Yueqi Wang


2025

pdf bib
User Feedback Alignment for LLM-powered Exploration in Large-scale Recommendation Systems
Jianling Wang | Yifan Liu | Yinghao Sun | Xuejian Ma | Yueqi Wang | He Ma | Zhengyang Su | Minmin Chen | Mingyan Gao | Onkar Dalal | Ed H. Chi | Lichan Hong | Ningren Han | Haokai Lu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Exploration, the act of broadening user experiences beyond their established preferences, is challenging in large-scale recommendation systems due to feedback loops and limited signals on user exploration patterns. Large Language Models (LLMs) offer potential solutions by leveraging their world knowledge to recommend novel content outside these loops. A key challenge is aligning LLMs with user preferences while preserving their knowledge and reasoning. To enhance planning for new user interests using LLMs, this paper introduces a novel approach that combines hierarchical planning with LLM inference-time scaling. This method aims to improve recommendation relevancy without compromising novelty. We decouple novelty and user-alignment, training separate LLMs for each objective. We then scale up the novelty-focused LLM’s inference and select the best-of-n predictions using the user-aligned LLM. Live experiments demonstrate efficacy, showing significant gains in both user satisfaction (measured by watch activity and active user counts) and exploration diversity.

pdf bib
Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization
Shuo Xing | Peiran Li | Yuping Wang | Ruizheng Bai | Yueqi Wang | Chan-Wei Hu | Chengxuan Qian | Huaxiu Yao | Zhengzhong Tu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The emergence of large Vision Language Models (VLMs) has broadened the scope and capabilities of single-modal Large Language Models (LLMs) by integrating visual modalities, thereby unlocking transformative cross-modal applications in a variety of real-world scenarios. Despite their impressive performance, VLMs are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies. Building on the success of Reinforcement Learning from Human Feedback (RLHF) in aligning LLMs, recent advancements have focused on applying direct preference optimization (DPO) on carefully curated datasets to mitigate these issues. Yet, such approaches typically introduce preference signals in a brute-force manner, neglecting the crucial role of visual information in the alignment process. In this paper, we introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset, effectively incorporating both textual and visual preference signals. We further introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning. Our experimental results demonstrate that Re-Align not only mitigates hallucinations more effectively than previous methods but also yields significant performance gains in general visual question-answering (VQA) tasks. Moreover, we show that Re-Align maintains robustness and scalability across a wide range of VLM sizes and architectures. This work represents a significant step forward in aligning multimodal LLMs, paving the way for more reliable and effective cross-modal applications.

2024

pdf bib
Train Once, Deploy Anywhere: Matryoshka Representation Learning for Multimodal Recommendation
Yueqi Wang | Zhenrui Yue | Huimin Zeng | Dong Wang | Julian McAuley
Findings of the Association for Computational Linguistics: EMNLP 2024

Despite recent advancements in language and vision modeling, integrating rich multimodal knowledge into recommender systems continues to pose significant challenges. This is primarily due to the need for efficient recommendation, which requires adaptive and interactive responses. In this study, we focus on sequential recommendation and introduce a lightweight framework called full-scale Matryoshka representation learning for multimodal recommendation (fMRLRec). Our fMRLRec captures item features at different granularities, learning informative representations for efficient recommendation across multiple dimensions. To integrate item features from diverse modalities, fMRLRec employs a simple mapping to project multimodal item features into an aligned feature space. Additionally, we design an efficient linear transformation that embeds smaller features into larger ones, substantially reducing memory requirements for large-scale training on recommendation data. Combined with improved state space modeling techniques, fMRLRec scales to different dimensions and only requires one-time training to produce multiple models tailored to various granularities. We demonstrate the effectiveness and efficiency of fMRLRec on multiple benchmark datasets, which consistently achieves superior performance over state-of-the-art baseline methods. We make our code and data publicly available at https://github.com/yueqirex/fMRLRec.