Yao Chen


2025

pdf bib
Improving Reasoning Capabilities in Small Models through Mixture-of-layers Distillation with Stepwise Attention on Key Information
Yao Chen | Jiawei Sheng | Wenyuan Zhang | Tingwen Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The significant computational demands of large language models have increased interest in distilling reasoning abilities into smaller models via Chain-of-Thought (CoT) distillation. Current CoT distillation methods mainly focus on transferring teacher-generated rationales for complex reasoning to student models. However, they do not adequately explore teachers’ dynamic attention toward critical information during reasoning. We find that language models exhibit progressive attention shifts towards key information during reasoning, which implies essential clues for drawing conclusions. Building on this observation and analysis, we introduce a novel CoT distillation framework that transfers the teacher’s stepwise attention on key information to the student model. This establishes structured guidance for the student’s progressive concentration on key information during reasoning. More importantly, we develop a Mixture of Layers module enabling dynamic alignment that adapts to different layers between the teacher and student. Our method achieves consistent performance improvements across multiple mathematical and commonsense reasoning datasets. To our knowledge, it is the first method to leverage stepwise attention within CoT distillation to improve small model reasoning.

pdf bib
Evaluating Small Language Models for News Summarization: Implications and Factors Influencing Performance
Borui Xu | Yao Chen | Zeyi Wen | Weiguo Liu | Bingsheng He
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The increasing demand for efficient summarization tools in resource-constrained environments highlights the need for effective solutions. While large language models (LLMs) deliver superior summarization quality, their high computational resource requirements limit practical use applications. In contrast, small language models (SLMs) present a more accessible alternative, capable of real-time summarization on edge devices. However, their summarization capabilities and comparative performance against LLMs remain underexplored. This paper addresses this gap by presenting a comprehensive evaluation of 19 SLMs for news summarization across 2,000 news samples, focusing on relevance, coherence, factual consistency, and summary length. Our findings reveal significant variations in SLM performance, with top-performing models such as Phi3-Mini and Llama3.2-3B-Ins achieving results comparable to those of 70B LLMs while generating more concise summaries. Notably, SLMs are better suited for simple prompts, as overly complex prompts may lead to a decline in summary quality. Additionally, our analysis indicates that instruction tuning does not consistently enhance the news summarization capabilities of SLMs. This research not only contributes to the understanding of SLMs but also provides practical insights for researchers seeking efficient summarization solutions that balance performance and resource use.

2021

pdf bib
Compressing Large-Scale Transformer-Based Models: A Case Study on BERT
Prakhar Ganesh | Yao Chen | Xin Lou | Mohammad Ali Khan | Yin Yang | Hassan Sajjad | Preslav Nakov | Deming Chen | Marianne Winslett
Transactions of the Association for Computational Linguistics, Volume 9

Pre-trained Transformer-based models have achieved state-of-the-art performance for various Natural Language Processing (NLP) tasks. However, these models often have billions of parameters, and thus are too resource- hungry and computation-intensive to suit low- capability devices or applications with strict latency requirements. One potential remedy for this is model compression, which has attracted considerable research attention. Here, we summarize the research in compressing Transformers, focusing on the especially popular BERT model. In particular, we survey the state of the art in compression for BERT, we clarify the current best practices for compressing large-scale Transformer models, and we provide insights into the workings of various methods. Our categorization and analysis also shed light on promising future research directions for achieving lightweight, accurate, and generic NLP models.

2020

pdf bib
TAG : Type Auxiliary Guiding for Code Comment Generation
Ruichu Cai | Zhihao Liang | Boyan Xu | Zijian Li | Yuexing Hao | Yao Chen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Existing leading code comment generation approaches with the structure-to-sequence framework ignores the type information of the interpretation of the code, e.g., operator, string, etc. However, introducing the type information into the existing framework is non-trivial due to the hierarchical dependence among the type information. In order to address the issues above, we propose a Type Auxiliary Guiding encoder-decoder framework for the code comment generation task which considers the source code as an N-ary tree with type information associated with each node. Specifically, our framework is featured with a Type-associated Encoder and a Type-restricted Decoder which enables adaptive summarization of the source code. We further propose a hierarchical reinforcement learning method to resolve the training difficulties of our proposed framework. Extensive evaluations demonstrate the state-of-the-art performance of our framework with both the auto-evaluated metrics and case studies.