Yan Pang
2025
Diving into Mitigating Hallucinations from a Vision Perspective for Large Vision-Language Models
Weihang Wang
|
Xinhao Li
|
Ziyue Wang
|
Yan Pang
|
Jielei Zhang
|
Peiyi Li
|
Qiang Zhang
|
Longwen Gao
Findings of the Association for Computational Linguistics: EMNLP 2025
Object hallucinations in Large Vision-Language Models (LVLMs) significantly impede their real-world applicability. As the primary component for accurately interpreting visual information, the choice of visual encoder is pivotal. We hypothesize that the diverse training paradigms employed by different visual encoders instill them with distinct inductive biases, which leads to their diverse hallucination performances. Existing benchmarks typically focus on coarse-grained hallucination detection and fail to capture the diverse hallucinations elaborated in our hypothesis. To systematically analyze these effects, we introduce VHBench-10, a comprehensive benchmark for evaluating LVLMs across ten fine-grained hallucination categories. Our evaluations confirm encoders exhibit unique hallucination characteristics. Building on these insights and the suboptimality of simple feature fusion, we propose VisionWeaver, a novel Context-Aware Routing Network. It employs global visual features to generate routing signals, dynamically aggregating visual features from multiple specialized experts. Comprehensive experiments confirm the effectiveness of VisionWeaver in significantly reducing hallucinations and improving overall model performance. Our code and benchmark are available at https://github.com/whwangovo/VisionWeaver.
2024
Multimodal Misinformation Detection by Learning from Synthetic Data with Multimodal LLMs
Fengzhu Zeng
|
Wenqian Li
|
Wei Gao
|
Yan Pang
Findings of the Association for Computational Linguistics: EMNLP 2024
Detecting multimodal misinformation, especially in the form of image-text pairs, is crucial. Obtaining large-scale, high-quality real-world fact-checking datasets for training detectors is costly, leading researchers to use synthetic datasets generated by AI technologies. However, the generalizability of detectors trained on synthetic data to real-world scenarios remains unclear due to the distribution gap. To address this, we propose learning from synthetic data for detecting real-world multimodal misinformation through two model-agnostic data selection methods that match synthetic and real-world data distributions. Experiments show that our method enhances the performance of a small MLLM (13B) on real-world fact-checking datasets, enabling it to even surpass GPT-4V.
Search
Fix author
Co-authors
- Wei Gao 1
- Longwen Gao 1
- Wenqian Li 1
- Xinhao Li (李鑫豪) 1
- Peiyi Li 1
- show all...