly avoid data leakage. Based on ToMBench, we conduct extensive experiments to evaluate the ToM performance of 10 popular LLMs across tasks and abilities. We find that even the most advanced LLMs like GPT-4 lag behind human performance by over 10% points, indicating that LLMs have not achieved a human-level theory of mind yet. Our aim with ToMBench is to enable an efficient and effective evaluation of LLMs’ ToM capabilities, thereby facilitating the development of LLMs with inherent social intelligence.
Search
Fix author
Co-authors
- Guanqun Bi 1
- Yaru Cao 1
- Zhuang Chen 1
- Mengting Hu 1
- Minlie Huang 1
- show all...