Yufei Han
2025
Dissecting Logical Reasoning in LLMs: A Fine-Grained Evaluation and Supervision Study
Yujun Zhou
|
Jiayi Ye
|
Zipeng Ling
|
Yufei Han
|
Yue Huang
|
Haomin Zhuang
|
Zhenwen Liang
|
Kehan Guo
|
Taicheng Guo
|
Xiangqi Wang
|
Xiangliang Zhang
Findings of the Association for Computational Linguistics: EMNLP 2025
Logical reasoning is a core capability for large language models (LLMs), yet existing benchmarks that rely solely on final-answer accuracy fail to capture the quality of the reasoning process. To address this, we introduce FineLogic, a fine-grained evaluation framework that assesses logical reasoning across three dimensions: overall accuracy, stepwise soundness, and representation-level probing. Leveraging this framework, we conduct a comprehensive study on how different supervision formats in fine-tuning shape reasoning abilities. We fine-tune LLMs on four supervision styles—one in natural language and three symbolic variants—and find a key trade-off: natural language supervision excels at generalization to out-of-distribution and long-chain problems, whereas symbolic supervision is superior at instilling structurally sound, atomic reasoning steps. Furthermore, our probing analysis indicates that fine-tuning primarily refines the model’s step-by-step generation process, rather than improving its ability to converge on an answer early. Together, our framework and analysis provide a more rigorous lens for evaluating and improving logical reasoning in LLMs. The code is available at https://github.com/YujunZhou/FineLogic.
2024
Defending Jailbreak Prompts via In-Context Adversarial Game
Yujun Zhou
|
Yufei Han
|
Haomin Zhuang
|
Kehan Guo
|
Zhenwen Liang
|
Hongyan Bao
|
Xiangliang Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) demonstrate remarkable capabilities across diverse applications. However, concerns regarding their security, particularly the vulnerability to jailbreak attacks, persist. Drawing inspiration from adversarial training in deep learning and LLM agent learning processes, we introduce the In-Context Adversarial Game (ICAG) for defending against jailbreaks without the need for fine-tuning. ICAG leverages agent learning to conduct an adversarial game, aiming to dynamically extend knowledge to defend against jailbreaks. Unlike traditional methods that rely on static datasets, ICAG employs an iterative process to enhance both the defense and attack agents. This continuous improvement process strengthens defenses against newly generated jailbreak prompts. Our empirical studies affirm ICAG’s efficacy, where LLMs safeguarded by ICAG exhibit significantly reduced jailbreak success rates across various attack scenarios. Moreover, ICAG demonstrates remarkable transferability to other LLMs, indicating its potential as a versatile defense mechanism. The code is available at https://github.com/YujunZhou/In-Context-Adversarial-Game.
Search
Fix author
Co-authors
- Kehan Guo 2
- Zhenwen Liang 2
- Xiangliang Zhang 2
- Yujun Zhou 2
- Haomin Zhuang 2
- show all...