Xuefeng Zhang
2025
HD-PiSSA: High-Rank Distributed Orthogonal Adaptation
Yiding Wang
|
Fanxu Meng
|
Xuefeng Zhang
|
Fan Jiang
|
Pingzhi Tang
|
Muhan Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Existing parameter-efficient fine-tuning (PEFT) methods for large language models (LLMs), such as LoRA and PiSSA, constrain model updates to low-rank subspaces, limiting their expressiveness and leading to suboptimal performance on complex tasks. To address this, we introduce **H**igh-rank **D**istributed **PiSSA (HD-PiSSA)**, a distributed PEFT approach that initializes **orthogonal adapters** across different devices and aggregates their delta updates collectively on (W) for fine-tuning. Unlike Data Parallel LoRA or PiSSA, which maintain identical adapters across all devices, HD-PiSSA assigns different principal components of the pre-trained weights to each GPU, significantly expanding the range of update directions. This results in over 16× higher effective updated ranks than data-parallel LoRA or PiSSA when fine-tuning on 8 GPUs with the same per-device adapter rank. Empirically, HD-PiSSA benefits from this extra optimization flexibility and outperforms both LoRA and PiSSA across a variety of challenging downstream tasks, including mathematics, code, and multi-task learning.
2024
Progressively Modality Freezing for Multi-Modal Entity Alignment
Yani Huang
|
Xuefeng Zhang
|
Richong Zhang
|
Junfan Chen
|
Jaein Kim
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multi-Modal Entity Alignment aims to discover identical entities across heterogeneous knowledge graphs. While recent studies have delved into fusion paradigms to represent entities holistically, the elimination of features irrelevant to alignment and modal inconsistencies is overlooked, which are caused by inherent differences in multi-modal features. To address these challenges, we propose a novel strategy of progressive modality freezing, called PMF, that focuses on alignment-relevant features and enhances multi-modal feature fusion. Notably, our approach introduces a pioneering cross-modal association loss to foster modal consistency.Empirical evaluations across nine datasets confirm PMF’s superiority, demonstrating state-of-the-art performance and the rationale for freezing modalities. Our code is available at https://github.com/ninibymilk/PMF-MMEA.