Yuangang Li
2025
AD-LLM: Benchmarking Large Language Models for Anomaly Detection
Tiankai Yang
|
Yi Nian
|
Li Li
|
Ruiyao Xu
|
Yuangang Li
|
Jiaqi Li
|
Zhuo Xiao
|
Xiyang Hu
|
Ryan A. Rossi
|
Kaize Ding
|
Xia Hu
|
Yue Zhao
Findings of the Association for Computational Linguistics: ACL 2025
Anomaly detection (AD) is an important machine learning task with many real-world uses, including fraud detection, medical diagnosis, and industrial monitoring. Within natural language processing (NLP), AD helps detect issues like spam, misinformation, and unusual user activity. Although large language models (LLMs) have had a strong impact on tasks such as text generation and summarization, their potential in AD has not been studied enough. This paper introduces AD-LLM, the first benchmark that evaluates how LLMs can help with NLP anomaly detection. We examine three key tasks: (i) zero-shot detection, using LLMs’ pre-trained knowledge to perform AD without tasks-specific training; (ii) data augmentation, generating synthetic data and category descriptions to improve AD models; and (iii) model selection, using LLMs to suggest unsupervised AD models. Through experiments with different datasets, we find that LLMs can work well in zero-shot AD, that carefully designed augmentation methods are useful, and that explaining model selection for specific datasets remains challenging. Based on these results, we outline six future research directions on LLMs for AD.
NLP-ADBench: NLP Anomaly Detection Benchmark
Yuangang Li
|
Jiaqi Li
|
Zhuo Xiao
|
Tiankai Yang
|
Yi Nian
|
Xiyang Hu
|
Yue Zhao
Findings of the Association for Computational Linguistics: EMNLP 2025
Anomaly detection (AD) is an important machine learning task with applications in fraud detection, content moderation, and user behavior analysis. However, AD is relatively understudied in a natural language processing (NLP) context, limiting its effectiveness in detecting harmful content, phishing attempts, and spam reviews. We introduce NLP-ADBench, the most comprehensive NLP anomaly detection (NLP-AD) benchmark to date, which includes eight curated datasets and 19 state-of-the-art algorithms. These span 3 end-to-end methods and 16 two-step approaches that adapt classical, non-AD methods to language embeddings from BERT and OpenAI. Our empirical results show that no single model dominates across all datasets, indicating a need for automated model selection. Moreover, two-step methods with transformer-based embeddings consistently outperform specialized end-to-end approaches, with OpenAI embeddings outperforming those of BERT. We release NLP-ADBench at https://github.com/USC-FORTIS/NLP-ADBench, providing a unified framework for NLP-AD and supporting future investigations.