Large language models (LLMs) have mastered abundant simple and explicit commonsense knowledge through pre-training, enabling them to achieve human-like performance in simple commonsense reasoning. Nevertheless, LLMs struggle to reason with complex and implicit commonsense knowledge that is derived from simple ones (such as understanding the long-term effects of certain events), an aspect humans tend to focus on more. Existing works focus on complex tasks like math and code, while complex commonsense reasoning remains underexplored due to its uncertainty and lack of structure. To fill this gap and align with real-world concerns, we propose a benchmark Com2 focusing on complex commonsense reasoning. We first incorporate causal event graphs to serve as structured complex commonsense. Then we adopt causal theory (e.g., intervention) to modify the causal event graphs and obtain different scenarios that meet human concerns. Finally, an LLM is employed to synthesize examples with slow thinking, which is guided by the logical relationships in the modified causal graphs. Furthermore, we use detective stories to construct a more challenging subset. Experiments show that LLMs struggle in reasoning depth and breadth, while post-training and slow thinking can alleviate this. The code and data are available at https://github.com/Waste-Wood/Com2.
Evaluating and iterating upon recommender systems is crucial, yet traditional A/B testing is resource-intensive, and offline methods struggle with dynamic user-platform interactions. While agent-based simulation is promising, existing platforms often lack a mechanism for user actions to dynamically reshape the environment. To bridge this gap, we introduce RecInter , a novel agent-based simulation platform for recommender systems featuring a robust interaction mechanism. In RecInter platform, simulated user actions (e.g., likes, reviews, purchases) dynamically update item attributes in real-time, and introduced Merchant Agents can reply, fostering a more realistic and evolving ecosystem. High-fidelity simulation is ensured through Multidimensional User Profiling module, Advanced Agent Architecture, and LLM fine-tuned on Chain-of-Thought (CoT) enriched interaction data. Our platform achieves significantly improved simulation credibility and successfully replicates emergent phenomena like Brand Loyalty and the Matthew Effect. Experiments demonstrate that this interaction mechanism is pivotal for simulating realistic system evolution, establishing our platform as a credible testbed for recommender systems research. All codes are released in https://github.com/jinsong8/RecInter.
Recent advances in large language models (LLMs) have significantly improved automated code generation, enabling tools such as GitHub Copilot and CodeWhisperer to assist developers in a wide range of programming tasks. However, the translation of complex mobile UI designs into high-fidelity front-end code remains a challenging and underexplored area, especially as modern app interfaces become increasingly intricate. In this work, we propose UIOrchestra, a collaborative multi-agent system designed for the AppUI2Code task, which aims to reconstruct static single-page applications from design mockups. UIOrchestra integrates three specialized agents, layout description, code generation, and difference analysis agent that work collaboratively to address the limitations of single-model approaches. To facilitate robust evaluation, we introduce APPUI, the first benchmark dataset for AppUI2Code, constructed through a human-in-the-loop process to ensure data quality and coverage. Experimental results demonstrate that UIOrchestra outperforms existing methods in reconstructing complex app pages and highlight the necessity of multi-agent collaboration for this task. We hope our work will inspire further research on leveraging LLMs for front-end automation. The code and data will be released upon paper acceptance.